
Copyright © 2017  Korean Stroke Society
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/) which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

pISSN: 2287-6391 • eISSN: 2287-6405166 http://j-stroke.org

 Journal of Stroke 2017;19(2):166-187
https://doi.org/10.5853/jos.2016.01368

Review

Introduction

Stroke  
Stroke is the major cause of adult physical disability and the 
second leading cause of death in the world.1,2 Stroke is one of 
the most important and devastating of all neurological disor-
ders, accounting for 5.5 million deaths annually, with 44 mil-
lion physical disabilities worldwide.3 The consequences of 
stroke injuries are profound and persistent, causing a high bur-
den to both the individual patient and society because of their 
increasing incidence, the physical disability and mortality they 
cause, and their economic impact, mainly in low- and mid-
dle-income countries.4

Ischemic stroke is responsible for 80% of all strokes, while 
hemorrhagic stroke accounts for 15% and the other 5% are 
due to unknown etiology.5 In the present review we will discuss 
the pathogenic mechanisms related to ischemic stroke such as 
excitotoxicity, oxidative stress, inflammation and apoptosis, 
and how microRNAs may play a role in these pathogenic pro-
cess. We will also investigate miRNAs that involved in the 
post-stroke recovery and repair pathways.

Pathophysiology of cerebral ischemia
Cerebral ischemia, which leads to brain dysfunction, results 
from cerebral artery occlusion that decreases cerebral blood 
flow, and its symptoms last for 24 hours or more.6 During isch-
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emic stroke, neurons are deprived of oxygen and energy, so 
that their normal metabolic substrates stop functioning in sec-
onds and display signs of structural injury after only 2 min-
utes.7 Immediately after ischemia, cellular energy-dependent 
processes fail and neurons are unable to sustain their normal 
transmembrane ionic gradient, resulting in an imbalance be-
tween ions and water thus leading to apoptosis and necrotic 
cell death.8,9

During ischemia the brain tissues are not affected equally 
owing to differential lessening of blood supply to the different 
zones. Hence, ischemic injury involves the ischemic core and 
the penumbra region.10 Severe ischemia occurs in the ischemic 
core, where neuronal damage is irreversible due to necrotic cell 
death while the surrounding penumbra constitutes cells that 

are metabolically active and potentially salvageable. Therefore, 
the penumbral zone has the potential for recovery and is the 
target for therapeutic agents.11,12 Nevertheless, cerebral isch-
emia triggers several pathogenic processes (excitotoxicity, oxi-
dative stress, inflammation and apoptosis) in the penumbra 
zone that leads to neuronal cell death (Figure 1). These pro-
cesses are considered to be the central mechanisms underly-
ing neuron death in ischemic stroke.13-15

MicroRNAs 
miRNAs are small, non-protein-coding RNAs, which include 
~20–24 nucleotides that are highly conserved through evolu-
tion. They are post-transcriptional regulators that targeting the 
3′-untranslated regions (3′-UTRs) of target mRNAs, which lead 
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Figure 1. Critical events in the ischemic cascade. Following ischaemia, the deprivation of oxygen and glucose to the brain lead to loss of ATP (energy loss) and 
ion pump failure. The loss of ion concentration gradients causes cytotoxic oedema and releasing of excitatory amino acids (EAAs). Following reduced glucose 
availability cell aerobic metabolism switches to anaerobic, resulting in metabolic acidosis. All of these events lead to cell death, or necrosis. Ischaemia also 
causes the upregulation and activation of many immediate early genes and stress signals, which lead to inflammatory responses, cell apoptosis and, subse-
quently, activation of matrix metalloproteinases (MMPs) as a damaging protease which can lead to the brain oedema and haemorrhage. Following ischaemia, 
AKT kinase activation and upregulation of trophic factors set the stage for recovery and repair mechanisms which including neurogenesis, synaptogenesis and 
angiogenesis. AKT, protein kinase B; MAPK, mitogen-activated protein kinase; ROS/RNS, reactive oxygen species/reactive nitrogen species; ATP, adenosine tri-
phosphate; EAA, excitatory amino acids; CytC, cytochrome c; FAS, the cell-surface Fas receptor; PKC, protein kinase C; BBB, blood brain barrier.
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to the inhibition of translation or degradation of the respective 
mRNA.16 miRNAs have been implicated in the regulation of a 
variety of cellular processes and diseases such as neuronal de-
velopment, differentiation, synaptic plasticity, proliferation, 
metabolism, apoptosis, neurodegenerative diseases and tumor-
igenesis.17-22 miRNAs are initially transcribed from genomic 
DNA, and RNA polymerase II is responsible for transcription of 
primary miRNA (pri-miRNA).23 Pri-miRNAs can be thousands of 
base pairs in length and consist of at least one hairpin loop, 
which is recognized and cleaved by the endonuclease Drosha, 
and which generates a precursor miRNA (pre-miRNA), with the 
help of DGCR8, a double stranded RNA-binding protein.24,25 The 
pre-miRNA is transported from the nucleus into the cytoplasm 
through the function of exportin-5. In the cytoplasm, the pre-
miRNA undergoes cleavage by endoribonucleic Dicer to form a 
duplex of the mature miRNA strand, which is generally biologi-
cally active.26-28

It is known that biological functions of miRNAs are extreme-
ly dependent on the cellular context and the precise link be-
tween miRNAs and stroke consequences should be discussed 
only within a specific cellular context. The studies showed that 
miRNAs have participated as key mediators in the molecular 
processes underlying cerebral ischemia and related diseases.29-32 
Therefore, in the present study, we review all available relevant 
articles regarding miRNAs and ischemic stroke in order to ex-
plain the complex link between miRNA and ischemic stroke. 
The information about the stroke-miRNA system may be used 
for therapeutic and diagnostic methods in stroke treatment.

MicroRNAs intervention in ischemic 
stroke progression

In the past few decades, the clinical methods such as comput-
ed tomography scans and magnetic resonance imaging have 
facilitated diagnosis and prognosis of stroke. However, the di-
agnostic and prognostic powers are limited in availability and 
higher cost.33,34 Additional diagnostic tools including interleu-
kin-6 (IL-6), matrix metallopeptidase 9 (MMP-9) and C-reac-
tive protein (CRP), which their specificity and ability to distin-
guish between acute stroke and its related risk factors is un-
clear.35 Given the limited recommended therapeutic window 
for thrombolysis, new biomarkers are necessary for advancing 
diagnosis of stroke. Therefore, recent studies have suggested 
promising mRNA based biomarkers, which they could distin-
guish transient ischemic attack from control samples.36 Hence, 
several studies have reported the uses of miRNAs as circulating 
biomarkers for diagnosis or prognosis of stroke (Table 1).

