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Abstract

The aim of this paper is to make a contribution to the investigation of the roots and essence
of convex analysis, and to the development of the duality formulas of convex calculus. This
is done by means of one single method: firstly conify, then work with the calculus of convex
cones, which consists of three rules only, and finally deconify. This generates all definitions of
convex objects, duality operators, binary operations and duality formulas, all without the usual
need to exclude degenerate situations. The duality operator for convex function agrees with the
usual one, the Legendre-Fenchel transform, only for proper functions. It has the advantage over
the Legendre-Fenchel transform that the duality formula holds for improper convex functions as
well. This solves a well-known problem, that has already been considered in Rockafellar’s Convex
Analysis [21]. The value of this result is that it leads to the general validity of the formulas of
Convex Analysis that depend on the duality formula for convex functions. The approach leads
to the systematic inclusion into convex sets of recession directions, and a similar extension for
convex functions. The method to construct binary operations given in [21] is formalized, and
this leads to some new duality formulas. An existence result for extended solutions of arbitrary
convex optimization problems is given. The idea of a similar extension of the duality theory for
optimization problems is given.
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1 Introduction

This paper is based on joint work with V.M. Tikhomirov, published in [7]. The aim of this work
is a reduction to calculus of some main tasks of convex analysis. Ideally, this calculus should be as
transparent and user-friendly as the celebrated differential calculus. For convex sets, this subject
has its origins in the work of Minkowski [17], for convex functions in the work of Fenchel [8, 9]. The
present paper aims to give a systematic and elegant development of the duality formulas of convex
calculus and to avoid the exclusion of degenerate situations. In particular, the duality theorem for
convex functions and all results depending on it, are valid for all convex functions if one uses the
duality operator given in the present paper. This operator agrees for proper convex functions with
the Legendre-Fenchel transform. We show that many constructions and results of convex analysis
can be generated by one single method: firstly conify, then work with the calculus of convex cones,
which consists of three rules only, and finally deconify.

Now we discuss what is the contribution that the present paper tries to make to the vast literature
on this well-established subject. It lies in the systematic realization of the unified method. This leads
to some new results, such as the result that all calculus formulas hold without exceptions. In order to
show the efficiency of the method, we prove all results from first principles. All proofs can be based
on simple figures, but for the sake of rigor, all proofs have been written down in a careful analytical
style.

We begin by establishing, in section 2, the calculus for convex cones, which consists of three for-
mulas only: the bipolar theorem and the duality formulas for images and inverse images under linear
transformations. These three formulas are well-known, for example, they are given in Rockafellar’s
seminal book Convex Analysis [21]. In the present paper, an attempt has been made to give short
self-contained proofs. This is done to emphasize the value of the conification method: for example,
in [21], some properties on convex cones are derived from properties of convex functions.

In section 3, four fundamental types of convex objects are constructed by deconification of convex
cones with suitable properties (of inclusion in some half space and/or containment of some ray):
convex cones containing zero, convex sets including some recession directions as elements, a similarly
extended concept of convex functions, and sublinear functions. Then, for each of these four types,
the three duality formulas are derived by means of deconification. Of course, the connection between
convex sets (resp. functions) with convex cones is well-known. It has been a main driving force in
the works of Rockafellar [21,22], Moreau [18] and Hörmander [14], and it has been exposed forcefully
in Kutateladze-Rubinov [15]. Moreover, the importance of recession directions in the study of convex
sets and functions is well-known; this is treated in detail in [21]. The contribution of the present
paper is here the systematic way in which recession directions arise and are treated, as a consequence
of deconification of special convex cones. A novelty of the present treatment appears to be that it
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does not require the exclusion of degeneracies, such as improper convex functions. For example, a
formula for the duality operator for arbitrary (proper or improper) convex functions with recession
is given in proposition 3.2. It appears to be novel and it involves the duality operators of all four
fundamental types of convex objects: the Legendre-Fenchel operator, the subdifferential operator, the
support function operator, and the polar operator. The value of this result is as follows. At first sight,
the usual restriction to proper convex functions might seem appropriate, as proper convex functions
are the real objects of study. However, working with proper convex can lead to improper functions.
For this reason, Rockafellar recommends, in [22] and in [25], to include improper convex functions.
However, the duality formula f∗∗ = clf , does not hold for improper functions. Many formulas from
Convex Analysis depend on the duality formula for convex functions. Therefore, the exclusion of
improper convex functions spreads through the entire theory of Convex Analysis, and in the process
the negative effect of this imperfection is strengthened. Having to take exceptions into account when
working with calculus rules, is not very convenient. An attempt to address this problem is done
in [22]: for improper convex functions, an ad-hoc closure operator is defined—not by means of the
closure of the epigraph—an then the duality formula f∗∗ = clf holds always. However, this does not
lead to completely satisfactory results—for example, then no improper convex function is closed apart
from the two trivial functions that are identically +∞ (resp. −∞). In [25], this modified closure
operation is not mentioned. Most modern accounts of Convex Analysis give the duality formula
f∗∗ = clf for proper convex functions only. In fact, often convex functions are defined in such a
way that they do not take the value −∞. The present paper offers a solution for this problem that
appears to leave nothing to be desired: we consider the duality operator on convex functions that is
given by the conification method (conify, take the polar cone, deconify). This operator agrees with
the usual one (called Legendre-Fenchel transform or conjugate convex function) for proper convex
functions, but not for improper ones. This operator has the advantage over the Legendre-Fenchel
transform that the duality formula holds for all convex functions, proper and improper ones, if we
use this operator.

