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Abstract 

Four on-road studies were conducted in the Clifton area of Nottingham, UK, aiming to explore the 

relationships between driver workload and environmental engagement associated with ‘active’ 

and ‘passive’ navigation systems. In a between-subjects design, a total of 61 experienced drivers 

completed two experimental drives comprising the same three routes (with overlapping 

sections), staged one week apart. Drivers were provided with the navigational support of a 

commercially-available navigation device (‘satnav’), an informed passenger (a stranger with 

expert route knowledge), a collaborative passenger (an individual with whom they had a close, 

personal relationship) or a novel interface employing conversational natural language NAV-NLI). 

The NAV-NLI was created by curating linguistic intercourse extracted from the earlier conditions, 

and delivering this using a Wizard-of-Oz technique. The different navigational methods were 

notable for their varying interactivity and the preponderance of environmental landmark 

information within route directions. Participants experienced the same guidance on each of the 

two drives to explore changes in reported and observed behaviour. Results show that 

participants who were more active in the navigation task (collaborative passenger or NAV-NLI) 

demonstrated enhanced environmental engagement (landmark recognition, route-learning and 

survey knowledge) allowing them to reconstruct the route more accurately post-drive, compared 

to drivers using more passive forms of navigational support (SatNav or informed passenger). 

Workload measures (TDT, NASA-TLX) indicated no differences between conditions, although 

satnav users and collaborative passenger drivers reported lower workload during their second 

drive. The research demonstrates clear benefits and potential for a navigation system employing 

two-way conversational language to deliver instructions. This could help support a long-term 

perspective in the development of spatial knowledge, enabling drivers to become less reliant on 

the technology and begin to re-establish associations between viewing an environmental feature 

and the related navigational manoeuvre. 

 

 

1. Introduction 

Drivers frequently employ electronic navigation systems to assist them in route-planning and 

route-following. Such systems typically act as ‘uncertainty minimisers’, thereby enabling effective 

navigation and increased mobility (King, 1986) (Streeter & Vitello, 1986). Indeed, research 

suggests that navigational uncertainty can reduce the mobility of individuals who are cautious of 
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travel, particularly in unfamiliar environments, with such drivers reporting frustration or anxiety 

when they are unable to navigate effectively (Barrow, 1991) (Burns, 1997). The use of an 

electronic navigation aid can assist such drivers by automating the task of route planning and by 

providing navigational support and assistance throughout a journey. This has the added benefit 

of allowing the driver to focus on the primary, safety-critical task of driving. 

However, the use of in-vehicle navigational systems is not without concerns, with literature 

highlighting the potential for elevated workload and distraction (Bach, Jæger, Skov, & Thomasse, 

2009) (Nwakacha, Crabtree, & Burnett, 2013). Relying on such systems can also result in erratic 

behaviour, such as unexpected lane changes, sudden braking and the inappropriate use of 

indicators, especially where drivers are unsure of the correct route to follow and subsequently 

make last minute changes (Burnett, 2000). In addition, the literature recognises that issues with 

the navigational display and the phrasing of wayfinding prompts can hinder the correct 

interpretation of navigation information (Forlizzi, Barley, & Seder, 2010). 

Whilst a substantial corpus of vehicle navigation literature understandably focuses on distraction 

issues, usability and interface design (Kujala, Grahn, Mäkelä, & Lasch, 2016) (Jensen, Skov, & 

Thiruravichandran, 2010) (Lavie, Oron-Gilad, & Meyer, 2011) (Liu, 2001), an increasing number 

of scholars are examining the wider, human implications of automating route planning and 

following. A particular area where in-vehicle navigation devices (or SatNavs) have not compared 

favourably to their paper map predecessors is their ability to connect the driver with the world 

around them (Leshed, Velden, Rieger, Kot, & Sengers, 2010). Specifically, the use of electronic 

navigation devices has been associated with driver disengagement from the environment 

(Lorimer & Lund, 2003). Lorimer and Lund (2003) proffer that navigating with a SatNav that 

utilises simple turn-by-turn instructions supports only a reduced, fragmented understanding of 

a landscape, and therefore impedes an individual’s cognitive map formation. As such, drivers who 

rely on electronic navigation devices are typically only able to demonstrate a poor reconstruction 

and memory of the environment through which they have travelled (Antrobus, Burnett, & Krehl, 

2016) (Burnett & Lee, 2005). Consequently, drivers may become reliant on the technology even 

during regular journeys or routinely navigable environments. 

