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ABSTRACT 

A connection is made between two sets of problems. The first set involves 
factorization problems of specific rational matrix functions, the companion based 
matrix functions. The second set is concerned with variants of the two machine flow 
shop problem (2MFSP) from job scheduling theory. In particular, it is shown that with 
each companion based matrix function one can associate an instance of ZMFSP and 
vice versa. The latter can be done in such a way that the factorization properties of the 
companion based matrix function correspond to the combinatorial properties of the 
instance of BMFSP. 

1. INTRODUCTION 

In this paper we study the problems of minimal and complete factoriza- 
tion of companion based n x n matrix functions in association with variants 
of the two machine flow shop problem (2MFSP) from job scheduling theory. 
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Here a companion based n X n matrix function W is a rational n X n matrix 
function that admits a minimal realization 

W(A) = Z,, + C(hZ, - A)-lB, (1) 

where the m X m matrices A and AX = A - BC are first companion 
matrices. The class of companion based matrix functions is studied by Bart 
and Kroon [6]. Among other results, they briefly indicate a connection 
between the problem of complete factorization of companion based matrix 
functions and 2MFSP. In the present paper this connection is described in 
detail. Also, a more general connection between specific minimal factoriza- 
tions of companion based matrix functions and variants of 2MFSP is pre- 
sented. 

In Section 2 we provide background material on rational matrix functions 
and companion based matrix functions, and in Section 3 we give a description 
of the standard version of SMFSP. In Section 4 we indicate how an instance 
of BMFSP can be associated with a companion based matrix function and vice 
versa. Then, in Section 5, we prove the following result: Zf W is a companion 
based matrix function, J is an instance of 2MFSP, and W and ] are 
associated, then W admits complete factorization if and only if ~(1) < S(W) 
+ 1. Here ~(1) denotes the minimum makespan of J, and 6(W) denotes 
the McMillan degree of W. 

In Section 6 we describe a number of generalizations of this result. These 
generalizations involve the Max-Degree problem and the Number problem, 
as well as two variants of BMFSP. The Max-Degree problem and the Number 
problem are generalizations of the problem of complete factorization. In fact, 
the Max-Degree problem is the problem of determining a minimal factoriza- 
tion where the maximum McMillan degree over the factors is minimum; the 
Number problem is the problem of finding a minimal factorization with a 
maximum number of nontrivial factors. 

In the mentioned variants of SMFSP a number of jobs, each one 
consisting of two operations, have to be processed by two machines within a 
given deadline. Processing the second operation of a job may start already 
before processing the first operation of the job has been completed. How- 
ever, in BMFSP-MR the objective is to minimize the maximum (reduced) 
infeasibility of the jobs, whereas in SMFSP-TR the total (reduced) infeasibil- 
ity of the jobs is to be minimized. The combinatorial properties of these 
variants of SMFSP are investigated by Bart and Kroon [7]. The present paper 
is concluded in Section 7, where some additional results are pointed out. 

Finally, it should be noted that all examples in this paper are based on 
companion based 2 X 2 matrix functions of the type discussed by Bart and 
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Kroon 161. However, the results of this paper are also valid for arbitrary 
companion based n x n matrix functions. 

2. RATIONAL MATRIX FUNCTIONS 

In this section we present some background material on rational n X n 
matrix functions that is used in this paper. We also give a brief review of the 
results of Bart and Kroon [6] on minimal factorization of companion based 
matrix functions. 

Throughout this paper all rational n X n matrix functions are assumed to 
be analytic at * with value I,, the n X n identity matrix. Relevant references 
are Bart et al. [2], Bar-t et al. [3], DeWilde and Vandewalle [lo], Gohberg 
et al. [12], Kailath [14], Kalman [15], Kalman et al. [16], and Sahnovic [ 191. 

Let W be a rational n X n matrix function which, according to the 
standing assumption, is analytic at * with W(m) = I,. By a realization of W 
we mean a representation of the form 

W(A) = I,, + C(AZ, - A)-‘B, (2) 

where A is an m X m matrix, B is an m X n matrix, and C is an n X m 
matrix. It is known that it is always possible to find such a representation (cf. 
Bart et al. [2] and the references given there). 

If (2) is a realization of W, then 

W-‘(A) = I, - C(hZ,, -A + BC))‘B (3) 

is a realization of the rational matrix function W-i given by W-‘(A) = 
W(h)- ‘. It is customary to write AX for the matrix A - BC. With this 
notation (3) becomes W-‘(A) = I, - C(AZ, - AX)-‘B. 

The smallest possible m for which a given rational matrix function W 
admits a realization (2) is called the McMillan degree of W and is denoted by 
6(W >. It equals the total number of poles of W counted according to pole 
multiplicity. A discussion of this notion is given after the next paragraph. Note 
that S(W > = 0 if and only if W(A) = I, for all A. 

The realization (2) is called minimal if m = 6(W). Minimal realizations 
are essentially unique: if (2) is a minimal realization of W, then all minimal 
realizations of W can be obtained by replacing A, B, and C with SAS’, 
SB, and CS-’ respectively, where S is an invertible m X m matrix. This 
result is known as the state space isonwrphism theorem. 
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Now let us come back to the notion of pole multiplicity. To that end, let 
o be a complex number. In a deleted neighborhood of (Y we have the 
Laurent expansion 

W(A) = E (A - cgkWk 
k= -r 

(4) 

for W, where r is a positive integer not less than the order of cy as a pole of 
W. Write 

6(W, LY) = ran1 

w_, W_r+l **’ w-2 W-1 

0 w-, w-2 

;, 0 w-r W-.,+1 

0 0 . . . 0 W-, I- (5) 

Then 6(W, (Y) does not depend on the choice of r, and S(W, a) is not less 
than the pole order of W at (Y. Also, S(W, (u) = 0 if and only if W is 
analytic at (Y. The number S(W, a> is called the local degree or the pole 
multiplicity of W at (Y. 

As was mentioned already, the McMillan degree of W equals the number 
of poles of W counted according to pole multiplicity. In other words, 

S(W) = c qw, a). 
as:C 

Here the summation can be restricted to those (Y that are genuine poles of 
W. 

A complex number (Y is called a zero of W if it is a pole of W- ‘. The 
zero multiplicity of (Y as a zero of W then equals the pole multiplicity 
6(W-‘, ff> of ff as a pole of W-r. 

