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Abstract Mixed Treatment Comparisons (MTCs) enable
the simultaneous meta-analysis (data pooling) of networks
of clinical trials comparing ≥2 alternative treatments. In-
consistency models are critical in MTC to assess the over-
all consistency between evidence sources. Only in the ab-
sence of considerable inconsistency can the results of an
MTC (consistency) model be trusted. However, inconsis-
tency model specification is non-trivial when multi-arm tri-
als are present in the evidence structure. In this paper, we
define the parameterization problem for inconsistency mod-
els in mathematical terms and provide an algorithm for the
generation of inconsistency models. We evaluate running-
time of the algorithm by generating models for 15 published
evidence structures.
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1 Introduction

Meta-analysis refers to statistical methods that summarize
evidence from multiple studies (most commonly: clinical
trials). Traditional meta-analysis (Hedges and Vevea 1998;
Normand 1999) has focused on pairwise comparisons of
treatments based upon summary measures of relative ef-
fect as reported in the original studies. Several models to
simultaneously compare more than two treatments have re-
cently appeared (Sutton and Higgins 2008), also leading to
reported applications of the methodology (see Salanti et al.
2008b). Such simultaneous comparisons are called Mixed
Treatment Comparisons (MTCs), or network meta-analyses.
MTCs allow for the use of both direct and indirect evidence
for comparisons, and to calculate the rank-probabilities of a
set of alternative treatments with regard to a single evalua-
tion criterion.

An MTC is implemented as a Bayesian hierarchical
model and estimated using Markov Chain Monte Carlo
(MCMC) simulation (Lu and Ades 2006; Salanti et al.
2008a). As in pairwise meta-analysis, the goal is to com-
bine evidence from multiple studies in order to derive a best
estimate of the relative effect of treatments. MTC extends
pairwise meta-analysis by simultaneously estimating the rel-
ative effects of all possible pairs of the included treatments.
Normally consistency is assumed, i.e., that direct and in-
direct evidence are in agreement. For example, if we have
different studies comparing treatments a versus b, b versus
c and a versus c, we add the constraint dac = dab + dbc
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to the model (Lu and Ades 2006), where the dxy are rela-
tive effects. This assumption of consistency does not nec-
essarily hold and needs to be tested. To do this, an incon-
sistency model is formulated by relaxing the consistency
constraint by introducing an Inconsistency Factor (ICF):
dac = dab + dbc + wabca . Evidence can only be inconsistent
if there are closed loops in the evidence structure (Lumley
2002): the ICF wabca corresponds to the loop abca. Evi-
dence consistency can be tested by individually assessing
the null hypothesis that wC = 0 for each ICF wC (Salanti et
al. 2008a), and further comparison of consistency and incon-
sistency models can be based on global goodness of fit (Lu
and Ades 2006).

No general formula or algorithm exists for evidence
structures with multi-arm trials (trials with three or more
arms—i.e., treatment groups) to determine the consistency
equations that must be relaxed with ICFs to achieve cor-
rect model parameterization (Lu and Ades 2006; Salanti et
al. 2008a). In addition, baseline treatments have to be cho-
sen for the individual studies, which can prove to be prob-
lematic in the presence of multi-arm trials (Lu and Ades
2006). The absence of an algorithmic solution causes MTC
model construction to be error prone and only applicable by
experts in Bayesian modeling. Thus, MTC model genera-
tion would enable wider adoption of MTC and should allow
greater confidence in the correctness of subsequently pub-
lished MTCs. In this paper, we formally define the model
generation problem for MTC inconsistency models and pro-
vide an algorithmic solution.

The remainder of the paper is structured as follows. First,
an overview of MTC models and a mathematical formula-
tion of their evidence structure is given in Sect. 2. Then,
we give a precise definition of the parameterization prob-
lem as the problem of finding the spanning tree of the ev-
idence structure that maximizes the number of ICFs, the
Inconsistency Degree (ICD), while satisfying the constraint
that every relevant parameter must be informed directly by at
least one trial (Sect. 3). An algorithmic solution to the prob-
lem is given in Sect. 4. We give a detailed example of how
parameterization is done in Sect. 5. In Sect. 6, we evaluate
the feasibility of our algorithm on a number of published ev-
idence structures. Finally, in Sect. 7, we discuss our results.

2 Mixed treatment comparison models

The Bayesian hierarchical model for an MTC evidence
structure is specified following the general formulation in
Lu and Ades (2006), which in turn extends that by Higgins
and Whitehead (1996). We shall only introduce the concepts
that are relevant to the parameterization problem, and refer
the interested reader to Lu and Ades (2006) for a full dis-
cussion. The evidence structure for any MTC consists of a

number of studies, that together determine an undirected ev-
idence graph in which the treatments are the vertices and the
available comparisons are the edges. Since a trial Si provides
evidence for all possible comparisons between the included
treatments T (Si), each study can be considered to provide
a fully connected evidence graph G(Si) = (T (Si),E(Si)).
Here, E(Si) represents the estimates of relative effects that
can be made based on the trial data. So a two-arm trial is
a pair, a three-arm trial a triangle, a four-arm trial a fully
connected 4-treatment graph, and so on.

Denote by S = {S1, . . . , Sn} the set of n studies included
in the MTC. The evidence graphs G(Si), Si ∈ S form an ev-
idence structure, as illustrated in Figs. 1(a) and 1(b). These
figures introduce two hypothetical examples that will be
used throughout the paper to illustrate the introduced con-
cepts. Structure I consists of two overlapping three-arm tri-
als and one two-arm trial, while structure II has only one
three-arm trial and two two-arm trials. The union of the
individual study evidence graphs forms the MTC evidence
graph:

Definition 1 (Evidence graph) The graph G(S) of all com-
parisons made in at least one of the trials in S is defined as:

G(S) = (T (S),E(S)) =
( ⋃

Si∈S

T (Si),
⋃
Si∈S

E(Si)

)
.