In section 4, we formalize the construction of binary operations on convex objects that is given
in [21]. This formalization is based on a construction using special linear transformations, diagonal
mappings and addition mappings. As a result, the duality formulas for binary operations are imme-
diate consequences of the calculus of convex objects, established in the previous section. The device
of using diagonal mappings in this context is known: for example, it is used in the textbook [11]. The
contribution of the present paper is the consistent development, the inclusion of recession directions,
and the fact that degenerate cases are not excluded. For example, convex functions are allowed to
be improper, and sums of arbitrary convex functions are allowed, even if at a certain point one takes
value +∞ and the other value −∞. Some of the duality formulas appear to have been derived for
the first time by means of the present formalization, in [7].

In section 5, we consider convex optimization. By deconification of a result on convex cones, we
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get that every closed convex optimization problem has a solution in an extended sense. This suggests
that it might be useful to include in algorithms for convex optimization the task to find extended
solutions, along with ordinary solutions. Moreover, by deconification of this result on convex cones,
one can derive the duality theory of convex optimization; the idea of this derivation is given.

Finally, we compare the present paper with [7] and [6]. The paper [7] intends to make a contri-
bution to the development of the duality formulas of convex calculus presented in [16,26,27]. In the
present paper, proofs are given in a rigorous analytical style, in [7] of all calculus formulas (sometimes
for some representative examples). In the present paper, all formulas hold in general, and explicit
conditions are given under which the closure operator in the formulas can be omitted, in [7] half
of the formulas hold under conditions of general position, which are not made explicit. Moreover,
improved conification and deconification procedures are given in the present paper, compared to [7].
Deconification is always possible. It turns out that it is preferable, to define the conification of a
convex object in such a way that it is not necessarily unique. This improved procedures force the
inclusion of ‘recession elements’ in convex sets and functions, and this in its turn allows the possibility
to avoid exclusion of degenerate situations. This inclusion is equivalent to carrying out the analy-
sis in cosmic space, rather than in ordinary n-dimensional space. Cosmic space contains a horizon,
consisting of points at infinity. The properties of cosmic space are developed in [25]. The idea of
including recession directions of convex sets as points of these sets is already developed in [21] and
goes back to Steinitz. Finally, the exposition has been simplified. In [6], the fundamentals of Convex
Analysis, but not its use in optimization, is considered; in that paper, the analysis is carried out
systematically and explicitly in terms of cosmic space.

In the last fifteen years, there has been a renewal of interest in convexity, stimulated by progress
in convex optimization algorithms by Nesterov and Nemirovski [19], and many books on convexity
and in particular convex optimization have been published, for example [1–5,10–13,16,19,20,25].

2 The three duality formulas for convex cones

In this section we recall the standard operations and facts of convex cones. We include self-contained
proofs of this material. All results in the remainder of the paper will be based on this section.
To be specific, the duality formulas for convex cones in finite dimensional vector spaces, always
equipped with a non-degenerate symmetric bilinear form 〈·, ·〉—called just form—are given. We will
work with coordinates, considering vector spaces Rn, together with a symmetric non-singular n× n-
matrix M , which determines the non-degenerate symmetric bilinear form 〈u, v〉 = 〈u, v〉M = uT Mv

for all u, v ∈ Rn, where the superscript T denotes transposition. The matrix M = In gives the
standard form on Rn, the Euclidean inner product 〈u, v〉In = 〈u, v〉n =

∑n
k=1 ukvk. A subset C ⊂ Rn

is called a convex cone if it is closed under taking linear combinations with positive coefficients:
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αi > 0, xi ∈ C, i = 1, 2 ⇒ α1x1 + α2x2 ∈ C. A convex cone is not required to contain the zero
vector 0n—sometimes denoted just 0—and it is allowed to be the empty set. For two convex cones
Ci ⊂ Rn, i = 1, 2, the intersection C1 ∩ C2 and the sum C1 + C2 = {x1 + x2|xi ∈ Ci, i = 1, 2}
are convex cones in Rn. The polar cone C◦ of a convex cone C ⊂ Rn is the closed convex cone
{y ∈ Rn|〈y, x〉 ≤ 0 ∀x ∈ C}. The closure clC of a convex cone C is a convex cone, and it has the
same polar cone as C. For two convex cones Ci ⊂ Rn, i = 1, 2, one has (C1 + C2)◦ = C◦

1 ∩ C◦
2 .

The bipolar cone C◦◦ of a convex cone C ⊂ Rn is the closed convex cone (C◦)◦. For a subspace
L ⊂ Rn, the polar L◦ with respect to the standard form equals the orthogonal complement L⊥ =
{y ∈ Rn|〈y, x〉n = 0 ∀x ∈ L}. The image (respectively inverse image) of a convex cone C ⊂ Rn

(respectively C̄ ⊂ Rm) under a linear transformation Λ : Rn → Rm is the convex cone defined by
ΛC = {Λx|x ∈ C} (respectively Λ−1C̄ = {x ∈ Rn|Λx ∈ C̄}). The conjugate linear transformation of
a linear transformation Λ : Rn → Rm is the linear transformation Λ′ : Rm → Rn given by 〈Λ′y, x〉 =
〈y, Λx〉 for all x ∈ Rn, y ∈ Rm (in terms of matrices, this is the transposition operator). One has
Λ′′ = Λ. We will use the result from matrix theory that for a linear transformation Λ : Rn → Rm the
kernel of Λ, kerΛ = Λ−1(0m), and the image of the conjugate linear transformation with respect to
the standard form, Im Λ′ = Λ′(Rm), are each others orthogonal complement. The relative interior
riC of a convex cone C ∈ Rn is the interior of C when C is regarded as a subset of SpanC, its linear
span; riC is a convex cone. We will use the following property: for each convex cone C ⊂ Rn, the
entire open interval connecting a point in riC and a point in clC is contained in riC. A convex cone
in Rn is called a polyhedral cone if it is the solution set of a finite system of homogeneous linear
nonstrict inequalities,

∑n
j=1 αijxj ≤ 0, 1 ≤ i ≤ m.