To facilitate later discussions, we associate two polynomials with a rational 
matrix function W. The pole polynomial p, and the zero polynomial p$ of 
W are defined by 

pw(h) = (A - cq)...(A - am), p;(h) = (A - cx;)...(A - a;), 

(6) 
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where oi,. . . , a, are the poles of W counted according to pole multiplicity 
and or,. . . , CY~ are the zeros of W counted according to zero multiplicity. 
Obviously, both p, and p$ are manic and have degree m = S(W ). If (2) is 
a minimal realization of W, then p, and p$ are the characteristic polyno- 
mials of A and AX respectively. 

The McMillan degree 6(W) . 1s sublogarithmic in the following sense: If 
w = w, ... W,. is a factorization of W, then 

6(W) < 6(W,) + s-0 +S(Wr). 

Of special interest are factorizations with equality in (7). These are factoriza- 
tions in which pole-zero cancellation does not occur (cf. Bart et al. [2]). They 
are called minimulfuctorizations. There exist nontrivial rational matrix func- 
tions without any nontrivial minimal factorization. 

A rational matrix function is called elementary if its McMillan degree 
equals one. A complete factorization is a minimal factorization involving 
elementary factors only. Thus a factorization of a rational matrix function W 
is complete if it has the form 

W(A) = I, + &Rl i I i 1 
*** I, + -R 

1 1 h-m, m’ 

where m is the McMillan degree of W, where oi, . . . , CY, are the poles of W 
counted according to pole multiplicity, and where R,, . . . , R, are n X n 
matrices of rank 1. 

As a final part of this section we give a review of the results of Bar-t and 
Kroon [6] on minimal factorization of companion based matrix functions. As 
already mentioned in the introduction, a rational matrix function W is said to 
be companion based if it admits a minimal realization (2) where both A and 
AX are first companion matrices. For basic material on companion matrices, 
see Lancaster and Tismenetsky [17]. 

One main result of Bart and Kroon [6] states that the property of being 
companion based is hereditary with respect to minimal factorization. The 
exact formulation of this statement is as follows. 

THEOREM 1. Zf W is a companion based matrix function and W = W is 
a minimal factorization of W, then U and V are companion based as well. 

Bart and Kroon [6] also prove that there exists a one-to-one correspon- 
dence between the minimal factorizations of a companion based matrix 
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function W and specific factorizations of the pole polynomial p, and the 
zero polynomial p$ of W. The details of this correspondence are expressed 
in Theorem 2. 

THEOREM 2. Let W be a companion based matrix function with pole 
polynomial p, and zero polynomial pg. 

(i) Suppose W = W, * ** W,. is a minimal factorization of W where Wj 
has pole polynomial pj and zero polynomial pjx (j = 1, . . . , r>. Then p, = 

ni= 1 Pj, 
r - 1). 

p$ = nJ= 1 pi” and gcd(nj=,pj;nl=i+,p~x) = 1 (i = l,..., 

(ii> Suppose p, = II;_ 1 pj and p$ = II;= 1 pjx where p,, . . . , p, and 

p:>...> p: are monk polynomials with deg pj = deg pi* and 
gcd(n;, 1 pj; nJzi+ 1 ~7) = 1 (i = 1,. . . , r - 1). Then there exist unique 
companion based matrix functions W,, . . . , W,. such that W = W, a** W, is a 
minimal factorization of W, and Wj has pole polynomial pi and zero 
polynomial pjx (j = 1, . . . , r). 

The case r = m obviously corresponds to complete factorization. Hence 
Theorem 2 implies Corollary 3 (cf. Bart and Hoogland [4]). 

COROLLARY 3. Let W be a companion based matrix function with pole 
polynomial p, and zero polynomial p$. Then W admits complete factoriza- 
tion if and only if there exist orderings CY~, . . . , a, of the zeros of p, and 
cy:, . . . , a; of the zeros of p$ such that a, z CI$ whenever s < t. 

Corollary 3 already indicates that the existence of a complete factorization 
is equivalent to a combinatorial condition involving the zeros of p, and p$. 
In Section 5 this equivalence is described in detail. Generalizations of this 
result are discussed in Section 6. 

A rational matrix function is called irreducible if it does not admit any 
nontrivial minimal factorization. Corollary 4 provides a complete description 
of the irreducible companion based matrix functions. 

COROLLARY 4. Let W be a companion based matrix function with pole 
polynomial p, and zero polynomial p$. Then W is irreducible if and only if 
W is elementary or p,(h) = p&(A) = (A - CI>~ for some complex number ff 
and some positive integer c. 

If W is elementary and p, # p$, we say that W has type 1. If 
p&j = p;:(A) = (A - ajC f or some complex number CY and some positive 
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integer c, we say that W has type 2 with degree c. This terminology turns out 
to be useful in later considerations. 

In Section 7 we present a generalization of Corollary 4. In particular, we 
describe the smallest possible McMillan degree of a nontrivial factor that can 
appear in a minimal factorization of a companion based matrix function W, 
either as an arbitrary middle factor, as a left factor, or as a right factor. 

3. THE TWO MACHINE FLOW SHOP PROBLEM 

In this section we describe the standard version of 2MFSP and some 
properties of the optimal schedules of instances of 2MFSP. In an instance of 
BMFSP there are k jobs that have to be processed by two machines. Each 
job consists of two operations. The first and the second operation of job j are 
called 0: and Ojz respectively. The first operation 0: must be processed on 
the first machine, and the second operation 0;” must be processed on the 
second machine. Each machine can be processing at most one operation at 
the same time. In standard 2MFSP, processing OJ” on the second machine 
cannot start until processing 0: on the first machine has been completed. 

The processing times of all operations are given and fixed. The processing 
time of 0: is denoted by sj, and the processing time of 0;” is denoted by t,. 
Hence an instance J of BMFSP consists of k tuples (sj, tj> specifying the 
processing times of the operations. Throughout this paper we assume that all 
processing times are nonnegative integers. This is not a serious restriction. 
What it amounts to is that the processing times are rationals and that the time 
unit is chosen appropriately. Furthermore, in order to avoid trivialities, we 
also assume that for each job j either sj or tj is nonzero. 