For example, the evidence structures I and II have the
same evidence graph, shown in Fig. 1(c). A graph corre-
sponding to an MTC problem has to be connected. If it is
not, S must be decomposed into two or more independent
problems, corresponding to connected subgraphs of G(S)

that can be analyzed separately. Given the (connected) ev-
idence graph G(S), every edge in E(S) becomes an effect
parameter in the MTC model:

Definition 2 Given the MTC problem S and an arbitrary
ordering ≺ on T (S) (e.g., alphabetical order of treatments),
the set of effect parameters D(S) is given by:

D(S) = {d({x, y}) | {x, y} ∈ E(S)}

where d(·) identifies a unique parameter with the set {x, y}:

d({x, y}) =
{

dxy if x ≺ y,

dyx if y ≺ x.

Furthermore, for directed edges (x, y), we define a signed
function, that takes into account the direction of (x, y) rela-
tive to the parameter d({x, y}):

d((x, y)) =
{

d({x, y}) if x ≺ y,

−d({x, y}) if y ≺ x.
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Fig. 1 Two examples of evidence structures used throughout the pa-
per. Evidence structure I (a) contains three trials, where trial 1 com-
pares a, b, and d , trial 2 compares a and b, and trial 3 compares b, c,

and d . Evidence structure II (b) also contains three trials, but differs in
that trial 1 compares only a and d . Both structures have an identical
evidence graph (c)

For example, if we adopt alphabetical ordering for ≺, we
have

d((a, b)) = dab,

d((b, a)) = −dab,

meaning we do not have to worry about the direction in
which the evidence graph is traversed.

2.1 Study level effects

We first discuss how the relative effects at the study level
are parameterized in terms of the parameters D(S). For each
Si ∈ S, for each treatment t ∈ T (Si), we have a certain ab-
solute effect μit . The way these absolute effects are defined
depends on the type of model, and is not important for the
current discussion; Salanti et al. (2008a) gives the formu-
lation for both dichotomous and continuous data. Now, be-
cause we are interested in the relative effects, we choose a
baseline treatment x ∈ T (Si). The baseline effect μix is then
a random variable for which we assume some prior distribu-
tion π(μix). For every other treatment u ∈ T (Si), u �= x the
treatment effect is:

μiu = μix + δixu,

where δixu is the random effect of treatment u relative to x.
The distribution for the random effects is:⎛
⎜⎝

δixu

...

δixw

⎞
⎟⎠ ∼ N

⎛
⎜⎝

⎛
⎜⎝

d((x,u))
...

d((x,w))

⎞
⎟⎠ ,Σ

⎞
⎟⎠ ,

where Σ is an appropriately defined variance-covariance
matrix. For a full discussion of the study level absolute
and relative effects, see Lu and Ades (2006), Salanti et al.
(2008a).

From the definition of the relative effects, it is clear that
they are transitive (Lu and Ades 2009): if u,v,w ∈ T (Si)

are distinct treatments, then

δiuv = δiuw + δiwv. (1)

Based on this we conjecture that if a triangle of treatments
is included in precisely the same set of studies, then this
relation also holds for the estimates of the effect sizes:

Conjecture 1 (Internal consistency) Write f ((u, v), S′) for
the estimate of d((u, v)) based solely on the studies S′ ⊂ S.
Then if u,v,w ∈ T (Si); ∀Si ∈ S′,

f ((u, v), S′) = f ((u,w),S′) + f ((w,v), S′).

Note that this implies that each of the studies in S′ has at
least three arms.

2.2 Consistency models

Normally conclusions are drawn under the assumption of
evidence consistency. Basically, this is a generalization of
the conjecture in the sense that we assume that it holds re-
gardless of the supporting studies:

Definition 3 (Consistency) Let u,v,w ∈ T (S) be distinct
treatments, then assuming consistency,

d((u, v)) = d((u,w)) + d((w,v)).

This can be justified by assuming exchangeability of the
study level relative effects and taking expectations on both
sides of (1) (Lu and Ades 2009). The consistency assump-
tion is essential, as it models the relationships between treat-
ment contrasts and allows the model to borrow strength
across the evidence structure (Lu and Ades 2009). More
generally, a consistency equation can be written for any cy-
cle and reference effect, as shown by the following lemma
and corollary.

Lemma 1 Given the evidence graph G(S), let (w1,wn) be
any pair of vertices of G(S) and p = (w1, . . . ,wn) a path
of length n − 1 between them, n > 2 (see Appendix). Then,
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under the assumption of consistency,

d((w1,wn)) =
n−1∑
i=1

d((wi,wi+1)). (2)

Proof (by induction) If p = (u,w,v), then the lemma is just
a restatement of the assumption. Now let the lemma hold for
(w2,wn) and p′ = (w2, . . . ,wn), i.e.,

d((w2,wn)) =
n−1∑
i=2

d((wi,wi+1)).

Then for p = (w1,w2, . . . ,wn), we get

d((w1,wn)) = d((w1,w2)) + d((w2,wn))

=
n−1∑
i=1

d((wi,wi+1)).

The first equality by the consistency assumption and the sec-
ond by the induction hypothesis. �

Corollary 1 (Consistency relation) Given the evidence
graph G(S), a (simple) cycle C ⊆ E(S), then if we take any
edge {u,v} ∈ C, u ≺ v as a reference effect, we can write a
consistency equation as follows:

duv = d((u, v)) =
n−1∑
i=1

d((wi,wi+1)),

where (w1, . . . ,wn) is the directed path from w1 = u to
wn = v consisting of the edges (C − {u,v}).

Thus, in a consistency model, the consistency relation de-
fines duv completely in terms of the other comparisons in the
cycle. In that case, duv is called a functional parameter (Lu
and Ades 2006). For each functional parameter there must
be a cycle in which it is the only one, otherwise a circular
definition would result. Moreover, each cycle should have at
least one functional parameter, or we do not assume full con-
sistency. The right hand side parameters are called basic pa-
rameters and are defined through suitable distributions. The
division of parameters into basic and functional ones is not
arbitrary; it has previously been stated that the basic param-
eters should form a spanning tree (Lu and Ades 2006). This
is proven by the following theorem.

Theorem 1 (Basic parameters) If we divide the parameter
edges E(S) into a set of basic parameters Eb and a set of
functional parameters Ef , such that Eb ∪ Ef = E(S) and
Eb ∩ Ef = ∅, the basic parameters form a spanning tree
Gb = (Tb,Eb) of the evidence graph G(S).