Several pathogenic processes are involved in ischemic stroke 

progression which include excitotoxicity, oxidative stress, in-
flammation and apoptosis.37 The miRNAs discussed below reg-
ulate genes in these pathogenic processes by downregulating 
the gene expression (Figure 2, Table 2).

Post-ischemic excitotoxicity
Ischemic stroke damages brain tissue primarily through excito-
toxicity, a term used to describe cell death induced by synaptic 
high levels of glutamate, which is a major excitatory neu-
rotransmitter in the central nervous system (CNS).38 Several 
types of glutamate receptors have been identified in the CNS, 
and the three main types of these receptors are: α-Ami-
no-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) re-
ceptors, N-Methyl-D-aspartate (NMDA) receptors and metabo-
tropic glutamate receptors (mGluR).39-41 Excess glutamate 
over-activates NMDA and AMPA receptors on postsynaptic 
cells which facilitate influx of calcium ions into neurons.37,42

Under basal synaptic transmission, activation of the synaptic 
NMDA receptors (predominantly NR2A-containing) stimulates 
the signaling components of the neuronal survival signaling 
complex (NSC) that promoting neuronal survival.43,44 However, 
under pathological conditions such as stroke, elevating of the 
extracellular glutamate concentration causing excitotoxic acti-
vation of extrasynaptic NMDA receptors (predominantly 
NR2B-containing). The NR2B activation increased Ca2+ influx 
and promotes active death-associated protein kinase (aDAPK) 
to bind with NR2B.43-45 aDAPK recruitment promotes activating 
the neuronal death-signaling complex (NDC), that in turn sup-
press synaptic NSC activity,43 and mediate neuronal death. It is 
demonstrated that inhibition of aDAPK binding to the NR2B 

Table 1. Overview of circulating miRNAs and their relationship with stroke 

miRNAs type
Expression of miRNA 

following stroke
Ref.

miR-363, miR-487b + 249

miR-210 – 218

miR-124 + 250, 251

miR-122, miR-148a, let-7i, miR-19a, 
miR-320d, miR-4429

– 249

miR-30a, miR-126 – 252

miR-125b-2, miR-27a, miR-422a, 
miR-488, miR-627

+ 253

miR-290 + 29

hsa-miR-106b-5P, hsa-miR-4306 + 254

hsa-miR-320e, hsa-miR-320d – 254

miR-124, miR-9, miR-219 – 136

miR-10a, miR-182, miR-200b, miR-298 + 32

Ref., reference; +, increase; -, decrease.
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Figure 2. MicroRNAs involved in detrimental (purple boxes) and protective pathways (blue boxes) are activated by ischemic stroke. Cerebral ischemia, while 
activating detrimental pathways, also triggers some organized responses that counteract tissue injury. Post-ischemic oxidative stress triggers an oxidant and 
antioxidant responses via different factors which are inhibited by microRNAs. Oxidative agents that are inhibited by microRNAs, including reactive oxygen/ni-
trogen species (ROS/RNS), cyclooxygenase 2 (COX2), hydrogen peroxide (H2O2), malondialdehyde (MDA) and methane dicarboxylic aldehyde (MEDA). The anti-
oxidant response which is inhibited by microRNAs containing transcription factor Nrf2 and superoxide dismutase (SOD). Following ischemia, inflammation is 
increased by production of matrix metalloproteinases (MMP-9) to infiltrate the BBB, and activation of pro-inflammatory genes such as interleukin-1 (IL-1α 
and IL-1β), IL-6, tumor necrosis factor α (TNF-α) and nuclear factor-κB, (NF-κB), as well as an activation of innate immune responses (microglia cells) and 
toll-like receptors (TLR4). Inflammation is mitigated by production of anti-inflammatory cytokines like such as IL-10. microRNAs could affect post-ischemic 
inflammatory and anti-inflammatory factors. Excitotoxicity associated with glutamate receptor activation can be counterbalance via glutamate transporter 
(GLT1) and NMDA (containing subunit NR2A), while glutamate receptors GluR2 and NMDA (containing subunit NR2B) exacerbate excitotoxic injuries. mi-
croRNAs inhibit those factors that contribute in the excitotoxicity. The detrimental effects of post-ischemic apoptosis are antagonized by activation and ex-
pression of antiapoptotic factors such as; Bcl-2, Bcl2L11, Bcl-w, Mcl-1 and the heat shock proteins family (HSPA12B). Hence, deleterious effects of apoptosis 
are induced by expression of caspase 3, activation of cell surface death receptors (Fas) and its ligand (FasL), and activation of p53, inhibitory member of the 
apoptosis-stimulating proteins of the p53 family (iASPP). There are some microRNAs which modulate the detrimental effects of post-ischemic apoptosis. 
SOCS1, suppressor of cytokine signaling 1; MyD88, myeloid differentiation primary response gene 88; iNOS, inducible nitric oxide synthase; Nrf2, nuclear fac-
tor erythroid-2 related factor 2; PUMA, p53 upregulated modulator of apoptosis; GLT-1, glutamate transporter-1; GluR2, glutamate receptor-2; FAP-1, Fas 
associated protein-tyrosine phosphatase 1.
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reduces activation of NDC and prevent the excitotoxic neuro-
nal injury induced by ischemic stroke.45,46 So, the NR2B subunit 
is a major hub for NDC formation.45,47,48

Also, binding of glutamate to mGluR caused release of the 
intracellular calcium store.37,39 These events result in accumula-
tion of intracellular calcium which changes the osmolarity of 
the cell and activation some of endogenous enzymes such as 
proteases, lipases and endonucleases. These enzymes degrade 
important cellular macromolecules such as structural proteins, 
membrane lipids and DNA.37,39,49

MicroRNAs and ischemic excitotoxicity
Following ischemic stroke, overexpression of miR-107 leads to 
suppression of glutamate transporter-1 (GLT-1) expression and 
elevated glutamate accumulation, which determine the degree 
of excitotoxicity.50 Post-ischemic downregulation of GLT-1 is 
closely associated with accumulation of glutamate, suggesting 
that glutamate accumulation and neuronal excitotoxicity can 
be controlled via GLT-1 expression.51 After transient forebrain 
ischemia, increasing miR-29a protects astrocytes and then in-
directly neurons. miR-29a leads to decreasing PUMA (p53 up-
regulated modulator of apoptosis) levels and thereby preserves 
astrocyte GLT-1 leading to attenuation of oxidative stress and 
survival of neurons.52

