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hive beetle Aethina tumida murray (coleoptera: nitidulidae), a serious pest o f the 

European honey bee Apis mellifera 

 

Michelle Emma Powell 

 

Abstract  

The small hive beetle (Aethina tumida) is a serious pest of the European honey bee 

(Apis mellifera), responsible for causing significant economic damage to the apiculture 

industry in North America and Australia. In 2014 A. tumida was detected in Italy, 

highlighting the potential for an outbreak within the UK. Current control measures rely 

on the use of organophosphate and permethrin, both are highly toxic to honeybees 

and continued use can give rise to resistance. Given these issues alternative control 

strategies are urgently required. The aims of this thesis were to explore potential for 

the development of next generation biopesticides, including RNA interference (RNAi) 

and fusion protein technology, as an alternative control method for A. tumida 

The sequence specificity of RNAi makes it an ideal strategy to combat this parasite 

of honey bees. Here we report that microinjection of low (2-10 ng) doses of V-ATPase 

subunit A and Laccase 2 dsRNAs resulted in 100 % mortality of A. tumida larvae. 

Quantitative PCR analysis confirmed that injections induced significant decreases in 

mRNA levels of the target genes with an enhancement of gene suppression over time 

providing evidence for systemic RNAi effects. Whilst oral delivery of V-ATPase subunit 

A dsRNA via “soaking” in dsRNA solutions resulted in 50 % mortality and malformed 

survivors, gene suppression could not be verified by qPCR analysis. Our results 

showed that dsRNAs are prone to degradation by extracellular nucleases following 

ingestion by feeding, but not wandering stage, larvae. We suggest that the lack of 

consistent RNAi effects in feeding experiments was a consequence of dsRNA 

degradation within the gut of A. tumida. Target specificity was confirmed by a lack of 

effect on survival or gene expression in honey bees injected with A. tumida dsRNAs.  

A. tumida show a robust response to injected dsRNA but further research is required 

to develop methods to induce RNAi effects via ingestion.  
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The spider-venom peptide ω-hexatoxin-Hv1a (Hv1a) is highly potent by injection to 

a range of insects, but not vertebrates making it an ideal candidate for the development 

of bioinsecticides. Oral delivery of the toxin is largely ineffective due to failure to access 

its site of action in the central nervous system (CNS). Fusion protein technology allows 

oral delivery of Hv1a to the CNS via fusion to a “carrier” protein, snowdrop lectin 

Galanthus nivalis agglutinin (GNA), directing transport of the toxin across the insect 

gut to the circulatory system. 

Constructs encoding Hv1a or modified Hv1a (K>Q modification to remove potential 

KEX2 cleavage site) linked to the N- or C-terminus of snowdrop lectin (GNA) were 

used to produce recombinant GNA/Hv1a, Hv1a/GNA fusion proteins and K>Q. All four 

fusion proteins were toxic by injection to A. tumida. The LD50’s for GNA/Hv1a and 

GNA/Hv1a(K>Q) were a similar 0.44 and 0.47 µg/µl, whilst Hv1a/GNA and 

Hv1a(K>Q)/GNA LD50’s were slightly lower, at a respective 0.33 and 0.25 µg/µl. In 

contrast no effects on honeybee survival were observed when 20 fold higher doses 

were injected. When fed to A. tumida larvae, GNA/Hv1a was 2x more effective than 

Hv1a/GNA, GNA/Hv1a(K>Q) and Hv1a(K>Q)/GNA (LC50s of 0.52, 1.14, 1.18 and 0.89 

mg/ml, respectively). When fed to A. tumida adults no mortality was recorded for 

GNA/Hv1a(K>Q) or Hv1a(K>Q)/GNA treatments. However, both Hv1a/GNA and 

GNA/Hv1a were toxic to adults, with similar LC50s of 2.52 and 2.02 mg/ml, 

respectively. Reduced efficacy of Hv1a/GNA and K>Q variants against larvae was 

shown to be attributable to differences in the stability of the fusion proteins in the 

presence of extracellular gut proteases. In laboratory assays A. tumida larval survival 

was significantly reduced when brood, inoculated with eggs, was treated with 

GNA/Hv1a. The dominant digestive protease in A. tumida larvae was identified as 

trypsin. Consequently, a trypsin inhibitor (Soybean Kunitz trypsin inhibitor: SKTI) was 

incubated together with A. tumida gut extracts and GNA/Hv1a and Hv1/GNA, with both 

fusion protein remaining fully intact after 24 hr. This contrasted with previous analysis 

that showed no intact GNA/Hv1a or Hv1a/GNA after incubation with gut extracts in the 

absence of the trypsin inhibitor under comparable conditions. 

Consequently, SKTI was evaluated as an alternative carrier protein to GNA for the 

delivery of Hv1a to the circulatory system of A tumida. Preliminary studies indicated 

transport of SKTI into the haemolymph, suggesting SKTI could be used as an 

alternative carrier protein. An initial construct was designed based on GNA/Hv1a, 

however no biological activity was observed after injection into A. tumida larvae. It was 
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speculated that the lack of insecticidal activity was attributed to the misfolding of the 

toxin during expression in the yeast cells. As such two additional fusion proteins were 

designed incorporating either a flexible (Gly-Gly-Gly-Gly-Ser motif) or rigid linker 

(Proline rich motif region) to improve protein folding and function. Only inclusion of a 

rigid linker showed limited biological activity after injection into A. tumida larvae, again 

suggesting misfolding of the toxin.  

Both RNAi and fusion protein technology hold enormous potential for the control of 

A. tumida in apiculture and to our knowledge this is the first study to demonstrate the 

use of a protein based biopesticide and RNAi as a possible control method for A. 

tumida. 
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CHAPTER 1 | INTRODUCTION  

 1.1 Small hive beetle ( Aethina tumida)  

The small hive beetle (Aethina tumida Murray, Coleoptera: Nitidulidae) (Figure 1.1 

A) belongs to the order Coleoptera, consisting of beetles and weevils. This order 

contains over 370,000 described species, representing approx. 40 % of the known 

insects, and is the largest order in the animal kingdom. Aethina tumida a small dark 

brown to black beetle is a member of the family Nitidulidae, consisting of >2500 

described species worldwide (Habeck, 2002). Most Nitidulid species feed on a large 

variety of different food sources, mostly of plant origin after fungal invasion such as 

decaying fruit, fermenting plant juice and trees with fungi, however some Nitidulids 

frequent flowers, carrion or crops (Neumann and Elzen, 2004). The ability to feed and 

reproduce on a range of diets, has enabled A. tumida to opportunistically switch hosts 

to honey bee colonies (Neumann and Elzen, 2004; Stedman, 2006).  

Since 1996 A. tumida has become a major pest to beekeepers, through extension 

of its geographical range, having a significant economic impact on managed, wild and 

feral bee populations (Elzen et al., 1999). The spread of A. tumida into new regions 

can be attributed to the increase in international trade of packaged bees, queen cages, 

whole honey bee colonies and their products over the last few decades (Cuthbertson 

and Brown, 2009). In its native range of sub-Saharan Africa it is considered an 

occasional parasite and scavenger of colonies of African honey bee, Apis mellifera 

scutellata (Lundie, 1940; Roberts, 1971; Smith 1953) and the Cape honey bee, Apis 

mellifera capensis (Elzen et al., 2000). Through co-evolution African honey bees have 

been able to develop traits that limit the damage A. tumida can cause to their colonies. 

Africanised bees in general exhibit a more aggressive behaviour, with the guard bees 

acting as the first line of defence in limiting A. tumida invasions. Additionally, the guard 

bees will modify the hive entrance by using propolis or bee resin, which is produced 

by bees by collecting resin from trees and other sources and mixing it with a small 

amount of honey, this in turn reduces the size of the entrance and chances of colony 

invasion. Within the hive African bees patrol particularly the brood area and are able 

to remove free roaming beetles, exposed eggs and larvae, when present in low 

numbers (Lundie, 1940; Elzen et al., 2001; Neumann et al., 2001). Cape honey bees 

are reported to hold A. tumida captive and this confinement behaviour is likely to play 

an important role in preventing A. tumida from mating. When large numbers of A. 
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tumida are present within a hive, African bees show a tendency to abscond limiting 

the available resources for A. tumida population growth (Neumann et al., 2001; 

Spiewok et al., 2007). 

As an invasive species A. tumida has caused severe economic damage in colonies 

of the European honey bees (Apis mellifera), as they have not developed the 

necessary behavioural resistance mechanisms required to keep A. tumida population 

growth under control (Ellis et al., 2003). In North America A. tumida have been 

observed to readily take over strong A. mellifera colonies with little resistance from 

worker bees, allowing adults to readily lay eggs within the cracks and crevices of the 

hive or directly on the comb. Worker bees allow A. tumida adults and larvae to feed 

unhindered on pollen, honey and brood, causing honey to ferment, leaving it unusable 

and ‘slimed’ (Figures 1.1 B & C). Additionally, this unrestricted feeding results in comb 

destruction which often lead to full structural collapse of the nest and absconding of 

the colony within as little as 2 weeks (Neumann et al., 2001; Spiewok et al., 2007). 

Honey bees are threatened by numerous pathogens and viruses that pose a key 

threat to the health of their host (Chen and Siede, 2007). Deformed Wing Virus (DWV) 

is a single-strand positive sense RNA virus, known to cause overt wing deformities, 

such as shrunken and crumpled wings in developing honey bees, which results in 

emerging honey bees that are unable to fly or survive (Chen and Siede, 2007). 

Replication of DWV proceeds via the production of a negative-strand intermediate and 

its presence is indicative of active viral replication (Boncristiani et al., 2009). Eyer et 

al. (2009) provided evidence that adult A. tumida are carriers of DWV following 

ingestion of dead workers, brood, and wax contaminated with the virus and become 

increasingly infected with DWV following continual ingestion of contaminated food. 

More importantly A. tumida was implicated as a biological vector of DWV, as the 

results indicated that 40 % of infected A. tumida carried negative stranded RNA of 

DWV, confirming active viral replication (Eyer et al., 2009). Additionally, it has been 

demonstrated that A. tumida can transmit Paenibacillus larvae the bacterial causative 

agent of American foulbrood (AFB), consider to be the most widespread and 

destructive disease of bee brood. According to Schäfer et al. (2010) both larvae and 

adults become infected with spores when exposed to honey bee brood combs with 

clinical symptoms of AFB in the laboratory, demonstrating the potential of A. tumida to 

act as a vector of P. larvae. 
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Figure 1.1. (A)  Aethina tumida adult and (B) larvae. (C) Damage caused by larvae resulting 

from their feeding activity. Scale bars are indicated for the larvae and adult beetle. 
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1.1.1 Morphology and life cycle 

Nitidulid beetles can be distinguished from other similar beetles by their 

characteristic club-shaped antennae, shield-shaped thorax and broad flattened legs 

(Habeck, 2002). Adult A. tumida are oval in shape, average 5.7 mm in length and 3.2 

mm in width, however this varies according to the availability of food and climatic 

conditions (Ellis et al. 2004; Ellis, 2004). Directly after emergence they are reddish-

brown in colour, becoming dark brown or black when fully mature. Adult A. tumida are 

sexually mature approximately one week after emergence from the soil and it has been 

estimated that females can lay between 1000 to 2000 eggs in their lifetime (Ellis, 2004; 

Schmolke, 1974; Somerville, 2003). Female beetles lay eggs in irregular masses, 

which are pearly white in appearance and are approximately 1.4 mm long and 0.26 

mm wide. Females will oviposit in hive crevices, directly onto pollen or brood if not 

hindered by worker bees (Ellis, 2004). On average eggs will hatch after 3 days, 

however egg hatching viability is directly affected by the relative humidity. Humidity 

>65 % leading to rapid egg hatching in 24 hr, with relative humidity of 34 % preventing 

egg survival (Lundie, 1940; Mostafa and Williams, 2002). The larvae emerge from the 

egg through longitudinal slits made at the anterior end of the egg and the larvae begin 

to feed on whatever food source is available (honey, wax, eggs and bee brood). Larvae 

tend to give preference to bee eggs and brood, as the protein content is higher which 

positively effects their growth rate. Larvae are creamy white in colour and have 

characteristic rows of spines on the back and 3 pairs of tiny legs near the head (Lundie, 

1940). The larvae are about 1 cm in length when fully mature, with the larval period 

lasting on average 13.3 days inside the bee colony. Mature larvae enter a wandering 

stage whereby they exit the hive en masse in search of a suitable pupation site in the 

surrounding soil as close to the hive entrance as possible, however larvae have been 

observed migrating >200 m to locate a pupation site (Stedman, 2006). Wandering 

larvae burrow 10-20 cm into the soil creating smooth walled cells, where they pupate 

over a period of three to four weeks. Pupae are initially white in colour and darken as 

metamorphosis takes place. Soil moisture, temperature and type directly affect the 

pupation period which varies from 15-60 days; temperatures of over 10°C are required 

to complete their development. Sandy, moist soils and warm temperatures are ideal 

for A. tumida development, with only 23 days being required for complete 

metamorphism (Neumann et al., 2001; De Guzman et al., 2009). Female beetles 
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pupate slightly faster than males and in population development A. tumida display a 

female biased sex-ratio. Adults beetles can survive on average up to 188 days and 

under moderate United States of America (USA) and South African climatic conditions 

there may be six generations a year. However, development and reproduction heavily 

relies on an adequate source of nutrition and the availability of honey has a key role 

in adult beetle longevity (Neumann et al., 2001; Ellis et al., 2002; Neumann and Elzen, 

2004).  

 

1.1.2 Origin and Spread as a Pest of Honey Bee Hive s 

Aethina tumida was first described by Murray (1867) and is native to sub-Saharan 

Africa, with published records verifying its distributed throughout tropical and sub-

tropical Africa (Lundie, 1940; Roberts, 1971; Smith 1953).  In November 1996 A. 

tumida samples were collected in Charleston, South Carolina, but it was not until June 

1998 that it was detected and formally identified in St Lucie, Florida USA (Elzen et al., 

1999; Hood, 2000; Ellis, 2003). After this inception, apiary inspections were carried 

out during June and July in Florida, Georgia and South Caroline and by autumn A. 

tumida was found in all three states including North Carolina (Elzen et al., 1999; Hood, 

2000). The failure to identify A. tumida in 1996 led to the loss of 30 000 colonies in 

Florida in 1998 with an estimated cost to the industry of $3 million (Neumann and 

Elzen, 2004).  By December 1999 A. tumida had been found in 12 states, increasing 

to 26 states by 2003 and to date has been recorded in 48 states (Hood, 2000; Ellis, 

2003; Neumann et.al, 2016). The rate at which A. tumida spread throughout USA was 

mainly a consequence of the movement of infested bee colonies, packaged bees 

and/or beekeeping equipment (Hood, 2004). 

In July 2002 A. tumida was detected in Richmond, New South Wales, Australia and 

was formally identified in October of that year (Minister for Agriculture 2002; Gillespie 

et al., 2003). In April 2003 A. tumida was detected in Queensland and hive inspections 

revealed that they had started spreading throughout the state (Somerville, 2003).  

Thereafter they were detected in Victoria on several occasions (2003, 2005 and 2007) 

and in 2007 A. tumida was detected and has now become established in honey bee 

colonies at Kununurra, Western Australia (Manning, 2008). Further incursions of A. 

tumida were recorded in Perth, Western Australia, in 2008, Naracoorte in Eastern 
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South Australia in 2012 and Renmark, South Australia, 2014 (Neuman et. al., 2016).  

Aethina tumida populations have become rapidly established, particularly along the 

warmer coastal strip where climatic conditions are better suited to A. tumida life-cycle.  

Establishment in South Australia has been limited by the hot dry summer, as these 

climatic conditions do not seem to suit their development. In Australia, heavy damage 

to strong colonies took approx. 4 years (2002-2006), whereas in USA it took 2 years 

and this time delay was thought to be a consequence of a drought Australia was 

experiencing at the time (Neuman et. al., 2016). Regardless, a survey in Queensland 

documented over 3000 colonies that had been lost to A. tumida amounting to 

economic damage of $1, 200, 000 (Mulherin, 2009). 

In 2004 the larvae and eggs of A. tumida were identified in cages of queens 

imported from the USA to Portugal, but all hives were immediately destroyed 

(Murilhas, 2005). In 2005, A. tumida were introduced into Jamaica (FERA, 2010) and 

has subsequently spread across the island (Neuman et. al., 2016). Since the first 

report in 2007, A. tumida has become well established in at least eight states of 

Mexico. In 2012 A. tumida was confirmed in Cuba, with no effect on local bee 

population to date, owing to low infestation rates. In 2013 they were detected in El 

Salvador, but it is unclear whether A. tumida is established in the country or localised 

(Del Valle Molina, 2007; Arias, 2014; Milian, 2012). In Canada there has been several 

outbreaks: 2002 (Manitoba), 2006 (Alberta and Manitoba), 2008 (Quebec and 

Ontario), 2009 (Quebec) and 2013 (Ontario) (Clay 2006; Neumann and Ellis 2008; 

Giovenazzo and Boucher 2010; Kozak 2010; Dubuc 2013), with the only established 

population (since 2010) being reported in Ontario (Neuman et. al., 2016). In 

September 2014 A. tumida was detected in South West Italy (Mutinelli et al., 2014) 

and by November 2016, the infestation of 40 apiaries in the region of Calabria was 

confirmed. In June 2014, an outbreak was documented in Lupon, Philippines, causing 

the collapse of managed colonies of European honey bees (Brion ,2015). In 2015 adult 

A. tumida was detected in an apiary in Piracicaba, São Paulo State, Brazil and urgent 

measures are underway to determine the extent of the outbreak (Hasan et al., 2017). 

Detections not establishments have been reported in Egypt (2002); Sudan (2007) and 

Hawaii (2010) (Ellis et al., 2004; Hassan and Neumann, 2008; Stephen, 2013). Figure 

1.2 shows the current global distribution of A. tumida.  
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Figure 1.2.  Current global distribution and reported introductions of Aethina tumida up to 

November 2015. Dark grey area depicts endemic distribution range in sub-Saharan Africa, 

medium grey areas shows countries with well-established invasive populations, light grey area 

indicates the not well-established population, black area shows new records in endemic range 

and introductions are circled in white (Source: Neumann et.al, 2016).  
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1.2 Legislation within EU and UK to mitigate the in troduction of Aethina tumida 

Aethina tumida was exotic to Europe until 2014 where it is considered a notifiable 

pest under European Union (EU) and United Kingdom (UK) legislation (Council 

Directive 92/65/EEC; Commission Decision 2004/216/EC) and a World Organisation 

for Animal Health (OIE) listed infestation (OIE, 2014). This dictates that any 

identification of A. tumida must be reported to national competent authorities, to the 

European Commission and to the OIE. Upon identification of A. tumida, Member 

States (MS) of the EU must implement passive surveillance programmes and in the 

case of detection, contaminated apiaries should be destroyed. The confirmation of A. 

tumida presence in Italy led to the implementation of formal protective measures by 

the EU (16 December 2014; Commission implementing decision 2014/909/EU). This 

document outlined that Italy must immediately prevent the dispatch of shipments of 

honey bees; bumble bees; unprocessed apiculture by-products; beekeeping 

equipment; and comb honey intended for human consumption from the entire territory 

of Calabria and some regions of Sicily to other areas of the EU. This document also 

stipulated that inspections and epidemiological investigations needed to be conducted 

immediately in the infested area (Mutinelli et al., 2014). 

Import of queen bees and particularly package bees offer the greatest potential for 

the spread of A. tumida (Brown et al., 2002). Import of honey bees into the UK are 

only permitted if stringent health certification is met and imports from countries where 

A. tumida is present, except for Australia, is prohibited. In the case of Australia, imports 

are only permitted from a certified limited area that is at least 100 km from any location 

where A. tumida are known to be present (Marris et al., 2012). Imports of honey bees 

from countries outside the EU are restricted to queen bees and no more than 20 

attending workers. Packaged bees from any other country outside the EU are also 

prohibited, except for New Zealand under a derogation of the Commission Decision 

2006/855/EC. All honey bees imported directly into UK from outside of the EU must 

enter through one of two designated Border Inspection Posts, whereby they are 

inspected by Veterinary Officers (Marris et al., 2012; Defra 2015). In contrast there are 

no border inspection points for the checks of EU imports and the requirement is that 

50 % of the paperwork and 10 % of consignments are physically checked, however 

most of the inspections are conducted when the honey bees/bumble bees have 

reached their final destinations (Brown, 2006; Bee Health Policy, 2009; NBU, 2010). 
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Another pathway for the movement of A. tumida into the UK is through the import of 

bumble bees for pollination purposes. Bombus terrestris is the species imported for 

this purpose (not know to be a host for A. tumida), however Bombus impatiens have 

been identified as an alternative host. Given the opportunist nature of A. tumida, the 

import of bumble bees is legislated in the same manner as the import of honey bees. 

Soil imports have been implicated as the primary mode of introduction of A. tumida 

into Australia (White, 2004). As such soil and growing media containing soil is 

prohibited from countries outside of the EU other than from Egypt, Israel, Libya, 

Morocco and Tunisia. The exception to this is if soil is required to maintain a plant and 

then documentation is required stating that the necessary phytosanitary measures 

have been met and that the soil is free of harmful organisms (Plant Health Directive 

2000/29/EC, 2009). Aethina tumida is able to successfully live and reproduce on rotten 

and fresh Kei apple (Dovyalis caffra), avocado, banana, melon, grapefruit, pineapple, 

mango, grape and orange (Eischen et al., 1999; Ellis, 2002; Buchholz et al., 2008). 

Thus, fruit imports present another avenue for the introduction of A. tumida and it has 

been speculated that this beetle arrived in Italy on ripe fruit (Mutinelli et al., 2014).  

Fruit imports are subject to plant health inspections but as A. tumida is not a plant pest 

they are not specifically looked for. No limitations have been put on the movement of 

fruit from countries where A. tumida is present (Plant Health Directive 2000/29/EC, 

2009).  
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1.3 Climatic condition in UK suitable for  Aethina tumida survival? 

Environmental temperatures are a crucial factor in governing the successful 

establishment of A. tumida in a new geographical area. It has been reported that 

development of any life stage is arrested when temperatures are below 10 ºC or above 

35 ºC and exposure to temperatures below -1 ºC for an hour results in mortality (Meikle 

and Patt 2011; Bernier et al., 2014). Ideal temperatures for completion of A. tumida 

life cycle ranges from 17 ºC to 25 ºC. Hence climatic conditions within much of the UK 

meet the developmental needs of A. tumida (Brown et al., 2002). Survival and 

establishment of A. tumida is also influenced by soil moisture, soil temperature and 

soil type. Somerville (2003) and Stedman (2006) have reported that soil moisture 

needs to be above 5 % to allow for successful pupation, and for much of the year most 

European countries, including the UK, have soils that meet this saturation requirement 

(EFSA, 2015). Soil temperatures below -1 ºC at a depth of 20 cm would result in the 

death of A. tumida pupae, preventing completion of the life cycle (Pettis and 

Shimanuki, 2000). With reference to the UK and shown in Figure 1.3, the average soil 

temperature at 30 cm is approximately 5 ºC, which is adequate for A. tumida to 

overwinter (Brown et al., 2002). Pupation can occur in any soil type, however for 

course textured soils moisture levels can drop below 5 %, within the top 10 cm.  

Pupation success tends to be higher in sandy loam soils and many areas within the 

UK meet these requirements (Brown et al., 2002). Furthermore, Hood (2000) and 

Neumann and Elzen (2004) have documented A. tumida ability to overwinter within a 

hive, utilising the warmth and food within the honey bee colony cluster. This has been 

further demonstrated by A. tumida ability to survive colder climates in areas of North 

America.   
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Figure 1.3.  The annual average 30 cm soil temperature in the UK from 

1971-2000 (Source: metoffice.gov.uk). 
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1.4 Value of honey bees as pollinators  

Honey bees have been managed in Europe for several hundred years, contributing 

to human diets through the production of honey (Crane, 1999). Both wild and managed 

honey bees play a vital role in pollinating numerous crops, contributing to both food 

security and the economy (Potts et al., 2010). Over the last 46 years, the total global 

land area under cultivation has increased and during this time there has been a 

decrease in the land used for non-pollinator crops compared to an increase in the land 

dedicated to pollinator dependant crops (Aizen et al., 2008). In the developing world 

agricultural reliance on pollinator dependent crops has increased by >300 % since 

1961, which has surpassed the global increase (approx. 45 %) in honey bee colonies, 

placing pressure on pollinator services worldwide (Aizen et al., 2009; Van Engelsdorp 

and Meixner, 2010). It has been estimated that 52 of the 115 leading global food crops 

rely on honey bee pollination for either fruit or seed set. This shift towards pollinator 

dependant crops is thought to be attributed to the higher economic value of these 

crops compared to non-pollinator dependant crops (Gallai et al., 2009).  

The domesticated honey bee A. mellifera is considered the most economically 

valuable crop pollinator worldwide and it is predicted that the yields of some fruits, 

seeds and nut crops would decrease by more than 90 % without this pollinator (Klein 

et al., 2007). Managed honey bees are an ideal source of pollinators for agricultural 

crops as they have a relatively large work force ranging from approx. 10 000-40 000 

individuals. Furthermore, they are generalist pollinators visiting a range of flower types, 

travelling on average 4.5 km to forage pollinating crops over a 6360 ha area and have 

the ability to communicate location of floral resources (Seeley, 1985). Additionally, the 

population within a colony can be increased via dietary supplements, which increases 

the overall foraging capacity of the colony thereby enhancing crop pollination in a given 

area. (Van Engelsdorp and Meixner, 2010).  

In the UK approx. 70 % of crops are pollinated by bees. In 2009 the value of bees 

in the UK as pollinators of commercially grown crops was estimated to be £200 million 

per annum, with the value of honey production fluctuating between £10 and £35 million 

per annum (Cuthbertson and Brown, 2009). The stability of UK pollination services 

has come into question as a decline in honey bee colonies has been documented; 

with a 54 % decrease being recorded between 1985 to 2005 in England alone (Potts 

et al., 2010). Given their important role in ecosystem services, the decline in honey 
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bee numbers has received much attention, and this decline is thought to be attributed 

to several factors. The main threats to honey bee colonies within the UK are pathogens 

and parasites such as Mellisococcus pluton (European Foulbrood), AFB and 

Ascosphaera apis (Chalkbrood), microsporidian Nosema ceranae and N. apis, viral 

infections and pests such as the ectoparasite Varroa destructor and the tracheal mite 

Acarapis woodi (Klein et al., 2007). Other factors potentially responsible for the decline 

in honey bee numbers include the misuse of pesticides and herbicides and 

fragmentation and degradation of natural habitats (Kluser and Peduzzi, 2007).  

The damage that A. tumida can cause to the apiculture industry has been 

documented in the USA where it has caused losses of approx. $3 million to the 

apiculture industry alone, just two years after the introduction of A. tumida (Ellis et al., 

2002). In 2008 a survey conducted in Queensland showed a loss of 3000 colonies, 

with clean up, control and restoration costs amounting to approx. $ 1. 2 million 

(Mulherin, 2009). This highlights the significant risk A. tumida poses to UK apiculture, 

agriculture and horticulture through the further disruption of already fragile and 

declining pollinator services.  

 

1.5 Current control methods-existing practises and recent research 

1.5.1 Hive treatments 

The structure of a typical honey bee hive, depicted in Figure 1.4, comprises of a 

screened bottom board, deep supers for the brood chamber, medium supers for the 

honey chamber, which is separated by a queen excluded, and outer cover placed on 

top of the honey super. CheckMite +TM strips (10% w/w coumaphos) are typically 

employed as a method to control the parasitic mite V. destructor but have been shown 

to provide some level of control against feeding larvae and adults of A. tumida (Elzen 

et al., 1999; Elzen and Westervelt, 2002; Ellis and Delaplane, 2007; Neumann and 

Hoffmann, 2008) (Figure 15 A). Typically, CheckMite +TM strips are placed underneath 

corrugated cardboard or plastic sheets on the bottom board. This treatment has limited 

efficacy against wandering larvae as even after exposure to CheckMite +TM for 24 hr 

they are still capable of burrowing into the soil, thus reducing the control of A. tumida 

outside of the hive (Ellis and Delaplane, 2007). CheckMite +TM together with a bottom 

board trap (Beetle Barn TM), has shown to have high efficacy against adults (Bernier 



CHAPTER 1 | INTRODUCTION  
 

 

14 
 

et al., 2015) (Figure 15 B). The openings in the trap are large enough to allow access 

to adults, excluding honey bees, and once they are inside the trap contract is made 

with the pesticide. Coumaphos is the main pesticide used against A. tumida in honey 

bee colonies. Coumaphos belongs to the group of highly toxic insecticides referred to 

as organophosphates, as such no allowance for any residues in wax or honey 

products is allowed. Consequently, application of CheckMite +TM is labour intensive as 

all honey supers must be removed prior to treatment. Application rate is restricted to 

four times a year and upon application the CheckMite +TM is placed face down in the 

centre of the bottom board and is left in the colony for at least three days and a 

maximum of 45 days. Once the strip has been removed from the hive the supers can 

only be replaced after 14 days (Hood, 2000; Ellis, 2004). 

In Australia APITHORTM hive beetle insecticide was granted a temporary permit 

after a short-term trial demonstrating its effectiveness as a control method against 

adult A. tumida and its safety towards honey bees (Figure 15 C). APITHORTM is 

composed of fipronil (0.48g kg-1) treated corrugated card permanently enclosed in a 

plastic shell to prevent access or contact by honey bees (Levot and Somerville, 2012). 

Fipronil is a broad spectrum neurotoxic insecticide that is highly toxic towards bees 

and has been implicated in colony losses in France (Chuzat et al., 1999) and sublethal 

doses have been reported to reduce foraging and olfactory learning in honey bees 

(Colin et al., 2004). As such there was a great deal of controversy over the use of 

APITHORTM, which led to a six month trial being conducted. The results of the study 

showed that no fipronil or metabolite residues were found in in honey or bees wax 

extracts from treated colonies and no deleterious effects on honey bee health were 

observed.  In December 2013 APITHORTM was granted full product registration by the 

Australian Pesticides and Veterinary Medicines Authority, as the safety and the 

effectiveness of the product had been demonstrated (Levot et al., 2016). 
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Figure 1.4.  Structure of a honey bee hive comprising of a screened bottom board, deep supers 

for the brood chamber, medium supers for the honey chamber, a queen excluded, and outer 

cover. (Source: https://www.beverlybees.com/wp-content/uploads/2005/09/Langstroth-Hive-

Parts.jpg) 
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Figure 1.5.  (A) CheckMite +TM strips (10% w/w coumaphos), (B) Beetle Barn TM and (C) 

APITHORTM. (Source: https://www.animalhealth.bayer.ca/en/bees/checkmite/ 

;https://gabees.com/product/m90d-beetle-barn/ and https://www.dadant.com/wpcontent/ 

uploads/2012/04/2011/09/Apivar-Brochure-USA.pdf. 
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1.5.2 Soil drench  

Pyrethroid permethrin (sold as GardStar® in USA) applied as a ground drench, has 

shown to have some success at controlling A. tumida wandering larvae and pupae. 

Permethrin ground drench is widely used for A. tumida control as direct contact with 

honey bees is reduced (Delaplane, 1998; Hood and Miller, 2003). To maximise the 

effects of the soil drench the ground surrounding the colony is thoroughly moistened 

and the pesticide is applied under and around the hive in all directions extending out 

90-180 cm from the colony. Permethrin is a synthetic pyrethroid insecticide, which 

structure is based on the natural substance pyrethrum, derived from dried 

chrysanthemum flowers (NPIC, 2009). Permethrin acts on the nervous system of 

insects, interfering with the sodium channels to disrupt the function of the neurons, 

causing muscles to spasm, resulting in paralysis and death (Tomlin, 2006). Permethrin 

is highly toxic to bees, as such the use of hand pump sprayers has been forbidden 

and if the treatment is administered when hives are present only a sprinkler can be 

used to avoid contact by spray or spray drift with bees or hive equipment. The 

drawback of using a ground drenches alone is that protection is offered to an individual 

hive but does very little to control the spread of A. tumida (Hood, 2004). 

 

1.5.3 Mechanical control  

Alternatives to chemical controls include the use of entrance reducers, which have 

been shown to significantly affect the average number of A. tumida invading the hive 

(Frake et al., 2009). Traps such as Beetle BlasterTM, Beetle EaterTM, West TrapTM, 

FreemanTM and Hood TrapTM act as an adequate means to control A. tumida adults 

(Figure 1.6). The Beetle BlasterTM and Beetle EaterTM function in a similar manner, 

whereby they are placed in the frame top bar, filled with oil, vinegar or soapy water. 

The traps are filled to approx. 1/3rd of the trap height with the “drowning liquid” and 

upon entering the trap to hide from the worker bees, they drown in the solution. The 

West TrapTM and FreemanTM trap are positioned onto the bottom board and contain a 

shallow basin of oil, which is covered by a honey bee excluder. Similarly, the adult 

beetles will enter the traps to escape from worker bees and drown in the oil solution 

(Hood, 2011; Zawislak, 2014). The Hood TrapTM also serves as a mechanism to drown 

adults. It is attached to the side of a beehive frame and has three compartments that 
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are filled with apple cider, serving as an attractant, or oil. This trap tends not to be as 

efficient as the previously mentioned traps as due to is position on the frame it is visited 

less frequently and the space around the trap often gets filled with drone brood (Hood, 

2011; Zawislak, 2014).  Another method being employed in Australia is the use of 

disposable cleaning cloths know as Chux® Superwipes®. The cloths are folded and 

secured using a queen excluder to the top of the frames in the brood box, workers 

bees attack the cloth creating a fibrous material and when A. tumida adults are chased 

by the workers bees, they seek refuge in the folds of the cloth becoming imprisoned 

in the material (EFSA, 2015).  

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6.  (A) Beetle EaterTM, (B) FreemanTM trap and (C) Hood TrapTM. (Source: Animal and 

Plant Health Agency, 2017). 
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1.5.4 Biological control 

Lundie (1940) noticed during the laboratory rearing of A. tumida that a proportion of 

larvae that entered the soil to pupate did not emerge as adult beetles. Upon closer 

examination of the larvae an unknown pathogen was identified as the possible cause 

of the mortality. Ellis et al. (2004) identified five fungal species isolated from the 

pathogen-killed pupae: two soil dwelling fungal species (Aspergillus niger and A. 

flavus) and three saprotrophic fungi (Clonostachys rosea, Glioclaadium catenulatum 

and Mucor plumbeus). Both A. niger and A. flavus are known to attack other soil 

dwelling insects and it was strongly speculated that either or both of the fungi were 

responsible for the mortality observed. Later Richards et al. (2005) inoculated A. 

tumida larvae with A. niger and A. flavus and found that the latter fungi caused 

significant levels of mortality in pupae. Muerrle et al. (2006) identified a naturally 

occurring fungal pathogen Metarhizium anisopliae v. anisopliae from South African 

adult A. tumida. The newly identified fungal pathogen together with three different 

entomopathogenic fungal isolates (Beauveria bassiana, Metarhizium anisopliae and 

Hirsutella illustris) were tested against adult A. tumida, with 74 % and 28 % mortality 

being recorded in B. bassiana and M. anisopliae v. anisopliae treated beetles, 

respectively.  Leemon and McMahon (2009) screened a range of isolates of B. 

bassiana and M. anisopliae against both larval and adult A. tumida. The results 

indicated that B. bassiana isolates tend to be more effective against adults (up to 100 

% mortality), whereas M. anisopliae are more effective against larvae, with over 90 % 

mortality being recorded. Metarhizium anisopliae spores were subsequently added to 

a colony and it was found that there were short-term negative effects towards adult 

honey bees and they tended to remove the spores from the hive (Leemon and 

McMahon, 2009). These results show great promise for the use of fungal pathogens 

as a benign control method. However further screening of entomopathogenic fungal 

is needed to develop an efficient mycoinsecticide for A. tumida. 

The use of commercially available entomopathogenic nematodes Steinernema 

carpocapsae, S. riobrave and Heterorhabditis megidis against wandering larvae was 

investigated by Cabanillas and Elzen (2006). The authors reported the larvae to be 

susceptible to all three nematodes species and it was suggested that mortality may be 

enhanced by targeting the pupal stages of A. tumida. More recently Cuthbertson et al. 

(2012) demonstrated that application of S. kraussei and S. carpocapsae, resulted in 
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100 % mortality of wandering larvae directly exposed to the entomopathogenic 

nematodes. The authors also demonstrated that sequential applications of nematodes 

to the pupation substrate, following larvae entering the sand to pupate, significantly 

reduced adult emergence for up to 3 weeks. Entomopathogenic nematodes have 

enormous potential to form an integral component of Integrated Pest Management 

(IPM) strategies for A. tumida, but further improvements are required to make their 

application simple and cost effective (Bell, 2016).   

 

1.6 Available chemical control methods in the UK 

Effective pest control in the UK is coming under increased pressure due to the loss 

of effective chemical control options resulting from withdrawals arising from EU 

Directive 91/414, therefore limiting the range of products that could be employed in 

the event of A. tumida outbreak. The recent replacement of this directive with the Plant 

Protection Products Regulation (Regulation EC No 1107/2009), which introduced 

hazard-based cut-off criteria, is likely to further restrict the availability of chemical 

control products. All chemical compounds must be authorised under Regulation EU 

No 528/2012 prior to being made available on the market and must show efficacy 

towards the targeted pest without a risk to the environment, humans and animals 

(EFSA, 2015). 

Currently, no veterinary medicines have been authorised for the control and/or 

eradication of A. tumida in Europe or the UK. Any product that is placed in a hive to 

control pests or pathogens are regarded as medicines and therefore must be 

registered under the Veterinary Medicines Regulations 2013 to ensure the products 

are safe to the user, colony and the environment. There are seven in-hive treatments 

that are approved exclusively for the control of V. destructor including, two synthetic 

pyrethroids, containing either tau-fluvalinate or flumethrin and the remaining five 

containing naturally occurring materials such as thymol, essential oils, oxalic acid and 

formic acid (APHA, 2017). ApistanTM, contains tau-fluvalinate, is the only product that 

has shown to be toxic to feeding and wandering larvae, however no effects on adults 

A. tumida have been reported. However, ApistanTM is not licensed for use as a control 

method for A. tumida and would require a Special Treatment Authorisation, to be 

issued by the Veterinary Surgeon (EFSA, 2015). CheckMite +TM, used for the control 
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of A. tumida in USA and Canada is authorised in six MS for the control of V. destructor, 

therefore it could be used for control in the UK, however it would also require a Special 

Treatment Authorisation prior to use (EFSA, 2015; FERA, 2014).  

Of the 45 compounds approved for use in UK agriculture approx. 27 compounds 

(spinosyns, pyrethroids, carbamates, neonicotinoids and organophosphates) have 

traits that could be useful in the control of A. tumida. Several of these compounds 

show efficacy against some coleopteran pests, however these compounds are not 

registered for use as a soil drench against A. tumida and they are mostly not suitable 

for application to soils. (Bell, 2016). Synthetic pyrethroid permethrin ground drench is 

widely used for A. tumida control as they are highly effective against larvae, pupae 

and adult life stages and the mode of application minimises direct contact with honey 

bees. However permethrin is not approved for use within the EU (Delaplane, 1998; 

Hood and Miller, 2003). Currently there are 12 pyrethroids approved for use in UK 

agriculture, with only tefluthrin and lambda-cyhalothrin having the potential to be used 

as soil drenches for the control of A. tumida. Tefluthrin when used as a seed treatment 

is effective against the click beetle larvae (wireworms) and corn root worm (Diabrotica 

spp.), furthermore it has been suggested that this product has the potential to be 

applied to the soil for the control of these insect pests (Schwarz et al., 2002; van Herk 

et al., 2015). Similarly, lambda-cyhalothrin can be formulated for soil application and 

when used as a seed treatment is effective against click beetle larvae (Solomon and 

Emosairue, 1999; van Herk et al., 2015). In Italy, a 1 % solution containing two 

pyrethroids, cypermethrin and tetramethrin, has been used as a soil disinfectant 

(Mutinelli et al., 2014). Tetramethrin is not approved for use within the UK, whereas 

cypermethrin is suggesting that this insecticide could be used as a primary candidate 

in the absence of permethrin which is routinely used in USA and Australia. The major 

drawback of the above-mentioned pyrethroid is that it can be highly toxic to honey 

bees/non-target invertebrates and there is the potential for watercourse contamination 

if exploited as a ground drench (EFSA, 2015).  

The use of pyrethroids as soil treatments is not considered within the framework of 

EU legislation on biocide products and safety of a given product in the soil environment 

would need to be considered. However, where a pyrethroid has been approved for 

insecticidal use, but not as a product to control A. tumida via soil treatment, special 

provision could be applied for under Article 55 or 56 of Regulation (EU) No 528/2012 
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(EFSA, 2015). As there are no immediate eradication options available in the UK, 

unless A. tumida was detected shortly after arrival, there is a high likelihood that 

eradication would be impossible due to the lack of chemical control products 

immediately available on the UK market. 

 

1.7 Development of novel bio-pesticides: RNA interf erence  

RNA interference (RNAi), is a post translational gene silencing phenomenon 

mediated by exogenous or endogenous double-stranded RNA (dsRNA). This 

mechanism is highly conserved in eukaryotes and has been widely used as a means 

to elucidate gene function (Hannon, 2002). RNAi silencing is a consequence of dsRNA 

molecules being taken up from the immediate environment by cells located for 

instance in the gut or haemocoel. If the signal then spreads from these cells to the 

neighbouring cells and tissues, then systemic RNAi is triggered (Winston et al., 2007; 

Gu and Knipple, 2013). Systemic RNAi was thought to only occur in plants and 

nematodes, however research over the past 20 years has revealed that systemic 

transfer of the silencing signal occurs in arthropods. Consequently, RNAi is 

increasingly being recognised as having potential application for the control of insect 

pests, where genes vital to survival or development are targeted for down-regulation 

can result in death of the pest organism. RNAi has been proposed as a novel 

insecticidal strategy, as the high sequence specificity of RNAi predicts that the effects 

on non-target organisms will be minimal, if any (Gu and Knipple, 2013; Scott et al., 

2013; Bachman et al., 2013).  

The efficacy of RNAi varies among insect Orders and the success of this technology 

as a control method for agricultural pests depends heavily on target specificity, gene-

silencing efficiency and systemic spread of the silencing signal. Arthropods are a 

diverse group of organisms, many of which are economically significant agricultural 

pest, vectors of livestock disease and parasites of commercially managed honey bees. 

Therefore, control using RNAi has been evaluated for a range of arthropod species, 

including Coleoptera (Western corn rootworm, Diabrotica virgifera virgifera; Southern 

corn rootworm, Diabrotica undecimpunctata howardii; Colorado potato beetle, 

Leptinotarsa decemlineata; the red flour beetle, Tribolium castaneum), Diptera (fruit 

fly, Drosophila spp.; tsetse fly, Glossina morsitans morsitans; the housefly, Musca 
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domestica; cabbage root fly, Delia radicum), Hemiptera (pea aphid, Acyrthosiphon 

pisum; Triatomid bug, Rhodnius prolixus), Isoptera (eastern subterranean termite, 

Reticulitermes flavipes) and Lepidoptera (light brown apple moth, Epiphyas 

postvittana; cotton bollworm, Helicoverpa armigera; tobacco hornworm, Manduca 

sexta; diamondback moth, Plutella xylostella), with varying levels of success (Bischoff 

et al.,2006; Fujita et al.,2006; Hossaini et al., 2008; Zhou et al., 2008; Walshe et al., 

2009; Aronstein et al., 2011; Powell et al., 2017). Honey bees are among the few 

recognised beneficial insects with large economic and ecological impacts and RNAi is 

increasingly being used as a commercial and research tool for fighting pests and 

pathogens in apiculture. For example, the administration of dsRNA has been 

successfully applied to lower infection levels of several pathogens, such as the 

intracellular parasite of honey bee adults, Nosema ceranae, V. destructor, responsible 

for vectoring DWV, Israeli Acute Paralysis Virus and Chinese Sacbrood Virus, 

however these are yet to be commercialised (Maori et al., 2009; Campbell et al., 2010; 

Paldi et al., 2010). 

 

1.7.1 A brief history of the discovery of RNAi  

The first report of an RNAi type phenomenon was by Napoli et al. in 1990, where 

they studied chalcone synthase (CHS), which is an enzyme involved in the 

biosynthesis pathway responsible for petunia colouration. In an attempt to produce 

purple petunia flowers, CHS was over-expressed and this unexpectedly generated 

white petunias. Transcript analysis revealed that the levels of endogenous and 

introduced CHS were 50-fold lower than wild-type petunias. It was hypothesised that 

this effect was a consequence of the introduced transgene suppressing the 

endogenous CHS gene and this phenomenon was termed “cosuppressing”. In 1992, 

Romano and Macino reported the same phenomenon in Neurospora crassa 

(ascomycete fungus), noting that introduction of portions of the albino-3 (al-3) and 

albino-1 (al-1) genes sequences caused a reduction in the expression levels of the 

endogenous gene. The term “quelling” was coined to describe this process in fungi 

(Romano and Macino 1992). 

Several years after these unexplained gene silencing phenomena were described 

in plants and fungi, Guo and Kemphues (1995) observed the same phenomenon in 



CHAPTER 1 | INTRODUCTION  
 

 

24 
 

animals. It was observed that the introduction of sense or antisense RNA encoding for 

par-1 mRNA resulted in degradation of the par-1 message in the nematode 

Caenorhabditis elegans. At that time, the introduction of antisense RNA was favoured 

as it was thought to act by hybridising with endogenous mRNAs resulting in the 

formation of double-stranded RNA (dsRNA), which either inhibited translation or 

marked RNA for degradation.  However, control experiments using only the sense par-

1 RNA, which was thought not to hybridize with the endogenous par-1 transcript, 

surprisingly still targeted the par-1 transcript for degradation. 

Fire et al. in 1998 first described RNAi and provided an explanation for the 

previously reported silencing of endogenous genes by “cosuppression”, “quelling” and 

sense mRNA. They hypothesised, using C. elegans, that the trigger for gene silencing 

was dsRNA and not single-stranded RNA (ssRNA). The findings of Guo and 

Kemphues (1995) were explained by reasoning that the introduction of the single-

stranded sense and antisense RNA resulted in gene silencing as the preparations of 

ssRNA could have been contaminated with dsRNA, as the ssRNA samples were 

generally prepared using bacteriophage RNA polymerases. Fire and Mello (1998) 

tested this hypothesis by studying interference towards the C. elegans unc-22 gene 

by using highly purified sense and antisense ssRNA preparations and comparing the 

effects to dsRNA. They showed that the introduction of purified ssRNAs (sense or 

antisense) was less effective than dsRNA or a sense-antisense RNA mixture targeting 

the unc-22 mRNA, concluding that dsRNA and not ssRNA was the cause of this gene 

silencing. 

