
ADL: A Graphical Design Language

for Real-time Parallel Applications

Maarten R. van Steen1;2

Teus Vogel2

Armand ten Dam2

1 Erasmus University Rotterdam

Department of Computer Science

POB 1738, 3000 DR, Rotterdam

steen@cs.few.eur.nl

2 TNO Institute of Applied Physics

POB 155, 2600 AD, Delft

fvansteen,tvogel,tendamg@tpd.tno.nl

Abstract

Designing parallel applications is generally experienced as a tedious and di�cult task,

especially when hard real-time performance requirements have to be met. This paper

discusses on-going work concerning the construction of a Design Entry System which

supports the design phase of parallel real-time industrial application development. In

particular, in this paper we pay attention to the development and implementation of a

graphical Application Design Language. The work is part of the ESPRIT project Ham-

let which focuses on industrial application of transputer-based systems for commercially

strategic real-time applications.

1 Introduction

Over the last twenty-�ve years concurrency has become one of the most active areas of research
in computer science. Concurrent models have been widely applied in the design of operating
systems and databases, and as e�cient implementations of high-level concurrent languages
became available, software that was originally coded in an assembly language could now be
developed using high-level language constructs yielding well-structured, e�cient, and portable
implementations.

As insight in the behavior of concurrent models grew, focus has gradually shifted from
the problem of developing programs that behave in a well-de�ned manner to that of devel-
oping programs that exploit parallelism to improve overall e�ciency. This shift of focus has
brought us, somewhat surprisingly, to a stage comparable to the �rst stages of research in
concurrency issues. At the moment, parallel applications are generally written in a highly
machine-dependent manner and often violate basic rules of well-structured software in order
to retain e�ciency [7].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18524304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


And indeed, developing parallel programs is generally experienced as a di�cult and tedious
task in comparison to the development of sequential programs. This is not too surprising if
one considers the additional requirements that are currently demanded from a parallel ap-
plication developer. In the �rst place, he or she must concentrate on the speci�cation of
an algorithm such that parallelism can be exploited to a maximum extent. This requires a
priori insight in the parallel aspects of the problem to be solved. More seriously, however, is
the fact that deriving an actual implementation requires that the developer also has knowl-
edge concerning the semantics of communication and synchronization mechanisms, as well as
knowledge concerning the target parallel computer on which the algorithm is to be executed.

And things become even worse when one considers the development of real-time appli-
cations. In these cases, exploiting parallelism seems an obvious choice. Unfortunately, the
additional hard performance requirements that are often demanded in the real-time world
make the process of exploiting parallelism no less easier. Besides the fact that application
developers are often forced to exploit the target machine to its edges, communication itself
should be completely subject to timing constraints. This means that if communication within
a certain timespan failed for whatever reason, it should be possible to take special measures
in a exible way. Timed communication and its e�ects on program development is an issue
that is obsolete in most scienti�c parallel applications.

As it turns out, practice indicates that these additional requirements are quite demanding.
Considering the fact that hardly any support is available to assist the structured development
of parallel real-time applications, it is not too surprising that there is currently still a strong
need for advanced monitoring and debugging systems: the results of a development process
can often only be measured in the �nal stage when a �rst version of the implementation is
actually running on the target parallel machine. This is not an approach that can be followed
for very long and as such has been recognized by the companies participating in the ESPRIT
project Hamlet.

Hamlet focuses on exploitation of parallelism for hard real-time applications. In particu-
lar, attention is paid to industrial embedded applications for transputer-based systems, and
which are developed for commercial strategic reasons. It has been recognized by the Ham-
let consortium that if the partners are to maintain their strong market position, advanced
practical support for parallel application development is necessary. To this aim, attention is
currently being paid to software components that assist during the global and detailed design
of applications. It is beyond the scope of this paper to discuss the Hamlet project in detail.
To that aim, we refer the interested reader to [3, Chapter 8]. Here, we shall concentrate on
just one such component: a so-called Design Entry System, and in particular its graphical
Application Design Language.

2 Design by data ow diagrams

In order to support the design phase of parallel real-time application development there are
roughly two extremes which can be followed: one can choose to devise a complete new method
with accompanying techniques, or otherwise simply use existing methods. The �rst approach
not only requires a great deal of research, it can also be expected that at best many years will
pass before a new method is accepted in an industrial environment. The second approach
has so far been followed by many application developers. In particular, methods based on
data ow diagrams such as introduced by Yourdon [13] and speci�cally extensions thereof to

2



support real-time developments (e.g., Ward [11]) are now often used as common development
methods in industry.

