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Abstract
Background: Complex chromosomal rearrangements (CCR) are rare cytogenetic findings that
are difficult to karyotype by conventional cytogenetic analysis partially because of the relative low
resolution of this technique. High resolution genotyping is necessary in order to identify cryptic
imbalances, for instance near the multiple breakpoints, to explain the abnormal phenotype in these
patients. We applied several molecular techniques to elucidate the complexity of the CCRs of two
adult patients with abnormal phenotypes.

Results: Multicolour fluorescence in situ hybridization (M-FISH) showed that in patient 1 the
chromosomes 1, 10, 15 and 18 were involved in the rearrangement whereas for patient 2 the
chromosomes 5, 9, 11 and 13 were involved. A 250 k Nsp1 SNP-array analysis uncovered a
deletion in chromosome region 10p13 for patient 1, harbouring 17 genes, while patient 2 showed
no pathogenic gains or losses. Additional FISH analysis with locus specific BAC-probes was
performed, leading to the identification of cryptic interstitial structural rearrangements in both
patients.

Conclusion: Application of M-FISH and SNP-array analysis to apparently balanced CCRs is useful
to delineate the complex chromosomal rearrangement in detail. However, it does not always
identify cryptic imbalances as an explanation for the abnormal phenotype in patients with a CCR.

Background
Complex chromosomal rearrangements (CCR) are
defined as structural abnormalities involving more than
two breakpoints and the exchange of genetic material

between two or more chromosomes [1]. They can occur in
patients who are mentally retarded or have multiple con-
genital abnormalities [2,3] or in phenotypically normal
individuals who are ascertained through the birth of a
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malformed child or fetus, repeated abortion or reproduc-
tive problems [4-6]. Until now, more than 160 patients
with a CCR are reported in literature, observed both post-
natally as well as prenatally [7-11]. This number will
increase since the application of molecular cytogenetic
techniques on apparently balanced reciprocal transloca-
tions has revealed that more cryptic rearrangements, with
or without imbalance, can be found [12-17]. Multicolour
fluorescence in situ hybridization (M-FISH) can visualize
the complexity of structural rearrangements in one single
overview, sometimes undetected by conventional cytoge-
netics, by applying 24 distinct colours separating one
chromosome from the other [18,19]. The application of
molecular high resolution SNP-array analysis on DNA of
patients with an abnormal phenotype and apparently bal-
anced chromosome rearrangements may detect submicro-
scopic imbalances [20,21] that could have an association
with the disease. The combination of both techniques will
lead to the identification of more chromosomal break-
points or genomic imbalances, giving more insight into
the complexity of the chromosomal rearrangements.

Here we present two adult patients with an abnormal phe-
notype, both with a de novo initially apparently balanced
CCR determined by GTG banding. The application of M-
FISH, SNP-array and FISH analysis has clarified the CCR
in more detail in order to perform a genotype-phenotype
study.

Case presentation
Patient 1
The patient was the second child of non-consanguineous
parents. He was born by caesarian section because of a
high head position. His apgar score was 9 after 1 minute.
Birth parameters were normal (weight 3380 grams, length
49 cm, head circumference 37 cm). There was a slight
delay in early development as walking and first words
began at the age of 18 months. Further speech develop-
ment was slow with poor articulation. At the age of 4
years, an autistic spectrum disorder was suspected because
of stereotypic movements and typical behavioral prob-
lems. Because of his mild mental retardation he attended
special education. At puberty, his weight increased with
20 kg in 2 years. Autistic behavior had diminished after
puberty, though he still clung to regular daily patterns. His
general health was good and vision and hearing were nor-
mal.

At the age of 15 years and 5 months, his length was 183,8
cm (+1 SD), weight 112 kg (>>+2 SD), and head circum-
ference 60,4 cm (+2,5 SD). He had a relatively large head
with bitemporal narrowing and a mildly sloping fore-
head. His eyebrows were full and broad. His eyes were
deep-set with epicanthic folds and slightly downslanting
palpebral fissures. He had a bulbous nasal tip. His palate
was high and narrow. Obesity was generalized.

Analysis of the fragile X syndrome gene, FMR1, and meta-
bolic screening were normal.