If we have a feasible schedule (that is, a schedule satisfying the specified 
rules), then the length of the time interval required to carry out all jobs is 
called the makespan of the schedule. In standard 2MFSP the objective is to 
find a feasible schedule with minimum makespan. The minimum makespan 
of an instance J is denoted by p(J). In the literature the makespan is 
sometimes also called the maximum completion time. In that case the 
minimally obtained maximum completion time of an instance J is denoted by 

ClnJ.l)* 
It is well known that each instance of BMFSP has an optimal nonpreemp- 

tive schedule (cf. Baker [I]). That is, the optimal schedule has the additional 
property that, once a machine has started processing an operation, it does not 
start processing another operation until the first operation has been com- 
pleted. It is also well known that each instance of 2MFSP has an optimal 
permutation schedule. A schedule is a permutation schedule if it is non- 
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preemptive and for all i # j the operations 0,s and 0,s are processed in the 
same order as the operations 0: and 0;. 

These properties of 2MFSP can be proved in a straightforward way by 
exchange arguments and by using the fact that, given a feasible schedule, an 
operation on the first machine can be pushed backward in time without 
violating the predecessor constraints. Similarly, an operation on the second 
machine can be pushed forward in time without violating the predecessor 
constraints. 

An optimal permutation schedule for an instance of BMFSP with k jobs 
can be obtained by the application of Johnson’s rule (cf. Baker [l] and 
Johnson [13]). With J h o nson’s rule an optimal permutation schedule is 
constructed as follows: 

1. Define the sets Vi and Vs by V, = {j 1 sj < tj) and V, = {j I sj > tj). 
2. Put the jobs in V, in order of increasing sj, and put the jobs in V, in 

order of decreasing tj. 
3. Process the jobs in V, first, and process the jobs in V, thereafter. 

Sorting the jobs in the sets V, and V, can be accomplished in O(k log k) 
time. Thus the running time of Johnson’s rule is O(k log k). Therefore 
SMFSP belongs to the class of easy problems that can be solved in polyno- 
mial time (cf. Garey and Johnson [ll]). 

4. COMPANION BASED MATRIX FUNCTIONS AND 2MFSP 

In this section we indicate how a companion based matrix function can be 
associated with an instance of BMFSP and vice versa. This association is 
essential in the description of the connection between minimal and complete 
factorization of companion based matrix functions and variants of BMFSP. As 
we shall see, the association is essentially one-to-one. In subsequent sections 
it is shown that, if a companion based matrix function W and an instance ] of 
2MFSP are associated, then the factorization properties of W are reflected in 
the combinatorial properties of J and vice versa. 

Let W be a companion based n X n matrix function, and let J be an 
instance of 2MFSP with k jobs (sj, tj> where for j = 1,. . . , k either sj or tj 
is positive. We say that W and ] are associated if the pole polynomial p, 
and the zero polynomial p& of W can be written in the form 

pw( A) = (A - P$‘( A - PJ” *** (A - P/y, (9) 

p;(A) = (A - &)“‘( A - &)” ... (A - P,$‘, (10) 
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where each pj is a pole of W, a zero of W (i.e. a pole of W-l), or both 
(j = 1,. . . , k). If pj is a pole and not a zero of W, then sj = 0 and tj > 0. If 
fij is a zero and not a pole of W, then sj > 0 and tj = 0. If pj is both a pole 

and a zero of W, then sj > 0 and tj > 0. Note that Cj= isj = Cjk= Itj = 6(W 1. 
It is obvious that for a given companion based matrix function W there 

exists an instance / of ZMFSP such that W and ] are associated. This 
instance of BMFSP is unique up to the ordering of the jobs. 

Conversely, if J is an instance of 2MFSP with k jobs as in the preceding 
paragraph and satisfying Ci=isj = C,“,,t,, then there do exist companion 

based matrix functions W such that W and ] are associated. The latter can 
be seen as follows. First, choose k different complex numbers Pi, . . . , Pk in 
an arbitrary way. Next, introduce the polynomials p(A) = (A - PIY1 
(A - &)” . ..(A - Pk)tk and 9(A) = (A - &)“(A - &,)“z ***(A - &)“i. 
Finally, define the rational matrix function W by 

It is not difficult to see that p, = p and p& = 9. Furthermore, W is a 
companion based matrix function. It follows that W and ] are associated. 
Also, if R is any invertible 2 X 2 matrix, then R-l WR and ] are associated 
as well. A similar construction can be used to find an n X n companion based 
matrix function W such that W and J are associated. For details, see Bar-t 
and Kroon [6]. 

If ] is an instance of BMFSP that does not satisfy the condition Cjk= ,sj = 
C,k= Itj, then this condition can be met by the addition of at least one 
appropriate dummy job for which only one of the processing times is positive. 
In this way one obtains an instance ]’ of SMFSP that satisfies the desired 
condition and that is essentially the same as J. In particular, ~(1) = ~(1’). 

Hence, if ] is an instance of SMFSP, then there exist several companion 
based matrix functions W such that W and ] are associated. However, as will 
become clear in the following sections, all these functions have basically the 
same factorization properties. So, from a factorization point of view, these 
functions can be identified with each other. In this sense, we have uniqueness 
here as well. 
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5. COMPLETE FACTORIZATION AND BMFSP 

In this section we describe the connection between complete factorization 
of companion based matrix functions and 2MFSP. Theorem 5 can be viewed 
as a reformulation of the result described in Section 5 of Bart and Kroon [6]. 
For the convenience of the reader we give the full proof of this theorem in 
the language developed here. 

THEOREM 5. Let W be a companion based matrix function, let ] be an 
instance of 2 MFSP, and assume W and J are associated. Then W admits 
complete factorization if and only if p(J) < S(W) + 1. 

Proof. Let the pole polynomial p, and the zero polynomial p$ of W 
be given by (9) and (10) respectively, and write m = S(W ). 

Suppose p(J) < m + 1. Then there exists a permutation schedule for J 
with makespan m + 1. As the operations on the first machine can be pushed 
backward in time and Cj”= isj = m, it may be assumed that the first machine 
is occupied during the time interval (0, ml. Similarly, it may be assumed that 
the second machine is occupied during the time interval (1, m + 1). As a 
consequence, the start and finish times of all operations are integers. Now we 
define the sequences cri, . . . , a, and cr:, . . . , a: as follows: 

(Y, = pj if the second machine is processing 0: in the time interval (t, t + 1); 

a: = pj if the first machine is processing 0; in the time interval (t - 1, t). 

