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Reversible and irreversible post-translational modifications (PTMs) induced by

endogenously generated reactive oxygen species (ROS) in regulatory enzymes

and proteins plays an essential role in cellular signaling. Almost all cellular processes

including metabolism, transcription, translation and degradation have been identified as

containing redox regulated proteins. Specific redox modifications of key amino acids

generated by ROS offers a dynamic and versatile means to rapidly alter the activity or

functional structure of proteins in response to biochemical, environmental, genetic and

pathological perturbations. How the proteome responds to these stimuli is of critical

importance in oxidant physiology, as it can regulate the cell stress response by reversible

and irreversible PTMs, affecting protein activity and protein-protein interactions. Due to

the highly labile nature of many ROS species, applying redox proteomics can provide a

signature footprint of the ROS species generated. Ideally redox proteomic approaches

would allow; (1) the identification of the specific PTM, (2) identification of the amino

acid residue that is modified and (3) the percentage of the protein containing the PTM.

New developments in MS offer the opportunity of a more sensitive targeted proteomic

approach and retrospective data analysis. Subsequent bioinformatics analysis can

provide an insight into the biochemical and physiological pathways or cell signaling

cascades that are affected by ROS generation. This mini-review will detail current redox

proteomic approaches to identify and quantify ROS induced PTMs and the subsequent

effects on cellular signaling.

Keywords: redox modifications, sulfenic, nitrosylation, glutathionylation, tyrosine nitration, carbonylation,

targeted proteomics

INTRODUCTION

The specific reduction or oxidation (redox) of critical enzymes/proteins as a result of endogenously
generated reactive oxygen or reactive nitrogen species (ROS/RNS) can alter the metabolic flux
within a cell. Long term modifications of metabolic flux can have chronic effects resulting in
metabolic disorders associated with conditions, such as Type 2 diabetes (Watson, 2014), cancer
(Yuan et al., 2014), aging (Muller et al., 2007), and neurodegenerative diseases (Butterfield et al.,
2012). Specific redox modifications offer a dynamic and versatile means to rapidly alter the activity
or functional structure of proteins in response to stimuli. In many examples, these stimuli refer
to ROS/RNS that are endogenously generated. Endogenous generation of ROS/RNS is essential
for correct adaptation and signaling in normal cellular functioning including cell proliferation,
metabolism, immune response, antioxidant defenses and in the adaptation and response to
exercise (Schieber and Chandel, 2014). These small molecules can react with a range of enzymes
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in almost every cellular process including glycolysis, oxidative
phosphorylation, amino acid biosynthesis, pentose phosphate
pathway, autophagy, transcription, translation etc., (reviewed in
Margaritelis et al., 2016).

Although generally referred to as ROS/RNS, this term
covers a range of small molecules including superoxide
radical, hydroxyl radical and hydrogen peroxide. Some of
these (e.g., superoxide and hydroxyl radicals) are unstable,
whereas others e.g., H2O2, are more freely-diffusible and can
be relatively long-lived. The traditional view of ROS/RNS
generation by electron leakage from the electron transport
chain within the mitochondria has been expanded as their
role as signaling molecules within the cell has developed.
Two families of known endogenous producers of ROS/RNS
are the NAD(P)H oxidase (NOX) family and nitric oxide
synthases (NOS), which predominantly generate superoxide
(O−·

2 ) and nitrogen monoxide (NO), respectively. Indeed, NO
and O−·

2 produced by NOX and NOS may react and form
another redox oxidant, peroxynitrite (ONOO−), these species
of ROS/RNS have different chemical reactivity and kinetics,
resulting in distinct post-translational modifications (PTMs) on
target proteins with further downstream redox effects. ROS/RNS
differ in their rates of diffusion and reactivity and in general
are thought to be too reactive to produce long range signaling
effects both intracellularly and between cells, therefore they
are considered to have an effect localized to their site of
generation, modifying susceptible and in some cases critical
residues on proteins in their immediate vicinity (Winterbourn,
2015). Under normal physiological conditions ROS/RNS are no
longer viewed as non-specific oxidation instruments but involved
in a co-ordinated local response that is tightly regulated at all
levels from generation to detoxification (Corcoran and Cotter,
2013).

A large number of protein PTMs are the result of either
direct or indirect interactions of proteins with ROS/RNS that can
result in both reversible and irreversible protein modifications.
Identification of the modification on the protein targets may
provide a signature footprint of the specific ROS/RNS species
that was present. This review will outline the application of redox
proteomic techniques for the identification and where possible
the quantification in particular of reversible redox modifications
on specific amino acid residues in proteins. A number of these
techniques have been employed in known metabolic diseases
using non-invasive clinical samples, such as blood and urine,
to identify redox specific biomarkers of metabolic diseases.
However, many of the more recent redox proteomic techniques
originally developed in unicellular organisms and cell culture
systems offer the opportunity to be translated into clinically
relevant models of disease.