But none of these traditional methods is actually suitable for dealing with parallelism,
although their inventors often claim otherwise. The problem, as we see it, is that no distinction
is made between concurrency and parallelism and that the two are often mistakenly taken to
be the same. Concurrency, as viewed by us here, is a technique that enables a developer to
model a system in such a way that its structure and dynamics are reected in a natural way.
Parallelism, on the other hand, is considered by us a means to exploit a target machine to
meet performance requirements. In other words, where concurrency focuses on modeling the
real world, parallelism focuses on implementation for a speci�c environment. The two need
not be easy to combine, as is often illustrated by the design and implementation of concurrent
object-oriented languages.

The problem that needs to be addressed then is the development of a design method and
supporting tools which:

� are familiar to developers of industrial real-time applications,
� are based on methods that have proved to be applicable in an industrial context,
� deal with concurrency and parallelism.

Based on these requirements, we have chosen to support parallel real-time application devel-
opment based on data ow diagrams (DFDs). However, where DFDs are generally used in
the analysis phase of a development project, we have adapted DFDs in such a way that they
are more suitable for global and detailed design. In particular, emphasis has been put on the
support for design of di�erent communication structures, grouping of logical activities into
processes, and integration of data and control transformations. This has resulted in a �rst
version of an Application Design Language, referred to as ADL/1.

3 ADL: Concepts and notations

In this section we discuss the main concepts of ADL: processes, activities, and how commu-
nication is dealt with. In addition, we present features which are still under development but
which will be incorporated in a next version of ADL.

3.1 Processes and activities

A key concept of ADL is formed by activities, which are used to model logical entities capable
of transforming incoming data according to some control schema. Similar to Mascot [9], the
interface of each activity is entirely speci�ed by means of a collection of gates. Gates specify
either incoming or outgoing data and provide the essential means to connect activities to each
other in a structured manner.

From the activity's point of view, data can be either communicated to the outside world
by means of an output gate, or, conversely, data can be received through a so-called input

gate. To this aim, three di�erent types of communication are supported:

� blocked communication, meaning that an activity cannot proceed until data transfer has
actually taken place;

3



A2.1

A2.2

A2.3

A2

A1.1

A1.2

A1.3

A1

OUTPUT GATE INPUT GATE

Figure 1: An example of a hierarchically organized collection of activities.

� non-blocked communication, meaning that if communication could not succeed imme-
diately the activity will proceed without further delay and without transferring any
data;

� timed communication, in which case communication should take place within a speci�ed
amount of time units.

Blocked and non-blocked communication are in fact special cases of timed communication.
If T denotes the speci�ed time an activity is willing to wait before communication can take
place, then clearly the case T = 0 corresponds to non-blocked communication whereas the
case T = 1 is the same as blocked communication. For practical reasons, we have chosen
to incorporate all three communication types. Also note that these forms of communication
relate to the moment when communication should take place as required by the communicator,
and if this requirement could not be met communication is cancelled all together. This is
di�erent from (a)synchronous communication which involves all communicating parties, and
which is, in principle, never cancelled. We shall discuss a number of examples in which blocked
and synchronous forms of communication are combined in the next subsection.

Activities are represented as circles with input and output gates drawn as white and black
boxes, respectively. Also, activities can be hierarchically organized as illustrated in Figure 1
(the connections between gates is explained shortly).

Activities are appropriate for logical design decisions: they represent logical entities which,
in principle, can act concurrently. In practice, the number of activities that act concurrently
may not correspond to what is desired from an implementation point of view. To that aim,
activities can be grouped into processes, intended to be the actual units of concurrent behavior
in the �nal implementation. From a conceptual point of view, a process is just another activity,
i.e., it models a transformation entity which communicates with other processes by means of
gates. The main di�erence between an activity and a process is that the latter constitutes
inherent sequential behavior, despite the number of activities it may contain. In other words,
processes form the means to add sequential behavior in order to �t the logical design in an
implementation environment.

4



SEMAPHORESYNCHRONOUS
CHANNEL

MESSAGE
QUEUE

Figure 2: Notations for ADL concepts.