The first RNAi success in insects was achieved in the fruit fly, D. melanogaster, and 

performed by in vivo injection of embryos (Kennerdell and Carthew 1998) and in vitro 

by soaking of Schneider Drosophila (S2) cells in dsRNA medium (Clemens et al., 

2000). The majority of RNAi screens for this insect are performed with S2 cells, as 

RNAi is ineffective in most tissues due to an inability to take up dsRNA from the 

environment (Ulvila et al., 2006). In 2000 the D. melanogaster genome was published 

by Adams et al. (2000) and RNAi became a popular research tool in functional 

genomics for this dipteran model insect. Several years after the D. melanogaster 

genome was sequenced, other insects such as A. mellifera (Honeybee Genome 

Sequencing consortium, 2006) and the red flour beetle, T. castaneum (Richards and 

Consortium, 2008), had their genomes sequenced. As such, these insects received 
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much attention with respect to RNAi, as a plethora of gene information became 

available with very little knowledge of their function. Tribolium castaneum soon 

become another model organism, as in contrast to D. melanogaster, they exhibit a 

robust systemic RNAi response that can be transmitted to their progeny (Bucher et al., 

2002).  

 

1.7.2 RNAi Mechanism 

RNAi refers to the post-transcriptional silencing of gene expression by small non-

coding RNA molecules, predominantly by the cleavage of a target mRNA in a 

sequence-specific manner (Fire et al.,1998). Three RNA silencing pathways are 

known to exist in insects which are mediated by siRNA, microRNAs (miRNAs) and 

piRNA (PIWI-associated RNA). The siRNA has evolved as a response to viral infection 

and plays a vital role in endogenous regulation of gene expression via translational 

suppression (Shabalina and Koonin, 2008; Ding, 2010; Gu and Knipple, 2013). The 

miRNA pathway uses endogenous gene products transcribed from the cell’s genome 

and functions in the regulation of gene expression. The piRNA pathway has been 

identified as the main protection mechanism against the activity of transposable 

elements (TEs) in animal genomes and plays a role in fertility, evidenced by fertility 

defects in mutants lacking PIWI (Carmell et al., 2007).  

The experimental use of RNAi exploits the siRNA pathway, as it makes use of the 

cell’s natural machinery that allows for the degradation of mRNA with sequence 

identity to the administered dsRNA molecule. Functional RNAi machinery has two 

essential components. The first component is the core components within the cell, 

comprising of Dicer enzymes, RNA-binding factors and Argonaute protein, and 

secondly systemic components that are responsible for amplifying the initial dsRNA 

trigger, subsequently exporting it to other tissues in the organism (Price and 

Gatehouse 2008; Whangbo and Hunter, 2008; Huvenne and Smagghe, 2010).  Figure 

1.7 shows a general overview of the siRNA pathway. Upon cell entry and recognition, 

the RNA pathway is initiated by the cleavage of long dsRNA into siRNA by dsRNA-

specific RNase-III type ribonucleases called Dicers (Elbashir et al., 2001). In D. 

melanogaster, Dicer-1 is mostly used to produce miRNAs, while Dicer-2 functions is 

to cleave dsRNA into siRNAs (Lee et al., 2004). The siRNAs are approx. 21-23 
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nucleotide (nt) in length, with phosphate groups at their 5’ ends and 2 nucleotide (nt) 

overhangs at their 3’ ends (Hannon and Rossi, 2004; Meister and Tuschl, 2004). The 

siRNAs are incorporated into the RISC complex in conjunction with the argonaute 

multi-domain protein, containing an RNase H-like domain. RNase H-like domain is 

responsible for cleaving and removing the passenger (sense) strand from the siRNA 

duplex resulting in an active RISC. The remaining strand (antisense) of the siRNA 

duplex serves as the guide stand, directing the RISC to its targeted mRNA leading to 

its specific suppression and degradation (Shabalina and Koonin, 2008). RNA-

dependant RNA polymerase (RdRP), interacts with RISC complex, allowing new 

dsRNA to be generated based on the partially degraded target template (Sijen et al., 

2001). These RdRPs have been identified in gene products of eukaryotic 

microorganisms, fungi, plants, nematodes and the primitive vertebrate Branchiostoma 

floridae, but not in insects, molluscs or other vertebrates (Price and Gatehouse, 2008).  

The RNAi effect is considered systemic if the RNAi signal spreads throughout the 

insect and this requires specific machinery to amplify the initial dsRNA trigger and to 

subsequently export it to other tissues in the organism (Price and Gatehouse 2008; 

Whangbo and Hunter, 2008; Huvenne and Smagghe, 2010). Amplification of the 

dsRNA relies on the presence of RdRP enzymes, which have been extensively 

researched in plants and C. elegans. RdRP can interact with RISC complex, allowing 

the production of secondary siRNAs acting as an amplification step, which greatly 

sustains the RNAi effect (Sijen et al., 2001; Price and Gatehouse 2008). In C. elegans 

amplification takes places in three steps. Firstly, cleavage of the long dsRNA (500 bp) 

by Dicer produces siRNA, resulting in a molar ratio from target to trigger increasing 

20-fold. Secondary amplification of the initial signal occurs because of siRNAs being 

recycled after the degradation of the targeted mRNA. The third amplification step 

involves the antisense siRNAs with 3’ hydoxy group annealing to the ssRNA (target) 

and the activities of RdRP enables elongation, resulting in longer stretches of dsRNA. 

The new dsRNA is cleaved by RNase III, or Dicer activity producing numerous siRNA 

allowing for the persistent and systemic RNAi effect (Sijen et al., 2001). In contrast to 

C. elegans, T. castaneum exhibits a very strong RNAi response, including systemic 

RNAi, however lacks any C. elegans like-RdRP, suggesting the presence of 

alternative mechanism(s) that elicit the amplification and spreading of the RNAi signal 

(Tomoyasu and Denell, 2004; Gu and Knipple, 2013). 



CHAPTER 1 | INTRODUCTION  
 

 

27 
 

 

 

 

  Figure 1.7.  General overview of the siRNA pathway.  Exogenous dsRNA is imported into cells, 

processed by dicer into small interfering RNA (siRNA; 21 bp + 2-base 30 extensions on each 

strand) and assembled with the argonaute protein into the RNA-induced silencing complex 

(RISC). The RISC complex targets and degrades specific mRNAs based on the siRNA 

sequence. Systemic RNAi effects are mediated through the production of new dsRNAs by 

RNA-dependent RNA polymerase (RdRP), which uses the target RNA as a template and is 

primed by siRNA strands. The secondary dsRNAs can be exported from the cell to spread the 

RNAi effect to other cells. Gene names in italics have been identified in Drosophila 

melanogaster. The transport proteins SID-1 and SID-2 have been identified in Caenorhabditis 

elegans, as has the RdRP enzyme. Transport mechanisms might differ between different 

organisms (Source: Price and Gatehouse, 2008). 
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1.7.3 RNAi Effects 

The RNAi effect can occur through two different pathways, referred to as 

intracellular RNAi and extracellular RNAi. Intracellular RNAi involves the introduction 

of dsRNA into the cells using transfection or electroporation and also delivery by 

injection straight into a cell or a syncytial embryo (Yu et al., 2013). Whereas 

extracellular RNAi occurs via delivery of dsRNA via soaking, feeding or injection into 

the hemocoel and requires cellular uptake of the dsRNA (Yu et al., 2013). Whangbo 

and Hunter (2008) have further defined the RNAi mechanism into three types of RNAi 

response: cell autonomous, environmental and systemic, with the latter two being 

referred to as non-cell autonomous. Cell autonomous RNAi effects occur within the 

cell where dsRNA is constitutively expressed or exogenously introduced (Whangbo 

and Hunter, 2008). Non-cell autonomous RNAi was first documented by Fire et al. 

(1998) who injected dsRNA into the body cavity of C. elegans which spread from the 

site of application and resulted in the silencing of the targeted gene throughout the 

nematode body and its progeny. Non-cell autonomous RNAi has been further divided 

into environmental RNAi and systemic RNAi. Environmental RNAi silencing is a 

consequence of dsRNA molecules being taken up from the immediate environment by 

cells located for instance in the gut or haemocoel. If the signal then spreads from these 

cells to the neighbouring cells and tissues, then systemic RNAi is triggered (Winston 

et al., 2007; Gu and Knipple, 2013).  

 

1.7.4 dsRNA uptake mechanism  

Sensitivity to RNAi in insects remains variable between genes, organisms and life 

stages. This variability could be a consequence of the presence/absence of the core 

RNAi machinery (Miller et al., 2008), the cellular uptake of RNAi molecules and/or the 

spreading of the silencing effect (Xiao et al., 2012). Where systemic RNAi exists, the 

mechanisms responsible for the uptake of dsRNA and the systemic spreading of the 

RNAi effect remains undefined in different organisms (Guan et al., 2017). 

Two pathways have been suggested as a means to explain systemic RNAi in 

insects; namely trans-membrane channel-mediated uptake and endocytosis-mediated 

uptake. Three trans-membrane proteins involved in the trans-membrane channel-

mediated uptake mechanism have been identified in C. elegans, known as SID-1, SID-
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2 and SID-5 (Feinberg and Hunter, 2003; Winston et al., 2002; Xu and Han, 2008). 

The sid-1 gene product is responsible for mediating systemic RNAi effects. SID-1 is a 

multispan transmembrane protein that is expressed on the cell surface, and acts as a 

channel allowing passage of dsRNA between cells and thereby facilitates the uptake 

of dsRNA (Winston et al., 2002). SID-2 enables environmental RNAi, it is a gut-specific 

transmembrane protein with a single transmembrane region. It functions solely in the 

uptake of dsRNA from the environment via an endocytic pathway and is not involved 

in the subsequent spreading of the RNAi effect. The function of SID-2 was 

demonstrated in a related nematode (C. briggae), lacking the ability to take up dsRNA 

from the gut lumen, by transforming it with the C. elegans SID-2 gene, systemic RNAi 

phenotype was restored (Winston et al., 2007). SID-5 is an endosome-associated 

protein that mediates transport of both ingested and endogenous dsRNA between 

cells, however it is not involved in dsRNA uptake from the intestine. Thus, non-cell 

autonomous RNAi (environmental and systemic) is dependent on the involvement of 

SID-1, SID-2 and SID-5 (Hinas et al., 2012).  

Homologues of the C. elegans sid-1 gene have been identified in some insects 

including T. castaneum, B. mori, A. mellifera and more recently in aphids, but so far 

no sid-2 or sid-5 encoding genes have been found (Tomoyasu et al., 2008; Xu and 

Han, 2008; Zha et al., 2011). In contrast, dipterans such as D. melanogaster seem to 

lack sid-1-like genes altogether in their genome. Tomoyasu et al. (2008) carried out 

phylogenetic analysis revealing that T. castaneum sid-1 like genes may not be 

orthologous to sid-1 gene, but rather to the C. elegans Tag-130 gene which is not 

associated with systemic RNAi in nematodes. This indicated that the sid-1 gene is 

unlikely to play a major role in cellular uptake of dsRNA in insects. Where robust 

systemic RNAi responses are observed in insects such as T. castaneum additional or 

different genes with similar functions, or possibly even different mechanisms are 

responsible for the cellular uptake of dsRNA (Tomoyasu et al., 2008; Zhang et al., 

2010).  

The endocytosis-mediated uptake mechanism involves the insect cells absorbing 

the silencing signal from the environment via inward budding of the plasma membrane 

and spreading of the signal via vesicle-mediated intracellular trafficking (Tomoyasu et 

al., 2008; Ulvila et al., 2006; Saleh et al., 2006). This mechanism involves secretion of 

siRNA signal after it is produced in the form of a vesicle and the uptake of siRNAs for 
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the execution of siRNA silencing mechanism. This mechanism has been identified in 

D. melanogaster S2 cells, the desert locust (Schistocera gregaria) (Wynant et al., 

2014), and the predatory mite (Metaseiulus occidentalis) (Wu and Hoy, 2014).  

 

1.7.5 dsRNA delivery into insects 

The RNAi effect can be triggered by several approaches: direct injection of dsRNA, 

soaking, oral delivery, topical administration and spraying of dsRNA (Aronstein et al., 

2011). The preferred delivery method in the majority of insect studies relies on 

microinjection of dsRNA, synthesised in vitro, into the insect haemocoel. This method 

is preferred as most insects lack the enzyme RdRP which is required for the persistent 

and systemic RNAi effect.  Microinjection allows for a known amount of dsRNA to be 

administered directly into the circulatory system allowing the selected cells to be 

targeted and short-term gene knockdown can be monitored (Price and Gatehouse, 

2008). The disadvantages of this methodology are that injection into the insect 

hemocoel can result in cuticle damage, which in turn elicits a wounding response 

which can compromise gene expression investigations (Yu et al., 2013).  

Soaking is not a widely used approach but has value when studying the RNAi 

efficacy in cell cultures. This technique was first reported in C. elegans and has since 

been used to assess RNAi efficiency in D. melanogaster, flatworms and nematodes 

(Tabara et al., 1998; Orii et al., 2003).   

Oral delivery of dsRNA is convenient, causes less damage to the insect and is a 

natural and practical method of delivering dsRNA to an insect.  Oral delivery of dsRNA 

incorporated into diet or transgenic plants expressing dsRNA has proved successful 

in achieving transcript suppression in Coleoptera (Baum et al., 2007), Lepidoptera 

(Baum et al., 2007; Kumar et al., 2012) and Hemiptera (Pitino et al., 2011; Zha et al., 

2011). The use of RNAi has shown to significantly shorten the lifespans of a number 

of dipteran vector species, including the tsetse fly, G. morsitans (Walshe et al., 2009) 

sand fly, Lutzomyia longipalpis (Sant'Anna et al., 2008), and mosquitoes such as 

Anopheles gambiae (Magalhaes et al., 2008) However, oral delivery of dsRNA to 

some dipteran species has achieved less consistent results than microinjection and 

certain lepidopteran species require high doses of orally delivered dsRNA in order to 

trigger RNAi (Terenius et al., 2011). Such inconsistencies are likely to be attributed to 
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factors such as: stability during delivery, low or inconsistent dose taken up by the 

individual insect, the actual dose that reaches the midgut epithelium and inherent 

difference in the gut lumen of insect species potentially affecting the stability of dsRNA 

in this harsh environment (Scott et al., 2013). 

An alternative to oral delivery has been demonstrated by Pridgeon et al. (2008) 

where dsRNA encoding for an inhibitor of apoptosis protein 1 gene in A. aegypti 

(AaeIAP1) was administered topically resulting in mortality of female mosquitos. More 

recently, Wang et al. (2011) has shown that topical application of dsRNA genes DS10 

and DS28 (highly expressed during larval development) caused 40-50% mortality in 

the Asian corn borer, Ostrinia furnalalis, larvae. Furthermore, the author confirmed that 

dsRNA penetrated the body wall of O. furnalalis larvae and circulated in the body cavity 

by fluorescently labelling dsRNA.  

Recently Miguel and Scott (2016) showed that spraying dsRNA onto the leaf 

surface afforded plant protection from the Colorado potato beetle (L. decemlineata) 

under green-house conditions. The observation that RNAi can be triggered by topical 

application, spraying or diet containing dsRNA has made this technology a potentially 

viable control strategy for the implementation of RNAi based pesticides (Gordon and 

Waterhouse, 2007). 

 

1.7.6 RNAi against Coleoptera  

RNAi efficacy varies from being generally high in coleopterans, to relatively low in 

lepidopterans. Systemic RNAi responses have been documented in the majority of 

coleopteran studies (Huvenne and Smagghe, 2010; Scott et al., 2013). Whereas in 

lepidopteran studies effects tend to vary, with a tendency towards a less efficient non-

systemic RNAi responses. Where an RNAi response has been observed in 

lepidopterans a relatively large amount of dsRNA is required in comparison to 

coleopteran insects (Terenius et al., 2011). This insensitivity to RNAi is thought to be 

attributed to several factors: degradation dsRNA in the midgut and haemolymph, 

reduced uptake and transport of dsRNA, inability to process dsRNA into siRNA and 

the absence of core RNAi components (Arimatsu et al., 2007; Allen and Walker, 2012; 

Wynant et al., 2014; Garbutt et al., 2013; Kobayashi et al., 2013; Swevers et al., 2011). 

As previously mentioned T. castaneum has a robust systemic RNAi response and 

the completion of its genome sequence has led to T. castaneum becoming an 
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accepted model for studying systemic RNAi in insects (Richards and Consortium, 

2008). Tribolium castaneum sensitivity to RNAi has resulted in functional genomic 

screens to elucidate gene function and to identify potential pest control targets. This 

has allowed researchers to select candidate genes from other insects and identify 

orthologs via blast analysis of the T. castaneum genome database, BeetleBase 

(http:/beetlebase.org/). Biotargets identified for arthropod specific pest control include 

chitin/cuticle genes, chitin synthesis, molting, tanning of the epidermal cuticle and 

genes considered essential for survival such as V-type ATPases (Arakane et al., 2008; 

Hogenkamp et al., 2007; Zhu et al., 2008; Baum et al., 2007).  

RNAi by feeding plant material expressing hairpin dsRNAs has proved to be highly 

effective against the Western corn rootworn, D. v. virgifera (Baum et al., 2007). Initially, 

larvae were fed on artificial diet supplemented with defined concentrations of dsRNA 

targeting 290 insect genes vital for survival. As a consequence of this high-throughput 

screening 14 genes were shown to have high insecticidal activity at low dsRNA 

concentrations, with gene suppression being confirmed for the corresponding genes 

via Northern blot analysis. For the gut-expressed gene V-type ATPases subunit A, 

mRNA suppression was complete one day after exposure to dsRNA. By contrast 

feeding α-tubulin, a housekeeping gene resulted in a slower rate of mRNA suppression 

and the slow onset of mortality strongly suggested the occurrence of systemic RNAi 

as export and amplification of the signal seemed to be taking place in this insect. 

Finally, a 246 nt region of the coding sequence of V-type ATPases subunit A was used 

to prepare a construct which was transformed into maize (Baum et al., 2007). In the 

same study two related coleopteran plant pests, Southern corn rootworm (D. 

undecimpunctata howardi) and L. decemlineata larvae were fed on three dsRNA 

targeting genes identified in D. v. virgifera (β-tubulin, V-type ATPases subunit A and 

E). Oral delivery of dsRNA caused mortality in D. undecimpunctata howardi and L. 

decemlimeata larvae, however the dsRNA concentration was approx. ten-fold higher 

than the dose administered to D. virgifera. However, when L. decemlimeata was fed 

on dsRNA based on their own sequences of V-ATPase subunit A and E the RNAi 

effect was enhanced when compared with the afore-mentioned feeding trial.  The 

nucleotide sequence identities between D. v. virgifera and L. decemlineata V-ATPase 

subunit A and E were 83 % and 79 %, respectively. Non-target effects were attributed 
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to the identification of approx. 3 identical regions of 20-29 nucleotides in the published 

sequence alignment (Baum et al., 2007).  

Other coleopteran pests showing sensitivity to RNAi include the striped flea beetle 

(Phyllotreta striolata), red palm weevil (Rhynchophorus ferrugineus), African 

Sweetpotato Weevil (Cylas puncticollis) and Asian Longhorned Beetle (Anoplophora 

glabripennis). Zhao et al. (2008) showed that feeding of dsRNA encoding for Arginine 

kinase, a phosphotransferase playing a critical role in cellular energy metabolism, 

resulted in significant impairment of P. striolata development.  Zhao et al. (2011) went 

on to disrupt the host-preference of this beetle, mediated via a seven transmembrane-

domain odorant receptor (Or) family. After injection of PsOr1 into P. striolata they were 

unable to sense attractant and odour stimulus, this was further evidenced by a host-

preference test confirming that the suppression of the PsOr1 transcript impaired their 

ability to show preference towards cruciferous vegetables. In the study conducted by 

Laudani et al. (2017) RNAi was investigated through the suppression of α-amylase, V-

ATPase and Ecdysone receptor in R. ferrugineus by inject and ingestion of target 

dsRNA. Injection and ingestion of α-amylase and Ecdysone receptor dsRNA resulted 

in varying levels of suppression of the targeted gene, interestingly this was not the 

case for V-ATPase. V-ATPase is a commonly targeted gene and RNAi silencing has 

been well documented in numerous insect studies. It has been suggested that the lack 

of an RNAi response was a consequence of targeting one of the numerous V-ATPase 

subunits, which was not sufficient to induce an RNAi effect, and/or it could reflect that 

different lineages of Coleoptera are not equally susceptible to introduced dsRNA. In 

C. puncticollis transcriptomic analysis determined the presence of core RNAi 

machinery. Sensitivity to RNAi was evidenced by the injection of dsRNA targeting 

Laccase 2 into larvae, resulting in ineffective cuticle tanning in adults and persistent 

down regulation of the targeted gene was observed, indicating systemic RNAi 

(Prentice et al., 2015).  Similarly, in A. glabripennis core RNAi genes were identified, 

and the injection of dsRNA targeting iap (inhibitor of apoptosis) into either larvae or 

adults caused gene suppression and mortality (Rodrigues et al., 2017).  

In summary coleopterans tend to exhibit a robust systemic RNAi response and the 

sequence-specificity of this approach shows enormous potential for RNAi as a novel 

control method for other coleopteran pests such as A. tumida.   
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1.8. Development of novel bio-pesticides: Insectici dal Fusion proteins  

1.8.1 Molecular targets for insect control 

The major class of chemical insecticides act on one of six molecular targets in the 

insect nervous system, namely acetylcholinesterase, voltage-gated sodium channel 

(NaV), ƴ-aminobutyric acid (GABA) receptor, the glutamate-gated chloride channel, the 

insect nicotinic acetylcholine receptors (nAChR), and ryanodine receptors (RyRs) 

(Fukuto, 1990; Raymond-Delpech et al., 2005). Consequently, the limited range of 

molecular targets for insecticides has lead to the development of resistance being 

reported in over 600 arthropod species (Bass and Field, 2011). Insecticidal resistance 

can develop in several ways via increases in metabolic detoxification resulting from an 

increase in esterase, glutathione S-transferase or monooxygenase levels; decreased 

target sensitivity and/or increase sequestration or lowered insecticidal bioavailability 

(Brogdon and McAllister, 1998; Feyereisen, 1995). The molecular mechanisms 

responsible for these increases in resistance are point mutation on the site of action 

in the ion channel of GABA receptor or NaV channel, mutation in acetylcholinesterase 

active site, amplification of the esterase gene and mutations causing the up-regulation 

of detoxifying enzymes (Brogdon and McAllister, 1998; Feyereisen, 1995; Hemingway 

and Ranson, 2000; Hemingway et al., 2004).  

Insecticidal venom peptides derived from insect predators such as scorpions 

(Wugargiri et al., 2001), parasitic wasps (Gould and Jeanne, 1984), predatory mites 

(Tomalski et al., 1988) and spiders (Lipkin et al., 2002; Tedford et al., 2004) have 

received a great deal of interest as they provide an extensive source of highly 

insecticidal toxins. Many of these insecticidal toxins are active against neuronal 

voltage dependent sodium (Na+), potassium (K+), calcium (Ca2+) or chloride (Cl- 

channels (Fajloun et al., 2000). NaV channels are the target of existing insecticides 

such as pyrethroids, dihydropyrazoles and oxadiazines and venom peptides targeting 

these channels could hold potential for the control of an insect population that has 

developed resistance to NaV channel insecticides (Raymond-Delpech et al., 2005; 

Smith et al., 2013). In contrast to NaV channel, voltage-gated calcium (CaV) channels 

re not highly conserved between insect orders and hold enormous potential for the 

development of biopesticides that target only the pest insect without harm to beneficial 

species (King et al., 2008; Smith et al., 2013). 
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1.8.2 Voltage-gated calcium channels as targets for  insecticides 

CaV channels form membrane pores that open in response to membrane 

depolarization to allow the influx of extracellular calcium ions. CaV channels are 

responsible for mediating a range of intracellular processes such as muscle 

contraction, hormone and neurotransmitter release, patterns of gene expression and 

regulation of a range of enzyme activities (Catterall, 2000). The biophysical and 

biochemical properties of CaV channels are mainly defined by their α1 subunit and can 

be divided into two broad superfamilies referred to as low-voltage-activated (LVA) or 

high-voltage-activated (HVA) CaV channels. LVA CaV channels are activated by small 

membrane depolarization and show rapid voltage-dependant inactivation, in contrast 

HVA CaV channels are only activated by large depolarizations and are inactivated at 

a slower rate. LVA CaV channels are less complex than HVA CaV channels and 

consists primarily of a pore-forming α1 subunit, whereas HVA CaV channels typically 

comprising of 4-5 subunits. The pore-forming α1 subunit is made up of four repeat 

domains (I-IV) connected by an intercellular linker. Each domain consisting of six 

trans-membrane segments (S1-S6) and a re-entrant loop between S5-S6. S1-S4 

region service as an independent voltage sensor and they are arranged in a circle, 

such that S5-S6 and the re-entrance loop from each domain forms the pore of the 

channel. HVA CaV channels have in addition to the α1 subunit an extracellular α2 

subunit; transmembrane δ subunit linked to α2 via a disulfide bond to form a α2-δ 

complex, an intracellular β subunit and in some cases a transmembrane γ subunit 

(Catterall, 2000; Kang and Campbell, 2003; Bourinet and Zamponi, 2005; Klint et al., 

2012). The α2-δ complex, β and γ subunit are responsible for modulating activities such 

as the activation/inactivation kinetics and the voltage-dependence of activation of the 

α1 subunit (Doering and Zamponi, 2003). Additionally, β subunit assists in directing α1 

subunit to the plasma membrane (Dolphin, 2003) (Figure 1.8). Both LAV and HAV CaV 

channels can further be grouped according to one of three α1 subunit families Cav1, 

Cav2 and Cav3, with HVA currents being produced through Cav1, Cav2 while Cav3 

channels are responsible for LVA currents (Catterall et al., 2005). 

Mammalian genes encode for 10 α1 subunit, four β subunit, four α2δ complexes and 

seven γ subunit. In contrast insects have fewer genes coding for α1 subunit and in D. 

melanogaster genome only three α1 subunit, one β subunit, three α2 δ complexes and 

possibly one γ subunit have been identified (Littleton and Ganetzky, 2000; Rieckhof et 



CHAPTER 1 | INTRODUCTION  
 

 

36 
 

al., 2003; King, 2007). However, insects are able to expand the range of expressed 

functional Cav channels through alternative slicing and editing (King, 2007). 

In the D. melanogaster genome only three α1 subunits have been identified, 

Dmca1D, Dmca1A and Ca-α1T and can be classified as Cav1, Cav2 and Cav3, 

respectively (King, 2007). Eberl et al. (1998) and Kawasaki et al. (2002) both 

demonstrated that a loss of function of Dmca1D and Dmca1A in mutant flies lead to 

embryonic lethality, highlighting that each of these channels have a distinct non-

redundant physiological role that cannot be compensated for by another Cav channel 

subunit (King, 2007). Cav channels are less well conserved amongst insect Orders, 

compared to Nav channels, and comparison of D. melanogaster and T. castaneum 

Cav1 channel revealed that the level of amino acid identity was 74 %, which is 6 % 

more than the level of identity between Drosophila and human Cav α1 subunit. The 

critical physiological role Cav channels play in insects together with <68 % homology 

with vertebrates makes these channels highly suitable targets for the development of 

biopesticides (King, 2007). Additionally, the weak conservation of insect Cav channels 

means that these targets can be used to selectively target specific insects, with having 

potentially minimal impact on beneficial insects (King et al., 2008).  
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Figure 1.8.  CaV channels structure indicating subunits. (A)Two-dimensional structure of HVA 

CaV channels, α1 subunit is made up of four repeat domains (I-IV) consisting of six trans-

membrane segments (S1-S6); an extracellular α2 subunit; transmembrane δ subunit linked to 

α2 via a disulfide bond to form a α2-δ complex, an intracellular β subunit and a transmembrane 

γ subunit. (Source: Catterall and Few, 2008). (B) Three-dimensional structure of HVA and LVA 

CaV channels, indicating calmodulin (CaM) and the subunits mentioned above (Source: 

Simms and Zamponi, 2014).  
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1.8.3 CaV1 channel blockers – ω-Hexatoxin-Hv1a (Hv1a)  

Spider venom is exceptionally diverse, and some spiders express as many as 600-

1000 different peptides in a venom gland, providing a valuable source of insecticidal 

compounds. Spider venom is made up of a complex mixture of inorganic salts, low 

molecular organic molecules, disulfide-rich polypeptides and a high molecular mass 

protein including enzyme, which is responsible for incapacitating the central and 

peripheral nervous system of their prey, namely insects (Rash and Hodgson, 2002; 

Escoubas et al., 2006). Insect neurophysiology is partially controlled by Cav channels 

and it is most likely that peptide toxins present in spider venoms interfere with the 

functioning of these channels (King, 2007). ω – Hexatoxin-1 (ω –HXTX-1; formerly ω-

atracotoxin-1) peptides have been isolated from the Australian funnel-web spiders, 

Atrax spp. and Hadronyche spp. and belong to a family of peptides that consist of 36-

37 amino acid residues (Fletcher et al., 1997). These peptides have been shown to be 

highly toxic to ticks and a range of insects, belonging to the Orders Lepidoptera, 

Coleoptera, Diptera and Dictyoptera, but have been shown to be non-toxic to newborn 

mice and have no effect on vertebrate nerve-muscle preparations (Fletcher et al., 

1997; Tedford et al., 2004; Bloomquist, 2003; Mukherjee et al., 2006). Neurotoxic 

venoms tend to be highly toxic when injected, however they are largely ineffective 

when orally applied and this is due to only a fraction of the toxin being able to pass 

through the gut epithelium and target the site of action in the CNS (Fletcher et al., 

1997). 

One of the most studied spider venom toxin is ω-hexatoxin-Hv1a peptide (ω-HXTX-

Hv1a formerly known as ω-atracotoxin-Hv1; referred to as Hv1a hereafter), which is a 

37 amino acid residue toxin that has been isolated from H. versuta. Hv1a has been 

shown to be highly toxic to a range of arthropods, with no effect in vertebrates at doses 

some 10 000-fold higher than those shown to be effective in insects. Hv1a causes 

neuroexcitatory effects in affected insects, resulting in spastic paralysis, followed by 

flaccid paralysis and subsequent death. Hv1a acts on the CNS and the characteristic 

delay in paralysis after injection of the toxin is thought to be a consequence of the time 

require for the toxin to cross the nerve sheath and enter the CNS. This small peptide 

is able to bypass the nerve sheath, which is evident from the fact it targets the CNS 

and not the interganglionic or peripheral neuromuscular junction (Fletcher et al., 1997; 

Bloomquist, 2003). As shown in Figure 1.9 the structure of Hv1a consists of a 
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disordered N-terminal region (residue 1-3), a disulfide-rich globular core (residue 4-

21) and a C-terminal region β-hairpin (residue 22-37) that protrudes from the disulfide-

rich core (Fletcher et al., 1997). The three disulfide bonds form an inhibitory cystine 

knot (ICK) motif (King et al., 2002) in which the Cys17 -Cys36 disulfide bond is threaded 

through a closed loop formed by Cys4 -Cys21 and Cys11 -Cys22 disulfide bridges and 

the intervening section of the polypeptide backbone (Fletcher et al., 1997). The ICK 

motif is common in toxins isolated from venomous animals (Pallaghy et al., 1994) and 

provides these toxins with a high degree of chemical, thermal and biological stability 

affording resistance to proteolytic degradation (Saez et al., 2010; Herzig and King, 

2015). Tedford et al. (2001) have shown that the β-hairpin region is vital for insecticidal 

action and the amino residues Pro10, Asn27 and Arg35 are responsible for the 

interaction of the toxin with insects Cav channels (Tedford et al., 2004). Although the 

N-terminal residues are structurally disordered, two of the three residues are highly 

conserved across the ω-hexatoxins family. Wang et al. (1999) demonstrated that the 

first three amino acid residues are important for insecticidal potency, as deletions 

caused a reduction in insecticidal potency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. The structure of the ω-hexatoxin-Hv1a (ω-HXTX-Hv1a). The disulfide bonds 

between cysteine residues within the globular core are indicated in and the β-strands are 

indicated in yellow. The toxin structure can be divided into two regions: β-hairpin region and 

SS-rich core (Source: Tedford et al., 2004). 
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Tedford et al. (2007) confirmed that Hv1a targets Cav1, as D. melanogaster 

engineered to express an inducible Hv1a transgene often failed to successfully inflate 

and harden their wings after emerging from their puparia. In addition, this phenotype 

was similar to that observed in D. melanogaster carrying a hypomorphic Dmca1D 

allele (Cav1 gene) (Eberl et al., 1998). Hv1a binds with high affinity to Cav1 channels, 

which was evidenced by its ability to bind strongly to P. americana neuronal 

membranes and the elicitation of excitatory responses in Drosophila CNS preparations 

at subnanomolar concentrations (Bloomquist, 2003). In contrast Hv1a has been shown 

to have no effect at 10 µM concentration on cloned rat Cav1.2, Cav2.1 and Cav2.2 HVA 

channels and calcium currents in rat trigeminal neurons (Fletcher et al., 1998; Tedford 

et al., 2004).  

As previously mentioned, Hv1a is mostly toxic to insects via injection although 

Mukherjee et al. (2006) reported oral toxicity against the tick Amblyomma 

americanum. In addition, Khan et al. (2006) reported that topical application of Hv1a 

was toxic to H. armigera and Spodoptera littoralis larvae; however, Hv1a was applied 

in a solution containing elevated levels of imidazole, a compound known to have 

contact insecticidal activity (Pence, 1965). Given their high specificity and potency 

towards a range of invertebrates, Cav channel neurotoxins serve as ideal candidates 

for the development of novel bioinsecticides. However, potential application of Hv1a 

alone as a bioinsecticide is limited, without a suitable delivery system enabling 

transport of the toxin from the insect gut into the haemolymph. 
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1.8.4 Galanthus nivalis Agglutinin (GNA) as delivery agent for insecticidal  

peptides 

Lectins are a large group of proteins, isolated from numerous organisms including 

bacteria, fungi, higher plants, vertebrates and invertebrate animals that bind to 

carbohydrates (Peumans and van Damme, 1995). Plant lectins are proteins that have 

at least one non-catalytic domain that bind reversibly and specifically to mono- or 

oligosaccharides (Peumans and van Damme, 1995). Plant lectins tend to be 

concentrated in seeds or vegetative storage tissues, serving as a source of amino 

acids for growth and development, and as a defence mechanism against biological 

stresses such as insect herbivory (Peumans and van Damme, 1995).  

The snowdrop lectin, Galanthus nivalis agglutinin (GNA), is one of the most widely 

studied lectins and belongs to a group of mannose binding lectins isolated from the 

Amaryllidaceae plant family. GNA is a 50 kDa tetrameric protein composed of four 

identical 12.5 kDa subunits that shows specificity to α-D-mannose, particularly those 

containing α-1, 3 linked mannose oligosaccharides (Van Damme et al., 1987; Shibuya 

et al., 1988) (Figure 1.10). Although different isoforms have been isolated and cloned, 

typically each subunit consists of a 157 amino acid polypeptide, with a 23 residue N-

terminal signal sequence and 29 residue C-terminal extension. The mature GNA lectin 

monomer consists of 105-residues and contains three carbohydrate binding sites (Van 

Damme et al., 1991).  
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Figure 1.10.  Structure of Galanthus nivalis agglutinin (GNA) tetramer; each 

subunit is represented by a different colour (green, orange, yellow and purple). 

The red and white circles represent mannose residues bound to the subunit 

binding site (Source: Hester et al., 1995). 
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Bacillus thuringensis (Bt) is a gram-positive soil dwelling bacterium that possesses 

entomopathogenic properties, and the insecticidal activity is due to crystal toxins being 

formed during sporulation in the membranes of gut epithelial cells (Angus, 1956; 

Morse et al., 2001). Cry and Cyt δ-endotoxin have shown to have high insecticidal 

activity against Lepidopterans and Coleopteran pests, however Hemipteran insects 

such as aphids, whiteflies, plant bugs and stink bugs, are not affected by these toxin 

(Sanahuja et al., 2011). In contrast, GNA has shown insecticidal effects against these 

sap-feeding insects as well as Lepidoptera, Coleoptera and Acari, having effects on 

fecundity, weight gain, pupation and in some cases survival (Gatehouse et al., 1996; 

Sauvion et al., 1996; Fitches et al., 1997; Stoger et al., 1998; Sétamou et al., 2003; 

McCafferty et al., 2008; Li et al., 2009). Consequently, GNA has received a great deal 

of attention particularly due to its toxicity towards Hemiptera and genes that encode 

GNA have been incorporated into potato, rice, maize, tobacco, wheat, tomato and 

sugarcane, affording partial protection against these pests (Li and Romeis, 2009). The 

toxicity of GNA, is thought to be a consequence of binding to many different 

glycoconjugate expressing recognised carbohydrate moieties, which causes 

morphological changes in the gut epithelium, resulting in the disruption of microvilli 

and brush border region, ultimately interfering with nutrient uptake and absorption 

(Powell et al.,1998; Du et al. 2000; Fitches et al., 2001; Sadeghi et al. 2008). Machuka 

et al. (1999) screened 16 lectins against the legume pod-borer, Maruca virata, with all 

of them effecting at larval survival, weight, feeding ability, pupation, adult emergence 

and/or fecundity, however GNA was deemed the most effective lectin affecting all the 

parameters previously mentioned. Powell et al. (1998) first confirmed that GNA binds 

to the gut of rice brown plant hopper, Nilaparvata lugens and can cross the gut barrier 

which was evidenced by the presence of GNA in the fat bodies, ovarioles and 

haemolymph. Thereafter Du et al. (2000) identified ferritin (involved in iron transport) 

as a receptor for GNA binding in the gut of N. lugens. Sadeghi et al. (2008) further 

confirmed the role of ferritin as a receptor of GNA in S. littoralis. Fitches et al. (2001) 

provided additional evidence for GNA ability to bind to the gut epithelium of the tomato 

moth Lacanobia oleracea and subsequent transport into the haemolymph, via 

receptor-mediated endocytosis, following oral delivery of this lectin. Additionally, 

Fitches et al. (2012) demonstrated that GNA delivered orally or via injection bound 

with high specificity to the nerve cord of the cabbage looper Mamestra brassicae. 
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Many lectins such as Black bean (Phaseolus vulgaris) phytohemagglutinin (PHA) 

and wheat germ N-acetylglucosamine-specific agglutinin (WGA) are known to be toxic 

towards mammals. The toxic effects can be attributed to resistance to proteolytic 

degradation and GNA like other lectins are not readily broken down enabling it to bind 

to the cells expressing recognised carbohydrate moieties (Pusztai et al.,1991). Pusztai 

et al. (1991) demonstrated this resistance to proteolytic degradation by feeding rats 

known amounts of three lectins, Concanavalin A (ConA), PHA and GNA, by 

subsequently recovering 90 % of the lectins from the rats faeces. In contrast to PHA 

and WGA, GNA is deemed to be safe to higher mammals having only a slight effect 

on the growth of rats at the dietary levels that would be encountered in the field 

(Pusztai et al.,1996). The negligible effects were thought to be attributed to the scarcity 

of the α-1, 3 linked mannose moieties in the brush border of the small intestine 

membrane of the rat, which is required for high specificity binding of GNA and 

subsequent interference with nutrient uptake and absorption. More recently, Poulsen 

et al. (2007) carried out a 90-day feeding study to assess the safety of transgenic rice 

expressing GNA on male and female Wistar rats. No toxic effects were recorded over 

the bioassay period, however several significant differences were observed between 

rats fed on diets containing genetically modified and parental rice, but none of the 

effects were considered to adversely affect clinical, biological, immunological, 

microbiological and pathological parameters.  

 

1.8.5 Alternative carrier protein: Soybean Kunitz t rypsin inhibitor-SKTI 

Plant proteinase inhibitors (PIs) are small proteins, ranging from 4 to 25 kDa, that 

are rapidly synthesised in plant tissue as a defence molecule under stress-prone 

conditions such as insect attack and mechanical wounding.  PIs can be divided into 

four main types; serine, cysteine, aspartic or metallo-proteases, based on their 

digestive protease activity. Lepidopteran larvae depend predominantly upon enzymes 

similar to the serine proteases (e.g., trypsin, chymotrypsin and elastase), whereas 

coleopterans typically rely upon enzymes similar to cysteine proteases for protein 

digestion (Schuler et al., 1998; Hilder and Boulter, 1999). PIs act by inhibiting the gut 

proteases of insects by irreversibly binding tightly to the active sites preventing 

utilisation of the ingested protein and consequently resulting in amino acid deficiency 
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which affects growth, development and survival (Ryan 1990; Richardson, 1991; 

Gatehouse et al., 1993; Solomon et al., 1999; Carlini and Grossi-de-Sá, 2002).  

  Interest in the effect of plant serine PIs (SPIs) was evoked in 1947 when Mickel 

and Standish observed that certain insect larvae did not develop normally when fed 

on soybean products (Mickel and Standish, 1947). Thereafter, Lipke et al. (1954) 

observed that the larvae of Tribolium confusum failed to develop on raw soybean 

inhibitors. Applebaum et al. (1964) went on to demonstrate that lima bean inhibitor, 

ovomucoid, soybean Kunitz trypsin inhibitor (SKTI) and soybean Bowman-Birk 

inhibitor (SBBI) inhibited mealworm, Tenebrio molitar midgut proteases known to 

contain both trypsin and chymotrypsin like enzymes. Additionally, Cowpea trypsin 

inhibitor (CpTI) has been shown to be insecticidal to a range of economically important 

pest species including members of the Orders Lepidoptera, Coleoptera and 

Orthoptera (Gatehouse et al., 1997). Direct evidence for the protective function of PIs 

against insects was demonstrated by Green and Ryan (1972), who showed that 

wounding caused by T. castaneum feeding on potato and tomato plants induced the 

synthesis and accumulation of PIs. Prior to 1987 the use of PIs was limited to the 

incorporation into artificial diet due to the lack of available PI sequence data. The first 

successful report of insect control making use of transgenic plants expressing PIs was 

documented by Hilder et al. (1987). Hilder et al. (1987) demonstrated that transgenic 

tobacco plants expressing CpTI caused 50 % mortality and stunted growth of tobacco 

budworm larvae H. virescens. Comparable effects of CpTI were subsequently 

observed against corn ear worm, H. zea (Hilder and Boulter, 1999; Schuler et al., 

1998). 

SKTI administered via artificial diet and transgenic plants, has shown to inhibit the 

development and growth of Coleoptera and Lepidoptera larvae (Gatehouse et al., 

1993; Johnson et al., 1995). SKTI, first isolated from soybean seeds by Kunitz (1945) 

is a 21.5 kDa monomeric, nonglycosylated protein containing 181 amino acids. SKTI 

is a sphere of about 3-5 nm in diameter consisting of 12 criss-crossing antiparallel β-

strands proteins that are highly resistant to thermal and chemical denaturation, with 

two disulfide bridges involving Cys 39-86 and Cys 138-145 critical for the inhibitory function 

(Steiner et al., 1965; Lehle et al., 1994; Tetenbaum and Miller, 2001) (Figure 1.11). 

Gatehouse et al. (1993) transformed tobacco plants with SKTI and demonstrated high 

growth inhibitory effects in H. virescens larvae. SKTI has also been transformed into 
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rice plants and resulted in 40-60 % mortality of brown plant-hopper Nilaparvata lugens, 

(Lee et al., 1999). Additionally, the SKTI gene was introduced into the white clover 

affording protection against attack by the black field cricket, Teleogryllus commodus, 

and grass grub, Costelytra zealandica (McManus et al., 2005). Transgenic tobacco 

plants expressing elevated levels of SKTI have shown greater resistance against the 

bollworm, Helicoverpa armgera than plants expressing CpTI, and this is thought to be 

attributed to SKTI being more effective in reducing proteolytic activity within the gut 

(Shukla et al., 2005).   

Although PIs expressing transgenic plants can confer resistance to attack by crop 

pests, insects have been shown to be able to overcome toxic effects either by 

synthesising new proteases insensitive to the ingested PIs and/or by degradation of 

PIs (Brown et al., 1997; De Leo et al., 1998; Giri et al., 1998).  For example, in T. 

castaneum that depends predominantly upon cysteine proteases upregulates the 

expression of serine proteases in response to ingestion of CPIs (Oppert et al., 2005).  

To overcome resistance to PIs synergistic effects of plant lectins and PIs such as CpTI 

are being evaluated and results have demonstrated higher mortality rates and lower 

larval weights against H. virescens in comparison to plants expressing only a lectin or 

a PI (Macedo et al., 2015). Zhu-Salzman et al. (2003) constructed a recombinant 

fusion protein encoding for soybean cysteine protease inhibitor N and Griffonia 

simplicifolia lectin II and after delivery to the cowpea bruchid, Callosobruchus 

maculatus, the fusion protein induced 100 % mortality, whilst proteins delivered 

separately led to on average 50 % mortality. Down et al. (1999) has shown evidence 

for the transport of SKTI, whereby SKTI was detected in the hemolymph of L. oleracea, 

after oral administration of the protein in artificial diet. These results suggest that the 

effects of SKTI could be enhanced by using it as an alternative carrier protein to GNA 

for the delivery of Hv1a to the circulatory system of A. tumida. 
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Figure 1.11.  Structure of soybean Kunitz trypsin inhibitor (SKTI). (A) Primary 

structure, disulfide bonds are shown in black. (B) 3-dimentional structure, disulfide 

bonds are shown in blue. (Source: Onesti et al., 1991; De Meester et al., 1998). 
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1.8.6 Fusion  of spider neurotoxin peptide to GNA to produce a re combinant 

fusion protein  

Hv1a is one of the most toxic spider venom peptides towards to a range of insect 

pest belonging to the Orders Lepidoptera, Coleoptera, Dipteran and Dictyoptera 

(Tedford et al., 2004; Mukherjee et al., 2006; Khan et al., 2006). It’s potency and 

specificity towards invertebrates, makes it an ideal candidate for the development of 

bioinsecticides (Bloomquist, 2003; Tedford et al., 2004; Mukherjee et al., 2006). Hv1a 

is toxic by injection, but typically lacks insecticidal effects after oral delivery and this 

has been ascribed to poor absorption by the insect and degradation of the peptide in 

the gut, preventing the delivery of the toxin to the action site in the CNS (Atkinson et 

al., 1998; Bloomquist, 2003; Tedford et al., 2004). GNA is the ideal carrier protein for 

Hv1a as it has shown to be highly resistant to proteolytic degradation and is able to 

cross the gut epithelium, (Fitches et al., 2001).  