Burnett and Lee (2005) suggest that the level of engagement with the environment during route-

following is associated with the extent to which the navigation task is ‘active’ or ‘passive’. Active 

navigation involves the driver in route planning and utilises environmental elements within more 

extensive route instructions, with the aim of ensuring that the driver maintains a sense of 

orientation throughout the journey. In such approaches, drivers must interpret this information 

to identify and select a specific turn, often where there are a number of options available. 

Conversely, within passive navigation systems, drivers are presented with simpler instructions, 

typically incorporating an ego-centred direction (e.g. ‘left’, ‘right’, ‘straight on’) together with 

proximity information regarding the adjacency to a particular action (e.g. ‘next turn’, ‘2nd exit’). 

Such instructions are presented over shorter time periods (typically one or two manoeuvres 

ahead), and therefore require fewer mental resources to process.  

Burnett and Lee (2005) found that by using more active forms of navigation, people acquire 

spatial knowledge more readily, meaning drivers would require less exposure to the environment 

before they reach a point of system independence. However, the authors warn that more active 

forms of navigation are likely to require higher workload initially, compared to more ‘passive’ 

approaches, and therefore may be less popular to drivers. Nevertheless, workload purportedly 

drops more quickly with repeated exposure for active navigation systems, compared to drivers 
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who are passively engaged.  Even so, there is clearly scope to explore how to provide the benefits 

of ‘active’ engagement, while avoiding any associated increases in workload. 

1.1 Driver-Passenger Model 

One situation in which some of these benefits may already be apparent is collaborative driving, 

i.e. situations in which a passenger is also present and consequently supports the driver in route-

finding activities. In these situations, the passenger is often called upon to assist the driver in 

route-finding. Moreover, this often happens routinely, without a formal or specific request from 

the driver.  

The location of the passenger within the same shared vehicle space as the driver means that they 

are ideally suited to support the driver in the most appropriate manner – they are likely to be 

aware of the demands of the driving environment (particularly if they are also an experienced 

driver) and the driver’s current navigational dilemma, and can therefore mediate the support 

they provide, and the method in which they deliver it. It also provides the opportunity to 

subsequently check the driver’s understanding of any instructions and offer clarification, if and 

when necessary (Forlizzi, Barley, & Seder, 2010) (Perterer, Sundström, Meschtscherjakov, 

Wilfinger, & Tscheligi, 2013) (Perterer, Meschtscherjakov, & Tscheligi, 2015).  

Recognising the value of the passenger in route-finding, Perterer, Meschtschtscherjakow & 

Tscheligi (2015) devised a passenger-facing advanced driver navigation system. Acting as a 

secondary system, the authors proposed that the driver should still have access to traditional, 

driver-facing turn-by-turn guidance, so that they are able to navigate routes alone without 

passenger assistance. However, in demanding driving situations (e.g. unfamiliar areas, bad 

weather conditions, night-time driving), the passenger was able to access a tablet device 

containing enhanced environmental information (e.g. route overview, a detailed map containing 

landmark information) which they could then relay to the driver, thereby assisting with the 

navigation task. 

In addition to supporting the developing of dedicated passenger-facing navigation systems, 

understanding the driver-passenger relationship also provides the opportunity to extract 

elements that could be replicated in a driver-only system. In an ethnographic observation of 

driver-passenger pairings, Perterer, Sundström, Meschtscherjakov, Wilfinger, & Tscheligi (2013) 

revealed a number of activities performed by passengers to assist and support drivers during the 

course of the journey. These behaviours centred on the mediation of interactions according to the 

perceived demand of the driving task. For example, passengers were observed withholding or 

delaying interactions until driving manoeuvres, such as lane changes, had been completed. 

