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53 —Thalassaemias 1 and 2 are the result of a 100 kbp deletion in the human S-globin cluster
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ABSTRACT

The DNA spanning two large deletions in the human B-globin gene
cluster (yp-thalassaemia 1 and 2) has been cloned by cosmid cloning and
chromosomal walking. The entire region was mapped and analyzed for the
presence of repetitive sequences. The results show that the affected loci
have lost almost 100kb of DNA in a deletion event not involving homologous or
repetitive sequences.

INTRODUCTION

The human B-globin gene family, which contains five expressed genes
and a single pseudogene, spans a 60kbp segment of DNA on the short arm of
chromosome 11. Within the cluster, the expressed genes are arranged in their
order of developmental expression 5'-g, Ay,Gy,G,B—S' (Fig. 1). Several copies
of repetitive elements, including the Alu and Kpn family, have also been found
interspersed between the different genes; six Alu and two Kpn family sequences
have been reported to date. Several rearrangements involving DNA within the
p—globin cluster have been reported. In many cases, the rearrangements involve
DNA well outside the cluster and result in the deletion of large segments of
the P-globin cluster (for review, see ref. 1). Some of these deletion events
have also been shown to alter the expression of the remaining globin genes
leading to, for example, y3p-thalassaemia 1 and a number of cases of
hereditary persistence of foetal haemoglobin (HPFH). Until recently, both the
mechanism responsible for producing these deletions and the reason for the
altered expression of the remaining globin genes was not known.

Recent work (2, 3) has shed some light on the mechanism responsible
for some of these deletions. In sequence studies of the two
y8p—-thalassaemias, y§p-thals 1 and 2, (2) it was found that both deletions
were the result of a clean non-homologous breakage and reunion event; that is
the sequences involved in the recombinational event showed no homology

whatsoever and no extraneous bases were added during the event. More
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surprisingly, both studies of y§p-thals 1 and 2 and HPFHs 1 and 2, were able
to show that for deletions extending in the same direction from the B-globin
cluster, the 5' and 3' breakpoints are in the same order along the DNA and
approximately the same distance apart (2, 3). The simplest explanation for
these results is that for each pair of deletions, the y§p-thal pair and the
HPFH pair, the amount of DNA removed is approximately the same. Vanin et al.

(2) postulated that this constant size deletion phenomenon could be the result
of breaks occurring during replication at the site of attachment of DNA to the
miclear matrix, Such a hypothesis predicts that the amount of DNA removed by
the deletion event should be the same as the amount of DNA in the loop which
normally contains the f-globin gene cluster.

One of these deletions, y5p-thal 1, also proved to be an interesting
example of altered expression of gene(s) remaining after the deletion event.
Although genotypically the affected individual has two complete copies of the
p-globin gene, yet the patient has haematological symptoms characteristic of a
p-thalassaemia heterozygote. Kioussis et al have shown (4) that the p-globin

gene on the affected chromosome was less sensitive to DNase I and hyper—
methylated when compared to the same gene on the normal chromosome (the
affected individual was heterozygote). Both the hypermethylation and the
lessened sensitivity to DNase I are properties of nontranscribed DNA. They
were also able to show that the DNA which is moved next to the B—globin gene,
as a result of the deletion event, is normally in a DNase I insensitive region
in erythroid chromatin. Therefore, these results suggest that the DNA which
has been juxtaposed to the B-globin gene is conferring its inactive chromatin
conformation on the B-globin gene which is just downstream of it.

In this paper, we continue our work on the y§p-thal 1 deletion. The
results presented here will show that the rearrangement responsible for this
thalassaemia is a simple deletion event. The amount of deleted DNA was found
to be 99.4 and 95.9kbp for y5f-thals 1 and 2, respectively. We also show the
distribution of repetitive sequences over the 140kbp of DNA which includes the
p-globin gene cluster and 60kbp of 5' and 35kbp of 3' DNA.

METHODS
) ¥ bridi ()
Normal or yB thal DNA or chromosome spreads were obtained from white
blood cells. DNA isolation and Southern blots were according to standard
procedures (11). Repetitive DNA blots were washed to 1.0 and 0.3xSSC.

