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M A J O R A R T I C L E

The Molecular Basis of the Pathogenicity
of the Dutch Highly Pathogenic Human
Influenza A H7N7 Viruses

Vincent J. Munster,a Emmie de Wit,a Debby van Riel, Walter E. P. Beyer, Guus F. Rimmelzwaan,
Albert D. M. E. Osterhaus, Thijs Kuiken, and Ron A. M. Fouchier
Department of Virology and National Influenza Center, Erasmus Medical Center, Rotterdam, The Netherlands

During the highly pathogenic avian influenza (HPAI) H7N7 virus outbreak in The Netherlands in 2003, 88
infected persons suffered from mild illnesses, and 1 died of pneumonia. Here, we studied which of the 14
amino acid substitutions observed between the fatal case (FC) virus and a conjunctivitis case (CC) virus
determined the differences in virus pathogenicity. In virus-attachment experiments, the CC and FC viruses
revealed marked differences in binding to the lower respiratory tract of humans. In a mouse model, the
hemagglutinin (HA) gene of the FC virus was a determinant of virus tissue distribution. The lysine at position
627 of basic polymerase 2 (PB2) of the FC virus was the major determinant of pathogenicity and tissue
distribution. Thus, remarkable similarities were revealed between recent HPAI H5N1 and H7N7 viruses. We
conclude that the influenza virus HA and PB2 genes should be the prime targets for molecular surveillance
during outbreaks of zoonotic HPAI viruses.

The last decade has seen a marked increase in the num-

ber of outbreaks caused by highly pathogenic avian

influenza (HPAI) viruses in domestic birds, with sub-

sequent transmission of some of these viruses to wild

birds and several mammalian species, including hu-

mans [1–6]. The low-pathogenic avian influenza (LPAI)

H5 and H7 viruses circulating in wild birds are the

progenitors of HPAI viruses [7, 8]. The switch from

the LPAI phenotype to the HPAI phenotype in poultry

is predominantly determined by the introduction of

basic amino acids in the cleavage site of hemagglutinin
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(HA). The molecular basis of the pathogenicity of HPAI

viruses in humans is still poorly understood. Recent

studies have suggested that the ability of virus to bind

to sialic acid (SA) receptors present on cells of the new

host [9, 10], efficient replication in these cells [11–13],

and evasion of the host immune response [14, 15] con-

tribute to pathogenicity.

During an HPAI H7N7 outbreak in The Netherlands

in 2003, viruses were transmitted to humans in close

contact with infected poultry. Of 89 patients with lab-

oratory-confirmed cases of human H7N7 infection, most

suffered from conjunctivitis, and a few had mild influ-

enza-like illness. One veterinarian died as the result of

pneumonia, acute respiratory distress syndrome, and re-

lated complications [16, 17]. Infection of the human eye

resulting in conjunctivitis has been described previously

for H7 influenza A viruses [18]. This may be attributed

to the a2,3-linked SA binding preference of avian influ-

enza A viruses and the presence of a2,3-linked SA on

epithelial cells in the human cornea and conjunctiva, in

contrast to the predominant presence of a2,6-linked SA

in the human upper respiratory tract [19].

Sequence analyses of the virus isolated from the pa-

tient with the fatal H7N7 case (influenza A/Nether-
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Figure 1. In vitro attachment of the conjunctivitis case (CC) virus and
the fatal case (FC) virus to human ocular and respiratory tract tissues.
Control staining of prototype human and avian influenza A viruses to duck
colon and human trachea is shown in panel A. Virus attachment is visible
as red staining. In panel B, both viruses attached to epithelium of human
conjunctiva, trachea, bronchi, and bronchioles. Sections were counter-
stained with hematoxylin. Original magnification, �100.

lands/219/03) revealed 14 amino acid substitutions relative to

viruses isolated from chickens and from the patients with con-

junctivitis (such as influenza A/Netherlands/33/03 CC) in 5

different gene segments, basic polymerase 2 (PB2; 5 substitu-

tions), acidic polymerase (PA; 1), HA (3), neuraminidase (NA;

4), and nonstructural (NS; 1) [16]. One or more of these sub-

stitutions might have been responsible for the higher virus

pathogenicity and the fatal outcome of the infection.