Conversely, interactions were more frequent during hazardous road conditions (e.g. driving on 

snow covered roads), where passengers repeatedly checked the well-being of the driver. 

Recognising that it is not always possible, or practical for drivers to be accompanied by a 

passenger, a further point of interest is exploring how to provide the benefits of driver-passenger 

collaborative navigation in the absence of a passenger. 

 

 



Page 4 of 16 
 

1.2 Natural Language Interactions 

Due to the realities and practicalities of everyday car travel, it is not always possible for drivers 

to be accompanied by a passenger, and therefore a large proportion of journeys now see drivers 

travelling alone. This means that they are unable to access or make use of the contextually 

sensitive, interactive assistance of an in-car passenger. However, the recent proliferation and 

popularity of ‘intelligent’ voice-based systems in everyday applications presents an ideal 

opportunity to consider how such technology may be employed within the navigation task. 

Specifically, to explore whether such technology could adopt the role of knowledgeable, 

loquacious passenger to support bilateral dialogue based on the collaborative effort of both 

interactants to ensure mutual understanding (Buschmeier & Kopp, 2011). Thus, it may be 

possible to provide the benefits of collaborative driving and navigating in the absence of a 

passenger, and thereby deliver ‘active’ engagement during the navigation task to improve 

performance and ultimately system independence, without increasing workload. 

Evidently, such capabilities are not yet available in commercially-available, speech technologies, 

which are often restricted to a single vocal exchange, initiated by the human interlocutor, in which 

a request is made and an isolated response is delivered. Nevertheless, it is possible to envisage a 

future scenario in which cars are embodied by highly-capable, digital assistants, communicating 

through the use of conversational language, as highlighted by scholars (Large, Clark, Quandt, 

Burnett, & Skrupchuk, 2017).  

1.3 Overview of Research 

In order to inform the development of such a system, we explored three existing, recognised 

navigational models – a satnav (‘passive’), an informed passenger and a collaborative passenger 

(‘active’) – and determined the associated workload and performance. We then utilised data 

collated and curated from the driver-passenger collaborations (specifically, the linguistic 

intercourse), and used this to develop and evaluate a ‘natural language’ navigational aid that 

actively engages the driver in the navigation task using bilateral conversation. Specifically, the 

aims of the study were: 

1. To explore the relationships between driver workload and environmental engagement 

associated with active and passive navigation systems 

2. To inform the development of a navigation natural language interface that adopts a long-

term perspective in the development of spatial knowledge, whilst managing workload 

2. Method 

Four on-road studies were conducted between February, 2016 and September, 2017 involving 

61 experienced drivers. Participants primarily comprised employees and students at the 

University of Nottingham and were reimbursed for their time with a £30 shopping voucher. A 

prerequisite to taking part was that they had no prior knowledge of the Clifton area of 

Nottingham, where the study took place. Participants were also limited to taking part in only one 

of the four studies. All studies took place using an instrumented Ford focus car owned by the 

University of Nottingham.  The vehicle was fitted with forward facing cameras to capture the road 

view, and a camera facing the driver. 
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In a between-subjects design (i.e. a different cohort of drivers took part in each of the four 

studies), participants were required to complete two experimental drives (each lasting 

approximately 45 minutes) staged one week apart. During the first three studies, participants 

were presented with navigational support in the form of either a satnav, an informed passenger 

or a collaborative passenger, and were asked to follow three routes (with overlapping sections). 

A week later, participants returned and followed the same routes with the same navigational 

support (to explore any changes in workload, performance etc.). 

Following this, verbal interactions between drivers and passengers during the collaborative 

condition were transcribed and analysed to develop a context-aware, interactive navigational 

script that was subsequently delivered to drivers during the fourth study, which followed the 

same three routes.  