Chromosome preparations and in situ hybridizations were according to
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Hagemeijer et _al. (5) and Bartram et al. (6). Cosmid libraries were prepared

and screened as described previously (10).

RESULTS
calization o involved in rearrangement

To establish whether the translocated sequences in y§f-thal 1 were
from chromosome 11, two different approaches were used. The first was to use
specific DNA sequences to probe a panel of human —-A23 hamster somatic cells.
The second approach was the use of in situ hybridization to metaphase spread
chromosomes from a normal individual. The probes used in these studies are J
(2) and Sph 2.5. The J probe corresponds to a 0.2kbp EcoRI-Sphl fragment
which is located immediately 5' to the breakpoint in y3f-thalassaemia 1. The
Sph 2.5 probe, a 2.5kbp Sphl fragment, was isolated from phage A recombinant
clone AN2.1 (2) and is contained within the 4.0kbp EcoRI fragment. This
fragment contains the 5' breakpoint for y§p-thalassaemia 2 and was previously
shown to be closely linked, 5 kbp 3', to the J probe. A panel of nine
different somatic cell lines were used, each containing a different complement
of human chromosomes (6).

Hybridization using either probe to Southern blots of EcoRI digests of
DNA from each cell gave the same results and these are summarized in Table I.
As can be seen, there is an excellent correlation between the presence of
chromosomes 11 and the positive hybridization signal with both probes. The
in_situ hybridizations (6) were performed using the Sph 2.5 probe and
metaphase chromosome spreads from a normal individual. A total of 100 spreads
were examined which produced a total of 712 grains. The results are
summarized in Fig. 1. 68 of these grains were found on chromosome 11 of which
40 were found on the tips of the short arm of chromosome 11. This value of 40
out of 712 is significantly higher (p<0.001) than a merely random number of
grains.,

i £ rearr. )

In order to better characterize the rearrangement, digests of the
y3p-thal 1 DNA were probed with a number of different sequences. Fig. 2
shows the results obtained using the y— and P-globin gene probes. The y—globin
gene probe gave the expected three bands in normal DNA; one (2.6kbp fragment)
containing the 5' half of the Gy-gene, one (5.0kbp fragment) containing the 3'
half of the Gy—gono and the 5' half of the Ay-gone and the other (16.0kbp
fragment) containing the 3' half of the A1—gone. Each of these fragments was
half of its intensity in the thalassaemia DNA, that is, these genes have been
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No. of Grains

14 1312 11 2 18

Chromosome 11

Figure 1,
Histogram of grains present on chromosome 11 after in situ hybridization.

The number of grains are indicated above a schematic drawing of chromosome 11.

deleted from the affected chromosomes. The P-globin gene probe also produced
the expected pattern. The 2.25kbp EcoRI fragment, which contains the 5' half
of the §—globin gene, is less intense in the thalassaemic DNA, indicating that
the §—globin is not present on the affected chromosome. The two remaining
bands in the normal DNA contain the 5' half (5.2kbp fragment) and the 3' half
of the B-globin gene (3.6kbp fragment). As can be seen in the affected
individual, the 5.2kbp band is half the intensity of that observed in the
normal DNA, while the intensity of the 3.6kbp band is the same in both. An
additional band, 4.2kbp, is observed in the affected individual and
corresponds to the fragment which spans the deletion breakpoint. The results
obtained using the 5' and 3' breakpoint probes are consistent with the
rearrangement being a simple linear deletion, as had been previously suggested
(2). The 5' breakpoint probe is not present on the affected chromosome, as the
band obtained in the affected individual is half the intensity of that in
normal DNA, while the 3' breakpoint is present on the affected chromosome.