Here, we describe the patterns of attachment of 2 prototype

HPAI H7N7 viruses from the Dutch HPAI outbreak to human

ocular and respiratory tissues and study the molecular deter-

minants of the pathogenicity of these viruses in a mouse model.

The increased understanding of the molecular determinants of

efficient replication and spread of avian viruses in humans may

lead to a targeted monitoring of HPAI viruses during future

zoonotic influenza outbreaks.

METHODS

Viruses. Influenza A/Netherlands/33/03(H7N7) and influ-

enza A/Netherlands/219/03(H7N7) were isolated from a patient

with conjunctivitis and from the patient with the fatal case,

respectively, during the Dutch H7N7 outbreak [16]. On the

basis of sequence analyses, the selected conjunctivitis case (CC)

virus was a good representative of virus isolates obtained from

the patients with conjunctivitis [16]. The gene segments of the

CC and fatal case (FC) viruses were amplified by reverse-tran-

scription polymerase chain reaction, and cloned and recom-

binant viruses were generated by reverse genetics as described

elsewhere [20] and propagated in embryonated chicken eggs.

We generated recombinant FC and CC viruses and reassortant

viruses consisting of 7 gene segments of the CC virus and 1 of

the FC virus (CC-FC PB2, CC-FC PA, CC-FC HA, CC-FC NA,

and CC-FC NS). Mutant viruses containing an E627K mutation

in PB2 of the CC virus (CC-PB2 E627K) or a K627E substi-

tution in PB2 of the FC virus (FC-PB2 K627E) were also pro-

duced. The genotypes of the recombinant viruses were con-

firmed by sequencing.

Virus histochemistry. Archival paraffin-embedded human

and animal tissue sections were obtained from the Erasmus

Medical Center Departments of Pathology and Virology, re-

spectively. Ocular tissues were obtained from the Cornea Bank

Netherlands Ophthalmic Research Institute. Three donors were

used for each tissue. All tissues were histologically normal by

microscopic examination of hematoxylin-eosin (HE)–stained

sections and were obtained from humans or animals with no

evidence of respiratory tract infection. Virus histochemistry

using the FC and CC viruses was performed as described else-

where [10, 21]. After concentration and purification of virus

stocks by use of sucrose gradients, viruses were inactivated by

dialyses against 0.1% formalin and labeled with an equal vol-

ume of 0.1 mg/mL fluorescein isothiocyanate (FITC; Sigma-

Aldrich).

Formalin-fixed paraffin-embedded tissues were deparaffin-

ized with xylene and rehydrated with alcohol. FITC-labeled in-
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fluenza viruses (50–100 hemagglutination units) were incu-

bated with the tissues overnight at 4�C. The label was detected

with a peroxidase-labeled rabbit anti-FITC (Dako). Tissues

were counterstained with hematoxylin and embedded in glyc-

erol gelatin (Merck).

To validate the method, we incubated labeled FC virus and

H3N2 virus (influenza A/Netherlands/213/03) with human tra-

chea and mallard intestine. The FC virus bound abundantly to

epithelial cells in duck intestine and poorly to human trachea,

whereas this was reversed for the H3N2 virus (figure 1).

Positively staining type 1 and 2 pneumocytes and macro-

phages in alveoli were counted in 10 arbitrarily chosen high-

power fields (�40) for all 3 tissue donors. Positively staining

nonciliated cuboidal cells in the bronchiole were also counted

in �40 fields for all 3 tissue donors, but the number of available

fields was limited to 7 for 1 donor and to 1 for the other 2

donors.

Mouse model. Groups of six 6–8-week-old female BALB/c

mice (Harlan) were inoculated intranasally with H7N7 virus.