The navigational script was constructed based on the dialogue between drivers and passengers 

which scored highly on the basis of environmental engagement measures (i.e. the landmark 

information they contained, and the structure of route information on approach to each 

navigational decision point). Dialogue from each of the four highest scoring transcripts were 

collated for each junction. Junction-specific guidance was then created based on the descriptive 

content (i.e. landmarks and environmental references) as guided by the recommendations of 

Denis (1997) and Burnett (2000) and determined by a panel of experts, to formulate route 

guidance for each of the experimental routes, ensuring that this followed a consistent, informative 

structure. 

The natural language system was created using a Wizard-of-Oz approach (Kelley, 1984), with an 

actor mimicking the system and providing verbal responses dictated by the script. System 

responses were delivered in real-time utilising a subtle computer inflexion, honed through 

extensive training and practice sessions, in line with current state-of-the-art natural language 

speech interfaces. The actor was instructed to respond to all comments made by the driver and 

avoid any clinical, out-of-domain responses, such as “Sorry. I don't understand”, other than in the 

event of technical problems.  

An overview of each of the four studies is presented below. Results are subsequently presented 

and discussed collectively. 

2.1 Study One - SatNav 

Fifteen participants (11 male, 4 female), with an average age of 33 years (range 22, 60), took part 

in study one. They were required to navigate the route by following the auditory and visual 

wayfinding prompts provided a commercially available, nomadic navigation device (Garmin Nuvi 

2569), installed in the test vehicle according to the manufacturer’s instructions in the far-right 

corner of the windscreen. Participants were trained in the use of the system prior to commencing 

the drive, although they were not required to physically interact with the device (for example, to 

enter the destination) while driving. 

2.1 Study Two – Informed Passenger 

Fifteen participants (11 male, 4 female), with an average age of 32 years (range 22, 55), took part 

in study two. They were required to navigate by following the directions provided by an 

‘Informed Passenger’, defined as somebody who was familiar with the routes, but with whom the 
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driver had no prior relationship. To ensure consistency between participants, a researcher acted 

as the informed passenger and delivered navigational guidance by following a semi-structured 

navigational script. This actively referenced the world around them by identifying landmarks at 

each navigational choice point (e.g. turn right after the leisure centre) and on the route – even 

where these were not essential to achieving accurate navigational performance. Further guidance 

or clarification was available if requested by the driver. 

2.2 Study Three – Collaborative Passenger 

Fifteen participants (10 male, 5 female), with an average age of 33 years (range 21, 55), took part 

in study three. Prospective participants were asked to sign up in pairs, whereby each partnership 

had an existing, close relationship, and had navigated together previously (for example, work 

colleagues, couples, friends and siblings). Partners self-selected the roles of ‘driver’ and 

‘navigator’. Prior to the study, the navigator was provided with training and familiarisation for all 

routes using video footage (captured from a driver’s viewpoint) and supported by an audio 

commentary, which used the same navigational script as the ‘informed passenger’ study, 

including the additional ‘points of interest’ and ‘added value’ information about the surrounding 

area. Navigators were subsequently asked to confirm that they understood and had utilised the 

available training materials and were familiar with the route. During each drive, the navigator 

used their newly-acquired knowledge to direct the driver as they deemed fit.   

2.3 Study Four – Natural Language Interface (NAV-NLI) 

Sixteen participants (11 male, 5 female), with an average age of 29 years (range 23, 50), took part 

in study four. Interactions between drivers and passengers during the collaborative condition 

were used to develop a context-aware, interactive navigational script that was subsequently 

delivered to drivers using natural language. Described to participants as a “prototype natural 

language navigation system called NAV”, the system delivered navigational advice using a Wizard-

of-Oz approach, with an actor embodying the role of system/navigator. The actor was located 

remotely from the vehicle and issued navigational guidance at predetermined points along the 

route, identified using a live-stream dash-cam. Participants were told that ‘NAV’ would provide 

them with spoken navigational assistance throughout their journey, and could understand and 

respond to what they said. They were instructed to question NAV if they were unsure of route 

directions or if they had any questions about the environment through which they were 

travelling. To ensure that participants believed that the navigational guidance they were 

receiving originated from technology rather than a human, the actor used a prosodic syntax akin 

to other ‘current’ commercially-available speech systems. For example, short pauses were 

incorporated into instructions. Prior to commencing the drive, NAV introduced itself to 

participants using a predefined script detailing its features and capabilities.  