Patient 2
The second patient is at present 30 years old. His length is
150 cm (-4 1/2 SD), weight is 34 kg (-1 SD) and head cir-
cumference 55 cm (-1 1/2 SD). He is severely mentally
retarded and is not able to walk or speak. He was born as
the third child of non-consanguineous parents after an
uneventful pregnancy and delivery. His birth weight was
3000 gram. His muscle tone was weak and developmental
delay was obvious within six months. Chromosome anal-
ysis in 1980 already showed a translocation with involve-
ment of chromosomes 5, 11 and 13. He had nystagmic
eye movements and also epileptic activity, therefore he
used antiepileptic drugs. He had sleeping problems, and
autistic and self-destructive behaviour (trichotillomania,
polyembolokoilamania). Increasingly, he has periods of
agitation. He suffers from recurrent ear infections and has
almost become blind, at least partially due to automutila-
tion (pushing fingers or other objects in his eyes). He has
an asymmetric face with a broad nose and full lips. His
right eye is smaller. It is possible that a part of the facial
features are the result of the automutilation. There is a
highly arched palate with a bifid uvula. Because of the
pregnancy of this patient's sister, re-evaluation of his
cytogenetic analysis was performed.

Results
Patient 1
Routine cytogenetic analysis of the patient initially
revealed a complex karyotype in which the chromosomes
1, 15 and 18 were involved: 46, XY,
t(1;18;15)(q32;q21;q24). Subtelomeric MLPA-analysis
showed no copy number changes of the subtelomeric
regions (data not shown). M-FISH showed a more com-
plex karyotype in which not only chromosomes 1, 15 and
18, but also chromosome 10 appeared to be involved
(Figure 1A). SNP-array analysis revealed an additional
interstitial deletion in 10p13, ranging from rs10906541
to rs7911591 (~1,48 Mb) (SNP call of 96.58%; SD 0.257)
(Figure 2). The results showed four other copy number
changes along the genome, but these were previously
reported in healthy individuals in the database of
genomic variants as copy number variants (CNVs) [22]. A
double-target FISH was performed with regional specific
BAC-probes (Table 1). RP11-393E10 (10p13) confirmed
the deletion (Figure 3A). The BAC-probe RP11-24J20,
located distal to the deletion, demonstrated an unex-
pected insertion of chromosome 10 in der(18). Also BAC-
probe RP11-308K19 was found on der(18) instead of
being translocated to chromosome 1 as was expected (Fig-
ure 3B). The BAC-probes RP11-308K19 and RP11-149I8,
both overlapping the deletion breakpoints in 10p13,
coincided with the translocation breakpoints in 10p13,
thus confirming the deletion to be related to these break-
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points. FISH with additional BAC-probes located in the
10p13–p14 region (Table 1) identified a direct insertion
in 18q21 with the distal breakpoint between RP1-251M9
and RP11-401F24 (data not shown). M-FISH showed a
slight increase of the chromosome 10 signal on the inter-
face between the translocated parts of chromosomes 1
and 18 on der(18) (Figure 1C). FISH with individual and
combined Whole Chromosome Paints (WCP) confirmed
the constitution of the existing derivatives (Figure 3C/D,
not all data shown). The results of M-FISH and FISH anal-

ysis were used to determine the breakpoints in the deriva-
tive chromosomes.

Parental chromosome and FISH analysis showed normal
results.

The karyotype of patient 1 was readjusted and assigned
according to ISCN 2005 [23] as follows:

46, XY, der(1)(1pter→1q31::10p14→10pter), der(10)
(15qter→15q24::10p13→10qter)del(10)(p13p13), der(15)