Then cri, . . . , (Y, is a well-defined ordering of the zeros of p,, and 
a;, . . . , CY; is a well-defined ordering of the zeros of p$,. Furthermore, 

a, # fffX> s < t. (11) 

The condition (11) is a consequence of the fact that processing the second 
operation of a job in J cannot start until processing the first operation of the 
job has been completed. Thus Corollary 3 implies that W admits complete 
factorization. 

Conversely, suppose W admits complete factorization. Then Corollary 3 
implies that there exist orderings cri, . . . , a, of the zeros of p, and 

Lx:, . . . , a; of the zeros of p$ satisfying the condition [ll]. Now a feasible 
schedule for J with makespan m + 1 is obtained in the following way: 

in the time interval (t - 1, t) the first machine is processing operation 0; 
where j is chosen in such a way that aI; = pj; 
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in the time interval (t, t + 1) the second machine is processing operation 0j2 
where j is chosen in such a way that (Y, = fij. 

The obtained schedule is feasible, because the condition [ll] is satisfied. 
Furthermore, the schedule may be preemptive. However, in that case it can 
be transformed into a nonpreemptive schedule with the same makespan, as 
was pointed out earlier. As the obtained schedule has makespan m + 1, the 
minimum makespan of J does not exceed m + 1. n 

A more refined analysis, based on the results of Bar-t and Hoogland [4], 
reveals that there exists a one-to-one correspondence between the complete 
factorizations of W and the feasible preemptive schedules for J with 
makespan m + 1 where the first machine is occupied in the interval (0, m), 
the second machine is occupied in the interval (1, m + l), and all preemp- 
tions occur at integer time instants. 

EXAMPLE 1. Let the companion based matrix function W be defined by 

W(A) = 

1 

1 (A + ly(A - 1)” 

A2 
0 

(A - 1)” I. 
Then pw(A> = (h + l)3(A - 1>3 and p$(h) = (h + l>3A2(A - 1). Thus in 
the notation introduced before, we have k = 3 and PI, p2, & = - 1, 0,l. 
The associated instance ] of 2MFSP consists of the jobs (sl, tr> = (3,3), 
(s2, t2) = (2,0>, and (ss, t3) = (1,3). By applying Johnson’s rule, we obtain 
the optimal permutation schedule (3,1,2> which is shown in Figure 1. Note 

that the sets V, and V, appearing in Johnson’s rule (see the end of Section 3) 
are V, = 13) and V, = {1,2). 

13 I1 I2 _I 

13 I 1 I 

0 1 2 3 4 6 6 7 

FIG. 1. The optimal permutation schedule (3, 1,2) for the instance J, 
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The optimal permutation schedule (3,1,2) for J corresponds to orderings 

l,l,l,-1,-1,-l and 1,-1,-l,-l,o,O, 

of the zeros of p, and p$ respectively, satisfying the desired ordering 
condition (11). In particular, W admits a complete factorization 

where the pole and the zero of the ith factor correspond to the ith zero of 
p, and p; respectively. The equation to be satisfied by the complex 
numbers c1 to ca is 

ci( A + 1)3h2 + c2( A - l)( A + l)2A2 + cg( A - 1)2( A + l)A2 

+ c4(A - 1)3A2 + cs(A - 1)3(A + 1)A + cs(A - l)3(A + 1)2 = 1. (12) 

Values for cr, c4, and cg can be found by substituting A = 1, A = -1, or 
A = 0 into Equation (12). Thereafter, c2, c3, and cs are obtained by taking 
the derivative of (12) and again substituting these values for A. This leads to 

Cl = 8. 1 c,=-;, c3 = $, c4 = - i, c2 = - 1, and cg = -1. 
The general idea behind the above method for computing the constants 

Ci,“.’ ca also works for subsequent examples. We omit the details there. 

6. GENERALIZATIONS 

In this section we present two generalizations of Theorem 5. In particular, 
we describe connections between the so-called Max-Degree problem and the 
number problem for companion based matrix functions on one hand, and two 
variants of SMFSP on the other. 
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We first describe the Max-Degree problem and the Number problem in 
Section 6.1. The involved variants of BMFSP are described in Section 6.2. 
The connections between these topics, together with some illustrative exam- 
ples, are presented in Section 6.3. The proofs of these results are given in 
Section 6.4. 

6.1. The Max-Degree Problem and the Number Problem 
Since not every rational matrix function admits complete factorization, it 

is useful to consider minimal factorizations that are optimal in a more general 
sense. To that end, let W be a rational matrix function. Then the following 
minimal factorization problems, differing from each other by their objectives, 
are distinguished: 

The Max-Degree problem: Minimize the maximum McMillan degree over the 
factors that appear in a minimal factorization of W. That is, the objective is 
to minimize maxi(G(Wi) 1 W = W, 0.. W,}, where the minimum is taken 
over all possible minimal factorizations W = W, **a W,. (and there is no 
restriction on the number of factors r). The minimum obtainable value is 
denoted by yi(W 1. 

The Number problem: Maximize the number of nontrivial factors in a 
minimal factorization of W. That is, maximize r over all possible minimal 
factorizations W = W, **a W, containing only nontrivial factors (i.e. factors 
not identically equal to the appropriate identity matrix). The maximum 
obtainable number of nontrivial factors is denoted by v,(W >. 

Note that one will not only be interested in the values +yi(W> and v,(W), but 
also in the corresponding minimal factorizations of W. Note further that both 
the Max-Degree problem and the Number problem are generalizations of the 
problem of complete factorization. Indeed, a rational matrix function W 
admits complete factorization if and only if y,(W) = 1 or, equivalently, 
V,(W) = 6(W). 

6.2. 2MFSP-MR and BMFSP-TR 
In this subsection we describe the variants of BMFSP that are closely 

connected (and in some sense even equivalent) with the factorization prob- 
lems introduced in Section 6.1. 

To that end, let J be an instance of BMFSP with k jobs (sj, t,), and let 

the deadline r(J) b e an integer satisfying ~(1) z max{Ci, isj, Xi= itj}. In the 

variants of BMFSP to be studied it is required that all jobs be completed 
within r(J) time units. In order to make this meaningful, one has to relax the 
predecessor constraints. That is, in these variants of BMFSP it is allowed that 
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processing 0; on the second machine already starts before processing OJ1 on 
the first machine has been completed. However, the objective is to minimize 
such infeasibilities in a prescribed way. For a motivation to study problems of 
this type we refer to Baker [I]. 

