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Besides the traditional strong and electromagnetic decay modes, Υ(𝑛𝑆)meson can also decay through the weak interactions within
the standard model of elementary particle. With anticipation of copious Υ(𝑛𝑆) data samples at the running LHC and coming
SuperKEKB experiments, the two-body nonleptonic bottom-changing Υ(𝑛𝑆) → 𝐵

∗

𝑐
𝜋, 𝐵

∗

𝑐
𝐾 decays (𝑛 = 1, 2, 3) are investigated

with perturbative QCD approach firstly. The absolute branching ratios for Υ(𝑛𝑆) → 𝐵
∗

𝑐
𝜋 and 𝐵∗

𝑐
𝐾 decays are estimated to reach up

to about 10−10 and 10−11, respectively, which might possibly be measured by the future experiments.

1. Introduction

The upsilon Υ(𝑛𝑆) meson is the spin-triplet 𝑆-wave state of
bottomonium (bound state consisting of bottom quark 𝑏 and
antibottom quark 𝑏) with well-established quantum number
of 𝐼𝐺𝐽𝑃𝐶 = 0−1−− [1]. The characteristic narrow decay widths
of Υ(𝑛𝑆) mesons for 𝑛 = 1, 2, and 3 provide insight into
the study of strong interactions (see Table 1, and note that,
for simplicity, Υ(𝑛𝑆) will denote Υ(1𝑆), Υ(2𝑆), and Υ(3𝑆)
mesons in the following content if not specified definitely).
The mass of Υ(𝑛𝑆) meson is below 𝐵 meson pair threshold.
Υ(𝑛𝑆) meson decays into bottomed hadrons through strong
and electromagnetic interactions are forbidden by the law of
conservation of flavor number. The bottom-changing Υ(𝑛𝑆)
decays can occur only via the weak interactions within the
standard model, although with tiny incidence probability.
Both constituent quarks of upsilons can decay individually,
which provide an alternative system for investigating the
weak decay of heavy-flavored hadrons. In this paper, we
will study the nonleptonic Υ(𝑛𝑆) → 𝐵

∗

𝑐
𝑃 (𝑃 = 𝜋 and

𝐾) weak decays with perturbative QCD (pQCD) approach
[2–4].

Experimentally, (1) over 108 Υ(𝑛𝑆) data samples have
been accumulated at Belle and BaBar experiments [5]. More
and more upsilon data samples will be collected at the

running hadron collider LHC and the forthcoming 𝑒+𝑒− col-
lider SuperKEKB (the SuperKEKB has started commission-
ing test run (http://www.kek.jp/en/NewsRoom/Release/)).
There seems to exist a realistic possibility to explore Υ(𝑛𝑆)
weak decay at future experiments. (2) Signals of Υ(𝑛𝑆) →
𝐵
∗

𝑐
𝜋, 𝐵

∗

𝑐
𝐾 decays should be easily distinguished with “charge

tag” technique, due to the facts that the back-to-back final
states with different electric charges have definitemomentum
and energy in the rest frame of Υ(𝑛𝑆) meson. (3) 𝐵∗

𝑐
meson

has not been observed experimentally by now. 𝐵∗
𝑐
meson

production via the strong interaction is suppressed due to
the simultaneous presence of two heavy quarks with different
flavors and higher order in QCD coupling constant 𝛼

𝑠
.

Υ(𝑛𝑆) → 𝐵
∗

𝑐
𝜋, 𝐵∗

𝑐
𝐾 decays provide a novel pattern to

study 𝐵∗
𝑐
meson production. The identification of a single

explicitly flavored 𝐵∗
𝑐
meson could be used as an effective

selection criterion to detect upsilon weak decays. Moreover,
the radiative decay of 𝐵∗

𝑐
meson provides a useful extra

signal and a powerful constraint (the investigation on the
radiative decay of 𝐵∗

𝑐
meson can be found in, e.g., [6], with

QCD sum rules). Of course, any discernible evidences of an
anomalous production rate of single bottomed meson from
upsilon decays might be a hint of new physics.

Theoretically, many attractive QCD-inspired methods
have been developed recently to describe the exclusive
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Table 1: Summary of mass, decay width, on(off)-peak luminosity, and numbers of Υ(𝑛𝑆).