3.2 Communication through protocols

Communication in ADL designs is modeled by so-called protocols. Currently, ADL/1 supports
three types of protocols: synchronous channels, message queues, and semaphores. Figure 2
shows the notations for the various communication protocols.

Synchronous channels. A synchronous channel is used to model point-to-point commu-
nication between two activities and corresponds to the standard synchronous communication
means in most message-based programming languages [2]. A synchronous channel is mod-
eled as a directed edge between the output gate of a sending activity, and an input gate of
a receiving activity. The important thing to note about synchronous channels is that their
functionality is primarily determined by the lack of bu�ering capabilities. In other words,
if two activities communicate data through a synchronous channel, both sender and receiver
will have to synchronize. When communication may take place is determined by the gates of
the respective activities.

For example, imagine a scenario in which a sender wants non-blocked synchronous com-
munication, while the receiver has chosen for blocked (synchronous) communication. In this
case, the sender will only transmit data whenever the receiver is capable of accepting that
data. On the other hand, the receiver will block until the data is actually transmitted.

Message queues. ADL/1 also provides support for modeling asynchronous communication
by means of message queues. Message queues in ADL/1 are bu�ers that act on a �rst-come
�rst-serve basis and may have either an in�nite or �nite capacity. Several activities may be
connected to a message queue, in particular, an activity that wants to put data into a queue
has a link between one of its output gates and the tail of the queue, while a reading activity
will have a link between the head of the queue and one of its input gates.

Again, note how the gates determine the conditions under which communication can take
place. For example, imagine a message queue Q with �nite capacity connected to an output
gate of an activity A. Suppose that at time t0 activity A wants to append data to Q according
to a timed communication protocol such that communication should take place before T time
units have elapsed. If at time t0 the queue was full, then this form of communication speci�es
that if A cannot append its data before t0 + T , it will simply cancel the communication all
together.

Semaphores. Finally, ADL/1 also supports semaphores. Obviously, our concept of gates
enhances the traditionally semantics of semaphores. For example, a conditional wait-operation

5



[1] is modeled as a combination of a non-blocking input gate and an ordinary wait-operation:
if the requesting activity cannot retrieve a semaphore token immediately (normally implying
that it should wait), it simply continues without further delay. Conditional semaphores are
typically used in time-critical applications: a simple trade-o� is made between entering a
critical region (for which the activity should acquire the token), or otherwise to continue with
other tasks.

3.3 An example

Figure 3 shows an example of an ADL design, developed with our current implementation of
the language. A total of �ve activities have been modeled, together with three synchronous
channels, two message queues, and a single semaphore. Also, an environment has been in-
cluded, representing components outside the system, but which interact with various activi-
ties. Our current implementation only allows to draw syntactically correct ADL/1 designs.
For example, it is impossible to draw a synchronous channel connected to three activities.
Implementation issues will be further discussed in the next section.

3.4 Enhancements to ADL/1

It should be clear that ADL/1 currently lacks at least two important features: behavioral
speci�cation and replication. We shall discuss these two issues briey here, but note that
behavior modeling and replication are still subject to debate within the project. Actual
implementation of these concepts has been deliberately deferred to a later stage.

3.4.1 Modeling behavior

Activities form the units of behavior in ADL/1, and obviously there should be a means
for supporting the description of behavioral aspects. In most methods based on data ow
diagrams, there is a strict distinction between data activities and control activities. Data
activities are used for modeling data transformations, whereas control activities describe the
system's ow of control. In order to describe data transformations, pseudo-code, or sometimes
even a high-level procedural language is used. Control ow is described by means of state-
transition diagrams (STDs).

A major drawback of DFDs (or function/data models in general) is that a strict distinction
is made between data objects, and functions that transform that data. Consequently, any
change in the data de�nition may severely a�ect the de�nition of functions. Furthermore,
when separating control and data transformations, the process of integrating them (which is
required for an implementation) may turn to be less straightforward than one would expect.
These considerations have led us to integrate data and control transformations into a single
activity, making our approach essentially object-based (see also [6]).

Modeling behavior in ADL is done by means of state-transition diagrams. However, where
STDs normally consist of a single notion of a state, and transitions between states can only
occur as the result of an event, we have chosen to use a form of STDs by which a developer
can focus on communication entirely. This means that we are not initially interested in data
and control transformations which do not immediately relate to parallelism. This perspective
has led us to distinguish three types of states. Communication states describe the situation
in which an activity is involved in communicating data through one of its gates. Processing

6



Figure 3: An example of an ADL design as constructed with the current implementation.