To make things more precise, let (T be a schedule for the given instance J 
satisfying the deadline T(J). Now we introduce the following notation: if 0 is 
an operation with a positive processing time, then S(O) and F(O) denote the 
start and finish time of this operation in the schedule u. Furthermore, if 
sj = 0, then we put S(O,!) = F(Oj) = 0, and if tj = 0, then we put S(O;) 
= F(Oj2) = T(I). N ow the reduced infeasibility of job j, denoted by lj, is 

defined by 

Zj = max(O, F(O:) - S(Oj2) - I}. (13) 

Next, the following variants of SMFSP are distinguished: 

2MFSP-MR: In SMFSP-MR the objective is to find a schedule such that 
rnaxr, r Zj is minimum. If J is an instance of 2MFSP-MR, then the optimal 
value of the objective function is denoted by ya(J). 

2 MFSP-TR: In ZMFSP-TR the objective is to find a schedule such that 
C;= I Zj is minimum. If J is an instance of 2MFSP-TR, then the optimal 
value of the objective function is denoted by vz(J). 

If in these problems one works with the ordinary (nonreduced) infeasibilities 
defined by max{O, F(O;> - S(Oj} instead of the reduced infeasibilities de- 
fined by (13), th en one obtains the variants SMFSP-M and BMFSP-T of 
SMFSP. The problems 2MFSP-M and BMFSP-MR are essentially the same, 
and a similar statement holds for the problems SMFSP-T and SMFSP-TR. 

However, if one works with the reduced infeasibilities, then the connec- 
tion between the Max-Degree problem and the Number problem for com- 
panion based matrix functions and the variants of SMFSP can be expressed 
more easily. The latter statement is especially true for the connection 
between the number problem and BMFSP-TR. For further details on these 
topics we refer to Bart and Kroon [7,8]. 

The combinatorial properties of the above variants of BMFSP are de- 
scribed by Bart and Kroon [7]. They establish the following result, which will 
be used later on. 

LEMMAS. Eve y instance of 2 MFSP-MR or 2 MFSP-TR has an optimal 

permutation schedule satis@ng S(Oi> < S(OT> and F(O,!) Q F(O;) for 
j=l , . . . > k. 
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An optimal permutation schedule for an instance of SMFSP-MR can be 
obtained by first applying Johnson’s rule, and next shifting the operations on 
the second machine ~(1) - ~(1) t’ ime units backward. It follows that ~~(1) 
= max{ ~(1) - T(J) - l,O]. Thus th e computational complexity of 2MFSP- 
MR is O(k log k), w h ere k represents the number of jobs. 

Unfortunately, Johnson’s rule does not always produce an optimal permu- 
tation schedule for an instance of SMFSP-TR (see section 6.3 for an 
example). We conjecture the problem BMFSP-TR to be NP-hard. For more 
information we refer to Bart and Kroon [7]. 

Both BMFSP-MR and SMFSP-TR bear some analogy to the variant of 
2MFSP described by Mitten [18]. In the latter variant a maximum infeasibil- 
ity of each job is p rescribed, and the objective is to find a schedule that 
minimizes the makespan, whereas in 2MFSP-MR and BMFSP-TR the 
makespan is given as a deadline, and the objective is to minimize the 
infeasibilities of the jobs in some sense. Mitten shows that his variant of 
BMFSP can be solved by an extension of Johnson’s rule. We briefly come 
back to Mitten’s variant of SMFSP in Section 7. 

6.3. Connections and Examples 
In this subsection we describe the connections between the Max-Degree 

problem and the Number problem for companion based matrix functions on 
one hand, and BMFSP-MR and BMFSP-TR on the other. We also present 
two illustrative examples. 

It is convenient to start out with the following definition. Let W be a 
companion based matrix function, and let I be an instance of BMFSP-MR or 
SMFSP-TR with k jobs (sj, tj) and deadline T(I). Then we say that W and J 

are associated if p, and p$ are given by (9) and (lo), and if r(J) = 6(W) 
(cf. Section 4). 

Now Theorem 7 describes the connection between the Max-Degree 
problem for companion based matrix functions and BMFSP-MR. 

THEOREM 7. Let W be a companion based matrix function, let ] be an 
instance of 2 MFSP-MR, and assume W and J are associated. Then y,(W) = 

r&) + I. 

The conclusion of Theorem 7 can also be written as ri(W) = 

ma&~(J) - 7(J)].Th e p roof of Theorem 7 is given in Section 6.4. From 
this proof one can see that an optimal solution to the Max-Degree problem 
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corresponds to an optimal schedule for the associated instance of 2MFSP-MR. 
As was noted earlier, 2MFSP-MR can be solved by Johnson’s rule. Thus the 
Max-Degree problem can be solved by Johnson’s rule as well. The following 
example serves as a illustration of Theorem 7. 

EXAMPLE 2. Let the companion based function W be defined by 

Then Z+(A) = (A + D4(A - 1j6 and &(A) = (A + 1)3h3(A - 1)4. Thus 
in the notation introduced before, k = 3 and PI, &, p3 = - 1, 0,l. The 
associated instance J of SMFSP-MR consists of the Jobs (sl, tr) = (3,4), 
(sz, t,) = (3, O), and (s3, t3) = (4,6) and has r(J) = 10. By applying John- 
son’s rule, we obtain the optimal permutation schedule (1,3,2> which is 
shown in Figure 2. The sets I’, and V, appearing in Johnson’s rule (see the 
end of Section 3) are V, = (1,3} and V, = {2}. Note that I, = 2, I, = 0, and 
I, = 2, which gives y2(J) = 2. 

The optimal permutation schedule (1,3,2) for 1 corresponds to orderings 

-1, -1, -1, -1,1,1,1,1,1,1 and -l,-l,-1,1,1,1,1,0,0,0 

of the zeros of p, and p; respectively. This implies that yl(W) = 3 and 

r1 I3 12 I 

[l I3 I 

0 12 3 4 6 6 7 8 010 

FIG. 2. The optimal permutation schedule (1,3,2> for the instance /. 
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that W admits a minimal factorization 
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where rr( A) = - $(29A2 + 68A + 41), c2 = 4, rg( A) = &(29A2 - 68A + 
41), cd = -4, c5 = 1, and cg = - 1. In this factorization the poles and zeros 
of each factor are implied by the orderings of the zeros of p, and p$. This 
factorization is optimal for the Max-Degree problem. 