Overexpression of miR-223 attenuates NMDA-induced cal-
cium influx in hippocampal neurons and protects the ischemic 
brain from excitotoxic neuronal cell death through suppression 
the levels of the glutamate receptor-2 (GluR2) and NMDA sub-
unit NR2B.53 It has been reported that the NR2A is a target for 
miR-125b and this miRNA negatively regulates NR2A expres-
sion.54 It has been approved that activation of NR2B-contain-
ing NMDA receptors leading to excitotoxicity and apoptosis. 
While, activation of the NR2A-containing NMDA receptors ex-
erts a neuroprotective effects and promotes neuronal survival 
against excitotoxic-mediated neuronal damage.44 Synaptic 
plasticity that is profoundly influenced by the NMDA receptor 
subunit is altered.54 This is a devastating effect because, after 
stroke damage plasticity can promote adult brain recovery.55-58

Post-ischemic oxidative stress
Oxidative stress results from increased reactive oxygen/nitro-
gen species (ROS/RNS) and/or decrease of the anti-oxidative 
stress defense systems of the body.59 Several mechanisms 
caused formation of free radicals and ROS during ischemia,60 
including high stimulation of NMDA glutamate receptors due 
to excitotoxicity,61 Ca2+ overload, mitochondrial dysfunc-
tion,62-64 neuronal nitric oxide synthase (nNOS) activation,65 
and migration of inflammatory cells such as neutrophils and 

leukocytes that can generate superoxide anions.66 Oxidative 
stress has been involved in a variety of diseases, including can-
cer, atherosclerosis, neurodegenerative diseases, and stroke.67 
Oxidative damage is a fundamental mechanism of brain dam-
age and neuronal cell death during ischemic stroke. The brain 
is very susceptible to oxidative stress due to its highly oxygen-
ated environment, with high levels of peroxidisable lipids, low 
levels of antioxidants and a high iron content.68

The activity of antioxidant and detoxifying enzymes such as 
superoxide dismutase (SOD), glutathione peroxidase, glutathi-
one reductase and Glutathione-S-transferase (GST), has been 
studied in stroke patients, and these enzymes maintain redox 
homeostasis and influence the inflammatory response.69,70 SOD 
enzymes (manganese SOD [MnSOD] and extracellular SOD) 
help brain recovery following ischemic reperfusion injuries.71,72 
The genes that encode these antioxidant enzymes bear an an-
tioxidant response element (ARE) within their promoters. The 
transcriptional activation of ARE is mainly regulated by nuclear 
factor erythroid-2 related factor 2 (Nrf2).73 It has been deter-
mined that Nrf2 has a neuroprotective activity against stroke 
injuries, such as oxidative glutamate excitotoxicity, hydrogen 
peroxide (H2O2) exposure, and Ca2+ overload situations.74 More-
over, Nrf2 expression is upregulated at the gene and protein 
levels in ischemic brains especially in the ischemic penumbra 
zone; these findings indicate that Nrf2 activation is valuable 
and might subsequently contribute to cell protection and sur-
vival.75

MicroRNAs and ischemic oxidative stress
miRNAs have been observed to be involved in the posttran-
scriptional regulation of Nrf2 levels. It is discovered that 85 
miRNAs can bind to cytoplasmic Nrf2 mRNA to affect its 
translation.76 Studies demonstrated that miR-424 reduced 
malondialdehyde (MDA) levels, ROS and abrogated H2O2-in-
duced injury in neurons which resulted in the neuroprotection 
against ischemic oxidative damages.77 Evaluation the role of 
miR-93 in cerebral ischemia injuries indicate that miR-93 di-
rectly binds to the predicted 3′-UTR target sites of the Nrf2 
genes, and then attenuate the expression of Nrf2 and heme 
oxygenase-1 (HO-1).78 The Nrf2/HO-1 pathway is an important 
cellular defense mechanism against oxidative stress induced 
following ischemia/reperfusion.79 Also, it is revealed that in-
creasing of Nrf2 levels causes upregulation of SOD enzymes.80,81

Recent studies showed that vagus nerve stimulation (VNS) 
initiated after ischemic stroke in rats which improved the neu-
rological outcomes, reduced ischemic lesion volume, and inhib-
ited inflammatory cytokines.82 It is known that miR-210 is in-
volved in the VNS-regulated oxidative stress responses follow-
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Table 2. Specific target genes of miRNAs involved in ischemic stroke pathogenesis

miRNA Main target genes Function of miRNA Ref.