Proof It is sufficient to show (Appendix) that

1. Gb is a connected graph,
2. Gb is acyclic,
3. Tb = T (S).

Proof of 1. Assume Gb is not connected. Then, since
G(S) is connected, there is an edge e ∈ E(S), e �∈ Eb that
connects two vertices not connected in Gb . Since e = (u, v)

does not correspond to a basic parameter, it must be a func-
tional parameter. Hence, there must be a simple directed
path from u to v in Gb , and therefore Gb must be connected.

Proof of 2. If C ⊆ Eb is a cycle in Gb , then for an edge
e = (u, v) ∈ C, u ≺ v, Corollary 1 lets us write a consistency
equation in terms of the other (basic) parameters in the cy-
cle. Thus, if there would be a cycle in Gb , we would not be
assuming full consistency.

Proof of 3. From the proof to the first part and Eb ∪
Ef = E(S). �

Corollary 2 The functional parameters Ef are the non-tree
edges (Appendix) corresponding to the spanning tree Gb ,
and the (simple) cycle C created by adding e ∈ Ef to Gb

generates a consistency relation, as considered in Corol-
lary 1.

The theorem and corollary imply that for any valid
parameterization of G(S), we will have dim(G(S)) =
|T (S)| − 1 basic parameters and nul(G(S)) = |E(S)| −
|T (S)| + 1 functional parameters (Appendix). For example,
in Fig. 2 we show a spanning tree of the evidence graph in
Fig. 1(c). Specifically, it is made up of |T (S)| − 1 = 3 basic
parameters:

Eb = {{a, b}, {a, d}, {d, c}},
and thus there are 5 − 3 = 2 functional parameters:

Ef = {{b, d}, {b, c}}.
Corresponding to the first functional parameter, {b, d}, we
identify the cycle badb. This implies that:

d((b, d)) = d((b, a)) + d((a, d)),

and for the second functional parameter we get:

d((b, c)) = d((b, a)) + d((a, d)) + d((d, c)).

2.3 Inconsistency models

The assumption of consistency does not necessarily hold and
should be tested. Inconsistency can only occur if there are
closed loops in the evidence structure (Lumley 2002). An in-
consistency relation is obtained by expanding a consistency
relation with an ICF, e.g., for a loop abca, we add wabca (Lu
and Ades 2006):

dac = dab + dbc + wabca, (3)
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Fig. 2 Choosing a spanning
tree (b) for an evidence graph
(a) determines the partition into
basic and functional parameters.
The spanning tree induces a set
of fundamental cycles, (c) and
(d), that determine the equations
that define the functional
parameters

for which we again assume some distribution (Lu and Ades
2006). If multi-arm trials are included, some of the com-
parisons may be informed by only multi-arm trials, and evi-
dence within a multi-arm trial is consistent by definition. For
example, if we replace trials of a versus b, b versus c and
a versus c with a three-arm trial a versus b versus c, the in-
consistency model would not include wabca . As we show in
Sect. 3, the choice of basic parameters determines the num-
ber of ICFs that are included in the model.

3 Problem definition

The parameterization of an evidence structure requires parti-
tion of the parameters into basic and functional parameters,
as presented in Theorem 1. However, when an inconsistency
model is constructed for an evidence structure with multi-
arm trials, the choices of the spanning tree and the individual
study baselines are not arbitrary.

3.1 Spanning tree selection

If S contains only two-arm studies, then we may choose
any spanning tree of G(S) (Lu and Ades 2006; Salanti et
al. 2008a). By contrast, when multi-arm studies are present,
the choice of spanning tree is not arbitrary as some contrasts
may be informed by only multi-arm trials, and the measure-
ments within a multi-arm trial can not be inconsistent. For
a cycle to potentially be inconsistent, it must be supported
by at least three independent sources of evidence (Lu and
Ades 2006), which is formalized below in Theorem 2. To be
able to do this, we introduce the concept of the partition of a
cycle into comparisons with their supporting studies and the
operation of reduction, which allows us to simplify a parti-
tion.

Definition 4 (Elementary partition of C) Let C be a di-
rected cycle in G(S), represented by its set of (directed)
edges. The elementary partition of C is (P, r), where P =
{e | e ∈ C}, and r(e) = {Si ∈ S | e ∈ E(Si)}.

Note that there are, for each (undirected) cycle, two pos-
sible elementary partitions, depending on the direction in

which the cycle is traversed. Again using the evidence struc-
ture of Fig. 1(a), an elementary partition of the cycle abcda

is (P, r), where:

P = {(a, b), (b, c), (c, d), (d, a)},
r((a, b)) = {1,2},
r((b, c)) = r((c, d)) = {3},
r((d, a)) = {1}.

Given an elementary partition (P, r) of an evidence cy-
cle C, the inconsistency equation is given by:

wC = F(P, r) =
∑

(u,v)∈P

f ((u, v), r((u, v))), (4)

with f ((u, v), S′) defined as in Conjecture 1. This is a gen-
eralization of (3). Based on the conjecture, it seems that if
two adjacent comparisons have the same set of supporting
studies, we should be able to simplify the equation. We call
this reducing the partition:

Definition 5 (Reduction) Let (P, r) be a partition of C

and ek = (u,w1), . . . , el = (wn, v) ∈ P a sequence of pair-
wise adjacent edges, such that r(ek) = · · · = r(el). Then
we may reduce this partition to (P ′, r ′); where P ′ =
(P − {ek, . . . , el}) ∪ {(u, v)}, and

r ′(e) =
{

r(e), if e �= (u, v),

r(ek), if e = (u, v).

Note that the numbering of the ei is arbitrary and that
for any specific reduction step, we can always choose the
numbering scheme such that the reduced sequence ek, . . . , el

does not contain the subsequence en, e1. Given this defini-
tion, it is natural to think of two edges ei and ej as indepen-
dent if r(ei) �= r(ej ) (and dependent otherwise). For conve-
nience, we will call any pair (P, r) that was obtained from
the elementary partition of C by (repeated) application of
reduction, a partition of C. For example, the previously dis-
cussed elementary partition (P, r) of the cycle abcda can
be reduced, because r(b, c) = r(c, d) = {3}. We get (P ′, r ′),
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where

P ′ = {(a, b), (b, d), (d, a)},
r ′((a, b)) = {1,2},
r ′((b, d)) = {3}, r ′((d, a)) = {1}.