M-FISH of the aberrant chromosomes of patient 1 A), patient 2 B)Figure 1
M-FISH of the aberrant chromosomes of patient 1 A), patient 2 B). A partial M-FISH metaphase shows the four 
derivative chromosomes for both patients. C) The separate fluorochrome signal intensities for the aberrant chromosome in 
contrast to the normal chromosomes in patient 1 show a slight increase of the blue colour DEAC on the interface between 
chromosome 18 (combined red, yellow and green signal) and 1 (yellow signal) on der(18) (see orange highlight) which indicates 
material of chromosome 10 (combined blue and green signal). D) The derivative chromosome 9 (combined red and yellow sig-
nal) of patient 2 shows an increase of the combined fluorochromes (blue and purple signals) used for chromosome 13 (see 
orange highlight), indicating a chromosome 13 insertion. Detection of the insertion of chromosome 5 in der(9) is more difficult 
with M-FISH, because of the combined colours red and yellow used for chromosome 9 in contrast to red used for chromo-
some 5, but a more intense fluorescent red signal over yellow is seen in the long arm of der(9). A diminished signal of red and 
yellow is present on the location of the insertion of chromosome 13.
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(15pter→15q24::18q21→18qter), der(18)(18pter→
18q21::10p13→10p14::1q31 →1qter)dn (Figure 4A).

Patient 2
Conventional banding cytogenetic analysis initially
showed a complex karyotype, in which the chromosomes
5, 11 and 13 were involved: 46, XY, del(5)(q11),
der(11)t(5;11)(q11;q11), der(13)t(11;13)(q11;p11). M-
FISH demonstrated that the chromosomal rearrangement
was more complex, and that also chromosome 9 was
involved (Figure 1B). FISH with WCPs for chromosomes
5, 9, 11 and 13 and several BAC-probes confirmed the
more complex result of the CCR (Table 1). Part of chro-
mosome 5 is inserted in the q-arm of derivative chromo-
some 9, which was confirmed as a direct insertion with
BAC-probes RP11-729C24 and RP11-114H21 (Figure
3E). Also a weak fluorescent signal of WCP 13 was
detected on der(9). M-FISH results showed a slight
increase of the fluorescent signals for chromosome 13 on
der(9) (Figure 1D). FISH with the BAC-probe RP11-
632L2 (13q31.3) showed a signal on der(9), confirming
the insertion and location of chromosome 13 material
into this der(9) (Figure 3F). The insertion of chromosome
5 was located centromeric to the insertion of chromosome
13.

Characterization of the der(13) with several FISH probes
revealed that the centromeric probes for chromosome 11

(pLC11A) and 13 (L1.26) were both present on the deriv-
ative chromosome 13. Also FISH with the DNA-probe
r521 (ribosomal satellite probe) showed that the satellite
of chromosome 13 appeared to be located between these
two centromeres on the dic(11;13) (data not shown).
Subsequent SNP-array analysis showed several small
gains and losses, ranging in size from 81 kb till 1 Mb, but
all were previously reported as common CNVs in the data-
base of genomic variants (SNP call of 92,98%; SD 0,2035)
(data not shown). Since both parents showed normal
karyotypes, the karyotype of patient 2 was readjusted and
assigned as 46, XY, der(5)(5pter→5p10),
der(9)(9pter→9q31::5q31→5q31::13q31→13q31::9q31
→9qter), der(11)(13qter→13q31::5q31→5q10::11q10
→11qter), dic(11;13) (11pter→11p10::13p13→13q31
::5q31→5qter)dn (Figure 4B).

Discussion
The aim of this study was to characterize the CCRs of two
patients with multiple molecular cytogenetic techniques
in order to find an explanation for their abnormal pheno-
type. The application of GTG banding, M-FISH and con-
ventional FISH analysis elucidated the complex
chromosomal rearrangements in two patients, each com-
prising four derivative chromosomes.

In patient 1 the application of a 250 k Nsp1 SNP-array
analysis additionally revealed a deletion of part of chro-
mosome 10p13 with an approximate size of 1.5 Mb, har-
bouring 17 genes. Using the Ingenuity Pathway Analysis
program [24], we investigated, whether any of the 17
genes deleted on chromosome 10, could be considered as
a candidate gene for mental retardation based on availa-
ble expression and/or functional data. We found informa-
tion in the Ingenuity database for 14 of the 17 genes
(Figure 2). Four of these genes (NMT2, SUV39H2,
FAM107B, FAM171A1) showed an indirect relationship
with known mental retardation genes of which three
genes are expressed in the nervous system (not
SUV39H2). It is very likely that in patient 1 the de novo
deletion is causative for his abnormal phenotype,
although further examination is necessary to investigate
how the deleted genes contribute to his phenotype.