miR-107 GLT-1 Glutamate accumulation 50

miR-29a PUMA Preserves astrocyte GLT-1 52

miR-223 GluR2 Attenuates NMDA-induced calcium influx 53

miR-223 NR2B* Attenuates NMDA-induced calcium influx 53

miR-125b NR2A* Excitotoxic neuronal damage 54

miR-424 MDA Prevents oxidative damages 77

miR-93 Nrf2 Upregulation of SOD enzymes 78, 80

miR-106b-5p MDA and MnSOD Protection against oxidative damages 84

miR-145 SOD Increasing oxidative damages 31

miR-101 COX2 ROS production 54

miR-146a COX-2 ROS production 88

miR-let-7c-5p Caspase 3 Neuroprotection against inflammation 117

miR-181c TLR4 NF-κB activation 126

miR-181c NF-κB Expression of pro-inflammatory genes 126

miR-155 SOCS1, MyD88 Upregulation of TLR4 127

miR-181c TNF-α Decreasing neuronal apoptosis 131

miR-let-7c iNOS, TNF-α and IL-6 Decreasing inflammation 132

miR-181a IL1-α Anti-inflammatory effect 133

miR-146a IL-1β and IL-6 Anti-inflammatory effect 88

miR-491-5p MMP-9 Inhibit cellular invasion 137

miR-25 FasL Apoptosis inhibition 153

miR-29 FAP-1 Induction of Fas receptors 154

miR-21 FasL Apoptosis inhibition 155

miR-99a and miR-let-7c-5p Caspase-3 Preventing neural apoptosis 117, 158

miR-9 Bcl2L11† Decreasing neuronal apoptosis 159

miR-106b-5p Mcl-1† Decreasing neuronal apoptosis 84

miR-497 Bcl-2† and Bcl-w† Increasing neuronal cell death 152

miR-181a Bcl-2† Astrocyte dysfunction 163

miRNA-384-5p and miRNA-494 Bcl-2† Increasing neuronal cell death 164

miR-134 Bcl-2† Alleviates ischemic injury 165

miR-134 HSPA12B Increasing neuronal apoptosis 166

miR-124 iASPP Promotes neuronal apoptosis 170

Anti-miR-103-1 NCX1 Cellular calcium and sodium homeostasis 189

miR-181a antagomir NF-κB Decreasing brain ischemia injury 190

miR-145 antagomir  SOD2 Inhibition of oxidative stress 31

miR-Let7f antagomir IGF-1 Neuroprotection 202

miR-134 antagomir BDNF Neurogenesis 165

miR-21 Wnt and TGF-β NPC regulation 212

miR-34a Notch, Wnt, Hedgehog and 
TGF-β

NPC regulation 212

miR-124 Sox9 Promoting neural differentiation 213

miR-124a JAG1/Notch Neurogenesis inhibition 214

miR-210 VEGF Promoting angiogenesis 204

(Continued to the next page) 
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ing cerebral ischemia through decreasing methane dicarboxylic 
aldehyde levels and increasing SOD and GSH levels.83 In addi-
tion, ischemic stroke caused to the down-regulation of SOD 
and GSH activity and the up-regulation of methane dicarbox-
ylic aldehyde.83 It has been determined that acute ischemic 
stroke caused a significant increase of miR-106b-5p. Therefore, 
miR-106b-5p antisense oligonucleotides (antagomirs) could 
have a protective effect against post-ischemic oxidative dam-
ages via reducing MDA content and restoration of MnSOD ac-
tivity.84 miR-145 expression suppressed protein levels of SOD2 
after ischemic stroke.31 miR-23a-3p levels increased transiently 
following ischemia and reperfusion in mice which reduced the 
ischemia reperfusion and oxidative stress injuries, mechanisti-
cally through increasing the expression of MnSOD, and reduc-
ing RNS production such as NO and 3-NT levels.85

During cerebral ischemia, cyclooxygenase 2 (COX2) can pro-
duce ROS.86 COX2 is a qualified target of miR-101.54 In the 
normal situation COX2 is little expressed while studies showed 
that cerebral ischemia readily induced COX2 expression in neu-
ronal cells.87 The miR-101 profile in cerebral ischemia is found 
to be down-regulated.32 Also, miR-146a has been found to 
suppress expression of COX-2 in neurological disorders.88 Thus, 
miRNAs can be considered as a valuable therapeutic agents to 
antagonize oxidative stress in ischemic stroke.

Post-ischemic inflammation
Inflammation is an essential step and a secondary injury mech-
anism in the pathophysiology of cerebrovascular diseases, par-
ticularly ischemic stroke.89,90 Recent studies demonstrate that 
post-ischemic neuro-inflammation is an important determin-
ing factor for ischemic consequences and its long-term prog-
noses.91,92 In ischemic brain injury, inflammatory responses are 

triggered as a result of damaged tissue, necrotic cells, debris 
and ROS. These triggering elements cause microglial activation 
and release of inflammatory cytokines.93-96 Microglia are the 
resident innate immune macrophages of the CNS, and they are 
highly activated after brain insult.97-99 Activated microglia and 
their inflammatory factors, such as tumor necrosis factor α 
(TNF-α) contribute to the progression of neurodegenerative 
disorders.100,101

Cytokine release leads to post-ischemic inflammation and 
aggravates primary brain damage. They include, IL-1β, IL-6, 
plasma high sensitivity CRP (hs-CRP) and TNF-α, as well as 
other potential cytotoxic molecules including NO, ROS, and 
prostanoids.102-105 Microglial suppression can reduce post-isch-
emic injuries, so this illustrates an attractive therapeutic strat-
egy for ischemic stroke.106,107 In addition to cytokines that are 
expressed in the resident brain cells, there are a peripherally 
derived cytokines that produce and secrete from T-lympho-
cytes, mononuclear phagocytes, NK cells and polymorpho-nu-
clear leukocytes which are involved in ischemic inflamma-
tion.108

In ischemic brain injury, the expression of a number of 
pro-inflammatory genes is induced by ROS formation. These 
genes include nuclear factor-κB (NF-κB), interferon regulator 
factor 1, hypoxia inducible factor 1 (HIF 1) and STAT3. Conse-
quently, these factors upregulate cytokines and expression of 
adhesion molecules such as intercellular adhesion molecule 1 
(ICAM-1), P-selectin and E-selectin. These Cellular adhesion 
molecules (CAMs) facilitate leukocyte adhesion to the micro-
vascular endothelium in the cerebral ischemic area.107 NF-κB is 
a heteromeric transcription factor involved in the activation of 
pro-inflammatory genes, such as TNF-α, ICAM-1, COX-2, iNOS 
and IL-6.109,110 CAMs are upregulated in the first days of isch-

Table 2. Continued

miRNA Main target genes Function of miRNA Ref.

miR-15a FGF2 Suppress post-stroke angiogenesis 227

miR-16, -20a and -20b VEGF Anti-angiogenic agent 229

miR-130a GAX and HOXA5 Promoting angiogenesis 232

miR-221 and miR-222 KIT and e-NOS Decreasing tube formation 235

Ref., reference; GLT-1, glutamate transporter-1; PUMA, p53 upregulated modulator of apoptosis; GluR2, glutamate receptor 2; NMD, N-Methyl-D-aspartate; 
MDA, malondialdehyde; Nrf2, nuclear factor erythroid-2 related factor 2; SOD, superoxide dismutase; MnSOD, manganese SOD; COX2, cyclooxygenase 2; ROS, 
reactive oxygen species; TLR, Toll-like receptor; SOCS1, suppressor of cytokine signaling 1; MyD88, myeloid differentiation primary response gene 88; TNF, tu-
mor necrosis factor; IL, interleukin; MMP-9, metalloproteinases 9; FasL, Fas ligand; FAP-1, Fas associated protein-tyrosine phosphatase 1; HSPA12B, heat 
shock protein A12B; iASPP, inhibitory member of the apoptosis-stimulating proteins of p53 family; NCX1, sodium–calcium exchanger-1; IGF-1, insulin-like 
growth factor 1; BDNF, brainderived neurotrophic factor; TGF-β, transforming growth factor-β; NPC, neuronal stem cells; Sox9, Sry-Box 9; VEGF, vascular en-
dothelial growth factor; FGF2, fibroblast growth factor 2; GAX, Growth arrest-specific homeobox; HOXA5, homeobox A5; KIT, kit ligand; e-NOS, endothelial 
NOS.
*Glutamate NMDA receptor subunits.
†Anti-apoptotic Bcl-2 family.
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emic stroke and are responsible for the migration of the leuko-
cytes through the brain endothelial cells.111

During ischemia, neutrophils that are recruited to the isch-
emic tissue produced the MMPs to infiltrate the blood brain 
barrier (BBB). Two main group of MMPs are including MMP-9 
and MMP-2, and they are responsible for disruption of BBB 
and hemorrhagic transformation following ischemic stroke.112,113

