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Stable and GARCH processes have been advocated for modeling financial data. The aim of this 
note is to compare the two processes. It is shown that the unconditional distribution of variates 
from a GARCH-like process, which explicitly models the clustering of volatility and exhibits the 
fat-tail property as well, can be stable. Given suitable conditions the conditional distributions are 
stable as well. While it is generally realized that processes with variates that have unconditional 
nonnormal stable densities have a high frequency of ‘outliers’, it is less well known that they can 
exhibit the clustering phenomenon too. The clustering is obtained through stable subordination 
with conditional scaling. 

1. Introduction 

The literature on modeling returns on speculative assets consists of two 
main approaches. One approach only models the unconditional distribution 
of the returns, while the other approach also takes the conditional distribu- 
tional aspects into account. The former approach at first hypothesized a 
Brownian motion, but this proved untenable due to the slowly declining 
probability mass in the tails of the empirical distribution function (d.f.1 of the 
innovations. In order to account for this phenomenon, Mandelbrot (1963) in 
a seminal paper proposed to use the other members of the stable class rather 
than the normal d.f. While there are other fat-tailed d.f.‘s, the stable d.f.‘s 
are the only d.f.‘s which are type-invariant under addition (i.e., only the 
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location and scale may change, while the characteristic exponent is constant), 
which is a desirable property given that returns are time-additive.’ The stable 
model has become a popular model in several areas of economics [see, e.g., 
Westerfield (1977) and Akgiray and Booth (198811. Nevertheless, other fat- 
tailed d.f.‘s, like the Student-r [see, e.g., Blattberg and Gonedes (1974)], have 
been studied because a finite variance is sometimes found to be a characteris- 
tic of the data as well [i.e., due to the applicability of the central limit law; 
see Diebold (198811. More recently, discrete mixtures of the normal d.f. and 
mixed diffusion jump processes are becoming popular [see, e.g., Kon (1984) 
and Tucker and Pond (1988>], as these processes exhibit the also observed 
higher-than-normal kurtosis. But note that these models do not have the 
fat-tail property due to the exponentially declining tails of their density 
functions. 

The other and more recent strand of literature not only considers the 
unconditional d.f., but also focuses on the conditional distributional aspects. 
Mandelbrot (1963) already discussed the fact that there are clusters of high 
and low volatility in the return data. Typically, dependence in the second 
moment of the returns’ d.f. is much stronger than dependence in the first 
moment. But not until the ARCH model [introduced by Engle (198211 and 
the GARCH extension [see Bollerslev and Engle (1986)] have economists 
come to grips with this stylized fact. In addition to exhibiting the clustering 
phenomenon, the unconditional d.f.‘s of the variates from an ARCH process 
have fat tails [see, e.g., De Haan et al. (1989)], though the variance is still 
finite. Understandably the ARCH-type processes have gained wide popular- 
ity [cf. Diebold (19SS)l. For example, Diehold (1987, p. 3; 1988, ch. 4) and 
Bollerslev (1987, p. 542) argue in favor of the GARCH process vis-8-vis a 
process with variates that are unconditionally stable distributed, because the 
latter process ostensibly lacks the clustering phenomenon. 

This begs the question whether it is not possible for a stable proce.>, to 
exhibit the clustering phenomenon. In the existing literature we could not 
locate a reference dealing with this issue.2 The aim of this note is to partly fill 
this gap by comparing the *wo processes. In particular, we it rf:nd to show 
that there exists a class of tiARCH-like processes of which the realizations 
are unconditionally stable distributed. We also provide an example of a 
stable process which exhibits clusters of volatility; i.e., all conditional distribu- 
tions of this process follow a stable law as well. Some hints towards empirical 
implementation are provided. It follows that, under certain conditions on the 
parameters of a GARCH-like process, the stable and GARCH processes are 

‘Furthermore, due to triangular arbitrage between foreign exchange rates, foreign exchange 
rate returns are additive as well across different rates. 