TYPES OF REDOX MODIFICATIONS

Redox modifications on key metabolic processes can alter a
wide variety of downstream protein targets, influencing key
regulators of distinct PTMs, such as phosphorylation, acetylation
and ubiquitination. These include components that control
metabolic rate including AMP-activated protein kinase, protein

kinase C, adenylate kinase, mammalian target of rapamycin and
pyruvate kinase (Corcoran and Cotter, 2013). In particular redox
modifications of Cysteine (thiol) residues have been extensively
studied and can result in reversible and irreversible modifications
with effects on protein function (Table 1). The location of a
redox sensitive Cysteine within a protein can play an important
part with regard to its redox state. Cysteine residues are one
of the least abundant amino acids and have the most extreme
conservation pattern within proteins, highly conserved when
they form part of an active site or involved in co-factor binding
and poorly conserved otherwise (Marino and Gladyshev, 2010).

CYSTEINE OR THIOL GROUP
MODIFICATIONS

The formation of sulfenic acids on protein thiols (-SOH)
generally occurs by the reaction of Cysteine thiol(ate)s with
H2O2 (although alkyl hydroperoxides and peroxynitrite may
also play a role) and the reactivity of the Cysteine is strongly
dependent on the ionization state of the thiol (Poole et al., 2004).
Sulfenic acids are highly reactive and unstable and are considered
intermediaries in the formation of more stable disulfide bonds
when they react with a second thiol (Claiborne et al., 1999).
Nevertheless, proteins containing stable sulfenates have been
reported (Saurin et al., 2004; Charles et al., 2007; Salsbury et al.,
2008) and it is thought that this stability depends on aspects
of the protein microenvironment: local hydrogen bonds; lack
of solvent accessibility to modified Cysteines; absence of nearby
reduced Cysteines and amines (Claiborne et al., 1999; Salsbury
et al., 2008). The importance of sulfenic acids in the formation
and hydrolysis of disulfide bonds has been discussed in depth
(Claiborne et al., 1999; Poole et al., 2004; Gallogly and Mieyal,
2007) and it is generally considered that the local environment
allows sulfenic acids to react with proximal thiols, amines or
GSH. Some of the techniques used to date to detect sulfenic
acids include biotin labeled dimedone and fluorescent dimedone
or using sodium arsenite for selective reduction (Saurin et al.,
2004; Charles et al., 2007; Poole et al., 2007). Further oxidation
of sulfenic acids to the generally irreversible sulfinates (-SO2H) or
sulfonates (-SO3H) can occur, although sulfinic acid formation in
2-Cys Peroxiredoxins can be specifically reduced by Sulfiredoxin
(Biteau et al., 2003). Sulfinic/sulfonic acid formation are stable
modifications so could potentially be directly identified by
including the change in mass as a variable modification. Due to
their low relative abundance it can be difficult to characterize
under normal conditions, although sensitivity can be increased
using strong cation exchange (Paulech et al., 2015).

A further fate of sulfenic acids is sulfenylamide (Cys-S-N-
R) formation, which has been reported in protein tyrosine
phosphatase when a sulfenic reacts with the main chain amide
nitrogen of an adjacent Serine residue (Salmeen et al., 2003;
van Montfort et al., 2003). This modification was reported to be
reducible by GSH and thusmay prevent the irreversible oxidation
of the Cysteine residue (Salmeen et al., 2003). It is not yet clear if
this modification represents a genuine redox response or if it is a
side reaction of sulfenic acid reactivity.
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TABLE 1 | Common ROS/RNS induced modifications.

Common ROS/RNS modification 1Mass Selective reduction Probes/Antibody References

Disulfide bond formation (S-S-) 2 Thioredoxin system Directly by MS Zhao et al., 2013

Glutathionylation (S-S-G) 305.3 Glutaredoxin system BioGEE, Anti-PSSG Ying et al., 2007; Sakai et al., 2012

Nitrosylation (SNO) 28.99 Cu/Ascorbate Anti-SNO Jaffrey et al., 2001; Salanova et al., 2013

Sulfenylation (SOH) 15.99 Sodium Arsenite Dimedone based Saurin et al., 2004; Nelson et al., 2010

Sulfinic acid (SO2H) 31.99 Sulfiredoxin* NO-Bio Wagner et al., 2002; Lo Conte et al., 2015; Paulech et al., 2015