Meson Properties [1] Luminosity (fb−1) [5] Numbers (106) [5]
Mass (MeV) Width (keV) Belle BaBar Belle BaBar

Υ(1𝑆) 9460.30 ± 0.26 54.02 ± 1.25 5.7 (1.8) ⋅ ⋅ ⋅ 102 ± 2 ⋅ ⋅ ⋅

Υ(2𝑆) 10023.26 ± 0.31 31.98 ± 2.63 24.9 (1.7) 13.6 (1.4) 158 ± 4 98.3 ± 0.9

Υ(3𝑆) 10355.2 ± 0.5 20.32 ± 1.85 2.9 (0.2) 28.0 (2.6) 11 ± 0.3 121.3 ± 1.2

nonleptonic decay of heavy-flavored mesons, such as the
pQCD approach [2–4], the QCD factorization approach
[7–9], and soft and collinear effective theory [10–13], and
have been applied widely to vindicate measurements on 𝐵
meson decays.The upsilon weak decay permits one to further
constrain parameters obtained from 𝐵 meson decay, and
cross comparisons provide an opportunity to test various
phenomenologicalmodels.The upsilonweak decay possesses
a unique structure due to the Cabibbo-Kobayashi-Maskawa
(CKM) matrix properties which predicts that the channels
with one 𝐵(∗)

𝑐
meson are dominant. Υ(𝑛𝑆) → 𝐵

∗

𝑐
𝑃 decay

belongs to the favorable 𝑏 → 𝑐 transition, which should, in
principle, have relatively large branching ratio among upsilon
weak decays. However, there is still no theoretical study
devoted to Υ(𝑛𝑆) → 𝐵

∗

𝑐
𝑃 decay for the moment. In this

paper, we will present a phenomenological investigation on
Υ(𝑛𝑆) → 𝐵

∗

𝑐
𝑃weak decay with the pQCD approach to supply

a ready reference for the future experiments.
This paper is organized as follows. Section 2 focuses on

theoretical framework and decay amplitudes for Υ(𝑛𝑆) →
𝐵
∗

𝑐
𝜋, 𝐵

∗

𝑐
𝐾 weak decays. Section 3 is devoted to numerical

results and discussion. The last section is a summary.

2. Theoretical Framework

2.1. The Effective Hamiltonian. Theoretically, Υ(𝑛𝑆) → 𝐵
∗

𝑐
𝜋,

𝐵
∗

𝑐
𝐾 weak decays are described by an effective bottom-

changing Hamiltonian based on operator product expansion
[19]:

Heff =
𝐺
𝐹

√2

∑

𝑞=𝑑,𝑠

𝑉
𝑐𝑏
𝑉

∗

𝑢𝑞
{𝐶

1
(𝜇)𝑂

1
(𝜇) + 𝐶

2
(𝜇)𝑂

2
(𝜇)}

+ h.c.,

(1)

where 𝐺
𝐹
≃ 1.166 × 10

−5 GeV−2 [1] is the Fermi coupling
constant; the CKM factors 𝑉

𝑐𝑏
𝑉

∗

𝑢𝑑
and 𝑉

𝑐𝑏
𝑉

∗

𝑢𝑠
correspond

to Υ(𝑛𝑆) → 𝐵
∗

𝑐
𝜋 and 𝐵∗

𝑐
𝐾 decays, respectively; with the

Wolfenstein parameterization, theCKM factors are expanded
as a power series in a smallWolfenstein parameter 𝜆 ∼ 0.2 [1]:

𝑉
𝑐𝑏
𝑉

∗

𝑢𝑑
= 𝐴𝜆

2

−

1

2

𝐴𝜆
4

−

1

8

𝐴𝜆
6

+ O (𝜆
7

) ,

𝑉
𝑐𝑏
𝑉

∗

𝑢𝑠
= 𝐴𝜆

3

+ O (𝜆
7

) .

(2)

The local tree operators 𝑄
1,2

are defined as

𝑂
1
= [𝑐

𝛼
𝛾
𝜇
(1 − 𝛾

5
) 𝑏

𝛼
] [𝑞

𝛽
𝛾
𝜇

(1 − 𝛾
5
) 𝑢

𝛽
] ,

𝑂
2
= [𝑐

𝛼
𝛾
𝜇
(1 − 𝛾

5
) 𝑏

𝛽
] [𝑞

𝛽
𝛾
𝜇

(1 − 𝛾
5
) 𝑢

𝛼
] ,

(3)

where 𝛼 and 𝛽 are color indices and the sum over repeated
indices is understood.

The scale 𝜇 factorizes physics contributions into short-
and long-distance dynamics. The Wilson coefficients 𝐶

𝑖
(𝜇)

summarize the physics contributions at scale higher than 𝜇
and are calculable with the renormalization group improved
perturbation theory. The hadronic matrix elements (HME),
where the local operators are inserted between initial and
final hadron states, embrace the physics contributions below
scale of 𝜇. To obtain decay amplitudes, the remaining work
is to calculate HME properly by separating from perturbative
and nonperturbative contributions.