It is known that chromosomal loss of the 10p13–p14
region is associated with DiGeorge syndrome type II with
cardiac abnormalities [25]. Yatsenko et al. reported one
patient with a larger 10p deletion than our patient has,
also including the BAC-probe RP11-393E10 which was
absent in patient 1 [26]. Despite this overlap, our patient
does not have clinical signs of a congenital heart problem
or other symptoms related to the DiGeorge syndrome
type II, except for the developmental delay. Christian et al.
[27] used array comparative genomic hybridization
(array-CGH) to investigate 397 unrelated subjects with

The interstitial 10p deletion in patient 1 and genes located in this regionFigure 2
The interstitial 10p deletion in patient 1 and genes 
located in this region. A 250 k Nsp1 SNP-array (Affyme-
trix) shows a ~1,48 Mb interstitial deletion in chromosome 
(10)(p13p13) harbouring 17 genes. In the first lane under the 
genes a + indicates which genes are found in the Ingenuity 
database. The second lane shows which genes are indirectly 
correlated to known mental retardation genes presented by 
the number 1.
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Detection of the aberrant constitutions of the chromosomes with FISHFigure 3
Detection of the aberrant constitutions of the chromosomes with FISH. FISH results on patient 1: A) The BAC-
probe RP11-393E10 (10p13), green, which is deleted according to the SNP-array results, shows only one signal on the normal 
chromosome 10, confirming the deletion. RP11-24J20 (10p13), located distal from the deleted region, is present on the normal 
chromosome 10 and on the der(18). B) Besides present on the normal homologue, RP11-149I8 is located on der(10) and 
RP11-308K19 on der (18), both overlapping the respectively proximal and distal deletion breakpoints. C) A WCP of chromo-
some 10 shows four segments distributed over four chromosomes. D) A combined FISH of WCP 18 (red) and WCP 10 
(green) shows the presence of chromosome 10 material at the interface of chromosome 18 and chromosome 1 on derivative 
chromosome 18. FISH results on patient 2: E) BAC-probes RP11-114H21 (green) (5q31.2) and RP11-729C24 (5q31.1) (red) 
demonstrate a direct insertion in derivative chromosome 9. F) Probe RP11-632L2 (13q31.3) (green) and probe RP11-80N14 
(9q31.1) (red) show the insertion of part of chromosome 13 in derivative chromosome 9.
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autism spectrum disorder. One of the included patients
showed a 318 kb deletion on 10p13. However, that dele-
tion was located adjacent to the deletion in our patient,
and showed no overlap. To the best of our knowledge,
there are no other reports of a correlation of the deleted
10p13 region, or of the other observed breakpoint regions
with autism [28-30].

SNP-array analysis of patient 2 showed no additional
pathogenic gains or losses with the 250 k Nsp1 platform.
FISH revealed a clonal dicentric 11;13 chromosome in all
cells. By conventional GTG-banding we observed that the
dic(11;13) contained a primary constriction of the centro-
mere 11, suggesting that the centromere 11 is the active
centromere and that the centromere 13 is the inactive cen-
tromere.

At present, the abnormal phenotype of patient 2 could
not be explained by a chromosomal imbalance. In the lit-
erature, up to 70% of the patients with a chromosomal
rearrangement, both complex and reciprocal transloca-
tions, show no imbalance on the chromosomal or molec-
ular level as an explanation for the phenotype [31].
Several other molecular mechanisms have been proposed
to explain the clinical problems of these patients [32] such
as balanced translocations leading to a position effect by
separating a gene from its regulatory elements altering
gene-expression [33] or creating fusion genes. A disrup-
tion of a gene could unmask a recessive mutation on the

homologue allele. Heterochromatin can also have effects
on juxtaposed euchromatic regions. This heterochromati-
nization of euchromatic regions can (partially) silence the
expression of neighbouring genes [34]. This might be the
case for the der(11) in patient 2, in which the 5q11.2
region might be under the influence of the centromere 11,
possibly leading to silencing of important 5q11.2 genes.
Finally, also a disruption of a dosage-sensitive gene might
alter or eliminate its function, causing disease [35].