Theorem 2.1 Let Λ : Rn → Rm be a linear transformation, and let C ⊂ Rn and C̄ ⊂ Rm be convex
cones. Then the following formulas hold true:

1. C◦◦ = clC precisely if C 6= ∅,

2. (ΛC)◦ = (Λ′)−1(C◦),

3. (Λ−1clC̄)◦ = cl(Λ′(C̄◦)) precisely if either C̄ 6= ∅ or ker Λ = 0.

The closure operation can be omitted from formula 3. if one of the following two assumptions
holds true:

a. riC̄ ∩ Im Λ 6= ∅;

b. C̄ is a polyhedral cone.

For the proof, we need two consequences of the fact that the image of a compact—that is, closed
and bounded—subset of Rn under a continuous mapping to Rm is compact. The first one is the
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extreme value theorem: a continuous function on a compact subset of Rn assumes its maximal and
minimal value. The second one is the following lemma. Let Sn−1 be the unit sphere in Rn, that is,
Sn−1 = {x ∈ Rn|‖x‖ = 1}, where ‖ · ‖ is the euclidean norm given by ‖x‖ = (

∑n
i=1 x2

i )
1
2 . For each

convex cone C ⊂ Rn that contains zero, 0n ∈ C, let H(C) denote the intersection H(C) = C ∩ Sn−1

of C with the unit sphere Sn−1 in Rn.

Lemma 2.2 Let C be a convex cone containing zero in Rn.

1. H(C) is closed precisely if C is closed.

2. Let Λ : Rn → Rm be a linear transformation. If C is closed and C ∩ ker Λ = 0, then ΛC is
closed.

Proof.

1. If C is closed, then H(C) is closed, as it is the intersection of two closed sets, C and Sn−1.
Conversely, if H(C) is closed, then for each N > 0 the subset {x ∈ C|‖x‖ ≤ N} of Rn is
compact and so closed, as it is the image of the compact set [0, N ]×H(C) under the continuous
mapping (ρ, x) 7→ ρx. Therefore, C is closed.

2. H(C) is compact by statement 1 of the lemma, as C is closed. Λ induces a surjective continuous
mapping Λ : H(C) → H(ΛC) : c 7→ ‖Λc‖−1Λc; this is well-defined, as C ∩ker Λ = 0. Therefore,
H(ΛC) is compact and so ΛC is closed, by statement 1 of the lemma.

Now we prove the theorem.

Proof.

We assume that the chosen form on Rn is the standard form; this does not restrict the generality
of the argument by virtue of the following observation: if C,D are convex cones in Rn, and D is the
polar cone of C with respect to 〈·, ·〉M , then MD is the polar cone of C with respect to the standard
form.

1. (a) Assume C = ∅. Applying the polar operator to C gives Rn; applying the polar operator
on this outcome gives 0. That is, C◦◦ = 0. However, clC = ∅. Therefore, the formula does
not hold.

(b) Assume C 6= ∅.

• The inclusion C◦◦ ⊂ clC. For each x ∈ Rn \ cl C, one takes the point y in clC
that is closest to x; the existence of a closest point follows from the extreme value
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theorem, after addition of the constraint that y lies in some closed ball with center x

and containing a point of cl C (in order to ensure boundedness and so compactness
of the feasible set of the optimization problem); the uniqueness is not needed here, so
its proof is not given. Now we check that x− y ∈ C◦. By the minimality property of
y, we get that for all z ∈ C the function g : [0,+∞) → R : t 7→ ‖(y + tz)− x‖2 has a
local minimum at t = 0; therefore, g′(0) ≥ 0, and this gives 〈x− y, z〉 ≤ 0. This shows
that x− y ∈ C◦.
In order to prove that x 6∈ C◦◦, it suffices to show that 〈x − y, x〉 > 0. By the
minimality property of y, we get that the function h : [0,+∞) → R : t 7→ ‖ty − x‖2

has a local minimum at t = 1; therefore, h′(1) = 0, and this gives 〈x − y, y〉 = 0.
Therefore, 〈x − y, x〉 = 〈x − y, x − y〉 + 〈x − y, y〉 = ‖x − y‖2 and this is positive.
Indeed, x 6∈ clC and y ∈ clC, so x − y 6= 0 and so ‖x − y‖ > 0. It follows that
〈x− y, x〉 > 0, as required.

• The inclusion clC ⊂ C◦◦ follows immediately from the definitions.

2. • The inclusion (ΛC)◦ ⊂ (Λ′)−1(C◦). For each y ∈ (ΛC)◦ and each x ∈ C◦, one has 〈Λ′y, x〉 =
〈y, Λx〉 ≤ 0 and so y ∈ (Λ′)−1(C◦).

• The inclusion (Λ′)−1(C◦) ⊂ (ΛC)◦. For each y ∈ (Λ′)−1(C◦), and each x ∈ C one has
〈y, Λx〉 = 〈Λ′y, x〉 ≤ 0 and so y ∈ (ΛC)◦.