The potential of GNA as a carrier protein for the transport of insecticidal peptides 

into insect haemolymph, was first demonstrated by Raemaekers (2000). A 

recombinant fusion protein consisting of GNA fused to the green fluorescent protein 

(GFP), was fed to Lacanobia oleracea larvae and following ingestion the fusion protein 

was detected in the haemolymph. Fitches et al. (2002) subsequently produced an 

insecticidal fusion protein by fusing tobacco hornworm Manduca sexta allatostatin 

(Manse-AS; a neuropeptide hormone) to GNA. Oral delivery of the fusion protein 

significantly reduced growth and feeding in fifth stadium L. oleracea larvae. and 

delivery of Manse-AS was evidenced by the detection of intact protein in the 

haemolymph of fusion-fed insects. The use of GNA as a carrier protein to deliver fused 

peptides has further been demonstrated for the spider toxin SF11 isolated from 

Segestria florentia and ButaIT a toxin isolated from the red scorpion, Mesobuthus 

tamulus. Oral delivery of both fusion proteins caused decreased survival and growth 

in L. oleracea, T. castaneum and M. domestica, larvae fed on diets containing the 

respective fusion proteins (Fitches et al., 2004; Fitches et al., 2010). Fitches et al. 

(2012) showed that an Hv1a/GNA fusion protein had significant oral activity when fed 

to lepidopteran M. brassicae larvae. Furthermore, the authors provided evidence for 

GNA binding to the nerve cord of M. brassicae following injection and feeding of 

fluorescently labelled fusion protein, suggesting GNA can act as an anchor binding to 

the nerve cord, increasing the local concentration of the Hv1a peptide dramatically 
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enhancing the activity of the peptide (Fitches et al., 2012). Yang et al. (2014) further 

demonstrated the carrier and binding capabilities of GNA by fusing it to another spider 

venom peptide δ-amaurobitoxin-PI1a (PI1a). It was demonstrated that injection of 

PI1a/GNA fusion was approx. six times more toxic to M. brassicae, than injection of 

PI1a alone. Furthermore, oral delivery of the PI1a/GNA fusion protein resulted in 100 

% mortality of M. brassicae larvae after 6 days, whereas PI1a alone showed no toxicity 

towards larvae after ingestion.  

 

1.9. Expression of fusion proteins: The yeast expre ssion system 

The methylotrophic yeast Pichia pastoris, is a single-celled eukaryotic 

microorganism that is a capable of the post-translational modifications performed by 

higher eukaryotic cells such as proteolytic processing, folding, disulfide bond 

formation, and glycosylation. Hence P. pastoris has become a widely used expression 

system for the large-scale production of eukaryote recombinant proteins that typically 

end up as insoluble inclusion bodies in Escherichia coli (prokaryotic) expression 

systems (Cregg et al., 2000). Thus, P. pastoris is an ideal host for producing small 

proteins with a high content of disulfide bridges that require complex post-translational 

processing dependant on the presence of endoplasmic reticulum (ER) compartment, 

enabling correct protein folding allowing for maintenance of biological activity (Daly 

and Hearn, 2005). Additionally, this system is considered easy to manipulate, grows 

rapidly on inexpensive media achieving high cell densities expression levels and 

subsequently high protein yields (Cregg et al., 2000).  Lectins and fusion proteins have 

successfully been produced in P. pastoris as fully active folded proteins allowing for 

direct recovery of soluble protein from culture media overcoming issues associated 

with recovery and refolding of protein from insoluble inclusion bodies from expression 

in E. coli. (Raemaekers et al., 1999; Fitches et al., 2004; 2012; Trung et al., 2006). 

The expression of a foreign gene in P. pastoris consists of three steps: (a) insertion 

of the target gene into an expression vector; (b) introduction of the expression vector 

into the P. pastoris genome and (c) screening of clones for the expression of the 

foreign gene (Patrick et al., 2005). The expression of the incorporated coding 

sequence in P. pastoris, is driven by the glyceraldehyde-3-phosphate dehydrogenase 

gene (GAPH) promoter. The GAPH promotor makes use of a continuous glycerol feed 
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as a source of carbon and is favoured over the inducible promoter derived from the 

alcohol oxidase I gene (AOXI) which utilises methanol for induction and requires a 

shift from one carbon source to another to induce expression of a foreign gene (Cregg 

et al., 2000). The most commonly used secretory signal in commercially available P. 

pastoris vectors (pGAPZα) is the Saccharomyces cerevisiae α-factor prepropeptide. 

During post-translational processing, the signal peptide is most often cleaved from the 

expressed protein prior to leaving the yeast cell (Brakes, 1990). The α-factor 

prepropeptide used in P. pastoris enables proteins to be secreted into the culture 

supernatant and as few endogenous proteins are secreted into the media, this makes 

purification and down-stream processing straight forward for large-scale production 

(Cereghino and Gregg, 2000; Goodrick et al., 2001).   

The wild-type X33 P. pastoris strain produces extracellular proteases during 

fermentation which can lead to the degradation of recombinant proteins. As such the 

P. pastoris strain SMD1168H is sometimes used to produce recombinant proteins as 

it is deficient in the extracellular vacuole peptidase A (pep4) responsible for protein 

cleavage (Gleeson et al., 1998). This was illustrated by Fitches et al. (2004) whereby 

expression of SFI1/GNA fusion protein in the wild type X33 strain resulted in 1:1 ratio 

of intact protein to cleaved GNA. Expression of the same fusion protein in SMD1168H 

significantly reduced but did not completely prevent proteolytic cleavage (thought to 

occur at or near the linker region between SFI1 and GNA) during fermentation. 

Similarly, Hv1a/GNA when expressed using SMD1168H resulted in the production of 

75-100 % intact fusion protein, as compared to 50-60 % intact protein was recovered 

from the wild type strain X33. Hv1a/GNA cleavage occurs between the C-terminus of 

the toxin and the N-terminus of GNA (Fitches et al., 2012). The C-terminus of Hv1a, 

residue 33-36, has an amino acid sequence VRKC which is similar to the EKRE signal 

sequence present in the α-factor prepropeptide which is cleaved between the R and 

E by the KEX2 gene product (Fitches et al., 2012).  Pyati et al. (2014) altered the 34th 

amino acid of Hv1a by point mutation from lysine to glutamine residue (K34 to Q34) 

and showed that the modified version of Hv1a/GNA enhanced the expression of intact 

fusion protein by almost 10-fold, without effecting the biological activity. Additionally, 

a C-terminal (His)6 tag was incorporated at the C-terminus of GNA, allowing for rapid 

purification by nickel affinity chromatography (Fitches et al., 2010; Pyati et al., 2014). 

Fitches et al. (2010) also showed that linkage of the ButaIT toxin to the C-terminus (as 
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opposed to the N-terminus) of GNA (GNA/ButaIT) and the incorporation of a tri-alanine 

linker region appeared to improve stability during expression and purification, 

increasing yield of intact fusion protein. Furthermore, it was demonstrated biological 

activity towards S. littoralis, M. domestica and T. castaneum was not significantly 

reducing, as compared to ButaIT/GNA.   

 

1.10 Aims and objectives 

The aims of the project were to explore potential for the development of next 

generation biopesticides, including RNAi and fusion protein technology, as an 

alternative control method for A. tumida. Assessment of non-target effects upon honey 

bee adults and larvae was also a key component of this research. 

The objectives were: 

1. Identification of suitable target genes and subsequent evaluation of RNAi 

effects in A. tumida. Assessment of non-targets effects against honey bees. 

2. To produce and analyse the biological activity of recombinant GNA, Hv1a 

and the fusion proteins Hv1a/GNA, GNA/Hv1a, Hv1a(K>Q)/GNA and 

GNA/Hv1a(K>Q) towards A. tumida. Assessment of non-targets effects 

against honey bees. 

3. Identification and characterisation of the digestive proteases of A. tumida 

feeding larvae. 

4. Evaluation of SKTI as an alternative carrier to GNA to transport Hv1a into 

the circulatory system of A. tumida. To clone, express and analyse biological 

activity of recombinant SKTI and SKTI/Hv1a fusion proteins towards A. 

tumida.  
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CHAPTER 2 | MATERIALS AND METHODS  

2.1 General molecular biology methods 

2.1.1 Chemicals and reagents 

All the chemicals and reagents used in these experiments were supplied by VWR 

or Sigma unless otherwise stated. Restriction enzymes and other molecular biology 

reagents were supplied by Fermentas, ThermoFisher Scientific, Bioline Reagents Ltd, 

Promega or Qiagen, unless otherwise stated.  

 

2.1.2 Oligonucleotides  

Oligonucleotides used to synthesise dsRNA or expression constructs were 

obtained from Eurofins MWG (Ebersberg, Germany). Primers were re-suspended in 

molecular grade water to a concentration of 100 pmol/µl. Melting temperature (Tm) for 

the primers was determined using Eurofins MWG (Ebersberg, Germany) property 

check calculator. Primers were used at Tm 50°C for Taq polymerase and at 60°C for 

Phusion HF polymerase. 

 

2.1.3 RNA extraction and DNase treatment  

Total RNA was DNase treated and isolated from A. tumida using SV Total RNA 

Isolation System. Aethina tumida larvae or pupae were placed into a 2 ml tube 

containing 0.5 ml of 0.5 mm zirconia/silica beads (Thistle Scientific) and the amount 

RNA Lysis Buffer (RLA) containing 2 % (v/v) 2-mercaptoethanol added to each sample 

was based on a recommended ratio of 1 ml of RLA to 171 mg of tissue. Samples were 

homogenised using a Precellys 24 tissue homogenizer (Bertin Technologies) for 2 min 

at 6800 rpm. After homogenisation the RNA extraction and DNase treatment 

continued according to manufacturer's instructions. Prior to cDNA synthesis RNA 

integrity was verified by agarose gel electrophoresis and quantified using a NanoDrop 

spectrometer (see section 2.1.9).  

 

2.1.4 cDNA synthesis 

cDNA was synthesised using Superscript III reverse transcriptase (Invitrogen, 

Carlsbad, CA, USA). For first strand synthesis 1 µg of total RNA was added to 500 ng 

of oligo(dT)18 primer (TTTTTTTTTTTTTTTTTT) (Life Technologies), 1 µl 10 mM 

dNTP mix (10 mM dATP, dCTP, dGTP and dTTP) and sterile water to a volume of 13 
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µl. Thereafter the mixture was heated to 65°C for 5 min and placed directly on ice for 

at least one min. 4 µl 5x First Strand Buffer, 1 µl 0.1 DTT, and 1 µl of Superscript III 

RT (200 units/ µl) was added and incubated at 50°C for 50 min. The enzyme was 

subsequently inactivated by incubating for 15 min at 70°C.  First-strand cDNA was 

quantified using a NanoDrop spectrometer (see section 2.1.9) and stored at -80°C 

until use. 

 

2.1.5 Taq Polymerase Chain Reaction (PCR) 

Taq DNA Polymerase was used for standard PCR reactions. PCR reactions were 

set up in 0.2 ml thin-walled PCR tubes in a total volume of 50 µl. A typical reaction 

contained 25 µl of 2x PCR buffer (10x taq buffer; 3 mM MgCl2, 0.4 mM dNTP’s (dATP 

dCTP, dGTP, dTTP ), 0.2 µM of each of the forward and reverse primer, 0.32 µl (1.25 

units) Taq DNA Polymerase, template cDNA and molecular grade water (MGW) to a 

volume of 50 µl. PCR conditions were: 95°C for 3 minutes (1 cycle), 95°C for 30 

seconds, 50°C for 30 seconds, 72°C for 40 seconds (35 cycles) and 72°C for 10 

minutes (1 cycle). Taq polymerase was used for PCR other than when sequences for 

RNAi constructs were being amplified, in this instance Phusion Polymerase was 

utilised. 

    

2.1.6 High Fidelity PCR  

 Phusion® High-Fidelity DNA Polymerase was used for the amplification of 

sequences for RNAi constructs. Proof reading enzyme ensures that the sequence 

amplified is correct as the error rate is 50-fold lower than that of Taq DNA Polymerase. 

PCR reactions were set up 0.2 ml thin-walled PCR tubes in a total volume of 50 µl. A 

typical reaction contained 10 µl 5x Phusion buffer, 1 µl 10 mM dNTP mix, 0.5 µM of 

each of the forward and reverse primer, 0.5 µl (1 unit) Phusion® DNA Polymerase, 

plasmid DNA and MGW to a volume of 50 µl. PCR conditions were: 95°C for 3 minutes 

(1 cycle), 95°C for 30 seconds, 60°C for 30 seconds, 72°C for 40 seconds (20 cycles) 

and 72°C for 7 minutes (1 cycle). 

 

2.1.7 Agarose gel electrophoresis 

To check the integrity of RNA extractions or size of PCR products agarose gel 

electrophoresis was used. Gels were made up with 1.2 % (w/v) Agarose Molecular 
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Grade in 250 ml conical flask with 1xTBE (1.1 % (w/v) Tris, 0.55 % (w/v) Boric acid, 

50 mM Na2EDTA (pH 8.0) prepared in distilled water) and ethidium bromide (final 

concentration 0.5 µg/ml). Samples were mixed with loading dye (40 mM EDTA pH 8.0, 

15 % (w/v) Ficol 400, 0.25 % (w/v) Orange G, prepared in sterile distilled water) and 

loaded into the gel submerged in 1xTBE buffer. A MassRuler DNA Ladder Mix (0.8-

10.0 kb) was run alongside samples at room temperature, at 120 V for 40-50 min. DNA 

fragments were visualised under a UV light source. 

 

2.1.8 Purification of DNA from agarose gel 

The bands visualised on the trans-illuminator were excised from the gel using a 

single edged razor blade. The DNA was extracted from the gel using a QIAquick gel 

extraction kit according to the manufacturer’s instructions. All DNA was eluted in 30 µl 

of the suppled buffer and stored at -20°C until use. 

 

2.1.9 Quantification of isolated RNA and DNA 

RNA, cDNA, plasmid DNA, ssRNA and dsRNA was quantified using Thermo 

Scientific NanoDrop 1000 Spectrophotometer under highly accurate UV/V is and 1-2 

µl samples were analysed. MGW or Ringers solution (125 mM NaCl, 1.5 mM CaCl2, 5 

mM KCl pH 7.31), depending on the sample type, was used as a blank measurement. 

 

2.1.10 Restriction endonuclease digestion 

Restriction enzyme digestions were carried out using commercially available 

enzymes and were carried out using buffers and temperatures recommended by the 

manufacturers. The digestions reactions were typically carried out in 20-100 µl 

reaction, using the recommended buffer supplied and 5-10 units of enzyme per 1 µg 

DNA. Where double digestions were conducted optimal buffers were selected via 

manufacturer’s guidelines. Digestion reactions were incubated at 37°C overnight. 

 

2.1.11 Ligation of DNA 

Ligations were carried out using 1 unit of T4 ligase and 1 µl 10x ligase buffer in a 

10 µl reaction. The ratio of plasmid DNA to insert was 1:3 based on concentration. 

Ligation reactions were incubated at 4°C overnight.  
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2.1.12 E. coli transformation 

One Shot® TOP10 Chemically Competent E. coli were used as they provide a 

transformation efficiency of 1 x 109 cfu/µg plasmid DNA and are ideal for high-

efficiency cloning. Plasmids were transformed by adding 5 µl of ligation mixture to 50 

µl of competent cells and gently mixed. Cells were chilled on ice for 30 min, thereafter 

heat shocked for 30 seconds at 42°C and then placed on ice for 2 min. 250 µl of pre-

warmed Super Optimal Broth (2 % tryptone w/v, 0.5 % yeast extract w/v, 10 mM NaCl, 

2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 mM glucose) was then added and 

the resulting mixture was incubated at 37°C for 1 hr with shaking at 225 rpm. For each 

transformation 20 µl and 200 µl of culture was spread onto Luria Bertani (LB) (1 % 

(w/v) NaCl, 1 % (w/v) peptone, 0.5 % (w/v) yeast extract, 1.5 % Bacto agar, prepared 

in distilled water) plates containing carbenicillin (100 µg/ml) antibiotic and incubated 

overnight at 37°C. Low salt Luria Bertani (LSLB) (0.5 % (w/v) NaCl) was used in place 

of LB when zeocin antibiotic was used.  

 

2.1.13 Bacterial cultures 

To grow bacterial cultures after transformation a single colony was picked from a 

LB or LSLB plate or 5-10 µl of glycerol stock and grown in 5-10 ml of autoclaved 

sterilized LB or LSLB liquid culture containing carbenicillin (100 µg/ml) or zeocin (25 

µg/ml) antibiotic. Cultures were grown overnight at 37°C with shaking at 225 rpm. 

Carbenicillin anti-biotic was added to sterilized agar once cooled to 40-50°C to avoid 

antibiotic degradation. Sterile microbiology technique was used in all cases. 

 

2.1.14 Glycerol stocks of E. coli clones 

E. coli clones were grown as previously stated in section 2.1.13. 750 µl of overnight 

culture was added to 250 µl sterile 50 % (w/v) glycerol in a 1.5 ml micro centrifuge 

tube, and stored at -80°C until use. 

 

2.1.15 Colony PCR 

Colony PCR was carried out to verify if the selected DNA insert was cloned into the 

vector of choice. The volumes were reduced to 20 µl, with the volumes scaled down 

from those previously stated in section 2.1.5. MassRuler DNA Ladder Mix was used 

to verify the predicted molecular weight of the cloned products. For each 
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transformation seven bacterial colonies and a negative control were screened for the 

presence of the desired insert. Colonies were picked from LB plate with a sterile pipette 

tip, streaked onto a second plate (incubated overnight at 37°C), thereafter the 

individual pipette tips were mixed in an aliquot of PCR mastermix. The bacterial cells 

from the colonies were used as a template for PCR, as the cells are lysed in the first 

cycling step, and if the correct priming sites are present it allows for the clones to be 

assayed for the presence of an insert. PCR conditions were: 95°C for 3 minutes (1 

cycle), 94°C for 30 seconds, 60°C for 30 seconds, 72°C for 1 min (35 cycles). PCR 

products were visualised by agarose gel electrophoresis and positive clones were 

verified via DNA sequencing. 

 

2.1.16 Plasmid purification from transformed E.coli 

Isolation of plasmid DNA from small-scale E. coli cultures (5-10 ml) and large-scale 

cultures (50 ml) was carried out using QIAprep Spin Miniprep or Midiprep Kit according 

to the protocol supplied by Qiagen. The DNA from small-scale cultures was eluted in 

50 µl, whereas DNA from large -scale cultures was eluted in 1 ml. DNA plasmid were 

stored at -20°C until use.  

 

2.1.17 DNA sequencing and analysis 

All purified plasmids were sequenced by Eurofins MWG (Ebersberg, Germany) 

using appropriate vector primers. Sequences were analysed using a combination of 

Applied Biosystems Sequencer Scanner v 1.0, MEGA 5 software package (Tamura et 

al., 2011) and CLUSTALW.  

 

2.1.18 Linearization of plasmid DNA 

In preparation for dsRNA synthesis, plasmid DNA was linearized with restriction 

enzyme XhoI and XbaI to generate two ssRNA. Typically, 20 µg of plasmid DNA was 

linearized for a single in vitro transcription reaction. Each linearization reaction 

contained 10x enzyme activity buffer, 20 µl XhoI or XbaI and water to make up the 

appropriate volume. Reaction were incubated at 37°C overnight. 

In preparation for yeast transformation, plasmid DNA was linearized with restriction 

enzyme BlnI.  Typically, reactions were 200-300 µl in volume consisted of 6 µg plasmid 
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DNA, 10x enzyme activity buffer, 6 µl of BlnI and water to make up the appropriate 

volume. Reaction were incubated at 37°C overnight. 

 

2.1.19 Ethanol precipitation 

Nucleic acid solutions were precipitated to isolated DNA from samples by adding 

10 % v/v of 3M Sodium acetate pH 5.2 and 250 % absolute ethanol. Samples were 

mixed thoroughly by vortexing and incubated at -20°C overnight. Thereafter samples 

were centrifuged at 14, 000 g for 15 min at 4°C. The supernatant was carefully 

removed, and the resultant pellet was washed with 200/300 µl 70 % ethanol and 

centrifuge at the previously described conditions. The nucleic acid pellet was placed 

in a SpeedVac Plus (Savant) to dry and re-suspended in an appropriate amount of 

Ringers solution or MGW.  

 

2.2 Cloning of Laccase 2, V-ATPase subunit A and GAPDH for synthesis of 

dsRNA  

2.2.1 Design of degenerate primers  

A PCR primer sequence is considered degenerate if some of its positions have 

several possible bases and degeneracy represents the number of possible 

combination of base pairs. To identify conserved regions, selected amino acid and 

mRNA sequences were aligned using CLUSTALW. Degeneracy levels were kept to a 

minimum increasing specificity of the PCR amplification and base pair C or G was 

incorporated at the 3’ end to allow for efficient primer extension. 

Degenerate primers were designed to amplify PCR products of 629 base pair (bp), 

618 bp and 547 bp for Laccase 2, V-ATPase subunit A and GAPDH, respectively 

(Table 2.1). Laccase 2 degenerate primers were designed based on conserved 

regions in T. castaneum (GenBank accession no. AY884061.2), Monochamus 

alternatus (accession no. EU093075.1) and Bombyx mori BmLac2 (accession 

AB379590.1). V-ATPase subunit A degenerate primers were designed based on 

conserved regions in T. castaneum, (accession no. XM 971095.2), M. domestica 

(accession no. XM 005179917.1) and Ceratitis capitata (accession no. XM 

004533325.1). PCR reactions were performed using Taq DNA Polymerase under 

standard conditions. Amplified products were cloned into pJET1.2 (CloneJET PCR 

Cloning kit) as described in the manufacturer's protocol. Purified plasmids were 
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sequenced by Eurofins MWG (Ebersberg, Germany). Genbank accession numbers 

for cloned partial Laccase 2, V-ATPase subunit A and GAPDH sequences are 

KU696310, KU696311 and KU696309, respectively. 

 

Table 2.1.  Sequence of degenerate forward (F)/reverse (R) primers used for to isolate 

Laccase 2, V-ATPase subunit A and GAPDH. 

 

 

         

          

2.2.2 Isolation of Laccase 2, V-ATPase subunit A and GAPDH fragments  

To isolate Laccase 2, V-ATPase subunit A and GAPDH total RNA was isolated, as 

previously described, from 3rd week pupae and “wandering” larvae (i.e. in search of a 

suitable site for pupation), respectively. First-strand cDNA was prepared and the 

primers shown in table 1 were used to carry out PCR using Taq DNA Polymerase as 

previously described. PCR products were separated on 1.2 % agarose and visualised 

bands were excised from the gel using a single edged razor blade. The DNA was 

extracted from the gel using a QIAquick gel extraction kit according to the 

manufacturer’s instructions. CloneJET PCR Cloning Kit sticky-end cloning protocol 

was followed to ligate purified PCR products into pJET1.2/blunt Cloning Vector. The 

resulting ligation was transformed using One Shot® TOP10 Chemically Competent E. 

coli. Colony PCR was used to verify correct insert of DNA sequence, thereafter 

plasmid DNA was isolated from small-scale E. coli cultures (5 ml) using QIAprep Spin 

Miniprep Kit. Purified plasmids were verified via DNA sequencing. 

 

2.2.3 Cloning of template for dsRNA synthesis  

Laccase 2 (301 bp) and V-ATPase subunit A (306 bp) templates for in vitro 

transcription were generated using gene specific primers including XhoI and XbaI 

restriction enzyme sites (Table 2). PCR was carried out using Phusion® High-Fidelity 

DNA Polymerase under the following conditions: 95°C for 3 minutes (1 cycle), 95°C 

Primer Sequence 5’-3’ 

Lac F1 GACGTVGAGAACCAYATSGAAGG 

Lac R2  CGTATCKTTCMCCWGARAACG  

VTE F2  GKGARATYATYCGTYTGGARGGYGAHATG  

VTE R1 GMYTGYGAGATKACRGTYTTRCCRCA 
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for 30 seconds, 60°C for 30 seconds, 72°C for 40 seconds (20 cycles) and 72°C for 7 

minutes (1 cycle). The PCR products were excised and purified using QIAquick Gel 

Extraction kit. Purified PCR products and plasmid Litmus28i (New England BioLabs) 

were restricted with XhoI and XbaI and purified by agarose gel electrophoresis. PCR 

products and plasmid Litmus28i were ligated using T4 ligase and incubated overnight 

at 4°C. The ligation mixture was transformed into One Shot® TOPO10 Competent 

Cells, and selected clones were purified, and plasmids were verified by DNA 

sequencing. 

 

Table 2.2.  Sequence of gene specific forward (F)/reverse (R) primers used for the synthesis 

of Laccase 2 and V-ATPase subunit A dsRNA. Region in primer sequence underlined 

indicates restriction enzyme recognition site. 

 

 

 

                     

 

       

 

2.2.4 In vitro production of double stranded RNA (dsRNA) 

Laccase 2 and V-ATPase subunit A dsRNAs were prepared using Megascript T7 

transcription kit (Ambion), according to the manufacturer’s instructions. For control 

treatments dsRNA was prepared corresponding to a region of a bacterial nptII 

resistance gene (nptII). T7-RNA polymerase was used in transcription reactions, with 

target template linearized with XhoI and XbaI to generate ssRNA. Each ssRNA was 

precipitated by adding equal amounts of lithium chloride and nuclease-free water and 

re-suspended in Ringers solution. Finally, equal amounts of ssRNA were added 

together and annealed by heating the reaction to 80°C and allowing it to cool to room 

temperature overnight. The resultant dsRNA was quantified using a NanoDrop 

spectrometer and stored at -80°C until use. 

 

Primer Sequence 5’-3’ 

Lac (RS) F TATCTCGACGTGGAACCCAATATTACGA          

Lac (RS) R ATATCTAGAGACCGGTGTTTACAGCCAAT 

VTE (RS) F TATCTCGAGGGTGTAACAGTTGGTGATC 

VTE (RS) R ATATCTAGACCCTTGGCTTTAGGTGGCA 
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2.2.5 Analysis of gene expression by quantitative P CR 

Quantitative PCR (qPCR) was performed on A. tumida cDNA and relative 

expression of Laccase 2 and V-ATPase subunit A was determined using ViiA™ 7 

Real-Time PCR System (Life Technologies) with ∆∆CT methodology. In all cases, 

except for endogenous gene expression experiments, 3 biological replicates 

containing 5 pooled insects for each target gene and time point were analysed. qPCR 

primers were designed using Primer express software for real-time PCR v 2 (Applied 

Biosystems) (Table 2.3). Reaction mixtures (20 µl) contained 1x SYBR® Green 

JumpStart™ Taq ReadyMix™, ROX as a reference dye, 10 µM qPCR primers and 

200 ng of cDNA or water as a negative control. Reactions were run in triplicate. 

Analysis of amplification profiles was performed using ViiA™M 7 software (Life 

Technologies), according to the manufacturer’s guidelines. qPCR experiments were 

performed according to the MIQE guidelines outlined by Bustin et al. (2013). 

Expression of A. tumida Laccase 2 and V-ATPase subunit A was normalized to 

GAPDH, whereas A. mellifera expression was normalized to Elongation factor-1 (EF-

1) (Martin et al., 2013). 

 

2.2.6 Expression of Laccase 2 and V-ATPase subunit A during the life-cycle of  

Aethina tumida 

Total RNA was isolated at different developmental stages (eggs, larvae, wandering 

larvae, prepupae, pupae, non-emerged adult and emerged adult) and first-strand 

cDNA was synthesised as previously stated. In this case a single biological replicate 

containing 5 pooled insects or 50 mg wet weight of eggs were analysed in triplicate. 

Relative expression of targeted genes during the life-cycle of A. tumida was analysed 

using qPCR. 
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Table 2.3.  Sequence of forward (F)/reverse (R) qPCR primers used to monitor expression 

of A. tumida Laccase 2, V-ATPase subunit A and GAPDH. 

 

 

 

 

 

 

 

 

 

2.3 Standard biochemical techniques 

2.3.1 Estimation of protein concentration: Bradford  Assay 

Protein concentration was estimated using the Coomassie Plus (Bradford) Assay 

Kit according to manufacturer’s instructions. Bovine serum albumin (BSA) was used 

as a standard (0-7 µg/ml). In a microtitre plate 10 µl of sample, standard or water 

serving as a negative control was added to a well (in triplicate) and subsequently mixed 

with 290 µl of Coomassie Plus Protein Assay Reagent. Absorbance was measured at 

595 nm and protein concentration was determined by plotting the standard curve 

versus the sample concentration in µg/ml. 

 

2.3.2 Sodium dodecyl sulphate Polyacrylamide gel el ectrophoresis (SDS-PAGE) 

Sodium dodecyl sulphate Polyacrylamide gel electrophoresis (SDS-PAGE) was 

used to analyse protein samples, which consisted of 17.5 % or 15 % resolving gel 

(17.5% or 15 % (v/v) acrylamide) (National Diagnostics) 0.375 M Tris/HCI (pH 8.8), 

0.1 % (w/v) SDS, 0.2 % (w/v) ammonium persulphate, 0.05 % TEMED  (N,N,N',N'-

tetramethylethane) and 5 % and stacking gel (5 % (v/v) acrylamide, 0.125 M Tris/HCI 

(pH 6.8), 0.1 % (w/v) SDS, 0.25 % (w/v) ammonium persulphate, 0.075 % TEMED  

were cast in 1mm depth gel plate kits. All protein samples were prepared to the desired 

concentration by adding 20 mM sodium phosphate buffer (SP) (pH 7.4) and 5 X SDS 

sample buffer (0.2 M Tris-Base (pH 6.8); 5% (w/v) SDS; 20% (v/v) glycerol; 0.03% 

(w/v) Bromophenol blue; 25% (v/v) β-mercaptoethanol). Prior to being loaded into the 

wells of the gel, samples were boiled for 10 min in a heating block. A PageRuler™ 

Primer     Sequence 5’-3’ 

A. tumida Lac F  CCCATTGGAAGTGTTCACCAT 

A. tumida Lac R  GAAGCGAAGGAGTTGATGATACG 

A. tumida VTE F TGTGGCCTGTACGTCAACCA 

A. tumida VTE R  TCCGGTGAGAAGAGGATGATTC 

A. tumida GAPDH F TTCGAGATCGTGGAAGGTTTG 

A. tumida GAPDH R CAGAGGGACCGTCGACAGTT 
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Unstained Low Range Protein Ladder was used to enable protein Mw estimation (3.4 

kDa, 5 kDa, 10 kDa, 15 kDa, 20, kDa 25 kDa, 30 kDa, 100 kDa). Samples were 

fractionated at 90 V through the stacking gel and 150 V through the resolving gel, in 1 

x reservoir buffer (10 x reservoir buffer: 0.25 M Tris-HCI, 1.92 M Glycine, 1 % (w/v) 

SDS) using an ATTO AE-6500 gel tank apparatus. 

 

2.3.3 SDS-PAGE staining with Coomassie Brilliant Bl ue and de-staining  

After gel electrophoresis, proteins were visualised by the addition of Coomassie 

Brilliant Blue (CBB) (0.01 % (w/v) Coomassie Brilliant Blue G250, 12 % (v/v) glacial 

acetic acid, 20 % (v/v) methanol, prepared in distilled water), with agitation overnight 

at room temperature. Following staining, the gel was de-stained for 3-4 hr with 10 % 

(v/v) glacial acetic acid, 20 % (v/v) methanol, prepared in distilled water at the same 

conditions as stated above. 

 

2.3.4 Western Blotting  

Wet western transfer used in combination with chemiluminescent detection was 

performed following sample fractionation by SDS-PAGE (section 2.3.2). Nitrocellulose 

membrane (Protran BA85 nitrocellulose membrane, Whatman Ltd.) and 3MM blotting 

papers were cut to a similar size as the resolving gel and equilibrated in transfer buffer 

(25 mM Tris-Base; 192 mM glycine; 20% (v/v) methanol) together with foam pads for 

approximately and 1 hr prior to blotting. The aforementioned were prepared in a mini 

gel holder cassette for blotting in Mini Trans-Blot® Cell (Bio-Rad) in the following order: 

foam pad, three sheets of 3MM paper, the polyacrylamide gel, nitrocellulose 

membrane, 3 additional sheets of 3MM paper and finally the foam pad. The holder 

cassette was then secured and subsequently placed in the Mini Trans-Blot Central 

Core and electro-blotting was carried out at 100 V for 1 hr. Transfer of proteins and 

visualisation of the protein maker to the nitrocellulose membrane was confirmed by 

incubating the membrane in Ponceau S stain (Sigma) for 5 min and de-stained in 

blocking solution (1 x PBS, 0.05 % (v/v) Tween-20, 5 % (w/v) Milk powder). The 

nitrocellulose membrane was blocked in blocking solution for 1 hr at room temperature 

in 50 ml of blocking buffer with shaking. The proteins on the nitrocellulose membrane 

were probed 10 ml of blocking buffer containing GNA (1:2500) or SKTI (1:5500) 

primary antibodies and were incubated overnight at 4 °C. The primary antibody was 
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removed by 3 x 15 min washes in blocking buffer at room temperature with shaking. 

The secondary antibody was used in 10 ml blocking buffer at 1:5000 dilution for 2 hr. 

Membranes were then washed a further 3 times for 10 min in wash buffer (1 X PBS; 

0.05% (v/v) Tween 20) and finally thoroughly rinsed in distilled water. Under dark room 

conditions, membranes were incubated in 5 ml chemiluminescent detection solution A 

(1 M Tris-HCI pH, 0.2 mM Coumaric acid, 1.25 mM Luminol) and 15 µl of solution B 

(100 µl / ml 30% (w/v) sterile water) for 1 min. The membrane was then transferred to 

an X-ray cassette and proteins were visualised by exposure to X-ray film (Fujifilm). 

The film was developed by incubation for approx. 3 min in Developer solution (Kodak) 

and 3 min in Fixer solution (Kodak). 

 

2.4 Production of recombinant insecticidal proteins  in Pichia pastoris 

2.4.1 Synthesis of fusion protein constructs for ex pression in Pichia pastoris 

2.4.1 (i) Recombinant GNA and SKTI protein  

An expression construct containing the mature GNA nucleotide sequence (105 

amino acids) was produced at Durham University and Fera Science Ltd essentially 

according to Raemakers et. al., 1999. An expression construct containing the mature 

SKTI nucleotide sequence (189 amino acids) in pGAPZαB was designed at Durham 

University and produced at Fera Science Ltd. 

 

2.4.1 (ii) Recombinant pro-Hv1a protein  

An expression construct containing the mature pro-Hv1a (native pro-region) 

nucleotide sequence (59 amino acids) in pGAPZαB was designed and produced at 

Durham University. 

 

2.4.1 (iii) GNA/Hv1a, Hv1a/GNA construct and K>Q variants 

Four constructs containing either the Hv1a or Hv1a (K>Q) toxin linked to the N- or 

C- terminal of mature GNA nucleotide sequence in pGAPZαB were designed, at 

Durham University. The generation of a construct encoding for the mature Hv1a linked 

to the N-terminus of GNA has been previously reported (Fitches et al., 2012). The C-

terminus of the Hv1a peptide (residues 33–36) includes the sequence -VKRC-, which 

is similar to the sequence -EKRE- that is present in the α-factor signal sequence of 

the pGAP expression vector. -EKRE- is cleaved between R and E by the P. pastoris 
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KEX2 gene product. The inclusion of the 34th amino acid sequence K>Q modification 

in the Hv1a sequence, was altered by point mutation from a lysine to glutamine 

residual to remove a Kex2 cleavage site. The addition of this modification has shown 

to reduce cleavage resulting in more intact protein with no effect on toxicity after 

injection into M. brassicae (Pyati et al., 2014). Hv1a or Hv1a (K>Q) peptide was N- or 

C- terminal joined to the mature GNA nucleotide sequence by a 3-alanine linker region 

(Not I restriction site). All constructs had a (His)6 tag incorporated at the C-or N-

terminal enabling a single step purification of the fusion protein from fermenter 

supernatants. Fermentation and purification took place at Durham University and Fera 

Science Ltd. 

 

2.4.1 (iv) SKTI/Hv1a and SKTI/Hv1a with GGGGS extended linker (EL) 

Two existing constructs one containing the mature SKTI coding sequence and the 

other the mature C-terminal Hv1a toxin coding sequence were used for the creation 

of construct encoding for SKTI/Hv1a and SKTI/Hv1a with an extended linker region 

including GGGGS. For both constructs the SKTI sequence was amplified by PCR 

using forward primer to include 5’ Pst I restriction sites and (His)6 tag (5’ 

TATCTGCAGCACATCATCATCATCATCATGATTTCGTGCTCG). For SKTI/Hv1a the 

reverse primer included only a 3’ Not I restriction sites (5’ ATATGCGGCCGC 

AGAAAGGCCATGATTTTTC), whereas SKTI(EL)/Hv1a reverse primer had the 

addition of 3’ GGGGS linker followed by a Not I restriction sites (5’ 

ATATGCGGCCGCGCTACCACCACCACCAGAAAGGCCATG). Following amplific-

ation by PCR, the purified PCR products were transferred to the yeast expression 

vector pGAPZαB containing a C-terminal Hv1a toxin coding sequence by digestion 

with Pst I and Not I restriction enzymes. Ligation and transformation was carried out 

as previously stated. Positive clones were verified by DNA sequencing.  

 

2.4.1 (v) SKTI/Hv1a with X2 proline rich domain (PRD) 

Two proline rich domains (PRD), each followed by the linker GAAG nucleotide 

sequence (Bonning et al., 2014) with codon usage optimised for yeast, was inserted 

in the pUC57 vector incorporating Not I and Sal I restriction sites, was synthesised 

and supplied by ShineGene Molecular Biotech, Inc. (Shanghai 201109 China) 

(TATGCGGCCGCAGGTGATGATGCTCCACCATCTCCAGGTCCAGATCCAGGTC
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CACAACCACCACCACCACCACCACCATCTCCAACTCCAGTTGGTGGTGCTGCT

GGTGGTGATGATGCTCCACCATCTCCAGGTCCAGATCCAGGTCCACAACCACC

ACCACCACCACCACCATCTCCAACTCCAGTTGGTGGTGCTGCTGGTTCTCCAAC

TTGTATTCCATCTGGTCAACCATGTCCATATAATGAAAATTGTTGTTCTCAATCTT

GTACTTTTAAAGAAAATGAAAATGGTAATACTGTTAAAAGATGTGATTGAGTCGA

CTAT). Lyophilised plasmid DNA (4 µg) was re-suspended in sterile water. Plasmid 

DNA and expression vector pGAPZαB containing the mature SKTI coding sequence 

was digested with Not I and Sal I restriction enzymes. Ligation and transformation was 

carried out as previously stated. Positive clones were verified by DNA sequencing. 

 

2.4.2 Yeast competent cell preparation: SMD1168H of  the genotype pep4 

strains of Pichia pastoris (Invitrogen) 

A 10 ml starter culture of YPG (2 % (w/v) trypticase peptone, 1 % (w/v) yeast extract, 

4 % (v/v) glycerol) was inoculated with 2ul from glycerol stock and incubated overnight 

at 30ºC in a shaking incubator (220 rpm). An OD reading at 600 nm of the overnight 

culture was taken (1.1 to 1.3). Subsequently, 5 ml of the overnight culture was diluted 

to an OD600 of 0.1 to 0.3 in 50 ml of YPG. Thereafter the culture was incubated as 

above for approx. 4 to 6 hr until the optical density (OD) reached 0.6 to 1.0. The cells 

were pelleted by centrifugation at 500 g for 5 min at room temperature. The resultant 

supernatant was discarded, and the remaining cell pellet was re-suspended in 5 ml of 

Solution I. This suspension was further centrifuged as stated above, with the 

supernatant being discarded and the pelleted cells being re-suspended in 500 µl of 

Solution I. The competent cells were aliquoted into 50 µl aliquots in 1.5 ml tubes. The 

competent cells were frozen slowly by being stored at -20°C overnight. The following 

morning the competent cells were transferred and stored at -80°C until use.  

 

2.4.3 Transformation of fusion protein constructs i n Pichia pastoris 

Sequence verified clones were cultured overnight in 50 mL LSLB and zeocin 

antibiotic, and plasmid DNA isolated using a QIAprep Spin Midiprep kit (section 

2.1.16). A total of 6 µg of DNA was linearized overnight at 37°C using the Bln1 

restriction enzyme according to manufacturer’s instruction. Linearized DNA was 

ethanol precipitated by adding 1/10 volume of 3 M sodium acetate and double the 

reaction volume of absolute ethanol and precipitated overnight at -20°C. The 
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precipitated product was centrifuged at 14 000g for 15 min at 4°C. The supernatant 

was discarded, and the pellet was washed with 300 µl of 70% ethanol. The precipitated 

produce was centrifuged as stated above, with the supernatant being discarded and 

the resulting pellet was dried using a SpeedVac® Plus SC110A (Thermo Savant). The 

pellet was re-suspended in 11 µl of sterile distilled water and 1 µl of DNA was 

fractionated by agarose gel electrophoresis to confirm the presence of DNA. The 

remaining linearised DNA plasmid was added to 50 µl competent SMD cells, thereafter 

1 ml of Solution II was added. The cell mixture was incubated at 30°C for 1 hr with 

intermittent vortexing every 15 min. The cells were then heat shocked in a water bath 

at 42°C for 10 min. The cells were then transferred to a 50 ml falcon tube and 2 ml of 

YPG was added. The cell mixture was incubated at 30°C for 2 hr to allow for the 

expression of the zeocin resistance. The cell mixture was pelleted by centrifugation at 

3000 g for 5 min at room temperature. The supernatant was discarded, and the pellet 

was washed with 1 ml of Solution III. The cells were re-pelleted by centrifugation as 

stated above and the pellet was re-suspended in 125 µl of Solution III. The 

transformation was plated onto YPG agar (containing zeocin antibody) and incubated 

at 30 °C for 3-4 days. Colonies were used to inoculate 10 ml YPG media, the cultures 

were grown in an incubator for 3 days (225 rpm; 30 °C). Cultures were centrifuged (10 

000 g; 5 min; 4 °C) and the supernatants analysed for recombinant protein expression 

by western blotting (section 2.3.4). 

 

2.4.4 Expression screening of Pichia pastoris colonies using western blot 

analysis 

YPG cultures (10 ml) containing 100 mg/ml zeocin were inoculated with a single 

transformed colony. Cultures were grown for 3 days in a shaking incubator (220 rpm) 

at 30 °C. The cells were pelleted by centrifugation at 8 000 g for 10 min at room 

temperature. Each 20 µl sample of supernatant was fractioned by SDS-PAGE and 

proteins were visualised using western blot analysis. 

 

2.4.5 Large-scale expression of fusion proteins via  fermentation 

Selected P. pastoris clones containing integrated expression cassettes were used 

to inoculate three 100 ml starter cultures of YPG, which were grown at 30 °C for 3 

days on an orbital shaker at 220 rpm, in the absence of selective antibiotics. 
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Subsequently 250 ml of subculture was used to inoculate 2.5 l of sterile minimal media 

(Higgins & Creggs, 1998) supplemented with PTM1 salts (4.35 mL/ 1L minimal media; 

Cino, 1999) in a BioFlo/ CelliGen 115 Benchtop fermentor (New Brunswick Scientific). 

Cultivation was carried out at 30°C, 30% dissolved oxygen; pH 4.5-5.0 with continuous 

agitation and a ramped glycerol feed (5–10 ml/h) over 4 days (Fitches et al., 2004).  

 

2.4.6 Purification of fusion proteins using nickel affinity chromatography 

Secreted proteins were isolated from fermented cultures by centrifugation (4 °C; 

9500 g; 20 min). Yeast culture supernatant was clarified by filtration through 2.7uM 

and 0.7uM glass fibre filters (GFD and GFF; Whatmann) aided by a water vacuum 

system. The filtered supernatant was adjusted to 0.02 M sodium phosphate buffer, 0.4 

M sodium chloride, pH 7.4 by adding 4x binding buffer (BB). Recombinant proteins 

were purified by nickel affinity chromatography on 5 ml HisTrap crude nickel columns 

(GE Healthcare Life Sciences) equilibrated in 1x BB. Culture supernatants were 

loaded with a flow rate of 4 ml/min during the day and 2 ml/min overnight. After loading 

columns were then washed with 1 x BB, followed by 1 x BB containing 0.01M imidazole 

and finally bound recombinant proteins were eluted with 1x BB containing 0.2M 

imidazole. Peak fractions and collective eluted proteins were analysed by SDS-PAGE 

gel electrophoresis.  

 

2.4.7 Dialysis and freeze drying of fusion proteins  

Dialysis was carried out using dialysis tubing (25.4mm Inflated; Scientific laboratory 

supplies) with a molecular weight cut off from 12-14 kDa. Dialysis tubing was prepared 

by boiling for 15 min in distilled water containing 2 % (w/v) sodium bicarbonate and 1 

mM EDTA. Purified protein was diluted 1:1 with distilled water and 150 ml of diluted 

elution was dialysed against 8 L of ddH₂O (4 °C; stirring) containing trace of ammonia 

bicarbonate. Pooled protein fractions were dialysed overnight, with the ddH₂O being 

changed in total 3-4 times over a 24 hr period. Dialysed samples were snap frozen in 

liquid nitrogen and lyophilised using a One VirTris Benchtop BTP 8ZLFreeze dryer 

(Biopharma process systems Ltd). Lyophilised proteins samples were stored at 4 °C. 

Protein concentration was estimated using known amounts of recombinant GNA or 

SKTI fractioned via SDS-PAGE. 