We also probed for the rasHI and insulin genes (all of which are on
the short arm of chromosome 11) (7, 8, 9), in order to determine their fate on
the affected chromsome. As can be seen from Fig. 2, all those genes are
present in two copies in the affected individual's DNA. The rasHI probe gave
two bands on BamHI digests and three on Taql digests of the patient's DNA.
These bands are similar to those previously observed (7) and are due to

restriction site polymorphisms. The insulin probes gave the normal (diploid)

7021



Nucleic Acids Research

*S6131Suejul pueq Jo uosiaedmoo eyj woJJ pejswljse esem YNJ BlwessSSeIBY3 €Y3 ul siequmu £doo eqoxd

‘ean81y ey3 ul pe3sorpul se ‘seqosd Jo £361J8BA B UITA POZIPLIqAY edem (d) VNI srweesseTsy3 Jo (NOZ-NS) 202

Jo ‘GL ‘Ol ‘G ‘VNd rsmiou jo sjunows SutAJsp °‘YNd | siweessesy3-g4 pus yNQ [BWIOU 03 UOY38Z1PIIQAY 30TQ UJEY3NOS
.N Mkﬂ&ﬂﬂ

julodyeslq

; §

8 ~ uynsu

7022




Nucleic Acids Research

intensity of bands. In addition, we probed for the presence of the PTH gene
which is present at the other side of the B-—globin locus (10). This probe also
showed the normal diploid intensity of hybridization (not shown). These
results therefore show that closely linked genes on either side of the globin
cluster have not been affected in the thalassaemia.

' 1 ith B-globin gene cl r

A1l the data obtained to date indicate that the rearrangement which
resulted in the y§f-thal 1 was a simple, local deletion. Therefore, we
decided to attempt to link the DNA from A-AN2.1, which contained the
breakpoint for y§p-thals 1 and 2, to the B-globin gene cluster by "chromosome
walking". A normal DNA cosmid library was simultaneously screened with the
Sph 2.5 probe (contained in A-AN2.1 (2) and a 3.3 kbp Eco probe from cosmid
Hi16 (11, Fig. 3). Several clones were isolated and two of these are denoted
as HG4 and HG9 in Fig. 3.

The cosmid HG9 which hybridized only to the 3.3 kbp EcoRI probe,
contained a total of 34 kbp of human DNA. 1Its restrictions showed that it has
an overlap of 22 kbp with the cosmid HG16 (Fig. 3). The clone HG4 contained
40 kbp of human DNA and hybridized to both the Sph 2.5 probe and the Eco 3.3
probe. The restriction maps show the restriction sites surrounding the region
hybridizing to the 3.3 kbp probe were the same as seen in cosHG16 and cosHG9
(Fig. 3). Purthermore, orientation of restriction sites indicated that this
was the 3' end of the clone. Similarly, the DNA surrounding the regions
hybridizing to the 2.5kbp probe had the same restriction map as now seen in
A-AN2.1. As before, the orientation of the restriction sites was consistent
with this being the 5' end of cosHG4.

The DNA shown 5' to AN2.1 in Fig. 3 was actually isolated from a
cosmid library of the y3f-thal 1 patient's DNA with a P-globin gene probe.

The cosmid clone isolated, cos yB5, contained a total of 39kbp of DNA, of
which approximately 30 kbp were 3' end B-globin cluster DNA., Of the nine kbp
which is not B-globin cluster DNA, 0.1 kbp is contained within the 5' end of
AN2.1 and is part of the J probe. The remaining 8.9 kbp of DNA is 5' upstream
to AN2.1 as shown in Fig. 3.

ribution of repetitive c

The distribution of repetitive sequences over the complete region was
also determined (Fig. 4). A total of four different probes were used, one Alul
family sequence probe, two Kpnl family sequence probes (one for the 5' half
and one for the 3' half) and total human genomic DNA. The probe used to
identify the Alul family sequences was a 0.55kbp EcoRI fragment located
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approximately 8kbp 5' to the g-globin gene. This probe hybridized to a total
of 14 different regions over the entire stretch of DNA, that is there is one
hybridising region per 10kbp of DNA. The location of KpnI family sequences
was achieved using two different probes, one corresponding to the 5' half
(1.65kbp EcoRI fragment) and the other to the 3' half (1.55bkp EcoRI
fragment). These two fragments comprise the Kpnl family sequence found
approximately 6kbp 5' to the Gy—globin gene., The 1.65kbp fragment was found
to hybridize to eight different regions, while the 1.55kbp fragment hybridized
to seven different regions. As expected, the majority of times the
hybridization was either to the same fragment or to a neighbouring fragment.
Lastly, we hybridized the complete region with nick translated human
DNA, a procedure that detects middle and highly repetitive DNA., In addition
to the Alu and Kpn repeat sequences, this procedure detected a number of
additional repetitive sequences. It should be noted that the actual number of
either family or repetitive sequences within the entire region will be higher
than indicated in Fig. 4, because only a minimum number of sites can be
detected by hybridization studies. For example, a fragment which hybridizes
may contain multiple sequences of that particular repetitive sequence. One
possible explanation for the creation of the deletion could be a crossover
involving repetitive sequences. However, when the region around the 5' end of
the region is aligned with the §— and P-gene region using the deletion—
junction points as the fixed position, none of the repetitive sequence from