3. (a) Assume C̄ = ∅. Then the left hand side of the formula equals Rn, and the right hand side
equals cl(Λ′(Rm)), which is Im Λ′ = (kerΛ)⊥.

Therefore, the third formula holds precisely if (kerΛ)⊥ = Rn, that is, if ker Λ = 0.

(b) Assume C̄ 6= ∅. Then the formula follows immediately from the first two formulas:
(Λ−1clC̄)◦ = (Λ−1(C̄◦◦))◦ by the first formula, and this equals ((Λ′C̄◦)◦)◦ by the second
formula and by Λ′′ = Λ; this equals cl(Λ′(C̄◦)) by the first formula.

It remains to prove the last statement of the theorem.

Case a. Assume that riC̄ ∩ Im Λ 6= ∅, say, d̃ ∈ Rn with Λd̃ ∈ riC̄.

1. We check the formula Λ−1clC̄ = cl(Λ−1C̄).

• The inclusion cl(Λ−1C̄) ⊂ Λ−1clC̄. As C̄ ⊂ clC̄, one gets Λ−1C̄ ⊂ Λ−1clC̄. As clC̄ is
closed, Λ−1clC̄ is closed. It follows that cl(Λ−1C̄) ⊂ Λ−1(clC̄).

• The inclusion Λ−1clC̄ ⊂ cl(Λ−1C̄). Choose an arbitrary d ∈ Λ−1clC̄, then Λd ∈ clC̄ and
so (1 − α)Λd̃ + αΛd ∈ riC̄ ⊂ C̄ for all α ∈ (0, 1), that is (1 − α)d̃ + αd ∈ Λ−1C̄ for all
α ∈ (0, 1), and so taking the limit α ↑ 1 we get d ∈ cl(Λ−1C̄), as required.
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2. We check that the left hand side of formula 3. remains the same if the closure operator is omitted.
By what has just been proved, the left hand side of the third formula equals (cl(Λ−1C̄))◦, which
equals (Λ−1C̄)◦, as required.

3. We check that the right hand side of formula 3. remains the same if the closure operator is
omitted. That is, we check that the convex cone Λ′(C̄◦) is closed.To begin with, the convex
cone E = C̄ + R+(−Λd̃)—where R+ = [0,+∞)— is a subspace, by the following lemma, as the
intersection riE ∩ (−E) contains the element Λd̃, and so is nonempty.

Lemma 2.3 A convex cone C in Rn is a subspace precisely if riC ∩ (−C) 6= ∅.

Proof. If C is a subspace, then −C = C = riC 6= ∅, and so riC∩ (−C) = C 6= ∅. Conversely,
if c ∈ riC∩(−C), then we choose a neighborhood U in SpanC of c contained in C. Then the set
−c+U in SpanC is a neighborhood of zero in SpanC that is contained in C, as −c ∈ C, U ⊂ C,
and C is a convex cone; this implies, as C is a convex cone, that C = SpanC. Therefore, C is
a subspace.

We continue the proof of case a. The convex cone C̄ +Im Λ is a subspace, as E = C̄ +R+(−Λd̃)
is a subspace and −Im Λ = Im Λ. Taking the polar cone gives that C̄◦ ∩ ker Λ′ is a subspace.
Choose a closed convex cone containing zero D in Rn such that D + (C̄◦ ∩ ker Λ′) = C̄◦—and
so Λ′(C̄◦) = Λ′(D)—and D ∩ (C̄◦ ∩ ker Λ′) = 0, that is, D ∩ ker Λ′ = 0. Then Λ′(D) is closed
by lemma 2.2. Therefore, Λ′(C̄◦) is closed, as required.

Case b. We observe that polyhedral cones in Rm are precisely the convex cones of the form
(Λ̃Rp

+)◦ for some natural number p and some linear transformation Λ̃ : Rp → Rm. Moreover, finitely
generated convex cones containing zero in Rm are precisely the convex cones of the form Λ̃(Rp

+), for
some natural number p and some linear transformation Λ̃ : Rp → Rm

We will use the second statement of the following lemma.

Lemma 2.4 Let S be a subset of Rn and consider the convex cone containing zero C that is generated
by S.

1. (Carathéodory’s theorem). C consists of all conic combinations of linearly independent subsets
of S; that is, C is the union of the convex cones containing zero that are generated by linearly
independent subsets of S.

2. The convex cone C is closed if S is finite.

Proof.
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1. Choose x ∈ C. Let r be the minimal number for which x can be written as a conic combination
of a finite subset T of S of r elements, x =

∑
t∈T αtt, αt ≥ 0∀t ∈ T . Then T is linearly

independent. Otherwise, one could choose a nontrivial linear relation
∑

t∈T βtt = 0, and sub-
tract a suitable multiple of it from the expression for x above, in order to write x as a conic
combination of T \ {t̄} for some t̄ ∈ T ; this would contradict the minimality property of r.

2. To prove the second statement, it suffices to combine the following three facts: 1) the first state-
ment of the lemma, 2) the observation that the convex cone containing zero that is generated
by a linearly independent subset of Rn is closed, 3) the union of a finite collection of closed sets
is closed.

Thus prepared, we are ready to deal with case b. Assume that C̄ is a polyhedral cone. Choose a
natural number p and a linear transformation Λ̃ : Rp → Rm for which C̄ = (Λ̃(Rp

+))◦.

• We check that the left hand side of formula 3. remains the same if the closure operator is
omitted. It suffices to note that C̄ is closed, as it is the polar cone of some convex cone.