Sulfonic acid (SO3H) 47.99 – Directly by MS Wagner et al., 2002; Paulech et al., 2015

3-Nitrotyrosine 44.98 Sodium dithionite Anti-3NT Ghesquiere et al., 2006

Carbonylation (C=O) ** Hydrazide chemistry Fedorova et al., 2014; Havelund et al., 2017

Table includes the mass shift that is accompanied on the amino acid where available by the redox modification, specific reductants of the modification, available probes and antibodies

selective for the particular redox modification. *Sulfinic acids are generally reported to be irreversible apart from the selective reduction of 2-Cys peroxiredoxins by sulfiredoxin (Biteau

et al., 2003).**Variable and dependent on amino acid modified.

DISULFIDE BOND FORMATION

A secondary result of increased ROS is an increase in overall
protein disulfide bond formation. The formation of inter- and
intra-disulfides between Cysteines can act as a mechanistic
control for the activity of sensitive proteins, and lead to
activation or inactivation depending on the protein involved.
High throughput analysis of proteins containing disulfide bonds
in complex mixtures has utilized a top down MS approach for
comparing non-reduced and reduced proteins where a mass shift
of 2 Da is indicative of a disulfide bond (Zhao et al., 2013). The
effect of disulfide formation is highly dependent on the position
of the Cysteine involved, if it forms part of the active site, the
disulfide may be part of the catalytic cycle or act as an “on-off”
switch for the activity of the protein (Jones, 2008). Alternatively,
the formation of disulfide bonds may allosterically regulate
protein activity, where formation of disulfides may change the
structure of the protein (Jones, 2008). Formation of disulfides is
also part of cell signaling by activation or export , such as Yap-
1 (Delaunay et al., 2000) and indirectly Nrf2 (Dinkova-Kostova
et al., 2002). A recent report identified the formation of a “redox
relay” between Prdx2 and STAT3 required for the shuttling of
the transcription factor from the cytoplasm to the nucleus in
response to elevated H2O2 concentrations (Sobotta et al., 2015).
Cytoskeletal remodeling mediated through disulfide bonds, plays
a key role in the “respiratory burst” during phagocytosis required
for the elimination of pathogens which is also dependent on
ROS production (Sakai et al., 2012). One of the most important
ROS induced disulfide bonds is the reversible formation of
glutathionylated or glutathiolated proteins, which have key
signaling roles and there are a number of protein families, such as
the glutathione S-transferases and glutaredoxin 1 and 2, involved
in (de)glutathionylation of proteins. Glutathionylation can be
directly detected by MS by an increase in the mass of proteins
by 305 Da (Hashemy et al., 2007).

S-NITROSYLATION

The effects of Nitric oxide (NO) on signaling and metabolic
pathways is also attributed to S- nitrosylation (or nitrosation)
on key Cysteine residues of specific proteins. The formation

of S-nitrosylation on thiol groups can occur directly through
interaction with NO, indirectly through ONOO− and there
are also reports of transfer of nitrosyl or transnitrosylation by
the actions of proteins, such as thioredoxins (Benhar, 2015).
S-nitrosylation on target proteins is considered an important
mechanism for NO signaling transduction and there are a large
number of articles identifying specific Cysteine residues as S-
nitrosylation targets in a variety of cellular systems from plants to
cardiovascular systems (Hess et al., 2005), however as this PTM
is reversible and highly labile PTM it has been suggested as an
intermediate in the formation of disulphide bonds (Wolhuter
and Eaton, 2017). Identification of S-nitrosylation is generally
performed using a combination of selective reduction of S-
nitrosylation proteins and labeling with a more stable reagent
(Jaffrey and Snyder, 2001).

TYROSINE NITRATION

Nitration of tyrosine amino acids is considered a signature of
excessive ONOO− and/or NO generation, however the subset of
Tyrosine residues available for nitration is generally considered
to be low and consequently the number of proteins detected
to be nitrated (Tyther et al., 2011; Batthyany et al., 2017).
Interest in Tyrosine nitration in particular is due to the role of
Tyrosine in phosphorylation/dephosphorylation signaling. There
are a number of potential pathways leading to Tyrosine nitration
although many of these may not be kinetically feasible within
a biological system, it is generally thought that ONOO− is
responsible for Tyrosine nitration on a limited subset of proteins.
The hydrophobicity of Tyrosine nitration has also limited its
detection by MS/MS but it has been detected in a number of
biological conditions, the nitration of Tyr34 in MnSOD has been
well-described where ONOO- formation as a result of excessive
O−·

2 and NO results in MnSOD inactivation and further cellular
damage, reported in a number of disease states (MacMillan-Crow
and Thompson, 1999; Redondo-Horcajo et al., 2010).

