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Abstract

The behavioural framework has several attractions to o�er for the iden-

ti�cation of multivariable systems. Some of the variables may be left un-

explained without the need for a distinction between inputs and outputs;

criteria for model quality are independent of the chosen parametrization;

and behaviours allow for a global (i.e., non-local) approximation of the

system dynamics. This is illustrated with a behavioural least squares

method with an application in dynamic factor analysis.
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1 Introduction

Principally, behaviours focus our attention on the primary level of system dy-
namics, that is, on empirical observations. In a sense the behaviour consists
of the objective information on the system. Other issues, like input-output de-
composition and parametric representation, are secondary as they depend on
the subjective choices of the user. This explicit distinction between data in-
formation, model representation, and model use is one of the charms of the
behavioural approach in system theory.

Several behavioural methods for system identi�cation have been proposed
since the introduction of this framework by Willems in [18]. One approach is
based on state models, realization theory and model reduction as in [19], see
for example [3, 4, 16]. Subspace methods as in [14] can be seen as approximate
versions of the realization method in [19]. Earlier roots of these ideas are in [1, 2]
for stochastic systems. Another approach is more equation oriented as in [20],
see for example [6, 17], and this related to prediction error methods [9]. A third
approach, based on least squares approximation of behaviours, is developed
in [11], see also [8, 13].

In this paper we consider the behavioural least squares method (BLS), also
called global total least squares. In a sense, this method adheres most strictly
to the behavioural principle of focusing on the external system characteristics.
Subspace methods and realization based methods for data modelling employ
states as secondary objects in their approximation, and equation oriented pro-
cedures are faced with the choice of canonical parameters. In BLS, the model
quality is expressed simply as the least squares distance between the empirical
data and the system behaviour.

In Section 2 we briey review the BLS method. This is applied in Section 3
to dynamic factor models for stationary processes, and topics for future research
are outlined in Section 4.

2 Behavioural Least Squares

We assume that the reader is familiar with the behavioural framework as devel-
oped in [18, 19, 20, 21]. The empirical data are denoted by w, a q-dimensional
vector time series observed in discrete time over the interval T � Z. A be-
haviour is a subset B � (Rq)Z of the set of all time series over the full time

axis Z:We will only consider behaviours that correspond to linear systems, that
is, B is a linear, shift invariant set that is closed in the topology of pointwise
convergence.

In general, unless the observed data are very structured, linear systems that
model the observed data without error will be very complex. If T = Z, gener-
ically the only linear system with w 2 B is given by B = (Rq)Z . If T is a
�nite interval of length N , then it can be shown that there always exists a lin-
ear system B with p = 1 output and m = q � 1 inputs and state dimension
n � (N + 1)=(q + 1) with the property that w 2 BT , the restriction of B to T .
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Such systems are not helpful in describing the data in a less complex way, and
this is only possible by allowing for some kind of approximation. We measure
the approximation error by the squared distance between the data and the linear
system, that is

dT (w;B) = minfk w � ŵ k; ŵ 2 BT g (1)

where k w�ŵ k
2=

P
t2T

Pq
j=1fwj(t)�ŵj(t)g

2. Because of the foregoing result,
we consider only approximating systems with p > 0 and n < N , in which case
the dimension is given by

dim(BT ) = mN + n (2)

The complexity of a system is de�ned by the pair (m;n), that is, by the number
of inputs and the number of states of the system. The behavioural least squares
problem is to determine the optimal system for given complexity, that is,

dT (w;m; n) = minfdT (w;B); B has complexity (m;n)g (3)

For a structural analysis of this minimization problem we refer to [7] and for a
Gauss-Newton algorithm to [11, 12]. In practice one can determine the errors
dT (w;m; n) for a range of complixities (m;n) and choose the model that provides
an acceptable trade-o� between complexity and �t. This choice is subjective,
no formal criteria have been developed until now.