• We check that the right hand side of formula 3. remains the same if the closure operator is
omitted. The convex cone Λ′(C̄◦) equals Λ′((Λ̃(Rp

+))◦◦) by the equality C̄ = (Λ(Rp
+))◦. By for-

mula 1 of theorem 2.1, this equals Λ′(cl(Λ̃(Rp
+))). This equals Λ′Λ̃(Rp

+) by the second statement
of lemma 2.4. It follows that the right hand side of formula 3. cl(Λ′(C̄◦)) equals cl(Λ′Λ̃(Rp

+)).
This equals Λ′Λ̃(Rp

+) by the second statement of lemma 2.4. This equals Λ′(cl(Λ̃(Rp
+)) by the

second statement of lemma 2.4. This in its turn equals Λ′((Λ̃(Rp
+))◦◦) by the first formula of

theorem 2.1. Finally, this equals Λ′(C̄◦) by the equality C̄ = (Λ(Rp
+))◦, as required.

3 The three duality formulas for convex objects

In this section, the four fundamental types of convex objects will be generated automatically from
the consideration of suitable convex cones (‘deconification’). Conversely, to each convex object of one
of these four types, a convex cone will be associated (‘conification’), not uniquely, but without loss
of information. These constructions, given in proposition 3.1, are the base of the approach ‘conify,
work, deconify’. Thus the duality formulas for the four fundamental types of convex objects, given
in proposition 3.2, are a corollary of the results in the previous section.

The epigraph epif (resp. strict epigraph sepif) of a function f : Rn → R ∪ {±∞} is the subset
{(x, ρ)|ρ ≥ f(x), x ∈ Rn, ρ ∈ R} (resp. {(x, ρ)|ρ > f(x), x ∈ Rn, ρ ∈ R}). We will use that sepif is
contained in epif , and that they have the same closure. The notation R+ = [0,+∞), R++ = (0,+∞)
will be used. We consider the following two spaces with form: Rn × R with form 〈(x′, α′), (x, α)〉 =
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〈x′, x〉n −α′α, and Rn ×R×R with form 〈(x′, α′, β′), (x, α, β)〉 = 〈x′, x〉n −αβ′ −α′β. A set A ⊂ Rn

is called a convex set if α1x1 + α2x2 ∈ A for all αi > 0, xi ∈ A, i = 1, 2 for which α1 + α2 = 1. The
recession cone of a convex set A ⊂ Rn is the convex cone

0+A = {x ∈ Rn|R++x + A ⊂ A} = {x ∈ Rn|x + A ⊂ A}.

A function p : Rn → R ∪ {±∞} is called a sublinear function if, in the first place, p(α1x1 + α2x2) ≤
α1p(x1)+α2p(x2) for all αi > 0, xi ∈ Rn, i = 1, 2 for which {p(x1), p(x2)} 6= {+∞,−∞}, and, in the
second place, p(0) = 0 or p(0) = −∞. A function f : Rn → R ∪ {±∞} is called a convex function
if f(α1x1 + α2x2) ≤ α1f(x1) + α2f(x2) for all αi > 0, xi ∈ Rn, i = 1, 2 for which α1 + α2 = 1 and
{f(x1), f(x2)} 6= {+∞,−∞}. The recession function of a convex function f : Rn → R∪{±∞} is the
sublinear function f0+ on Rn defined by epi(f0+) = 0+(epif).

Proposition 3.1 Characterization of convex objects in terms of convex cones. We consider four
examples of the following procedure.

• Deconification. For each nonnegative integer n, a set Cn of nonempty convex cones—called
conifications—in a vector space Cn—called conification space—with form 〈·, ·〉 is chosen. Then,
for each convex cone C ∈ Cn, an ‘object’ O(C)—called the deconification of C—is defined.
Finally, an internal characterization of the set On of objects O(C), where C runs over Cn, is
given.

• Conification. Conversely, for each convex object O ∈ On, two convex cones Cl(O) and Cu(O)
belonging to Cn are defined, having the following properties: Cl(O) is contained in Cu(O), they
have the same closure, and for each C ∈ Cn one has O(C) = O—called C is a conification of
O—precisely if Cl(O) ⊂ C ⊂ Cu(O).

1. Convex sets with recession.

• Deconification. To each convex cone C ⊂ Rn × R for which 0 ∈ C ⊂ Rn × R+, the pair
(A(C), A0(C) is associated, consisting of

A(C) = {x ∈ Rn|(x, 1) ∈ C} and A0(C) = {x ∈ Rn|(x, 0) ∈ C}.

The pairs (A,A0) that arise in this way—called convex sets in Rn with recession—are
precisely the pairs consisting of a convex set A ⊂ Rn and a convex cone A0 ⊂ Rn containing
zero and contained in the recession cone 0+A of A.

• Conification. For each convex set in Rn with recession (A,A0), we define

Cl(A,A0) = Cu(A,A0) = C(A,A0) = (R++(A× 1)) ∪ (A0 × 0).
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2. Sublinear functions.

• Deconification. To each convex cone C ⊂ Rn × R for which C ⊃ R++(0n, 1), the function
p(C) : Rn → R ∪ {±∞} is associated, where

p(C)(x) = inf{ρ ∈ R|(x, ρ) ∈ C}

for all x ∈ Rn. The functions p : Rn → R ∪ {±∞} that arise in this way are precisely the
sublinear functions on Rn

• Conification. For each sublinear function p, we define

Cl(p) = sepip and Cu(p) = epip.