2.2. Hadronic Matrix Elements. Based on Lepage-Brodsky
approach for exclusive processes [20], HME is commonly
expressed as a convolution integral of hard scattering subam-
plitudes containing perturbative contributions with univer-
sal wave functions reflecting nonperturbative contributions.
In order to effectively regulate endpoint singularities and
provide a naturally dynamical cutoff on nonperturbative
contributions, transverse momentum of valence quarks is
retained and the Sudakov factor is introduced within the
pQCD framework [2–4]. Phenomenologically, pQCD’s decay
amplitude could be divided into three parts: theWilson coef-
ficients𝐶

𝑖
incorporating the hard contributions above typical

scale of 𝑡, process-dependent rescattering subamplitudes 𝑇
accounting for the heavy quark decay, and wave functions Φ
of all participating hadrons, which is expressed as

∫𝑑𝑘𝐶
𝑖
(𝑡) 𝑇 (𝑡, 𝑘)Φ (𝑘) 𝑒

−𝑆

, (4)

where 𝑘 is the momentum of valence quarks and 𝑒−𝑆 is the
Sudakov factor.

2.3. Kinematic Variables. The light cone kinematic variables
in Υ(𝑛𝑆) rest frame are defined as follows:

𝑝
Υ
= 𝑝

1
=

𝑚
1

√2

(1, 1, 0) ,

𝑝
𝐵
∗

𝑐

= 𝑝
2
= (𝑝

+

2
, 𝑝

−

2
, 0) ,

𝑝
3
= (𝑝

−

3
, 𝑝

+

3
, 0) ,

𝑝
±

𝑖
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(𝐸
𝑖
± 𝑝)

√2

,

𝑘
𝑖
= 𝑥

𝑖
𝑝
𝑖
+ (0, 0,

⃗
𝑘
𝑖⊥
) ,

𝜖
‖

1
=

𝑝
1

𝑚
1

−

𝑚
1

𝑝
1
⋅ 𝑛

+

𝑛
+
,
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𝜖
‖

2
=

𝑝
2

𝑚
2

−

𝑚
2

𝑝
2
⋅ 𝑛

−

𝑛
−
,

𝜖
⊥

1,2
= (0, 0, 1⃗) ,

𝑛
+
= (1, 0, 0) ,

𝑛
−
= (0, 1, 0) ,

𝑠 = 2𝑝
2
⋅ 𝑝

3
,

𝑡 = 2𝑝
1
⋅ 𝑝

2
= 2𝑚

1
𝐸
2
,

𝑢 = 2𝑝
1
⋅ 𝑝

3
= 2𝑚

1
𝐸
3
,

𝑝 =

√[𝑚
2

1
− (𝑚

2
+ 𝑚

3
)

2

] [𝑚
2

1
− (𝑚

2
− 𝑚

3
)

2

]

2𝑚
1

,

(5)

where𝑥
𝑖
and ⃗

𝑘
𝑖⊥
are the longitudinalmomentum fraction and

transverse momentum of valence quarks, respectively; 𝜖‖
𝑖
and

𝜖
⊥

𝑖
are the longitudinal and transverse polarization vectors,

respectively, and satisfy relations 𝜖2
𝑖
= −1 and 𝜖

𝑖
⋅ 𝑝

𝑖
= 0;

the subscript 𝑖 on variables 𝑝
𝑖
, 𝐸

𝑖
, 𝑚

𝑖
, and 𝜖

𝑖
corresponds

to participating hadrons; namely, 𝑖 = 1 for Υ(𝑛𝑆) meson,
𝑖 = 2 for the recoiled 𝐵∗

𝑐
meson, and 𝑖 = 3 for the emitted

pseudoscalar meson; 𝑛
+
and 𝑛

−
are positive and negative null

vectors, respectively; 𝑠, 𝑡, and 𝑢 are the Lorentz-invariant
variables; 𝑝 is the common momentum of final states. The
notation of momentum is displayed in Figure 2(a).