As compared with other methods for system identi�cation, the above BLS
approach has the following characteristic features. The model quality, in terms
of �t and complexity, is de�ned on the observational level, in terms of the
data w and the behaviour B. Further, all variables are treated in a symmetric
way, and the error criterion measures the global mis�t of models in the sense
that ŵ is required to satisfy all the system restrictions. In comparison, more
conventional identi�cation procedures like prediction error methods start from
an input-output decomposition of the system variables and consider the one-
step-ahead forecasting quality, a local criterion of �t. The equation oriented
methods in [6, 20] are symmetric, but with a local criterion. The realization
based behavioural methods in [3, 4, 16] �rst determine an exactly �tting system,
that is, with dT (w;B) = 0, and then employ model reduction procedures to
lower the complexity. The main distinction with BLS is that the realization
step neglects the energy content of the data. That is, in this step all directions
of the signal space that are present in the data are incorporated in the system,
whereas in (1) we may neglect low energy directions without much loss in �t.
Stated otherwise, BLS is more robust with respect to data variations.

3 Factor Models for Stationary Processes

Suppose that the data are generated by a full rank stationary process w with
spectral density S that is bounded on the unit circle. A factor model is a
representation

w = ŵ + ~w (4)
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characterized by the condition that the factor process ŵ has less degrees of
freedom than w. The process ~w is the error resulting from the approximation
of w by the reduced process ŵ. We denote by Ŝ the spectrum of ŵ and by B(ŵ)
the factor behaviour, that is, the smallest linear system with the property that
ŵ 2 B almost surely.

In the non-dynamic case, S is the covariance matrix of w and factor models
have the property that the covariance matrix Ŝ has reduced rank. If we �x
the allowed rank m of this matrix, i.e., the dimension of B, then the model
that minimizes the error E k ~w(t) k2 is given by principal components. If
the covariance matrix has eigenvalue decomposition S =

Pq
j=1 �juju

�

j , with
�1 � � � � � �m > �m+1 � � � � � �q > 0, then the principal component model of
complexity m is given by

ŵ =

mX
j=1

uju
�

jw; ~w =

qX
j=m+1

uju
�

jw (5)

with behaviour B(ŵ) = spanfuj ; j = 1; � � � ;mg. In the dynamic case we can
apply this decomposition frequency-wise, as is proposed in [5]. Under certain
regularity conditions, the functions uj can be chosen to be analytic so that
the factor process ŵPC =

Pm
j=1 uj(�)uj(�)

�w and the error process ~wPC =Pq
j=m+1 uj(�)uj(�)

�w are well-de�ned, with � the shift operator on Z. The

resulting error Ek ~wPC(t)k
2 =

Pq
j=m+1

R �
��

�j(e
�i�)d� is minimal among all

factor models with ŵ of rank at most m. The disadvantage of this model is that
the restrictions on the factor process ŵ are in general non-rational. This means
that it is hard to give an explicit description of the factors. More precisely, in
general the factor behaviour B(ŵPC) = (Rq)Z so that, in the sense of linear
systems, the factor process ŵPC is not simpler than the original process w.

Suppose that the allowed complexity (m;n) of the factor behaviour has been
�xed. There are now several ways to �nd a model that satis�es this restriction,
according to di�erent ways of approximation. An obvious method similar to
principal components is to �nd a solution for

minfd(w;B); B has complexity (m;n)g (6)

where
d(w;B) := minf(E k w(t)� ŵ(t) k2)1=2; B(ŵ) = Bg (7)

This can be seen as the 'in�nite sample' analogon of BLS in (1) and (3), see [7]
for further details.