3. Convex functions with recession.

• Deconification. To each convex cone C ⊂ Rn × R × R for which R++(0n, 1, 0) ⊂ C ⊂
Rn × R× R+, a pair (f(C), f0(C)) of functions Rn → R ∪ {±∞} is associated, where

f(C)(x) = inf{ρ ∈ R|(x, ρ, 1) ∈ C}

and
f0(C)(x) = inf{ρ ∈ R|(x, ρ, 0) ∈ C}

for all x ∈ Rn. The pairs (f, f0) that arise in this way—called convex functions with
recession—are precisely the pairs for which f : Rn → R ∪ {±∞} is a convex function
and f0 : Rn → R is a sublinear function for which f0 ≥ f0+, where f0+ is the recession
function of f .

• Conification. For each convex function with recession (f, f0) we define

Cl(f, f0) = C(sepif, sepif0)) and Cu(f, f0) = C(epif, epif0)).

4. Convex cones containing zero. For convex cones in Rn containing zero, the deconification and
conification operators are the identical operators.

Remark 1. For each convex cone A0 in Rn containing zero, the pair (∅, A0) is a convex set with
recession. Moreover, for each sublinear function f0 on Rn, the pair (+∞, f0), where +∞ denotes the
function on Rn that is identically +∞, is a convex function with recession.

Remark 2. A more intuitive description of the four types above can be given as follows. A
convex set with recession, (A,A0), can be viewed as one set, the elements of which are the points of
A and the rays of A0 (representing some of the recession directions of A). A convex function with
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recession, (f, f0), can be viewed as one function: consider the set, the elements of which are the
points of Rn and the rays of Rn, and then consider the function on this set defined by x 7→ f(x) for
all x ∈ Rn and R++x 7→ ‖x‖−1f0(x) for all rays R++x. A convex cone containing zero, C, can be
viewed as one set, the elements of which are the rays of C. A sublinear function p can be viewed as
the function on the set of rays in Rn, defined by R++x 7→ ‖x‖−1p(x) for all rays R++x.

Proof.

1. Convex sets with recession.

• Deconification. Let C ⊂ Rn × R be a convex cone for which 0 ∈ C ⊂ Rn × R+.

– We check that A(C) is a convex set. For all αi > 0, xi ∈ A(C), i = 1, 2 for which
α1+α2 = 1, one has (α1x1+α2x2, 1) = α1(x1, 1)+α2(x2, 1) ∈ C, as (xi, 1) ∈ A(C)×1 ⊂
C, i = 1, 2 and C is a convex cone. Therefore, (α1x1 + α2x2, 1) ∈ C ∩ (Rn × 1) =
A(C)× 1. That is, α1x1 + α2x2 ∈ A(C).

– We check that the two given definitions of 0+A are equivalent. For this, it suffices to
prove that αx + a ∈ A for each choice of an element x ∈ Rn for which x + A ⊂ A,
an element a ∈ A and a number α > 0. Let r be the nonnegative integer for which
r ≤ α ≤ r+1. By repeated application of x+A ⊂ A, it follows that rx+a, (r+1)x+a ∈
A. The element αx + a is a convex combination of rx + a and (r + 1)x + a: indeed,
αx + a = (r + 1− α)(rx + a) + (α− r)((r + 1)x + a), and so, as A is a convex set, we
obtain αx + a ∈ A.

– We check that 0+A is a convex cone containing zero. One has 0 + A ⊂ A, and for all
αi > 0, xi ∈ 0+A, i = 1, 2 one has α1x1 + α2x2 + A ⊂ A, that is, α1x1 + α2x2 ∈ 0+A.

– We check the stated properties of A0(C). A0(C) is a convex cone containing zero as
A0(C)× 0 is the intersection of two convex cones containing zero, C and Rn × 0. The
inclusion A0(C) ⊂ 0+A(C) holds as for each x ∈ A0(C) and each y ∈ A(C), one has
(x, 0) ∈ C and (y, 1) ∈ C and so (x + y, 1) = (x, 1) + (y, 0) ∈ C as C is a convex cone.
Therefore, (x + y, 1) ∈ C ∩ (Rn × 1) = A(C)× 1. That is, x + y ∈ A(C).

• Conification. Let (A,A0) be a convex set in Rn with recession. By definition, 0 ∈
C(A,A0) ⊂ Rn × R+.

– We check that C(A,A0) belongs to Cn. By definition, C(A,A0) ⊂ Rn × R+. It
remains to check that C(A,A0) is a convex cone. For this, it suffices, by the definition
of C(A,A0), to check that α1v1 + α2v2 ∈ C(A,A0) for all αi > 0, i = 1, 2 and each
pair of elements v1, v2 ∈ C(A,A0) of one of the following three types:

(a) vi = (xi, 1), i = 1, 2, so xi ∈ A, i = 1, 2; then α1v1 + α2v2 = (α1 + α2)(α1(α1 +
α2)−1x1+α2(α1+α2)−1x2, 1), and so, as A is a convex set, α1v1+α2v2 ∈ R++(A×
1). Therefore, α1v1 + α2v2 ∈ C(A,A0).
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(b) vi = (xi, 0), i = 1, 2, so xi ∈ A0, i = 1, 2; then α1v1 +α2v2 = (α1x1 +α2x2, 0) and
so, as A0 is a convex cone, α1v1+α2v2 ∈ A0×0. Therefore, α1v1+α2v2 ∈ C(A,A0).

(c) v1 = (x1, 1), v2 = (x2, 0), so x1 ∈ A, x2 ∈ A0; then α1v1 +α2v2 = α1(x1 + α2
α1

x2, 1);
and so, as A0 ⊂ 0+A, one has α1v1+α2v2 =∈ R++(A×1). Therefore, α1v1+α2v2 ∈
C(A,A0).