The following lemma shows that the inconsistency equa-
tion (4) is preserved under reduction of partitions:

Lemma 2 Assume (P, r) is a partition of the cycle C, and
(P ′, r ′) is obtained from (P, r) by a single reduction step.
Then F(P, r) = F(P ′, r ′).

Proof Let e1, . . . , ek be the edges reduced to e′, then
r ′(e′) = r(e1) = · · · = r(ek). Now, if P has n edges:

F(P, r) =
n∑

i=1

f (ei, r(ei))

=
k∑

i=1

f (ei, r(ei)) +
n∑

i=k+1

f (ei, r(ei))

= f (e′, r ′(e′)) +
n∑

i=k+1

f (ei, r
′(ei))

= F(P ′, r ′).

Here, f (e′, r ′(e′)) = ∑k
i=1 f (ei, r(ei)) holds by the same

induction argument used for Lemma 1, but this time using
Conjecture 1. �

Lemma 3 If a partition (P, r) of C contains k > 1 inde-
pendent pairs of adjacent edges (ei, ej ), then there is a re-
duced partition (P ′, r ′) composed of k adjacently indepen-
dent edges, such that F(P, r) = F(P ′, r ′).

Proof By the previous lemma, a single reduction step will
preserve F(P, r), thus so will repeated reduction. It re-
mains to be shown that there is a reduction with exactly k

edges, each independent of its adjacent edges. To see this,
number the edges e1, . . . , en so that r(e1) �= r(en). Cre-
ate a strictly increasing index list i(1), . . . , i(k − 1) so that
r(ei(j)) �= r(ei(j)+1); ∀1≤j≤k−1. Then if we set i(k) = n,
this list enumerates all independent pairs of adjacent edges.
We can reduce e1, . . . , ei(1) to e′

1, ei(1)+1, . . . , ei(2) to e′
2 and

so on, until ei(k−1)+1, . . . , ei(k) to e′
k . Then (P ′, r ′) with

P ′ = {e′
1, . . . , e

′
k} and r ′(e′

j ) = r(ei(j)) consists of k adja-
cent independent edges. The reduction is unique up to the
numbering of the e′

j . �

The lemma leads to a simple test of when an inconsis-
tency can occur in an evidence cycle, as given in the follow-
ing theorem. We make the distinction between potentially

inconsistent, which is a property of the evidence structure,
and actually inconsistent, which depends additionally on the
data. A cycle is potentially inconsistent if we can devise data
so that it becomes actually inconsistent.

Theorem 2 (Inconsistency cycle) Let C be a cycle of length
n and suppose that the elementary partition (P, r) of C has
m independent pairs of adjacent edges. Then, C is poten-
tially inconsistent iff m ≥ 3.

Proof Case I (m < 3) The first possibility is that all stud-
ies include the complete set of vertices in C (m = 0), and
through internal consistency we have:

F(P, r) =
∑
e∈P

F (e, r(e)) = 0.

From Lemma 3, if m = 1, C is not a cycle. If m = 2, we
derive, using Lemma 3:

F(P, r) = F({(u, v), (v,u)}, r);
r((u, v)) = R1, r((v,u)) = R2.

Thus, F(P, r) �= 0 reduces to

f ((u, v),R1) + f ((v,u),R2) �= 0,

f ((u, v),R1) �= f ((u, v),R2),

which is just inter-study heterogeneity.
Case II (m ≥ 3) Using Lemma 3, reduce the elementary

partition to a partition where each pair of adjacent edges
is independent. Since there are at least three distinct sets
of supporting studies, the equations cannot be reduced as
was done for m < 3, and this gives us sufficient freedom to
choose data so that wC �= 0 without reducing to heterogene-
ity. Thus, C is potentially inconsistent. �

In evidence structure II (repeated in Fig. 3(a)), if we con-
sider the cycle bcdb, each of the comparisons is supported
only by study 3, and hence m = 0, so according to the theo-
rem, bcdb is not potentially inconsistent. On the other hand,
each of the comparisons in abda is supported by a different
study, so m = 3, making this cycle potentially inconsistent.
The same holds for the longer cycle abcda, in which (b, c)

and (c, d) are both supported by study 3, (d, a) by study 1
and (a, b) by study 2, also giving m = 3.

It would appear that this theorem allows us to count the
number of inconsistency cycles for a given spanning tree.
However, although the fundamental cycles for any spanning
tree are independent, some may reduce to the same set of lin-
ear equations. An example of this is shown in Fig. 3, where
the cycles abda and abcda discussed previously have the
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Fig. 3 An evidence structure (a) and spanning tree (b) in which two fundamental cycles reduce to the same set of equations. The bcd path in (d)
collapses (through reduction) and leaves the same cycle as in (c), because (b, c), (b, d) and (c, d) are all supported only by study 3

same reduced partition, namely (P, r) with:

P = {(a, b), (b, d), (d, a)},
r((a, b)) = {2}, r((b, d)) = {3}, r((d, a)) = {1}.
Hence, to count the number of inconsistencies, we should
count the number of distinct reduced partitions among the
fundamental cycles. Moreover, any cycles that reduce to the
same set of linear equations should be assigned the same
ICF. The following definitions and lemma make this notion
precise:

Definition 6 Let g((u, v)) = (u, v) or g((u, v)) = (v,u)

be a one-one correspondence P1 → P2. Then the partitions
(P1, r1) and (P2, r2) are equivalent if

r1(e) = r2(g(e)); ∀e ∈ P1.

Lemma 4 Let (P1, r1) and (P2, r2) be equivalent parti-
tions under g. Then F(P1, r1) = F(P2, r2) or F(P1, r1) =
−F(P2, r2), for g((u, v)) = (u, v) or g((u, v)) = (v,u) re-
spectively.