The mice were observed for clinical signs and weighed twice

daily as an indicator of disease. Three days after inoculation,

3 mice from each group were killed, and virus titers in the

lungs, spleen, liver, kidneys, and brain were determined. The

other 3 mice were killed on day 7 or were euthanized after the

development of severe disease or discomfort, in agreement with

national animal welfare regulations. Intranasal inoculations and

euthanasia were performed under anesthesia with inhaled iso-

flurane. Animal studies were approved by an independent an-

imal ethics committee and were performed under biosafety level

3+ conditions.

Virus titrations. Viruses were titrated by end-point dilu-

tion in MDCK cells [20]. Lungs, spleen, liver, kidneys, and

brain were collected and homogenized [22], and 10-fold serial

dilutions of tissue homogenates were used to inoculate MDCK

cells. Three days after inoculation, the infected cell supernatants

were tested for agglutinating activity using turkey erythrocytes.

Infectious titers were calculated from 5 replicates by the Spear-

man-Karber method [23].

Histopathological analysis and immunohistochemistry.

Histopathological analysis and immunohistochemistry were

performed in mice inoculated with the FC, CC, CC-FC PB2,

CC-FC HA, CC-PB2 E627K, and CC-PB2 K627E viruses. Four

mice were killed 3 days after inoculation by exsanguination

under general anesthesia with isoflurane. Necropsies and tissue

sampling were performed according to a standard protocol.

After fixation in 10% neutral-buffered formalin and embedding

in paraffin, tissue sections were stained with HE for histological

evaluation or with a monoclonal antibody against the nucleo-

protein (NP) of influenza A virus for immunohistochemistry

[24]. Trachea, lungs (after inflation with 10% neutral-buffered

formalin in situ; cross-sections of the left lobe and the right

cranial, medial, and caudal lobes were obtained), brain, liver,

kidneys, and spleen were examined. For semiquantitative as-

sessment of influenza virus–associated inflammation in the re-

spiratory tract, HE-stained sections of trachea and lungs were

examined for the presence of epithelial necrosis and infiltration

by inflammatory cells and then scored as mild (0%–10% of

tracheal mucosa, bronchiolar cross-sections, or alveolar area

affected), moderate (10%–50% affected), or severe (50%–100%

affected).

RESULTS

H7N7 virus attachment. We investigated the role played by

human conjunctiva as potential porte d’entrée for H7N7 influ-

enza A viruses. Using virus histochemistry [10, 21], we studied

the attachment of the FC and CC viruses to human ocular

tissues, including cornea and the bulbar conjunctiva. Both vi-

ruses attached to the epithelium of the cornea and conjunctiva

(figure 1). The human ocular tissues may thus represent a site

of entry for H7N7 viruses. This was shown for both the CC

and the FC virus, despite the fact that the FC virus was isolated

from the lower respiratory tract (LRT) and that no virus was

detected in the patient’s conjunctiva swabs [16].

To determine whether differences in patterns of virus at-

tachment could explain the difference in disease outcome for

the CC and FC viruses, we compared their patterns of attach-

ment to human trachea and tissues of the LRT (bronchus,

bronchiole, and alveoli). There was no difference in virus at-

tachment to trachea or bronchus (figure 1). Attachment to few

ciliated epithelial cells was observed, with more-abundant bind-

ing to epithelial cells and excreted mucus of submucosal glands.