*The only somewhat related paper is by McCulloch (1985), who introduces a process with 
stable innovations but conditional scaling. The resulting unconditional distributions, however, 
are not stable. Wolff (1988) compares the ARCH model with the random coeficient model. 
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observationally equivalent from the viewpoint of the unconditional distribu- 
tion, and in some cases in all respects. In summary, the various strands of the 
literature have tried to cope with following stylized facts of returns on 
financial assets: returns (i) have d.f.‘s with fat tails and a higher-than-normal 
kurtosis, (ii) exhibit clusters of high and low volatility, (iii) are additive such 
that their distributions are type-invariant, and (iv) normed sums tend to 
follow a limit law. The unconditional stable literature captures facts (i>, (iii), 
and (iv). The ARCH literature deals with facts (i), (ii), and (iv). This note 
shows that there are processes which exhibit all four stylized facts, or 
different subsets of these facts. 

2. The volatility function 

Consider the following slightly modified GARCH (1,l) process: 

X is i.i.d., E[X]=O, E[X2]=1, 

H( t>* = AS( t - l)* + TH( t - 1)2, 
(1) 

S is i.i.d., E[S]=O, E[S2]=1, A,T>O, T<I, 

where i.i.d. stands for independent and identically distributed. 
This model will be very close in spirit to Bollerslev’s (1986) GARCH model 

if we set ,S(t) =X(t). In this case, the difference between the GARCH 
processes is with respect to volatility function, where we use the past squared 
innovation X(t - l)* rather than the past squared realization Y(t - l)*. This 
practice is also followed by, e.g., Nelson (1989) and Hsieh (1989). Note that 
for covariance stationarity T < 1 is sufficient for the process in (l), whereas 
A + T < 1 is required in case of GARCH (1,l). 

The process defined in (1) exhibits the same properties as GARCH. More 
specifically, the process exhibits conditional heteroskedasticity, as past inno- 
vations and variances contribute to the current variance. This produces the 
clustering phenomenon (ii) as may be seen from 

(2) 

where a* = A/(1 -7) is the unconditional variance of both Y(t) and H(t). 
The current variance overshoots the unconditional variance as a weighted 
average of past excesses in the innovation variances. For GARCH (1, l), we 
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have3 

H(t)2-a2= .[H(f - 1)2-V2] +h[Y(t- 1)‘~cr2], (3) 

where u2 = w/(1 -A - 7). The only difference between (2) and (3) is the 
second term, which stems from using the innovations s(t - 1) or X(t - 1) 
rather than the realizations Y(t - 1) in the volatility function. The property 
(i) can be easily satisfied as well, by choosing X to follow a fat-tailed 
distribution, like the Student-t or stable distribution. In the latter case eqs. 
(2) and .(3) make no sense, but evidently the clustering phenomenon is still 
present. With a finite variance u2, the unconditional distribution of Y(t) 
cannot be stable and fat-tailed. Is it possible, though, that the above scheme 
(1) generates fat-tailed stable variates under slightly different conditions? 

3. Stable subordination with conditional scaling 

In order to answer the question at the end of the previous section, consider 
the following stochastic process called SSCS for ease of reference.4 

Definition 1. The SSCS process is defined as the stationary solution of 

Y(f) =X(t)H(t)““, (4) 

H(t)=hG(t-l)+rH(t-l), A>O, O<r<l, (5) 

where the X(t) and G(t - 1) are each strictly stable i.i.d. random variables 
(T.v.) with characteristic exponents (Y, 0 <(Y 5 2, and p, 0 <p < 1, respec- 
tively, the G(t) are nonnegative, and X(t) and G(t -j) are independent for 
all j 2 1. 