Proof Assuming g((u, v)) = (u, v), we have

f ((u, v), r1((u, v))) = f (g((u, v)), r2(g((u, v)))),

and thus

F(P1, r1) =
∑
e∈P1

f (e, r1(e))

=
∑

g(e)∈P2

f (g(e), r2(g(e))) = F(P2, r2),

where the second equality holds because g is a one-one cor-
respondence. If g((u, v)) = (v,u), we have that

f ((u, v), r1((u, v))) = −f ((v,u), r2((v,u)))

= −f (g((u, v)), r2(g((u, v)))),

since d((u, v)) = −d((v,u)). Then clearly

F(P1, r1) = −F(P2, r2). �

Definition 7 (S-equivalence) Two cycles C1 and C2 are
S-equivalent (C1 ∼S C2) iff their maximally reduced ele-
mentary partitions (in the evidence structure S) are equiv-
alent.

By this definition the cycles abda and abcda shown in
Fig. 3 and discussed above are S-equivalent. This means that
if we assign the inconsistency factor w to abda:

d((b, d)) = d((b, a)) + d((a, d)) + w,

we should assign the same one to abcda:

d((b, c)) = d((b, a)) + d((a, d)) + d((d, c)) + w.

Note that according to Lemma 4, the direction in which we
go around the cycle matters. In the above case the equiva-
lence is due to g((u, v)) = (u, v), so we use +w. If we tra-
verse it in the other direction, g((u, v)) = (v,u), we should
use −w:

d((c, b)) = d((c, d)) + d((d, a)) + d((a, b)) − w.

Definition 8 (Inconsistency degree) For an evidence struc-
ture S and spanning tree Gb , let C = C(G(S),Gb) be the
set of fundamental cycles. Then, C/ ∼S is the set of equiva-
lence classes under ∼S in C. The ICD of Gb is the number
of equivalence classes that contain inconsistency cycles:

icd(S,Gb) =
∑

X∈C/∼S

icc(S,C); C ∈ X,

where C ∈ X may be chosen arbitrarily and

icc(S,C) =
{

1, if C is an inconsistency cycle,
0, otherwise.

To clarify the meaning of the quotient set C/ ∼S , con-
sider again the situation of Fig. 3. Since both cycles are
equivalent, we have

C/ ∼S= {{abda, abcda}}.
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Fig. 4 An evidence structure in which a non obvious choice of ICFs is
required to arrive at the correct ICDF. The structure (a) contains three
trials, where trial 1 compares a, b and d , trial 2 compares a and b and

trial 3 compares b, c and d . The subfigures give an incorrect (b) and a
correct (c) parameterization

On the other hand, for the evidence structure in Fig. 4(a) and
the spanning tree of Fig. 4(b), the cycles abda and bcdb are
clearly not equivalent, so then

C/ ∼S= {{abda}, {bcdb}}.
Definition 8 allows us to count the inconsistency de-

gree of a spanning tree. For example, consider the evidence
structure in Fig. 4(a). Clearly, both Figs. 4(b) and 4(c) are
parameterized so that the dim(G(S)) = 3 basic parame-
ters (solid edges) form a spanning tree, and the remain-
ing nul(G(S)) = 2 edges become the functional parame-
ters. This implies that the Inconsistency Degrees of Freedom
(ICDF) is at most 2, the number of functional parameters.
The spanning tree G1 in Fig. 4(b) has two fundamental cy-
cles, namely abda and bdcb. The first cycle is partitioned
into e1 = (a, b), e2 = (b, d) and e3 = (d, a), with support
r(e1) = {1,2}, r(e2) = {1,3} and r(e3) = {1}. Since the sets
of supporting studies are all distinct, Theorem 2 leads us
to conclude that icc(abda) = 1. For the latter cycle, we
have e1 = (b, d), e2 = (d, c) and e3 = (c, b), for which
the supporting studies are r(e1) = {1,3}, r(e2) = {3} and
r(e3) = {3}. Thus, using Theorem 2, this reduces to hetero-
geneity on (b, d), so icc(bdcb) = 0. Hence, in this parame-
terization icd(S,G1) = 1.

Now, consider the tree G2 in Fig. 4(c), with funda-
mental cycles abda and abcda. We already know that
icc(abda) = 1. The partition of abcda reduces to e′

1 =
(a, b), e′

2 = (b, d), and e′
3 = (d, a) with r ′(e′

1) = {1,2},
r ′(e′

2) = {3}, and r ′(e′
2) = {1}. All three edges are indepen-

dent, and hence icc(abcda) = 1. Moreover, the partitions of
abda and abcda are not equivalent and thus icd(S,G2) = 2,
the maximum possible. Hence, the choice of spanning tree
determines the ICD:

Lemma 5 The ICD icd(S,Gb) depends on the chosen span-
ning tree Gb .

Theorem 3 (Spanning tree selection problem) To parame-
terize the model correctly, we need to find a spanning tree
Gb that maximizes icd(S,Gb). Then, icdf(S) = icd(S,Gb).

Proof icd(S,Gb) determines the number of independent in-
consistency factors in the model. It has previously been
shown that the ICFs w under one parameterization can be
represented as linear combinations of the ICFs w′ under an-
other (Lu and Ades 2006), assuming equal icd. However,
from Lemma 5, not all spanning trees result in the same icd.
Therefore, in order to be able to express any ICF as a linear
combination of the chosen ICFs, a maximal set of indepen-
dent ICFs must be chosen. �

Only one ICF should be created for each equivalence
class of inconsistency cycles. Thus, whereas Lu and Ades
(2006) claim that each ICF corresponds to exactly one func-
tional parameter, actually each ICF may correspond to sev-
eral. Their assertion that not every functional parameter need
correspond to an ICF is confirmed by our work.

3.2 Baseline selection

The individual studies have to be parameterized in such a
way that every comparison for which there is direct evidence
(and which can be inconsistent) is expressed in the param-
eterization of at least one trial (Lu and Ades 2006). Again,
this problem occurs only for multi-arm trials. For example,
consider the structure in Fig. 5(a); we might parameterize
trial 1 with b as the baseline and trial 3 with c as the base-
line (Fig. 5(b)), having δ1ba , δ1bd , δ2ab , δ3cb , and δ3cd as
study parameters. Consider the cycle abda, where we have
the inconsistency relation dad = dab + dbd + wabda . Now,
dad is not informed directly by any of the study parameters
δixy , and hence the choice of dad is free, meaning that wabda

is also unconstrained. Hence, given this parameterization of
the individual studies, the ICF wabda cannot be estimated.
A correct choice of baselines, covering all edges, is given in
Fig. 5(c).