An alternative approach, somewhat in the spirit of the realization approach,
is to construct the principal component model in a �rst step and then to approx-
imate this by a system of given complexity. The factor process of the principal
component model (5) satis�es the restrictions U(�)ŵPC = 0, where U is the
(in general non-rational and non-controllable) (q�m)� q matrix function with
rows u�j ; j = m+ 1; � � � ; q. The idea is to approximate U by a rational function

Û , based on the frequency data U(e�i�j ), �j = 2�j=nf , j = 0; : : : ; nf � 1. For
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this purpose we extend frequency domain algorithms in [10] for causal transfer
functions and in [15] for miniphase spectral factors to the non-causal case. To
describe this in more detail, let G(e�i�) = C(ei�I � A)�1B +D be a rational
transfer function with n1 stable and n2 unstable poles so that

G(e�i�) = C1(e
i�In1 �A1)

�1B1 + C2(e
i�In2 �A2)

�1B2 +D (8)

with A1 an n1 � n1 stable matrix and A2 an n2 � n2 antistable matrix. Now
G can be reconstructed from the frequency data G(e�i�j ), �j = 2�j=nf , j =
0; : : : ; nf�1, by the following subspace algorithm (assuming that nf > 2(n1+n2)
and, for notational simplicity, that nf is even). The inverse discrete Fourier
transform of G(e�i�j ) is given by

�G0 = D+M0; �Gj = C1A
j�1
1 M1+C2A

�nf=2+1
2 A

j�1
2 M2; j = 1; : : : ; nf �1 (9)

with Mi matrices that depend on A;B;C and nf . The (nf=2 � nf=2) block
Hankel matrix H built up from �Gj ; j = 1; : : : ; nf � 1, has rank n1 + n2 and the
parameters in ( 8) can be obtained from H by the following subspace method.
A singular value decomposition of H is used to determine matrices K and L,
both with n1 + n2 columns, such that H = KLT . Then A is obtained from the
regression of K2:(nf=2) onto K1:(nf=2�1), where for example K1:(nf=2�1) denotes
the matrix consisting of the �rst (nf=2�1) block rows of K. After transforming
A to block diagonal form A = diag(A1; A2) and transforming and partitioning
the columns ofK = [K1;K2] correspondingly, C1 is the �rst block row ofK1 and
C2 the (nf=2)-th block row of K2. Then B and D are obtained by regressing
G(e�i�j ) on C(ei�j I�A)�1B+D, with A and C given. This realization proce-
dure can also be applied for the identi�cation of reduced order systems, by using
a singular value approximation of H . We call this the subspace identi�cation
method for frequency data (SIFD).

We apply SIFD in two methods to approximate the principal component
model U(�)ŵPC = 0. The �rst method, that we will call the input-output
method (IOM), is de�ned as follows. Let the observed variables be decomposed
in m inputs and p = q �m outputs, with a corresponding decomposition U =
[U1;�U2] of the columns of U , then the transfer function is given byG = U�12 U1.
This transfer function is in general non-rational and non-causal. For given
frequency data G(e�i�j ), j = 0; � � � ; nf�1, a rational approximation Ĝ = P�1Q

of McMillan degree n is obtained by SIFD. The corresponding behaviour BIOM
is described by the polynomial relations Û(�)ŵ = 0 where Û = [Q;�P ].

A disadvantage of IOM is the arbitrary selection of inputs and outputs. The
second method, that we will call the iterative relation method (IRM), does not
require this selection. In IRM the relation U is approximated, taking into ac-
count that U is only de�ned up to left multiplication with a p�p unitary matrix
function V . The system BIOM can be represented as BIOM = ker(Un) with Un
a q�m isometric rational matrix function of McMillan degree n, see [11]. Now
for each frequency �j an orthogonal p � p matrix Vj is determined such that
kUn(e

�i�j ) � VjU(e
�i�j )k is minimal. Then a rational approximation of the

frequency data VjU(e
�i�j ) is obtained by SIFD with a corresponding isometric
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�
A B

C D

�
=

2
66664

�0:1965 0:0000 �0:3143 0:8770 �0:4949
0:5200 �0:2538 �0:6434 �0:6621 �0:0280
0:0952 0:7954 0:2210 �0:2319 �0:6759

�0:4646 �0:2678 �0:1856 1:0000 0:0000
0:1833 0:3058 0:4734 0:0000 1:0000

3
77775

n N =1 Mean StDev Median Min Max

1 BLS 0.8747 0.8771 0.0020 0.8765 0.8747 0.8871
IOM 1.0685 1.0607 0.0574 1.0712 0.8847 1.2341
IRM 0.8754 0.9666 0.0985 0.8897 0.8747 1.1732