In comparison with eq. (l), the volatility function (5) - or scaling function in 
the context of stable d.f.‘s - of the SSCS process still exhibits the clustering 
phenomenon. While past innovations do contribute to H, the relationship is 
slightly more complicated. It allows for more general patterns of clustering 
(see also footnote 6 below). Note that, while X(t) and G(t -j) are indepen- 
dent, Definition 1 does not rule out temporal dependency between X(t) and 
G(t). The following theorem ensures that the marginal distribution of Y(f) is 
stable. 

3The GARCH (1,l) process is defined by Y(t) =X(t)H(t), H(t)‘=o +AY(t - l)*+ 
TH(t - l)*, w > 0, h t 0, 7 2 0, h + 7 < 1, and X(t) _ N(O, 1). 

4SSCS is the acronym for stable subordination with conditional scaling. 
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Theorem 1. The unconditional distributions of the Y(t) in eq. (4) are strictly 
stable with characteristic exponent a@. 

Proof. The proof proceeds in two steps. We first obtain the distribution of 
H by convergence of an infinite convolution. In step 2 the unconditional 
distribution of Y is derived as the product of two strictly stable variates. 

Step 1. By repeated substitution the scaling function in eq. (5) can be 
rewritten as 

H(t)=A f?G(t-k-l)+ limr”H(t-n-l). 
k=O 

n-c- 

By Theorem 3 in Feller (1971, ch. VI.1) and recalling 0 <T < 1, this is 
equivalent to 

H(t) Ah f 70k 
[ 1 

I/P 

G+ limrnH(t-n-1) 
k=O 

n-tm 

1 

[ 1 
I/P 

= A- 
l -@ 

G+ limrnH(t-n-l), 
n4co 

where G is equal in distribution to G(t). 
The last term is zero in probability, and hence 

1 1 
l/P 

H(t) ZA & G. 

By Theorem 2 in Feller (1971, ch. VI.l), H(t) is positive, has a strictly 
distribution function with scale A[l/(l - TP)]~/P and characteristic 
nent p. 

stable 
expo- 

Step 2. Given that X(t) and H(t) are strictly stable with characteristic 
exponents (Y and p, it follows from the product rule for stable variates [see, 
e.g., Feller (1971, ch. VI.2)] that 

Y(t) =X(t)H(t)“” 

is strictly stable with characteristic exponent CX~. n 

Note that the theorem holds for any unconditionally stable distributed Y, 
except the normal, by choosing LY and /3 appropriately. Therefore variates 
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which are unconditionally leptokurtic stable may possess the clustering phe- 
nomenon (ii). The clustering derives from the volatility function that implies 
the conditional scale H(t)‘/* which, when multiplied by the innovation X(t), 
produces the subordinated process Y(t) with stable marginals. Clark (1973) 
discusses stable subordinated stochastic processes in economics, but does not 
consider the possibility of conditional scaling. 

Corollary 1. Zf the processes {G(t)} and {X(t)} are independent and Y(t) 
follows the SSCS process of Definition 1, then Y(t) satisfies the properties 
(i)-(iv). 

Proof. Evidently, the fat-tail (i) and the clustering (ii) properties are satis- 
fied. To obtain the additivity property (iii), note that conditional on the 
H(t)‘s any sum C’j’=,Y(t -j) is strictly stable with scale 

A”* G(t-j-l)+h-' c ( jIoTi)H(t - n)}li’ (6) 

and characteristic exponent a. By the additivity property of stable variates 
this scale is itself strictly stable distributed as well, with exponent p. Apply 
step 2 of the previous proof to conclude that Cy=,Y(t -j) is strictly stable 
with characteristic exponent ap. Therefore, Y(t) and any finite sum of Y(t)‘s 
are of the same type. A similar argument shows this holds for any linear 
combination of Y(t 1’s. Property (iv) follows trivially as the stable distributions 
are in their own domain of attraction. n 

Remark 1. An easy proof of the third property in case the X(t>‘s are 
standard normal is given in Feller (1971, p. 176, fn. 7). 