Thus, in addition to choosing the basic parameters cor-
rectly, the study baselines must be chosen so that at least one
study provides direct evidence where needed. That is, every
cycle C for which icc(C) = 1, all |C| parameters should
have direct evidence, while for cycles where icc(C) = 0,
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Fig. 5 An evidence structure in which the choice of study baselines
is not arbitrary. The subfigures (b)–(c) give an incorrect and a correct
choice of baselines. The solid edges connect to the study baseline. In

(b) baselines are 1:b, 2:a, 3:c and in (c) 1:d , 2:a, 3:c. The dotted edges
are not connected to the baseline for that study and are thus not in-
formed by direct evidence from that study

only |C| − 1 need direct evidence. In case of an equivalence
class of inconsistency cycles, only one of the cycles needs
all |C| parameters to have direct evidence. This is formal-
ized as follows:

Definition 9 (Evidence cover constraint) Let X ∈ C/ ∼S be
an equivalence class of cycles. Let every cycle C ∈ X be
represented by its edge-set. Define the indicator function ϕX

that is 1 if the direct evidence constraint is satisfied by the
edge set E:

ϕX(E) =
⎧⎨
⎩

1, if ∀C∈X(|C ∩ E| ≥ |C| − 1)∧
∃C∈X(icc(C) = 0 ∨ |C ∩ E| = |C|),

0, otherwise.

The individual studies are parameterized by choosing a
baseline, and the effect parameters are the relative effects of
all other treatments compared to the chosen baselines:

Definition 10 (Baseline study graph) Given a study Si and
a baseline bi ∈ T (Si), the baseline study edge set is:

E(Si, bi) = {{bi, x} | x ∈ (T (Si) − bi)}.
And the baseline study graph is given by G(Si, bi) =
(T (Si),E(Si, bi)).

Any given choice of baselines results in a graph repre-
senting the relative effects supported by at least one source
of direct evidence:

Definition 11 (Baseline evidence graph) Given a baseline
assignment B = {(Si, bi) | Si ∈ S}, the baseline evidence
graph is:

G(S,B) = (T (S),E(S,B)) =
(

T (S),
⋃
Si∈S

E(Si, bi)

)
.

Thus, the baseline selection problem is to find the base-
line assignment that simultaneously satisfies the evidence

cover constraint (Definition 9) for all equivalence classes of
fundamental cycles:

Definition 12 (Baseline selection problem) Given S and a
spanning tree Gb for S, the baseline selection problem is to
find a baseline assignment B , that satisties the constraint

ϕX(E(S,B)) = 1; ∀X ∈ C(G(S),Gb)/ ∼S .

3.3 Parameterization problem

Together, the problems of maximizing the ICDF and select-
ing the baselines form the parameterization problem:

Definition 13 (Parameterization problem) To choose a
spanning tree Gb of S that maximizes icd(S,Gb), while
allowing a solution B to the baseline selection problem.

4 The algorithm

With the problem precisely defined, we developed a naive,
inefficient algorithm that is sufficiently fast to solve all prob-
lem instances encountered in practice. An open source im-
plementation is available from http://drugis.org/mtc.

The baseline selection sub-problem (Definition 12) is
solved through an exhaustive search over the space of pos-
sible assignments, as is shown in Algorithm 1. Before the
search, an arbitrary baseline is assigned for the two-arm
studies since either baseline will cover all included com-
parisons (lines 3–4). For the multiple arm studies, all possi-
ble baseline choices are constructed (lines 5–6). Then, these
are combined with the two arm study assignments (line 9)
to construct the space A of possible baseline assignments.
Then, an exhaustive search over the space A is performed
(lines 10–14). As soon as a valid baseline assignment is
found, the search is terminated. Note that in practice the set
A is not constructed beforehand, but the space of baseline
assignments is explored with e.g. a depth-first search (Cor-
men et al. 2001).

http://drugis.org/mtc
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Algorithm 1 Find-baseline-assignment, procedure to find a
baseline assignment satisfying a certain goal condition.
Input: Evidence structure S, goal condition ϕ(·)
Output: Baseline assignment, or undefined if none exists

1: b ← ∅, p ← ∅
2: for Si ∈ S do
3: if |T (Si)| = 2 then
4: b ← b ∪ {(Si, some-element-of(T (Si)))}
5: else
6: p ← p ∪ {Si × T (Si)}
7: end if
8: end for
9: A ← p1 × · · · × pn × b1 × · · · × bm

10: for B ∈ A do
11: if ϕ(B) then
12: return B

13: end if
14: end for
15: return undefined

The algorithm to solve the full parameterization problem
is described as pseudocode in Algorithm 2. We start by try-
ing to solve the baseline selection problem for the maxi-
mally constrained case in which all edges need direct ev-
idence. The indicator procedure required in find-baseline-
assignment for checking whether all edges are covered is
presented in Algorithm 3. If no solution exists, any solution
Gb to the parameterization problem will have icd(S,Gb) <

nul(G(S)) (see Appendix).
Then, we use the standard algorithm presented in Gabow

and Myers (1978) to iterate over all spanning trees of the ev-
idence graph G(S) (Definition 1). For each generated tree g,
we determine the ICD icd(S, g) (Definition 8). The proce-
dure for computing ICD is given in Algorithm 4. If icd(S, g)

is greater than the largest so far, we determine whether there
is a solution to the baseline selection problem for this tree. In
this case the find-baseline-assignment requires an indicator
procedure for checking whether the parameterization satis-
fies the baseline selection constraints (Definition 12); this
one is presented in Algorithm 5. If there exists a solution to
the baseline selection problem, we record this spanning tree
and its ICD as the best so far. We stop if for the best tree
so far icd(S, g) = k, the maximum possible, or if all span-
ning trees have been enumerated. For difficult problems this
will be intractable, since there may be exponentially many
spanning trees, and if the evidence structure has lower than
maximal ICDF all of them have to be enumerated. However,
it seems that most real-world problems are easy, as is shown
by the computational tests in Sect. 6.