Next, Theorem 8 describes the connection between the Number problem 
for companion based matrix functions and BMFSP-TR. Again, the proof is 
given in Section 6.4. 

THEOREM 8. Let W be a companion based matrix function, let ] be an 
instance of 2 MFSP-TR, and assume W and J are associated. Then 6(W) = 

v,(W) + v2(J). 

Since S(W) = r(J), th e conclusion of Theorem 8 can also be written as 
v,(W) + v2(J) = dJ). Th eorem 8 is illustrated by Example 3. 

EXAMPLE 3. Let the companion based matrix function W be the same as 
in Example 2. Then the associated instance J of BMFSP-TR consists of the 
jobs (sr, t,) = (3,4), (se, tP> = (3,0), and (sg, t,) = (4,6) and has r(J) = 10. 
The optimal permutation schedule for J is (3,1,2), which is shown in Figure 
3. Here I, = 0, I, = 0 and I, = 3, which gives y2(J) = 3. Note that the 
total reduced infeasibility of the schedule shown in Figure 2 equals 4. 

The optimal permutation schedule (3,1,2) for J corresponds to orderings 

l,l,l,l,l,l,-1,-1,-1,-l and l,l,l,l,--l,-l,-l,O,O,O 
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13 I1 (2 1 

13 I 1 1 

0 1 2 3 4 5 5 7 8 a 10 

FIG. 3. The optimal permutation schedule (3,1,2) for the instance J. 

of the zeros of p, and p$. This implies that v,(W) = S(W) - v,(J) = 
10 - 3 = 7 and that W admits a minimal factorization 

W(A) = l (h-1)4 

0 

“:’ ][: ?J[; q 

% 
l- 

A+1 Ii 1 A ' 
O- 

A+1 

where r(A) = &(99A3 - 345A’ + 411A - 1691, c1 = z, ce = - 9, cs = 
-1 

c4 = 12, c5 = 3, and cs = 1. Again the poles and zeros of each factor 
are?mplied by the orderings of the zeros of p, and p& This factorization is 
optimal for the number problem. 

Results analogous to Theorems 7 and 8 also exist for the problems 
SMFSP-M and BMFSP-T, where one deals with the nonreduced infeasibili- 
ties of the jobs. For details, see Sections 8 and 9 of Bart and Kroon [8]. 

6.4. Proofs of the Results 
In this subsection we provide the proofs of the Theorems 7 and 8. We 

start out with some definitions and two auxiliary results. 
Thus, let W be a companion based matrix function, let J be an instance 

of BMFSP-MR or BMFSP-TR with k jobs (sj, tj> and deadline T(J), and 
assume W and J are associated. Assume further that u is a (possibly) 
preemptive schedule for J where all preemptions occur at integer time 
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instants. Then with cr we associate the following orderings oi, . . . , a, of the 
zeros of p, and (Y:, . . . , crz of the zeros p$: 

CQ = flj, if the second machine is processing Ojz in the time interval 
(t - 1, t>; 

a: = pj, if th e us machine is processing 0; in the time interval (t - 1, t). f t 

Furthermore, we say that the integer time instant r E (0,. . . , m) is skipped 
by job j with respect to the schedule w if 

s(o;2) < 7 < F(0;). (14) 

Note that the number of integer time instants that are slopped by job j equals 
the (reduced) infeasibility Zj of job j. Further, an integer time instant is said 
to be skipped with respect to the schedule cr if it is slopped by at least one 
job j. In the following the qualification “with respect to the schedule u ” will 
be omitted. Note that the time instants 0 and m are never skipped. 

The motivation for these definitions is the following. Suppose ol, . . . , a, 
and a:,..., a: are the orderings of the zeros of p, and p$ associated 
with o, and let the polynomials p, and p,? be defined by 

p,(A) = (A - a,)...(A - q), p;(A) = (A - (~1;+,).a.(A - a;). 

(15) 

Then the integer time instant r is skipped if and only if the polynomials p, 
and p,” have at least one common zero. Thus Theorem 2 implies that, if the 
integer time instant r is skipped, then W does not admit a minimal 
factorization W = W such that p, = p, and p; = p:. Conversely, Theo- 
rem 2 also implies that, if the integer time instant r is not skipped, then W 
admits a unique minimal factorization W = W such that p, = p, and 

x 
pv= PT. ' In other words, a skipped time instant corresponds to a “missed 
opportunity for factorization” of W. 

Given the schedule o as above, let {TV 1 i = 0, . . . , r} be the set of all 
integer time instants that are not skipped, and suppose 0 = r0 < ri < -1. < 
TV_ 1 < T, = m. Then, by repeating the above argument several times, it 
follows that W admits a unique minimal factorization 

w = w, -** wr, (16) 

where the factor W, has pole polynomial pi(A) = (A - a,,_, + 1) ..a (A - a,,) 
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and zero polynomial pX< A) = (A - a:_ 1 + 1) 0.. (A - a:) (i = 1,. . . , t). This 
minimal factorization is called the minimal factorization associated with (+. If 
t is an integer time instant with (t - 1, t) c (0, m), then the unique factor 
Wi in (16) such that (t - 1, t) c (TV_ 1, ri) is called the factor corresponding 
to the interval (t - 1, t). Now we are ready to prove the following auxiliary 
result. 

LEMMA 9. Let W be a companion based matrix function, let ] be an 
instance of 2 MFSP-MR or 2 MFSP-TR, and assume W and ] are associated. 
Suppose u is a permutation schedule for] with the property S(Oj> < S(Of> 
and F(Oi) < F(Oj2) forj = 1,. . . , k, and suppose t is an integer time instant 

with (t - 1, t) c (0, S(W)). Zf (16) is the minimal factorization associated 
with CT’, then the following statements hold: 

(i) Zf in the time interval (t - 1, t> the machines are processing opera- 
tions of diflerent jobs, then the factor Wi in (16) corresponding to the interval 
(t - 1, t) has type 1. 

(ii) Zf in the time interval (t - 1, t> the machines are processing opera- 
tions of the same job j, then the factor Wi in (16) corresponding to the 
internal (t - 1, t) has type 2 with degree Zj + 1. 

Proof. Let (~i,. . . , a, and a:, . . . , a: be the orderings of the zeros of 
p, and p& associated with u, as described before. 