2.4 Route Selection  

The test area was a large village and residential estate within Nottingham, UK, called Clifton. 

Clifton was chosen as it provided three inter-connected routes that met the following constraints, 

based on existing literature (Webber, 2013): 

1. All three routes should have a minimum of six decision points (defined as a navigational 
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point or junction which presented the opportunity to change heading) 

2. Each of the routes must intersect one another at three disparate points (although this was 

not specifically told to participants) 

3. The three routes should be similar in terms of the number of salient landmarks or features 

4. The three routes should be completed within approximately 45 minutes driving time 

All three routes also incorporated a variety of different road and junction types, including 

roundabouts, T-junctions and side-roads, and were approximately 2.5 miles. Traffic density was 

controlled as much as was possible by conducting each road-trial outside of peak rush-hour traffic 

(between 10am and 4pm), and during periods when each of the experimental routes were free 

from any planned roadworks. The researcher accompanied participants in the vehicle, and 

defined the start and end-point of each route. If route errors were made, the researcher 

redirected participants onto the correct path. The researcher also intervened to avoid any action 

that may put the vehicle occupants’ safety at risk or meant performing an illegal manoeuvre. 

2.4 Measures 

Workload was measured using the tactile detection task (TDT) (Engström, 2010), which is the 

cross-modal equivalent of the well-established peripheral detection task (PDT) (Martens & Van 

Winsum, 2000). To administer the TDT test, a series of tactile stimuli are presented via a tactor 

attached to the participant’s shoulder. Participants are required to respond to the presence of a 

new stimulus by triggering a button, attached to their finger, as quickly as possible. The delay 

between stimuli is varied subtly to ensure that participants are unable to predict stimulus 

presentation. Detection performance is measured by response time and success-rate (or missed 

responses). In a driving context, these measures represent the degree to which selective attention 

is affected by the demand of the primary (driving) and/or secondary task under evaluation (Diels, 

2011). In addition, participants completed the NASA-TLX (Hart & Staveland, 1988) after each 

drive. 

Environmental knowledge was determined using a landmark and route recognition exercise - a 

common approach in the spatial cognition and navigation literature (Galea & Kimura, 1993) 

(Head & Isom, 2010)(Golledge, Ruggles, & Pellegrino, 1993). In the first landmark recognition test, 

participants were given a set of 12 images and were asked to identify those images which had 

appeared across the three routes and those which had not. For the second route learning test, 

participants were given a set of images for each of the three routes travelled, each image was a 

view of a junction encountered on the route. Participants were asked to put these images in the 

order which they had appeared.  

Finally, drivers were asked to draw a sketch map of the routes travelled, incorporating as much 

detail as possible to demonstrate their survey knowledge. They were specifically asked to depict 

any landmarks that they we aware of, specify junction types and illustrate any overlapping 

sections of the route, if they thought any were present (Appleyard, 1970) (Forbes & Burnett, 

2007) (Appleyard, 1970) (Rovine & Weisman, 1989).  
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 3. Results 

3.1 TDT 

A Kruskal wallis test indicated that there were no significant differences between the four 

conditions regarding the percentage of TDT stimuli missed by participants for drive one 

(H(3)=5.46, p = 0.14) and drive two (H(3)=6.24, p = 0.10) (Figure 1-left). Similarly, there were no 

significant differences in the response time of participants between the four conditions for both 

drives (D1: H(3)=3.41, p = 0.33, D2: H(3)=5.89, p = 0.12) (Figure 1-right).   

 

  
Figure 1: TDT results, showing missed responses (left) and response time (right), with 

standard deviation error bars 

 

3.2 NASA-TLX 

A between subjects (one way) ANOVA indicated that there were no significant differences in the 

perceived workload of participants between the four conditions during drive one (F(3,57) = 1.10, 

p = 0.36) and drive two (F(3,57) = 0.54, p = 0.66) (Figure 2). However, paired-samples T tests 

revealed a significant drop in the perceived workload from drive 1 to drive 2 for the Satnav (D1 

Mean =56.93, SD = 18.95; D2 Mean = 46.80, SD = 16.47, t(14) = 3.22, p = 0.01) and Collaborative 

Passenger (D1 Mean = 51.87, SD = 19.42; D2 Mean = 39.87, SD= 17.60, t(14) = 4.19, p < 0.001). 