As more breakpoints are involved in a CCR such mecha-
nisms as mentioned above suggest a greater chance for an
abnormal phenotypic outcome [4]. Madan et al. show
that individuals with a CCR and an abnormal phenotype
show a significantly higher mean (4.9) of breakpoints
than the mean (3.6) of breakpoints for phenotypically
normal individuals [3]. In our study the combination of
techniques revealed more cryptic rearrangements leading
to a total of six breakpoints in patient 1, while patient 2
shows seven breakpoints. Although the deletion in chro-
mosome 10 of patient 1 is assigned as a causative element,
DNA rearrangements at the breakpoints could also con-
tribute to the phenotype.

In conclusion, this study demonstrates the power of com-
bining different molecular cytogenetic techniques to elu-
cidate the genetic constitution of CCRs. However, next to
M-FISH and high resolution SNP-array analysis, addi-
tional FISH analysis with locus specific probes is still cru-

Table 1: Overview of characteristics for the BAC-probes used in this study.

BAC-clone Mb-position (database) Location FISH signal results Origin Probe

RP5-976H8 9,583339–9,755995 (ensembl) 10p14 10p14 + der(1) BacPac
RP1-251M9 10,973504–11,104455 (ensembl) 10p14 10p14 + der(1) BlueGnome
RP11-401F24 11,805219–12,011805 (ensembl) 10p14 10p14 + der(18) BlueGnome
RP11-477H7 12,396087–12,523522 (ensembl) 10p13 10p13 + der(18) BlueGnome
RP11-730A19 13,060479–13,254681 (ensembl) 10p13 10p13 + der(18) BlueGnome
RP11-24J20 13,232015–13,407413 (UCSC) 10p13 10p13 + der(18) BacPac
RP11-308K19 13,841307–14,026355 (UCSC) 10p13 10p13 + der(18) BacPac
RP11-393E10 14,421561–14,601389 (UCSC) 10p13 10p13 + Δ BacPac
RP11-149I8 15,428730–15,540990 (UCSC) 10p13 10p13 + der(10) BacPac
RP11-32H4 127,185284–127,352319 (UCSC) 5q23.2–23.3 5 + der(11) BlueGnome
RP11-729C24 131,817004–131,977063 (UCSC) 5q31.1 5q31.1 + der(9) BlueGnome
RP11-114H21 135,739999–135,916051 (UCSC) 5q31.2 5q31.2 + der(9) BlueGnome
RP11-433G14 139,529308–139,702096(UCSC) 5q31.3 5q31.3 + dic(11;13) BlueGnome
RP11-94H11 142,108219–142,285326 (UCSC) 5q31.3 5q31.3 + dic(11;13) BlueGnome
RP11-436M5 145,784051–145,952287 (UCSC) 5q32 5q32 + dic(11;13) BlueGnome
RP11-22D7 149,724798–149,897041 (UCSC) 5q33.1 5q33.1 + dic(11;13) BlueGnome
RP11-26B2 152,539671–152,728895 (UCSC) 5q33.2 5q33.2 + dic(11;13) BlueGnome
RP11-80N14 105,268990–105,396668 (UCSC) 9q31.1 9 + der(9) BacPac
RP11-570D4 113,691272–113,781581 (ensembl) 9q31.3 9 + der(9) BlueGnome
RP11-94M3 90,657469–90,828221 (UCSC) 13q31.3 13q31.3 + dic(11;13) BacPac
RP11-632L2 92,499761–92,681327 (UCSC) 13q31.3 13q31.3 + der(9) BlueGnome
RP11-74A12 94,378172–94,507441 (UCSC) 13q32.1 13q32.1 + der(11) BlueGnome
RP11-79A16 95,390243–95,551839 (UCSC) 13q32.1 13q32.1 + der(11) BacPac
RP11-813H5 98,714150–98,902701 (UCSC) 13q32.3 13q32.3 + der(11) BacPac
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cial to elucidate and identify cryptic genetic abnormalities
in more detail, as is demonstrated in this paper. Submi-
croscopic deletions or duplications will allow further gen-
otype-phenotype correlation studies. On the other hand,
the combination of all these molecular cytogenetic analy-
ses does not always explain an abnormal phenotype in
patients with a CCR.