(i): If in the time interval (t - 1, t) the machines are processing opera- 
tions of different jobs, then this implies cxt Z a:. Now the nonpreemptive 

character of (+, together with the property S(Oi) < S(OJ!) and F(O,!) < 
F(O;) for j = l,..., k, implies that the time instants t - 1 and t are not 
skipped. Hence, if Wi is the factor in (16) corresponding to the interval 
(t - 1, t), then Wi has pole polynomial p,(h) = (A - q> and zero polyno- 
mial pi’(A) = (A - a,X> where crt f a:. Thus Wi has type 1. 

(ii): If in the time interval (t - 1, t) the machines are processing opera- 
tions of the same job j, then all integer time instants s with S(OF) < s < 
F(Oi) are skipped. Furthermore, if (Y~ = a: = CC, then the nonpreemptive 

character of o, together with the property S(Oj) < S(Oj) and F(O/) < 

F(Of) for j = 1,. . . , k implies cr, = (Y:= a for s = S(Oj?> + 1,. . . , F(O,!). 
These facts also imply that the time instants S(Of) and F(O,!) are not 

skipped. Hence, if Wi is the factor in (16) corresponding to the interval 
(t - 1, t), then Wi has pole polynomial pi and zero polynomial px such that 
p,(A) = p;(A) = (A - CX)~~ where ci = F(Oj’) - S(OF> = Zj + 1. Thus Wi 
has type 2 with degree Zj + 1. n 
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Next, suppose W admits a minimal factorization (16) where all factors are 
irreducible, and hence have type 1 or type 2. Then this minimal factorization 
uniquely determines a (possibly) p reemptive schedule (+ for J where all 
preemptions occur at integer time instants. Indeed, if the integers r, are 
given by 7i = Cj= i 6(Wj) for i = 0, . . . , r, then u is defined as follows: 

If the factor Wi in (16) has type 1 with pole polynomial p,(h) = A - LY and 
zero polynomial pX( A) = A - ox where (Y z ox, then in the time inter- 
val (TV _ i, TV) the first machine carries out job j which is such that pj = ox, 
and the second machine carries out job k which is such that & = cr. 

If the factor Wi in (16) has type 2 with pole polynomial and zero polynomial 
pi(A) = px( A) = (A - (Y)“, th en in the time interval (TV_ 1, TV) both ma- 
chines are carrying out job j which is such that pj = LY. 

The obtained schedule is called the schedule associated with the minimal 
factorization (16). Note that Theorem 2 implies that in this schedule the time 
instants 7i are not slopped. Now we can prove our second auxiliary result. 

LEMMA 10. Let W be a companion based matrix function, let J be an 
instance of 2 MFSP-MR or 2 MFSP-TR, and assume W and ] are associated. 
Suppose (16) is a minimal factorization of W where all factors are irreducible, 
and hence have type 1 or type 2. Let TV, . . . , T,. be defined as before, and let 
u be the schedule associated with (16). Then the following statements hold: 

(i) If the factor Wi in (16) has type 1, then u does not contain any job j 
with S(Oj2) < T~_~ and F(Ojl) > TV. In this case Ti_l = Ti - 1. 

(ii) Zf the fador Wi in (16) has type 2, then u contains a unique job j 
with S(O?) < T~_~ and F(Oj) > TV. In fact, for this jobj we have S(O:) = 

‘i-1 an d’ F(O:) = T,. 

Proof. (i): If the factor W, in (16) has type 1, then the machines are 
carrying out different jobs in the time interval (Ti_ 1, Ti) where rj 1 + 6Wi) 

= T,_ 1 + 1 = TV. Now suppose (+ contains a job j with S(O:) < 7i _ , and 
F(O/) > TV. Since the time instants TV_ 1 and 7i are not skipped, we have 

S(Oj2) = 7i _ 1 and F(Oi) = TV. However, this implies that both machines are 
carrying out the same job j in the time interval (ri- 1, Ti). From this 
contradiction we conclude that cr does not contain any job j with S(O;) < 

‘i- 1 and F(Oi) > 7i. 
(ii): If the factor Wi in (16) has type 2, then there exists a unique job j 

such that both machines are carrying out job j in the time interval (Ti_ 1, Ti). 

Thus $0;) G T,_ 1 and F(Ojl) a TV. Since the time instants TV- 1 and 7i are 

not skipped, we have S(O:) = Ti _ 1 and F(Oj) = T<. Furthermore, if (+ 
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contained any other job k with S(Oi) < ri_ r and F(OL) > TV, then the 
time instants Ti_ 1 and ri would be skipped. However, the latter is not the 
case. This completes the proof of the lemma. n 

Now we are ready to prove the Theorems 7 and 8, which describe the 
connections between the Max-Degree problem and the Number problem for 
companion based matrix functions on one hand, and 2MFSP-MR and 
SMFSP-TR on the other. 

Proof of Theorem 7. There exists an optimal schedule cr for J with 
F(Oj) - S(Of> < ~~(1) + 1 for j = 1,. . . , k. Without loss of generality, u 
is a permutation schedule with the property S(O,!) < S(OJF) and F(OJr) Q 

F(O;) forj = l,..., k (cf. Lemma 6). Let (16) be the minimal factorization 

of W associated with u, and let t be an integer with (t - 1, t) c (0, 6(W)). 
Then we can apply Lemma 9. If in the time interval (t - 1, t) the machines 
are processing operations of different jobs, then the factor Wi in (16) 
corresponding to the time interval (t - 1, t) has type 1. Furthermore, if in 
the time interval (t - 1, t) the machines are processing operations of the 
same job j, then the factor Wi in (16) corresponding to the time interval 
(t - 1, t) has type 2 with degree Zj + 1. These statements hold for all time 
intervals (t - 1, t). Thus rl(W) < -yz(J> + 1. 