Reductions in workload were also observed for the NAV condition, from drive 1 (Mean = 47.00, 

SD = 18.67) to drive 2 (Mean = 40.19, SD = 20.42), and these differences were approaching 

significance (t(15) = 1.99, p = 0.065).  
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Figure 2: NASA-TLX ratings, with standard deviation error bars (max. possible value = 126). 

 

3.2 Landmark Recognition 

During the landmark recognition test, participants identified images as ‘on route’ or ‘off route’. 

The number of incorrectly placed images were subtracted from the number of correctly placed 

images, yielding a ‘landmark recognition score’ for each route (Figure 3-left).  A between subjects 

(one way) ANOVA revealed a statistically significant difference in landmark recognition between 

conditions, with post-hoc tests revealing that participants in the Collaborative Passenger (Mean 

= 0.85, SD = 0.17, p = 0.001) and NAV (Mean = 0.83, SD = 0.14, p=0.001) conditions were able to 

identify significantly more landmarks on route than participants who followed the wayfinding 

guidance of the Satnav (Mean = 0.60, SD = 0.15). 

  
Figure 3: Environmental knowledge measures, showing landmark recognition scores (left) and 

route error scores (right), with standard deviation error bars. 
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3.3 Route Learning 

Participants placed images taken from each route in the order which they believed they had 

appeared on route. The position of each image was scored relative to its actual position on route, 

with the number of incorrectly placed images subtracted from the number of correctly placed 

images, yielding an ‘absolute route error’ score for each route. To improve sensitivity, a 

‘sequencing score’ was also generated. This was the number of the longest string of images which 

were placed sequentially without error. Total error values were then calculated by subtracting 

the sequencing score from the absolute route error (Figure 3-right). A between subjects (one 

way) ANOVA revealed a statistically significant difference in the total route error between 

navigational conditions (F(3,57) = 3.85 p = 0.03). Post-hoc tests revealed that participants with a 

collaborative passenger (Mean = 0.20, SD = 0.15) demonstrated significantly lower route error 

scores than those using the satnav (Mean = 0.38, SD = 0.21).  

3.4 Survey Knowledge 

Participants were asked to draw a sketch map of the routes travelled, adding as much detail as 

possible (representative examples of sketch maps are shown in Figure 4). Sketch maps were 

visually assessed by the experimenter based on the number of landmarks, the accuracy of 

landmark placement, and the number of route intersections and pathways (Forbes & Burnett, 

2007). To ensure consistency, a reliability check was performed, with a Cohens Kappa test 

indicating a high level of agreement (k = .845 (95% CI, .759 to .931), p < .0005).  

A between subjects (one way) ANOVA revealed a statistically significant difference in the number 

of landmarks depicted within participants’ sketch maps between navigational conditions (F(3,57) 

= 17.27 p = < .001). Post hoc tests revealed that participants in the Satnav condition (Mean = 4.2) 

depicted significantly fewer landmarks than participants in the Informed Passenger (Mean = 8.4; 

p = 0.002), Collaborative (Mean = 9.33; p < .0001) and NAV (Mean = 11.81; p < .0001) conditions. 

However, there were no significant differences in the landmark orientation between Satnav, 

Informed Passenger, Collaborative and NAV participants, revealed by a Kruskal Wallis test (H(3) 

= 4.69, p = 0.20). 

A Kruskal Wallis H test revealed that there was also a statistically significant difference in the 

number of route intersections depicted within participants sketch maps between navigational 

conditions (H(3) = 12.50, p = 0. 01). Subsequent post-hoc tests revealed that Collaborative 

participants (Median = 1, range = 0,3) depicted significantly more route intersections than Satnav 

(Median = 0, range = 0,2; p = 0.01) and NAV (Median = 0, range = 0,2; p = 0.04) participants. 