Remark 2. Because property (iii) holds, it also follows that all finite linear 
combinations of Y(t)‘s are strictly stable with the same characteristic expo- 
nent czp. Theorem 2 of Dudley and Kanter (1974) then implies that {Y(t)} is 
a stable stochastic process, and any subsequence of Y(t>‘s is 
stable.5 

Remark 3. Serial dependence in the mean can be introduced 
factor 4Y(t - l), 4’ < 1, to the right-hand side of eq. (4). 

multivariate 

by adding a 

In view of the extant literature it is of interest to discuss the empirical 
implementation of the SSCS model. Consider the SSCS process of Definition 

‘Another implication of this is that the discrete-time SSCS stochastic process can be embed- 
ded in a continuous-time stochastic process [see Wolfe (1982)]. This is not possible for, e.g., the 
ARCH process. 
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Table 1 

Parameter estimates for the unconditional stable d.f.” 

Frequency Scale Characteristic 

Currencies of data s^ exponent z 

Canadian/US. dollar Day 0.00127 1.747 
Month 0.00681 1.560 

German mark/U.S. dollar Day 0.00339 1.624 
Month 0.02122 1.686 

Japanese yen/US. dollar Day 0.00234 1.266 
Month 0.01626 1.366 

“Estimates as reported in Boothe and Glassman (1987, p. 309). 

1, suppose that G(t) and X(t) are independent, and let X(t) have a standard 
normal d.f. such that (Y = 2 (in the spirit of Engle’s original ARCH process). 
How can the parameters p, A, and T be estimated? The literature on 
speculative prices abounds with estimates of the unconditional d.f. of the 
returns. Table 1 contains some typical example estimates for the spot foreign 
exchange rate returns as reported in a recent survey by Boothe and Glassman 
(1987). From the last column of this table, an estimate for p is easily 

calculated by division of ap with the maintained hypothesis a = 2. From eqs. 
(4) and (6) the unconditional scale is found as 

Hence, the scale estimates s^ reported in table 1 are a nonlinear combina- 
tion of A, T, cr, and p. On the basis of this information it is not possible to 
identify A and T separately. Note, however, that the A can be divided out if 
one takes the ratio of two scale estimates based on two different frequencies. 
For months with n + 1 days, from the following statistic R,, 

T can be identified given an p^. Note that by induction on n, for all n, 

dR,/dr < 0 for 0 < r < 1, and hence a simple grid-search procedure may be 
used to find 4. Once the conditional scaling coefficient 7^ is known, the scale 
of the innovations i is easily calculated from, say, the daily s^. Table 2 
provides parameter estimates for the SSCS process on the basis of the 
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Table 2 

Parameter estimates for the SSCS processa 

Imputed 

Currencies o/3 p^ &I 7^ n^ 

Canadian/US. dollar 1.7 0.85 17.37 0.46 0.0008 
German mark/U.S. dollar 1.6 0.80 18.81 0.15 0.0029 
Japanese yen/U.S. dollar 1.4 0.70 15.09 0.36 0.0015 

“Due to different (~0 estimates for different frequencies, some overall characteristic exponent 
has to be used in the calculations of 7 and A; this information is recorded in the first column. 
Grid search was used to calculate r from the nonlinear eq. (8). Calculations are based on the 
presumption that a month contains n + 1 = 22 trading days. 

information contained in table 1. The 7^ values indicate the contribution of 
past scales to the current scaling coefficient. An indication for the persistence 
in the scaling and thus the importance of volatility clusters are the mean lag 
~/(l - r), with values of 0.85, 0.17, and 0.56, respectively, and the median lag 
which is zero in all cases [see Bollerslev (1986, pp. 311-312)]. This suggests 
that while past volatility does contribute to the current volatility, the effect 
evaporates fairly rapidly. 