2.4. Wave Functions. With the notation in [16, 21], wave
functions are defined as
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(6)

where 𝑓
Υ
, 𝑓

𝐵
∗

𝑐

, and 𝑓
𝑃
are decay constants of Υ(𝑛𝑆), 𝐵∗

𝑐
, and

𝑃mesons, respectively.
Considering mass relations of 𝑚

Υ(𝑛𝑆)
≃ 2𝑚

𝑏
and 𝑚

𝐵
∗

𝑐

≃

𝑚
𝑏
+ 𝑚

𝑐
, it might assume that the motion of heavy valence

quarks in Υ(𝑛𝑆) and 𝐵
∗

𝑐
mesons is nearly nonrelativis-

tic. The wave functions of Υ(𝑛𝑆) and 𝐵
∗

𝑐
mesons could

be approximately described with nonrelativistic quantum
chromodynamics (NRQCD) [22–24] and time-independent
Schrödinger equation. For an isotropic harmonic oscillator
potential, the eigenfunctions of stationary statewith quantum
numbers 𝑛𝐿 are written as [17]

𝜙
1𝑆
(
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2
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,
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+ 15𝛽
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) ,

(7)

where parameter 𝛽 determines the average transverse
momentum; that is, ⟨𝑛𝑆|𝑘2

⊥
|𝑛𝑆⟩ ∼ 𝛽

2. Employing the substi-
tution ansatz [25],

⃗
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∑
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, (8)

where 𝑥
𝑖
and 𝑚

𝑞
𝑖

are the longitudinal momentum fraction
and mass of valence quark, respectively; then integrating out
⃗
𝑘
⊥
and combining with their asymptotic forms, the distribu-

tion amplitudes (DAs) for Υ(𝑛𝑆) and 𝐵∗
𝑐
mesons can be

written as [17]
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𝜙
𝑡
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} ,

(9)

where 𝑥 = 1 − 𝑥; 𝑡 = 𝑥 − 𝑥. According to NRQCD power
counting rules [22], 𝛽

𝑖
≃ 𝜉

𝑖
𝛼
𝑠
(𝜉

𝑖
) with 𝜉

𝑖
= 𝑚

𝑖
/2 and QCD

coupling constant 𝛼
𝑠
. The exponential function represents 𝑘

⊥

distribution. Parameters of 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, and 𝐻 are
normalization coefficients satisfying the conditions

∫

1

0

𝑑𝑥𝜙
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1
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𝐵
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𝑐
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for 𝑖 = V, 𝑡, 𝑉, 𝑇.
(10)

The shape lines of normalized DAs for Υ(𝑛𝑆) and 𝐵∗
𝑐

mesons are shown in Figure 1. It is clearly seen that (1) DAs
forΥ(𝑛𝑆) and𝐵∗

𝑐
mesons fall quickly down to zero at endpoint

𝑥, 𝑥 → 0 due to suppression from exponential functions; (2)
DAs for Υ(𝑛𝑆) meson are symmetric under the interchange
of momentum fractions 𝑥 ↔ 𝑥, and DAs for 𝐵∗

𝑐
meson are

basically consistent with the feature that valence quarks share
momentum fractions according to their masses.

Our study shows that only the leading twist (twist-2) DAs
of the emitted light pseudoscalar meson 𝑃 are involved in
decay amplitudes (see Appendix). The twist-2 DAs have the
expansion [16],

𝜙
𝑎

𝑃
(𝑥) = 6𝑥𝑥∑

𝑖=0

𝑎
𝑖
𝐶
3/2

𝑖
(𝑡) , (11)

and are normalized as

∫

1

0

𝜙
𝑎

𝑃
(𝑥) 𝑑𝑥 = 1, (12)

where 𝐶3/2

𝑖
(𝑡) are Gegenbauer polynomials:

𝐶
3/2

0
(𝑡) = 1,

𝐶
3/2

1
(𝑡) = 3𝑡,

𝐶
3/2

2
(𝑡) =

3

2

(5𝑡
2

− 1) ,

.

.

.

(13)

and each term corresponds to a nonperturbative Gegenbauer
moment 𝑎

𝑖
; note that 𝑎

0
= 1 due to the normalization

condition equation (12); 𝐺-parity invariance of the pion DAs
requires Gegenbauer moment 𝑎

𝑖
= 0 for 𝑖 = 1, 3, 5, . . ..

2.5. Decay Amplitudes. The Feynman diagrams for Υ(𝑛𝑆) →
𝐵
∗

𝑐
𝜋 weak decay are shown in Figure 2. There are two types.

One is factorizable emission topology where gluon attaches
to quarks in the samemeson, and the other is nonfactorizable

emission topology where gluon connects to quarks between
different mesons.