 



CHAPTER 2 | MATERIALS AND METHODS  
 

 

68 
 

2.5 Aethina tumida insect culture  

Aethina tumida cultures were maintained in the darkness at 20°C, with 65% relative 

humidity (RH), in the Quarantine Entomology Unit (Fera Science Ltd.). The culture 

was originally established from wandering larvae imported under three levels of 

containment supplied by the Plant Protection Research Institute, South Africa. 

Cultures were maintained.  

As shown in Figure 2.1 adult beetles are allowed to emerge inside sealed containers 

of sand, in which they pupate. Each container has been converted to allow for an 

inverted plastic cylindrical tube to be attached, which act as a collection chamber. The 

plastic tube is baited with honey to lure the adults into the collection chamber, when a 

number of adults have congregated in the tube it was unscrewed, sealed and the 

adults were transferred into rearing boxes. Each rearing box contained suitable diet, 

consisting of honey and pollen and an egg slide to provide a surface for eggs to be 

deposited. After several days, the egg slides are removed and placed into a damp 

container and when the larvae begin to emerge honey bee brood was added as a food 

source. As the larvae enter the final stages of development they clear their guts and 

become morphologically distinct from actively feeding larvae, additionally their 

behaviour changes and they begin to wander en masse, this larval stage is referred to 

as the wandering stage. This distinct behavioural and morphological change signifies 

the need to find suitable substrate to allow for pupation. At this point they were 

transferred into a container filled with approximately 15 cm of damp soil, the wandering 

larvae burrow into the sand where they pupate and approx. 30 days later emerge as 

adults.  
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Figure 2.1.  Development of Aethina tumida from egg to fully developed adult under culturing 

conditions (Cuthbertson et.al., 2013). 
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2.6 RNAi experiments 

2.6.1 Aethina tumida injection bioassays 

Wandering or 7 day old A. tumida larvae were injected using a Hamilton micro-

syringe fitted with a 26 gauge needle (Essex Scientific Laboratory Supplies Ltd) with 

doses ranging from 2-500 ng of Laccase 2 or V-ATPase subunit A dsRNAs; nptII 

dsRNA or Ringers solution served as negative controls. A. tumida larvae were 

anesthetised using CO2 and injected with 1 µl (wandering larvae) or 0.5 µl (7 day old 

larvae) of dsRNAs or Ringers solution. Larvae were injected in the 3rd dorsal segment 

and needles were left in the larvae for 30 s prior to withdrawal, to reduce the expulsion 

of fluid from the wound. Larvae were placed in a petri dish after injection to allow the 

wound to seal. Thereafter, wandering larvae were placed in tubs of sand and 

monitored for phenotype and/or emergence over a period of 35 days (n=10 per 

treatment) or removed after 48 hr, 1 week (V-ATPase subunit A) or 3 weeks (Laccase 

2) (n=15 per treatment) for qPCR analysis. Seven day old larvae were treated in the 

same manner, although after injection they were returned to sandwich boxes 

containing brood food and left to feed until they entered the wandering stage. Time 

points for qPCR analysis were selected based on preliminary assays which indicated 

that insects injected with dsRNAs were still alive at the time of sampling.  

 

2.6.2 Aethina tumida feeding bioassays 

2.6.2 (i) Oral delivery in an artificial diet  

Egg slides from A. tumida were placed onto artificial diet containing 50 % (v/w) 

aqueous honey solution (1 ml) and 2.5 g of crushed bee pollen (Figure 2.2 A). Larvae 

were allowed to feed for 7 days before being transferred to artificial diets containing 

Laccase 2, V-ATPase subunit A, control nptII dsRNA or Ringers solution. Thirty larvae 

per treatment were placed onto 900 mg of diet containing 30 µg of dsRNA (33 ng/mg), 

and fresh diet was provided after three days. After 6 days of feeding the wandering 

larvae were placed in tubs of sand and monitored for phenotype and/or emergence 

over a period of 35 days. For qPCR analysis 15 larvae (per treatment and time point) 

were treated as stated above. Samples were taken 48 hr after feeding on dsRNA or 

removed after 1 week (V-ATPase subunit A) or 3 weeks (Laccase 2) after the 

wandering stage had commenced.  
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2.6.2 (ii) Oral delivery via a drinking bioassay 

Larvae were reared as previously described. Seven day old larvae (n=20) were 

transferred into sterile 5 ml tubes containing 300 µl of 50 % (w/v) sterile sucrose 

solution (prepared with Ringers solution) containing 20 µg of each dsRNA or sucrose 

solution serving as a negative control (Figure 2.2 B). After 24 hr the larvae were 

transferred to artificial diet to feed until wandering, thereafter the larvae were placed 

in tubs of sand and monitored for phenotype and/or emergence. qPCR analysis was 

conducted only for V-ATPase subunit A dsRNA treated larvae (n=15 per treatment) 

with samples being removed after 1 week. 

 

2.6.2 (iii) Oral delivery via a sterile agar diet 

In a third feeding bioassay 5 day old larvae (n=20) were transferred sterile agar diet 

– 1 % (w/v) agar (Oxoid Agar Technical Agar technical [Agar No. 3]) containing 40 % 

(w/v) sucrose (Figure 2.2 C). The sterile agar was melted and 350 µl of agar solution 

was added to a 2 ml microcentrifuge, this was subsequently placed in a heat block 

preheated to 37 ºC and allowed to cool to the aforementioned temperature. Thereafter 

100 µl of dsRNA (200 ng/µl) was added to the agar solution and subsequently vortexed 

to ensure the dsRNA was evenly distributed, thereafter the agar solution was left to 

solidify at room temperature, with a final weight of approx. 450 mg (57 ng/mg). The 

diet was replenished daily and after 3 days of feeding the larvae were transferred onto 

artificial diet until the wandering stage. Subsequently, larvae were placed in tubs of 

sand and monitored for phenotype and/or emergence. qPCR analysis was conducted 

for V-ATPase subunit A dsRNA treated larvae (n=15 per treatment) with samples 

being removed after 1 week. 
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Figure 2.2.  Aethina tumida larvae were placed onto 3 diets containing 1 µg/insect of Laccase 

2 or V-ATPase subunit A dsRNAs, control nptII dsRNA, or Ringers solution serving as a 

negative control: (A) Diet 1: artificial diet comprising of pollen and 40 % (w/v) sterile sucrose 

solution; (B) Diet 2: 300 µl of 50 % (w/v) sterile sucrose solution (prepared with Ringers 

solution) containing 20 µg of each dsRNA or Ringers solution.; and (C) Diet 3: sterile agar diet 

containing 1 % (w/v) agar made up with 40 % (w/v) sucrose. 

 

2.6.3 dsRNA stability assays 

2.6.3 (i) Persistence of dsRNA in sucrose solutions containing Aethina tumida larvae 

The stability of dsRNA in sucrose solution was evaluated by incubating 1 µg of V-

ATPase subunit A dsRNA in 10 µl of 50 % (w/v) sucrose solution at 20°C for 22 hr. 

Following confirmation that dsRNA was stable under these conditions two 7 day old 

larvae were incubated in 100 µl of 50 % sucrose solution containing 10 µg of V-ATPase 

subunit A dsRNA, with 10 µl aliquots taken at the following time points: 0, 1, 2, 4, 6, 8, 

18 and 22 hr. The integrity of the dsRNA was analysed by separation on 1.2 % (w/v) 

agarose gels and bands were visualised by ethidium bromide staining under UV. 

To determine whether A. tumida larvae produced extracellular ribonucleases, 7 day 

old (i.e. feeding stage) larvae were incubated for 12 hr in sucrose solution as described 

above. Thereafter the larvae were removed, 10 µg of V-ATPase subunit A dsRNA was 

added and incubated for 8 hr at 20°C. A second assay was carried out to identify the 

possible source of ribonuclease activity. Wandering larvae (i.e. non-feeding, cleared 

guts) and frass were separately incubated for 8 hr, as described previously, in the 

             (A)                                          (B)                                          (C) 
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presence of 10 µg of V-ATPase subunit A dsRNA. The integrity of the dsRNA was 

analysed by agarose gel electrophoresis. 

 

2.6.3 (ii) Persistence of dsRNA in agar diet fed on by Aethina tumida larvae 

The stability of dsRNA in sterile agar diet was evaluated by incubating 10 µg of V-

ATPase subunit A dsRNA in 450 mg of agar at 20°C for 22 hr. Five larvae were allowed 

to feed on the agar diet for the following time points: 0, 1, 2, 4, 6, 8, 18 and 22 hr. The 

integrity of the dsRNA was analysed by separation on 1.2 % (w/v) agarose gels and 

bands were visualised by ethidium bromide staining under UV. 

 

2.6.3 (iii) In vitro stability of dsRNA in larval gut extracts 

Gut samples dissected from 10 feeding stage larvae were re-suspended in 100 µl 

Ringers solution and homogenised using a sterile pestle. Protein content was 

estimated using Coomassie Plus (Bradford) Assay Kit using Bovine serum albumin as 

standards. The samples were centrifuged for 5 min at 14 000 g and the resulting 

supernatant was used in the assay. Gut extract samples (10 µg total protein in 20 µl; 

equivalent to approx. 1/10 of a larval gut) were incubated with 500 ng of V-ATPase 

subunit A dsRNA at room temperature for 5, 15, 30 and 60 min. The integrity of the 

dsRNA was analysed by agarose gel electrophoresis. 

 

2.6.4 Apis mellifera injections bioassays 

Newly emerged A. mellifera workers were anesthetized by cooling on ice and 

subsequently injected under the 5th abdominal segment with 2 µl containing 50 ng of 

A. tumida Laccase 2, V-ATPase subunit A, control nptII dsRNAs or Ringers solution. 

Injections were conducted using a Hamilton micro-syringe fitted with a 33 gauge 

custom fine needle (Essex Scientific Laboratory Supplies Ltd). Following injection, 

worker bees were grouped in cohorts of 10 or 15 individuals, supplied with 50 % (w/v) 

sucrose solution and placed in an environmental chamber (night cycle, 34°C, with 60 

% R.H). Thereafter, worker bees were monitored for phenotype (n=20 per treatment) 

for 10 days or removed after 48 hr and 1 week (n=15 per treatment) post-injection for 

qPCR analysis. Additionally, qPCR analysis was carried out on 2 day old pharate 

adults (part of the pupal stage) injected with Laccase 2 dsRNA as, according to Elias-

Neto et al. (2013) this gene is significantly up-regulated at this stage in the life-cycle. 
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Pharate adults were injected as previously described and after injection individuals 

(n=15 per treatment) were carefully positioned in a well of a microtitre plate and 

removed from the environmental chamber after 48 hr for qPCR analysis. All samples 

for qPCR analysis were snap frozen in liquid nitrogen and stored at -80°C until use. 

 

2.6.5 CLUSTALW analysis of dsRNA sequences 

Aethina tumida dsRNA sequences were compared with A. mellifera Laccase 2 

(Genbank: FJ470292) and V-ATPase subunit A (GenBank: XM 006567414) using 

CLUSTALW.  

 

2.7 Fusion proteins experiments 

2.7.1 Aethina tumida wandering larvae injection bioassays  

Purified recombinant Pro-Hv1a, GNA, SKTI and fusion proteins were tested for 

biological activity by injecting 1 µl of protein resuspended in SP solution, into 

wandering A. tumida larvae (average weight 17.64 mg), as previously described in 

section 2.6.1. For each concentration tested, 10 larvae were injected, with SP solution 

serving as a negative control. After injection larvae were placed in a petri dish line with 

moist filter paper and mortality was monitored over 7 days.  

 

2.7.2 Aethina tumida larvae feeding bioassays 

2.7.2 (i) Oral delivery in an artificial diet  

Seven day old larvae (n=20), reared on artificial diet, were placed onto 900 mg of 

artificial containing recombinant GNA and GNA/Hv1a at a concentration of 5000 ppm. 

Negative control larvae were fed on artificial diet containing SP buffer. Larvae were 

allowed to feed for approx. 6 days, with fresh diet being provided after 3 days, and 

survival was monitored daily. 

 

2.7.2 (ii) Development of a drinking bioassay 

Five day old larvae (n= 10), reared on artificial diet, were transferred into plastic pot 

containing moist filter paper and two 1.5 ml microcentrifuge lids or larvae were 

maintained on artificial diet as a control. Each lid contained 75 µl of SP/sucrose 

solution (13 % v/w) with 2 µl of red food dye, with the solution being changed every 24 

hr for 72 hr. Thereafter larvae were supplied with artificial until they entered the 
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wandering stage (i.e. approx. 4 days post liquid feed). Mortality was recorded daily, 

and weight was recorded on day 7.  

 

2.7.2 (iii) Oral delivery via a drinking bioassay 

Larvae were reared and assayed as described above. Larvae (n=20) were exposed 

to recombinant GNA(5mg/ml), Pro-Hv1a (1.25 mg/ml GNA/Hv1a, Hv1a/GNA or K>Q 

variants at a final concentration of 0.132-5 mg/ml. Recombinant SKTI fusion proteins 

were delivered at 10 mg/ml concentration. Negative control larvae were fed on 

SP/sucrose solution without recombinant proteins. The diet was changed every 24 hr 

for 72 hr and thereafter larvae were supplied with artificial until they entered the 

wandering stage (i.e. approx. 4 days post liquid feed). 

 

2.7.2 (iv) Treatment of bee brood or egg and bee brood with GNA/Hv1a, to assess 

oral toxicity 

The oral toxicity of GNA/Hv1a was assessed by carrying out two separate assays, 

whereby bee brood (two replicates; SP control n=370 and 290 eggs; GNA/Hv1a 

n=350[+/- 10]), or an egg slide and bee brood was treated were treated with GNA/Hv1a 

at 5 mg/ml or SP solution serving as a negative control (one replicate; SP control 

n=210 eggs; GNA/Hv1a n=360 eggs). For the bee brood assay, egg slides (composed 

of two Perspex sheets glued together and adults lay the eggs between the slides) from 

A. tumida adults were placed onto approx. 4 cm by 3 cm piece of honeybee brood 

(Figure 2.3). The following day the slide was carefully removed, and the bee brood 

was sprayed with 1 ml of GNA/Hv1a at a final concentration of 5 mg/ml. Negative 

control consisted of brood sprayed with a SP solution without recombinant protein. 

The brood was sprayed every 24 hr for 72 hr and thereafter larvae were supplied with 

brood ad lib until they entered the wandering stage and survival was assessed. The 

egg and bee brood assay were conducted as stated above, except egg slides were 

split open to expose the eggs and subsequently sprayed with 250 µl of GNA/Hv1a at 

a final concentration of 5 mg/ml or SP solution as a negative control.  
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Figure 2.3.  Eggs slides from Aethina tumida adults were placed onto approx. 4 cm by 3 cm 

piece of bee brood, which was subsequently sprayed with GNA/Hv1a at 5 mg/ml 

concentration.  

 

2.7.3 Adult Aethina tumida feeding bioassays  

Adults (approx. 1 week old) were transferred into a 50 ml collection chamber (Figure 

2.1) containing two 1.5 ml microcentrifuge. Each lid contained 75 µl of SP/sucrose 

solution (13 % v/w) containing recombinant GNA and Pro-Hv1a at 5 and 1.25 mg/ml 

and GNA/Hv1a, Hv1a/GNA or K>Q variants at a final concentration of 0.625-5 mg/ml. 

Negative control adults were fed on SP/sucrose solution without recombinant proteins. 

The diet was changed every 48 hr for 6 days and thereafter adults were supplied 50 

% honey solution until day 14. 

 

2.7.4 Preparation of Aethina tumida samples for Western analysis  

To assess internalization and transport of recombinant proteins, haemolymph and 

gut samples were collected from A. tumida larvae, whereas only gut samples were 

collected from adults 24 h post feeding on recombinant proteins as previously 

described.  

 

2.7.4 (i) Haemolymph Extraction 

Haemolymph samples were extracted from chilled A. tumida by piercing the dorsal 

region with a fine needle. Haemolymph samples were re-suspended in 6 M urea and 
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boiled for 10 min at 90°C, to prevent coagulation. Samples were stored at -20°C until 

use. 

 

2.7.4 (ii) Gut Extraction 

Larval gut samples (n=10) were dissected out over ice from either feeding or 

wandering stage larvae or adults. Adults were flash frozen in liquid nitrogen and gut 

samples (n=10) were dissected under a microscope, with the gut samples being 

maintained on ice. Larvae and adult guts were re-suspended in 100 or 40 µl SP 

solution, respectively and homogenised using a sterile pestle. Protein content was 

estimated using Coomassie Plus (Bradford) Assay Kit using Bovine serum albumin as 

standards. The samples were boiled for 10 min at 90°C, then centrifuged for 5 min at 

14 000 g and the resulting supernatant was stored at -20°C until use. 

 

2.7.5 Stability of GNA/Hv1a, Hv1a/GNA fusion protei ns and K>Q variants 

2.7.5 (i) In vitro stability of GNA/Hv1a, Hv1a/GNA fusion proteins and K>Q variants in 

sucrose solutions containing Aethina tumida larvae 

The stability of fusion proteins in sucrose solution was evaluated by incubating 5 day 

old larvae (n=10) in 100 µl of SP/sucrose solution (13 % [v/w]) containing 2.5 mg/ml 

of GNA/Hv1a, Hv1a/GNA or K>Q variants, with 5 µl aliquots taken at the following time 

points: 0,1, 2, 4, 6, 8 and 24 hr. Positive control included the relevant fusion protein 

incubated for 24 hr in the absence of larvae. The samples were boiled for 10 min at 

90°, then centrifuged for 5 min at 14 000 g and the resulting supernatant was stored 

at -80°C until use. 

 

2.7.5 (ii) In vitro stability of GNA/Hv1a, Hv1a/GNA fusion proteins and K>Q variants in 

larval gut extracts 

Gut samples dissected from 10 feeding stage larvae were re-suspended in 200 µl 

SP solution and homogenised using a sterile pestle. Protein content was estimated 

using Coomassie Plus (Bradford) Assay Kit using Bovine serum albumin as standards. 

The samples were centrifuged for 5 min at 14 000 g and the resulting supernatant was 

used in the assay. The equivalent of two larval guts (40 µl) were incubated with 75 µg 

of GNA/Hv1a, Hv1a/GNA or K>Q variants at room temperature with 5 µl aliquots taken 

at 0,1, 2, 4, 6, 8 and 24 hr. Controls included fusion protein incubated for 24 hr without 
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guts and in the presence of denatured (boiled) guts. The samples were boiled for 10 

min at 90 °C, and the resulting supernatant was stored at -80°C until use. 

 

2.7.6 Electrophoretic zymogram 

To analyse the digestive proteases within the gut of feeding A. tumida larvae three 

protease inhibitors were use: soybean Kunitz trypsin inhibitor (SKTI), soybean 

Bowman-Birk inhibitor (SBBI) and Epoxysuccinyl-L-leucylamido(4-guanidino)butane 

(E-64) to inhibit trypsin, chymotrypsin and trypsin and cysteine proteases, respectively.  

Non-reducing SDS-PAGE was performed using resolving and stacking polyacrylamide 

gels of 12.5% (v/v) and 5% (v/v), respectively. A total of 15 µg of gut extract, in a 

volume of 10 µl, was mixed with 10 µl of SKTI, SBBI at a final concentration of 5 µM, 

12.5 µM or 25 µM or E-64 a final concentration of 0.5 µM, 1.25 µM or 2.5 µM. Control 

samples included gut preps of feeding larvae and wandering larvae without proteases 

inhibitor. After incubation at room temperature for 20 min, 8 µl of sample buffer without 

β-mercaptoethanol was added to each sample. Non-reducing SDS-PAGE was carried 

out at 4°C at a constant voltage of 100 V. Thereafter, the gel was placed in phosphate 

buffer pH 8 containing 2.5% Triton X-100 for 20 minutes, with shaking. After this step, 

the gel was immersed in 1% casein and shaken for 3 hours. The gel was washed in 

distilled water and stained with 0.1% Coomassie Brilliant Blue R-250 in methanol-

acetic acid-water (50:10:40). After 2 h, the gel was washed in water and destained in 

methanol-acetic acid-water (50:10:40) for 3 h until clear bands could be visualised 

against the dark blue background (Chitgar et al., 2013). 

 

2.7.7 Native Polyacrylamide gel electrophoresis (Na tive-PAGE) 

Native Polyacrylamide gel electrophoresis (Native-PAGE) used to analyse A. 

tumida gut samples, as previously stated in section 2.3.2. With the exception that 12.5 

% resolving gel were used and SDS was removed gels and reservoir buffer. Samples 

were prepared in 5x sample buffer, without the addition of SDS or β-mercaptoethanol.  

 

2.7.8 In vitro stability of GNA/Hv1a and Hv1a/GNA in Aethina tumida larval gut 

extracts with the addition of SKTI  

The stability of GNA/Hv1a and Hv1a/GNA was assessed in vitro by incubating the 

equivalent of two larval guts (40 µl) with 75 µg of GNA/Hv1a or Hv1a/GNA. Total 
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protein content was estimated using Coomassie Plus (Bradford) Assay Kit using 

Bovine serum albumin as standards. For every 15 µg of gut extract protein present 

500 µM SKTI was added. Samples were incubated at room temperature and samples 

were taken at 0 and 24 hr. Controls included fusion protein incubated for 24 hr and 

fusion protein incubated with denatured (boiled) guts and SKTI for 24 hr. The samples 

were boiled for 10 min at 90°C, and the resulting supernatant was stored at -80°C until 

use. Samples were analysed for the presence of fusion proteins by western blotting, 

using anti-GNA antibodies. 

 

2.7.9 Adult Apis mellifera injections bioassays 

Acute toxicity was assessed by injecting newly emerged adult honey bees, as 

previously stated in section 2.6.4, with 10 µg Pro-Hv1a, 40 µg of recombinant GNA, 

and GNA/Hv1a, with SP injected serving as a negative control. Adult honey bees 

(n=20 per treatment) were supplied with 50 % (w/v) sucrose solution and placed in an 

environmental chamber (night cycle, 34°C, and with 60 % R.H), survival was 

monitored daily for 7 days.   

 

2.7.10 Apis mellifera larval feeding bioassay 

Standard operating procedures established for the in vitro testing of pesticides were 

used to test for acute toxicity of recombinant GNA and GNA/Hv1a towards honeybee 

larvae (Aupinel et al., 2007). A single oral dose of 100 µg/larva of recombinant GNA 

or GNA/Hv1a was administered to four day old larvae individually maintained in 

microtitre plate wells. Plates were incubated under controlled environmental 

conditions at 34 °C in the dark, 60% RH. Thirty larvae were treated with recombinant 

GNA, GNA/Hv1a or SP serving as a control treatment. Five larvae from each treatment 

was sacrificed at 24 and 92 hr to obtain haemolymph, whole larval and diet samples 

for western blot analysis. Haemolymph was obtained by piercing pre-chilled larvae 

with a fine needle and collecting haemolymph directly into a tube containing N-

phenylthiourea (anti-oxidising agent) to prevent melanisation. The survival of the 

remaining 20 larvae was monitored for four days subsequent to the single acute dose 

of recombinant GNA or GNA/Hv1a.  
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2.11 Statistical analysis  

The qPCR results are presented as the mean ±SD of three independent biological 

replicates and the relative levels of mRNA expression was analysed by One-way 

ANOVA followed by Tukey test for significant differences between mean values. All 

survival data was analysed using Kaplan-Meier survival analysis and LD50 or LC50 were 

calculated. Wandering larvae survival after brood assay experiments was analysed by 

Chi-square test for significant differences between single values GraphPad Prism 

version 7.00 for windows was used for all the analysis. P < 0.05 was taken as the level 

of statistical significance.  
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CHAPTER 3 | RNAI-MEDIATED CONTROL OF AETHINA TUMIDA 

3.1 Introduction  

Evidence for systemic RNAi in T. castaneum and successful RNAi studies in other 

coleopteran insect pests (Nui et al., 2008, Baum et al., 2007) formed the rationale for 

our investigations into the potential use of RNAi as a target specific control strategy 

for A. tumida. The phenoloxidase gene Laccase 2 and vacuolar-ATPase V-type (V-

ATPase) subunit A were selected as target genes on the basis of previous RNAi 

studies (Arakane et al., 2005; Baum et al., 2007; Dittmer et al., 2004; Forgac, 2007; 

Nui et al., 2008).   

Inhibition of exoskeleton formation has been previously identified as a target for 

pesticide action, and a range of genes involved in chitin biosynthesis and the formation 

of the cuticle have been functionally characterized, revealing a range of potential 

arthropod-specific targets for control. Arakane et al. (2005) proved that Laccase 2, a 

phenoloxidase gene, is required for adult T. castaneum cuticle tanning and reported 

that injection of prepupae with Laccase 2 dsRNA exhibited a dose and time-dependant 

phenotype. Delivery of 200 ng of dsRNA per prepupa resulted in inhibition of tanning 

in adults, severe developmental abnormalities and mortality on day 2 or 3. When the 

dose was reduced by 100-fold to 2 ng per prepupa, this resulted in more normal 

looking adults, but there was still a degree of malformation and the tanning process 

was slowed taking several additional days to complete. V-ATPase is required to pump 

protons across intracellular and plasma membranes in the insect gut and other tissues; 

this ATP-powered pump is vital for survival as the proton gradient created is used to 

drive a range of transport processes (Forgac, 2007). RNAi targeting the genes 

encoding V-ATPase subunits A and E has proved to be effective against several 

coleopteran species. In D. v. virgifera oral delivery of 5.2 ng dsRNA /cm² of V-ATPase 

subunit A dsRNA demonstrated rapid knockdown of endogenous mRNA within 24 h 

of ingestion and resulted in significant larval mortality and/or stunting (Baum et al., 

2007). To our knowledge this is the first study to provide evidence for target specific 

systemic RNAi in A. tumida 
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3.2 Results 

3.2.1 Cloning of Laccase 2, V-ATPase subunit A and GAPDH 

Partial sequences obtained from degenerate PCR for Laccase 2 (621 bp) and V-

ATPase subunit A (618 bp) were used as a template to design gene specific primers 

to amplify a 301 and 306 bp region for in vitro transcription of dsRNA. Additionally, the 

3’ end of the sequence, including GAPDH (547 bp), was used to design qPCR primers 

to monitor gene expression (Figure 3.1, 3.2 & 3.3).  Genbank accession numbers for 

cloned partial Laccase 2, V-ATPase subunit A and GAPDH sequences are KU696310, 

KU696311 and KU696309, respectively. 

 

 

DNA: GGTCGCTTCAAGGGCAAAGTCACCACCGACGGTACCAGCCTCATCGTCAACGGCAAGGCT 

+1FR:·G··R··F··K··G··K··V··T··T··D··G··T··S··L··I·· V··N··G··K··A· 

D NA: ATCCAGGTCTTCCAAGAGAGAGACCCAGCCAACATTCCATGGGGCAAAGCCGGTGCCGAA 

+1FR:·I··Q··V··F··Q··E··R··D··P··A··N··I··P··W··G·· K··A··G··A··E· 

DNA: TACATCGTTGAATCCACCGGTGTGTTCACCACCATCGAGAAGGCCTCCGCCCACTTGAAG 

+1FR:·Y··I··V··E··S··T··G··V··F··T··T··I··E··K··A·· S··A··H··L··K· 

DNA: GGTGGTGCTAAGAAAGTCATCATCTCTGCACCATCTGCCGATGCCCCAATGTACGTCTGC 

+1FR:·G··G··A··K··K··V··I··I··S··A··P··S··A··D··A·· P··M··Y··V··C· 

DNA: GGTGTCAACTTGGACAAATACAACCCATCTGACAAGGTAATCTCCAACGCCTCCTGCACC 

+1FR:·G··V··N··L··D··K··Y··N··P··S··D··K··V··I··S·· N··A··S··C··T· 

DNA: ACCAACTGCTTGGCCCCATTGGCCAAAGTAATCCACGACAACTTCGAGATCGTGGAAGGT 

+1FR:·T··N··C··L··A··P··L··A··K··V··I··H··D··N··F·· E··I··V··E··G· 

DNA: TTGATGACCACCGTACACGCTACCACCGCCACCCAGAAAACTGTCGACGGTCCCTCTGGC 

+1FR:·L··M··T··T··V··H··A··T··T··A··T··Q··K··T··V·· D··G··P··S··G· 

DNA: AAGTTATGGCGTGATGGCCGTGGCGCCGCCCAGAACATCATTCCCGCTTCCACCGGAGCT 

+1FR:·K··L··W··R··D··G··R··G··A··A··Q··N··I··I··P·· A··S··T··G··A· 

DNA: GCCAAAGCCGTCGGCAAGGTTATCCCAGCCTTGAACGGCAAACTTACCGGTATGGCATTC 

+1FR:·A··K··A··V··G··K··V··I··P··A··L··N··G··K··L·· T··G··M··A··F· 

DNA: CGTGTTC 

+1FR:·R··V·  

 

Figure 3.1. Cloned partial DNA (547 bp) and amino acid (180 codons) sequences of Aethina 

tumida GAPDH (GenBank: KU696309). Highlighted in pink is the position of the 

forward/reverse qPCR primers generating an amplicon of 76 bp. 
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DNA:  GACGTAGAGAACCATATGGAAGGCATGGAGGTGACCATCCATTGGCACGGAATCTGGCAA 

+1FR: ·D··V··E··N··H··M··E··G··M··E··V··T··I··H··W· ·H··G··I··W··Q· 

DNA:  CGTGGAACCCAATATTACGATGGTGTGCCATTCGTTACACAATGTCCCATCCAACAAGGA 

+1FR: ·R··G··T··Q··Y··Y··D··G··V··P··F··V··T··Q··C· ·P··I··Q··Q··G· 

DNA:  AACACCTTCAGGTACCAGTGGGTAGCCGGTAACGCCGGAACGCACTTTTGGCATGCCCAC 

+1FR: ·N··T··F··R··Y··Q··W··V··A··G··N··A··G··T··H· ·F··W··H··A··H· 

DNA:  ACCGGTCTGCAAAAGATGGACGGTTTGTATGGCAGCATCGTCATCCGTCAACCACCTTCC 

+1FR: ·T··G··L··Q··K··M··D··G··L··Y··G··S··I··V··I· ·R··Q··P··P··S· 

DNA:  AAAGACCCCAACAGCAACTTGTACGACTACGATCTGACAACACACGTTATGCTGCTTTCC 

+1FR: ·K··D··P··N··S··N··L··Y··D··Y··D··L··T··T··H· ·V··M··L··L··S· 

DNA:  GATTGGATGCACGAAGATGCTGCCGAAAGATTCCCAGGAAGATTGGCTGTAAACACCGGT 

+1FR: ·D··W··M··H··E··D··A··A··E··R··F··P··G··R··L· ·A··V··N··T··G· 

DNA:  CAGGATCCCGAGAGCTTGCTGATCAACGGCAAAGGCCAGTTCAGAGACCCCAACACCGGT 

+1FR: ·Q··D··P··E··S··L··L··I··N··G··K··G··Q··F··R· ·D··P··N··T··G· 

DNA:  TTCATGACCAACACCCCATTGGAAGTGTTCACCATGACCCCAGGCAACCGCTACCGATTC 

+1FR: ·F··M··T··N··T··P··L··E··V··F··T··M··T··P··G· ·N··R··Y··R··F· 

DNA:  CGTATCATCAACTCCTTCGCTTCTGTGTGTCCGGCTCAGCTGACCATACAGGGACACGAC 

+1FR: ·R··I··I··N··S··F··A··S··V··C··P··A··Q··L··T· ·I··Q··G··H··D· 

DNA:  CTAACTTTGATCGCCACCGACGGAGAGCCCGTGCATCCTGTAAAAGTCAACACCATAATT 

+1FR: ·L··T··L··I··A··T··D··G··E··P··V··H··P··V··K· ·V··N··T··I··I· 

DNA:  TCGTTCTCAGGTGAAAGATACGATCTTCT 

+1FR: ·S··F··S··G··E··R··Y··D··L·  

 

Figure 3.2. Cloned partial DNA (621 bp) and amino acid (209 codons) sequences of Aethina 

tumida Laccase 2 (GenBank: KU696310). Highlighted in blue is the position of the gene 

specific forward/reverse primers used to amplify a 301 bp product for in vitro transcription of 

dsRNA, which is depicted in orange. In pink is the position of the forward/reverse qPCR 

primers generating an amplicon of 69 bp. 
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DNA:  GAGATCATCCGTTTGGAGGGCGAAATGGCCACTATCCAAGTATACGAAGAAACATCCGGT 

+1FR: ·E··I··I··R··L··E··G··E··M··A··T··I··Q··V··Y· ·E··E··T··S··G·  

DNA:  GTAACAGTTGGTGATCCGGTGTTGCGTACCGGTAAACCCTTGTCCGTCGAATTGGGACCT 

+1FR: ·V··T··V··G··D··P··V··L··R··T··G··K··P··L··S· ·V··E··L··G··P·  

DNA:  GGTATTATGGGTTCAATTTTCGACGGTATCCAACGTCCGTTGAAAGACATCAACGATTTG 

+1FR: ·G··I··M··G··S··I··F··D··G··I··Q··R··P··L··K· ·D··I··N··D··L·  

DNA:  ACCCAGAGCATTTACATTCCCAAGGGTGTGAACGTGCCCGCCCTTTCGAGGACGGCCAAA 

+1FR: ·T··Q··S··I··Y··I··P··K··G··V··N··V··P··A··L· ·S··R··T··A··K·  

DNA:  TGGGAATTCAATCCGTGGAACATCAAATTGGGAGCTCACTTAACGGGAGGTGACATCTAC 

+1FR: ·W··E··F··N··P··W··N··I··K··L··G··A··H··L··T· ·G··G··D··I··Y·  

DNA:  GGTATCGTCCACGAAAACACCCTGGTGAAACACAAAATCGTCCTGCCACCTAAAGCCAAG 

+1FR: ·G··I··V··H··E··N··T··L··V··K··H··K··I··V··L· ·P··P··K··A··K·  

DNA:  GGTACCGTTACATACGTAGCTGAGCCGGGTAATTACACAGTCGATGAAGTTGTATTGGAA 

+1FR: ·G··T··V··T··Y··V··A··E··P··G··N··Y··T··V··D· ·E··V··V··L··E·  

DNA:  ACGGAATTCGATGGCGAACGCACCAAATATTCTATGTTGCAAGTGTGGCCTGTACGTCAA 

+1FR: ·T··E··F··D··G··E··R··T··K··Y··S··M··L··Q··V· ·W··P··V··R··Q·  

DNA:  CCACGTCCGGTCAGCGAAAAGTTGCCAGCGAATCATCCTCTTCTCACCGGACAACGTGTC 

+1FR: ·P··R··P··V··S··E··K··L··P··A··N··H··P··L··L· ·T··G··Q··R··V·  

DNA:  CTGGACTCTTTGTTCCCTTGTGTACAGGGTGGTACCACCGCCATTCCCGGAGCTTTCGGT 

+1FR: ·L··D··S··L··F··P··C··V··Q··G··G··T··T··A··I· ·P··G··A··F··G·  

DNA:  TGCGGCAAAACCGTAA 

+1FR: ·C··G··K··T··V· 

 

Figure 3.3. Cloned partial DNA (618 bp) and amino acid (205 codons) sequences of Aethina 

tumida V-ATPase subunit A (GenBank: KU696311). Highlighted in blue is the position of the 

gene specific forward/reverse primers used to amplify a 306 bp product for in vitro transcription 

of dsRNA, which is depicted in orange. In pink is the position of the forward/reverse qPCR 

primers generating an amplicon of 69 bp. 
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3.2.2 Expression of Laccase 2 and V-ATPase subunit A during development of 

Aethina tumida 

As shown in Figure 3.4 A Laccase 2 transcripts were detected at significantly higher 

levels during the three week pupal phase as compared to levels at all other 

developmental stages, although the mRNA was detectable throughout the insect life-

cycle. The peak in Laccase 2 mRNA levels during the third week of the pupal stage 

coincides with the onset of cuticle tanning, and subsequently declines to a level close 

to the detection limit in the emerged adult. By contrast, V-ATPase subunit A transcripts 

were readily detectable during all developmental stages (Figure 3.4 B). V-ATPase 

subunit A transcript levels were generally higher in the later stages of development 

(i.e. late larval through pupal stage to adult) with the highest levels detected in 

wandering larvae and 3 week old pupae.   
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Figure 3.4.  Expression of: (A) Laccase 2 and (B) V-ATPase subunit A genes throughout the 

life-cycle of Aethina tumida, assayed by quantitative PCR. Developmental stages as follows: 

E denotes eggs; L1-W, different stages of larval growth (1, 1.5 & 2 week old larvae; 

W=wandering stage); P1-P3 are samples taken at 1, 2, and 3 week intervals during the pupal 

stage; NEA are non-emerged adults and A are emerged adults. Expression levels are 

normalised to GAPDH mRNA; RQ was set to 1 for P2 stage samples. All error bars represent 

the ±SD of the mean, as determined from one replicate (n=5 per insect replicate or 50 mg wet 

weight of eggs), each with three technical replicates. 

(A) 

(B) 
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3.2.3 Injection of dsRNA to assess phenotype in wan dering Aethina tumida 

larvae 

The phenotypes observed in wandering A. tumida following injections with 500 ng 

target dsRNAs are shown in Figure 3.5 A & 3.5 B. All insects injected with Laccase 2 

dsRNA died and were albino-like in appearance, exhibiting a distinct lack of 

melanisation in comparison to control treatments where tanning was evident 3 weeks 

after injection (Figure 3.5 A). Whilst a phenotype (i.e. lack of melanisation) was evident 

3 weeks after injection of Laccase 2 dsRNA, mortality did not occur until approx. 4 

weeks post-injection and was recorded as failure to emerge as adults from sand at 

approx. 35 days post-injection. The injection of V-ATPase subunit A dsRNA also 

resulted in a lethal phenotype with treated larvae failing to develop into normal pupae 

(Figure 3.5 B). A failure to develop from the wandering to pupal stage was observed 

approx. 2 weeks after injection of V-ATPase subunit A at which point mortality was not 

always evident; as for Laccase 2 treated insects mortality was recorded when the 

controls emerged as adults.  

Reducing the dose of Laccase 2 dsRNA from 500 ng to 12.5 ng did not reduce 

lethality in wandering stage larvae with 100 % of the adults failing to emerge. A further 

reduction in injection doses to 10 ng, 5 ng and 2 ng Laccase 2 dsRNA did provide a 

dose response, with a respective 90 %, 20 % and 10 % of the adults failing to emerge. 

Aethina tumida injected with V-ATPase subunit A dsRNA at a dose of 12.5 ng, 10 ng 

and 5 ng resulted in 100 % mortality, with 90 % mortality observed in the 2 ng 

treatment, assessed as a failure to emerge as adults. Control mortality was 10 % in 

either Ringers solution or nptII dsRNA treatments and 100 % survival was recorded in 

the non-injected control group (Table. 3.1). LD₅₀ of 7.49 ng (95 % C.I 2.35-9.35 ng) 

could only be determined for Laccase 2 due to the high level of mortality recorded in 

the V-ATPase subunit A treatment. 
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Figure 3.5.  Aethina tumida phenotype after injection with dsRNAs: (A) & (B) Wandering stage 

larvae injected with 500 ng Laccase 2 (35 days post-injection) and V-ATPase subunit A 

(approx. 2 weeks post-injection.) dsRNA, respectively. Controls from left to right are not 

injected; injected with Ringers solution and nptII dsRNA. Scale bars are indicated for larvae, 

pupae and adults. 
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Table 3.1.  Survival of Aethina tumida wandering larvae (n=10 per treatment) injected with 

different doses of Laccase 2 or V-ATPase subunit A dsRNAs, controls were non-injected; 

injected with nptII dsRNA or Ringers solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Treatment  

  

Dose (ng) Survival (%) 95 % C.I (ng) 

Non-injected      -    100        - 

Ringers Control      -     90        - 

nptII      12.5     90        - 

    

Laccase 2    12.5      0   2.35-9.35 

    10.0     10        - 

     5.0     80        - 

     2.0     90        - 

    

V-ATPase subunit 

A 

   12.5      0        - 

    10.0      0        - 

     5.0      0        - 

     2.0    10        - 
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3.2.4 Effect of injected dsRNA on gene expression i n wandering Aethina tumida 

larvae 

To confirm that lethality was a result of a reduction in mRNA levels the expression 

of target genes in injected insects was assessed by qPCR. For Laccase 2, expression 

levels were analysed for wandering larvae 48 hr and 3 weeks after the injection of 10 

ng dsRNA (Figure 3.6 A). Larvae injected with Laccase 2 dsRNA exhibited a significant 

25-45 % decrease in Laccase 2 mRNA levels 48 hr post-injection relative to the control 

groups (P < 0.01; One-way ANOVA followed by Tukey test). Analysis of larvae 3 

weeks after injection also showed a significant reduction in Laccase 2 transcript levels 

(by approx. 70 to 87 %) as compared to the control treatments (P < 0.0001; One-way 

ANOVA followed by Tukey test). Furthermore, mean mRNA levels in Laccase 2 

treated insects were significantly lower 3 weeks post-injection as compared to 48 hr 

post-injection (P < 0.01; One-way ANOVA followed by Tukey test). Transcript levels 

in wandering larvae injected with 2 ng of V-ATPase subunit dsRNA were analysed in 

samples extracted 48 hr and 1 week post-injection (Figure 3.6 B). A significant 31-

54 % decrease in relative levels of V-ATPase subunit A mRNA was observed 48 hr 

post-injection relative to the control groups (P < 0.001; One-way ANOVA followed by 

Tukey test) increasing to 67-85 % in samples taken 1 week after injection (P < 0.0001; 

One-way ANOVA followed by Tukey test). Additionally, mean mRNA levels in V-

ATPase subunit A injected insects were significantly lower 1 week post-injection as 

compared to 48 hr post-injection (P < 0.01; One-way ANOVA followed by Tukey test). 
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Figure 3.6.  Relative expression of: (A) Laccase 2 mRNA in Aethina tumida wandering larvae 

48 hr and 3 weeks after injection of 10 ng Laccase 2 dsRNA (Lac 2); (B) V-ATPase subunit A 

mRNA in wandering larvae 48 hr and 1 week after injection of 2 ng V-ATPase subunit A dsRNA 

(VTE). Controls are non-injected (NI); Ringers solution (Ring Con) and nptII dsRNA injected. 

Expression levels are normalised to GAPDH mRNA. RQ set to 1 for NI. All error bars represent 

the ±SD of the mean, as determined from three independent replicates (n=5 insects per 

replicate), each with three technical replicates. Bars topped with the same letter are not 

statistically different at P < 0.05. 
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3.2.5 Injection of dsRNA to assess phenotype and ef fect on gene expression in 

7 day old Aethina tumida larvae 

Larvae were initially injected in the wandering non-feeding phase as this was an 

appropriate stage for administering dsRNAs, given endogenous expression of the 

target genes, and it was also a convenient developmental stage for injection. It has 

previously been reported that RNAi efficiency can be affected by the developmental 

stage of an insect (Huvenne and Smagghe, 2010).  

To verify persistent and systemic RNAi (prior to oral delivery bioassays) within 

actively feeding insects, 7 day old larvae were injected with 50 ng of Laccase 2 and 

V-ATPase subunit A dsRNA. As for wandering larvae, mortality was not evident for 

Laccase 2 treated insects until approx. 4 weeks post-injection and 2 weeks after 

injection of V-ATPase subunit A dsRNA; and in both cases was recorded as a failure 

to emerge as adults 35 days post-injection. Control survival ranged from 90-100 % 

whereas 80 % and 100 % mortality was recorded for Laccase 2 and V-ATPase subunit 

A treated insects, respectively (Table 3.2). For insects injected with Laccase 2 dsRNA 

tanning was delayed and adults that emerged exhibited developmental abnormalities 

(Figure 3.7 A). The transcript levels of Laccase 2 (assessed 3 weeks after injection of 

7 day old larvae with 50 ng dsRNA) were a significant 68-78 % lower than controls 

(Figure 3.8 A; P < 0.0001; One-way ANOVA followed by Tukey test). For 7 day old 

larvae injected with 50 ng of V-ATPase subunit A dsRNA mRNA levels were 

significantly reduced (by 72-92 % and 55-90 %, respectively) in samples taken 48 h 

and 1 week post-injection (Figure 3.8 B; P < 0.0001 and 0.01; One-way ANOVA 

followed by Tukey test). As observed in insects injected in the wandering phase, 

development was arrested at the larval stage (Figure 3.7 B). It is clear from these data 

that the RNAi effect was persistent and systemic regardless of life stage. 
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Table 3.2.  Survival of Aethina tumida feeding stage larvae (n=10 per treatment) injected with 

different doses of Laccase 2 or V-ATPase subunit A dsRNAs, controls were injected with nptII 

dsRNA or Ringers solution. 

 

 

*Both of the emerged adults had deformities, but were included in the survival % 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7.  Phenotype of feeding Aethina tumida larvae after injection with dsRNAs: (A) 

Feeding stage larvae injected with 50 ng Laccase 2 dsRNA (left 17 days and right 35 days 

post-injection); (B) Feeding stage larvae injected with 50 ng V-ATPase subunit A dsRNA, 

controls from left to right are not injected; injected with Ringers solution and nptII dsRNA (14 

days post-injection). Scale bars are indicated for larvae, pupae and adults. 

Treatment  

  

Dose (ng) Survival (%) 95 % C.I (ng) 

Non-injected          -    100    74 – 100 
Ringers Control       -    100    74 – 100 
nptII        50     90    62 - 99 

Laccase 2*      50     20     4 - 50 
V-ATPase subunit      50      0     0 - 26 

controls  

controls  controls  

(A)  

(B)  

                    
5 mm                            

                    
5 mm                            

                    
7 mm            
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Figure 3.8.  Relative expression of: (A) Laccase 2 mRNA in feeding stage (7 day old) larvae 3 

weeks after injection of 50 ng Laccase 2 dsRNA; (B) V-ATPase subunit A mRNA in 7 day old 

larvae 48 hr and 1 week after injection of 50 ng V-ATPase subunit A dsRNA (VTE). Controls 

are non-injected (NI); Ringers (Ring Con) and nptII dsRNA injected. Expression levels are 

normalised to GAPDH mRNA. RQ set to 1 for NI. All error bars represent the ±SD of the mean, 

as determined from three independent replicates (n=5 insects per replicate), each with three 

technical replicates. Bars topped with the same letter are not statistically different at P < 0.05. 