Materials and methods
Karyotyping
Cytogenetic analysis was performed on GTG-stained met-
aphase spreads obtained from cultured peripheral blood
lymphocytes according to standard procedures. An Axi-
oskop microscope (Zeiss, Sliedrecht, The Netherlands)
was used for karyotyping and metaphase images were cap-
tured with Ikaros software (Metasystems, Altlussheim,
Germany). Karyotypes were obtained from both patients
and their parents.

MLPA
Multiplex Ligation-dependent Probe Amplification
(MLPA) was performed using SALSA P036B and P070 kits
(MRC Holland, Amsterdam, The Netherlands) to investi-
gate the subtelomeric regions for copy number aberra-
tions according to Schouten et al. (2002) [36]. Analysis
was performed using Genemarker® software (SoftGenet-
ics, State College, PA, USA).

M-FISH
Multicolour FISH was performed using the 24 Xcyte
Human mFISH DNA Probe Kit, following manufacturer's
instructions (Metasystems). The results were analysed
using a Zeiss Imager.Z1 microscope with five filters for the
fluorochromes used: diethylaminocoumarine (DEAC),
fluorescein isothiocyanate (FITC), SpectrumOrange™,
TexasRed™ and Cyanine 5 (Cy™5). The ISIS M-FISH imag-
ing system (Metasystems) was used to capture and process
images for evaluation of the M-FISH.

SNP-Array
A whole genome screening using a high resolution (250
k) Nsp1 SNP-array (Affymetrix, Santa Clara, California,
USA) was performed conform manufacturer's specifica-
tions. The arrays were scanned using the GeneChip® Scan-
ner 3000 7 G System with autoloader (Affymetrix, Santa
Clara, California, USA) and data analysis of the array
results was performed using CNAG 3.0 (Copy number
analyser for gene chips) provided by http://
www.genome.umin.jp. All copy number changes
observed were compared to common copy number vari-
ants (CNVs) found in previous studies of healthy people
annotated in the database of genomic variants
(DGV)[37]. Common CNVs are variations of large seg-
ments (>1 kb) of the genome that occur in the general

GTG-banded chromosomes and ideogramsFigure 4
GTG-banded chromosomes and ideograms. A partial 
karyogram accompanied by its ideogram shows the normal 
(left) and derivative chromosomes (right) which are involved 
in the complex chromosome rearrangement of patient 1 (A) 
and patient 2 (B).
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public and are assumed to have no clinical significance,
i.e. are considered benign CNVs. We looked for CNV stud-
ies of appreciable size that were analysed with equal
methods.

FISH
Specific Bacterial Artificial Chromosomes (BAC) probes
were selected from the UCSC genome browser (UC Santa
Cruz, USA, assembly March 2006) [38] and the Ensembl
genome browser (Hinxton, UK, release 52, Dec 2008)
[39] and purchased from BACPAC Resourses (Oakland,
CA, USA) or from BlueGnome (Cambridge, UK) (Table
1). Whole Chromosome Paint (WCP) probes for chromo-
somes 1, 5, 9, 10, 11, 13, 15 and 18 (Poseidon, NL) were
applied on metaphase spreads according to the manufac-
turer's specifications.

Probe DNA from BACPAC resources was semi-automati-
cally isolated with an AutoGenPrep 3000 robot (Autogen)
and, after whole genome amplification (WGA, Repli-G,
Qiagen), digested and labelled (Random Prime labelling
system, Invitrogen) with Bio-16-dUTP or Dig-11-dUTP
(Roche). BlueGnome probes were provided with direct
labels. The probes were validated on control metaphases.
FISH experiments were performed according to standard
protocols, evaluated on an Axioplan 2 Imaging micro-
scope (Zeiss) and images were captured using Isis software
(Metasystems).

Consent
Written informed consent was obtained from the patients'
relatives for publication of this case report. A copy of the
written consent is available for review by the Editor-in-
Chief of this journal.
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