Finally, a Kruskal Wallis H test revealed that there was a statistically significant difference in the 

number of pathways depicted within participants’ sketch maps between navigational conditions 

(H(3) = 7.89, p = 0. 048). Subsequent post-hoc tests revealed that informed passenger participants 

(Median = 4, range = 0,8) depicted significantly more pathway sections than those using the 

satnav (Median = 3, range = 2,5; p = 0.044). 
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Figure 4: Representative examples of sketch maps for each condition 

 

4. Discussion  

The research aimed to explore the relationships between driver workload and environmental 

engagement associated with ‘active’ and ‘passive’ forms of navigation. Three existing, recognised 

navigational models – a commercially-available satnav (‘passive’), an informed passenger and a 

collaborative passenger (‘active’), were selected as these differed according to the content of 

information they relayed to the driver, and the level of interactivity they permitted. Results from 
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of processing required in order for drivers to maintain orientation and make specific navigational 

decisions, particularly when presented with a number of viable options. A possible explanation is 
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that the directions provided by the satnav were more ‘unnatural’ in their delivery (as far as  

human conversational language is concerned), and participants therefore found it more difficult 

to parse the instructions (or, conversely, the human dialogue was easier to parse). In addition, 

the lack of differentiation exposed by the tactile detection task may reflect the difficulty 

administering this technique while driving (even though this technique has been successfully 

applied in numerous simulated driving studies). For example, some drivers reported that they 

were aware of the tactor stimulus but in some situations, were unable to acknowledge it by 

activating the switch, particularly when manoeuvring the vehicle. 

Whilst the informed and collaborative passenger (and ultimately, the NAV-NLI) represent 

increasingly ‘active’ methods of navigation – providing more extensive navigational prompts 

peppered with environmental information – drivers did not report an associated increase in 

workload. This is likely to be because drivers were provided with a more ‘natural’, interactive 

support across the entire journey, rather than specific, functional commands delivered at isolated 

navigational decision points. Moreover, drivers were able to question their ‘partner’ to improve 

their understanding of route instructions and ensure they had correctly identified the upcoming 

and subsequent manoeuvres. In essence, the informed and collaborative passenger (and indeed, 

the NAV-NLI) were able to provide drivers with an interactive, personalised experience, and 

provide appropriate reassurance, thereby improving confidence while not necessarily impacting 

on workload. Moreover, the use of natural language (delivered either by the passenger or NAV), 

also ensured that information was easy to receive and process (in contrast, instructions provided 

by the ‘computerised’ satnav voice may have been difficult to parse) – factors that are also likely 

to minimise the disruption to workload.  

It is also noteworthy, that although drivers did not perceive differences in workload between 

conditions, there were notable reductions from drive one to drive two indicated by users of the 

satnav, collaborative passenger and NAV-NLI. This is likely to reflect increased route familiarity 

making the navigational process less challenging during the second drive, although it is worth 

positing that it may also indicate increased familiarity with the experimental procedure and test 

vehicle, thereby influencing drivers’ expectations and perceived competence/workload.   

In addition, environmental engagement measures indicate enhanced landmark recognition, route 

learning and survey knowledge associated with the more active methods, in particular, for the 

Collaborative Passenger and NAV conditions, compared to the Satnav. Navigational instructions 

provided by the satnav (representing the least ‘active’ method) commonly take the form of turn-

by-turn prompts utilising distance-to-turn information, alongside directional (left, right, straight 

on) instructions. However, this information is issued unilaterally (from system to driver), thereby 

preventing interactivity and route collaboration. Moreover, the emphasis on distance descriptors 

diverges from how humans naturally convey spatial information to one another (Denis, 2017). As 

such, it only supports the construction of a fragmented cognitive map, even though there is scope 

for the driver to draw additional information from the environment (such as relevant landmarks), 

independently from the system. Consequently, drivers using the satnav performed more poorly 

on environmental engagement measures. 