R
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(A)  
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3.2.6 Oral delivery of dsRNA in artificial diet 

To determine if mRNA levels could be down-regulated via oral delivery of dsRNA, 

7 day old A. tumida larvae (n=30) were fed on artificial diet containing target or control 

dsRNAs (or Ringers solution as a negative control) for 6 days. Adult emergence was 

monitored after approx. 35 days; Ringers control emergence was 100 %, whereas 

93 % emergence was observed in both nptII and Laccase 2 dsRNA treatments and 

73 % emergence was recorded in the V-ATPase subunit A dsRNA treatment. The 

expression of V-ATPase subunit A mRNA in treated insects was assessed by qPCR 

analysis of larvae collected 48 hr and 1 week after feeding on artificial diets containing 

dsRNA. Larvae fed on V-ATPase subunit A dsRNA showed no significant decrease in 

transcript levels 48 hr or 1 week after feeding on dsRNA (Figure 3.9 P > 0.05; One-

way ANOVA followed by Tukey test). 

 

3.2.7 Stability and oral delivery of dsRNA in sucro se solution 

Feeding dsRNA in artificial diets did not trigger RNAi effects and analysis of the 

stability of dsRNA in the diet proved problematic as separation of the pollen and honey 

from dsRNA by centrifugation was incomplete and hence it was unclear if the dsRNA 

remained intact or was degraded over time (results not shown). Prior to conducting 

soaking bioassays the stability of dsRNA in the presence of feeding A. tumida larvae 

was assessed by taking samples over a period of 0 to 22 hr. As shown in Figure 3.10 

the dsRNA remained mostly intact for a period of 1 hr, showing a reduction in size 

indicative of exonuclease activity. After 2 hr there is approximately half the amount of 

dsRNA, as compared to time 0, present in the sucrose solution and after 8 hr the 

dsRNA is completely degraded.  

Subsequently a second feeding assay whereby 7 day old larvae (n=20) were 

soaked for 24 hr (with the solution being renewed at 8 hr intervals) in sucrose solutions 

containing 100 ng/µl of target or control dsRNA, was conducted. Adult emergence was 

monitored after approx. 35 days; sucrose and nptII dsRNA control emergence was 

80 % (n=20) and 82 % (n=17) respectively, whereas 100 % (n=16) emergence was 

observed in Laccase 2 dsRNA treatments (Table 3.3). For V-ATPase subunit A dsRNA 

treatment 50 % (n=18) emergence was recorded, with 17 % of the emerged adults 

exhibiting morphological deformities (Figure 3.11 A). However, when this experiment 

was repeated, qPCR analysis of samples extracted 48 hr and 1 week after feeding on 
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V-ATPase subunit A dsRNA showed that transcript levels were not significantly 

decreased in comparison to the control groups (Figure 3.11 B; P < 0.05; One-way 

ANOVA followed by Tukey test). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 3.9.  Expression of V-ATPase subunit A mRNA in Aethina tumida after feeding for 6 

days on artificial diet containing 33 ng/mg of V-ATPase subunit A dsRNA (VTE), samples were 

removed 48 hr and 1 week after feeding. Expression levels are normalised to GAPDH mRNA. 

RQ set to 1 for Ringers solution control sample (Ring Con). All error bars represent the ±SD 

of the mean, as determined from three independent replicates (n=5 insect per replicate), each 

with three technical replicates. Bars topped with the same letter are not statistically different 

at P < 0.05. 
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Figure 3.10.  Stability of dsRNA in the presence of feeding stage Aethina tumida larvae. Larvae 

were immersed in sterile sucrose solution containing dsRNA and samples taken at specified 

time points were analysed for integrity by agarose gel electrophoresis. Negative controls are 

–ve 0 and –ve 22 which show dsRNA with no larvae present at time 0 and after 22 hr; +ve 

dsRNA denotes dsRNA re-suspended in Ringers solution.  

 

 

 

Table 3.3.  Survival of Aethina tumida soaked in 50 % sucrose solutions containing 10 µg of 

Laccase 2, V-ATPase subunit A or nptII dsRNA and sucrose solution served as an additional 

control. 

 

  of the emerged adults had deformities, but were included in the survival 3 ٭

 

 

Treatment    Survival  Sample No. 95 % C.I survival (%) 

(ng) Sucrose Control        80     20           59 – 92 

nptII        82     17           60 - 95 

Laccase 2    100     16           83- 100 

V-ATPase subunit* 

A 

     50     18           28- 72 

 

DNA 
Ladder 

-ve  
0  0        1        2        4        6        8      18        22   -ve 

22 
+ve  

dsRNA 

Time (hr) 

dsRNA + larvae  
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Figure 3.11.  (A) Adult Aethina tumida 35 days after soaking for 24 hr in sucrose solutions 

containing 0.1 µg/µl of Laccase 2 dsRNA or V-ATPase subunit A dsRNA; controls left and 

right are sucrose only treated and nptII dsRNA treated; Scale bars are indicated for adults. (B) 

Expression of V-ATPase subunit A mRNA in A. tumida after soaking for 24 hr in sucrose 

solutions containing 0.1 µg/µl of V-ATPase subunit A dsRNA (VTE), samples were removed 

1 week after feeding. Expression levels are normalised to GAPDH mRNA. RQ set to 1 for 

sucrose soaked control sample (Suc Con). All error bars represent the ±SD of the mean, as 

determined from three independent replicates (n=5 insect per replicate), each with three 

technical replicates. Bars topped with the same letter are not statistically different at P < 0.05. 

Controls  

(B) 

(A) 

V-type ATPase 
subunit A dsRNA  

Laccase 2 
  dsRNA  

                    
5 mm                            
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3.2.8 Stability and oral delivery of dsRNA in agar diet 

The results of the soaking bioassay suggested that an RNAi effect had been 

triggered as 50 % mortality was recorded and 17 % of the emerged adults exhibiting 

morphological deformities. However, when the experiment was repeated, qPCR 

analysis failed to confirm a decrease in V-ATPase subunit A transcript levels. To 

enhance the stability of the dsRNA it was incorporated into a sterile agar diet with the 

aim of providing great protection from exonuclease activity.  

Prior to conducting agar feeding bioassays the stability of dsRNA in the agar diet 

was assessed in the presence of A. tumida larvae by taking samples over a period of 

0 to 22 hr. As shown in Figure 3.12 the dsRNA remained mostly intact for a period of 

8 hr and after 18 and 22 hr, respectively, there was approximately one seventh of the 

amount of dsRNA, as compared to time 0. The results suggest that the incorporation 

of dsRNA into an agar diet significantly improved dsRNA stability as intact dsRNA was 

evident after 8 hr, whereas dsRNA remained intact for 1 hr during the soaking assay.  

A second feeding assay whereby 5 day old larvae (n=20) were fed for 72 hr on agar 

diet (with the diet being renewed at 24 and 48 hr intervals) containing 20 µg of V-

ATPase subunit A or nptII dsRNA, with Ringers solution serving as an additional 

control. Adult emergence was monitored after approx. 35 days; Ringers control and 

nptII dsRNA control emergence was 95 % (n=20) and 90 % (n=20) respectively, For 

V-ATPase subunit A dsRNA treatment there was not a significant decrease in survival, 

with 85 % (n=20) emergence being recorded. The expression of V-ATPase subunit A 

mRNA in treated insects was assessed by qPCR analysis of larvae collected 1 week 

after feeding on agar diet containing dsRNA. Larvae fed on V-ATPase subunit A 

dsRNA showed no significant decrease in transcript levels 1 week after feeding on 

dsRNA (Figure 3.13 P > 0.05; One-way ANOVA followed by Tukey test). 
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Figure 3.12.  Stability of dsRNA, incorporated into agar diet, in the presence of feeding stage 

Aethina tumida larvae. Larvae were allowed to feed on the agar diet containing dsRNA and 

samples taken at specified time points were analysed for integrity by agarose gel 

electrophoresis. Negative control is –ve 22 which shows dsRNA with no larvae present after 

22 hr.  
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Figure 3.13.  Expression of V-ATPase subunit A mRNA in Aethina tumida after feeding for 24 

hr on agar diet containing 57 ng/mg of V-ATPase subunit A dsRNA (VTE), samples were 

removed 1 week after feeding. Expression levels are normalised to GAPDH mRNA. RQ set to 

1 for sucrose soaked control sample (Suc Con). All error bars represent the ±SD of the mean, 

as determined from three independent replicates (n=5 insect per replicate), each with three 

technical replicates. Bars topped with the same letter are not statistically different at P < 0.05. 
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3.2.9 In vivo stability of dsRNA in the presence Aethina tumida larvae and frass 

The secretion of extracellular ribonucleases by larvae was investigated by the 

addition of dsRNA to a solution after the removal of feeding larvae that had been 

immersed in sterile water for period of 8 hr. Figure 3.14 shows that complete 

degradation of the dsRNA under these conditions occurs and this is also observed 

when frass was added to dsRNA containing solutions. By contrast, dsRNA remained 

intact when wandering (non-feeding) larvae were incubated in dsRNA solutions. These 

results indicate that extracellular nucleases are secreted as part of the digestive 

process in the guts of feeding larvae.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14.  Stability of dsRNA in the presence of Aethina tumida larvae and frass. All 

samples were incubated for a period of 8 hr and analysed by agarose gel electrophoresis.10 

kb DNA ladder; lane 1, dsRNA added after the removal of 7 day old (feeding) larvae; lane 2, 

feeding larvae incubated with dsRNA; lane 3, wandering larvae incubated with dsRNA; lane 

4, larval frass incubated with dsRNA, lane 5 and lane 6, positive (+ve) controls denoting 

dsRNA added to 50 % sucrose solution and dsRNA alone, respectively. 
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3.2.10 In vitro stability of dsRNA in Aethina tumida larval gut extracts 

The stability of dsRNA was assessed in vitro by incubating dsRNA in gut extracts 

for 0 to 60 min. Analysis of these samples showed that dsRNA degradation 

commenced within an incubation period of 5 min and degradation of the dsRNA was 

complete after 60 min (Figure 3.15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15.  In vitro stability of dsRNA in Aethina tumida larval gut extracts. Samples were 

taken at indicated time points after incubation of 500 ng dsRNA with gut extract (approx. 1/10 

of a larval gut; final volume 20 µl) and analysed by agarose gel electrophoresis, 20 µl was 

loaded in all lanes. Negative (-ve) controls are (1) gut sample alone, and (2) Ringers solution. 

Positive (+ve) controls are (1) dsRNA re-suspended in Ringers solution and (2) dsRNA and 

gut extract at 0 hr.  
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3.2.11 CLUSTALW analysis of Aethina tumida and Apis mellifera Laccase 2 and 

V-ATPase subunit A mRNA 

Partial sequences of A. tumida and A. mellifera Laccase 2 (Genbank: FJ470292) 

and V-ATPase subunit A (GenBank: XM 006567414) were aligned to assess potential 

for cross-species RNAi effects. Comparisons of A. tumida and A. mellifera Laccase 2 

and V-ATPase subunit A mRNAs revealed the presence of conserved regions, 

however coverage was limited to, at most, a 15 bp region (Figure 3.16). The likelihood 

of introduced A. tumida dsRNA eliciting an RNAi response within the honey bee A. 

mellifera is low given the absence of 20-25 nt stretches of homology.                  

 

3.2.12 Effect of injected Aethina tumida dsRNA on phenotype and gene 

expression in  Apis mellifera  

To investigate whether A. tumida target dsRNAs caused mortality and/or down-

regulation of A. mellifera Laccase 2 and V-ATPase subunit A mRNAs, adult honey 

bees were injected with 50 ng of target dsRNAs. Survival for both controls and dsRNA 

treated A. mellifera was 100 % after 10 days. As shown in Figure 3.17, qPCR analysis 

confirmed that mRNA levels were not down-regulated in either Laccase 2 injected 

pharate adults or V-ATPase subunit A injected adult honey bees, as compared to 

controls. Considerable variation in expression levels across different replicates was 

notable in these experiments and may, in part, be attributable to slight differences in 

the developmental stage of the bees that were used in the assays.  
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Figure 3.16.  CLUSTALW alignment of (A) Apis mellifera Laccase 2 (GenBank: FJ470292)) 

and Aethina tumida Laccase 2 mRNA; (B) A. mellifera V-ATPase subunit A (GenBank: XM 

006567414) and A. tumida V-ATPase subunit A mRNA. 

 
A. tumida       CGTGGAACCCAATATTACGATGGTGTGCCATTCGTTACACAATGTCCCATCCAACAAGGA 60 
A. mellifera    AGGGGCTCTCAATATTACGACGGCGTACCATTCGTGACACAGTGCCCGATCCAAGAGGGT 240 
                 * **  * *********** ** ** ********  ***** ** ** ****** * **  
 
A. tumida       AACACCTTCAGGTACCAGTGGGTAGCCGGTAACGCCGGAACGCACTTTTGGCATGCCCAC 120 
A. mellifera    AGCACCTTCAGGTACCAATGGACTGCTGGAAACGAAGGTACGCACTTCTGGCACGCCCAC 300 
                * *************** ***   ** ** ****  ** ******** ***** ****** 
 
A. tumida       ACCGGTCTGCAAAAGATGGACGGTTTGTATGGCAGCATCGTCATCCGTCAACCACCTTCC 180 
A. mellifera    ACAGGATTGCAGAAAATGGACGGTCTGTACGGAAGCATAGTGATACGTCAACCGCCTAGC 360 
                ** **  **** ** ********* **** ** ** *** ** ** ******** ***  * 
 
A. tumida       AAAGACCCCAACAGCAACTTGTACGACTACGATCTGACAACACACGTTATGCTGCTTTCC 240 
A. mellifera    AAAGATCCTAACAGCAATCTTTACGACTACGATCT CACTACCCATGTCGTTCTAATCAGC 320 
                ***** ** ********  * **************  ** ** ** **  * **  *   * 
 
A. tumida       GATTGGATGCACGAAGATGCTGCCGAAAGATTCCCAGGAAGATTGGCTGTAAACACCGGT 300 
A. mellifera    GATTGGTTCCATGAGAACGCGGCTGAACGTTTCCCCGGCCGGCTGGCGGTTAACACTGGC 380 
                ****** * ** **  * ** ** *** * *****  **  *  **** ** ***** **  
 
A. tumida       C------------------------------------------- ---------------- 301 
A. mellifera    CAAGCGCCTGAAAGCGTGTTGATAAACGGGAAAGGCCAATTCAGGGATCCCAACACCGGT 360 
                *    

A. tumida       -------------------------------------------- --------------GG 2 
A. mellifera    AGAAATAATTCGTTTAGAAGGTGATATGGCTACTATACAGGTATATGAAGAAACTAGTGG 600                        
                                                                          ** 
 
A. tumida       TGTAACAGTTGGTGATCCGGTGTTGCGTACCGGTAAACCCTTGTCCGTCGAATTGGGACC 62 
A. mellifera    TGTAACTGTGGGTGATCCAGTTTTACGTACTGGAAAGCCATTATCTGTAGAACTTGGACC 660 
                ****** ** ******** ** ** ***** ** * * ** ** ** ** *** * ***** 
 
A. tumida       TGGTATTATGGGTTCAATTTTCGACGGTATCCAACGTCCGTTGAAAGACATCAACGATTT 122 
A. mellifera    TGGTATTCTTGGCAGTATCTTTGATGGTATTCAAAGACCATTGAAAGATATCAATGAGCT 720 
                ******* * **    ** ** ** ***** *** * ** ******** ***** **  * 
 
A. tumida       GACCCAGAGCATTTACATTCCCAAGGGTGTGAACGTGCCCGCCCTTTCGAGGACGGCCAA 182 
A. mellifera    TACAAACTCTATTTACATCCCAAAGGGTATTAATGTACCAGCATTATCAAGAACTGCTGC 780 
                 **  *    ******** ** ****** * ** * * ** **  * ** ** ** **    
A. tumida       ATGGGAATTCAATCCGTGGAACATCAAAT-TGGGAGCTCACTTAACGGGAGGTGACATCT 241 
A. mellifera    TTGGGAATTTAATCCATCTAATATTAAAAATGGAAGC-CACATCACTGGTGGAGATTTAT 839 
                 ******** ***** *  ** ** ***  *** * ** *** * ** ** ** **  * * 
 
A. tumida       ACGGTATCGTCCACGAAAACACCCTGGTGAAACACAAAATCGTCCTGCCACCTAAAGCCA 301 
A. mellifera    TTGGTGTAGTCTATGAGAATACATTAGTGAAACATAAAATGATTTTACCTCCAAAAAGTA 899 
                  *** * *** * ** ** **  * ******** *****  *  * ** ** ***   * 
 
A. tumida       AGGG---------------------------------------- ---------------- 305 
A. mellifera    AGGGAACTGTGACTTATATTGCACCTGCTGGCAATTATACAGTATCTGATGTTATTCTGG 

(A) 

(B) 
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Figure 3.17.  Relative expression of: (A) Laccase 2 mRNA in 2 day old Apis mellifera pharate 

adults 48 hr after injection with 50 ng of Aethina tumida Laccase 2 dsRNA (Lac 2); (B) V-

ATPase subunit A mRNA in A. mellifera 48 hr and 1 week post-injection with 50 ng of A. tumida 

V-ATPase subunit A dsRNA (VTE). Expression levels are normalised to Elongation factor-1 

(EF-1) mRNA. Controls are non-injected (NI); Ringers (Ring Con) and nptII dsRNA injected. 

Expression levels are normalised to GAPDH mRNA. RQ set to 1 for NI. All error bars represent 

the ±SD of the mean, as determined from three independent replicates (n=5 insect per 

replicate), each with three technical replicates. Bars topped with the same letter are not 

statistically different at P < 0.05. 

(B) 

48 hr 
0.0

0.5

1.0

1.5

2.0

NI

Ring Con

nptII dsRNA

Lac 2 dsRNA

Time

a a a

b

(A) 



CHAPTER 3 | RNAI-MEDIATED CONTROL OF AETHINA TUMIDA  
 

107 
 

3.3 Discussion 

Aethina tumida, a scavenger and predator of the European honey bee, has already 

spread from Africa to US and Australia, and more recently certain parts of Italy, 

highlighting the potential for it to become established in wider Europe and the UK. 

Current pest control measures are challenged by the need for target specificity and 

high efficacy. RNAi, able to cause the destruction of target specific mRNAs, offers 

possibilities for the development of a new approach to combat this economically 

significant pest without jeopardising the health of honey bee populations. Here we 

report significant dose-dependent mortality of A. tumida following the injections of 2-

12.5 ng doses of dsRNAs targeting Laccase 2 and V-ATPase subunit A mRNAs. 

Analysis of relative mRNA levels by qPCR confirmed target gene knock-down and 

significantly enhanced levels of gene suppression over time demonstrated that the 

RNAi effect was persistent and systemic.  

Laccases are a group of multi-copper enzymes present in plants, fungi, bacteria 

and insects (Hoegger et al., 2006). In many insects, two types of laccase genes have 

been identified, namely Laccase 1 and Laccase 2 (Arakane et al. 2005; Dittmer et al., 

2004). Laccase 2, a phenoloxidase gene, is expressed in the insect epidermis and has 

been shown, using RNAi, to be essential for normal beetle cuticle tanning (Arakane et 

al. 2005). Injections of dsRNA encoding Laccase 2 into prepupal T. castaneum 

resulted in dose and time-dependant mortality. Delivery of 200 ng of dsRNA per 

prepupa inhibited tanning in adults and resulted in severe developmental 

abnormalities and mortality. When the dose was reduced to 2 ng per prepupa, this 

resulted in more normal looking adults, although a degree of malformation was 

observed and the tanning process was delayed by several days. This is comparable 

to the results presented in this study where A. tumida injected with 500 ng of Laccase 

2 dsRNA showed an albino type appearance, a distinct lack of melanisation and failure 

to emerge. A further reduction in dose to 12.5 ng and 10 ng, resulted in a similar 

phenotype and the adult that emerged was distinctly malformed, struggled to walk and 

died in a premature manner. The observed phenotype was confirmed to be a 

consequence of down-regulation of Laccase 2 and, in addition qPCR analysis 

provided evidence for an increase in levels of gene suppression with time, indicative 

of transmission and persistence of the silencing signal. 
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V-type ATPases are highly conserved membrane bound proton pumps responsible 

for multiple processes including the acidification of organelles (e.g. secretory vesicles, 

lysosomes) and the maintenance of membrane potential. This enzyme is present in 

almost all epithelial tissues of insects and plays a vital role in nutrient uptake and ion 

balance in the insect digestive tract making it an ideal target for RNAi (Wieczorek et 

al., 2000; Wieczorek et al., 2009). V-type ATPases are heteromultimeric proteins 

comprised of a membrane bound protein conducting complex and a peripheral 

catalytic domain; sub-unit A is one of 8 peripheral domain sub-units that are located 

on the apical membrane surface. V-ATPase subunit A was used as a target gene in 

the breakthrough RNAi study where it was shown that orally delivered dsRNAs were 

highly efficacious towards D. v. virgifera, D. undecimpunctata howardi and L. 

decemlineata larvae (Baum et al., 2007). Here we show that A. tumida larvae have a 

strong RNAi response to V-ATPase subunit A, as delivery of as little as 2 ng of V-

ATPase subunit A dsRNA elicited a lethal phenotype. This phenotype was observed 

several days prior to pupal metamorphism when V-ATPase subunit A transcript levels 

are at their highest during the life-cycle of A. tumida. Gene expression analysis 

revealed that larvae injected with V-ATPase subunit A dsRNA exhibited significantly 

enhanced levels of gene suppression from 48 hr to 1 week post-injection. Surprisingly, 

injection of control nptII dsRNA into feeding larvae seemed to result in a significant 

down-regulation of V-ATPase subunit A 1 week post-injection, compared to non-

injected, Ringers control, with V-ATPase subunit A dsRNA injected insects being 

further down regulated compared to control groups. It is possible that this was a 

consequence of a slight difference in the developmental stage of the control nptII 

larvae as V-ATPase subunit A gene expression varies during the transition from 

wandering to pupal phase (Figure 3.4). Regardless, these data, as for Laccase 2, 

indicated that the silencing signal was amplified in A. tumida after injection with 

dsRNA.  

Attempts to induce RNAi effects via oral delivery produced highly variable results. 

A factor that may influence RNAi efficiency is the development stage at which the 

insect is fed dsRNA (Huvenne and Smagghe, 2010). Araujo et al. (2006) reported that 

transcript levels of nitrophorin 2 from the saliva glands in Rhodnius prolixus were 

down-regulated in the 2nd instar relative to controls, however no effect was observed 

in 4th instar larvae after feeding on artificial diets containing dsRNA. Our results show 
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that injections of V-ATPase subunit A dsRNAs resulted in mortality and target gene 

suppression in both feeding and wandering stage larvae suggesting that life stage is 

not a limiting factor in eliciting an RNAi response within A. tumida. 

It is clear that A. tumida are highly susceptible to dsRNA delivered via injection, but 

larvae fed on diets or “soaked” in solutions containing dsRNA showed no consistent 

evidence for RNAi effects. The complete lack of phenotype or gene suppression 

observed for feeding experiments with Laccase 2 dsRNA were not unsurprising given 

the requirement for an RNAi effect upon delivery of the silencing signal from the gut to 

the epidermal tissue, where this gene is expressed. By contrast, 50 % mortality and 

deformities in surviving adults that had been soaked as feeding stage larvae in V-

ATPase subunit A dsRNA containing solutions was indicative of an RNAi effect. 

Nonetheless these results could not be validated by qPCR analysis in a repeat 

experiment. We speculated that the lack of correlation between 50 % mortality 

compared to no effects on gene expression for A. tumida larvae fed on dsRNAs may 

be a consequence of differing amounts of dsRNA ingested and/or degradation within 

the gut of A. tumida, preventing sufficient uptake of dsRNAs by epithelial cells to 

induce an RNAi response. It is also possible that the lack of down-regulation observed 

in V-ATPase subunit A dsRNA fed larvae could be a consequence of qPCR analysis 

being carried out on non-affected larvae, where dsRNA was degraded before cellular 

uptake, as only 50 % mortality was recorded in the feeding bioassays. These results 

contrast with Baum et al. 2007 who reported that coating synthetic diets with target 

specific V-ATPase subunit A dsRNAs provided respective LD50s of 1.82 and 5.2 

ng/cm2 for D. v. virgifera and L. decemlimeata larvae. However, even in this study no 

effects on survival or growth were observed when larvae of the cotton boll weevil 

(Anthonomus grandis) were fed on diets coated with dsRNA, leading the authors to 

suggest that not all coleopteran larvae may be sensitive to orally delivered dsRNA. As 

for A. tumida, the desert locust (Schistocerca gregaria) and the migratory locust 

(Locusta migratoria) have been shown to be highly sensitive to dsRNA when delivered 

via injection, but oral delivery of dsRNA has proved unsuccessful (Luo et al., 2012; 

Wynant et al., 2014).  

We speculated that the lack of consistent effects for A. tumida larvae fed on dsRNAs 

may be a consequence of dsRNA degradation within the gut of A. tumida preventing 

sufficient uptake of dsRNAs by epithelial cells to induce an RNAi response. Initial 
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experiments showing increased dsRNA degradation with time when feeding larvae 

were soaked in sucrose solutions was indicative of ribonuclease activity, either in the 

gut or larval regurgitant. In vitro studies also provided evidence that dsRNA was prone 

to degradation with complete digestion occurring within an hour of incubation with gut 

tissue, although it is noted that these homogenised extracts would contain intracellular 

and extracellular ribonucleases. Degradation of dsRNAs by extracellular 

ribonucleases was illustrated by the instability of dsRNA that had been added to 

solutions in which larvae had been soaked, and by degradation following the addition 

of frass to dsRNA containing solutions. By contrast, no degradation was observed 

when wandering (i.e. not feeding) stage larvae were incubated in dsRNA solutions 

providing further evidence that extracellular ribonucleases are secreted during 

digestion in the larval gut. Similarly Allen and Walker (2012) who found that RNAi could 

be induced by injection but not feeding in the hemipteran plant bug (Lygus lineolaris) 

hypothesised that dsRNA degradation prevented uptake of dsRNA into cells and 

demonstrated that saliva rapidly digested dsRNA. There is also direct evidence for the 

expression of dsRNA-degrading enzymes in the digestive juice of larvae of the 

lepidopteran Bombyx mori (Arimatsu et al., 2007). More recently Wynant et al. 2014 

identified four candidate double stranded ribonucleases (dsRNase) that are expressed 

in the gut of the locust Schistocerca gregaria and subsequently provided evidence for 

the involvement of Sg-dsRNAses 2 in the degradation of dsRNA. We provide further 

evidence here to illustrate that the protection of dsRNA from degradation by RNAses 

plays a key role in determining the successful application of RNAi for insect pest 

control.  

The exploitation of RNAi as a strategy for the control of insect pests requires careful 

selection of target genes in order to achieve specific and effective silencing. Generally 

a specific segment of mRNA not shared amongst insects is targeted to elicit the RNAi 

effect in the selected pest. When dsRNAs are introduced into a cell they are cleaved 

into short fragments of approximately 20-25 nt in length and bind with high specificity 

to endogenous mRNA, disrupting the expression of the targeted protein product. Baum 

et al. 2007 reported that D. v. virgifera V-ATPase subunit A dsRNAs produced an 

effective oral RNAi effect in D. v. virgifera larvae but also (when fed at higher 

concentrations) in L. decemlineata. The nucleotide sequence identities between D. v. 

virgifera and L. decemlineata were 83 % for V-ATPase subunit A and 3 identical 
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regions of 20-29 nucleotides can be identified in the published sequence alignment 

providing an explanation for non-target effects. In this study the alignment of A. 

mellifera and A. tumida Laccase 2 and V-ATPase subunit A mRNAs indicated at most 

conserved regions of 15 bp and sequence identities were 74 % and 68 %, respectively. 

Honey bees are known to be highly susceptible to RNAi (Aronstein et al., 2011; 

Amdam et al., 2003). We hypothesised that the absence of identical regions of more 

than 20 nucleotides in A. mellifera and A. tumida Laccase 2 and V-ATPase subunit A 

sequences would ensure that RNAi effects would be specific to A. tumida. In 

agreement we demonstrated that injections of 50 ng of dsRNAs into honey bees had 

no effect on survival and did not induce suppression of either of the target genes.   

From the data presented it is clear that A. tumida has a robust and systemic RNAi 

response to injected, but not ingested dsRNAs, targeting the genes Laccase 2 and V-

ATPase subunit A. An absence of effects on survival and gene expression in honey 

bees injected with A. tumida dsRNAs was consistent with target specificity predicted 

on the basis of sequence alignments of orthologous genes. Whilst oral delivery of V-

ATPase subunit A dsRNA resulted in increased A. tumida larval mortality and 

malformed survivors, these results could not be verified by qPCR analysis. Evidence 

for degradation of ingested dsRNAs by extracellular ribonucleases in the guts of 

feeding larvae is thought to explain, at least in part, the lack of consistency in feeding 

experiments. The development and implementation of RNAi based pesticides holds 

great potential for new target specific and environmentally benign applications. 

However, to translate this approach into a viable control strategy for target specific 

control of A. tumida in apiculture a further research to develop a suitable method to 

induce an oral RNAi response is required. 
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CHAPTER 4 | DEVELOPMENT OF NOVEL FUSION PROTEINS AS  A CONTROL 

METHOD FOR AETHINA TUMIDA 

4.1 Introduction  

The funnel web spider toxin Hv1a, which targets insect calcium channels, has been 

shown to be highly potent towards many different insect pests after injection, including 

Coleoptera, making it an ideal candidate for development as a novel bioinsecticide 

(Fletcher et al., 1997; Tedford et al., 2004; Bloomquist, 2003; Mukherjee et al., 2006). 

However, the lack of oral activity of Hv1a clearly limits its potential for commercial 

application. Linking Hv1a to the carrier protein GNA has shown that following ingestion 

GNA facilitates transport of the Hv1a peptide across the gut epithelium into the 

circulatory whereby the toxin can reach the site of action in the CNS when fed to 

lepidopteran M. brassicae larvae (Fitches et al., 2012). Additionally, the authors 

provided evidence for GNA binding to the nerve cord of M. brassicae following injection 

and feeding of fluorescently labelled fusion protein, suggesting GNA can act as an 

anchor binding to the nerve cord, increasing the local concentration of the Hv1a 

peptide dramatically enhancing the activity of the peptide (Fitches et al., 2012). Hv1a 

contains three conserved disulphide bonds that form an inhibitory cystine knot that is 

vital for toxin activity. As such P. pastoris, capable of correctly forming disulphide cross 

links was used to generate four fusion proteins, whereby the Hv1a or modified Hv1a 

(K>Q modification to remove potential KEX2 cleavage site) (discussed in Chapter 2 

section 2.4.1 iii) coding sequence was linked to the N- or C- terminus of GNA.    

In this chapter the biological activity of GNA/Hv1a, Hv1a/GNA fusion proteins, and 

K>Q variants towards A. tumida is demonstrated via injection and oral delivery 

bioassays. Injection bioassay results indicated that all four fusion proteins were 

similarly toxic towards A. tumida wandering larvae and that the insecticidal activity of 

Hv1a was enhanced when linked to the carrier protein GNA. Oral delivery of fusion 

proteins to 5 day old A. tumida led to a dose dependant decline in survival, however 

the LC50 for GNA/Hv1a was approx. 2 times lower than the other fusion protein 

variants. In vitro stability assays were carried out to confirm that the enhanced toxicity 

of GNA/Hv1a towards A. tumida larvae was a consequence of prolonged stability in 

the presence and the gut extract of feeding larvae. Consequently GNA/Hv1a was 

selected for applied bioassays whereby bee brood treated with the fusion protein, was 

shown to result in significant levels of mortality. Finally, the toxicity of fusion protein 
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variants towards honey bee workers and larvae was assessed by injection and feeding 

assays where no detrimental effects on survival were recorded.  To our knowledge 

this is the first report of a fusion protein based biopesticide showing potential use as a 

novel control method for A. tumida. 

 

4.2 Constructs of recombinant GNA and Pro-Hv1a toxi n; GNA/Hv1a, Hv1a/GNA 

fusion proteins and K>Q variants 

A version of the GNA and Hv1a coding sequence in which codons were optimised 

for expression in P. pastoris was synthesised commercially. The mature toxin Hv1a 

and/or mature GNA carrier protein sequences were subsequently ligated into 

pGAPZαB vector in frame with the α-factor secretory signal. Hv1a or Hv1a (K>Q) toxin 

was linked to the N- or C-terminal of mature GNA nucleotide sequence. The inclusion 

of the 34th amino acid sequence K>Q modification, was altered by point mutation from 

a lysine to glutamine residual to remove a KEX2 cleavage site (Pyati et al., 2014). The 

expression constructs for production of recombinant GNA and Pro-Hv1a toxin and 

their fusion proteins were introduced in Chapter 2 sections 2.4.1 (i), (ii) and (iii). The 

diagrammatic representation of recombinant GNA and Pro-Hv1a toxin; GNA/Hv1a, 

Hv1a/GNA fusion proteins and K>Q variants, predicted DNA and deduced amino acid 

sequences are shown in Figures 4.1, 4.2, 4.3 & 4.4. 
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DNA:  ATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACA 
+1FR: ·M··R··F··P··S··I··F··T··A··V··L··F··A··A··S· ·S··A··L··A··A··P··V··N··T··T· 
DNA:  ACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTT 
+1FR: ·T··E··D··E··T··A··Q··I··P··A··E··A··V··I··G· ·Y··S··D··L··E··G··D··F··D··V· 
DNA:  GCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCT 
+1FR: ·A··V··L··P··F··S··N··S··T··N··N··G··L··L··F· ·I··N··T··T··I··A··S··I··A··A· 
DNA:  AAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTGCAGCAGAAGATACTAGAGCTGATCTTCAAGGT 
+1FR: ·K··E··E··G··V··S··L··E··K··R··E··A··E··A··A· ·A··E··D··T··R··A··D··L··Q··G· 
DNA:  GGTGAAGCTGCTGAAAAGGTTTTTAGAAGATCTCCAACTTGTATTCCATCTGGTCAACCATGTCCATACAACGAA 
+1FR: ·G··E··A··A··E··K··V··F··R··R··S··P··T··C··I· ·P··S··G··Q··P··C··P··Y··N··E· 
DNA:  AACTGTTGTTCTCAATCTTGTACTTTTAAGGAAAACGAAAACGGTAATACTGTTCAAAGATGTGATGCGGCCGCC 
+1FR: ·N··C··C··S··Q··S··C··T··F··K··E··N··E··N··G· ·N··T··V··Q··R··C··D··A··A··A· 
DNA:  GTCGACCATCATCATCATCATCATTGA 
+1FR: ·V··D··H··H··H··H··H··H··*· 
 

 
 

 

 

 

 

 
 

Figure 4. 1. Expression construct in pGAPZαB encoding for pro-Hv1a. (A) DNA and deduced 

amino acid sequence and (B) diagrammatic representation. The α-factor prepro sequence is 

indicated in blue. Purple indicates Pst I, Not I and Sal I restriction sites. The pro-region of Hv1a 

toxin is indicated in pink. The Hv1a toxin and C-terminal histidine tag and stop codon are 

depicted in green and grey, respectively. The position of the pGAPZαB N-terminal GAP 

promotor sequence and C-terminal AOX1 transcription termination region are shown. 
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DNA:  ATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACA 
+1FR: ·M··R··F··P··S··I··F··T··A··V··L··F··A··A··S· ·S··A··L··A··A··P··V··N··T··T· 
DNA:  ACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTT 
+1FR: ·T··E··D··E··T··A··Q··I··P··A··E··A··V··I··G· ·Y··S··D··L··E··G··D··F··D··V· 
DNA:  GCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCT 
+1FR: ·A··V··L··P··F··S··N··S··T··N··N··G··L··L··F· ·I··N··T··T··I··A··S··I··A··A· 
DNA:  AAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTGCAGCAGCGGCCGCCGACAATATTTTGTACTCC 
+1FR: ·K··E··E··G··V··S··L··E··K··R··E··A··E··A··A· ·A··A··A··A··D··N··I··L··Y··S· 
DNA:  GGTGAGACTCTCTCTACAGGGGAATTTCTCAACTACGGAAGTTTCGTTTTTATCATGCAAGAGGACTGCAATCTG 
+1FR: ·G··E··T··L··S··T··G··E··F··L··N··Y··G··S··F· ·V··F··I··M··Q··E··D··C··N··L· 
DNA:  GTCTTGTACGACGTGGACAAGCCAATCTGGGCAACAAACACAGGTGGTCTCTCCCGTAGCTGCTTCCTCAGCATG 
+1FR: ·V··L··Y··D··V··D··K··P··I··W··A··T··N··T··G· ·G··L··S··R··S··C··F··L··S··M· 
DNA:  CAGACTGATGGGAACCTCGTGGTGTACAACCCATCGAACAAACCGATTTGGGCAAGCAACACTGGAGGCCAAAAT 
+1FR: ·Q··T··D··G··N··L··V··V··Y··N··P··S··N··K··P· ·I··W··A··S··N··T··G··G··Q··N· 
DNA:  GGGAATTACGTGTGCATCCTACAGAAGGATAGGAATGTTGTGATCTACGGAACTGATCGTTGGGCCACTGGAGTC 
+1FR: ·G··N··Y··V··C··I··L··Q··K··D··R··N··V··V··I· ·Y··G··T··D··R··W··A··T··G··V· 
DNA:  GACCATCATCATCATCATCATTGA 
+1FR: ·D··H··H··H··H··H··H··*· 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.2. Expression construct in pGAPZαB encoding for GNA. (A) DNA and deduced 

amino acid sequence and (B) diagrammatic representation. The α-factor prepro sequence is 

indicated in blue. Purple indicates Pst I, Not I and Sal I restriction sites. The GNA and C-

terminal histidine tag and stop codon are depicted in orange and grey, respectively. The 

position of the pGAPZαB N-terminal GAP promotor sequence and C-terminal AOX1 

transcription termination region are shown. 
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DNA:  ATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACA 
+1FR: ·M··R··F··P··S··I··F··T··A··V··L··F··A··A··S· ·S··A··L··A··A··P··V··N··T··T· 
DNA:  ACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTT 
+1FR: ·T··E··D··E··T··A··Q··I··P··A··E··A··V··I··G· ·Y··S··D··L··E··G··D··F··D··V· 
DNA:  GCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCT 
+1FR: ·A··V··L··P··F··S··N··S··T··N··N··G··L··L··F· ·I··N··T··T··I··A··S··I··A··A· 
DNA:  AAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTGCAGCACATCATCATCATCATCATGACAATATT 
+1FR: ·K··E··E··G··V··S··L··E··K··R··E··A··E··A··A· ·A··H··H··H··H··H··H··D··N··I· 
DNA:  TTGTACTCCGGTGAGACTCTCTCTACAGGGGAATTTCTCAACTACGGAAGTTTCGTTTTTATCATGCAAGAGGAC 
+1FR: ·L··Y··S··G··E··T··L··S··T··G··E··F··L··N··Y· ·G··S··F··V··F··I··M··Q··E··D· 
DNA:  TGCAATCTGGTCTTGTACGACGTGGACAAGCCAATCTGGGCAACAAACACAGGTGGTCTCTCCCGTAGCTGCTTC 
+1FR: ·C··N··L··V··L··Y··D··V··D··K··P··I··W··A··T· ·N··T··G··G··L··S··R··S··C··F· 
DNA:  CTCAGCATGCAGACTGATGGGAACCTCGTGGTGTACAACCCATCGAACAAACCGATTTGGGCAAGCAACACTGGA 
+1FR: ·L··S··M··Q··T··D··G··N··L··V··V··Y··N··P··S· ·N··K··P··I··W··A··S··N··T··G· 
DNA:  GGCCAAAATGGGAATTACGTGTGCATCCTACAGAAGGATAGGAATGTTGTGATCTACGGAACTGATCGTTGGGCC 
+1FR: ·G··Q··N··G··N··Y··V··C··I··L··Q··K··D··R··N· ·V··V··I··Y··G··T··D··R··W··A· 
DNA:  ACTGGAGCGGCCGCATCTCCAACTTGTATTCCATCTGGTCAACCATGTCCATATAATGAAAATTGTTGTTCTCAA 
+1FR: ·T··G··A··A··A··S··P··T··C··I··P··S··G··Q··P· ·C··P··Y··N··E··N··C··C··S··Q· 
DNA:  TCTTGTACTTTTAAAGAAAATGAAAATGGTAATACTGTTAAAAGATGTGATTGAGTCGAC 
+1FR: ·S··C··T··F··K··E··N··E··N··G··N··T··V·· K··R··C··D··*··V··D· 
 
 
 
 

 

 

 

 

 

 

Figure 4.3. GNA/Hv1a or GNA/Hv1a (K>Q) expression construct in pGAPZαB. (A) DNA and 

deduced amino acid sequence and (B) diagrammatic representation. The α-factor prepro 

sequence is indicated in blue. Purple indicates Pst I, Not I and Sal I restriction sites. GNA, 

Hv1a and N-terminal histidine tag and stop codon are depicted in orange, green and grey, 

respectively. The amino acid underlined and in red in the mature toxin sequence indicates the 

KEX2 cleavage site, the amino acid in red is altered to a glutamine (Q) in GNA/Hv1a(K>Q). 

The position of the pGAPZαB N-terminal GAP promotor sequence and C-terminal AOX1 

transcription termination region are shown.  
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DNA:  ATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACA 
+1FR: ·M··R··F··P··S··I··F··T··A··V··L··F··A··A··S· ·S··A··L··A··A··P··V··N··T··T· 
DNA:  ACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTT 
+1FR: ·T··E··D··E··T··A··Q··I··P··A··E··A··V··I··G· ·Y··S··D··L··E··G··D··F··D··V· 
DNA:  GCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCT 
+1FR: ·A··V··L··P··F··S··N··S··T··N··N··G··L··L··F· ·I··N··T··T··I··A··S··I··A··A· 
DNA:  AAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTGCAGCAGAAGATACTAGAGCTGATCTTCAAGGT 
+1FR: ·K··E··E··G··V··S··L··E··K··R··E··A··E··A··A· ·A··E··D··T··R··A··D··L··Q··G· 
DNA:  GGTGAAGCTGCTGAAAAGGTTTTTAGAAGATCTCCAACTTGTATTCCATCTGGTCAACCATGTCCATACAACGAA 
+1FR: ·G··E··A··A··E··K··V··F··R··R··S··P··T··C··I· ·P··S··G··Q··P··C··P··Y··N··E· 
DNA:  AACTGTTGTTCTCAATCTTGTACTTTTAAGGAAAACGAAAACGGTAATACTGTTAAAAGATGTGATGCGGCCGCC 
+1FR: ·N··C··C··S··Q··S··C··T··F··K··E··N··E··N··G· ·N··T··V·· K··R··C··D··A··A··A· 
DNA:  GACAATATTTTGTACTCCGGTGAGACTCTCTCTACAGGGGAATTTCTCAACTACGGAAGTTTCGTTTTTATCATG 
+1FR: ·D··N··I··L··Y··S··G··E··T··L··S··T··G··E··F· ·L··N··Y··G··S··F··V··F··I··M· 
DNA:  CAAGAGGACTGCAATCTGGTCTTGTACGACGTGGACAAGCCAATCTGGGCAACAAACACAGGTGGTCTCTCCCGT 
+1FR: ·Q··E··D··C··N··L··V··L··Y··D··V··D··K··P··I· ·W··A··T··N··T··G··G··L··S··R· 
DNA:  AGCTGCTTCCTCAGCATGCAGACTGATGGGAACCTCGTGGTGTACAACCCATCGAACAAACCGATTTGGGCAAGC 
+1FR: ·S··C··F··L··S··M··Q··T··D··G··N··L··V··V··Y· ·N··P··S··N··K··P··I··W··A··S· 
DNA:  AACACTGGAGGCCAAAATGGGAATTACGTGTGCATCCTACAGAAGGATAGGAATGTTGTGATCTACGGAACTGAT 
+1FR: ·N··T··G··G··Q··N··G··N··Y··V··C··I··L··Q··K· ·D··R··N··V··V··I··Y··G··T··D· 
DNA:  CGTTGGGCCACTGGAGTCGACCATCATCATCATCATCATTGA 
+1FR: ·R··W··A··T··G··V··D··H··H··H··H··H··H··*·  

 

 

 

 

 

 

 

 

Figure 4. 4. Hv1a/GNA and Hv1a(K>Q) /GNA expression construct in pGAPZαB. (A) DNA 

and deduced amino acid sequence and (B) diagrammatic representation. The α-factor prepro 

sequence is indicated in blue. Purple indicates Pst I, Not I and Sal I restriction sites. Hv1a, 

GNA, and C-terminal histidine tag and stop codon are depicted in green, orange and grey, 

respectively. The amino acid underlined and in red in the mature toxin sequence indicates the 

KEX2 cleavage site, the amino acid in red is altered to a glutamine (Q) in GNA/Hv1a(K>Q). 

The position of the pGAPZαB N-terminal GAP promotor sequence and C-terminal AOX1 

transcription termination region are shown.  
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4.3 Expression and purification of GNA/Hv1a, Hv1a/G NA fusion proteins and 

K>Q variants 

Sequence confirmed plasmid DNA encoding fusion proteins were linearised with 

BlnI and transformed into SMD1168H (protease deficient strain) of P. pastoris, using 

Zeocin anti-biotic for selection. Positive transformants were inoculated in 10 ml YPG 

cultures with Zeocin and grown for 48 hr at 30°C. Culture supernatants (20 µl) were 

analysed for expression of fusion proteins by Western blotting, using anti-GNA 

antibodies. 

For each construct the best expressing clone was selected for large-scale protein 

production. Fermentation was carried out in a 5 L bioreactor under controlled 

environmental conditions (Chapter 2, section 2.4.5). The pGAPZ alpha factor 

secretory signal simplifies the purification process as it directs the secretion of 

expressed proteins out of the yeast cells and into the growth media, so that proteins 

can be purified directly from the fermented culture supernatant. Supernatant was 

obtained via centrifugation, prior to purification the resultant supernatant was passed 

through a series of filters and subsequently purified by nickel affinity chromatography 

(Chapter 2, section 2.4.6). Eluted peaks containing target proteins were diluted 50:50 

with deionised water and subsequently de-salted by dialysis and freeze-dried. Purified 

recombinant pro-Hv1a were separated using Tris-Tricine gel (15 % acrylamide) and 

analysed by western blotting using anti-His antibodies (Figure 4.5 A & B). In the Tris-

Tricine gel depicted in Figure 4.5 A, recombinant pro-Hv1a gave a major protein band 

at approx. 14.4 kDa, which was greater than the predicted mass of 7.19 kDa. As shown 

in Figure 4.5 B, the 14.4 kDa band was immunoreactive with the anti-His antibodies 

possible suggesting that recombinant pro-Hv1a was expressed in dimeric form (Yang, 

2014). As pro-Hv1a migrates as a smear rather than a tight band, due to the presence 

of disulfide bridges, quantification was carried out at Durham University using a BCA 

protein assay with known amounts of BSA standards. The proportion of fusion protein 

in lyophilised samples was estimated semi-quantitatively by comparison with known 

amounts of recombinant GNA standards on SDS-PAGE gels (Figure 4.6 A & B). 