Using an exhaustive search to identify a baseline selec-
tion solves the baseline selection problem. Since the span-
ning tree search also (potentially) generates all possible
spanning trees and maximizes the ICD taking into account

Algorithm 2 Parameterization of a mixed treatment com-
parison model as finding the spanning tree that maximizes
the ICD while having a valid baseline assignment.
Input: Evidence structure S

Output: Solution (Gb,B) to the parameterization problem
1: best-g ← undefined, best-b ← undefined
2: b ← undefined
3: full-b ← find-baseline-assignment(S,ϕS)

4: if defined(full-b) then
5: k ← nul(G(S))

6: else
7: k ← nul(G(S)) − 1
8: end if
9: for g ∈ gabow-myers(G(S)) do

10: if not defined(best-g) or icd(S,g) > icd(S, best-g)
then

11: if defined(full-b) then
12: b ← full-b
13: else
14: b ← find-baseline-assignment(S,ϕS,g)
15: end if
16: if defined(b) then
17: best-g ← g

18: best-b ← b

19: end if
20: end if
21: if icd(S, best-g) = k then
22: return (best-g, best-b)

23: end if
24: end for
25: return (best-g, best-b)

Algorithm 3 ϕS , indicator procedure for checking whether
all edges are covered. E(Si, bi) is the baseline study graph
(Definition 10).
Input: Set B of pairs (Si, bi): (study, baseline)
Output: true, if all edges are covered, otherwise false

1: E ← ⋃
(Si ,bi )∈B E(Si, bi)

2: return E = E(S)

whether there is a solution to the baseline selection prob-
lem, the algorithm outlined here solves the parameterization
problem (Definition 13).

5 Example

As a full example of finding a correct parameterization for
an evidence structure, we consider a network of treatments
for smoking cessation therapy comparing (a) nicotine re-
placement therapy, (b) bupropion, (c) varenicline and (d)
placebo or no treatment (Wu et al. 2006). The outcome of
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Algorithm 4 icd, procedure for computing the ICD. C/ ∼S

is the set of equivalence classes of cycles (Definition 8), and
C(·, ·) is the set of fundamental cycles (Appendix).
Input: Evidence structure S, Spanning tree g

Output: icd(S, g)

1: C ← C(G(S), g)

2: icd ← 0
3: for X ∈ (C/ ∼S) do
4: icd ← icd + icc(some-element-of(X))

5: end for
6: return icd

Algorithm 5 ϕS,g , indicator procedure for checking whether
the parameterization satisfies the baseline selection con-
straints (Definition 12). E(Si, bi) is the baseline study graph
(Definition 10), C/ ∼S is the set of equivalence classes of
cycles (Definition 8), and C(·, ·) is the set of fundamental
cycles (Appendix).
Input: Set B of pairs (Si, bi): (study, baseline)
Output: true, if Definition 12 is satisfied, otherwise false

1: E ← ⋃
(Si ,bi )∈B E(Si, bi)

2: C ← C(G(S), g)

3: for X ∈ (C/ ∼S) do
4: for C ∈ X do
5: if |C ∩ E| < |C| − 1 then
6: return false
7: end if
8: end for
9: if icc(some-element-of(X)) = 0 then

10: return true
11: end if
12: for C ∈ X do
13: if |C ∩ E| = |C| then
14: return true
15: end if
16: end for
17: end for
18: return false

interest is smoking cessation at 12 months. For this outcome
there are 78 studies with 4 different treatment comparisons:
Sad (66 studies), Sbd (6 studies), Sabd (3 studies) and Sbcd

(3 studies). The evidence structure is shown in Fig. 6, having
|T (S)| = 4 treatments and |E(S)| = 5 comparisons. Thus,
any correct parameterization will have |Eb| = 4 − 1 = 3 ba-
sic and |Ef | = 5 − 3 = 2 functional parameters.

The first step in the algorithm is to try and find a baseline
selection that covers all edges. Given this structure, that is
easy, e.g. a for the Sad studies, b for Sbd , a for Sabd and
c for Sbcd will suffice. We could also have chosen different
baselines for studies of the same type, but that is not neces-

Fig. 6 The evidence structure
for the outcome ‘smoking
cessation after 12 months’ from
Wu et al. (2006). a = nicotine
replacement therapy,
b = bupropion, c = varenicline,
and d = placebo or no treatment

sary here. Then, we set k = |Ef | = 2, meaning we will try
to find an ICD equal to the number of functional parameters.

Now, we start iterating over the spanning trees of the ev-
idence graph. Say the first spanning tree we are given is

g1 = {{b, a}, {b, c}, {b, d}}.
Then the cycles to evaluate are badb and bcdb. For badb we
get the partition P = {(b, a), (a, d), (d, b)} with r((b, a)) =
Sabd , r((a, d)) = Sad ∪ Sabd and r((d, b)) = Sbd ∪ Sbcd .
This partition cannot be reduced any further, and there are
3 distinct sets of studies, so

icc(S, badb) = 1.

For bcdb, both (b, c) and (c, d) are supported only by Sbcd ,
and thus we have only 2 sets of supporting studies, so

icc(S, bcdb) = 0.

The cycles are not equivalent, so they fall into two separate
classes, and we get icd(S, g1) = 1. This is the best so far, so
we store g1.

The ICD of g1 is 1 < k = 2, so we continue iterating over
the spanning trees. The second spanning tree might be:

g2 = {{b, a}, {a, d}, {d, c}},
having fundamental cycles bdab and bcdab. We already
know that icc(S, bdab) = 1, and we also recognize that
bcdab is a basically a longer version of bdab, so we will
have to evaluate whether they are equivalent. We also recall
that (d, c) and (c, b) are only supported by Sbcd and hence
reduce to (d, b) with r ′((d, b)) = Sbcd . The other two com-
parisons, (b, a) and (a, d) cannot be reduced. Thus we get a
reduction for bcdab that has the same comparisons as bdab,
but a different set of supporting studies for (b, d): Sbcd for
bcdab and Sbd ∪Sbcd for bdab. Hence bdab and bcdab are
not equivalent in S: bdab �∼S bcdab. Moreover, we also get

icc(S, bcdab) = 1,

so that icd(S, g2) = 2 = k. Hence we have identified g2 with
the full baseline assignment identified earlier as the solution
to the parameterization problem.