How do these estimates, the r values in particular, compare to the existing 
evidence? We address two issues, the size of T and the effects of temporal 
aggregation. To start with the latter issue, as Diebold (1988) shows on the 
basis of a central limit theorem argument, temporal aggregates of ARCH 
processes tend to normality. Empirically, Baillie and Bollerslev (1989) find 
that while GARCH effects are present in daily and weekly foreign exchange 
return data, these effects disappear in biweekly and monthly returns. A nice 
property of the SSCS process is that the effects of time aggregation can be 
explicitly calculated; i.e., no limit arguments are needed even though they do 
apply as stable distributions are in their own domain of attraction. Define 
Z(-m)=Y(t-(m-1)k)+ ... + Y(t - mk+ 1) for some periodicity k 2 2 
and m = 1,2,..., and study the behavior of the time-aggregated series 
Z(-ml. Note that H(t) + **. +H(t - (k - 1)) is equal in distribution to 
Ri?rH(t), where R, was defined in (8). The time-aggregated SSCS process 
can then be written as 

Z( -m) gX( -m)RiLafH( -m)“*, (4’) 

H( -m) 2 hcG( - m - 1) + #H( -m - l), (5’) 

where X, G, and H are distributed as before and c is a positive nonlinear 
function of r. The important thing to note is the factor rk in the scaling 
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function. It is not hard to show that lim r“Ri/_p1 = 0 as k -+ ~0. Thus the 
clustering effect is reduced due to temporal aggregation, as in the case of 
GARCH. Empirically, for the estimates in table 2, the clustering effect is 
virtually zero on a fortnightly scale. 

In comparison with, e.g., the GARCH estimates reported in Bollerslev 
(1987), Baillie and Bollerslev (1989), and Hsieh (1989), our ? values point to 
a lower persistence [typically h + r as in eq. (3) are close to one in these 
references]. Interestingly Hsieh also estimates the exponential GARCH 
model and finds that the autoregressive parameter in the volatility function is 
significantly below one. This may be due to the logarithmic specification 
which reduces the effect of outliers in the volatility function. Thus, an 
explanation for the relatively low T values we find may be that the stable 
model is ‘robust’ against outliers. This point may be of interest for future 
research, but is outside the scope of the present paper. 

Up to this point the innovations G in the volatility function (5) have been 
considered to be independent from the past innovations X or realizations Y. 
It is of interest to relax this assumption. First consider dependence of G(t) 
on X(t). Specifically, suppose that the dependence takes the following form: 

where F, is the d.f. of X, F2 is the d.f. of G, and X and G are both strictly 
stable r.v.‘s as stated in Definition 1. Therefore, F, and F2 are continuous 
[see, e.g., Feller (1971, ch. VI.1311, have the same range, and are monotone. 
It follows that the composite function in eq. (9) defines a strictly stable r.v. 
with characteristic exponent p. It is easy to see that, as X(t) and G(t -j) are 
independent r.v.‘s, Theorem 1 is applicable and hence the unconditional 
distribution of Y(t) is strictly stable with characteristic exponent a/3. As 
a/? < 2, the fat-tail property (i) holds again. From the discussion in the 
previous section and the Definition 1 the stochastic process also exhibits the 
cluster property (ii>. 

Corollary 2. The SSCS process of Definition 1, amended with the dependency 
structure as in eq. (91, exhibits properties (i) and (ii). 

To foster the reader’s intuition, the following process provides a tractable 
example: 

Y(t) =X( t)H( q”*, X( t ) is i.i .d. standard normal, 

1 
H(r) = 

X( t - 1)’ 
+7*H(t-1), OSr<l. 