Separation of purified GNA/Hv1a and GNA/Hv1a(K>Q) by SDS-PAGE indicated that 

both fusion proteins ran as tight double bands at predicted molecular weight of approx. 

17 kDa (Figure 4.6 A). The lower protein band is a cleavage product consisting of 

mostly intact fusion protein, with a small amount of Hv1a cleaved off the C-terminus 
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of the toxin (Fitches pers com, 2018). In contrast, separation of purified Hv1a/GNA 

and Hv1a(K>Q)/GNA by SDS-PAGE showed the presence of a protein corresponding 

to the predicted molecular weight of approx. 17 kDa, with an additional lower protein 

mass of 14 kDa corresponding to recombinant GNA, indicating a degree of cleavage 

of the fusion protein. (Figure 4.6 B). Additionally, the presence of contaminating higher 

Mw proteins were observed when large amounts of Hv1a/GNA and Hv1a(K>Q)/GNA 

were analysed by SDS-PAGE. Fermentation was carried out at both Durham 

University and Fera Science Ltd, except for Pro-Hv1a which was produced at Durham 

University with an expression level of 80 mg/L. The following expression level were 

based on fermentation carried out at Fera Science Ltd: GNA/Hv1a was approx. 28 

mg/L; GNA/Hv1a (K>Q) was approx. 34 mg/L; Hv1a/GNA was approx. 50 mg/L and 

Hv1a(K>Q)/GNA was approx. 100 mg/L culture supernatant, respectively, estimated 

by semi-quantitative SDS-PAGE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. (A) Separation of pro-Hv1a by Tris-Tricine gel electrophoresis: lanes 1 

shows 37 µg of lyophilised pro-Hv1a after purification by nickel affinity 

chromatography. (B) Western blotting analysis of sample of pro-Hv1a using anti-His 

antibodies: lane 1 shows 10 µg of lyophilised pro-Hv1a after purification by nickel 

affinity chromatography. 
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Figure 4.6. SDS-PAGE analysis of purified fusion protein: (A) GNA/Hv1a and 

GNA/Hv1a(K>Q): lanes 1 to 3 and 4 to 6 show 5, 10 & 25 µg purified GNA/Hv1a and 

GNA/Hv1a(K>Q), respectively and (B) Hv1a/GNA and Hv1aGNA(K>Q): lanes 1 to 3 and 4 to 

6 show 5, 10 & 25 µg purified Hv1a/GNA and Hv1a(K>Q)/GNA, respectively. Lanes 7 to 9 

show respectively 0.5, 2 & 5 µg GNA standard. 
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4.4 Toxicity GNA/Hv1a, Hv1a/GNA fusion proteins and  K>Q variants against 

Aethina tumida wandering larvae after injection into the haemolym ph  

Wandering A. tumida larvae (n=10 per treatment; average weight 17.46 mg) were 

injected with doses ranging from 0.25 -2 µg of recombinant pro-Hv1a, 7.5 -17.5 µg of 

recombinant GNA, 0.3 -2 µg GNA/Hvla, Hv1a/GNA or K>Q variants, with 20 mM 

sodium phosphate (pH 7.4) (SP) buffer solution serving as a negative control. Survival 

was monitored daily for 7 days. Figure 4.7 shows the injections results of pro-Hv1a, 

GNA, GNA/Hv1a, Hv1aGNA or K>Q variants and LD50s for each treatment are 

depicted in Table 4.1.  

A decline in survival was observed 6 days after injection of 1 and 2 µg of Hv1a, with 

70 % mortality being recorded on day 7 (P<0.01; Mantel-Cox log-rank test; LD50 0.77 

µg/µl). By contrast, a more rapid response was observed in larvae injected with 

comparable doses of GNA/Hv1a, GNA/Hv1a(K>Q), Hv1a/GNA or Hv1a (K>Q)/GNA 

with significant decreases in survival observed 2 to 3 days post injection, with 100 % 

mortality recorded (P<0.0001; Mantel-Cox log-rank test). A further reduction in doses 

of GNA/Hv1a and GNA/Hv1a(K>Q) to 0.5-0.3 µg resulted in a respective 70-100 %, 

10-0 % and 0 % mortality being recorded. By comparison the injection of Hv1a/GNA 

and Hv1a(K>Q)/GNA resulted in higher levels of larval mortality with comparable 

doses achieving 80-100 %, 70 % and 60-70 % mortality, respectively. The LD50’s for 

GNA/Hv1a and GNA/Hv1a(K>Q) were a similar 0.44 and 0.47 µg/µl, whilst Hv1a/GNA 

and Hv1a(K>Q)/GNA LD50’s were slightly lower, at a respective 0.33 and 0.25 µg/µl. 

The results of the injection bioassay showed that the toxicity of Hv1a was greatly 

enhanced when linked to the carrier protein GNA. Injection of 1 and 2 µg of the fusion 

proteins (equivalent to 0.26 and 0.52 µg/µl of Hv1a) resulted in 100 % mortality after 

2 to 3 days, whereas mortality in the corresponding Hv1a treatment, which was 

approx. 4 times the dose of the toxin compared to fusion proteins, was delayed with 

70 % mortality being recorded after 7 days. Subsequent injection of GNA at 17.5 µg 

resulted in a significant reduction in survival, with 100 % mortality being recorded after 

3 days (P<0.0001; Mantel-Cox log-rank test). A reduction in dose to 15, 12.5 and 10 

µg lead to a dose dependant decrease in survival with 50 %, 40 % and 10 % mortality 

being recorded, respectively (LD50 13.76 µg/µl). These results indicate that GNA was 

toxic to A. tumida larvae but doses required to induce significant mortality were some 

20 times greater than fusion protein treatments.  
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Figure 4.7. Survival of Aethina tumida wandering larvae injected with different doses of: (A) 

pro-Hv1a; (B) GNA; (C) GNA/Hv1a; (D) GNA/Hv1a(K>Q); (E) Hv1a/GNA and (F) 

Hv1a(K>Q)/GNA. Proteins in all cases were re-suspended in sodium phosphate (SP) buffer. 

Injection volume was 1 µl. SP served as negative control (SP Con). Mortality was monitored 

daily for 7 days.  N=10 per treatment. 

(A) Pro-Hv1a (B) GNA 

(C) GNA/Hv1a  (D) GNA/Hv1a(K>Q) 

(E) Hv1a/GNA (F) Hv1a(K>Q)/GNA 
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Table 4.1. Aethina tumida wandering larvae injection LD50s (day 7 post injection), for 

recombinant pro-Hv1a, GNA, GNA/Hv1a, Hv1a/GNA fusion proteins and K>Q variants.  

 

 

 

4.5 Stability of Hv1a/GNA in components of the arti ficial diet 

Hv1a/GNA was selected, prior to conducting feeding bioassays, to assess stability 

in A. tumida larval artificial diet. The diet consists of 50 % (v/w) aqueous honey solution 

(1 ml) and 2 g of crushed bee pollen. Hv1aGNA was added at a final concentration of 

5000 ppm to aqueous honey solution, bee pollen or both components of the artificial 

diet, and samples were taken immediately or after 3 days incubated at 20°C. Pollen 

and artificial diet samples were re-suspended in 1 x PBS to achieve a final fusion 

protein concentration of 100 ng/µl thereafter the samples were centrifuged at 13 000 

rpm for 5 min and the supernatants analysed by western blotting, using anti-GNA 

antibodies. As shown in Figure 4.8, no evidence of cleavage or degradation was 

observed for Hv1a/GNA incubated in the separate components of the diet or in the 

combined pollen and honey artificial diet after 3 days. 

 

 

 

 

 

 

 

Treatment  LD 50 (µg/ul) LD 50 (µg/g insect) 

pro-Hv1a 0.77 43.53 

GNA  13.76 788.09 

GNA/Hv1a 

  

0.44 25.20 

GNA/Hv1a(K>Q)

   

0.47 26.92 

Hv1a/GNA 0.33 18.90 

Hv1a(K>Q)/GNA  0.25 14.32 
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Figure 4.8. Western analysis (anti-GNA antibodies) of Hv1a/GNA stability in Aethina tumida 

artificial diet (and separate components thereof) at time 0 and after 3 days incubated at 20°C. 

Lane 1 & 4 shows honey and pollen; lane 2 & 5 pollen alone and lane 3 & 6 honey alone. 100 

ng was loaded for all samples. Standards are 50 and 100 ng of Hv1a/GNA. Mw standards 

(kDa) based on Ponceau S staining are indicated. 

 

 

4.6 Detection of ingested recombinant GNA in feedin g Aethina tumida larvae 

after delivery  

To investigate if recombinant GNA was resistant to proteolytic degradation within 

the gut of A. tumida larvae and subsequently also able to cross the gut epithelium, 

haemolymph and gut samples were extracted from insects fed on artificial diet 

containing recombinant GNA.  Larvae (n=10 per treatment) were allowed to feed ad 

libitum on artificial diet containing GNA at 5000 ppm for 24 hr.  All samples were 

analysed via western blotting, using anti-GNA antibodies.  

Analysis of diet containing recombinant GNA showed the presence of an 

immunoreactive protein of similar mass to standard GNA (Figure 4.9). Homogenised 

gut samples showed the presence of recombinant GNA after 24 hr, with no 

corresponding immunoreactive band being detected in the control samples (Figure 

4.9). Antibody cross-reactivity with a high Mw gut protein of approx. 35 kDa was 

observed in all samples, however these were distinguishable from recombinant GNA. 

Transport of recombinant GNA into the haemolymph was evident from the presence 

of a prominent immunoreactive band corresponding to the size of recombinant GNA, 
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which was absent in the negative control haemolymph. For both haemolymph and gut 

samples excess of 100 ng of recombinant GNA was detected. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9.  Western analysis (anti-GNA antibodies) of 7 day old Aethina tumida larvae 

haemolymph and guts after feeding on artificial diet containing 5000 ppm recombinant GNA: 

lanes 1 & 2 show haemolymph (10 µl) of control and GNA fed larvae respectively; lane 3 & 4 

are replicate gut samples of GNA fed larvae (n=5), approx. 40 µg total protein loaded; lane 6 

to 8 represents a loading of 10, 25 and 50 ng of artificial diet containing GNA and lane 9 

represents 100 ng recombinant GNA standard. Mw standards (kDa) based on Ponceau S 

staining are indicated. 
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4.7 Oral delivery of recombinant pro-Hv1a and GNA; GNA/Hv1a, Hv1a/GNA 

fusion proteins and K>Q variants to Aethina tumida larvae  

 

4.7.1 Oral delivery of recombinant GNA and GNA/Hv1a  incorporated into 

artificial diet 

Seven day old larvae (n=20 per treatment) were placed onto 900 mg of artificial diet 

containing recombinant GNA and GNA/Hv1a at a concentration of 5000 ppm. Negative 

control larvae were fed on artificial diet containing SP buffer. Larvae were allowed to 

feed for 7 days, with fresh diet being provided after 3 days, and survival was monitored 

daily. As shown in Figure 4.10, SP and GNA mortality was 5 % after 7 days. By 

comparison, 40 % mortality was recorded 3 days after feeding on GNA/Hv1a, and 

further increased to 100 % after 6 days; survival was significantly different to the 

control SP buffer and GNA treatments (P<0.0001; Mantel-Cox log-rank test). Although 

this assay was repeated at 3000 and 2000 ppm GNA/Hv1a, no mortality was recorded 

over a feeding period of 7 days.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. Survival of 7 day old Aethina tumida larvae fed on artificial diet containing 5000 

ppm of recombinant GNA and GNA/Hv1a. Sodium phosphate buffer served as negative 

control (SP Con). Larvae were provided with fresh diet after 3 days and mortality was 

monitored daily for 7 days. with N=20 per treatment. 
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4.7.2 Development of a drinking bioassay to orally deliver recombinant pro-Hv1a 

and GNA; GNA/Hv1a, Hv1a/GNA fusion proteins and K>Q  variants to 5 day old 

Aethina tumida larvae 

Failure to achieve consistent mortality results in artificial diet studies led to the 

development of an alternative orally delivery method. Preliminary tests were 

conducted to assess the viability of delivering fusion proteins in a SP/sucrose solution 

(13 % v/v). To this end 5 day old larvae (average weight 11.56 mg) were supplied with 

SP/sucrose solution containing 2 µl of red food dye whilst a control treatment was 

maintained on artificial diet (Figure 4.11 A & B). No SP/sucrose solution remained in 

the microcentrifuge lids after a feeding period of 24 h and it was clear from the 

presence of dye in the fore gut of A. tumida larvae that consumption had occurred. 

The SP solution with dye was replenished twice more (every 24 hr) with the presence 

of dye in the fore gut becoming more apparent (Figure 4.11 C & D). Although it was 

evident that the larvae had consumed the SP/sucrose, it was impossible to determine 

the amount consumed compared to the amount being displaced by the larvae entering 

the solution.  Furthermore, there was a marked difference in development of larvae 

reared on the sucrose solution and artificial diet (Figure 4.11 E & F). As such 

SP/sucrose solution fed larvae were then placed onto artificial diet for a further 4 days. 

Larvae fed on SP/sucrose solution on average weighed 17.42 mg (n=10), whereas 

larvae feed on artificial diet alone achieved an average weight of 19.1 mg (n=10). The 

difference in mean weight between the two diets was not significant (non-paired t-test 

P>0.05) and no mortality was recorded during the 7 day bioassay period. 
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Figure 4.11.  Diets used in the development feeding bioassay: (A) artificial diet comprising of 

50 % (v/w) aqueous honey solution (1 ml) and 25 g of crushed bee pollen and (B) SP/sucrose 

solution (13 % v/w) with 2 µl of red food dye. (C) Larvae fed on SP and sucrose solution. (D) 

Larvae fed on SP and sucrose solution containing red dye, arrow indicates the presence of 

dye in the fore gut. (E) and (F) show larvae 72 hr post feeding indicating the size difference 

between larvae fed on (C) artificial diet and (D) SP/sucrose solution. 
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4.7.3 Oral delivery GNA/Hv1a, Hv1a/GNA fusion prote ins and K>Q variants to 

Aethina tumida feeding larvae via a drinking bioassay 

Five day old larvae (n= 20 per treatment) were transferred into plastic pots and 

supplied with SP/sucrose solution (13 % v/w) containing recombinant GNA (5 mg/ml), 

Pro-Hv1a (1.25 mg/ml), GNA/Hv1a, Hv1a/GNA or K>Q variants at final concentrations 

of 0.312 - 5 mg/ml. Negative control larvae were fed on SP/sucrose solution without 

recombinant proteins. The diet was changed every 24 hr for 72 hr and thereafter larvae 

were supplied with artificial diet until they entered the wandering stage (i.e. approx. 4 

days post liquid feed).  

Figure 4.12 shows the feeding bioassay results of pro-Hv1a, GNA, GNA/Hv1a, 

Hv1aGNA or K>Q variants and LD50s for each treatment are depicted in Table 4.2.  As 

shown in Figure 4.12 A-D no mortality was recorded in pro-Hv1a or SP control group 

whereas 25 % mortality was recorded for larvae fed on GNA at 5 mg/ml (P<0.05; 

Mantel-Cox log-rank test). Two days after feeding on GNA/Hv1a(K>Q) or GNA/Hv1a 

at 5 and 2.5 mg/ml larvae exhibited impaired mobility and a “writhing” phenotype, this 

coincided with 30 % and 50 % mortality being recorded in the 5 mg/ml 

GNA/Hv1a(K>Q) and GNA/Hv1a treatment, respectively. Thereafter 100 % mortality 

was recorded 4 to 7 days post feeding on GNA/Hv1a at concentration of 5, 2.5 or 1.25 

mg/ml (P<0.0001 Mantel-Cox log-rank test). A further reduction in dose to 0.625 mg/ml 

resulted in 75 % mortality being recorded after 7 days, which was significantly different 

from SP and GNA controls (P<0.0001; P<0.01; Mantel-Cox log-rank test). The lowest 

dose of 0.312 mg/ml GNA/Hv1a caused a non-significant 15 % mortality (LC50 0.52 

mg/ml). GNA/Hv1a(K>Q) at a dose of 5 mg/ml induced a comparable level of mortality 

to GNA/Hv1a, with 100 % mortality observed 5 days post feeding (P<0.0001; Mantel-

Cox log-rank test). A reduction in dose to 2.5 and 1.25 mg/ml resulted in a respective 

60 and 50 % mortality at day 7, which was significantly different from SP and GNA 

control (P<0.01; P<0.05; Mantel-Cox log-rank test). The lowest dose of 0.312 mg/ml 

GNA/Hv1a(K>Q) caused a non-significant 10 % mortality. The LC50 for GNA/Hv1a 

(K>Q) was 1.18 mg/ml, which was approx. 2 times higher than the LC50 for GNA/Hv1a. 

Oral delivery of Hv1a/GNA and Hv1a(K>Q)/GNA at 5 or 25 mg/ml resulted in a 

significant 90-95 % and 75-85 % mortality being recorded after 7 days (P<0.0001; 

Mantel-Cox log-rank test). A reduction in dose of Hv1a/GNA or Hv1a(K>Q)/GNA to 

concentrations of 1.25, 0.625 and 0.312 mg/ml resulted in 65-70 %, 15-30 % and 0-
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20 % mortality, which was only significant for the 1.25 mg/ml dose in comparison to 

the SP and GNA control treatments (P<0.001; p<0.01; Mantel-Cox log-rank test). The 

day 7 LC50s for Hv1a/GNA or Hv1a(K>Q)/GNA were 1.14 or 0.89 mg/ml, respectively 

which was approx. 2 and 1.7 times greater than GNA/Hv1a. 
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Figure 4.12.  Survival of 5 day old Aethina tumida larvae fed on 5 mg/ml of GNA, 1.25 mg/ml 

pro-Hv1a and 0.312 to 5 mg/ml of (A) GNA/Hv1a, (B) GNA/Hv1a(K>Q), (C) Hv1a/GNA and 

(D) Hv1a(K>Q)/GNA. Sodium phosphate buffer served as negative control (SP Con). 

Solutions were changed every 24 hr for 72 hr and thereafter larvae were supplied with artificial 

diet until they entered the wandering stage. N= 20 per treatment. 

 

(A)  GNA/Hv1a  (B) GNA/Hv1a(K>Q)                  

 (D) Hv1a(K>Q)/GNA                  (C) Hv1a/GNA                
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Table 4.2. LC50 at day 7 following oral delivery, via a drinking assay, of GNA/Hv1a, Hv1a/GNA 

fusion proteins and K>Q variants against feeding Aethina tumida larvae. 

 

 

 

 

 

 

 

 

 

 

4.7.4 Stability of GNA/Hv1a, Hv1a/GNA fusion protei ns and K>Q variants within 

the gut of feeding Aethina tumida larvae 

The presence of GNA/Hv1a, Hv1a/GNA and K>Q variants in haemolymph (n=20 

per treatment) and gut samples extracted from larvae (n=5 per treatment and replicate) 

were analysed by western blotting using anti-GNA antibodies. Larvae were fed for 24 

hr on SP/sucrose solutions containing fusion proteins at a concentration of 2.5 mg/ml. 

Analysis of all gut samples confirmed that the fusion proteins were cleaved after 24 

hr, which was evident by the presence of a single immunoreactive band corresponding 

to the size of recombinant GNA, and absent in the control samples (Figure 4.13). 

Western analysis showed evidence for transport of GNA carrier across the gut 

epithelium, since GNA was present in all haemolymph samples 24 hr after feeding. 

The presence of immunoreactive gut proteins of a high Mw of approx. 30 and 25 kDa 

was observed Figure 4.13 C and D respectively, however these were distinguishable 

from the intact fusion protein standard. 

 

 

 

 

 

 

 

 

Treatment  LC 50 (mg/ml) 

GNA/Hv1a   0.52 

GNA/Hv1a(K>Q)

   

1.18 

Hv1a/GNA 1.14 

Hv1a(K>Q)/GNA 0.89 
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Figure 4.13. Western analysis (anti-GNA antibodies) of 5 day old Aethina tumida larvae 

haemolymph and gut samples after feeding on sodium phosphate buffer (SP)/sucrose solution 

(13 % v/w) containing: (A) GNA/Hv1a; (B) GNA/Hv1a(K>Q); (C) Hv1a/GNA or (D) 

Hv1a/(K>Q)/GNA at a concentration of 2.5 mg/ml. For SP and fusion protein (FP) haemolymph 

and gut samples (two replicates depicted as R1 and R2) 10 µl and 10 µg total protein was 

loaded, respectively. In Figure D FP and GNA standard represent 100 ng of Hv1a/GNA and 

recombinant GNA. Cleaved GNA and intact fusion protein is indicated by an arrow head and 

diamond head, respectively. 

 

 

 

 

 

 

 

(A)                   (B)                  (C)                  (D)                 

GNA/Hv1a                GNA/Hv1a(K>Q)                Hv1a/GNA Hv1a(K>Q)/GNA 
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4.7.5 In vivo stability of GNA/Hv1a, Hv1a/GNA fusion proteins and  K>Q variants 

in sucrose solutions containing Aethina tumida larvae 

The stability of fusion proteins in the presence of secreted larval extracellular 

digestive proteases and frass was investigated by incubating larvae (n=10 per 

treatment) in 100 µl of SP/sucrose solution (13 % v/w) containing 2.5 mg/ml of 

GNA/Hv1a, Hv1a/GNA or K>Q variants, with 5 µl aliquots taken at the following time 

points: 0,1, 2, 4, 6, 8 and 24 hr. Samples were analysed for the presence of fusion 

proteins by western blotting, using anti-GNA antibodies.  

As shown in Figure 4.14, GNA/Hv1a, Hv1a/GNA fusion proteins and K>Q variants 

show varying levels of susceptibility to proteolytic degradation over the 24 hr period. 

Removal of the Hv1a peptide is indicated by a reduction in the molecular mass of the 

GNA-immunoreactive protein that corresponds to the mass of GNA alone.  Hv1a/GNA 

was highly susceptible to proteolytic degradation, with very little intact fusion protein 

being detected after 1 hr, and complete removal of the Hv1a toxin after 2 hr. For 

Hv1a(K>Q)/GNA, degradation of intact fusion protein commences within 1 hr, when 

approximately 1/5th of incubated intact fusion protein remains, and after 6 hr complete 

removal of the Hv1a peptide leaving only cleaved GNA is evident. Analysis of 

GNA/Hv1a(K>Q) showed less susceptibility to proteolytic degradation after 1 and 2 hr, 

with approximately half the amount of intact fusion protein being detected. Thereafter 

GNA/Hv1a(K>Q) was rapidly degraded with very little intact fusion protein being 

detected after 4 and 6 hr respectively, with complete removal of the Hv1a peptide 

observed after 8 hr. In contrast GNA/Hv1a showed very little evidence of proteolysis, 

with the fusion protein remaining intact for 8 hr.  
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Figure 4.14. Western analysis (anti-GNA antibodies) of fusion protein containing solutions in 

which 5 day old Aethina tumida larvae had been immersed for different periods of time: (A) 

GNA/Hv1a; (B) GNA/Hv1a(K>Q); (C) Hv1a/GNA or (D) Hv1a/(K>Q)/GNA at a concentration 

of 2.5 mg/ml. For each time point 300 ng of each fusion protein (FP) was loaded. +ve 24 

denotes FP incubated for 24 hr with no larvae present and +ve GNA represents 100 ng 

recombinant GNA standard. Cleaved GNA and intact fusion protein is indicated by an arrow 

head and diamond head, respectively. 

 

 

 (A)                  (B)                 

 (C)                  (D)                 
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4.7.6 In vitro stability of GNA/Hv1a, Hv1a/GNA fusion proteins and  K>Q variants 

in feeding Aethina tumida gut extracts  

The stability of GNA/Hv1a, Hv1a/GNA or K>Q variants were assessed in vitro by 

incubating the fusion proteins in gut extracts for 0,1, 2, 4, 6, 8 and 24 hr. Samples 

were analysed for the presence of fusion proteins by western blotting, using anti-GNA 

antibodies (Figure 4.15).  

Hv1a(K>Q)/GNA was highly susceptible to proteolytic degradation when incubated 

in A. tumida gut extracts, with > 2% of intact fusion protein detected after an incubation 

period of 1 hr, and complete cleavage of the Hv1a peptide evidenced by the presence 

of a single immunoreactive band corresponding to the Mw of recombinant GNA 

apparent after 2 hr.  For Hv1a/GNA partial degradation was evident after 1 hr as 

approx. 50 ng of intact fusion protein was detected in comparison to the 0 hr sample. 

After 2 hr there was a further reduction in amount of intact fusion protein, with approx. 

half the amount being detected in comparison to the 1 hr sample. No further 

degradation was detected after 4 and 6 hr. However, after 8 hr the amount of intact 

Hv1a/GNA was further reduced (to approx. 15 ng) and after 24 hr only cleaved GNA 

was detected. Analysis of GNA/Hv1a and GNA/Hv1a(K>Q) showed less susceptibility 

to degradation with some intact fusion protein detected at 24 hr. Partial proteolysis of 

both GNA/Hv1a and GNA/Hv1a(K>Q) was observed after 1 hr and continued over the 

24 hr period with increasing levels of cleaved GNA and decreasing levels of intact 

fusion protein detected, in comparison to the control samples. GNA/Hv1a(K>Q) was 

degraded after 6 hr, with approx. 10 ng of intact fusion protein remaining, which further 

decreased to approx. 5 ng after 8 and 24 hr incubation periods, respectively. 

GNA/Hv1a was the most stable of all variants tested; after 6 and 8 hr approx. 50 ng of 

intact fusion protein was detected. After 24 hr approx. 5 times more GNA/Hv1a was 

detected in comparison to GNA/Hv1a(K>Q).  

The results of these in vitro assays suggest that GNA/Hv1a was 2 times more toxic 

to A. tumida as compared to the other fusion proteins due to enhanced stability in the 

presence of extracellular gut proteases enabling a greater amount of the Hv1a toxin 

to be delivered to the haemolymph where it can access ion channels within the CNS.  
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Figure 4.15. Western analysis (anti-GNA antibodies) of 5 day old Aethina tumida larvae gut 

extracts incubated with: (A) GNA/Hv1a; (B) GNA/Hv1a(K>Q); (C) Hv1a/GNA or (D) 

Hv1a/GNA(K>Q). Samples were taken at indicated time points after incubation of 75 µg of the 

respective fusion proteins (FP) with 40 µl gut extract (equivalent to two larval guts).  For each 

time point 300 ng of each FP was loaded. +ve 24 denotes FP incubated for 24 hr without gut 

extract, -ve FP +guts refers to a boiled gut sample incubated with FP for 24 hr and +ve GNA 

represents 100 ng recombinant GNA standard. Cleaved GNA and intact fusion protein is 

indicated by an arrow head and diamond head, respectively. 
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4.7.7 Treatment of bee brood and egg slides with GN A/Hv1a, to assess oral 

toxicity  to Aethina tumida feeding larvae  

GNA/Hv1a, shown to be approx. 2 times more toxic to A. tumida larvae than 

GNA/Hv1a(K>Q), Hv1a/GNA or Hv1a(K>Q)/GNA, shows the greatest promise with 

respect to potential application of a fusion protein based product in the field. As such 

GNA/Hv1a was selected to assess the oral toxicity towards A. tumida larvae in an 

“applied” experiment.  

Two separate bioassays were set-up whereby bee brood (two replicates; SP control 

n=370 and 290 eggs; GNA/Hv1a n=340 and 350 [+/- 10]), or an egg slide and bee 

brood were treated with GNA/Hv1a at 5 mg/ml (one replicate; SP control n=210 eggs; 

GNA/Hv1a n=360 eggs). Negative controls consisted of brood sprayed with a SP 

solution without recombinant protein. The brood was sprayed every 24 hr for 72 hr and 

thereafter larvae were supplied with brood ad libitum until they entered the wandering 

stage and survival was assessed. The egg and bee brood assay were conducted as 

stated above, except egg slides were split open to expose the eggs and subsequently 

sprayed with 250 µl of GNA/Hv1a at a final concentration of 5 mg/ml or SP solution as 

a negative control.  

Four days post larval emergence a significant difference in feeding damage to the 

bee brood was observed between GNA/Hv1a treatment in comparison to the control 

group (Figure 4.16). Reduced feeding in the GNA/Hv1a treatment coincided with the 

appearance of dead larvae on and surrounding the bee brood. Figure 4.17 shows the 

survival of wandering larvae after either the bee brood or the egg slide and bee brood 

were treated with GNA/Hv1a at a final concentration of 5 mg/ml as compared to the 

control (SP sprayed) treatment. For the bee brood assay control survival until the 

wandering larvae stage ranged between 90.3-96.5 %, whereas a significant reduction 

in survival was observed in the GNA/Hv1a treatment with 43.7-55.2 % mortality 

recorded (P <0.0001; Chi square test). Similarly, in the egg and bee brood assay a 

significant reduction in survival was recorded in the GNA/Hv1a treatment with 49.5 % 

mortality observed (P <0.0001; Chi square test) as compared to 88 % survival in the 

control treatment. 
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Figure 4.16.  Damage to bee brood caused by feeding Aethina tumida larvae in (A) control 

treatment; brood sprayed with sodium phosphate solution and (B) brood sprayed with 

GNA/Hv1a (1 ml of 5 mg/ml GNA/Hv1a solution every 24 hours for 72 hours). Arrows indicate 

dead larvae.  
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Figure 4.17. Survival of Aethina tumida at the wandering larvae stage after: (A) bee brood 

or (B) eggs and bee brood were treated with GNA/Hv1a at a final concentration of 5 mg/ml or 

sodium phosphate (SP Con) control solution. The brood was sprayed with solution every 24 

hr for 72 hr and thereafter larvae were supplied with brood ad libitum until they entered the 

wandering stage and survival was assessed Error bars represent the ±SD of the mean, as 

determined from 2 independent replicates. Bars topped with different letter are statistically 

different at P < 0.05. 
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4.7.8 Western blotting analysis to confirm ingestio n of GNA/Hv1a by  Aethina 

tumida feeding larvae 

During the bioassays alive, dead as well as larvae displaying the “writhing” 

phenotype, thought to be due to impaired mobility, were collected for western analysis 

to assess if GNA/Hv1a had been ingested. As shown in Figure 4.18 a single 

immunoreactive corresponding to the size of recombinant GNA was detected in the 

samples displaying the “writhing” phenotype, whereas for dead larvae a small amount 

of intact fusion protein and GNA was detected confirming ingestion of GNA/Hv1a. 

Additionally, an immunoreactive smear was observed in both lane 1 and 2, possible 

suggesting the binding of GNA/Hv1a to endogenous gut proteins. In contrast for the 

live larval sample no intact fusion protein or cleaved GNA was detected. Additionally, 

higher Mw proteins were detected in the control GNA/Hv1a and GNA samples in lane 

4 and 5, respectively. It is that these higher Mw proteins represent a dimeric form of 

GNA, as a consequence of the standard samples not being completely denatured after 

boiling.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18.  Western analysis (anti-GNA antibodies) of Aethina tumida larvae fed on bee 

brood treated with GNA/Hv1a at a final concentration of 5 mg/ml. Lane 1 protein extracts (40 

µg total protein loaded in each lane) prepared from dead larvae; lane 2 larvae displaying the 

“writhing” phenotype and lane 3 live larvae. The circle in lane 1 indicates intact GNA/Hv1a. 

Lanes 4 and 5 represent 100 ng of GNA/Hv1a and recombinant GNA, respectively. 



CHAPTER 4 | DEVELOPMENT OF NOVEL FUSION PROTEINS AS  A CONTROL 

METHOD FOR AETHINA TUMIDA 

142 
 

4.8 Oral delivery of GNA/Hv1a, Hv1a/GNA fusion prot eins and K>Q variants to 

Aethina tumida adults   

 

4.8.1 Oral delivery of GNA/Hv1a, Hv1a/GNA fusion pr oteins and K>Q variants to 

Aethina tumida adults via a drinking bioassay 

Approx. 1 week old adults (averaging weight 16.11 mg) were supplied with 

recombinant GNA at 5 mg/ml, pro-Hv1a at 1.25 mg/ml and a range (0.625-5 mg/ml) of 

concentrations of GNA/Hv1a, Hv1a/GNA or K>Q variants (Figure 4.19). Negative 

control adults were fed on SP/sucrose solution without recombinant proteins. The diet 

was changed every 48 hr for 6 days and thereafter adults were supplied 50 % (v/v) 

honey solution until day 14. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19 . An example of the adult Aethina tumida feeding bioassay.  Aethina tumida adults 

were supplied with SP/sucrose solution (13 % v/w) containing either recombinant GNA at 5 

mg/ml, pro-Hv1a at 1.25 mg/ml and a range (0.625-5 mg/ml) of concentrations of GNA/Hv1a, 

Hv1a/GNA or K>Q variants. Solutions were changed every 48 hr for 6 days and thereafter 

adults were supplied 50 % (v/v) honey solution until day 14. 
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No mortality was recorded for GNA/Hv1a(K>Q) or Hv1a(K>Q)/GNA treatments over 

the course of the bioassay period (results not shown). As shown in Figure 4.20 no 

mortality was recorded in pro-Hv1a or GNA control groups after 14 days, with 5 % 

mortality recorded for SP treated adults (P>0.05; Mantel-Cox log-rank test). Adults fed 

on Hv1a/GNA at 5 mg/ml showed a rapid decline in survival with 65 % mortality 

recorded after 2 days rising to 95 % after 6 days (P<0.0001; Mantel-Cox log-rank test). 

A further reduction in dose to 2.5 mg/ml resulted in 40 % mortality after 14 days, which 

was significantly different from the control group (P<0.01; Mantel-Cox log-rank test). 

No mortality was recorded in the 1.25 or 0.625 mg/ml treatment (LC50 Hv1a/GNA day 

14, 2.52 mg/ml). The onset of mortality in the 5 mg/ml GNA/Hv1a treatment was 

slightly delayed, as compared to Hv1a/GNA, with 25 % mortality recorded after 4 days, 

increasing to 55 % after 6 days and 90 % after 14 days (P<0.0001; Mantel-Cox log-

rank test).  A further reduction in dose to 2.5 and 1.25 mg/ml resulted in a dose 

dependant decline in survival with 60 and 30 % mortality being recorded after 14 days 

(P<0.0001; P<0.05; Mantel-Cox log-rank test). The lowest dose of GNA/Hv1a at 0.625 

mg/ml failed to induce mortality with 100 % survival recorded (LC50 GNA/Hv1a day 14, 

2.02 mg/ml).  
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Figure 4.20.  Survival of Aethina tumida adults (approx. 1 week old at day 0) fed on 5 mg/ml 

of recombinant GNA, 1.25 mg/ml pro-Hv1a and 0.625 to 5 mg/ml of: (A) GNA/Hv1a and (B) 

Hv1a/GNA. Sodium phosphate (SP Con) buffer served as negative control. Solutions were 

changed every 48 hr for 6 days and thereafter adults were supplied 50 % (v/v) honey solution 

until day 14. N= 20 per treatment. 
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4.8.2 Stability of GNA/Hv1a, Hv1a/GNA fusion protei ns and K>Q variants within 

the gut of Aethina tumida adults 

The stability of GNA/Hv1a, Hv1a/GNA fusion proteins and K>Q variants was 

assessed, as previously described for larvae (section 4.7.4) in adult gut samples by 

western analysis. Analysis of GNA/Hv1a, Hv1a/GNA and K>Q fusion protein variants 

in the gut samples confirmed that the Hv1a toxin was cleaved from GNA after 24 hr, 

which was evident by the presence of a single immunoreactive band corresponding to 

the size of recombinant GNA, which was absent in the control samples. Figure 4.21 

shows results for GNA/Hv1a as the western blot results for all the fusion protein 

variants were virtually identical. We speculated that GNA/Hv1a and Hv1a/GNA are 

stable for a longer period in the gut of A. tumida adults as 90-95 % mortality was 

observed at a concentration of 5 mg/ml whereas no mortality was recorded for the 

K>Q variants at the corresponding dose.  

 

 

 

 

 

 

 

 

 

 

Figure 4.21.  Western analysis (anti-GNA antibodies) of approx. 1 week old Aethina tumida 

adults guts after feeding on sodium phosphate (SP)/sucrose solution (13 % v/w) containing 

GNA/Hv1a, at a concentration of 2.5 mg/ml. SP and fusion protein (FP) haemolymph and gut 

samples (two replicates depicted as R1 and R2) 10 µl and 10 µg total protein was loaded, 

respectively. Standards represent 100 ng of GNA/Hv1a (FP std) and recombinant GNA (GNA 

std).  
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4.9 Toxicity of recombinant pro-Hv1a toxin, recombi nant GNA and GNA/Hv1a 

fusion protein to Apis mellifera 

4.9.1 Apis mellifera adult injection bioassays  

Newly emerged A. mellifera workers (n=20), supplied from Fera Science Ltd Home 

Apiary, were injected with 10 µg pro-Hv1a and 40 µg of recombinant GNA or 

GNA/Hv1a, with SP solution serving as a negative control. As shown in Figure 4.22 A 

no mortality was recorded over the 7 day bioassay period in the SP and Hv1a 

treatment, with 5 % mortality being recorded in the GNA treatment. No significant 

mortality was recorded in the GNA/Hv1a, with 90 % survival being recorded by the 

end of the 7 day bioassay period (P>0.05; Mantel-Cox log-rank test).  

 

4.9.2 Apis mellifera larval feeding bioassays  

An acute toxicity assay was performed on larval honey bees (n=20 per treatment). 

A single oral dose of 100 µg/larva of recombinant GNA or GNA/Hv1a, with SP solution 

serving as a negative control was administered to 4 day old larva. Larvae were 

monitored for 7 days after ingestion of a single acute dose of recombinant GNA or 

GNA/Hv1a. As shown in Figure 4.22 B, 5 % mortality was recorded after 7 days in the 

control treatment. Mortality at day 7 was a non-significant 25 % and 15 % respectively 

for the GNA and GNA/Hv1a treatments (P>0.05; Mantel-Cox log-rank test) 
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Figure 4.22.  Survival of Apis mellifera: (A) adults injected with 10 µg Hv1a, 40 µg of GNA or 

GNA/Hv1a. Controls included sodium phosphate buffer (SP) injected bees. (B) larvae fed on 

a single dose of 100 µg GNA and GNA/Hv1a. Controls included sodium phosphate buffer (SP) 

fed larvae. Mortality was monitored daily for 7 days. N=20 per treatment. 
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4.10 Discussion  

Current pest control measures for A. tumida are largely ineffective suffering 

variability in levels of control. The in-hive organophosphate designed to control adult 

beetles is routinely used in conjunction with GardStar7 (40 % permethrin), a soil 

treatment product aimed to control “wandering” larvae (i.e. in search of a suitable site 

for pupation) that leave the hive and enter the soil to complete their life-cycle 

(Delaplane, 1998; Hood and Miller, 2003). Organophosphates are highly toxic to bees, 

wildlife and humans (Carson, 1962) and hence all hive honey combs must be removed 

prior to treatment. Additionally, the continued use of pyrethroids such as permethrin 

can give rise to resistance, and upon contact, is deleterious to honey bees (De 

Guzman et al., 2011). Thus, the need for target specificity and efficacious alternative 

control strategies are urgently required. The data presented in this chapter shows that 

fusion protein technology offers enormous potential for the development of a novel 

biopesticide to combat this economically significant pest without jeopardising the 

health of honey bee populations.  

Both the recombinant pro-Hv1a toxin alone and Hv1a containing fusion proteins 

show insecticidal activity after injection into A. tumida wandering larvae with the 

expected symptoms of paralysis and mortality, indicating correct folding and 

processing of the toxin. Furthermore, it strongly suggests that the Hv1a toxin targets 

the Cav channels in A. tumida. Injection of recombinant pro-Hv1a resulted in a LD50 of 

43.53 µg/g insect or 11 nmoles/g insect against A. tumida larvae, which is typically 

higher than values reported for recombinant Hv1a. For example, the ED50 reported for 

H. armigera is 3 nmole/g and the PD50 for H. armigera is 0.25 nmole/g, which is a 

respective 2-fold and 25-fold lower than the LD50 of our recombinant toxin pro-Hv1a 

(Atkinson et al., 1998; Bloomquist et al., 2003). Fitches et al. (2012) suggested that 

the differences in the toxicity of Hv1a towards different species may be a consequence 

of the differences in the ability of the toxin to disrupt the ion channel function or the 

different sources of toxin (i.e. synthetic, recombinant or native toxin). Trung et al. 

(2006) reported that injection of GNA at 20 µg per L. oleracea larva (approx. 500 µg 

per g insect) had no effect on survival, which was 95 % over 6 days. Surprisingly, in 

our hands injection of GNA into non-feeding wandering larvae elicited a LD50 after 7 

days of 788.09 µg/g insect. If feeding larvae were injected with GNA one could 

hypothesis that this result was a consequence of the retrograde transport of GNA from 



CHAPTER 4 | DEVELOPMENT OF NOVEL FUSION PROTEINS AS  A CONTROL 

METHOD FOR AETHINA TUMIDA 

149 
 

the haemolymph to gut, causing morphological changes in the gut epithelium thereby 

interfering with nutrient uptake and absorption (Powell et al.,1998; Du et al. 2000; 

Fitches et al., 2001; Sadeghi et al. 2008; Yang et al., 2014). The LD50 values for 

GNA/Hv1a and GNA/Hv1a(K>Q) were a comparable 25.20 and 26.92 µg/g insect 

(equivalent to 6.3 and 6.7 µg/g insect of Hv1a), whilst Hv1a/GNA and Hv1a(K>Q)/GNA 

LD50’s were slightly lower at 18.90 and 14.32 µg/g insect (equivalent to 4.7 and 3.58 

µg/g insect of Hv1a), respectively. With respects to Hv1a/GNA the LD50 was approx. 

2.6-fold lower than the value reported for M. brassicae larvae, whereby injection of 50 

µg/g insect resulted in 45 % mortality (Fitches et al., 2012). In contrast, Hv1a and GNA 

alone were approx. 6 to 12-fold and 30 to 50-fold less toxic, respectively, by injection 

towards A. tumida wandering larvae as compared to the fusion protein variants. 

Fitches et al. (2012) provided direct evidence for GNA localisation to CNS by injecting 

FITC-labelled GNA and subsequently showed binding of GNA to the nerve cord of M. 

brassicae, suggesting that GNA may assist in localising Hv1a to the CNS of exposed 

insects. These injection results are in agreement with Fitches et al. (2012), showing 

that the fusion of Hv1a to the carrier protein GNA can enhance biological activity of 

the recombinant toxin.  

Incorporation of GNA/Hv1a into artificial diet comprising of pollen and honey 

solution at 5000 ppm resulted in 100 % mortality after 6 days, however when this assay 

was repeated at 3000 and 2000 ppm, no mortality was recorded over the course of 

the bioassay. Consequently, the fusion proteins were incorporated into a sterile 

SP/sucrose solution with the hope of reducing the proteolytic activity within the gut of 

A. tumida exposed to a sugar solution as compared to the protein rich artificial diet. 

The drinking feeding assay provided clear evidence of a dose dependent decline in 

survival after oral delivery of GNA/Hv1a, Hv1a/GNA and K>Q variants towards A. 

tumida feeding larvae. In these assays no effects on survival were observed after A. 

tumida larvae fed on the toxin alone. Our results are in agreement with Fitches et al. 

(2012) who also observed no mortality or reduction in growth of fifth stadium 

lepidopteran M. brassicae larvae fed daily for four days on droplets containing 9.6 µg 

Hv1a. This outcome was not surprising due to the absence of a delivery system such 

as GNA to direct the toxin to the CNS. Oral delivery of GNA to A. tumida larvae had 

no effect on survival and growth, whereas marginal effects on growth from GNA have 

been documented in several previous assays against lepidopteran larvae, potentially 
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suggesting that coleopterans are less sensitive to the effects of GNA (Fitches et al., 

1997; Fitches et al., 2001; Fitches et al., 2012; Yang et al., 2014).  In contrast, the 

fusion of Hv1a to the N-or C-terminus of GNA with and without the K>Q modification 

led to significant levels of mortality, in comparison to the control treatments. The LC50 

value after 7 days for GNA/Hv1a was 0.52 mg/ml which was 1.7-fold lower than that 

of Hv1a(K>Q)/GNA (LC50 0.89 mg/ml); 2.2-folder lower than for Hv1a/GNA (LC50 1.14 

mg/ml) and 2.3-fold lower than for GNA/Hv1a(K>Q) (LC50 1.18 mg/ml). These results 

suggest that the biological activity of all fusion protein variants was greatly enhanced 

when delivered in a solution as compared to artificial diet, as significant levels of 

mortality were recorded at much lower doses than the 5 mg/ml required to induce 

mortality in diet assays. This is likely to be a consequence of reduced proteolytic 

activity within the gut of A. tumida exposed to a sugar solution as compared to the 

protein rich pollen based artificial diet resulting in increased stability of the intact fusion 

protein and hence increased delivery of toxin to the haemolymph.  