With the pQCD master formula equation (4), the ampli-
tude for Υ(𝑛𝑆) → 𝐵

∗

𝑐
𝑃 decay can be expressed as [26]

A (Υ (𝑛𝑆) → 𝐵
∗

𝑐
𝑃) = A

𝐿
(𝜖

‖

1
, 𝜖

‖

2
) +A

𝑁
(𝜖

⊥

1
, 𝜖

⊥

2
)

+ 𝑖A
𝑇
𝜖
𝜇V𝛼𝛽𝜖

𝜇

1
𝜖
V
2
𝑝
𝛼

1
𝑝

𝛽

2
,

(14)

which is conventionally written as the helicity amplitudes
[26]:

A
0
= −𝐶A∑

𝑗

A
𝑗

𝐿
(𝜖

‖

1
, 𝜖

‖

2
) ,

A
‖
= √2𝐶A∑

𝑗

A
𝑗

𝑁
(𝜖

⊥

1
, 𝜖

⊥

2
) ,

A
⊥
= √2𝐶A𝑚1

𝑝∑

𝑗

A
𝑗

𝑇
,

𝐶A = 𝑖𝑉𝑐𝑏𝑉
∗

𝑢𝑞

𝐺
𝐹

√2

𝐶
𝐹

𝑁
𝑐

𝜋𝑓
Υ
𝑓
𝐵
∗

𝑐

𝑓
𝑃
,

(15)

where 𝐶
𝐹
= 4/3 and the color number𝑁

𝑐
= 3; the subscript 𝑖

on 𝐴𝑗

𝑖
corresponds to three different helicity amplitudes; that

is, 𝑖 = 𝐿,𝑁, 𝑇; the superscript 𝑗 on 𝐴𝑗

𝑖
denotes indices of

Figure 2. The explicit expressions of building blocks A𝑗

𝑖
are

collected in Appendix.

3. Numerical Results and Discussion

In the center-of-mass ofΥ(𝑛𝑆)meson, branching ratioB𝑟 for
Υ(𝑛𝑆) → 𝐵

∗

𝑐
𝑃 decay is defined as

B𝑟 =
1

12𝜋

𝑝

𝑚
2

Υ
Γ
Υ

{




A

0






2

+




A

‖






2

+




A

⊥






2

} . (16)

The input parameters are listed in Tables 1 and 2. If not
specified explicitly, we will take their central values as the
default inputs. Our numerical results are collected in Table 3,
where the first uncertainty comes from scale (1 ± 0.1)𝑡

𝑖
and

the expression of 𝑡
𝑖
is given in (A.4) and (A.5); the second

uncertainty is from mass of𝑚
𝑏
and𝑚

𝑐
; the third uncertainty

is from hadronic parameters including decay constants and
Gegenbauer moments; the fourth uncertainty is from CKM
parameters. The followings are some comments:

(1) Branching ratio for Υ(𝑛𝑆) → 𝐵
∗

𝑐
𝜋 decay is about

O(10−10) with pQCD approach, which is well within
the measurement potential of LHC and SuperKEKB.
For example, experimental studies have showed that
production cross sections forΥ(𝑛𝑆)meson in p-p and
p-Pb collisions are a few 𝜇𝑏 at the LHCb [27, 28] and
ALICE [29, 30] detectors. Consequently, there will
be more than 1012 Υ(𝑛𝑆) data samples per 𝑎𝑏−1 data
collected by the LHCb and ALICE, corresponding to
a few hundreds of Υ(𝑛𝑆) → 𝐵

∗

𝑐
𝜋 events. Branching

ratio for Υ(𝑛𝑆) → 𝐵
∗

𝑐
𝐾 decay, O(10−11), is generally
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Figure 1: The normalized distribution amplitudes for Υ(𝑛𝑆) and 𝐵∗

𝑐
mesons.
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Figure 2: Feynman diagrams for Υ(𝑛𝑆) → 𝐵
∗

𝑐
𝜋 decay with the pQCD approach, including factorizable emission diagrams (a, b) and

nonfactorizable emission diagrams (c, d).

less than that for Υ(𝑛𝑆) → 𝐵
∗

𝑐
𝜋 decay by one order of

magnitude due to the CKM suppression, |𝑉∗

𝑢𝑠
/𝑉

∗

𝑢𝑑
|
2

∼

𝜆
2.

(2) As it is well known, due to the large mass of
𝐵
∗

𝑐
, the momentum transition in Υ(𝑛𝑆) → 𝐵

∗

𝑐
𝑃

decay may be not large enough. One might naturally

wonder whether the pQCD approach is applicable
and whether the perturbative calculation is reliable.
Therefore, it is necessary to check what percentage of
the contributions comes from the perturbative region.
The contributions to branching ratio for Υ(𝑛𝑆) →
𝐵
∗

𝑐
𝜋 decay from different 𝛼

𝑠
/𝜋 region are shown

in Figure 3. It can be clearly seen that more than
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Figure 3: The contributions to branching ratios for Υ(1𝑆) → 𝐵
∗

𝑐
𝜋 decay (a), Υ(2𝑆) → 𝐵

∗

𝑐
𝜋 decay (b), and Υ(3𝑆) → 𝐵

∗

𝑐
𝜋 decay (c) from

different region of 𝛼
𝑠
/𝜋 (horizontal axes), where the numbers over histogram denote the percentage of the corresponding contributions.