– We have that C(A,A0) ∈ Cn and, by definition, C(A,A0) ∩ (Rn × 1) = A × 1 and
C(A,A0)∩(Rn×0) = A0×0. For a convex cone C ∈ Cn, the condition O(C) = (A,A0)
means that C ∩ (Rn× 1) = A× 1 and C ∩ (Rn× 0) = A0× 0. Now we use that convex
cones in Cn are determined by their intersections with the hyperplanes Rn × 1 and
Rn × 0. It follows that for convex cones C ∈ Cn, one has O(C) = (A,A0) precisely if
C = C(A,A0).

2. Sublinear functions.

• Deconification. Let C ⊂ Rn × R be a nonempty convex cone for which C ⊃ R++(0n, 1).

– We check that p(C) satisfies the defining inequality of sublinear functions. Take
arbitrary αi > 0, xi ∈ Rn, i = 1, 2 for which {p(C)(x1), p(C)(x2)} 6= {+∞,−∞}.
We want to verify the inequality p(C)(α1x1 + α2x2) ≤ α1p(C)(x1) + α2p(C)(x2). We
assume that p(C)(xi) < +∞, i = 1, 2 as we may: otherwise the inequality holds as
the right hand side is +∞. For all (xi, ρi) ∈ sepip(C) ⊂ C, i = 1, 2, one has, as C is a
convex cone, that α1(x1, ρ1)+α2(x2, ρ2) ∈ C ⊂ epip(C). That is, p(C)(α1x1+α2x2) ≤
α1ρ1 +α2ρ2. Taking the infimum over all ρi, i = 1, 2 for which (xi, ρi) ∈ sepip(C) i =
1, 2, we obtain the inequality p(C)(α1x1 + α2x2) ≤ α1p(C)(x1) + α2p(C)(x2).

– We check the stated property of p(C)(0). By the inequality that is just proved, with
x1 = x2 = 0, one gets that p(C)(0) equals 0,−∞ or +∞. As (0n, 1) ∈ C ⊂ epip(C),
we get that 1 ≥ p(C)(0), so p(C)(0) 6= +∞. Therefore, p(C)(0) equals 0 or −∞.

• Conification. Let p : Rn → R ∪ {±∞} be a sublinear function.

– We use that sepip is contained in epip, and that they have the same closure. It follows,
by definition of Cl(p) and Cu(p), that Cl(p) is contained in Cu(p), and that they have
the same closure.

– We check that Cl(p) is a convex cone. Choose arbitrary αi > 0, (xi, ρi) ∈ Cl(p), i =
1, 2. Then p(xi) > −∞, i = 1, 2, so {p1(x1), p(x2)} 6= {+∞,−∞}, so p(α1x1+α2x2) ≤
α1p(x1) + α2p(x2), as p is a sublinear function. Therefore, α1ρ1 + α2ρ2 > α1p(x1) +
α2p(x2) ≥ p(α1x1 + α2x2), that is, (α1x1 + α2x2, α1ρ1 + α2ρ2) ∈ sepip = Cl(p). It
follows that α1(x1, ρ1)+α2(x2, ρ2) = (α1x1 +α2x2, α1ρ1 +α2ρ2) is contained in Cl(p).

– We check that Cl(p) contains the convex cone R++(0n, 1). This follows from Cl(p) =
sepip and from p(0) = 0 or p(0) = −∞, which implies p(0) ≤ 0, that is, sepip contains
the convex cone R++(0n, 1).
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– The verifications that Cu(p) is a convex cone containing R++(0n, 1) are similar.

– It follows that Cl(p) = sepip and Cu(p) = epip belong to Cn. For a convex cone C ∈ Cn,
the condition O(C) = p means that sepip ⊂ C ⊂ epip, that is, Cl(p) ⊂ C ⊂ Cu(p).

3. Convex functions with recession.

• Deconification. Let C ⊂ Rn × R × R be a convex cone for which R++(0n, 1, 0) ⊂ C ⊂
Rn × R× R+.

– We check that f(C) is a convex function. Choose arbitrary αi > 0, xi ∈ Rn, i =
1, 2 for which α1 + α2 = 1 and {f(C)(x1), f(C)(x2)} 6= {+∞,−∞}. We want to
verify the inequality f(C)(α1x1 +α2x2) ≤ α1f(C)(x1)+α2f(C)(x2). We assume that
f(C)(xi) < +∞, i = 1, 2, as we may without restriction of the generality; otherwise,
the inequality holds, as the right hand side is +∞. For all ρi ∈ R, i = 1, 2 for which
(xi, ρi) ∈ sepif(C), i = 1, 2, one has (xi, ρi, 1) ∈ sepif(C) × 1 ⊂ C, i = 1, 2, and so,
one has, as C is a convex cone, that α1(x1, ρ1, 1) + α2(x2, ρ2, 1) ∈ C ∩ (Rn ×R× 1) ⊂
(epif(C)) × 1. That is, f(C)(α1x1 + α2x2) ≤ α1ρ1 + α2ρ2. Taking the infimum
over all ρi, i = 1, 2 for which (xi, ρi) ∈ sepif(C), i = 1, 2, we obtain the inequality
f(C)(α1x1 + α2x2) ≤ α1f(C)(x1) + α2f(C)(x2).