MicroRNAs and ischemic inflammation
It has been clarified that a number of miRNAs target several 
genes that are involved in post-ischemic inflammation.114,115 
Studies showed that miR-424 has a protective effect against 
ischemic cerebral injuries by mechanisms that inhibit microglia 
activation.116 Also, miR-let-7c-5p have a protective effect 
against cerebral ischemia neuro-inflammation via inhibition of 
microglial activation and translational repression of caspase 
3.117 Overexpression of miR-124 could promote quiescence of 
microglia and deactivation of macrophages via the C/EBP-α-
PU.1 pathway. miR-124 expression in the microglia was less-
ened during the neurological disease.118

Ischemic inflammatory process may be the resulted of acti-
vation of Toll-like receptors (TLRs). TLRs are a family of recep-
tors that are expressed by microglia and astrocytes.119-121 TLRs 
can activate NF-κB which induces the expression of pro-in-
flammatory genes, cytokines and adhesion molecules.122 Thir-
teen TLRs have been identified, and TLR4 signaling contributes 
to post-ischemic inflammatory injuries.123,124 In response to hy-
poxia, TLR4 expression is upregulated in the surface of microg-
lia cells.125 It is determined that miR-181c negatively regulates 
TLR4 expression through its 3′-UTR. Furthermore, miR-181c 
suppresses NF-κB activation and its pro-inflammatory prod-
ucts including TNF-α, IL-1β, and iNOS.126 In ischemic cerebral 
tissue, miR-155 induces the expression of TNF-α and IL-1β via 
upregulation of TLR4 and downregulates the expression of in-
flammatory mediators such as suppressor of cytokine signaling 
1 (SOCS1) and the myeloid differentiation primary response 
gene 88 (MyD88).127 In the microglia, macrophages and mono-
cytes, expression of the miR-155 was upregulated in response 
to the pro-inflammatory stimuli such as IFN-γ and TNF-α.128-130

It has been shown that miR-181c can directly regulate 
post-transcriptional production of TNF-α in the microglia. 
Therefore, miR-181c decreased release of TNF-α from the mi-
croglial cells and decreased neuronal apoptosis.131 Also, recent 
studies suggest that miR-let-7c decreases the expression of 
macrophages inflammatory genes including iNOS, TNF-α and 
IL-6.132 miR-181a has an anti-inflammatory effect via direct 
downregulation of IL1-α in monocytes and macrophage cell 
lines.133 miR-146a has been found to suppressed expression of 

IL-1β and IL-6 which are pro-inflammatory cytokines. This 
finding indicates an important role of miR-146a in an inflam-
mation associated with neurological disorders.88 During cere-
bral ischemia, miR-146 is down-regulated.32 anti-inflammatory 
cytokines such as IL-10 post transcriptionally regulated by 
miR-106a.134 Moreover, in the microglia and macrophages miR-
106a and miR-124 leading to increasing in IL-10 and TGF-β 
respectively.118,134,135 Other findings indicate that serum miR-
124, miR-9 and miR-219 were decreased in acute ischemic 
stroke thus the neuro inflammatory response and neuronal cell 
death was facilitated.136 miR-491-5p was indicated to decrease 
the levels of MMP-9 expression and inhibit cellular invasion.137 
So, correlations between serum levels of miR-124, miR-9, miR-
219, hs-CRP, MMPs and infarct volume in the acute phase of 
stroke were determined.136,138,139

Post-ischemic cell death
Apoptosis, necrosis and necroptosis are three types of cell 
death involved in ischemic stroke pathogenesis. Apoptosis is 
programmed cell death and it is well known to be activated 
during development, physiological cellular turnover, and in 
pathological conditions such as stroke.140-142 The apoptotic re-
sponse is activated either by extrinsic or intrinsic stimuli; the 
intrinsic stimuli triggered through the mitochondrial signaling 
pathway; the extrinsic stimuli activated via cell surface death 
receptors, including TNF-α, Fas (CD95/APO1) and TNF related 
apoptosis inducing ligand (TRAIL) receptors.143,144 The extrinsic 
pathway is activated by ligand-receptor interactions via the 
external signal. Ligands such as TNF-α and Fas ligand (FasL) 
bind to TNF-receptor and Fas receptor (FasR) respectively 
which initiates formation of death inducing signaling complex 
and caspase-3 activation.145 Both pathways are interface at the 
point of caspase-3 activation which results to the mitochon-
drial membrane permeabilization, chromatin condensation, 
DNA fragmentation, and eventually cell death.146

Cerebral ischemia caused cytotoxic accumulation of intra-
cellular Ca2+ through the stimulation of NMDA and AMPA glu-
tamate receptors. Increased intracellular calcium activates cal-
pains resulting in the cleavage of Bcl-2 interacting domain to 
truncated Bid (tBid).147 At the mitochondrial membrane, tBid 
forms heterodimers by interaction with pro-apoptotic proteins 
such as Bad-Box and opens the mitochondrial transition pores 
which promote releasing of mitochondrial cytochrome c (Cytc) 
or apoptosis inducing factor (AIF).148 The released Cytc in the 
presence of adenosine triphosphate (ATP)/deoxy ATP binds to 
the apoptotic protease activating factor 1 and procaspase-9 to 
form an apoptosome which activates caspase-9 and subse-
quently caspase-3. Activated caspase-3 cleaves nDNA repair 
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enzymes, which leads to nDNA damage and apoptotic cell 
death. Furthermore, AIF is translocated to the nucleus and ini-
tiates large-scale (50 kb) DNA fragmentation and cell death in 
a caspase-independent manner.149 After focal ischemic stroke 
caspase activation is present in the penumbra zone, an isch-
emic high risk area, and hence inhibition of caspase can pro-
tect against focal ischemia injuries.150

MicroRNAs and ischemic apoptosis
Several studies showed that expression and function of specific 
miRNAs could regulate post-ischemic neural death by altering 
the expression of the target genes.151,152 miR-25 could modu-
late cerebral ischemia/reperfusion damage by downregulation 
of the Fas/FasL Pathway and apoptosis inhibition.153 miR-29 
was found to repress expression of Fas associated protein-tyro-
sine phosphatase 1 which is the inducer of the FasRs.154 miR-
29 was demonstrated to be up-regulated during cerebral isch-
emia in rat models.32 Some evidence showed that miR-21 can 
target Fas-ligand and protect neurons from apoptosis during 
ischemia.155 Fas/FasL belong to the TNF receptor/ligand super-
family of co-stimulatory molecules and play an essential role 
in the induction of apoptosis.156

miR155 regulates various functions of cells and its knock-
down could modulate apoptosis via regulating caspase-3 gene 
expression.157 Other findings indicate that miR-99a suppressed 
both pro-caspase-3 and activated caspase-3 expression as well 
as preventing neural apoptosis following cerebral ischemic 
stroke.158 miR-let-7c-5p has been reported to repress caspase 3 
that led to protective effects against cerebral ischemia.117 miR-
9 expression could specifically regulate Bcl2L11 translation 
which led to decreasing cell apoptosis, also miR-9 is able to re-
store the neurological scores and behavioral abnormalities. 
However, in the ischemic brain, miR-9 expression was down-
regulated and reversing its level could rescue the abnormalities 
and cell apoptosis.159 In response to different stimuli, Bcl2L11 is 
produced and can induce apoptosis by inactivating anti-apop-
totic Bcl2 proteins and activating BAX-BAK1.160,161 Bcl-2 and 
Bcl-xl proteins are a key regulators in lessening post-ischemic 
apoptotic and cell death.162