Table 2: The numerical values of input parameters.

TheWolfenstein parameters
𝐴 = 0.814

+0.023

−0.024
[1], 𝜆 = 0.22537 ± 0.00061 [1],

Mass, decay constant, and Gegenbauer moments
𝑚

𝑏
= 4.78 ± 0.06 GeV [1], 𝑓

𝜋
= 130.41 ± 0.20MeV [1],

𝑚
𝑐
= 1.67 ± 0.07 GeV [1], 𝑓

𝐾
= 156.2 ± 0.7MeV [1],

𝑚
𝐵
∗

𝑐

= 6332 ± 9MeV [14], 𝑓
𝐵
∗

𝑐

= 422 ± 13MeV [15]c,
𝑎
𝐾

1
(1 GeV) = −0.06 ± 0.03 [16], 𝑓

Υ(1𝑆)
= 676.4 ± 10.7MeV [17],

𝑎
𝐾

2
(1 GeV) = 0.25 ± 0.15 [16], 𝑓

Υ(2𝑆)
= 473.0 ± 23.7MeV [17],

𝑎
𝜋

2
(1 GeV) = 0.25 ± 0.15 [16], 𝑓

Υ(3𝑆)
= 409.5 ± 29.4MeV [17].

cThe decay constant 𝑓
𝐵
∗

𝑐

cannot be extracted from the experimental data because of no measurement on 𝐵
∗

𝑐
weak decay at the present time. Theoretically, the

value of 𝑓
𝐵
∗

𝑐

has been estimated, for example, in [18], with the QCD sum rules. From Table 3 of [18], one can see that the value of 𝑓
𝐵
∗

𝑐

is model-dependent.
In our calculation, we will take the latest value given by the lattice QCD approach [15] just to offer an order of magnitude estimation on branching ratio for
Υ(𝑛𝑆) → 𝐵

∗

𝑐
𝑃 decays.

Table 3: Branching ratio for Υ(𝑛𝑆) → 𝐵
∗

𝑐
𝑃 decays.

Modes Υ(1𝑆) → 𝐵
∗

𝑐
𝜋 Υ(2𝑆) → 𝐵

∗

𝑐
𝜋 Υ(3𝑆) → 𝐵

∗

𝑐
𝜋

10
10

×B𝑟 4.35
+0.29+0.19+0.44+0.17

−0.24−0.41−0.31−0.30
2.28

+0.13+0.26+0.40+0.09

−0.03−0.35−0.16−0.15
2.14

+0.12+0.09+0.48+0.07

−0.12−0.41−0.15−0.15

Modes Υ(1𝑆) → 𝐵
∗

𝑐
𝐾 Υ(2𝑆) → 𝐵

∗

𝑐
𝐾 Υ(3𝑆) → 𝐵

∗

𝑐
𝐾

10
11

×B𝑟 3.45
+0.23+0.13+0.38+0.13

−0.21−0.35−0.27−0.25
1.91

+0.11+0.07+0.36+0.07

−0.09−0.31−0.15−0.14
1.65

+0.09+0.08+0.40+0.05

−0.21−0.33−0.13−0.12
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93% (97%) contributions come from 𝛼
𝑠
/𝜋 ≤ 0.2

(0.3) region, implying that Υ(𝑛𝑆) → 𝐵
∗

𝑐
𝜋 decay

is computable with the pQCD approach. As the
discussion in [2–4], there are many factors for this,
for example, the choice of the typical scale, retaining
the quark transverse moment and introducing the
Sudakov factor to suppress the nonperturbative con-
tributions, which deserve much attention and further
investigation.

(3) Because of the relations among masses 𝑚
Υ(3𝑆)

>

𝑚
Υ(2𝑆)

> 𝑚
Υ(1𝑆)

resulting in the fact that phase space
increases with the radial quantum number 𝑛 in addi-
tion to the relations among decay widths Γ

Υ(3𝑆)
<

Γ
Υ(2𝑆)

< Γ
Υ(1𝑆)

, in principle, there should be relations
among branching ratios B𝑟(Υ(3𝑆) → 𝐵

∗

𝑐
𝑃) >

B𝑟(Υ(2𝑆) → 𝐵
∗

𝑐
𝑃) > B𝑟(Υ(1𝑆) → 𝐵

∗

𝑐
𝑃) for

the same pseudoscalar meson 𝑃. But the numerical
results in Table 3 are beyond such expectation. Why?
The reason is that the factor of 𝑝/𝑚2