The results obtained from the oral delivery bioassays indicated that GNA/Hv1a was 

the most effective fusion protein against A. tumida larvae as compared to the other 

fusion protein variants, as 100 % mortality was observed at a concentration of 1.25 

mg/ml as compared to 50-70 % mortality for GNA/Hv1a(K>Q), Hv1a/GNA or 

Hv1a(K>Q)/GNA at the equivalent dose. We hypothesised that increased oral toxicity 

of GNA/Hv1a was a consequence of enhanced resistance to proteolysis as compared 

GNA/Hv1a(K>Q), Hv1a/GNA or Hv1a(K>Q)/GNA in the gut of A. tumida. As such 

western blotting experiments to determine transport of intact fusion protein 24 hr after 

oral delivery were carried out. The results showed only the presence of cleaved GNA 

in both haemolymph and gut samples for all fusion protein variants. This was in 

contrast with previous reports for Hv1a/GNA by Fitches et al. (2012), where intact 

fusion protein was detected in M. brassicae haemolymph 48 hr post feeding on diet 

containing Hv1a/GNA. Consequently, stability assays were carried out to determine 

the length of time the fusion proteins remained intact in vitro in the gut and in vivo in 

the presence of feeding A. tumida larvae. A significant amount of intact GNA/Hv1a 

was detected in the presence of A. tumida larvae after 8 hr whereas degradation of 

Hv1a/GNA was completed after 2 hr and 4 hr for both Hv1a(K>Q)/GNA and 

GNA/Hv1a(K>Q). Enhanced stability of GNA/Hv1a was further illustrated by 

incubation with gut extracts, whereby greater amounts of intact fusion protein was 
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detected after 24 hr as compared to all other fusion protein variants. The results of 

these assays provide clear evidence for enhanced stability of GNA/Hv1a, which we 

hypothesize resulted in increased delivery of the Hv1a toxin to the haemolymph; 

thereby achieving an LC50 approx. two times lower than the other fusion protein 

variants. Injection bioassays conducted by Pyati et al. (2014) showed that the Hv1a 

toxin incorporating the K>Q amino acid change had the same toxicity towards M. 

brassicae in comparison to the unmodified version. The ICK motif of the Hv1a toxin is 

made up of a ring formed by two disulfide bridge, with a third disulfide bridge that 

penetrates the ring to create the pseudo-knot (Saez et al., 2010). It is the third disulfide 

bridge and the formation of the cysteine knot that provides the Hv1a toxin with 

exceptional stability (Tedford et al., 2001; Herzig and King, 2015). The third disulfide 

bridge is formed on the 36th amino acid and the K>Q amino acid change, from a lysine 

to a glutamine residue, is on the 34th amino acid (Fletcher et al., 1997; Pyati et al. 

(2014). Tedford et al., (2001) showed that Lys34 is critical for the stabilisation of the β-

hairpin structure, which is vital for the insecticidal activity of Hv1a toxin. Alteration of a 

lysine to a glutamine could decrease the hydrophobicity index of the cysteine side-

chain thiol groups ultimately decreasing the stability of the third disulfide bridge (Herzig 

and King, 2015), therefore reducing the oral toxicity of both the K>Q fusion protein 

variants against A. tumida larvae. Furthermore, it is hypothesised that Hv1a/GNA 

cleavage occurs between the C-terminus of the toxin and the N-terminus of GNA 

(Fitches et al., 2012). The C-terminus of Hv1a peptide (residue 33-36), without the 

K>Q amino acid change, includes the sequence VKRC, which is similar to the signal 

sequence EKRE present in the α-factor signal expression vector that is cleaved by the 

KEX2 gene product between R and E (Fitches et al., 2012). It is possible that the 

enhanced stability of GNA/Hv1a compared to Hv1a/GNA could be a consequence of 

this potential cleavage site being more exposed when Hv1a is linked to the N-terminus 

of GNA.   

Owing to enhanced efficacy and stability of GNA/Hv1a as compared to Hv1a/GNA 

and K>Q variants, this variant was selected to carry out further “applied” experiments; 

whereby bee brood, or eggs and bee brood, were sprayed with fusion protein and 

larval survival subsequently assessed after a period of 14 days. As compared to 

controls, reduced feeding and mortality was observed in the fusion protein treatment 

four days after larval emergence (Figure 4.16). Subsequently, a significant 45-56 % 
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reduction in survival of wandering larvae (as compared to 88-96 % for controls) was 

observed for the GNA/Hv1a treatment. Levels of mortality observed in the brood 

assays were not as high as that recorded in the drinking assays although this is not 

surprising as emerging larvae in treated brood were not as directly exposed to the 

fusion protein as in the drinking assays. In addition, as suggested by results from 

earlier artificial diet bioassays, ingested GNA/Hv1a was likely to be more prone to gut 

proteolysis as the emerging larvae were also feeding on protein rich brood. Incomplete 

spray coverage of the brood may also have allowed a proportion of larvae to avoid 

ingestion of the fusion protein altogether.  

Oral delivery of GNA/Hv1a, Hv1a/GNA fusion proteins and K>Q variants to adults 

met with variable results. No mortality was observed in the K>Q variant treatments 

and this could be a consequence of the destabilisation of the third disulphide bridge, 

as discussed above. Significant levels of mortality were however recorded in the 

GNA/Hv1a and Hv1a/GNA treatments with LC50 values of 2.02 mg/ml and 2.52 mg/ml. 

Adult LC50s were 3.9-fold and 2.2-fold higher than those obtained for feeding larvae. 

Whilst difficult to determine directly, the delayed onset of adult mortality (e.g. 90 % 

adult mortality after 14 days of feeding as compared to 100 % larval mortality just 5 

days after feeding on 5 mg/ml fusion protein) suggests that the beetles may have 

ingested less fusion protein than the larvae. It is also possible that adults A. tumida 

have a more alkaline gut environment than the larvae. Herzig and King (2005) have 

demonstrated that Hv1a rapidly degrades in highly alkaline guts of pH >8, therefore 

compromising the stability of Hv1a and in turn its effectiveness. Further research into 

the gut pH of A. tumida adults is required to determine if an alkaline gut environment 

was responsible for the variable and reduced mortality recorded in the drinking 

bioassay. 

Nakasu et al. (2014) has demonstrated that Hv1a/GNA has negligible effects on 

honey bee larvae and adults following injection and ingestion of the fusion protein. The 

author hypothesised that the lack of toxicity of the Hv1a toxin towards A. mellifera 

workers and larvae could be a consequence of ineffective binding of the toxin to the 

target site of action in the CNS. It was also suggested that the lack of toxicity of 

Hv1a/GNA following injection could suggest that the binding sites in the Cav channels 

of honey bees are significantly different to lepidopteran larvae, which typically show 

90-100 % reduction in survival after injection with comparable doses (Nakasu et al., 
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2014). In contrast ω-ACTX-Hv2a has been shown to block Cav channels of honey 

bees and it is thought that the limited sequence homology to Hv1a could account for 

the difference in toxicity towards honey bees (Wang et al., 2001; Nakasu et al., 2014). 

To confirm Nakasu et al. (2014) results, GNA/Hv1a was selected to carry out injection 

bioassays against honey bee workers and feeding assays against honey bee larvae, 

as this fusion protein shows the greatest potential for the control of A. tumida in 

apiculture. Injection of GNA/Hv1a resulted in 10 % mortality after 7 days, which was 

similar to the results reported by Nakasu et al. (2014), where mortality of honey bees 

injected with Hv1a/GNA was 17 % 48 hr post injection. Conversely to Nakasu et al. 

(2014) who reported 57 % mortality for honey bees injected with 20 µg GNA, we did 

not observe mortality despite the higher dose of 40 µg being administered. However, 

our results are in line with those reported for lepidopteran (L. oleracea) larvae where 

injection doses of 20 µg GNA had a no significant effects on survival (Trung et al., 

2006).  

The development and implementation of fusion protein based pesticides holds great 

potential for new target specific and environmentally benign applications for control of 

A. tumida in apiculture. Insecticides are often formulated with emulsifiers, stabilisers, 

surfactants or other adjuvants that require dissolution in organic solvents and it has 

been demonstrated that Hv1a is stable long-term in organic solvents which is vital for 

the development of a next generation biopesticide (Foy and Pritchard, 1996; Herzig 

and King; 2005). Future research needs to focus on the formulation of GNA/Hv1a to 

enhance its stability in the environment.  
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CHAPTER 5 | IDENTIFICATION AND CHARACTERISATION OF DIGESTIVE 
PROTEASES FROM AETHINA TUMIDA 

5.1 Introduction 

The biochemistry of digestion in insects is varied according to whether they are 

phytophagous, carnivorous, omnivorous or parasitic (Gillott, 1980). The alimentary 

canal of insects is divided into three regions: foregut, midgut and hindgut. The foregut 

and hindgut are endodermal in origin and are lined with a cuticle. The midgut lacks a 

cuticle lining but produces a permeable peritrophic membrane which functions to 

protect the epithelium lining from mechanical damage by moving food and at the same 

time allows for nutrient absorption by being porous in nature (Hopkins and Harper, 

2001).  Insects use several types of enzymes secreted by the midgut epithelial cells 

to digest a wide range of food diets, with carbohydrases and proteases breaking down 

the molecules into absorbable elements in the midgut (Terra, 1990).  Proteases, also 

referred to as peptidases, are hydrolytic enzymes present in both the digestive system 

and haemolymph of insects that play a vital role in food digestion, polyphenoloxidase 

activation, liberation of amino acids for growth, toxin activation/detoxification and 

inflammation processes (Neurath, 1984). With regards to digestion, proteases are 

responsible for breaking peptide bonds, enabling the degradation and subsequent 

absorption of dietary proteins. Insect proteases are classified according to their 

mechanism of catalysis for activity as serine proteases, cysteine proteases, asparatic 

proteases and metalloproteinases (Bode and Huber, 1992). Several insect studies 

have provided evidence for possible selection and adaptation of proteases in response 

to the ingested protein content (Jongsma and Bolter 1997; Bown et al. 2004; Moon et 

al. 2004). The insect gut pH is not very variable, but is adapted to suit different methods 

of feeding, and different diets they feed on, which in turn determines the type of 

digestive enzymes present in the midgut, as they function optimally at different pH 

values (Applebaum, 1985; Dow, 1986; Terra, 1990; McGhie et al., 1995). For instance, 

Lepidoptera have an alkaline midgut pH and typically possess serine proteases like 

trypsin, chymotrypsin and elastase which perform optimally at neutral to high pH. In 

contrast some coleopterans possess an acidic midgut environment ranging from pH 

3.5-5.5 and instead rely predominantly on cysteine or aspartic proteases which 

function efficiently at an acidic pH (Schuler et al., 1998; Hilder and Boulter, 1999).  
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Proteases inhibitors (PI) are widely distributed in microorganism, animals and 

plants.  PIs can be divided into four main types, serine, cysteine, aspartic or metallo-

proteases, bases on the digestive protease they inhibit.  All inhibitors have a reactive 

site which acts on the active site of the target enzyme (Broadway, 1995). PIs act by 

reducing the activity of digestive enzymes, preventing ingested proteins from being 

reduced to free amino acids and preventing utilisation of the ingested protein, resulting 

in amino acid deficiency which affects growth, development and survival (Gatehouse 

et al., 1993). The role of plant PIs as a defence mechanism against insect attack was 

first demonstrated by Mickel and Standish (1947). Consequently, numerous studies 

have been carried out using PIs incorporated into artificial diet and expressed in planta 

to evaluate the ability of PIs to inhibit enzyme activity in the gut of certain coleopteran 

and lepidopteran pest insects (Lipke et al., 1954; Applebaum et al., 1964; Green and 

Ryan, 1972; Hilder et al., 1987; Gatehouse et al., 1997; Schuler et al., 1998; Hilder 

and Boulter, 1999). 

In this chapter the gut proteolytic enzymes of feeding A. tumida larvae were 

characterised with the use of three PIs (trypsin-specific inhibitor, trypsin- and 

chymotrypsin-specific inhibitor and cysteine proteases inhibitor) by inhibiting enzyme 

activity within gut extracts. The dominant digestive protease was identified as trypsin. 

Consequently, a trypsin inhibitor was incubated together with A. tumida gut extracts 

and GNA/Hv1a and Hv1/GNA to determine if this protease was responsible for 

degradation of the intact fusion protein (Chapter 4) and whether the stability of 

GNA/Hv1a and Hv1a/GNA could be enhanced over an assay period of 24 hr. 
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5.2 Profile of Aethina tumida gut extracts  

Crude A. tumida feeding and wandering larval gut extracts (Figure 5.1) were 

analysed by SDS-PAGE and Native-PAGE using 12.5 % acrylamide gels.  SDS-PAGE 

results (Figure 5.1A) show a range of proteins for both wandering and feeding A. 

tumida larvae. Two dominant proteins of approx. 100 and 250 kDa were observed in 

wandering and feeding larval samples. Other obviously dominant protein bands of 15, 

22 and 55 kDa are evident in wandering larvae. Several minor proteins of approx. 20, 

22, 30, 32, 55 and 70 kDa were observed in feeding larvae. Native-PAGE results 

(Figure 5.1B) showed four dominant proteins in wandering A. tumida larvae at 20, 60, 

150 and 250 kDa and 2 minor proteins at 10 and 25 kDa. Two dominant corresponding 

proteins of approx. 150 and 250 kDa, and 3 minor proteins (approx. masses of 35, 60 

and 130 kDa) were observed in feeding A. tumida larva.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.  Protein profile of Aethina tumida larvae gut extract, determined by: (A) SDS-

PAGE and (B) Native-PAGE. A total of 10 µg of gut extract was loaded and protein bands 

were visualised by staining with Coomassie. Lane 1 represents feeding larvae gut extracts 

and lane 2 shows wandering larvae. 

(B) Native- PAGE                 (A) SDS-PAGE                 
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5.3 Identification of feeding Aethina tumida digestive proteases using 

electrophoretic zymography  

For the detection of protease activity bands, the protein substrate casein was used. 

After separating feeding A. tumida larval gut proteins on SDS-PAGE and renaturing 

proteins by removing SDS from the gel, proteases activity bands were stained by 

incubating the gels in casein substrate.  In preliminary studies a total of four (1 to 4) 

protease bands were identified in feeding larval samples but were absent in wandering 

(non-feeding) larval samples (Figure 5.2). The digestive proteases ranged from 

approx. 15 to 200 kDa and could be classified into three groups according to their 

apparent molecular mass. Activity band 1 was considered high molecular-mass 

proteases (HMP) at approx. 200 kDa, activity band 2 was considered medium 

molecular-mass proteases (MMP) at approx. 35 kDa, whereas activity band 3 and 4 

were classified as low-molecular-mass proteases (LMP) ranging from approx. 15 to 

20 kDa. 

To characterise the digestive proteases within the gut of feeding A. tumida larvae 

three protease inhibitors were use: SKTI, SBBI and trans-epoxysuccinyl-L-

leucylamido-(4-guanidino)butane (E-64) to inhibit trypsin, chymotrypsin, and trypsin 

and cysteine proteases, respectively.  No inhibition of any of the protease bands was 

observed using 50 µM E-64 proteases inhibitor, despite being used at 5 times the 

manufactures recommended concentration (Figure 5.3). By contrast, protease bands 

1, 2 and 4 in Figure 5.4 decreased in activity (reduced or absence of clearance) with 

the addition of 100 µM of SKTI and SBBI. An increase of SKTI and SBBI 

concentrations to 250 µM and 500 µM led to complete inhibition of protease bands 1, 

2 and 4 as compared to the controls, suggesting they are trypsin-like proteases that 

are sensitive to both SKTI and SBBI. No inhibition of activity band 3 was observed with 

the addition of either inhibitor at the highest concentration of 500 µM, suggesting it 

could be either be a different class of proteases or chymotrypsin/trypsin-like proteases 

that was insensitive towards SKTI and SBBI. Overall the results of the zymogram 

suggest that trypsin seems to be the dominant class of proteases in the gut of feeding 

A. tumida larvae.  
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Figure 5.2. Casein substrate-based protease activity profile in the gut extracts of Aethina 

tumida feeding and wandering larvae. A total of 15 µg of gut extract was loaded and activity 

(clearance of protein) were visualised by incubating in casein and staining with Coomassie. 

Lane 1 represents feeding larval and lane 2 wandering larval gut extracts. Protease activity 

bands are indicated 1-4.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Casein substrate-based protease activity band profile of Aethina tumida feeding 

and wandering larvae incubated with E-64. A total of 15 µg of gut extract was treated with E-

64 and protease activity visualised by incubating in casein and staining with Coomassie. Lanes 

1 & 5 show feeding larval gut extracts and lane 6 shows wandering larvae without protease 

inhibitor. Lanes 2, 3 & 4 show feeding larvae gut extract with protease inhibitor at final 

concentrations of 10 µM, 25 µM and 50 µM, respectively. Protease activity bands are indicated 

1-4.  
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Figure 5.4. Casein substrate-based protease activity band profile of Aethina tumida feeding 

and wandering larvae incubated with (A) SKTI or (B) SBBI. A total of 15 µg of gut extract was 

treated with SKTI or SBBI and protease activity visualised by incubating in casein and staining 

with Coomassie. Lanes 1 & 5 show feeding larval gut extracts and lane 6 shows wandering 

larvae without protease inhibitor. Lanes 2, 3 & 4 show feeding larvae gut extract with protease 

inhibitor at final concentrations of 100 µM, 250 µM and 500 µM, respectively. Protease activity 

bands are indicated 1-4.  
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5.4 Analysis of Hv1a amino acid sequence using Pept ide cutter  

Analysis of the mature Hv1a sequence using PeptideCutter 

(http://web.expasy.org/peptide_cutter)  indicated that it contained three cleavage sites 

for trypsin. Figure 5.5 shows the positions of the cleavage sites located towards the 

C-terminal of the sequence at amino acid 25, 34 and 35. 

 

 

 

 

 

 

 

 

Figure 5.5. Mature Hv1a sequence showing the location of three trypsin cleavage sites 

indicated in red as predicted by PeptideCutter (http://web.expasy.org/peptide_cutter).  

 

5.5 In vitro stability of GNA/Hv1a and Hv1a/GNA fusion proteins  in feeding 

Aethina tumida larvae gut extracts with the addition of SKTI  

The stability of GNA/Hv1a and Hv1a/GNA was assessed in vitro by incubating the 

equivalent of two larval guts (40 µl) with 75 µg of GNA/Hv1a or Hv1a/GNA. Protein 

content was estimated using Coomassie Plus (Bradford) Assay Kit using Bovine 

serum albumin as standards and for every 15 µg of gut extract present 500 µM SKTI 

was added. Samples were analysed for the presence of fusion proteins by western 

blotting, using anti-GNA antibodies. As shown in Figure 5.6 both GNA/Hv1a and 

Hv1a/GNA remain fully intact when incubated in the presence of SKTI at a 

concentration of 500 µM for 24 hr. Previous analysis (Chapter 4; Figure 4.14) showed 

that no intact GNA/Hv1a or Hv1a/GNA was detectable after incubation with gut 

extracts in the absence of the trypsin inhibitor under comparable conditions. Taken 

together these results strongly suggest that trypsin was responsible for the 

degradation of both GNA/Hv1a and Hv1a/GNA in the gut of A. tumida larvae. 

 

   
 SPTCIPSGQPCPYNENCCSQSCTFKENENGNTVKRCD 

1---------+---------+---------+-------37 
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Figure 5.6. Western analysis (anti-GNA antibodies) of 5 day old Aethina tumida larval 

gut extracts incubated with SKTI and: (A) GNA/Hv1a or (B) Hv1a/GNA. Samples were 

taken at the indicated time points after incubation of 75 µg of the respective fusion 

proteins (FP) with 40 µl gut extract (equivalent of two larval guts).  For each time point 

300 ng of each FP was loaded. +ve 24 denotes FP incubated for 24 hr without gut 

extract, +ve FP +guts refers to a boiled gut sample incubated with FP and SKTI for 24 

hr and +ve GNA represents 100 ng recombinant GNA standard. 

 

 

 

 

 

 

 

 

 

(A) GNA/Hv1a                (B) Hv1a/GNA                
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5.6 Discussion  

Insect pests have evolved highly efficient strategies to counteract the effects of PIs 

by up regulating the expression of proteases belonging to different classes (Terra and 

Cristofoletti 1996; Johnson and Rabosky 2000). It has been suggested that serine 

proteases were the basal digestion elements in primitive coleopterans, but that 

continuous exposure to diets rich in serine PIs has enabled diversification of catalytic 

mechanisms involved in protein proteolysis (Terra and Cristofoletti 1996; Johnson and 

Rabosky 2000). Serine proteases are known to be dominant in lepidopteran gut 

environments, contributing to 95 % of the total digestive activity, whereas coleopterans 

have a wider range of gut proteases, with serine, cysteine and metalloproteases being 

reported as the dominant protease types (Terra 1990; Terra and Ferreira 1994; Terra 

and Cristofoletti 1996; Mochizuki 1998; Johnson and Rabosky 2000; Castro-Guillen et 

al., 2012). For example, the alfafa weevil, Hypera postica (Elden, 1995; Wilhite et al., 

2000); the black vine weevil, Otirhynchu sulcatus (Michaud et al., 1995) and the boll 

weevil, Antonomus grandis (Murdock et al., 1987), have slightly acidic midguts 

(approx. pH 6) and rely on cysteine proteases. In contrast other coleopterans such as 

R. ferugineus (Alarcon et al., 2002) and the citrus weevil, Diaprepes abbreviates (Yan 

et al., 1999) have alkaline midguts ranging between pH 9-10 and rely on serine 

proteases as the domain digestive enzymes. In other coleopterans several classes of 

proteases are responsible for proteolysis, for instance serine, cysteine and aspartyl 

proteases have been identified in the guts of the rice weevil, Sitophilus oryzae (Alfonso 

Rubi et la., 2003) and serine and cysteine proteases in the midgut of the weevil Baris 

coerulescens (Bondaé-Bottino et al., 1999) and the cabbage weevil, Ceutorhynchus 

assimilis (Girard et al., 1998); and serine and aspartyl proteases in a sugar beet weevil, 

Aubeonymus mariaefranciscae (Ortego et al., 1998). Furthermore, Bolter and 

Jongsma (1995) and Oppert et al.  (2005) have shown that the coleopteran L. 

decemlineata and T. castaneum, who depend on cysteine proteases can express 

serine proteases when cysteine PIs are encountered, by-passing the attempts to 

inhibit its digestive processes. It is proposed that cysteine proteases could be used as 

an alternative way to cope with the presence of SPIs in the natural diet (Aguirre-

Mancilla et al. 2014). 
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The zymography results reported here showed the presence of four activity bands, 

that were classified according to molecular masses into three separate groups: HMP 

(activity band 1; 200 kDa), MMP (activity band 2; 35 kDa) and LMP (activity band 3 & 

4; 15-20 kDa). As previously mentioned that cysteine and serine proteases are two of 

the three dominant enzymes involved in protein digestion in coleopteran insects is well 

documented (Baker, 1982; Murdock et al., 1987; Terra and Ferreira, 1994; Terra and 

Cristofoletti, 1996; Oppert et al., 2003). Consequently, three proteases inhibitors, SKTI 

(trypsin-specific inhibitor) and SBBI (trypsin- and chymotrypsin-specific inhibitor); and 

E-64 (cysteine proteases inhibitor), were tested for their ability to inhibit proteolysis in 

A. tumida gut extracts. Of the four protease bands identified, none were inhibited with 

the addition of E-64. By contrast, the addition of 500 µM of SBBI and SKTI resulted 

100 % reduction in activity of three out of the four activity bands. Although a single 

activity band was insensitive to SKTI and SBBI this does not rule out it being a 

chymotrypsin or trypsin-like proteases. The latter was evidenced by Chougule et al. 

(2008) whereby an activity band identified in M. brassicae gut extract showed no 

sensitivity towards SKTI or SBBI, however the addition of chymostatin (chymotrypsin 

inhibitor) caused complete inhibition of the activity band.   

Different classes of enzymes are found in insect species with different gut pH. 

Insects with an alkaline midgut pH typically possess serine proteases like trypsin, 

chymotrypsin and elastase which perform optimally at neutral to high pH (Applebaum, 

1985; Dow, 1986; Terra, 1990; McGhie et al., 1995). The gut pH of A. tumida has been 

determined to be approx. pH 7 and the results of the zymogram clearly showed that 

trypsin seems to be the dominant serine protease present in the gut of feeding A. 

tumida larvae, which is not surprising as serine proteases function optimally at neutral 

to alkaline pH. Our results agree with several studies where serine proteases have 

been reported to be the dominant enzyme class in the digestive system of several 

coleopterans. Thie & Houseman (1990), Oppert et al. (2006) and Hosseininaveh et al. 

(2007) have shown that serine proteinase activity was the prominent digestive enzyme 

in the gut of the yellow mealworm, Tenebrio molitor, larger black flour beetle, Cynaeus 

angustus, and khapra beetle, Trogoderma granarium, respectively. Other 

coleopterans such as R. ferugineus (Alarcon et al., 2002) and the citrus weevil, 

Diaprepes abbreviates (Yan et al., 1999) have also been shown to have an alkaline 
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midgut environment, also relying predominantly on serine proteases for protein 

digestion.  

Herzig and King (2015) have shown that the Hv1a toxin is rapidly degraded at pH 

9 or above, however it has been shown to be remarkably stable for 24 hr, with 

essentially no degradation, in buffers ranging between pH 1 to 7, suggesting that the 

pH within the gut of A. tumida feeding larvae is unlikely to contribute to the degradation 

of intact fusion protein.  

Analysis of the Hv1a sequences using PeptideCutter confirmed the presence of 

three potential trypsin cleavage sites located towards the C-terminal of the sequence 

at amino acid 25, 34 and 35. To confirm trypsin was responsible for the proteolytic 

degradation of intact GNA/Hv1a and Hv1a/GNA, these fusion proteins were incubated 

in the presence of SKTI (trypsin-specific inhibitor) at a concentration of 500 µM for 24 

hr. The results indicated that both fusion proteins remained fully intact when incubated 

with SKTI. In contrast, when incubated in the presence of gut proteins but in the 

absence of the trypsin inhibitor, no intact fusion protein only cleaved GNA was 

detectable over a similar 24 hr time period (Chapter 4; Figure 4.15). These results 

further demonstrate the role of trypsin in the proteolytic degradation of the Hv1a 

peptide and cleavage of the peptide from the carrier protein GNA.    

The co-feeding of fusion proteins with PIs such as SKTI, holds enormous potential 

for hypothetically reducing proteolysis in the gut environment and thereby increasing 

levels of Hv1a toxin that can be delivered to the haemolymph of A. tumida. However, 

further research into this area is required to validate this assumption, particularly as it 

is known that insects such as H. armigera and T. castaneum larvae are capable of 

counteracting effects of PIs (Bown et al., 1998; Oppert et al., 2005) and A. tumida may 

well possess similar catalytic mechanism.  
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CHAPTER 6 | EVALUATION OF SOYBEAN KUNITZ TRYPSIN IN HIBITOR AS AN 

ALTERNATIVE CARRIER DOMAIN FOR INSECTICIDAL FUSION PROTEIN  

6.1 Introduction 

SKTI administered via artificial diet and transgenic plants, has been shown to have 

insecticidal effects against species belonging to the orders Coleoptera, Lepidoptera, 

Hemiptera and Orthoptera (Gatehouse et al., 1993; Johnson et al., 1995; Lee et al., 

1999; McManus et al., 2005; Shukla et al., 2005). SKTI consists of 12 criss-crossing 

antiparallel β-strands proteins that are highly resistant to thermal and chemical 

denaturation, with two disulfide bridges involving Cys 39-86 and Cys 138-145 critical for 

the inhibitory function (Steiner et al., 1965; Lehle et al., 1994; Tetenbaum and Miller, 

2001). SKTI’s mechanism of action is thought to be attributed to the hypersecretion of 

digestive enzymes of the insect caused by their inhibition, which ultimately results in 

a decrease of essential amino acids available to the insect (Gatehouse et al., 1993). 

SKTI also affect water balance, the development of the insect and its enzymatic 

regulation (Boulter, 1993). Gatehouse et al. (1993) transformed tobacco plants with 

SKTI and demonstrated high growth inhibitory effects in H. virescens larvae. SKTI has 

also been transformed into rice plants and resulted in 40-60 % mortality of brown plant-

hopper Nilaparvata lugens, (Lee et al., 1999).  

The carrier protein GNA has been successfully used to transport insecticidal 

peptides into the circulatory system of an insect, allowing biologically active proteins 

to be converted into effective and orally active insecticides (Fitches et al., 2002; 

Fitches et al., 2004; Trung et al., 2006; Fitches et al., 2012; Yang et al., 2014). In 

chapter 4 (section 4.7.6) we demonstrated that GNA based fusion proteins were orally 

active towards A. tumida, however they were prone to cleavage in the gut after 

ingestion. Additionally, in Chapter 5 (section 5.5) we demonstrated that addition of 

SKTI prevented the cleavage of both GNA/Hv1a and Hv1a/GNA after 24 hr. 

Furthermore, Down et al. (1999) has shown evidence for transport of SKTI, whereby 

SKTI was detected in the hemolymph of L. oleracea, after oral administration of the 

protein in artificial diet. It was the findings in the afore-mentioned that formed the 

rational for evaluating SKTI potential as an alternative carrier protein to GNA for the 

delivery of Hv1a to the circulatory system of A. tumida. An initial construct was 

designed based on GNA/Hv1a, whereby the Hv1a coding sequence was linked to the 

C- terminus of SKTI nucleotide sequence by a 3-alanine linker region. Biological 
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activity of SKTI/Hv1a was assessed after injection into A. tumida larvae, with no effects 

on mortality being observed. It was speculated that the lack of insecticidal activity was 

attributed to the misfolding of the toxin during expression in the yeast cells. As such 

two additional fusion proteins were designed incorporating either a flexible (Gly-Gly-

Gly-Gly-Ser motif) or rigid linker (Proline rich motif region) to improve protein folding 

and function (Sabourin et al., 2007). Inclusion of a flexible linker region did not result 

in a biologically active fusion protein. However, the incorporation of a rigid linker 

showed limited biological activity after injection into A. tumida larvae, at approx. 40 

times the dose required to achieve similar levels of mortality after injection of GNA 

based fusion proteins. 

 

6.2 Constructs encoding recombinant SKTI and fusion  proteins SKTI/Hv1a, 

SKTI/Hv1a with Gly-Gly-Gly-Gly-Ser linker (EL) and SKTI/Hv1a with X2 proline 

rich domain (X2 PRD)  

Codons were optimised for expression in P. pastoris, and the mature toxin Hv1a 

and/or mature SKTI carrier protein sequences subsequently ligated into pGAPZαB 

vector in frame with the α-factor secretory signal. The Hv1a toxin sequence was linked 

to the N- or C-terminal of mature SKTI nucleotide sequence. Three expression 

constructs were designed: Hv1a coding sequence was linked to the C- terminus of 

SKTI nucleotide sequence by a 3-alanine linker region (SKTI/Hv1a); flexible Gly-Gly-

Gly-Gly-Ser linker (SKTI(EL)/Hv1a) (Sabourin et al. 2007) and rigid linker incorporating 

two repeats of a Proline rich motif (SKTI/Hv1a X2 PRD) (Bonning et al., 2014). A 

diagrammatic representation of sequenced expression constructs and deduced amino 

acid sequences are shown in Figures 6.1, 6.2, 6.3 & 6.4. 
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DNA:  ATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACA 
+1FR: ·M··R··F··P··S··I··F··T··A··V··L··F··A··A··S· ·S··A··L··A··A··P··V··N··T··T· 
DNA:  ACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTT 
+1FR: ·T··E··D··E··T··A··Q··I··P··A··E··A··V··I··G· ·Y··S··D··L··E··G··D··F··D··V· 
DNA:  GCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCT 
+1FR: ·A··V··L··P··F··S··N··S··T··N··N··G··L··L··F· ·I··N··T··T··I··A··S··I··A··A· 
DNA:  AAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTGCAGCACATCATCATCATCATCATGATTTCGTG 
+1FR: ·K··E··E··G··V··S··L··E··K··R··E··A··E··A··A· ·A··H··H··H··H··H··H··D··F··V· 
DNA:  CTCGATAATGAAGGTAACCCTCTTGAAAATGGTGGCACATATTATATCTTGTCAGACATAACAGCATTTGGTGGA 
+1FR: ·L··D··N··E··G··N··P··L··E··N··G··G··T··Y··Y· ·I··L··S··D··I··T··A··F··G··G· 
DNA:  ATAAGAGCAGCCCCAACGGGAAATGAAAGATGCCCTCTCACTGTGGTGCAATCTCGCAATGAGCTCGACAAAGGG 
+1FR: ·I··R··A··A··P··T··G··N··E··R··C··P··L··T··V· ·V··Q··S··R··N··E··L··D··K··G· 
DNA:  ATTGGAACAATCATCTCGTCCCCATATCGAATCCGTTTTATCGCCGAAGGCCATCCTTTGAGCCTTAAGTTCGAT 
+1FR: ·I··G··T··I··I··S··S··P··Y··R··I··R··F··I··A· ·E··G··H··P··L··S··L··K··F··D· 
DNA:  TCATTTGCAGTTATAATGCTGTGTGTTGGAATTCCTACCGAGTGGTCTGTTGTGGAGGATCTACCAGAAGGACCT 
+1FR: ·S··F··A··V··I··M··L··C··V··G··I··P··T··E··W· ·S··V··V··E··D··L··P··E··G··P· 
DNA:  GCTGTTAAAATTGGTGAGAACAAAGATGCAATGGATGGTTGGTTTAGACTTGAGAGAGTTTCTGATGATGAATTC 
+1FR: ·A··V··K··I··G··E··N··K··D··A··M··D··G··W··F· ·R··L··E··R··V··S··D··D··E··F· 
DNA:  AATAACTATAAGCTTGTGTTCTGTCCACAGCAAGCTGAGGATGACAAATGTGGGGATATTGGGATTAGTATTGAT 
+1FR: ·N··N··Y··K··L··V··F··C··P··Q··Q··A··E··D··D· ·K··C··G··D··I··G··I··S··I··D· 
DNA:  CATGATGATGGAACCAGGCGTTTGGTGGTGTCTAAGAACAAACCGTTAGTGGTTCAGTTTCAAAAACTTGATAAA 
+1FR: ·H··D··D··G··T··R··R··L··V··V··S··K··N··K··P· ·L··V··V··Q··F··Q··K··L··D··K· 
DNA:  GAATCACTGGCCAAGAAAAATCATGGCCTTTCTTGAGTCGAC 
+1FR: ·E··S··L··A··K··K··N··H··G··L··S··*··V··D· 
 

 

 

 

 

 

 

 
 
Figure 6.1. SKTI expression construct in pGAPZαB. (A) DNA and deduced amino acid 

sequence and (B) diagrammatic representation. The α-factor prepro sequence is indicated in 

blue. Purple indicates Pst I, Not I and Sal I restriction sites. The SKTI and C-terminal histidine 

tag and stop codon are depicted in orange and grey, respectively. The position of the 

pGAPZαB N-terminal GAP promotor sequence and C-terminal AOX1 transcription termination 

region are shown. 
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DNA:  ATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACA 
+1FR: ·M··R··F··P··S··I··F··T··A··V··L··F··A··A··S· ·S··A··L··A··A··P··V··N··T··T· 
DNA:  ACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTT 
+1FR: ·T··E··D··E··T··A··Q··I··P··A··E··A··V··I··G· ·Y··S··D··L··E··G··D··F··D··V· 
DNA:  GCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCT 
+1FR: ·A··V··L··P··F··S··N··S··T··N··N··G··L··L··F· ·I··N··T··T··I··A··S··I··A··A· 
DNA:  AAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTGCAGCACATCATCATCATCATCATGATTTCGTG 
+1FR: ·K··E··E··G··V··S··L··E··K··R··E··A··E··A··A· ·A··H··H··H··H··H··H··D··F··V· 
DNA:  CTCGATAATGAAGGTAACCCTCTTGAAAATGGTGGCACATATTATATCTTGTCAGACATAACAGCATTTGGTGGA 
+1FR: ·L··D··N··E··G··N··P··L··E··N··G··G··T··Y··Y· ·I··L··S··D··I··T··A··F··G··G· 
DNA:  ATAAGAGCAGCCCCAACGGGAAATGAAAGATGCCCTCTCACTGTGGTGCAATCTCGCAATGAGCTCGACAAAGGG 
+1FR: ·I··R··A··A··P··T··G··N··E··R··C··P··L··T··V· ·V··Q··S··R··N··E··L··D··K··G· 
DNA:  ATTGGAACAATCATCTCGTCCCCATATCGAATCCGTTTTATCGCCGAAGGCCATCCTTTGAGCCTTAAGTTCGAT 
+1FR: ·I··G··T··I··I··S··S··P··Y··R··I··R··F··I··A· ·E··G··H··P··L··S··L··K··F··D· 
DNA:  TCATTTGCAGTTATAATGCTGTGTGTTGGAATTCCTACCGAGTGGTCTGTTGTGGAGGATCTACCAGAAGGACCT 
+1FR: ·S··F··A··V··I··M··L··C··V··G··I··P··T··E··W· ·S··V··V··E··D··L··P··E··G··P· 
DNA:  GCTGTTAAAATTGGTGAGAACAAAGATGCAATGGATGGTTGGTTTAGACTTGAGAGAGTTTCTGATGATGAATTC 
+1FR: ·A··V··K··I··G··E··N··K··D··A··M··D··G··W··F· ·R··L··E··R··V··S··D··D··E··F· 
DNA:  AATAACTATAAGCTTGTGTTCTGTCCACAGCAAGCTGAGGATGACAAATGTGGGGATATTGGGATTAGTATTGAT 
+1FR: ·N··N··Y··K··L··V··F··C··P··Q··Q··A··E··D··D· ·K··C··G··D··I··G··I··S··I··D· 
DNA:  CATGATGATGGAACCAGGCGTTTGGTGGTGTCTAAGAACAAACCGTTAGTGGTTCAGTTTCAAAAACTTGATAAA 
+1FR: ·H··D··D··G··T··R··R··L··V··V··S··K··N··K··P· ·L··V··V··Q··F··Q··K··L··D··K· 
DNA:  GAATCACTGGCCAAGAAAAATCATGGCCTTTCTGCGGCCGCATCTCCAACTTGTATTCCATCTGGTCAACCATGT 
+1FR: ·E··S··L··A··K··K··N··H··G··L··S··A··A··A··S· ·P··T··C··I··P··S··G··Q··P··C· 
DNA:  CCATATAATGAAAATTGTTGTTCTCAATCTTGTACTTTTAAAGAAAATGAAAATGGTAATACTGTTAAAAGATGT 
+1FR: ·P··Y··N··E··N··C··C··S··Q··S··C··T··F··K··E· ·N··E··N··G··N··T··V··K··R··C· 
DNA:  GATTGAGTCGAC 
+1FR: ·D··*··V··D· 

 

 

 

 

 

 

Figure 6.2. SKTI/Hv1a expression construct in pGAPZαB. (A) DNA and deduced amino 

acid sequence and (B) diagrammatic representation. The α-factor prepro sequence is 

indicated in blue. Purple indicates Pst I, Not I and Sal I restriction sites. SKTI, Hv1a and N-

terminal histidine tag and C-terminal stop codon are depicted in orange, green and grey, 

respectively. The position of the pGAPZαB N-terminal GAP promotor sequence and C-

terminal AOX1 transcription termination region are shown.  

 

 

 

(A) 

Hv1a 

Sal I 

26.21 kDa 

N α-factor SKTI 

21.31 

C 

Pst I 

0.84  

Not I 

GAP (His)6 tag   AOX1 

4.06 

(B) 



CHAPTER 6 | EVALUATION OF SOYBEAN KUNITZ TRYPSIN IN HIBITOR AS AN 

ALTERNATIVE CARRIER DOMAIN FOR INSECTICIDAL FUSION PROTEIN  

 

169 
 

 

 

DNA:  ATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACA 
+1FR: ·M··R··F··P··S··I··F··T··A··V··L··F··A··A··S· ·S··A··L··A··A··P··V··N··T··T· 
DNA:  ACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTT 
+1FR: ·T··E··D··E··T··A··Q··I··P··A··E··A··V··I··G· ·Y··S··D··L··E··G··D··F··D··V· 
DNA:  GCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCT 
+1FR: ·A··V··L··P··F··S··N··S··T··N··N··G··L··L··F· ·I··N··T··T··I··A··S··I··A··A· 
DNA:  AAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTGCAGCACATCATCATCATCATCATGATTTCGTG 
+1FR: ·K··E··E··G··V··S··L··E··K··R··E··A··E··A··A· ·A··H··H··H··H··H··H··D··F··V· 
DNA:  CTCGATAATGAAGGTAACCCTCTTGAAAATGGTGGCACATATTATATCTTGTCAGACATAACAGCATTTGGTGGA 
+1FR: ·L··D··N··E··G··N··P··L··E··N··G··G··T··Y··Y· ·I··L··S··D··I··T··A··F··G··G· 
DNA:  ATAAGAGCAGCCCCAACGGGAAATGAAAGATGCCCTCTCACTGTGGTGCAATCTCGCAATGAGCTCGACAAAGGG 
+1FR: ·I··R··A··A··P··T··G··N··E··R··C··P··L··T··V· ·V··Q··S··R··N··E··L··D··K··G· 
DNA:  ATTGGAACAATCATCTCGTCCCCATATCGAATCCGTTTTATCGCCGAAGGCCATCCTTTGAGCCTTAAGTTCGAT 
+1FR: ·I··G··T··I··I··S··S··P··Y··R··I··R··F··I··A· ·E··G··H··P··L··S··L··K··F··D· 
DNA:  TCATTTGCAGTTATAATGCTGTGTGTTGGAATTCCTACCGAGTGGTCTGTTGTGGAGGATCTACCAGAAGGACCT 
+1FR: ·S··F··A··V··I··M··L··C··V··G··I··P··T··E··W· ·S··V··V··E··D··L··P··E··G··P· 
DNA:  GCTGTTAAAATTGGTGAGAACAAAGATGCAATGGATGGTTGGTTTAGACTTGAGAGAGTTTCTGATGATGAATTC 
+1FR: ·A··V··K··I··G··E··N··K··D··A··M··D··G··W··F· ·R··L··E··R··V··S··D··D··E··F· 
DNA:  AATAACTATAAGCTTGTGTTCTGTCCACAGCAAGCTGAGGATGACAAATGTGGGGATATTGGGATTAGTATTGAT 
+1FR: ·N··N··Y··K··L··V··F··C··P··Q··Q··A··E··D··D· ·K··C··G··D··I··G··I··S··I··D· 
DNA:  CATGATGATGGAACCAGGCGTTTGGTGGTGTCTAAGAACAAACCGTTAGTGGTTCAGTTTCAAAAACTTGATAAA 
+1FR: ·H··D··D··G··T··R··R··L··V··V··S··K··N··K··P· ·L··V··V··Q··F··Q··K··L··D··K· 
DNA:  GAATCACTGGCCAAGAAAAATCATGGCCTTTCTGGTGGTGGTGGTAGCGCGGCCGCATCTCCAACTTGTATTCCA 
+1FR: ·E··S··L··A··K··K··N··H··G··L··S··G··G··G··G· ·S··A··A··A··S··P··T··C··I··P· 
DNA:  TCTGGTCAACCATGTCCATATAATGAAAATTGTTGTTCTCAATCTTGTACTTTTAAAGAAAATGAAAATGGTAAT 
+1FR: ·S··G··Q··P··C··P··Y··N··E··N··C··C··S··Q··S· ·C··T··F··K··E··N··E··N··G··N· 
DNA:  ACTGTTAAAAGATGTGATTGAGTCGAC 
+1FR: ·T··V··K··R··C··D··*··V··D·  

 

 

 

 

 

 

Figure 6.3.  SKTI/Hv1a with Gly-Gly-Gly-Gly-Ser (EL) linker extension expression construct 

in pGAPZαB. (A) DNA, deduced amino acid sequence and (B) diagrammatic representation. 