CARBONYLATION

Irreversible modifications, are generally associated with
permanent loss of protein function and may result in
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accumulation of damaged proteins, such as in atherosclerosis and
Alzheimer’s disease (Davies et al., 1999). The balance between
the rate of oxidized protein accumulation and degradation
is dependent on a number of factors including ROS levels
and protease activities catalyzing their degradation. Protein
carbonylation occurs when amino acid side-chains are modified
into aldehyde and ketone groups which can lead to protein
aggregation, inactivation or degradation (Levine et al., 1990).
The number of carbonyl groups has been shown to correlate with
levels of oxidative stress and hence protein damage (Shacter et al.,
1994). Carbonylation of proteins is a good indicator of oxidative
damage and has been intensively investigated in systems, such
as mammalian tissues, cell and yeast cultures (Costa et al., 2002;
Rabek et al., 2003). Accumulation of carbonyls has also been
observed in several human pathologies including Alzheimer’s
and Parkinson’s diseases (Floor and Wetzel, 1998; Conrad et al.,
2000). The amino acids especially susceptible to oxidation
and thus carbonyl modifications are Pro, Arg, Lys, and Thr.
Carbonyl derivatives may also be produced by the oxidative
cleavage of proteins by either the α-amidation pathway or by
oxidation of glutamyl side chains leading to the formation of a
peptide in which the N-terminal amino acid is blocked by an
α-ketoacyl derivative (Berlett and Stadtman, 1997). The various
reactive products produced during lipid peroxidation, such as
4-hydroxy-2-nonenal can introduce carbonyl groups by reacting
with the nucleophilic side chains of Cys, His and Lys residues
(Berlett and Stadtman, 1997). A number of recent methods
for the purification and subsequent identification by MS of
carbonylated proteins have been described that take advantage
of the reaction of the carbonyl group with hydrazide (Havelund
et al., 2017).

DETECTION OF ROS INDUCED PTMs

There have been two general approaches in which MS has
been applied to proteomics; a discovery proteomic and targeted
proteomic approach (Figure 1). The discovery or shotgun
proteomic involves proteolytic digestion of a population of
proteins and analyzing resulting peptides by MS/MS. It is a
global, high throughput approach used for global profiling of
systemic perturbations and data analysis allows the identification
of proteins that were present in the original protein population.
It has a number of limitations due to the complexity of the
proteome, namely the most abundant proteins can be identified
multiple times and technical replicates can show limited overlap
(Malmstrom et al., 2007). If applied to redox proteomics it means
that many of the proteins with reactive thiols that are modified
to the greatest degree by an oxidant could potentially be less
abundant than those modified to a lesser degree and thus not
detected. A targeted proteomic or hypothesis-driven approach is
used as an analytical tool for structural and molecular studies of
a specific protein, where specific peptides are selected for analysis
in MS.

The increasing sensitivity and resolution of MS instruments
has allowed the characterization of redox induced PTMs,
identifying not only the protein susceptible to the modification

FIGURE 1 | Overview of common redox proteomic approach to identify and

quantify ROS/RNS induced protein modifications. *Retrospective analysis of

data from SWATH-MS or data independent analysis.