7



states are used for modeling data transformations exclusively. Finally, event states are states
in which an activity simply waits until an event occurs.

As mentioned, full development of STDs has been deliberately deferred until a later stage
in the project. Consequently, they are not yet supported by our �rst version of ADL.

3.4.2 Replication

Another issue which is extremely important when dealing with design is the means for indicat-
ing that certain activities (or processes) should be replicated. Replication was also introduced
by Ward and Mellor [12] as a means to indicate multiplicity of functionality. However, when
dealing with specifying functionality it is questionable what replication actually means. In
the design phase, on the other hand, replication has a clear meaning if we associate each ac-
tivity explicitly with an instance. And this is exactly how activities and processes should be
considered in ADL/1. Replication is thus a means for exploiting parallelism. The underlying
thought, of course, is that replicated activities indeed return as replicated instances in the
�nal implementation.

Replication is a subject that stills needs further attention before we can incorporate it into
ADL. The main problem is de�ning the related semantics. For example, when we replicate an
activity it is yet unclear how we should replicate the communication structure. If, for instance,
activities A and B communicate by means of a synchronous channel, does this mean that
replication of A into activities A1; : : : ; An should also yield n replicated synchronous channels
(and corresponding gates at B)? Replication is going to be incorporated in ADL, but again,
we have deferred the matter until a later stage.

4 A Design Entry System: implementation of ADL

The implementation of ADL/1 forms part of the so-called Design Entry System, or DES for
short. The DES basically consists of the following three components:

� An implementation of ADL/1 in the form of a graphical editing system by which only
syntactically correct ADL designs can be made.

� An implementation of a graphical version of the INMOS Network Description Lan-

guage (NDL) [5], by which a target transputer system can be con�gured for a speci�c
application.

� A transformation system which generates the necessary con�guration �les for software
and hardware components, and the mapping between them, as well as skeletal code for
the application described in ADL/1.

The graphical version of the INMOS NDL, referred to as NDL/Graph is implemented quite
similar to ADL. Conceptually, it is much simpler than the ADL due to the relative straight-
forward semantics of the INMOS NDL. It is beyond the scope of this paper to discuss in detail
how we have actually implemented NDL/Graph, but reference to its implementation will be
made when discussing the ADL implementation below.

8



SD-3
SD-2

SD-1

S1.3
S1.2

S1.1

CGE KERNEL

Diagram
definitions

Diagrams

Window manager

A
cc

es
s

in
te

rf
ac

e TCP/IP

Figure 4: Global architecture of a customized version of the CGE.

4.1 Global system architecture

4.1.1 The CGE: a con�gurable graphical editor

A component that is paramount in the DES from an end user's point of view is the Con-

�gurable Graphical Editor (CGE) developed at TNO-TPD [10]. Basically, the CGE is a 2D
customizable multiwindow graphical editor that can be adapted for a wide range of diagram
techniques. The only restriction is that the logic structure of diagrams belonging to a diagram
technique can be mapped on a network (graph). The CGE customizes itself after it has been
provided with a correct Diagram Technique De�nition File (DTDF). This diagram technique
de�nition �le should be constructed precisely once for all for each of the diagram techniques
that should be supported, and can then be used repeatedly. In the case of our DES, two
diagram techniques will be supported: one for the ADL, and one for NDL/Graph.

When customized for a speci�c application, the CGE assists the user in constructing
diagrams in a such a way that only syntactically correct diagrams can be constructed. The
CGE considers only the structure of a diagram: no attempt is made to include its semantics.
When the CGE is used within a technical design environment additional tools should take
care of that aspect. This is further discussed below, but for now it is important to note that
the CGE has a special interface layer which allows communication with the outside world. In
this way, not only can diagrams be manipulated by other applications, more important is that
we can add functionality to a CGE-based support tool by means of independent components.
The architecture of a customized CGE is depicted in Figure 4.

Before the CGE can be used by the end-user, a de�nition �le must be loaded. This �le
contains a description of all symbols and rules associated with a speci�c diagram technique,
using a special de�nition language, the Diagram Technique De�nition Language (DTDL). A
diagram technique is de�ned by describing the graphic symbols, the possible manipulation on
these symbols, the possible interconnections between the symbols and the constraints with
respect to the structure of a diagram. All these aspects are integrated into the DTDL.