The α-factor prepro sequence is indicated in blue. Purple indicates Pst I, Not I and Sal I 

restriction sites and pink denotes the Gly-Gly-Gly-Gly-Ser extension linker. SKTI, Hv1a and 

N-terminal histidine tag and C-terminal stop codon are depicted in orange, green and grey, 

respectively. The position of the pGAPZαB N-terminal GAP promotor sequence and C-

terminal AOX1 transcription termination region are shown.  
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DNA:  ATGAGATTTCCTTCAATTTTTACTGCTGTTTTATTCGCAGCATCCTCCGCATTAGCTGCTCCAGTCAACACTACA 
+1FR: ·M··R··F··P··S··I··F··T··A··V··L··F··A··A··S· ·S··A··L··A··A··P··V··N··T··T· 
DNA:  ACAGAAGATGAAACGGCACAAATTCCGGCTGAAGCTGTCATCGGTTACTCAGATTTAGAAGGGGATTTCGATGTT 
+1FR: ·T··E··D··E··T··A··Q··I··P··A··E··A··V··I··G· ·Y··S··D··L··E··G··D··F··D··V· 
DNA:  GCTGTTTTGCCATTTTCCAACAGCACAAATAACGGGTTATTGTTTATAAATACTACTATTGCCAGCATTGCTGCT 
+1FR: ·A··V··L··P··F··S··N··S··T··N··N··G··L··L··F· ·I··N··T··T··I··A··S··I··A··A· 
DNA:  AAAGAAGAAGGGGTATCTCTCGAGAAAAGAGAGGCTGAAGCTGCAGCACATCATCATCATCATCATGATTTCGTG 
+1FR: ·K··E··E··G··V··S··L··E··K··R··E··A··E··A··A· ·A··H··H··H··H··H··H··D··F··V· 
DNA:  CTCGATAATGAAGGTAACCCTCTTGAAAATGGTGGCACATATTATATCTTGTCAGACATAACAGCATTTGGTGGA 
+1FR: ·L··D··N··E··G··N··P··L··E··N··G··G··T··Y··Y· ·I··L··S··D··I··T··A··F··G··G· 
DNA:  ATAAGAGCAGCCCCAACGGGAAATGAAAGATGCCCTCTCACTGTGGTGCAATCTCGCAATGAGCTCGACAAAGGG 
+1FR: ·I··R··A··A··P··T··G··N··E··R··C··P··L··T··V· ·V··Q··S··R··N··E··L··D··K··G· 
DNA:  ATTGGAACAATCATCTCGTCCCCATATCGAATCCGTTTTATCGCCGAAGGCCATCCTTTGAGCCTTAAGTTCGAT 
+1FR: ·I··G··T··I··I··S··S··P··Y··R··I··R··F··I··A· ·E··G··H··P··L··S··L··K··F··D· 
DNA:  TCATTTGCAGTTATAATGCTGTGTGTTGGAATTCCTACCGAGTGGTCTGTTGTGGAGGATCTACCAGAAGGACCT 
+1FR: ·S··F··A··V··I··M··L··C··V··G··I··P··T··E··W· ·S··V··V··E··D··L··P··E··G··P· 
DNA:  GCTGTTAAAATTGGTGAGAACAAAGATGCAATGGATGGTTGGTTTAGACTTGAGAGAGTTTCTGATGATGAATTC 
+1FR: ·A··V··K··I··G··E··N··K··D··A··M··D··G··W··F· ·R··L··E··R··V··S··D··D··E··F· 
DNA:  AATAACTATAAGCTTGTGTTCTGTCCACAGCAAGCTGAGGATGACAAATGTGGGGATATTGGGATTAGTATTGAT 
+1FR: ·N··N··Y··K··L··V··F··C··P··Q··Q··A··E··D··D· ·K··C··G··D··I··G··I··S··I··D· 
DNA:  CATGATGATGGAACCAGGCGTTTGGTGGTGTCTAAGAACAAACCGTTAGTGGTTCAGTTTCAAAAACTTGATAAA 
+1FR: ·H··D··D··G··T··R··R··L··V··V··S··K··N··K··P· ·L··V··V··Q··F··Q··K··L··D··K· 
DNA:  GAATCACTGGCCAAGAAAAATCATGGCCTTTCTGCGGCCGCAGGTGATGATGCTCCACCATCTCCAGGTCCAGAT 
+1FR: ·E··S··L··A··K··K··N··H··G··L··S··A··A··A··G· ·D··D··A··P··P··S··P··G··P··D· 
DNA:  CCAGGTCCACAACCACCACCACCACCACCACCATCTCCAACTCCAGTTGGTGGTGCTGCTGGTGGTGATGATGCT 
+1FR: ·P··G··P··Q··P··P··P··P··P··P··P··S··P··T··P· ·V··G··G··A··A··G··G··D··D··A· 
DNA:  CCACCATCTCCAGGTCCAGATCCAGGTCCACAACCACCACCACCACCACCACCATCTCCAACTCCAGTTGGTGGT 
+1FR: ·P··P··S··P··G··P··D··P··G··P··Q··P··P··P··P· ·P··P··P··S··P··T··P··V··G··G· 
DNA:  GCTGCTGGTTCTCCAACTTGTATTCCATCTGGTCAACCATGTCCATATAATGAAAATTGTTGTTCTCAATCTTGT 
+1FR: ·A··A··G··S··P··T··C··I··P··S··G··Q··P··C··P· ·Y··N··E··N··C··C··S··Q··S··C· 
DNA:  ACTTTTAAAGAAAATGAAAATGGTAATACTGTTAAAAGATGTGATTGAGTCGAC 
+1FR: ·T··F··K··E··N··E··N··G··N··T··V··K··R··C··D· ·*··V··D·  
 
 
 

 

 

 

 

Figure 6.4.  SKTI/Hv1a with X2 Proline rich motif (X2 PRD) linker extension expression 

construct in pGAPZαB. (A) DNA and deduced amino acid sequence and (B) diagrammatic 

representation. The α-factor prepro sequence is indicated in blue. Purple indicates Pst I, Not 

I and Sal I restriction sites and pink denotes the X2 PRD extension linker. SKTI, Hv1a and N-

terminal histidine tag and C-terminal stop codon are depicted in orange, green and grey, 

respectively. The position of the pGAPZαB N-terminal GAP promotor sequence and C-

terminal AOX1 transcription termination region are shown.  
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6.3 Expression and purification of SKTI/Hv1a, SKTI/ Hv1a with Gly-Gly-Gly-Gly-

Ser linker (EL) and SKTI/Hv1a with X2 proline rich domain (PRD)  

Sequence confirmed plasmid DNA encoding fusion proteins were linearised with 

BlnI and transformed in to SMD1168H (protease deficient strain) of P. pastoris, using 

Zeocin anti-biotic for selection. Positive transformants were inoculated in 10 ml YPG 

cultures with Zeocin and grown for 48 hr at 30°C. Culture supernatants (20 µl) were 

analysed for expression of fusion proteins by Western blotting, using anti-SKTI 

antibodies. 

SKTI/Hv1a and SKTI(EL)/Hv1a expression screens showed the presence of a single 

immunoreactive band of approx. 30 kDa (Figure 6.5). The predicted mass for 

SKTI/Hv1a and SKTI(EL)/Hv1a is approx. 25.9 and 26.4 kDa, respectively. Results for 

expression screen analysis of SKTI/Hv1a X2 PRD are shown in Figure 6.5. The 

predicted mass of SKTI/Hv1a X2 PRD is approx. 32.35 kDa, however a single 

immunoreactive band of approx. 40 kDa was detected. The presence of 

immunoreactive bands detected at the incorrect Mw could suggest that glycosylation 

of the recombinant proteins had occurred, as is commonly observed for proteins 

expressed in P. pastoris (Macauley-Patrick et al., 2005). Alternatively, this could be 

due to the high number of cysteine residues making separation by SDS-PAGE less 

efficient. The presence of a single band for all constructs suggests minimal cleavage 

of the expressed fusion proteins. The best expressing clones for all recombinant 

proteins were selected for large-scale protein production by bench top fermentation. 

Fermentation was carried out in a 5 L bioreactor under controlled environmental 

conditions (Chapter 2, section 2.4.5). The pGAPZ alpha factor secretory signal 

simplifies the purification process as it directs the secretion of expressed proteins out 

of the yeast cells and into the growth media, so that proteins can be purified directly 

from the fermented culture supernatant. Supernatant was obtained via centrifugation 

and passed through a series of filters and subsequently purified by nickel affinity 

chromatography (Chapter 2, section 2.4.6). Eluted peaks containing target proteins 

were diluted 50:50 with deionised water and subsequently de-salted by dialysis and 

freeze-dried. The proportion of fusion protein in lyophilised samples was estimated 

semi-quantitatively using commercial SKTI standards on SDS-PAGE gels (Figure 6.6).  

Separation of purified SKTI/Hv1a and SKTI(EL)/Hvla by SDS-PAGE showed the 

presence of a protein corresponding to the predicted molecular weight of approx. 27 
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kDa, with an additional protein of lower mass of 20 kDa corresponding to SKTI 

standards, indicating a degree of cleavage of the fusion protein (Figure 6.6 A & B). 

These results were in contrast to small scale cultures screens where a slightly larger 

immunoreactive protein of approx. 30 kDa was detected. Analysis of purified 

SKTI/Hv1a X2 PRD showed the presence of proteins of approx. 40 kDa in gels stained 

for total proteins (Figure 6.6 C), which was comparable to the molecular mass of the 

immunoreactive proteins in small scale cultures of clones transformed with SKTI/Hv1a 

X2 PRD, suggesting that glycosylation of the recombinant protein had occurred. 

Furthermore, separation of purified SKTI/Hv1a X2 PRD showed the presence of a 

lower protein mass of 20 kDa corresponding to SKTI standards, indicating a degree of 

cleavage of the fusion protein. The expression level of SKTI/Hv1a and SKTI(EL)/Hv1a 

was approx. 60 mg/L; and SKTI/Hv1a X2 PRD was approx. 80 mg/L respectively, 

estimated by semi-quantitative SDS-PAGE. 
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Figure 6.5.  Western blot screening of culture supernatants collected from clones expressing 

recombinant SKTI/Hv1a, SKTI/Hv1a with Gly-Gly-Gly-Gly-Ser (EL) linker extension and 

SKTI/Hv1a with X2 Proline rich motif (X2 PRD) fusion proteins from shake-flask yeast cultures 

using anti-SKTI antibodies: (A) SKTI/Hv1a and (B) SKTI(EL)/Hv1a. Lanes 1 to 10 show SMD 

clones 1-10; lanes 11 show 25 ng SKTI standards. (C) SKTI/Hv1a X2 PRD. Lanes 1 to 7 show 

SMD clones 1-7; lanes 8 & 9 show 25 and 50 ng SKTI standards 10 µl culture supernatants 

loaded.  Mw standards (kDa) based on Ponceau S staining are indicated. 

 (A) SKTI/Hv1a                 

 (B) SKTI(EL)/Hv1a                 

 (C) SKTI/Hv1a X2 PRD              
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Figure 6.6. SDS-PAGE analysis of purified: (A) SKTI/Hv1a, (B) SKTI/Hv1a with Gly-Gly-Gly-

Gly-Ser (EL) linker extension and (C) SKTI/Hv1a with X2 Proline rich motif (X2 PRD) linker 

extension. Lanes 1, 2 & 3, shows a respective 20 µl load of culture supernatant, culture 

supernatant after being passed through the column and 10 mM imidazole wash; lane 4 

indicates the peak fraction and lane 5 shows the collective purified protein; lane 6, 7 & 8  shows 

5, 10 & 25 µg of purified fusion protein, respectively and lanes 9 to 11 show respectively 0.5, 

2 & 5 µg SKTI standards. 

 

 (A) SKTI/Hv1a                 

 (B) SKTI(EL)/Hv1a                 

 (C) SKTI/Hv1a X2 PRD              
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6.4 Detection of ingested recombinant SKTI in Aethina tumida larvae  

To investigate if recombinant SKTI was resistant to proteolytic degradation in the 

diet and within the gut of A. tumida larvae and subsequently also able cross the gut 

epithelium, haemolymph and gut samples were extracted from insects fed on artificial 

diet containing recombinant SKTI.  Larvae (n=10 per treatment) were allowed to feed 

ad libitum on artificial diet containing SKTI at 5000 ppm for 24 hr.  All samples were 

analysed via western blotting, using anti-SKTI antibodies.  

Analysis of 100 ng of diet containing recombinant SKTI showed the presence of an 

immunoreactive protein of a similar mass to standard SKTI, suggesting SKTI was not 

subjected to proteolysis after 24 hr (Figure 6.7). Homogenised gut (including gut 

content) samples showed the presence of recombinant SKTI after 24 hr, with no 

corresponding immunoreactive band being detected in the control samples. Transport 

of recombinant SKTI into the haemolymph was evident from the presence of an 

immunoreactive band corresponding to the size of recombinant SKTI, which was 

absent in the negative control haemolymph. These results suggest that SKTI could be 

used as an alternative carrier protein to transport attached toxins to the circulatory 

system of A. tumida. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 6 | EVALUATION OF SOYBEAN KUNITZ TRYPSIN IN HIBITOR AS AN 

ALTERNATIVE CARRIER DOMAIN FOR INSECTICIDAL FUSION PROTEIN  

 

176 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 . Western analysis (anti-SKTI antibodies) of 7 day old Aethina tumida larval 

haemolymph and gut samples after feeding on artificial diet containing 5000 ppm recombinant 

SKTI for 24 hr: lanes 1 & 2 show haemolymph (10 µl) of control and SKTI fed larvae 

respectively; lane 3 & 4, are replicate control, and 5 & 6 are replicate SKTI gut  samples (n=5 

guts per sample), approx. 40 µg total protein loaded; lane 7 represents a loading of 100 ng of 

artificial diet containing SKTI and lane 8 & 9 represents  50 and 100 ng recombinant SKTI 

standard. Mw standards (kDa) based on Ponceau S staining are indicated. 
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6.5 Biological activity of SKTI/Hv1a, SKTI(EL)/Hv1a  and SKTI/Hv1a X2 PRD 

fusion proteins against Aethina tumida wandering larvae after injection 

The biological activity of SKTI/Hv1a, SKTI(EL)/Hv1a and SKTI/Hv1a X2 PRD was 

assessed by injection of wandering A. tumida larvae (n=10 per treatment; average 

weight 17.46 mg) at a dose of 20 µg; this was 10 times the dose required to achieve 

100 % mortality after injection with GNA/Hv1a, Hv1a/GNA fusion proteins and K>Q 

variants (Chapter 4; Figure 4.6). Recombinant SKTI was injected at a dose of 40 µg 

and SP buffer solution serving as a negative control. Survival was monitored daily for 

7 days. 

Larvae injected with 40 µg of recombinant SKTI showed a 20 % decline in survival 

after 7 days, whereas no mortality was recorded for larvae injected with SKTI/Hv1a 

and SKTI(EL)/Hv1a. In contrast, injection of SKTI/Hv1a X2 PRD at a dose of 20 µg 

showed a decline in survival 2 days post injection, with 70 % mortality being recorded 

(P<0.01 Mantel-Cox log-rank test). As such wandering larvae were injected with doses 

ranging from 2.5 to 10 µg of fusion protein, however no mortality was recorded over 

the 7 day bioassays period (Figure 6.8). Interestingly, all larvae injected with 

recombinant SKTI, SKTI/Hv1a, SKTI(EL)/Hv1a SKTI/Hv1a X2 PRD fusion proteins 

showed cuticle mottling 6 days post injection suggesting that the SKTI component was 

functional and had activated the melanization cascade (Figure 6.9).  

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 6 | EVALUATION OF SOYBEAN KUNITZ TRYPSIN IN HIBITOR AS AN 

ALTERNATIVE CARRIER DOMAIN FOR INSECTICIDAL FUSION PROTEIN  

 

178 
 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 .  Survival of Aethina tumida wandering larvae injected with 40 µg of recombinant 

SKTI and 20 µg of SKTI/Hv1a X 2 PRD. Proteins in all cases were re-suspended in sodium 

phosphate (SP) buffer. Injection volume was 1 µl. SP solution (SP Con) served as negative 

control. N=10 per treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9.  Aethina tumida six days post injection: (A) Controls injected with sodium 

phosphate buffer and (B) 20 µg of SKTI/Hvla X2 PRD. Scale bars are indicated for the larvae. 
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6.6 Oral delivery of recombinant SKTI and SKTI/Hv1a  X2 PRD to Aethina tumida 

feeding larvae via drinking bioassays 

Five day old larvae (n= 20 per treatment) were supplied with SP/sucrose solution 

(13 % v/w) containing recombinant SKTI or SKTI/Hv1a X2 PRD at a final concentration 

of 10 mg/ml. Negative control larvae were fed on SP/sucrose solution without 

recombinant proteins. The diet was changed every 24 hr for 72 hr and thereafter larvae 

were supplied with artificial diet until they entered the wandering stage (i.e. approx. 4 

days post liquid feed). As shown in Figure 6.10 no mortality was recorded in the control 

and SKTI treatment 7 days post feeding, whereas larvae treated with SKTI/Hv1a X2 

PRD, showed a 20 % decline in survival after 2 days, with no further reduction in 

survival observed 7 days post feeding (P<0.05; Mantel-Cox log-rank test). The results 

indicate a significant reduction in the biological activity of Hv1a when linked to the 

carrier protein SKTI, as 32 times less GNA/Hv1a achieved similar levels of mortality 

(Chapter 4, section 4.7.3). 

 

 

 

 

 

 

 

 

 

 

Figure 6.10.  Survival of Aethina tumida 5 day old larvae fed on 10 mg/ml of recombinant 

SKTI and SKTI/Hv1a X2 PRD. Sodium phosphate (SP Con) buffer served as negative control. 

N= 20 per treatment. The diet was changed every 24 hr for 72 hr and thereafter larvae were 

supplied with artificial diet until they entered the wandering stage. 
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6.7 Stability of SKTI/Hv1a X2 PRD within the gut of  5 day old Aethina tumida 

larvae 

The presence of SKTI/Hv1a X2 PRD in haemolymph (n=20) and gut samples 

extracted from larvae (n=5 per replicate) were analysed by western blotting using anti-

SKTI antibodies. Figure 6.11 shows western analysis results of haemolymph and gut 

samples 24 hr post ingestion of SKTI/Hv1a X2 PRD. Analysis of all gut samples after 

24 hr confirmed that the fusion protein was cleaved after 24 hr, which was evident by 

the presence of a single immunoreactive band corresponding to the size of 

recombinant SKTI, which was absent in the control samples. Western analysis showed 

evidence for transport of SKTI across the gut epithelium, since SKTI was present in 

the haemolymph samples 24 hr after feeding.  

 

 

 

 

 

 

 

 

 

 

Figure 6.11.  Western analysis (anti-SKTI antibodies) of 5 day old Aethina tumida larval 

haemolymph and gut samples after feeding on sodium phosphate buffer (SP)/sucrose solution 

(13 % v/w) containing SKTI/Hv1a X2 PRD at a concentration of 2.5 mg/ml for 24 hr. Fusion 

protein (FP) haemolymph and gut samples (two replicates depicted as R1 and R2) 10 µl and 

10 µg total protein was loaded, respectively. Standards are 25 ng of SKTI/Hv1a X2 PRD (FP 

std), with the circle indicates intact fusion protein, and commercial SKTI standards (SKTI std).  
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6.8 Discussion  

SKTI was selected as a potential alternative carrier to GNA in a fusion-protein based 

approach. SKTI was successfully produced in P. pastoris, with yields of 80 mg/l of 

culture supernatant being obtained. The potential of SKTI to act as an alternative 

carrier was demonstrated by the presence of this protein in the haemolymph after 

ingestion by A. tumida larvae, suggesting transport of SKTI across gut epithelium. The 

ability to transport across gut epithelium requires the ingested protein to be resistance 

to proteolytic degradation, which like GNA was the case for SKTI. Furthermore, the 

ability of SKTI to transport into the haemolymph requires a biologically active protein 

as denatured proteins do not have this ability (Fitches et al., 2001). However, the 

amount of SKTI detected in A. tumida guts and haemolymph samples was approx. 4 

and 10 times less, respectively, for SKTI as compared to GNA (Chapter 4, section 

4.6). Transport studies using GNA showed an excess of 100 ng of recombinant GNA 

in both haemolymph and gut samples (including gut content). The reduced levels of 

SKTI observed in gut samples, could be a consequence of larvae not consuming as 

much of the diet as compared to GNA fed larvae. It has been suggested that transport 

across the gut epithelium into the haemolymph can be hindered by the large molecular 

size of a protein, affecting transport based on passive diffusion or mediated by active 

cellular processes (Fitches et al., 2008). SKTI is a 21.5 kDa monomeric protein 

whereas GNA is a 50 kDa tetrameric protein and therefore transport into the 

haemolymph would not have been affected by the size of SKTI. Overall, this data 

suggested that like GNA, SKTI has the potential to act as a carrier protein for the 

delivery of Hv1a to the circulatory system of A. tumida. 

The insecticidal activity of an injected and orally ingested fusion protein requires 

both lectin functionality, for transport and toxin functionality for insecticidal activity. 

Injection of A. tumida larvae with SKTI/Hv1a at a dose of 20 µg failed to induce any 

mortality, however cuticle mottling was evident 6 days post injection. This provided 

further evidence for functionality of the SKTI component, as the observed cuticle 

mottling suggested that SKTI had proteolytically cleaved the phenoloxidase enzyme 

which is key to the melanisation cascade, thereby activating this cascade, causing 

unwanted melanisation of the cuticle (Ashida and Dohke, 1980). It was evident from 

the lack of mortality after injection of 20 µg of SKTI/Hv1a that the Hv1a peptide was 

not functional, as by comparison injection of GNA based fusion proteins at a 
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concentration of 2 µg (10-fold reduction in dose) resulted in 100 % mortality after 7 

day. Fitches et al., (2008) showed that GNA/ButaIT was toxic to M. brassicae after 

injection and when fed, had negative effects on larval survival and growth. However, 

when ASAII, a similar lectin derived from the garlic bulb, was linked to ButaIT peptide 

no effects were observed after injection and oral delivery of this fusion protein towards 

M. brassicae. The author hypothesised that the lack of insecticidal activity may be a 

consequence of the ButaIT part of the fusion protein not folding correctly or may be 

constrained by the lectin domain so that it is unable to adopt the correct conformation 

to interact with its normal target (Fitches et al., 2008).  

Consequently, the use of naturally occurring linker regions was investigated as 

linker regions serve to connect protein moieties maintaining functions such as 

cooperative inter-domain interactions or preserving biological activity (Gokhale and 

Khosla, 2000; Ikebe et al., 1998). The incorporation of linker regions in some cases, 

has led to the successful production of a fusion protein by providing an appropriate 

distance between the two domains thereby reducing their interaction and 

restoring/improving protein folding, ultimately maintaining biological activity (Bai et al., 

2005; Zhang et al., 2009). Flexible linkers are usually used when joined domains 

require a degree of movement or interaction and have been shown to increase stability 

and folding (Argos, 1990; Chen et al., 2013). The most common flexible linker used in 

structural studies is Gly-Gly-Gly-Gly-Ser, with varying repeats of the motif (Klein et al., 

2014). Sabourin et al. (2007) placed flexible Gly linkers between the epitope and 

tagged protein, which resulted in increased sensitivity and accessibility of the epitope 

without compromising protein folding and function. As such a second fusion protein 

construct was designed using a single Gly-Gly-Gly-Gly-Ser (EL) motif.  Analysis of the 

purified fusion protein showed the presence of a protein corresponding to the predicted 

molecular weight of approx. 27 kDa. However, like SKTI/Hv1a, injection of 

SKTI(EL)/Hv1a at a dose of 20 µg failed to induce any larval mortality, suggesting the 

incorporation of the linker region did not prevent the interaction of the SKTI domain 

with Hv1a peptide, enabling correct folding of this peptide.   

 Proline amino acids are common to many naturally derived interdomain linkers, 

and proline rich sequences tend to form rigid linkers, preventing unfavourable 

interaction between the domains and allowing the protein domains to function 

independently (Radford et al., 1987; Williamson, 1994). Rigid linkers have successfully 
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been applied to fusion proteins, where flexible linkers have failed, as they have been 

able to maintain the distance and reduce/prevent the interference between the 

proteins domains (Chen et al., 2013). Bonning et al., (2014) successfully used an 

aphid plant luteovirus coat protein to deliver Hv1a to four aphid species, by inserting 

a Proline rich motif spacer between the C-terminus coat protein read-through domain 

and the N-terminus of Hv1a, allowing them to fold correctly, retain solubility and 

function. Furthermore, it has been demonstrated that adjusting the copy number of a 

linker region allows for the optimum separation of the functional domains and/or for 

the necessary inter-domain interaction (Chen et al., 2013). Finally, a third fusion 

protein incorporating two repeats of the Proline motif (X2 PRD), mentioned above, was 

inserted between SKTI carrier protein and Hv1a peptide. Analysis of purified 

SKTI/Hv1a X2 PRD showed the presence of proteins of approx. 40 kDa, suggesting 

the fusion protein was heavily glycosylated or the α-factor prepropeptide was not 

completely cleaved from the expressed protein prior to leaving the yeast cell (Brakes, 

1990). Injection of SKTI/Hv1a X2 PRD at a dose of 20 µg showed a significant 70 % 

decline in 2 days post injection. However, further injections with lower doses (2.5 to 

10 µg protein) did not result in reduced survival. In contrast, 100 % mortality was 

recorded against A. tumida larvae after injection of 2 µg GNA based fusion proteins 

(Chapter 4, section 4.4).  

Oral delivery of SKTI/Hv1a X2 PRD at a dose of 10 mg/ml, with diet being changed 

every 24 hr for 72 hr and thereafter larvae were supplied with artificial diet until they 

entered the wandering stage, resulted in a 20 % decline in larval survival over 7 days. 

The dose of SKTI/Hv1a X2 PRD administered in the drinking assays was 32 times the 

dose required to achieve similar levels of mortality in larvae fed on solutions containing 

GNA/Hv1a in comparable assays. Western blotting experiments to investigate if intact 

fusion protein was present in haemolymph of larvae fed for 24 hr on fusion protein 

solutions were carried out. The results showed only the presence of SKTI in both 

haemolymph and gut samples for SKTI/Hv1a X2 PRD. Ozawa and Laskowski (1966) 

have reported that the interaction between trypsin and SKTI results in the cleavage of 

the peptide bond between Arg64 and Ile65 in the reactive site of SKTI, resulting in two 

peptides of approx. 6.8 kDa and 15.1 kDa, respectively. However, the results of the 

western blotting of ingested SKTI/Hv1a X2 PRD, indicated the presence of 20 kDa 

immunoreactive band corresponding to the size of intact SKTI. Trypsin proteases have 
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been identified in the gut of A. tumida larvae (Chapter 5, section 5.3) and it is possible 

these proteases are assisting in the cleavage of the Hv1a peptide from the carrier 

protein SKTI. No further stability assays were carried out, due to the poor oral toxicity 

of SKTI/Hv1a X2 PRD towards A. tumida larvae. 

SKTI/Hv1a X2 PRD showed limited biological activity after injection requiring 

approx. 40 times the dose to achieve similar levels of mortality compared to GNA 

based fusion proteins. The suitability of GNA as a carrier protein, in contrast to SKTI, 

is two-fold. It is thought that GNA assists in toxin folding during production leading to 

the generation of a biologically active fusion protein (Fitches pers com, 2018). SKTI 

consisting of 12 criss-crossing antiparallel β-strands proteins linked by long loops, with 

two disulfide bridges involving Cys 39-86 and Cys 138-145 (Steiner et al., 1965; Lehle et 

al., 1994; Tetenbaum and Miller, 2001). Song and Suh et al. (1998) suggested that 

these disulfide bonds are responsible for reducing the flexibility of the loop region by 

cross-linking them. It is possible the presence and function of the two disulfide bonds, 

which are absent in GNA, are responsible for SKTI’s inability to assist in toxin folding 

during production. SKTI acts by inhibiting the gut proteases of insects by irreversibly 

binding tightly to the active sites preventing utilisation of the ingested protein and 

consequently resulting in amino acid deficiency which affects growth, development 

and survival (Ryan 1990; Richardson, 1991; Gatehouse et al., 1993; Solomon et al., 

1999; Carlini and Grossi-de-Sá, 2002). It is possible that SKTI’s ability to bind 

irreversibly to active site of the protease in a substrate-like manner in the gut of insects, 

prevented the transport of Hv1a toxin to the haemolymph of A. tumida, therefore 

preventing SKTI/Hv1a fusion proteins from being biologically active. Fitches et al. 

(2012) showed that GNA may act as an anchor, by binding to the nerve cord of M. 

brassicae increasing the localisation of the Hv1a peptide resulting in a higher efficacy. 

It is possible that the absence of biological activity of the SKTI/Hv1a fusion proteins 

variants may well be a consequence of SKTI’s affinity for proteolytically cleaving the 

phenoloxidase enzyme which is key to the melanisation cascade, therefore diverting 

the Hv1a peptide from the CNS in A. tumida and preventing the localisation of the 

toxin. The co-feeding of GNA/Hv1a with SKTI, holds enormous potential for 

hypothetically reducing proteolysis in the gut environment (Chapter 5; Figure 5.6) and 

thereby increasing levels of Hv1a toxin that can be delivered to the haemolymph of A. 

tumida. 
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The data presented in this Chapter clearly showed that fusion to SKTI, even with 

the incorporation of a natural rigid linker, significantly reduced the biological activity of 

the fused recombinant toxin. Future work to investigate the potential use of alternative 

carrier proteins requires careful consideration of the factors that determine and 

maintain toxicity of the attached peptide. Alternative, natural linkers such as 

hydroxylamine-rich cellulase and xylanase linkers could be considered as they 

maintain an extended conformation and are protected from proteolysis because of the 

O-glycosylation, promoting protein folding and ultimately enhancing biological activity 

(Rizk et al., 2012).   

  



7 | GENERAL DISCUSSION  
 

 

186 
 

CHAPTER 7 | GENERAL DISCUSSION 

7.1 Introduction 

There is a pressing need to develop effective control options for A. tumida that pose 

little to no hazards to honey bees. Current control measures used against A. tumida 

are inadequate, suffering variability in levels of pest control. Furthermore, A. tumida 

control largely relies on the use of in-hive organophosphate, CheckMite + StripsTM (10 

% w/w Coumaphos) used in conjunction with GardStar7 (40 % permethrin), a soil 

treatment product (Delaplane, 1998; Hood and Miler, 2003). Organophosphates are 

highly toxic to bees, wildlife and humans (Carson, 1962) and hence all hive honey 

combs have to be removed prior to treatment. Additionally, the continued use of 

pyrethroids such as permethrin can give rise to resistance, and upon contact, is 

deleterious to honey bees (De Guzman et al., 2011). Effective pest control in the UK 

is coming under increased pressure due to the loss of effective chemical control 

options resulting from withdrawals arising from EU Directive 91/414, therefore limiting 

the range of products that could be employed in the event of A. tumida outbreak 

(EFSA, 2015). Given these issues alternative control strategies are urgently required. 

In this thesis the potential use of RNAi and fusion protein technology as target specific 

and effective novel strategies for the control of A. tumida was assessed in quarantine 

laboratory conditions. 

 

7.2 RNAi-mediated control of Aethina tumida 

RNAi is a post translational gene silencing phenomenon mediated by exogenous 

or endogenous dsRNA. The RNAi pathway is a well-conserved mechanism in insects 

and holds immense potential as an alternative control method for insect pests 

(Hannon, 2002). RNAi efficacy is generally high in coleopterans, with systemic RNAi 

responses being documented in most reported coleopteran studies (Huvenne and 

Smagghe, 2010; Scott et al., 2013). Consequently, the use of RNAi as an alternative 

control method for A. tumida was investigated in Chapter 3. Laccase 2 and V-ATPase 

subunit A were selected as target genes on the basis of previous successful RNAi 

studies against coleopteran insect pests (Arakane et al., 2005; Baum et al., 2007; 

Forgac, 2007; Nui et al., 2008; Laudani et al., 2017).   
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In this Chapter, a robust systemic RNAi response was observed in A. tumida 

feeding and wandering larvae after injection of V-ATPase subunit A and Laccase 2 

dsRNAs. A phenotype resulting from dsRNA introduced by injection was observed and 

qPCR confirmed significant decreases and enhanced suppression of transcript levels 

over time, indicative of systemic RNAi. The results of the injection bioassays are in 

agreement with previous RNAi studies carried out against coleopteran insect pests 

(Tomoyasu and Denell, 2004; Arakane et al., 2005; Nui et al., 2008; Prentice et al., 

2015).  Oral delivery of Laccase 2 in solution failed to evoke a phenotypic effect on 

either survival or fitness parameters. Feeding V-ATPase subunit A dsRNA at a 

concentration of 100 ng/µl (100 µg/ml) to larvae did result in 50 % mortality and 

deformities in surviving adults, however gene suppression could not be verified. In 

contrast, Bolognesi et al., 2012 reported that oral delivery of DvSnf7 dsRNA provided 

respective LD50s of 4.3 and 1.2 ng/ml diet for D. v. virgifera and D. undecimpunctata 

howardii. Additionally, Zhao et al. (2008) has reported that spraying leaves with target 

specific Arginine kinase (AK) dsRNA resulted in LD50 value of 0.80 ng/ml for the 

stripped flea beetle, Phyllotreta striolata. It is clear that A. tumida larvae are highly 

susceptible to dsRNA delivered via injection, but consistent RNAi effects after oral 

delivery of dsRNA could not be achieved. To understand the lack of sensitivity to orally 

delivered dsRNA in A. tumida the persistence of dsRNA in the presence and in the gut 

of A. tumida larvae was investigated. Rapid and complete degradation of dsRNA was 

observed in A. tumida gut extracts, suggesting the involvement of ribonuclease 

activity. This has been demonstrated in S. gregaria, as like A. tumida they are highly 

sensitive to dsRNA when delivered via injection, but oral delivery of dsRNA has proved 

unsuccessful. Studies performed by Luo et al. (2012) and Wynant et al. (2014) showed 

rapid degradation of dsRNA in the gut extracts of S. gregaria and suggested this was 

a consequence of Sg-dsRNAses 2. The Colorado potato beetle, L. decemlineata, is 

highly sensitive to ingestion of V-ATPase subunit A dsRNAs (LD50 of 5.2 ng/cm2; Baum 

et al., 2007). Shukla et al., (2016) has recently demonstrated that incubation of dsRNA 

in L. decemlineata lumen content (diluted 50 %) did not cause significant degradation 

of dsRNA after 90 min. In contrast, when A. tumida gut extracts were diluted to 10 %, 

complete degradation of dsRNA was observed after 60 min. Thus, it is highly likely 

that dsRNA degradation within the gut of A. tumida was responsible for preventing 

sufficient uptake of dsRNAs by epithelial cells to induce an RNAi response. Another 
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factor that could contribute to these inconsistent results was the delivery method used. 

Oral delivery of dsRNA via a soaking assay made it impossible to determine the 

amount of dsRNA consumed by each A. tumida larvae. 

Sequence specificity of dsRNA is vital for a target specific approach against insect 

pests, as identical mRNA regions of 20-25 nucleotides can elicit non-target effects. 

This was evidence by Braun et al. (2008) who showed that when dsRNAs targeting D. 

virgifera genes were tested on other insect pests, an effective oral RNAi effect was 

observed. An explanation for these non-target effects is the presence of 3 identical 

regions of 20-29 nucleotides that can be identified in the published sequence 

alignment. Alignment of A. mellifera and A. tumida Laccase 2 and V-ATPase subunit 

A mRNAs indicated at most conserved regions of 15 bp and sequence identities were 

74 % and 68 %, respectively. The lack of effect on survival or gene expression in 

honey bees was confirmed via the injected of A. tumida dsRNAs. 

In this thesis convincing evidence for the potential of RNAi based biopesticides for 

target specific and environmentally benign control of A. tumida in apiculture is 

presented. Prevention of dsRNA degradation in the environment and gut of an insect 

is key to successfully inducing an RNAi response. Coating of dsRNA molecules could 

afford protection of introduced dsRNA from nucleases and gut pH variations (Huvenne 

and Smagghe, 2010). Liposome or nanoparticle-based delivery systems allow for the 

stabilisation of dsRNA molecules during delivery, subsequently increasing RNAi 

efficiency (Mamta and Rajam, 2017). Whyard et al. (2009) orally delivered non-

encapsulated ϒTUB23C dsRNA to four Drosophila spp. with no evidence of an RNAi 

effect being observed, however when liposome encapsulated dsRNA was fed, all 

species suffered high mortalities following ingestion. Similarly, Taning et al. (2016) 

showed that oral delivery of liposome encapsulated dsRNA to D. suzukii led to a 

significant increase in gene silencing and insect mortality, whereas naked dsRNA 

failed to induce an RNAi effect. Regarding synthetic nanoparticles, it has been 

demonstrated that the incorporation of dsRNA into chitosan, a natural biodegradable 

polymer that can be prepared cheaply by deacetylation of chitin, resulted in effective 

induction of RNAi in mosquitoes by feeding (Zhang et al., 2010; Zhang X. et al., 2015). 

Zhu et al. (2011) used RNAase II-deficient E. coli to produce dsRNA and after L. 

decemlineata ingested the bacteria, significant mortality and loss of body weight was 

observed. Apse RNA Containers™ (ARCs) is a biotechnology company that has 
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recently developed a method to mass-produce encapsulated dsRNA using bacteria, 

which holds enormous potential for the future use of RNAi (Joga et al., 2016). 

The mechanisms that facilitate dsRNA uptake in the insect gut are still largely 

unknown. The sid-1 gene product is responsible for mediating systemic RNAi effects 

C. elegans (Winston et al., 2002). A survey of systemic RNAi in T. castaneum identified 

three putative SID-like genes, but the results of the study showed that they were not 

required for systemic RNAi (Tomoyasu et al., 2008). Where robust systemic RNAi 

responses are observed in insects such as T. castaneum additional or different genes 

with similar functions, or possibly even different mechanisms, such as endocytosis, 

could be responsible for the cellular uptake of dsRNA (Tomoyasu et al., 2008; Zhang 

et al., 2010). It has been suggested that endocytosis mediated uptake of dsRNA may 

be too slow to facilitate a strong RNAi response without the use of transfection 

reagents to improve delivery to the gut cell (Taning et al., 2016). It is possible that A. 

tumida may rely on an endocytosis pathway for the uptake of dsRNA and together with 

dsRNA degradation in the gut, the total amount of dsRNA available for uptake by 

epithelial cells was significantly reduced preventing an RNAi response (Taning et al., 

2016). The translation of RNAi technology into a viable control strategy for A. tumida 

requires further research into the molecular mechanisms that may facilitate dsRNA 

uptake and the characterisation of gut nucleases, as the choice of formulation will 

depend on these factors. 

 

7.3 Fusion protein technology as a control method f or Aethina tumida 

Current chemical pesticides tend to act on a single target within the insect nervous 

system by blocking or inhibiting one of five main targets: voltage gated sodium (NaV) 

channels, glutamate receptors, γ-aminobutyric acid (GABA) receptors, nicotinic 

acetylcholine receptors and acetylcholinesterases (Casida, 2009). Consequently, the 

use of chemical compounds targeting few receptors has led to the development of 

resistance to several insecticidal families (Feyereisen, 1995; Brogdon and McAllister, 

1998). Insecticidal venom peptides derived from insect predators such as scorpions 

(Wugargiri et al., 2001), parasitic wasps (Gould and Jeanne, 1984), predatory mites 

(Tomalski et al., 1988) and spiders (Lipkin et al., 2002; Tedford et al., 2004) have 

received a great deal of interest as they provide an extensive source of highly 
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insecticidal toxins. Many of these insecticidal toxins are active against neuronal 

voltage dependent Na+, K+, Ca2+ or Cl- ion channels (Fajloun et al., 2000), providing 

alternative targets to traditional chemical control options. Spider venoms particularly 

have received much attention as they comprise an extensive library of neurotoxic 

peptides, and, to date, in the region of 1550 peptide toxins from 78 spider species 

have been described (Windley et al., 2012; www.arachnoserver.org). Furthermore, 

many spider peptide toxins are selectively insecticidal, making them ideal candidates 

for development as bioinsecticides (Windley et al., 2012). The use of ω-Hexatoxin-

Hv1a (Hv1a) targeting voltage gated calcium channels as an alternative target to 

conventional chemical pesticides, could have the potential to improve the efficacy of 

existing pest management strategies and possibly exhibit synergism with current 

control programmes (Wratten, 2009). The oral activity of Hv1a alone is limited, 

however Fitches et al. (2012) demonstrated that linking this peptide to the carrier 

protein GNA facilitates transport of the Hv1a peptide across the gut epithelium into the 

circulatory and may localise the toxin to the CNS, enhancing toxicity. Subsequently, 

Hv1a/GNA has been used to successfully reduce survival and larval weight of T. 

castaneum and in glasshouse trials has induced 100 % mortality in L. decemlineata 

larvae after potato plants were sprayed with 350 ppm (0.35 mg/ml) fusion protein 

solution (Back, 2011; Fitches pers com, 2018).  

In Chapter 4, the biological activity of GNA/Hv1a, Hv1a/GNA fusion proteins, and 

K>Q variants were investigated towards A. tumida via injection and feeding bioassays. 

Injection of GNA into wandering larvae elicited an LD50 after 7 days of 788.09 µg/g 

insect. In contrast, recombinant pro-Hv1a resulted in a LD50 of 43.53 µg/g insect or 11 

nmoles/g insect against A. tumida larvae, which is typically higher than values reported 

for recombinant Hv1a (Atkinson et al., 1998; Bloomquist et al., 2003). These data tend 

to suggest that recombinant pro-Hv1a does not fold as efficiently in yeast and/or 

hyperglycosylation disrupts binding to ion channels, reducing the toxicity of pro-Hv1a 

towards A. tumida wandering larvae. The LD50 values for GNA/Hv1a and 

GNA/Hv1a(K>Q) were a comparable 25.20 and 26.92 µg/g insect (equivalent to 6.3 

and 6.7 µg/g insect of Hv1a), whilst Hv1a/GNA and Hv1a(K>Q)/GNA LD50’s were 

slightly lower at 18.90 and 14.32 µg/g insect (equivalent to 4.7 and 3.58 µg/g insect of 

Hv1a), respectively. The LD50 for pro-Hv1a was approx. 6 to 12-fold less toxic against 

wandering larvae, compared to the fusion protein variants. Fitches et al. (2012) 
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provided direct evidence for GNA localisation to CNS by injecting FITC-labelled GNA 

and subsequently showed binding of GNA to the nerve cord of M. brassicae, 

suggesting that GNA may assist in localising Hv1a to the CNS of exposed insects. 

These injection results are in agreement with Fitches et al. (2012), showing that the 

fusion of Hv1a to the carrier protein GNA can enhance biological activity of the 

recombinant toxin.  

 Oral delivery of all four fusion proteins showed that GNA/Hv1a had the highest 

toxicity towards A. tumida larvae with an LC50 value after 7 days of 0.52 mg/ml which 

was 1.7 to 2.3-fold lower than that recorded for the other fusion protein variants. 

Consequently, stability assays were carried out to determine the length of time the 

fusion proteins remained intact in vitro in the gut and in vivo in the presence of feeding 

A. tumida larvae. The results of both the stability assays confirmed that GNA/Hv1a 

remained intact for the longest period, suggesting increased delivery of the Hv1a toxin 

to the haemolymph; thereby achieving an LC50 approx. two times lower than the other 

fusion protein variants. Based on the results generated in the feeding bioassays, 

GNA/Hv1a was selected for use in “applied” bioassays whereby bee brood, or eggs 

and bee brood, were sprayed with fusion protein. Significant levels of mortality were 

achieved, however they were not as high as observed in the drinking assays when the 

larvae were fed on sucrose solutions containing fusion protein. The emerging larvae 

in the brood assays were exposed to protein rich brood and thus the ingested 

GNA/Hv1a may be more prone to gut proteolysis thereby reducing levels of toxin 

delivery to the CNS. In Chapter 5 we identified trypsin as the dominant gut protease 

in A. tumida larvae and demonstrated that the addition of a trypsin inhibitor, SKTI, 

prevented the degradation of intact GNA/Hv1a and Hv1a/GNA over a 24 hr time 

period. Further research is required to determine if co-feeding fusion proteins with PIs 

such as SKTI, could trigger a synergistic effect and significantly increase the 

effectiveness of GNA/Hv1a. Alternatively, modifications to the linker region between 

GNA and Hv1a could potentially increase the stability of the fusion protein, thus 

minimising cleavage following ingestion by A. tumida.  

The use of SKTI as an alternative carrier protein, could hold enormous potential for 

hypothetically reducing proteolysis in the gut environment and thereby increase levels 

of Hv1a toxin that can be delivered to the haemolymph of A. tumida. SKTI was 

evaluated as carrier protein and preliminary results showed transport into the 
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circulatory system of A. tumida, suggesting it could be used as an alternative carrier 

protein to transport attached toxins to the circulatory system of A. tumida. (Chapter 6 

section 6.4). However, fusion of Hv1a to SKTI, incorporating a rigid linker, significantly 

reduced the biological activity of the fused recombinant toxin. The lack of insecticidal 

activity following the use of an alternative carrier protein to GNA is not limited to SKTI. 

When GNA based fusion proteins were compared to a similar lectin derived from the 

garlic bulb, GNA was able to form functional recombinant proteins, however when 

same toxin was fused to the garlic lectin no biological activity was observed (Fitches 

et al., 2008). It is clear that GNA seems to be vital in assisting in the folding of these 

toxin, however the mechanisms responsible for this interaction remains unclear 

(Fitches pers com, 2018).  

Alternative methods to deliver Hv1a have been demonstrated by Bonning et al. 

(2014) who fused a coat protein of a luteovirus (an aphid-vectored plant virus) to Hv1a 

and demonstrated successful delivery of the peptide to the haemolymph of four aphid 

species. The author demonstrated that ingestion of the fusion protein, via membrane 

sachet or in transgenic Arabidopsis plants, caused significant mortality in 

Acyrthosiphon pisum, Rhopalosiphum padi, Aphis glycines and Myzus persicae in 

comparison to control groups. Recently, Hv1a has been linked N- and C-terminally to 

an onion leaf lectin and expressed in Nicotiana tabacum, using a Potato Virus X vector, 

causing 65-83 % mortality in the mealy bug, Phenacocuss soleopsis (Javaid et al., 

2018). Interestingly, fusion of Hv1a linked to alternative carrier proteins expressed in 

plants has resulted in functional fusion proteins, which we have failed to achieve in a 

yeast expression system. This could be a consequence of the folding environment in 

plants being better suited to the production of a functional toxin.  A further method of 

delivering insecticidal arthropod toxins is to engineer entomopathogens, such as 

entomopathogenic fungi, to express transgenes encoding these toxins. Wang and St 

Leger (2007) demonstrated that engineering the fungus M. anisopliae to express the 

scorpion venom peptide AahIT, resulted in a 22-fold increase in fungal toxicity against 

M. sexta and adult yellow fever mosquitoes, Aedes aegypti, without compromising 

host specificity. Entomopathogenic fungal isolates have been screened against A. 

tumida with varying levels of success (Leemon and McMahon, 2009), however 

genetically engineering them to express Hv1a could greatly enhance fungal toxicity.  
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For application in apiculture, the only viable approach would be the development of 

fusion proteins as a product formulated for spray application, so it can be applied 

directly to combs within a hive. For this to be a successful approach, the fusion protein 

would need to be sufficiently resistant to degradation in the environment. Additionally, 

following ingestion, resistance to proteolysis within the insect gut is essential to allow 

sufficient toxin to be delivered to the CNS, achieving effective insect control. However, 

engineering fusion proteins to be too stable could potentially prevent the free toxin 

from interacting with ion channel targets, once delivered to the haemolymph (Back, 

2011). Back (2011) reported that in lepidopteran larvae the breakdown of ButaIT-GNA 

within the haemolymph is directly comparable with insecticidal activity. Therefore, 

careful consideration needs to be given to the type of product used for the formulation 

of fusion proteins so that the stability in the environment and gut of an insect is 

enhanced, but the biological activity is not compromised. This could be achieved by 

dissolving the recombinant proteins in oil-water emulsions, which may afford 

protection against degradation. Furthermore, the cost of fusion protein production will 

need to be reasonable enough to compete with chemical insecticides. Advances in 

this regard have been demonstrated by Vestaron Corporation who have developed a 

commercially available biopesticide called SPEARTM, with the active ingredient being 

derived from spider venom. SPEARTM is currently being used for treatment of thrips, 

whiteflies, two spotted spider mites, broad mites and aphids in vegetables in 

greenhouses. The mode of action is presumed to be via the spiracles as oral delivery 

of this product has not been particularly effective (www.vestaron.com).  

 

7.4 Conclusions  

In summary, the results presented in this thesis have shown that both RNAi, 

targeting Laccase 2 and V-ATPase subunit A genes, and fusion proteins incorporating 

venom-derived neurotoxins, offer enormous potential for the development of new 

target specific and environmentally benign biopesticides, as alternatives to broad 

range pesticides. Like all insects, A. tumida have several lines of defence to introduced 

molecules, with regards to RNAi ribonucleases play an important role in the 

degradation of dsRNA. In contrast fusion protein cleavage seemed to be a 

consequence of the presence of gut proteases. In order to translate these approaches 
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into a viable control strategy for target specific control of A. tumida in apiculture further 

research is needed to develop suitable formulation options to enhance the oral toxicity 

of introduced dsRNA or fusion proteins.  
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