(10) 
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As X follows the standard normal distribution with density f,(x), i.e., it is a 
strictly stable variate with characteristic exponent (Y = 2, the composite 
function l/X2 is a strictly stable variate with characteristic exponent p = 3 
and has density 

see Feller (1971, ch. 11.4). From step 1 in the proof of Theorem 1, H has 
density [note the T* in (lo)] 

fp(h) = (27~-“~(1 -7))‘V3/*exp[2(1 -r)*/zP1, (11) 

The unconditional density of Y can now be found as a mixture of the normal 

f,a(~)=~~~(~l~)~,#r)dh=1/7;[(1-+’+(1-~)y2]. (12) 

The unconditional distribution of Y is Cauchy, i.e., is stable with characteris- 
tic exponent cu/3 = 1.’ 

This example is also instructive in showing that this variant of the SSCS 
process does not exhibit the additivity property (iii), cf. Corollary 1 and 2. 
Suppose that T = 0 in (10) and hence the process can simply be written as 
Y(t) =X(t>/X(t - 1). It is immediate that the unconditional distribution of 
Y(t) is Cauchy, given that the X(t)‘s are i.i.d. standard normal. Straightfor- 
ward calculations show that the joint density of two adjacent Y’s, say 
A = Y(t) and B = Y(t - 11, reads 

f(a,b) = (2~)-‘a-2(1 +b*+a-2)-3’2. 

For {Y(t)} to be a stable process, a necessary condition is that each 
univariate marginal - i.e., including all linear combinations - is stable with 
the same index; see, e.g., Dudley and Kanter (1974). It is relatively straight- 
foreward to show that the marginals f(a) = /f(a, b) db and f(b) = /f(a, 6) da 
are Cauchy, i.e., have index one. How about the sum? Let Q =A + B, and 
evaluate the density of the sum f(q) = /f(q - b, b)db. This integral is hard 
to integrate due to the fractional power of the denominator. However, it is 
easily shown that f(q) is symmetric around q = 0. Moreover, some tedious 

‘Interestingly, as was pointed out by a referee, the process (10) constitutes an example of 
‘negative clustering’ in analogy with the effect of negative serial correlation. If the previous 
innovation was high in absolute terms, it lowers the current conditional variance and vice versa. 
Hence, the volatility tends to alternate. 



C.G. de Vries, Relation between GARCH and stable processes 323 

calculus shows 

= 2/27rr > 0. 

But the Cauchy distribution that is symmetric around zero has f”(0) < 0. 
Hence, f(q) is not Cauchy. In fact, by numerical integration f(q) was found 
to be bimodal. It follows that property (iii) cannot be satisfied. 

As a last example of processes with unconditional stable variates which 
exhibit volatility clustering, consider the following bilinear model:’ 

Y(t) =X(t)H(ty2, 
(13) 

H( t)2 = AY( t - l)‘Q( t)2’p, 

where the X(t) are i.i.d. standard normal distributed and the Q(t) are i.i.d. 
strictly stable distributed with characteristic exponent $. 

Note that the volatility function now directly depends on the past realiza- 
tion like in Engle’s (1982) original ARCH process. The process also has the 
format of a random coefficient model [cf. Wolff (1988>]. It can be checked by 
using the product rule for stable r.v.‘s that the unconditional distribution of 
Y(t) is stable with characteristic exponent p. 

4. Summary 

The paper shows that studies which concentrated on the unconditional 
distribution of asset returns and hypothesized a stable d.f., are not necessar- 
ily inconsistent with ARCH-type processes that exhibit clusters of volatility. 
This has some importance for modeling the distribution of returns on 
financial assets. Typically the returns are leptokurtic and exhibit clusters of 
volatility. The SSCS model offers a means to nest the finite-variance and 
infinite-variance stable alternative within an ARCH-type scheme. It was 
noted that while the unconditional distribution of the SSCS variates can be 
stable, sums of these variates may or may not be identical in distribution to 
the summands. Thus the SSCS process may fail the additivity property. In the 
latter case, dependence of the volatility function on previous innovations and 
realizations was considered. Example processes of both cases were given, as 
well as some hints towards empirical implementation. 

‘On bilinear models, see Granger and Andersen (1978). 
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