9



4.1.2 Adding functionality

An important feature of the CGE is its interface layer by which external applications can
communicate with the editor. This interface layer is based on the TCP/IP protocol and
provides a high degree of exibility for communicating with technique-speci�c applications
that capture non-graphical functionality. To this aim, an alternative version of a diagram
as constructed with the CGE should be constructed. This alternative version is nothing but
a datastructure capturing the same information as the original diagram but which can be
accessed by external applications. The datastructure is generated automatically by what we
refer to as an Abstract Data Type (ADT) builder.

Note how, in our case, the ADL/ADT builder actually creates instances of an abstract
data type. Each instance corresponds to a speci�c diagram representing a model of the
application expressed in ADL. Of course, in order to create a datastructure, it is necessary
that a de�nition of the diagram technique is also available. This de�nition is actually the
abstract data type mentioned before. We shall return to this issue below, but for now it is
important to note that this abstract data type itself is also automatically generated by the
CGE.

Returning to the DES, we are now able to expose its entire global architecture. Two main
subarchitectures can be distinguished as depicted in Figure 5: one that deals with graphically
con�guring a target transputer system, and one that handles the design of applications using
ADL. Similar to the ADL subsystem, the NDL subsystem generates instances of the so-called
NDL Abstract Data Type. These datastructures are used by the ADL/ADT builder to relate
processes as described in an ADL design to transputers, and to add this mapping information
in an ADL/ADT instance. Mapping information is assumed to be provided by hand when
designing an application in ADL, given a description of the target hardware expressed in
NDL/Graph.

Using the ADL/ADT instances as input, several additional tools are invoked which even-
tually result in a set of con�guration �les by which the application can be loaded onto the
target network, as well as a set of �les containing skeletal code for each of the processes to be
executed.

4.2 The development approach

Development of the DES would be an extremely cumbersome task if it was to be done from
scratch. For example, if transformation tools were to be developed that directly transformed
ADL diagrams into con�guration �les, it is not hard to imagine that much redundant work
would need to be done if it was decided to use a completely di�erent network con�guration
language. We have been frequently confronted with this situation when installing the CGE
at one of our customer's sites. In order to ease the development of CGE-based CASE envi-
ronments, it is essential that a more sophisticated approach is followed. As we have already
briey mentioned above, many datastructures are automatically generated by our system. In
this subsection we take a closer look at the way we actually generate a CGE-based CASE
environment in a semi-automated fashion.

4.2.1 Modeling the CASE environment

Essential in our approach is the construction of models (at di�erent levels of abstraction) of
what actually constitutes a CGE-based CASE environment. To this aim, we have developed

10



CGE KERNEL

ADL/DTDL
definitions

Window manager

A
cc

es
s

in
te

rf
ac

e TCP/IP
ADL/ADT
Builder

SD-3
SD-2

SD-1

S1.3
S1.2

S1.1

ADL diagrams

ADT.3
ADT.2

ADT.1

ADL
ADT

ADL/ADT ADL/ADT
instances

CGE KERNEL

NDL/DTDL
definitions

Window manager

A
cc

es
s

in
te

rf
ac

e TCP/IP
NDL/ADT
Builder

SD-3
SD-2

SD-1

S1.3
S1.2

S1.1

NDL diagrams

ADT.3
ADT.2

ADT.1

NDL
ADT

NDL/ADT NDL/ADT
instances

Syntax
Checker

Semantic
Checker

Configuration
Generator

Source Code
Generator

C.3
C.2

C.1

SDL.3
SDL.2

SDL.1

Network descriptions

Source codes

Software descriptions

NDL.3
NDL.2

NDL.1
NDL Generator

Figure 5: The global architecture of the Design Entry System.

11



the following semantic data models expressed in NIAM1.

� The NIAM Schema. This model allows us to bootstrap a customized CGE-based envi-
ronment. It describes our de�nition of NIAM, again expressed in NIAM. After instan-
tiating this schema, we then have the basic means to de�ne, create, and manipulate
models expressed in NIAM.

� The DTDL Schema. This model forms a de�nition of the Diagram Technique De�nition
Language. Any instance of this schema corresponds to an actual de�nition of a diagram
technique, including all sorts of information related to the graphical representation of
diagrams.