In bronchioles, both viruses attached to ciliated cells and non-

ciliated cuboidal cells. The FC virus attached more abundantly

to nonciliated cuboidal cells in sections from 1 of 3 tissue

donors; although the CC virus on average attached to 8 cells/

�40 field, the FC virus attached to 40 cells/�40 field. In alveoli,

the CC and FC viruses on average attached to 1.13 (range for

the 3 donors, 0.9–1.3) and 1.23 (range, 0.9–1.8) type 1 pneu-

mocytes/�40 field, respectively. The FC virus attached more

abundantly to type 2 pneumocytes in alveoli than did the CC

virus, with attachment to 5.7 (range, 4.0–6.6) and 2.6 (range,

2.4–2.8) cells/�40 field, respectively. The FC virus showed

more-abundant attachment to alveolar macrophages than did

the CC virus, with values of 1.3 (range, 0.6–2.1) and 0.1 (range,

0–0.2) positive alveolar macrophages/�40 field, respectively

(figure 1). Thus, the attachment pattern of the FC virus differed

from that of the CC virus in alveoli, which was the site of the

primary lesion—diffuse alveolar damage—in the person who

died from this infection [16]. Furthermore, the attachment

patterns of the FC virus showed marked similarities to those

of a recent HPAI H5N1 virus [10].
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Figure 2. Loss of body weight and survival after intranasal inoculation of mice with highly pathogenic avian influenza H7N7 viruses. Groups of 6
mice were inoculated intranasally with TCID50 of the conjunctivitis case (CC; �), fatal case (FC; �), CC-FC PB2 (�), CC-FC PA (�), CC-FC25 � 10
HA (�), CC-FC NA (�), CC-FC NS (+), CC-PB2 E627K (�), or FC-PB2 K627E (	) virus. Mice were weighed daily, and the percentage of body weight
was calculated relative to the weight at time of inoculation (A, C, and E ). Mice were either euthanized because of the severity of symptoms on day
5 or were killed at the end of the experiment, on day 7 after inoculation; the percentage of mice surviving the infection is shown as a function of
time (B, D, and F ).

A mouse model of infection with the CC and FC viruses.

We developed a mouse model to distinguish the pathogenicity

of the CC and FC viruses. Groups of 6 female BALB/c mice

were inoculated with the CC and FC viruses, and the mice were

weighed daily and observed for clinical signs of disease. When

inoculated with high virus doses, mice became severely ill and

required euthanasia because of the severity of symptoms, ir-

respective of whether they were infected with the CC or FC

virus (data not shown). Mice inoculated with TCID50
25 � 10

of the CC virus showed no signs of disease and lost no body

weight during a 7-day observation period. Mice inoculated with

the same dose of the FC virus showed signs of disease, such

as loss of body weight (figure 2A), ruffled fur, lethargy, and

respiratory problems from day 2 after inoculation onward.

These mice had to be euthanized because of the severity of

symptoms on day 5, whereas the mice inoculated with the CC

virus survived the infection (figure 2B). We used a dose of

TCID50 to inoculate mice in all further experiments.25 � 10

On day 3, 3 mice from each group were killed, and virus

titers in the lungs, spleen, liver, kidneys, and brain were de-

termined. In the lungs of mice inoculated with the FC virus,

virus titers were 11000-fold higher than those in the lungs of

mice inoculated with the CC virus (figure 3). In all mice in-

oculated with the FC virus, virus could be detected in spleen,
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Figure 3. Virus titers in mice after inoculation with highly pathogenic avian influenza H7N7 viruses. Mice were inoculated intranasally with
TCID50 of the conjunctivitis case (CC; A), fatal case (FC; B ), CC-FC PB2 (C), CC-FC PA (D), CC-FC HA (E), CC-FC NA (F), CC-FC NS (G), CC-FC25 � 10

PB2 HA (H), CC PB2 E627K (I), or FC PB2 K627E (J) virus. On day 3, 3 mice from each group were killed, tissues were collected, and virus titers in
lungs, spleen, liver, kidneys, and brain were determined in MDCK cells. The geometric mean virus titer per group of mice was calculated. To calculate
the geometric mean, the cutoff value was used for negative results. Each dotted line indicates the cutoff value of the assay for each of the organs,
and error bars indicate SDs. Bars are not shown when virus titers were below the cutoff value for all mice in a group. Black bars indicate wild-type
viruses, gray bars indicate reassortant viruses, and white bars indicate mutant viruses.