Υ(𝑛𝑆)
in (16) has

almost the same value for 𝑛 ≤ 3, so branching ratio is
proportional to factor 𝑓2

Υ(𝑛𝑆)
/Γ

Υ(𝑛𝑆)
with the maximal

value 𝑓2

Υ(1𝑆)
/Γ

Υ(1𝑆)
for 𝑛 ≤ 3. Besides, contributions

from 𝛼
𝑠
/𝜋 ∈ [0.2, 0.3] regions decrease with 𝑛 (see

Figure 3), which enhance the decay amplitudes.
(4) Besides the uncertainties listed in Table 3, other

factors, such as the models of wave functions, con-
tributions of higher order corrections to HME, and
relativistic effects, deserve the dedicated study. Our
results just provide an order of magnitude estimation.

4. Summary

Υ(𝑛𝑆) decay via the weak interaction, as a complementary
to strong and electromagnetic decay mechanism, is allowable
within the standard model. Based on the potential prospects
of Υ(𝑛𝑆) physics at high-luminosity collider experiment,
Υ(𝑛𝑆) decay into𝐵∗

𝑐
𝜋 and𝐵∗

𝑐
𝐾 final states is investigated with

the pQCD approach firstly. It is found that (1) the dominant
contributions come from perturbative regions 𝛼

𝑠
/𝜋 ≤ 0.3,

which might imply that the pQCD calculation is practicable
andworkable; (2) there is a promiseful possibility of searching
for Υ(𝑛𝑆) → 𝐵

∗

𝑐
𝜋 (𝐵∗

𝑐
𝐾) decay with branching ratio about

10
−10 (10−11) at the future experiments.

Appendix

Building Blocks for Υ→ 𝐵
∗

𝑐
𝑃 Decays

The building blocksA𝑗

𝑖
, where the superscript 𝑗 corresponds

to indices of Figure 2 and the subscript 𝑖 relates to different
helicity amplitudes, are expressed as follows:
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𝐿
= ∫
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1
∫

1
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𝑏
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1
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𝑁
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𝑏
2
𝑑𝑏
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∞
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𝑏
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𝐻

𝑐𝑑
(𝛼

𝑒
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𝑐
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3
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𝑐
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𝑎

𝑃
(𝑥

3
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𝑠
(𝑡

𝑐
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2
(𝑡

𝑐
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V
Υ
(𝑥

1
) 𝜙

V
𝐵
∗

𝑐

(𝑥
2
) 4𝑚
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1
𝑝
2

(𝑥
1
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𝑡

Υ
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Υ
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1
) 𝜙

𝑇
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𝑎
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)
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2
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− 𝑥
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2

2
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3
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𝑑

𝑇
=

2

𝑁
𝑐

∫

1

0

𝑑𝑥
1
∫
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𝑑𝑥
2
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1

0

𝑑𝑥
3
∫

∞

0

𝑑𝑏
1
∫

∞

0

𝑏
2
𝑑𝑏

2

⋅ ∫

∞

0

𝑏
3
𝑑𝑏

3
𝐻

𝑐𝑑
(𝛼

𝑒
, 𝛽

𝑑
, 𝑏

2
, 𝑏

3
) 𝐸

𝑐𝑑
(𝑡

𝑑
) 𝐶
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𝑑
)
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𝑠
(𝑡

𝑑
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1
− 𝑏

2
) 𝜙

𝑇

Υ
(𝑥

1
) 𝜙

𝑇

𝐵
∗

𝑐

(𝑥
2
) 𝜙

𝑎

𝑃
(𝑥

3
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2

1
(𝑥

1
− 𝑥

3
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2

2
(𝑥

2
− 𝑥

3
)} ,

(A.1)

where 𝑥
𝑖
= 1 − 𝑥

𝑖
; variable 𝑥

𝑖
is the longitudinal momentum

fraction of the valence quark; 𝑏
𝑖
is the conjugate variable of the

transverse momentum 𝑘
𝑖⊥
; and 𝛼

𝑠
(𝑡) is the QCD coupling at

the scale of 𝑡; 𝑎
1
= 𝐶

1
+ 𝐶

2
/𝑁

𝑐
.