Conversely, we assume, without loss of generality, that W admits a 
minimal factorization (16) where all factors Wi are irreducible, and hence 
have type 1 or type 2 with degree ci < yr(W) for i = 1,. . . , r. Let (+ be the 
schedule associated with this minimal factorization. Recall that the time 
instants 7i are defined by ri = Cj=,S(Wj) (i = 0,. . . , r). According to 

Lemma 10, if the factor Wi in (16) has type 1, then u does not contain any 
job j with S( O,?) < ri r and F(Oi> > 7,. If the factor Wi in (16) has type 2 
with degree ci > 1, then u contains a unique job j with S(O:) = r,_ r and 
F(Oj’) = 7i. For th is ‘o J b 

I < rr(w). 

we have Zj + 1 = ci < rr(W). This implies ~~(1) + 
n 

Proof of of Theorem 8. Suppose u is an optimal schedule for J with 
total reduced infeasibility v,(J ), and let (16) be the minimal factorization of 
W associated with (+. Then the total number of skipped time instants equals 
[6(W) + l] - (r + 1) = S(W) - r. Since the number of time instants 
skipped by job j equals Zj, the total number of skipped time instants does not 

exceed vz(J). Thus S(W) - r < v,(J). Furthermore, v,(W) > r. Combin- 
ing these inequalities, we find v,(W) + ~~(1) > 6(W ). 

Conversely, suppose we have a minimal factorization (16) with v,(W) 
factors. Obviously, each factor W, is irreducible, and hence has type 1 or type 



FACTORIZATION AND JOB SCHEDULING 133 

2 with degree ci z 1. This gives the following equalities for the number of 
factors v,(W) and for the McMillan degree S(W >: 

c 1+ c 1 = v,(W), 
i:W,oftypel i : W, of type2 

c 1+ c ci = 6(W). 
i:W, oftype 1 i:W,oftype2 

Now let u be the associated schedule for J. Recall that the time instants ri 
are defined by ri = C:=, i3(Wj) [i = 0, . . . , v,(W)]. According to Lemma 10, 

if the factor W, in (16) has type 1, th en (T does not contain any job j with 
S(OIF) < ~~_i and F(Oi) z TV. Thus W, does not contribute to the total 

reduced infeasibility of the schedule. If the factor W, in (16) has type 2 with 
degree ci > 1, then (+ contains a unique job j with S(O]!) = ri_ 1 and 
F( 0:) = TV. Thus W, contributes Ii = ci - 1 units to the total reduced 
infeasibility of the schedule. As a consequence, we have the following 
(in)equalities: 

vz(.J) =G c (Ci - 1) = c cj - c 1 
i WI of type 2 i:w, oftyp-2 I : w, of type 2 

= c ci - 5(W) - i c 1 = 6(W) - V,(W). 
i:W,oftypeZ i : W, of type 1 1 

By combining the obtained inequalities, it follows that v,(W) + u,(J) = 

6(W 1. n 

7. FURTHER RESULTS 

We begin this final section by discussing a generalization of Corollary 4. 
In fact, for a companion based matrix function we describe the smallest 
possible McMillan degree of a nontrivial factor that can appear in a minimal 
factorization, either as an arbitrary middle factor, as a left factor, or as a right 
factor. In order to make things precise, let W be a rational matrix function. 
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Then O(W 1, 8,(W 1, and 8,(W) are defined by 

e(W) = min{G(U) 1 W = U,UU, is a minimal factorization and 6(U) > 1) 

e,(W) = min{ S( U) 1 W = VU, is a minimal factorization and 6(U) > l}, 

e,(w) = min{G(U) I W = U,U is a minimal factorization and S(U) > 1). 

Here we allow U, and U, to be trivial factors (i.e. identically equal to the 
appropriate identity matrix). In general, it is difficult to determine O(W), 
B,(W 1, or 8,(W > for an arbitrary rational matrix function W. However, for 
companion based matrix functions we have Proposition 11, which is a 
generalization of Corollary 4. 

PROPOSITION 11. Let W be a companion based matrix function with pole 
polynomial p and zero polynomial px given by (9) and (10). Then 

e(w) = min{s,Ij = l,..., k) ifsj = tj forj = l,...,k, 

1 otherwise, 

4(W) = 
min{sjIsj Q tj} ifsj > Oforj = l,...,k, 

1 other&se, 

%?(W) = 
min{tj I sj > t,} ifftj > 0 forj = 1,. . . , k, 

1 otherwise. 

Proposition 11 can be proved by applying methods similar to the ones 
used in Section 6.4. For details we refer to Bart and Kroon [8]. Note that 
min{sjlj=l ,..., k]=min{tjlj=I ,..., k}ifsj=tjforj=l ,..., k.Fur- 

thermore, Xi= lsj = Xi= Itj = 6(W). Thus {j I sj < tj> f 0 # (j ( sj > tj}. 

EXAMPLE 4. Let the companion based matrix function W be the same as 
in Examples 2 and 3. Both examples show that W admits a minimal 
factorization W = U,U, such that 6(Q) = 1. This implies e(W) = e,(W) 
= 1. Furthermore, Example 2 also shows that e,(W) = 3. 

We conclude this paper with some final remarks. First, recall from 
Section 6.1 that in Mitten’s variant of 2MFSP (cf. Mitten [IS]) one is 



FACTORIZATION AND JOB SCHEDULING 135 

interested in a permutation schedule with a minimum makespan, where the 
infeasibility of each job does not exceed a certain job-specific upper bound. It 
turns out that, just as BMFSP-MR and BMFSP-TR can be related to the 
Max-Degree problem and the Number problem for companion based matrix 
functions, there exists a connection between Mitten’s variant of BMFSP and 
another factorization problem for companion based matrix functions. In this 
factorization problem one is looking for a minimal factorization of a compan- 
ion based matrix function where the size of each factor of type 2 does not 
exceed a certain pole-specific upper bound. For details on this subject, see 
Bart and Kroon [8]. 

Further, Zuidwijk [ZO] has shown that every nontrivial rational matrix 
function W admits a (possibly nonminimal) factorization into elementary 
factors. Such a factorization is called a quasicomplete factorization if the 
number of factors involved is minimum. This minimum number of elemen- 
tary factors is denoted by p(W >. Obviously, p(W) > S(W). Furthermore, 
Zuidwijk has proved that p(W) < 26(W 1, where S(W) is the McMillan 
degree of W. Now let W be a companion based matrix function, let J be an 
instance of BMFSP, and assume W and J are associated. We have indications 
that quasicomplete factorizations of W and the number p(W) are closely 
related to the combinatorial properties of the instance J of SMFSP. Zuidwijk 
and the authors will return to this topic in a forthcoming paper. 

Another topic that will be a subject for further research is to find out 
whether the flow shop problem for more than two machines also has a 
counterpart in terms of factorization problems for rational matrix functions of 
a special type. 
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