liver, kidneys, and brain, whereas virus could not be detected

outside the lungs in mice inoculated with the CC virus, except

for 1 mouse in which virus was detected in the brain (figure

3, black bars, A and B). Histopathological examinations per-

formed on 4 mice on day 3 revealed that, in the mice inoculated

with the FC virus, lesions occurred throughout the respiratory

tract and consisted of necrosis and inflammation (table 1 and

figure 4). These lesions were most pronounced in the trachea

and were progressively milder in the bronchi, bronchioles, and

alveoli. Lesions in the trachea, bronchi, and bronchioles were

characterized by necrosis or loss of epithelial cells, infiltration

of the epithelium and of subepithelial connective tissue by neu-

trophils and lymphocytes, and the presence of cell debris mixed

with erythrocytes and neutrophils in the lumen (figure 4). Le-

sions in the alveoli were centered around bronchioles and were

characterized by thickening and hypercellularity of the alveolar

walls and by flooding of the alveolar lumina with variable pro-

portions of cell debris, fibrin, edema fluid, erythrocytes, neu-

trophils, and mononuclear cells (figure 4). No lesions were

detected in brain, heart, spleen, liver, or kidneys, despite virus

recovery from these organs. In the mice inoculated with the

CC virus, lesions were restricted to the respiratory tract of only

1 mouse (table 1) and consisted of mild to moderate epithelial

cell necrosis and infiltration by neutrophils in trachea, bronchi,
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Table 1. Pathological analyses of respiratory tract tissues of mice infected with recombinant H7N7 viruses.

Virus

Trachea Bronchioles Alveoli

No. of mice with
Severity
of lesion

No. of mice with
Severity
of lesion

No. of mice with
Severity
of lesionAntigen Lesion Antigen Lesion Antigen Lesion

Mock 0 0 NA 0 0 NA 0 0 NA
CC 2 1 Moderate 4a 1 Mild 1a 0 NA
FC 4 4 Severe 4 4 Moderate/severe 4 4 Mild/moderate
CC-FC PB2b 3a 3 Severe 3 3 Moderate/severe 3 3 Mild/moderate
CC-FC HA 2 0 NA 1 1 Mild 0 0 NA
CC-PB2 E627K 4 4 Severe 4 4 Mild/severe 4 4 Mild/moderate
FC-PB2 K627E 3a 1 Mild 4a 2 Mild 3a 0 NA

NOTE. CC, conjunctivitis case; FC, fatal case; NA, not applicable.
a Antigen could be detected in only a few cells.
b Only 3 mice were infected with this virus.

and bronchioles. No lesions were detected in any of the tissues

of the sham-inoculated mice.

Expression of influenza virus antigen was limited to respi-

ratory tract tissues, as determined by immunohistochemistry.

The more-abundant presence of NP-positive cells in the lesions

of mice inoculated with the FC virus corresponded to higher

virus titers in the lungs of these mice (table 1 and figure 4).

Influenza virus antigen expression was seen in ciliated and non-

ciliated epithelial cells in trachea, bronchi, and bronchioles and

in type 1 and 2 pneumocytes in the alveoli. Influenza virus

antigen expression was associated with the presence of histo-

logical lesions and was generally strongest at the transition of

normal and necrotic tissue.

Mapping the determinants of pathogenicity of the FC virus.

To determine which gene segment was responsible for the in-

creased pathogenicity of the FC, we constructed 5 reassortant

viruses consisting of 7 gene segments of the CC virus and each

of the gene segments of the FC virus harboring amino acid

substitutions. After inoculation, mice were weighed daily and

observed for clinical signs of disease. The mice inoculated with

CC-FC PB2 lost body weight and showed other symptoms of

disease, whereas the mice inoculated with CC-FC PA, CC-FC

HA, CC-FC NA, and CC-FC NS did not display any symptoms.