The example structure is structure number 18 in Table 1,
and our implementation of the algorithm actually evaluates
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Table 1 Performance of our algorithm on evidence structures from
Salanti et al. (2008b). Structures are listed in the same order as Fig. 1
in Salanti et al. (2008b), omitting the first three; the first column (ref)
gives the reference number in that paper. v is the number of included
treatments, e is the number of comparisons, s is the number of func-
tional parameters and n is the number of studies. The xj indicate the
number of different types of j -arm studies, e.g. if we have 2 ab studies
and 3 bc studies, x2 = 2. For the results, i is the ICD of the solution,
N is the number of evaluated spanning trees and t is the time taken
(seconds)

Ref Structure Result

v e s n x2 x3 x4 i N t

18 4 5 2 78 2 2 0 2 4 0.3

19 4 5 2 34 5 0 0 2 1 0.2

20 4 4 1 12 3 1 0 1 1 0.1

21 4 4 1 10 3 1 0 1 1 0.1

22 4 5 2 21 5 0 0 2 1 0.1

23 10 21 12 43 16 6 0 11 1 3.8

24 9 14 6 54 12 3 0 6 1 0.5

25 7 16 10 22 13 4 0 10 1 0.5

26 9 16 8 18 10 3 1 7 1 1.0

3 6 9 4 14 7 1 0 4 13 0.4

27 7 8 2 25 8 0 0 2 1 0.2

28 16 22 7 34 15 4 0 6 1 0.9

29 7 8 2 10 8 1 0 2 1 0.1

30 8 10 3 14 9 1 0 3 1 0.2

31 10 12 3 14 10 2 0 3 1 0.2

four spanning trees before it finds the correct one, rather than
the two shown here.

6 Evaluation of the running-time

A review of published evidence networks (Salanti et al.
2008b) identified 18 different networks in the literature.
Three of those were star-shaped, and have a trivial solution
to the parameterization problem. For the other 15 networks,
we extracted the evidence structure from the original papers
and evaluated the running time of our algorithm, as well as
the ICDF of each structure and the number of spanning trees
that were generated before a solution was found. The results
are summarized in Table 1, and we give the exact evidence
structures in an online supplement. There are three struc-
tures with only two-arm trials, the remaining 12 have at least
one three-arm trial. There is one structure that includes a
four-arm trial.

All of the evidence structures were parameterized within
four seconds (on a 3 GHz processor), which is negligible
compared to the time usually taken by the MCMC simula-
tion used to estimate the models. The longest time taken was
on structure 23, which contains the largest number (6) of
distinct types of three-arm trials. Only three structures had

non-maximal ICDF (23, 26, 28), namely s −1, one less than
the number of functional parameters. Note that if the ICDF
would be <s − 1, our algorithm would need to enumerate
all spanning trees to terminate. In only two cases more than
one spanning tree needed to be explored. The number of dis-
tinct spanning trees the evidence graph had varied between
three (structures 21 and 22) to 13611 (structure 23). All run-
ning times of >0.5 seconds were observed for structures
with non-maximal ICDF. In all three cases, this reflects a
failed exhaustive baseline search for full evidence cover.

7 Discussion

In this paper, we defined the parameterization problem for
MTC evidence structures and we provided an algorithm
which can be used for automated model generation for
MTC. We refine previous work (Lu and Ades 2006) on iden-
tifying the ICDF by giving a precise problem definition, and
point out the additional problem of equivalent cycles. An
open source implementation of the algorithm is available
(http://drugis.org/mtc). Although the worst-case complex-
ity of our algorithm is exponential, it seems that real-world
problems can be solved quickly. We evaluated running time
of the algorithm with evidence structures from the literature,
and all were solved within four seconds on a standard PC.

Future work should aim to develop more efficient algo-
rithms, and further investigate the relationship between the
spanning tree and baseline selection problems. In this paper,
we took the pragmatic approach of defining the combined
problem as finding the maximal ICD for which a baseline se-
lection can be derived. The question remains whether there
may be evidence structures for which the optimal spanning
tree does not have an associated baseline assignment, and
what would be the implications for the MTC method. There
also seems to be a certain redundancy in the cycles bdab

and bcdab of Fig. 6 discussed in Sect. 5, even though they
are not equivalent according to Definition 7. This is correct
since the w-factors associated with these cycles are not prov-
ably equal. However, the w-factors should differ only by
heterogeneity on the (b, d) comparison. Future work should
address whether and, if so, how this should be incorporated
in the parameterization of the evidence structure.
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Appendix: Definitions from graph theory

Definition 14 (Spanning tree—Gabow and Myers 1978) In
a connected, undirected graph G, a spanning tree Gs is a
subgraph having a unique simple path (a path containing
each vertex at most once) between any two vertices of G.
If G has t vertices, Gs has dim(G) = t − 1 edges.

Definition 15 (Fundamental cycle set—Deo et al. 1982)
The fundamental cycle set of a connected, undirected graph
G = (T ,E) with respect to a spanning tree Gs = (T ,F ) is
generated from the set E′ = E\F , as follows:

C(G,Gs) = {C(G,Gs, e) | e ∈ E′}, with

C(G,Gs, {u,v}) = path(v,u) ∪ {{u,v}},

where path(v,u) gives the (unique simple) path from v to u

in Gs . The size of the set of non-tree edges, nul(G) = |E′| =
|E| − |T | + 1 is called the nullity of G, and determines the
number of independent cycles in G. The set C(G,Gs) con-
sists of independent cycles and |C(G,Gs)| = nul(G), which
means that the set of fundamental cycles is also a cycle basis
of G.

Definition 16 (Path) A path is a sequence of directed edges,
such that the target of each edge connects to the source of
the next one: p = ((w1,w2), (w2,w3), . . . , (wn−1,wn)) is a
path of length n−1, as counted by the number of edges. Of-
ten, the path p is conveniently written as (w1,w2, . . . ,wn),
which should be read as shorthand for the longer notation.
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