the two regions lineup.

DISCUSSION
Previous work on both y3p-thals 1 and 2 indicated that both were the

result of a non homologous breakage and reunion event. These studies also
showed that the 5' breakpoints for both were approximately the same distance
apart, and in the same order along the DNA, as their respective 3'
breakpoints. Therefore, they suggested that these thalassaemias had resulted
from simple linear deletions and that if this were the case, their results
indicated that the amount of DNA deleted in both y3p-thals 1 and 2 was
spproximately the same. The possibility still remained that these thals could
have been the result of a more complex rearrangement, for example,
translocation in conjunction with deletion. 1In order to test this possibility
we used two probes, J (located immediately 5' to the breakpoint of y3p-thal 1)
and Sph 2.5 (normal 5' DNA containing the breakpoint for y§p-thal 2) in
somatic cell hybrid studies as well as in gitu hybridization studies. As can
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be seen (Table 1), the hybridization pattern for both probes is consistent
with the DNA being located on chromosome 11. In order to further localize this
DNA, the Sph 2.5 was used as a probe for in situ hybridization studies (Pig.
1). The results obtained localized this DNA to the tip of the short arm of
chromosome 11. As the human f-globin gene cluster has been localized to the
short arm of chromosome 11, these results strengthen the view that these
thalagsaemias are in fact the result of simple deletion events.

The results obtained when probing the y3f—thal 1 patient's DNA were
also consistent with the recombination event being a simple deletion. Previous
data (2) indicated that the breakpoint for y3f-thal 2 (contained within the
Sph 2.5) was 3' to the breakpoint for y§p-thal 1. Therefore, if y3p-thal 1 was
the result of a simple deletion, then the y§p-thal 2 brekpoint must be closer
to the P-globin gene cluster. If this were the case, one would predict that
the DNA corresponding to the Sph 2.5 would not be present on the affected
chromosome of the patient, as it is between the two breakpoints. The results
which are shown in Fig. 2 are consistent with this prediction.

Both the Sph 2.5 and the y—globin gene probe (the y—globin genes had
been shown to be deleted (12)) gave similar results, that is the DNA
corresponding to each of these probes was present in only one copy (the
individual is a heterozygote). Other genes (rasH, insulin and PTH) (8) which
were known to be on the short arm of chromosome 11 were also used as probes to
determine whether any large deletions or complex rearrangement had taken place
on the affected chromosome before attempting a chromosomal "walk". All genes
were present in two copies as was the DNA corresponding to the normal 3'
breakpoint for HPFH 1 (2). These results indicate that large rearrangements
did not occur.

All the data obtained at this point strongly supported the idea that
the DNA removed in y3p-thal 1 was the result of a simple deletion event.
However, this cannot be proven unless the normal 5' and 3' DNAs for y3f—thal 1
are linked. By screening a cosmid library with two different probes (Fig. 3)
we woere able to link the 5' breakpoint for y§p-thal 1 with the B-globin gene
cluster. Therefore, these results conclusively show that the y3p-thal 1 was
produced by a simple deletion event at approximately 99kbp.

As a result of this chromosomal walking, we now have approximately
150kbp of DNA surrounding the B-globin gene cluster. We then proceeded to
determine the distribution of repeated sequence elements using an Alul family

probe, two Kpnl family probes and human genomic DNA as a probe (Fig. 4). This
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analysis detected a number of additional repeats to the previously mapped Alu
and Kpn repeats (13, 14, 15, 16, 17).