The mice inoculated with CC-FC PB2 required euthanasia be-

cause of the severity of symptoms on day 5 (figure 2). As with

the FC virus, the mice inoculated with CC-FC PB2 had high

virus titers in the lungs (figure 3, gray bar, C). In the mice

inoculated with CC-FC PA, CC-FC NA, or CC-FC NS, virus

titers in the lungs were comparable to those in the mice in-

oculated with the CC virus. The CC-FC HA virus displayed

intermediate titers in the lungs. Virus was detected in spleen,

liver, kidneys, and brain of the mice inoculated with CC-FC

PB2 but not of the mice inoculated with CC-FC PA, CC-FC

NA, or CC-FC NS (figure 3, gray bars, C–G). CC-FC HA virus

was detected in the liver, kidneys, and brain, although not all

organs were positive in all mice from this group. Inoculation

of mice with a double-reassortant virus, CC-FC PB2 HA, did

not result in increased virus titers compared with CC-FC PB2

(figure 3, gray bars, H). By histopathological and immunohis-

tochemical analysis, the nature and severity of the lesions caused

by the CC-FC PB2 virus did not differ from those of the lesions

caused by the FC virus. Lesions caused by the CC-FC HA virus

were comparable to those caused by the CC virus (table 1).

Mapping the determinants of pathogenicity in PB2. Stud-

ies of HPAI H5N1 viruses have shown that, apart from the

multibasic cleavage site in HA, an E627K substitution in PB2

was the main determinant of virulence [11, 12]. Because this

substitution is present in the FC virus, we determined whether

it is also important for the pathogenicity of HPAI H7N7 viruses.

We constructed the CC virus with the E627K substitution in

PB2 (CC-PB2 E627K) and the FC virus with a K627E substi-

tution in PB2 (FC-PB2 K627E) and inoculated groups of 6

mice. This E627K substitution reversed the phenotype of the

FC and CC viruses. The mice inoculated with the CC-PB2

E627K virus showed signs of disease, including loss of body

weight from 2 days after inoculation onward, whereas the mice

inoculated with the FC-PB2 K627E virus did not (figure 2E).

Consequently, the mice inoculated with CC-PB2 E627K virus

required euthanasia because of the severity of symptoms on

day 5, whereas the mice inoculated with the FC-PB2 K627E

virus survived (figure 2F). Lung titers on day 3 in the mice

inoculated with the CC-PB2 E627K virus were comparable to

those in the mice inoculated with wild-type FC virus, whereas

those in the mice inoculated with the FC-PB2 K627E virus were

comparable to those in the CC virus–inoculated mice (figure

3, white bars, I and J). CC-PB2 E627K virus was also detected

in spleen, liver, kidneys, and brain, whereas FC-PB2 K627E was

not. As determined by histopathological and immunohisto-

chemical analysis, the FC-PB2 K627E virus caused lesions com-

parable to those caused by the CC virus, whereas the CC-PB2

E627K virus caused lesions comparable to those caused by the

FC virus (table 1).
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Figure 4. Histopathological and immunohistochemical analysis of re-
spiratory tract tissues of mice infected with the conjunctivitis case (CC)
virus or the fatal case (FC) virus. Histological lesions (left) were absent
in trachea, bronchioles, and alveoli of CC virus–infected mice. Serial
sections of these tissues (right) demonstrated abundant expression of
viral antigen in tracheal epithelium, rare expression in bronchiolar epi-
thelium (arrowhead), and no expression in alveoli. In contrast, marked
necrotizing and inflammatory changes were seen in the same tissues of
FC virus–infected mice. Serial sections of these tissues showed that
these lesions were closely associated with abundant expression of in-
fluenza virus antigen. Mice were inoculated with TCID50 of the25 � 10
CC or the FC virus and killed 3 days later. Tissue sections were stained
with hematoxylin-eosin (HE) or with a monoclonal antibody against nu-
cleoprotein (anti-NP). Original magnification, �100.

DISCUSSION

The closely related FC and CC viruses from the Dutch H7N7

outbreak offered a unique opportunity to study determinants

of pathogenicity of H7 viruses in in vitro and in vivo model

systems. In mice, we could distinguish between the pathoge-

nicity of the CC and the FC virus. Although both viruses were

lethal at high doses, the FC virus was more pathogenic at a

low dose. At a dose of TCID50, the CC virus did not25 � 10

induce disease, whereas infection with the FC virus was lethal.

Moreover, the FC virus was detected in spleen, liver, kidneys,

and brain, whereas the CC virus was confined to the lungs.