Following acute ischemic stroke, miR-106b-5p increased 
significantly and directly target the Mcl-1 protein which is a 
member of Bcl-2 family and a key regulator of apoptosis after 
DNA damage.84 So, miR-497 increased ischemic neuronal cell 
death by negatively regulating anti-apoptotic proteins, such as 
Bcl-2 and Bcl-w.152 Several reports demonstrated that miR-
181a levels, decreased Bcl-2 proteins and increased evidence 
of astrocyte dysfunction.163 Expression profiles of microRNAs 
following cerebral ischemia suggest that differentially ex-

pressed miRNA-384-5p and miRNA-494 caused Bcl-2 to sig-
nificantly decreased.164 Moreover, Downregulation of miR-134 
alleviates ischemic injury through enhancing the Bcl-2 expres-
sion in neurons following oxygen glucose deprivation.165 It is 
reported that miR-134 plays a critical role in the post-ischemic 
apoptosis and cell death through negatively modulating HSP-
A12B protein expression in a posttranscriptional manner.166 
HSPA12B is a member of the HSP70 family, and overexpression 
of this protein decreased apoptosis in the ischemic brain tis-
sue.167,168 Furthermore, it has been demonstrated that down-
regulation of the miR-125b expression caused increasing p53 
expression which acts as apoptosis mediator by the intrinsic 
pathway. In ischemic rats, miR-125b is down-regulated follow-
ing reperfusion.169 Also, miR-124 can downregulate the inhibi-
tory member of the apoptosis-stimulating proteins of p53 
family (iASPP), and promotes neuronal apoptosis after cerebral 
ischemia. Therefore, suppression of miR-124 could be a novel 
mechanism for non-transcriptionall regulation of neuronal 
apoptosis in focal cerebral ischemia.170 ASPP family consists of 
3 members: ASPP1, ASPP2, and iASPP, because they bind to the 
proteins such as Bcl-2 and RelA/p65 as key players in control-
ling apoptosis.171 As mentioned in the previous paragraphs, VNS 
improved the neurological outcomes and reduced ischemic le-
sion volume after cerebral ischemia in rats. Therefore, VNS ex-
erts neuroprotective effects against ischemic injuries poten-
tially through anti-apoptotic activity of miR-210 which is me-
diated by hypoxia-inducible factor and Akt-dependent path-
ways.83 Following brain ischemia the up-regulation of miR-323 
promoted apoptosis and suppressed survival, whereas the inhi-
bition of miR-323 could be a good agent for the prevention 
and therapy of cerebral ischemic injury.172 Consequently, these 
microRNAs maybe involved in neuronal apoptosis during 
stroke.

MicroRNAs as possible therapeutic 
agents

The underlying pathophysiology of stroke is highly complicated, 
consisting of numerous pathological processes such as excito-
toxicity, oxidative stress, inflammation and apoptosis. Current-
ly, effective treatment for ischemic stroke is limited to recom-
binant tissue plasminogen activator (tPA).173 tPA is the only ap-
propriate thrombolytic agent available for acute ischemic 
stroke treatment.174,175 However, tPA is limited by its narrow 
therapeutic window, which can only be given up to 6 hours af-
ter onset of stroke, therefore, making it suitable to only a mi-
nority (less than 10%) of stroke patients.176 Also, beside its 
beneficial thrombolytic role, tPA has deleterious effects includ-
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ing intracranial hemorrhage,177 and neurotoxicity.178 In addition, 
studies showed that inhibition of tPA with plasminogen activa-
tor inhibitor-1 or neuroserpin have neuroprotective effects 
against ischemic brain damage.179,180 Other alternative treat-
ments include the use of other anti-thrombotic agents, me-
chanical thrombectomy and anti-platelet agents such as aspi-
rin.181 As noted, there are many limitations of thrombolytic 
treatment for stroke. Therefore, there is continuing research for 
novel therapeutic agents. miRNAs have remarkable potential as 
they are endogenous molecules that are capable of controlling 
the expression of potentially deleterious genes. Furthermore, 
miRNAs can regulate the genes that contribute in the neuro-
protection, neurogenesis and angiogenesis which leading to 
enhancing recovery and repair mechanisms in ischemic stroke 
patients (Figure 3, Table 2).

MicroRNAs and neuroprotection
Neuroprotective strategies that limit secondary tissue loss and/
or improve functional outcomes have been identified to help 
clinicians in decreasing stroke mortality rates and improving 
the quality of patient’s life.182 Glutamate antagonists are the 
most studied neuroprotective agents. Glutamate is a major ex-
citatory neurotransmitter in the CNS and is released excessive-
ly during ischemia.183 miRNAs seem to offer some potential to 
attenuate excitotoxicity and miR-125b and miR-223 have 
been demonstrated to target NMDA receptor subunits includ-

ing NR2A and NR2B, respectively, and negatively regulate their 
expression.53,54 Hence, increasing the expression of this miRNAs 
represents a potential therapeutic application through decreas-
ing the effects of excitotoxicity, which needs to be further in-
vestigated. 