In contrast, navigational guidance provided by the informed and collaborative passenger 

frequently contained landmarks in place of distance-to-turn information, with familiar driver-

passenger couplings commonly drawing upon previous experiences to situate route guidance. 

This is likely to support the formation of more comprehensive route knowledge, which was 

clearly evident in the environmental engagement measures. In particular, the sketch maps 
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associated with the more ‘active’ methods of navigation were typically far more comprehensive, 

and populated with significantly more, accurately-placed landmarks. 

Even so, it is interesting to note that drivers provided with the informed passenger questioned 

route guidance information less frequently than those in collaborative pairings. This is likely to 

reflect the level of confidence the driver placed in the navigator – the informed passenger was 

presented to drivers as an ‘expert navigator’ who had prior experience with the experimental 

routes.  Thus, drivers may have placed more trust and confidence in the guidance issued to them, 

rendering navigational checks redundant. Alternatively, the pre-existing relationship between 

driver and passenger in the collaborative condition may have introduced more social dynamism 

into the car environment, effectively reducing the formality between driver and navigator. This 

may have increased the driver’s willingness to engage with their passenger, for example, by 

commenting on environmental features and discussing, or questioning, the route guidance 

provided to them. It was also particularly revealing that the sketch maps constructed following 

the collaborative driving experiences often included landmarks that were not specifically 

referred to within the navigational instructions, confirming enhanced environmental 

engagement associated with these approaches.  

It is worth noting that the analysis of the sketch maps focussed on the quantity and type of 

navigational elements that were included in participant’s maps, rather than dimensional 

accuracy, in line with the approach taken during previous studies, and the overall aims of the 

study. However, the accuracy of dimensions/distances of the overall map could also be explored 

(e.g. through Procrustes analysis), and this will be the subject of future work.  

However, it is clearly unrealistic to expect all drivers to be accompanied by an obliging and 

knowledgeable passenger during all journeys, and therefore, a further aim of the research was to 

utilise data collected from the driver-passenger collaborations (specifically, the linguistic 

interactions), and use this to create a ‘natural language’ navigational aid that actively engages the 

driver in the navigation task, even in the absence of a passenger. This was subsequently evaluated 

over the same routes. Delivered using a Wizard-of-Oz approach, the NAV-NLI provided 

contextual, landmark-rich, wayfinding guidance through a collaborative information exchange 

with the driver. Route guidance was formulated by referencing roadside landmarks at 

navigational choice points (rather than traditional distance-to-turn information), and using these 

environmental features to draw attention to the external environment, thereby aiming to 

increase the driver’s confidence in their path selection, whilst managing workload. This 

information was subsequently provided to the driver in a two-way dialogue exchange, allowing 

the driver to clarify their understanding, or question guidance.  

Results from the evaluation demonstrate clear potential for such an approach – environmental 

engagement measures were enhanced, and there were no adverse effects on workload, as 

discussed. It is further anticipated that through the regular use of such systems, drivers may 

become less reliant on the system itself, particularly on repeated or regular journeys, and begin 

to re-establish associations between viewing an environmental feature and the related 

navigational manoeuvre, for example, ‘I need to turn left when I see the Fairham pub’.  

Moreover, delivering navigational advice in this manner also offers the capacity to further 

enhance route knowledge by incorporating and communicating information from connected 

vehicle technologies, which could provide real-time route information to the driver, such as 
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current or estimated traffic delays or congestion, obstructions in the road or accidents ahead, in 

a similar, colloquial manner. 

 

5. Conclusion  

The research demonstrates clear benefits and potential for a natural navigation system 

employing conversational language with landmark-rich information (in preference to distance 

descriptors) delivered at navigational choice points. Results show that such a system ensures that 

the navigation task remains ‘active’, thereby enhancing environmental engagement and 

supporting a long-term perspective in the development of spatial knowledge, but does not 

demand the elevated workload traditionally expected with increased navigational activity. In 

addition, it offers the flexibility to tailor interactions (as a collaborative passenger might) whilst 

also providing the capacity to incorporate real-time updates (information that is less likely to be 

available to a passenger).  
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