Histopathologically, clear differences were observed in the re-

spiratory tract. Mild to moderate lesions were detected in only

1 of 4 mice at day 3 after inoculation with the CC virus, whereas

with the FC virus severe lesions were detected in all mice. These

data indicate that the FC virus is intrinsically more pathogenic

than the CC virus and could explain why the patient infected

with the FC virus presented with such severe symptoms and

died.

By producing single-gene reassortant and mutant viruses be-

tween the CC and the FC virus, we showed that the PA, NA,

or NS genes did not determine the pathogenicity of the FC

virus in mice. Virus titers in the lungs of the mice inoculated

with CC-FC HA were higher than those in the mice inoculated

with the CC virus, and the virus was detected outside the lungs,

indicating that the FC HA gene contributed to enhanced virus

replication and tissue distribution. We could not determine

whether the effect of HA on the spread of virus to different

organs was due to altered receptor specificity/affinity or merely

resulted from higher virus titers in the lungs in a receptor-

independent mechanism. By virus histochemistry, the FC virus

showed patterns of attachment to human respiratory tissues

that could partly explain its pathogenicity. Both the CC and

the FC virus showed limited binding to tracheal epithelium, in

contrast to a human H3N2 virus, which bound abundantly to

this tissue (figure 1) [10]. The FC virus attached more abun-

dantly than did the CC virus to nonciliated cuboidal cells in

the bronchioles and to alveolar macrophages and type 2 pneu-

mocytes in the alveoli. These subtle differences in attachment

between the CC and the FC virus in the LRT of humans could

indicate differences in specificity or affinity for the SA residues

present in the human host. The attachment pattern of the FC

virus to the human respiratory tract showed great similarity

with that observed with influenza A/Vietnam/1194/04, a recent

HPAI H5N1 isolate [10], and is in agreement with the distri-

bution of a2,3-linked SA in the human respiratory tract [9].

The attachment patterns of influenza A/Vietnam/1194/04 and

the FC virus correspond to pathological findings in patients

with fatal cases of H5N1 and H7N7 infection [1, 16], which

show diffuse alveolar damage in the lower pulmonary lobes. It

has been shown that HPAI H5N1 viruses are potent inducers
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of the production of proinflammatory cytokines by macro-

phages [25], and it was suggested that this cytokine induction

may relate to the unusual disease severity caused by HPAI H5N1

viruses in humans [25]. The abundant attachment of the FC

virus to alveolar macrophages may imply that similar mecha-

nisms increase the pathogenicity of the FC virus.

When the CC and the FC virus were compared, the main

determinant of pathogenicity of the FC virus in mice was PB2—

more specifically, the lysine at position 627. Inoculation of mice

with a double-reassortant virus, CC-FC PB2 HA, did not result

in increased pathogenicity relative to CC-FC PB2, given that

virus could be detected in lungs, spleen, liver, kidneys, and

brain, at titers comparable to those for CC-FC PB2. Path-

ogenicity studies using HPAI H5N1 viruses have also shown

a prominent role for the lysine at position 627 of PB2 in mice

[11, 12] but not in ferrets [12]. In light of the presence of this

lysine in the 1918 Spanish influenza virus, in all subsequent

human lineages of influenza A viruses, and in recent mam-

malian H5 HPAI isolates but of its absence in nearly all avian

virus PB2 sequences, it is likely an important determinant of

efficient virus replication in humans [26, 27].

Taken together, the data presented here lead us to suggest

that the virus isolated from the patient with the fatal case either

entered via the ocular epithelium and gained access to the LRT

(e.g., via the lacrimal duct) or accessed the LRT directly. During

the infection, the PB2 E627K substitution allowed efficient rep-

lication of this virus in the LRT, possibly aided by 1 or more

substitutions in HA, leading to pneumonia, acute respiratory

distress syndrome, and eventually death. Given the similarities

between the findings of pathogenesis studies of zoonotic H5N1

and H7N7 viruses and the recorded changes in the pandemic

influenza viruses that emerged in the last century, the HA and

PB2 genes should be considered prime targets for genetic char-

acterization during HPAI outbreaks.
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