2 BLS 0.8495 0.8693 0.0052 0.8683 0.8504 0.8899
IOM 0.8761 0.9356 0.0812 0.8978 0.8508 1.2128
IRM 0.8703 0.8784 0.0367 0.8714 0.8513 1.0854

Table 1: Simulation of a process with q = 2 variables and state dimension
n = 3. The matrix shows the parameters of the data generating process �x =
Ax+B",w = Cx+D", with " a two-dimensional white noise process with unit
covariance matrix. The error of the principal component model with m = 1 is
0.8209. The column with N = 1 relates to the case where the true spectral
density is used in IOM and IRM and where for BLS (7) is minimized. The next
columns show summary statistics on the errors d(w;B) in (7) of factor models
of complexity m = 1 and n = 1; 2 obtained in 500 simulation runs with samples
of length N = 1024. For IOM and IRM nf = 16 frequencies were used, the
results are similar for larger values.

rational function Ûn. The foregoing steps are iterated with this new approxi-
mation Ûn, until convergence is reached. If Û is the �nal approximation, then
the identi�ed factor behaviour is described by Û(�)ŵ = 0.

We compare these three approaches (BLS, IOM, IRM) by means of a simu-
lation. We consider two situations, one where the process spectrum S is known
and another where the empirical data consists of a �nite sample of length N

of the process, in which case the spectrum is estimated by smoothing the pe-
riodogram. In table 1 we summarize results of simulations obtained from a
randomly chosen data generating process with q = 2 variables and n = 3 states,
that is, S is a 2 � 2 rational matrix with rank 2 and McMillan degree 6. For
this process, behaviours are estimated with complexities m = 1 and n = 1; 2.
Reported are results on the corresponding errors (7).

The results indicate that BLS can give reasonably good approximations of
stationary processes by factor processes and that the methods IOM and IRM
perform less well. This is partly because the approximation step of these al-
gorithms, i.e., the rational approximation of U , is not directly related to the
criterion d(w;B). Alternative input-output schemes might give better results,
but in any case the choice of inputs and outputs remains arbitrary in this setting.

Concluding, for the estimation of dynamic factor models BLS seems to out-
perform IOM and IRM. A more complete analysis and development of alterna-
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Figure 1: Four factor models for the process described in table 1: PCA (the
principal component model), OPT (the optimal model with m = 1, n = 1), BLS
and IRM. The models are determined for a random sample of length N = 1024,
using nf = 16 frequencies. The �rst plot shows the frequency-wise squared

approximation error (the trace of the spectrum ~S of the error process ~w, which
integrated over [��; �] gives the error (7)). The PCA model gives a lower bound
for the error of all models with m = 1. The second plot is the Nyquist plot of the
corresponding transfer functions G = P�1Q, where [Q;�P ]ŵ = 0 describes the
corresponding factor behaviours. In the PCA model G is non-rational, whereas
for the other three models G has McMillan degree n = 1.
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Figure 2: Results for the model in table 1 for the case m = 1, n = 2, see �gure 1
for more details.
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tive methods are topics for further investigation.

4 Conclusion

In this paper we discussed the behavioural approach for the identi�cation of
linear systems. The behavioural least squares (BLS) method expresses model
quality on the observational level, without the need to choose inputs and outputs
or a parametric representation of the model. The criterion function evaluates
the global �t of the model, that is, it not only considers the local restrictions
but also all behavioural restrictions over time intervals of arbitrary length.

We applied BLS for the identi�cation of dynamic factor models, with the
advantages that all variables are treated in a similar way (no inputs and outputs)
and that the obtained model for the factors is a linear system (as compared
to the in�nite dimensional system obtained by principal components). The
results are merely indicative of the possible uses of behavioural identi�cation. A
more thorough comparison with existing methods is needed before more general
conclusions can be drawn. With respect to the application considered in this
paper, this concerns the development of methods to reduce a given spectrum to
one of given rank and McMillan degree.
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