but also the amino acid residue that is modified. A further goal
of redox proteomic approaches is to quantify the proportion of
the residue that is modified in the context of the whole protein
(Figure 1). Specifically concentrating on Cysteine residues there
are a number of approaches that have taken advantage of
reversible PTMs whereby initially all free thiols are blocked
with an alkylating reagent, such as iodoacetamide or N-
ethylmaleimide, followed by the selective reduction of the
PTM and subsequent labeling with either another alkylating
reagent or a heavy isotope of the initial blocking reagent.
Application of a reducing agent, such as dithioreitiol or
Tris(2-carboxyethyl)phosphine (TCEP) will reduce all disulfide
bonds, while using more specific enzymes or reagents can
selectively reduce Cysteine residues that were S-nitrosylated
using sodium ascorbate for S-nitrosylation, glutaredoxin for S-
glutathionylation, sulfenic acids can be directly labeled with
dimedone or reduced using sodium arsenite (Guo et al.,
2014). Experimental conditions must be carefully controlled and
appropriate controls included for selective reduction to avoid
false positive results e.g., the concentration of GSH employed
with glutaredoxin needs to be carefully determined as it will have
an effect on the specificity of reduction. Subsequent labeling of
the newly reduced thiols with alkylating reagents in particular
with a biotin moiety attached allows for selective enrichment and
MS analysis. However, in order to quantify the proportion of that
residue that was modified it is necessary to analyse the initial
Cysteine residue in the free thiol state. Redox proteomics has
taken advantage of the thiol specificity of the ICAT reagents to
not only identify targets of ROS but also to quantify the oxidative
thiol modifications on individual proteins. The reactivity and
versatility of the ICAT reagents in redox proteomics has been
further exploited by the group of Jakob in a technique they
termed OxICAT (Leichert et al., 2008). They used the regents
to determine the oxidation state of an individual protein thiol
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in a complex protein mixture, samples are first denatured in a
buffer containing a high urea concentration and free thiols are
alkylated with the light ICAT reagent. All reversible oxidative
thiol modifications are then reduced using the thiol reductant
TCEP and newly accessible thiols labeled with the heavy ICAT
reagent. Proteins are tryptic digested, labeled peptides affinity
purified using the biotin tag on ICAT reagents and analyzed
using MS/MS. The ratio of reversibly oxidized and reduced thiol
modifications of a particular peptide can thus be determined
in one experiment. As the redox proteome equilibrium is
constantly changing in response to various stimuli including
ROS, this approach provides a large amount of detail regarding
the oxidation states of individual proteins at any moment.
Combining selective thiol labeling with Isobaric tags for relative
and absolute quantification (iTRAQ) also allows the relative
quantification of the oxidation state of the Cysteine residue
with the advantage that a multiplex approach may be taken
(McDonagh et al., 2012).

Nevertheless, with any of these enrichment approaches there
is the major disadvantage that information on the overall protein
abundance is lost, so although there may be a change in the
redox state of a particular Cysteine between two samples, it
is not known if the protein itself changes in abundance. To
acquire information on protein abundance and the redox state
of individual Cysteine residues it is necessary to use sequential
labeling of the reduced and reversibly oxidized Cysteine residue
with light/heavy isotopes of the alkylating reagent. Combining
global label free proteomics together with selective analysis of
the ratio of light/heavy labeled Cysteine’s allows the relative
quantification of the redox state of individual Cysteine residues
in the context of the abundance of that protein (McDonagh
et al., 2014). However, as with any of the shotgun proteomic
approaches mentioned above, it is limited to the detection
of the most abundant proteins and peptides. In response to
localized ROS/RNS generation only a specific or relatively small
proportion of the protein may be modified making it extremely
difficult to determine subtle changes in the relative abundance
of the modification. The application of targeted MS approaches
increases the sensitivity for quantification of the redox state,
however it is necessary to have a prior knowledge of the
Cysteine containing peptide that is modified for approaches, such
as selected/multiple reaction monitoring and parallel reaction
monitoring (S/MRM and PRM). This approach has been widely
utilized in the study of protein phosphorylation and will provide
a more accurate determination of ROS/RNS induced PTMs. One
of the first applications of MRM to target modified Cysteine

residues used a combination of protein purification, differential
Cysteine labeling and MRM to identify the site specific Cysteine
oxidation of endogenous p53 (Held et al., 2010).

PERSPECTIVE AND OUTLOOK

Developments in data independent acquisition (DIA) in MS and
more recently SWATH (sequential window acquisition of all
theoretical fragment ion spectra) where all peptide precursors
detected are fragmented (Gillet et al., 2012), will potentially

offer higher specificity, reproducibility and dynamic range for
the detection of ROS modified peptides and proteins. SWATH
combines DIA with targeted analysis and allow post acquisition
analysis of data for the identification and quantification of
redox modifications. Recently this approach has been combined
with affinity purification for the identification of carbonylated
residues in rice embryo during seed germination (Zhang
et al., 2016). Large numbers of raw data files generated from
SWATH and other large scale proteomics studies including
detailed experimental conditions are now routinely deposited
in public repositories allowing subsequent re-analysis using
spectral libraries of previous discovery data to detect and
quantify redox modified peptides and proteins. This will allow
researchers from all areas to investigate and search data files
for specific redox modifications on their proteins of interest.
The ongoing developments in both instrument sensitivity and
resolution together with more sophisticated bioinformatic tools
can potentially allow for the retrospective identification and
quantification of specific ROS/RNS induced PTMs. One of the
biggest challenges in the analysis of ROS/RNS induced PTMs
is the dynamic nature of the modifications in cell signaling and
potential cross-talk between redox and non-redox dependent
PTMs that regulate protein activity. Including an increased
number of potential PTMs combined with targeted post analysis
would increase sensitivity and provide a comprehensive overview
on the role of ROS induced cellular signaling.
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