Calcium influx during ischemic stroke triggered intracellular 
destructive enzymes, which leads to brain tissue damage.184 In-
terestingly, the sodium-calcium exchanger-1 (NCX1) gene ex-
pression is influenced by cerebral ischemia, which is a plasma 
membrane transporter that regulates cellular calcium and so-
dium homeostasis in the brain.185-187 NCX activation amelio-
rates the consequences of ischemic brain damage.188 So, it has 
been showed that anti-miR-103-1 exerts a strong neuropro-
tective effect against ischemic damage through NCX1 activa-
tion and offers the opportunity to develop a new therapeutic 
strategy for ischemic stroke.189 Neuroprotection could also be 
achieved by targeting the inflammatory mediators that con-
tribute to brain injury following ischemic stroke. miR-181a has 
deleterious effects on ischemic stroke, and using miR-181a an-
tagomir caused neuroprotective effects, reduced NF-κB activa-
tion and improved neurological deficits in mice.190 Furthermore, 
the ability to decrease brain ischemia injury (both focal and 
forebrain ischemia) makes miR-181a antagomir a therapeutic 
agent.163 It has been shown that suppression of TLR4, which is 
mediated by miR-181c, could be neuroprotective in hypoxic 
injuries, so this offers a potential therapeutic agent for isch-
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Figure 3. Overview of processes involved in ischemic stroke and high potential therapeutic microRNAs. Cerebral ischemia includes several injurious mecha-
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process include promoting angiogenesis, neurogenesis and neuroprotective recovery and repair mechanisms.
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emic stroke associated with microglial activation.126 Studies 
showed that miR-424 overexpression has a neuroprotective 
effect on cerebral ischemia injury through mechanisms relating 
to the preventing of microglia activation.116 In the microglia 
and macrophages miR-106a and miR-124 leading to increas-
ing in IL-10 and TGF-β respectively.118,134,135 In turn, IL-10 and 
TGF-β inhibit expression of adhesion molecules in endothelial 
cells and production of pro-inflammatory cytokines.191,192 
Therefore, TGF-β and IL-10 are neuroprotective factors against 
neuro-inflammation.193-195

As mentioned in the other sections, during ischemic stroke, 
there is increased production of reactive oxygen free radicals 
due to glutamate excitotoxicity.196 Accordingly, the free radical 
scavengers potentially have neuroprotective roles. Preclinical 
studies in animal models that using those agents presented ef-
fectiveness in reducing neurological injuries.197 miR-497 in-
creased ischemic neuronal cell death with negatively regulat-
ing anti-apoptotic proteins, such as Bcl-2 and Bcl-w.152 Antag-
onism of miR-497 leading to decreasing in the infarct volume 
due to ischemia in mice.152 Some studies have shown that in-
creasing Nrf2 activity is highly neuroprotective against isch-
emic consequences.74,198 It has been shown that miR-145 an-
tagomir increased protein levels of SOD2 after ischemic 
stroke.31 It is determined that miR-106b-5p antagomir can 
protect against cerebral ischemia/reperfusion (I/R) injury by in-
hibition of apoptosis and oxidative stress.84 Other studies indi-
cate that miR-99a and miR-let-7c-5p have neuroprotective 
effects through inhibition of pro-caspase-3 and caspase-3 ex-
pressions as well as preventing apoptosis following cerebral 
ischemic stroke.158 Sequestration of this miRNA could therefore 
serve as a potential defense against post-stroke pathogenic 
processes in neuroprotection therapy.

MicroRNAs and neurogenesis
Neurotrophic factors are small polypeptide molecules, which 
are involved in cell proliferation, migration, differentiation and 
development of the nervous system. In the adult CNS, neuro-
trophic factors have important roles in the survival and main-
tenance of neuronal cells by activating cell survival genes and 
inhibition of suicide genes.199 For this reason, deprivation of 
these factors in the ischemic penumbra zone can trigger neu-
ronal apoptosis and lead to cell death. In preclinical studies, 
neurotrophic factors such as nerve growth factor, brainderived 
neurotrophic factor (BDNF), ciliary neurotrophic factor, glial-
derived neurotrophic factor, vascular endothelial growth factor 
(VEGF), and insulin-like growth factor 1 (IGF-1) have all been 
shown to decrease infarct size in animal models.200 Ischemic 
activated microglia can release a variety of cytoprotective sub-

stances by producing neurotrophic molecules such as IGF-1, 
BDNF, and several other growth factors.105,201

It has been shown that miR-Let7f antagomir targets the IGF-
1 signaling for translation activation which could alternatively 
promote IGF-1-like neuroprotection in the ischemic stroke 
models.202 Downregulation of miR-134 alleviates ischemic in-
jury through enhancing of BDNF and Bcl-2 expression in neu-
rons following oxygen glucose deprivation. Therefore, miR-134 
antagomir providing a potential therapeutic agent for cerebral 
ischemic injury.165 miR-107 and miR-30-5p are reported as 
BDNF regulators and investigations into the precise mechanism 
of both these miRNAs in BDNF regulation can be a potential 
therapeutic agent in neuroprotection.203 Overexpression of 
miR-210 can induce neurogenesis in the adult mouse brain, 
which is associated with VEGF upregulation.204 VEGF is an im-
portant neurogenic factor with therapeutic potential in isch-
emic stroke.205

Following cerebral ischemia, neuronal stem and precursor 
cells (NSC and NPC) can be activated and migrate to the injured 
areas.206 Hedgehog, Notch, Wnt and TGF-β signaling pathways 
are found to be responsible for proliferation, migration and dif-
ferentiation of NSC and NPC to promote neuronal repair after 
ischemic stroke.207-211 miR-21 was found to be significantly up-
regulated following cerebral ischemia, and it could act as a NPC 
regulator by Wnt and TGF-β signaling pathways. Furthermore, 
miR-34a may negatively regulate the NPC proliferation by in-
hibiting Notch, Wnt, Hedgehog and TGF-β signaling pathways 
following brain ischemia.212 It has been reported that increased 
miR-124 concentrations could promote neural differentiation 
by post-transcriptionally downregulation of Sry-Box 9 (Sox9). It 
is demonstrated that Sox9 overexpression abolished neuronal 
differentiation, whereas Sox9 knockdown led to improved neu-
ron formation.213 miR-124a was found to inhibit neurogenesis 
following stroke through targeting the JAG1/Notch signaling 
pathway. miR-124a in neural progenitor cells decreased JAG1 
transcript and protein levels significantly, which causing to in-
activation of Notch signals.214 Furthermore, this microRNA was 
reported to be constitutively expressed in the brain mature 
neurons.215 miR-9 has been revealed to limit migration and pro-
mote proliferation in human neuronal progenitor cells and its 
downregulation permits to neuronal migration.215 Therefore, 
pharmacological regulation of these miRNAs could be a poten-
tial agent in the post-ischemic neurogenesis.