The function𝐻
𝑖
is defined as follows [17]:

𝐻
𝑎𝑏
(𝛼

𝑒
, 𝛽, 𝑏

𝑖
, 𝑏

𝑗
) = 𝐾

0
(√−𝛼𝑏

𝑖
)

⋅ {𝜃 (𝑏
𝑖
− 𝑏

𝑗
)𝐾

0
(√−𝛽𝑏

𝑖
) 𝐼

0
(√−𝛽𝑏

𝑗
)

+ (𝑏
𝑖
←→ 𝑏

𝑗
)} ,

𝐻
𝑐𝑑
(𝛼

𝑒
, 𝛽, 𝑏

2
, 𝑏

3
) = {𝜃 (−𝛽)𝐾

0
(√−𝛽𝑏

3
)

+

𝜋

2

𝜃 (𝛽) [𝑖𝐽
0
(√𝛽𝑏

3
) − 𝑌

0
(√𝛽𝑏

3
)]}

⋅ {𝜃 (𝑏
2
− 𝑏

3
)𝐾

0
(√−𝛼𝑏

2
) 𝐼

0
(√−𝛼𝑏

3
)

+ (𝑏
2
←→ 𝑏

3
)} ,

(A.2)

where 𝐽
0
and𝑌

0
(𝐼

0
and𝐾

0
) are the (modified) Bessel function

of the first and second kind, respectively; 𝛼
𝑒
(𝛼

𝑎
) is the

gluon virtuality of the emission (annihilation) topological
diagrams; the subscript of the quark virtuality 𝛽

𝑖
corresponds

to the indices of Figure 2. The definition of the particle
virtuality is listed as follows [17]:

𝛼 = 𝑥
2

1
𝑚

2

1
+ 𝑥

2

2
𝑚

2

2
− 𝑥

1
𝑥
2
𝑡,

𝛽
𝑎
= 𝑚

2

1
− 𝑚

2

𝑏
+ 𝑥

2

2
𝑚

2

2
− 𝑥

2
𝑡,

𝛽
𝑏
= 𝑚

2

2
− 𝑚

2

𝑐
+ 𝑥

2

1
𝑚

2

1
− 𝑥

1
𝑡,

𝛽
𝑐
= 𝑥

2

1
𝑚

2

1
+ 𝑥

2

2
𝑚

2

2
+ 𝑥

2

3
𝑚

2

3
− 𝑥

1
𝑥
2
𝑡 − 𝑥

1
𝑥
3
𝑢

+ 𝑥
2
𝑥
3
𝑠,

𝛽
𝑑
= 𝑥

2

1
𝑚

2

1
+ 𝑥

2

2
𝑚

2

2
+ 𝑥

2

3
𝑚

2

3
− 𝑥

1
𝑥
2
𝑡 − 𝑥

1
𝑥
3
𝑢

+ 𝑥
2
𝑥
3
𝑠.

(A.3)

The typical scale 𝑡
𝑖
and the Sudakov factor 𝐸

𝑖
are defined

as follows, where the subscript 𝑖 corresponds to the indices of
Figure 2:

𝑡
𝑎(𝑏)

= max(√−𝛼,√−𝛽
𝑎(𝑏)
,

1

𝑏
1

,

1

𝑏
2

) , (A.4)

𝑡
𝑐(𝑑)

= max(√−𝛼,√

𝛽
𝑐(𝑑)





,

1

𝑏
2

,

1

𝑏
3

) , (A.5)

𝐸
𝑎𝑏
(𝑡) = exp {−𝑆

Υ
(𝑡) − 𝑆

𝐵
∗

𝑐

(𝑡)} , (A.6)

𝐸
𝑐𝑑
(𝑡) = exp {−𝑆

Υ
(𝑡) − 𝑆

𝐵
∗

𝑐

(𝑡) − 𝑆
𝑃
(𝑡)} , (A.7)

𝑆
Υ
(𝑡) = 𝑠 (𝑥

1
, 𝑝

+

1
,

1

𝑏
1

) + 2∫

𝑡

1/𝑏
1

𝑑𝜇

𝜇

𝛾
𝑞
, (A.8)

𝑆
𝐵
∗

𝑐

(𝑡) = 𝑠 (𝑥
2
, 𝑝

+

2
,

1

𝑏
2

) + 2∫

𝑡

1/𝑏
2

𝑑𝜇

𝜇

𝛾
𝑞
, (A.9)
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𝑆
𝜋,𝐾
(𝑡) = 𝑠 (𝑥

3
, 𝑝

+

3
,

1

𝑏
3

) + 𝑠 (𝑥
3
, 𝑝

+

3
,

1

𝑏
3

)

+ 2∫

𝑡

1/𝑏
3

𝑑𝜇

𝜇

𝛾
𝑞
,

(A.10)

where 𝛾
𝑞
= −𝛼

𝑠
/𝜋 is the quark anomalous dimension;

the explicit expression of 𝑠(𝑥, 𝑄, 1/𝑏) can be found in the
appendix of [2].
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