The important thing to note here is that all these models have been expressed in the same
formalism, namely NIAM. This is an important issue for this common description language
allows us to construct transformations to other models expressed in the same formalism rather
easily. Our problem thus essentially reduces to model transformations.

For example, in order to generate skeletal code from ADL designs, we have additionally
constructed the following models also expressed in NIAM:

� The ADL Schema. This is nothing else but a language de�nition of ADL expressed in
NIAM. Obviously, an instance of this schema corresponds to an actual design expressed
in ADL.

� The Code Schema. This is a more or less general model of imperative programming
languages, capturing the semantics of declarations for programs, modules, functions,
arguments, variables, etc. Using this model, we are capable of at least expressing the
declarative parts of an imperative program2.

These models allow us to easily create a fully customized CGE-based environment in a par-
tially automated fashion, as is discussed next.

4.2.2 Semi-automated construction of the DES

Concentrating on the construction of the DES subarchitecture that supports development of
ADL designs, we have implemented ADL/1 by proceeding according to the following steps.

Step 1. We start with de�ning the concepts of ADL using the DTDL. This step results
in a textual de�nition of ADL expressed in DTDL. This de�nition of ADL is needed only to
customize the CGE so that we can actually draw diagrams. Not surprisingly, this de�nition
is entirely aimed at the concrete graphical syntax of ADL.

1NIAM is a formal method based on modeling binary relationships, comparable to extended versions of the
Entity-Relationship model. The interested reader is referred to [8].

2We note here that source code generation by the DES initially only covers declarations, and sections for
initialization and �nalization.

12



Step 2. The second step is entirely automated by means of the ADT builder, already
mentioned in Subsection 4.1.2. It involves the following activities:

2a. The builder starts with instantiating a NIAM model of NIAM resulting in an internal
datastructure that allows us to de�ne, create, and subsequently manipulate models
expressed in NIAM.

2b. It then continues with loading our NIAM model of the DTDL de�nition, or, in other
words, instantiating the previously generated datastructure for NIAM models. At this
point we are now capable of creating and manipulating diagram technique de�nitions
expressed in DTDL.

2c. Finally, our textual de�nition of ADL from the �rst step is parsed by the generator
and created as an instance of our NIAM model of the DTDL. In other words, the ADT
generator �lls in the datastructure that resulted from step 2b with the speci�c ADL
diagram technique de�nition, now allowing us to actually create and manipulate ADL
diagrams. The result is what we have previously referred to as the ADL/ADT.

Note how Steps 2a and 2b correspond to generating a database for storing and manipulating
models expressed in some general model de�nition language (in our case DTDL). Step 2c then
corresponds to customizing such a database so that models expressed in a speci�c formalism
can be created and manipulated (in our case ADL). Returning to the previously mentioned
interface layer of the CGE, we can now state that this is, in fact, nothing but a data de�nition
and manipulation language for model bases, albeit rather primitive.

Step 3. This step involves explicitly relating the ADL de�nition expressed in DTDL to the
one expressed in NIAM and consists of two activities. In the �rst place, we manually load
the NIAM model of ADL (previously referred to as the ADL Schema) into the system, or, in
other words, we instantiate yet another NIAM model of NIAM similar to what was done in
Step 2b. Furthermore, we develop a parser that transforms any ADL diagram description in
terms of DTDL to one expressed in NIAM according to the NIAM model of ADL.

Step 4. The fourth step consists of manually loading the Code Model (which was also
expressed in NIAM) into the system.

Step 5. Finally, we concentrate on the development of a component which transforms an
ADL diagram expressed as an instance of a NIAM model of ADL, into an instance of the
Code Schema. This step, so far, is the most time-consuming in the construction of a CGE-
based CASE environment. Also, this �fth step deals with developing the actual source code
generators for C, Occam, or INMOS NDL.

Our development process is depicted in Figure 6. Summarizing, by using a common de-
scription language (in our case NIAM), we have been able to actually reduce the e�ort of
developing a CGE-based CASE environment to the development of a transformation system
that acts on instances of the ADL/ADT, and to construct code generators for the actual
target languages C, Occam, and INMOS NDL.