MicroRNAs and angiogenesis
Angiogenesis is an important, beneficial event occurring in 
ischemic stroke. Angiogenesis delivers blood flow and metabo-
lism to ischemic tissue and is positively correlated with the 
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survival rate of stroke patients.216 miRNAs that regulate the 
process of angiogenesis have been offered as a potential treat-
ment strategy for ischemic stroke.217 Overexpression of miR-
210 promotes focal angiogenesis in the adult mouse brain, 
which was associated with local increased VEGF levels.204 Also, 
miR-210 can trigger vascular endothelial cell migration and 
tube formation under hypoxia in vitro.204 Overexpression of 
miR-210 in patients with acute ischemic stroke show better 
clinical outcomes.218 Hence, miR-210 is specifically sensitive to 
hypoxic stimuli in almost all of cells,219 and its expression is 
enhanced by hypoxia-related transcription factors, such as 
HIF-1α.220,221 miR-92a regulates angiogenesis targeting several 
proangiogenic proteins, including the integrin subunit alpha5. 
Thus, miR-92a could be a therapeutic target in the setting of 
ischemic disease.222

VEGF is an essential angiogenic factor with therapeutic po-
tential in ischemic stroke.223,224 It has been demonstrated that 
miR-107 contributes to post-stroke angiogenesis by directly 
down regulation of Dicer-1 expression which is a gene that 
encodes an important enzyme in the miRNA processing. This 
leads to translational de-suppression of VEGF mRNA, thereby 
increasing expression of VEGF (VEGF165/VEGF164), resulting in 
post-stroke angiogenesis.225 miR-107 expression is regulated by 
HIF-1α and has binding sites with HIF-1α.226 A novel finding 
indicates that overexpression of miR-15a in endothelial cells 
can suppress post-stroke angiogenesis via direct inhibition of 
endogenous endothelial fibroblast growth factor 2 and VEGF 
activities.227 Also, studies have shown that expression of the 
miR-15a is significantly increased in the cerebral vasculature 
at the penumbral zone following cerebral ischemia.228 Further-
more, miR-16, -20a and -20b have been found to target VEGF 
and act as an anti-angiogenic agent in cultured endothelial 
cells.229

Growth arrest-specific homeobox (GAX) and homeobox A5 
(HOXA5) are anti-angiogenic transcription factors and are in-
volved in the inhibition of endothelial cell function. GAX is ex-
pressed in the endothelial cells and inhibits angiogenesis 
through down regulation of NF-kB signaling pathway.230,231 
miR-130a has been found to down-regulate GAX and HOXA5 
expression, consequently antagonizing the antiangiogenic ac-
tivity of these factors.232 miR-221 and -222 were found to in-
hibit angiogenesis by interaction and down-regulation of kit li-
gand (KIT), and enriched of this microRNAs in the hippocampus 
of the mice indicates a possible role for them in stroke patho-
genesis.233,234 In the same way, it was suggested that miR-221 
and miR-222 decreases tube formation and migration by tar-
geting both KIT and endothelial NOS.235 Therefore, pharmaco-
logical modulation of these miRNAs could be a promising ther-

apeutic approach for angiogenesis after ischemic stroke.

Challenges for miRNA therapy

There is mounting evidence that miRNA-based therapies hold 
great promise. However, despite the exciting potential of miR-
NAs, critical hurdles remain to be overcome which often in-
clude delivery of miRNA-targeting agents. Other limitations in-
cluding limited in vivo stability, limited tissue distribution, and 
untoward side effects. Although, either viral vectors and non-
viral delivery systems such as liposomes could overcome these 
challenges, both liposomes and viral vectors may be toxic and/
or immunogenic which would restrict their clinical application. 
Liposomes are utilized to deliver small interference RNAs (siR-
NA). However, synthetic systems such as liposomes have rela-
tively lower yield compared to viral vectors.236,237

After stroke, a high level of miRNAs leads to inhibition of the 
expressions of many genes. Therefore, inhibition of these miR-
NAs may be a therapeutic targets for ischemic stroke.238 There 
are several tools to decrease the level of miRNA such as an-
tagomir (anti-sense oligonucleotide), which blocks miRNA si-
lencing activity by complimentary binding to the mature miR-
NA, and this could be a useful approach to inhibition of miRNA 
function.239 Therefore, use of an antagomir may be another 
therapeutic option when upregulated miRNAs are pathogenic.

The advantage of antigomirs is that they can be delivered 
into cells directly without any vector assistant, because they 
are nuclease resistant. Therefore, antigomirs avoid the compli-
cation of using delivery vehicles. The drawbacks that limit anti-
gomir application as therapeutic reagents in humans are the 
need for high doses and their possible side-effects.240-242

Antagomirs could easily be delivered intravenously, but there 
is poor distribution in the brain due to the blood-brain barrier, 
which prevents most exogenous substances from entering the 
CNS.243,244 In recent years, intranasal delivery has been used to 
target the brain, and evidence shows that olfactory nerve 
pathways, trigeminal nerve pathways, vascular and lymphatic 
pathways are involved in intranasal delivery.245 Further studies 
have shown that intranasal delivery of antagomir- miR-206 
reached the brain and increased memory function in mice with 
Alzheimer’s mice.246

Furthermore, miRNAs have been introduced by mechanical 
methods such as high pressure injection and electroporation, but 
these methods cause too much damage to the tissues.247,248 Ad-
ministration of miRNAs in the absence of a carrier presents limited 
tissue distribution, and they are taken up by the liver and kidney 
and rapidly excreted in urine. In addition, the lethal dosage, LD50, 
of specific miRNAs has yet to be recognized.236 Nevertheless, it is 
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probable that an increasing number of these molecules will prog-
ress and will eventually be developed to become approved treat-
ment for ischemic stroke in the coming years.

Conclusions 

In this review we have presented evidence that miRNA func-
tion is increasingly dysregulated following ischemic stroke, and 
altering of these molecules has profound effects on the down-
stream target genes which are involved in the post-ischemic 
process. A single miRNA exerts its cellular function by mostly 
inhibition and occasionally activation of numerous down-
stream mRNA targets. Several studies have attempted to cor-
relate between changes in the expression of miRNAs and post-
ischemic pathogenic processes such as excitotoxicity, inflam-
mation, oxidative stress and apoptosis. These studies clarify the 
contribution of miRNAs in the post-ischemic pathophysiologi-
cal process and help us to a better understanding of the pro-
cesses involved in ischemic stroke pathology, where they could 
be a therapeutic agent. Also, there is accumulating evidence 
that several miRNAs and their target genes are involved in the 
retrieval and repair process which including the promotion of 
angiogenesis, neurogenesis and neuroprotection.

miRNA profiles provide evidence that their modulation could 
be beneficial for ischemic stroke diagnosis, as well as being po-
tential therapeutic agents. Moreover, the ability of miRNAs to 
regulate numerous target genes clearly demonstrates their im-
portance in ischemic stroke therapeutics. Finally, the under-
standing of delivery systems will be a key to bringing miRNA to 
the clinic as findings from animal models become better re-
fined to allow translation into human therapeutic agents for 
the treatment of ischemic stroke.
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