We found that there is at least one Alul family sequence per 7.5kbp of
DNA, which would correspond to approximately 300,000 such copies per hybrid
genome. As these sequences are an average of 300bp in length, this represents
3% of the total human genome. This value is an underestimate because we based
our calculation on hybridization studies which would not detect multiple Alul
family sequences close to one another. With the globin gene cluster there are
three examples of two Alul family sequences in close proximity (see ref. 1),
while there are seven regions with only single Alul family sequences, the
other eight regions could have one or two Alu repeats (Fig. 4). The Kpnl
family sequence results indicate that there is on average one Kpnl family
sequence every 13kbp. Therefore, from these results one would estimate that
there are approximately 200,000 copies per haploid genome.

This value is in agreement with previous estimates (18). As before,
the hybridization results may be misleading. For example, multiple
hybridizing regions may actually be due to a single KpnI family sequence which
is split due to some other rearrangement event. Nevertheless, we can
distinguish at least 12 separate Kpn repeats in the p-globin cluster.

As previously mentioned, (see Introduction), y3p-thal 1 was shown to
be related to y5f—thal 2, in that the 5' and 3' breakpoints of both
thalassaemias are in the same order along the DNA and approximately the same
distance apart. This constant size deletion relationship, seen between
v8p-thals 1 and 2, led Vanin et _al. (2) to postulate the involvement of DNA
loops in these deletion events. They hypothesized that the two thals were the
result of the deletion of a single DNA loop at different times during the
replication cycle. Therefore, in linking the breakpoints of y§p-thal 1, we
have also linked the 5' and 3' breakpoints for y§p-thal 2. The amount of DNA
between the breakpoints will also help in establishing whether DNA loops are
actually involved. The amount of DNA deleted in y3§p-thal 2 was found to be
approximately 96kbp, in comparison to y3f-thal 1, in which the deletion event
had removed approximately 99kbp of DNA (Fig. 4). If the hypothesis of Vanin
ot al. (2) is correct, then this small 3% difference in the amount of DNA
deleted between the two thals could be the results of differential rates of
replication at the respective attachment points. Attachment points of DNA to
the nuclear matrix have been shown to be sites at which DNA replication occurs
(19). DNA loops have been reported to range in size from 30kbp to 200kbp,
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although the average size in mammalian cells seems to be approximately 80kbp
(20). As can be seen, the amount of DNA deleted in these two thals is within
the range of DNA loop sizes and is, in fact, close to the average size of
loops in mammalian nuclei. Although this does not conclusively prove that DNA
loops are involved, it does add strength to the hypothesis. In the future, we
intend to determine the position at which this 150kbp stretch of DNA is
attached to the nuclear matrix. If, as we expect, the DNA loops are an
integral part of the deletion mechanism, then one would expect the 5' and 3'
breakpoints of either thal to be equidistant from their closest attachment
points. The involvement of DNA loops in chromosomal rearrangements has also
been suggested by Feinberg and Coffey (21). They stated that multiple loops
could be transposed during chromosomal translocations as a result of the
transposition of their attachment points.

y8p-thal 1 has also proved to be interesting from the point of view of
gene expression. When originally reported (12), it was found that the
affected individual (who was heterozygous for the deletion) had two complete
copies of the adult B-globin gene, yet phenotypically had symptoms of a
Bo—thalassaemia heterozygote. Kioussis et al. (4) studied this phenomenon
and found that the DNA containing the 5' breakpoint for y3f—-thal 1 is DNasel

insensitive in normal erythropoetic cells., They were also able to show that
when juxtaposed 5' to the P—globin gene, this same DNA was able to confer its
DNasel insensitive state to the adult p-globin gene 2.5kbp 3' to it, thereby
inactivating the P-globin gene. This implies that one border of the active
domain surrounding the P-globin gene cluster must be within the deleted DNA
described in this paper. Although we do not know the location of this region
activating the P-globin cluster in erythropoetic cells, a good candidate might
be the DNase hypersensitivity region recently described by Tuan et al. (3)

upstream from the e—globin gene, which was deleted in this patient.
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