13



SOURCE
CODE

DEVELOP
PARSER

PARSER

GENERATE
ADL/ADT

ADL/ADT

ADL/ADT
INSTANCE

DEFINE ADL
IN DTDL

ADL DEFINITION
IN DTDL

ADL DIAGRAM

CONSTRUCT
DIAGRAM WITH

CGE

DEVELOP
CODE GENERATOR GENERATOR

ADL
SCHEMA

GENERATED
DATASTRUCTURE

MANUALLY
CONSTRUCTED

DATASTRUCTURE

MANUAL ACTIVITY

MANUALLY
CONSTRUCTED

COMPONENT

DEPENDENCY
RELATIONSHIP

RESULT OF MANUAL
CONSTRUCTION

DATAFLOW

DEVELOP
MODEL

TRANSFORMER
TRANSFORMER

CODE
INSTANCE

CODE
SCHEMA

Figure 6: The DES development process.

14



5 Current results and future work

Due to the fact that the application developers in the Hamlet project are in need of any
support they can get during the design phase of their applications, we have decided to follow
an incremental approach with respect to developing the DES. At present, a graphical editor
for ADL (as well as NDL/Graph) has been completed and will be released to the application
developers soon. Although an initial version was ready within only a few days after freezing
the de�nition of ADL/1, we had to ensure upwards compatibility with future releases. This
requires a careful design of the DTDL description of ADL/1.

We are currently working on the automated generation of source code and con�gura-
tion information thereby initially taking C, enhanced with Parsytec's RTSM communication
library [4], as our target programming language, and the INMOS NDL as our target con�g-
uration language. At the moment of this writing, a very rudimentary source code generator
is available, as well as an INMOS NDL generator. When considering the fact that our actual
implementation work started in the beginning of this year with a team consisting of one senior
and one junior software engineer, we feel con�dent that our development approach as sketched
above is indeed a feasible one for rapidly developing a customized CASE environment. It is
also clear that this approach allows us to concentrate on the essence: the transformation of
ADL designs to source code and con�guration �les.

But much work is still be done. As mentioned, we need to enhance ADL/1 in such a
way that state-transition diagrams, as well as replication are supported. Also, much e�ort
should be put into the development of the actual transformation system and code generators.
Only if we are capable of producing code that can indeed be itself embedded in industrial
applications, may we call our participation successful.

Acknowledgements

This work has been conducted as part of the ESPRIT project Hamlet (P6290), and is partially
funded by the Commission of the European Communities. We also particularly thank Jaap
Gordijn from TNO-TPD for carefully reading the manuscript.

References

[1] M.J. Bach and S.J. Buro�. Multiprocessor UNIX Operating Systems. AT&T Technical

Journal, 63(8, part 2):1733{1749, October 1984.

[2] H.E. Bal, J.G. Steiner, and A.S. Tanenbaum. Programming Languages for Distributed
Computing Systems. Computing Surveys, 21(3):261{322, 1989.

[3] HAMLET. Application Requirements. HAMLET Technical Report, AEG Electrocom,
Konstanz, Germany, September 1992.

[4] HAMLET. RTSM Description and Preliminary User Manual. HAMLET Technical Re-
port, Parsytec Industriesysteme, Aachen, Germany, January 1993.

[5] N. Haydock. NDL Hardware Con�guration Language Reference Manual. Internal SW-
0308-10, INMOS Limited, June 1992.

15



[6] I. Jacobson. Object-Oriented Software Engineering, A Use Case Driven Approach.
Addison-Wesley, 1992.

[7] A.H. Karp. Programming for Parallelism. Computer, pages 43{57, May 1987.

[8] G.M. Nijssen and T.A. Halpin. Conceptual Schema and Relational Database Design, A

Fact Oriented Approach. Prentice-Hall, 1989.

[9] H.R. Simpson. The Mascot Method. IEE Software Engineering Journal, 1(3):103{120,
May 1986.

[10] T. Vogel. Con�gurable Graphical Editor, Users Guide. Technical Report 91 ITI 382,
TNO Institute of Applied Computer Science, Delft, February 1991.

[11] P.T. Ward. The Transformation Schema: An Extension of the Data Flow Diagram
to Represent Control and Timing. IEEE Transactions on Software Engineering, SE-
12(2):198{210, 1986.

[12] P.T. Ward and S.J. Mellor. Structured Development for Real-Time Systems, volume I,
II & III of Yourdon Computing Series. Yourdon Press, Englewood Cli�s, N.J., 1985.

[13] E. Yourdon and L.L. Constatine. Structured Design: Fundamentals of a Discipline of

Computer Program and System Design. Prentice-Hall, Englewood Cli�s, N.J., 1979.

16