– We check that f0(C) satisfies the defining inequality of sublinear functions. We choose
arbitrary αi > 0, xi ∈ Rn, i = 1, 2 for which {f0(C)(x1), f0(C)(x2)} 6= {+∞,−∞}.
We want to verify the inequality f0(C)(α1x1+α2x2) ≤ α1f0(C)(x1)+α2f0(C)(x2). We
assume that f0(C)(xi) < ∞, i = 1, 2, as we may without restriction of the generality;
otherwise, the inequality holds, as the right hand side is +∞. For all ρi ∈ R, i = 1, 2
for which (xi, ρi) ∈ sepif0(C), i = 1, 2, one has (xi, ρi, 0) ∈ sepif0(C)× 0 ⊂ C ∩ (Rn×
0), i = 1, 2, and so, one has, as C is a convex cone, that α1(x1, ρ1, 0) + α2(x2, ρ2, 0) ∈
C ∩ (Rn×R× 0) ⊂ epif0(C)× 0. That is, f0(C)(α1x1 + α2x2) ≤ α1ρ1 + α2ρ2. Taking
the infimum over all ρi, i = 1, 2 for which (xi, ρi) ∈ sepif0(C), i = 1, 2, we obtain the
inequality f0(C)(α1x1 + α2x2) ≤ α1f0(C)(x1) + α2f0(C)(x2).

– We check that f0(C)(0) = 0 or f0(C)(0) = −∞. By the inequality that is just proved,
with x1 = x2 = 0, one gets that f0(C)(0) equals 0,−∞ or +∞. As (0n, 1, 0)) ∈
C ∩ (Rn × R × 0) ⊂ epif0(C), we get 1 ≥ f0(C)(0), so f0(C)(0) 6= +∞. Therefore,
f0(C)(0) equals 0 or −∞.

• Conification. Let (f, f0) be a convex function on Rn with recession.

– We use that sepif (resp. sepif0) is contained in epif (resp. epif0) and that they have
the same closure. It follows, by the definitions of Cl(f, f0) and Cu(f, f0), that Cl(f, f0)
is contained in Cu(f, f0), and that they have the same closure.
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– We check that Cl(f, f0) (resp. Cu(f, f0)) belongs to Cn. This verification can be
reduced to what has been proved already for convex sets with recession by means of
the equality Cl(f, f0) = C(sepif, sepif0) (resp. Cu(f, f0) = C(epif, epif0)).

– We have that Cl(f, f0) and Cu(f, f0) belong to Cn and, by definition, Cl(f, f0)∩ (Rn×
R× 1) = sepif , Cl(f, f0)∩ (Rn×R× 0) = sepif0, Cu(f, f0)∩ (Rn×R× 1) = epif , and
Cu(f, f0) ∩ (Rn × R × 0) = epif0. For convex cones C ∈ Cn, one has O(C) = (f, f0)
precisely if sepif×1 ⊂ C∩(Rn×R×1) ⊂ epif×1 and sepif0×0 ⊂ C∩(Rn×R×0) ⊂
epif0 × 0. Now we use that convex cones that belong to Cn are determined by their
intersections with the hyperplanes Rn × R × 1 and Rn × R × 0. It follows that for
convex cones C ∈ Cn, one has O(C) = (f, f0) precisely if Cl(f, f0) ⊂ C ⊂ C(f, f0).

The following proposition gives the result of transferring some concepts from convex cones to
convex objects. We need some definitions. Sometimes we indicate the dependence of Cn and Cn on
the type O by writing Cn(O) and Cn(O) instead. For each function f : Rn → R ∪ {±∞} and each
subset S ⊂ Rn, the restriction of f to S is denoted by f |S . The effective domain domf of a function
f : Rn → R ∪ {±∞} is the set {x ∈ Rn|f(x) < +∞}. This is a convex set (resp. a convex cone) if f

is a convex function (resp. a sublinear function). We let clA denote the topological closure in Rn of a
convex set A ⊂ Rn and we let clf be the function Rn → R∪{±∞} determined by epi(clf) = cl(epif)
for a convex function f : Rn → R ∪ {±∞}. The linear transformation Rn+s → Rm+s, s = 0, 1, 2
defined by operating with Λ on the first n coordinates and by acting by the identity operator on the
other s coordinates, is again denoted by Λ.

Proposition 3.2 1. For each type of convex objects O, there is a unique type OD—called the dual
type of O—for which C◦ ∈ Cn(OD) for all C ∈ Cn(O). Explicitly, ‘convex cones’ and ‘convex
functions with recession’ are self dual, ‘sublinear functions’ and ‘convex sets with recession’ are
each others dual type.

2. Let Λ : Rn → Rm be a linear transformation, O one of the four fundamental classes and O

(resp. Ō) a convex object of type O over Rn (resp. Rm). Choose a convex cone C in Cn (resp.
C̄ in Cm) for which O(C) = O (resp. O(C̄) = Ō). The following concepts are independent of
the choice of C (resp. C̄):

(a) Duality operator. The object OD of type OD over Rn—called the dual object of O—that
is defined by OD = O(C◦). Explicitly:

i. convex cones containing zero C: CD = C◦, where the convex cone C◦—the polar
cone—is defined by {y ∈ Rn|〈y, x〉 ≤ 0 ∀x ∈ C};

ii. convex sets with recession (A,A0): (A,A0)D = sA|A◦
0
, where the sublinear function

sA—the support function of A—is defined by (sA)(y) = sup{〈y, x〉|x ∈ A} for all
y ∈ Rn;
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iii. sublinear functions p: pD = (∂p, (domp)◦), where the convex set ∂p—the subdifferential
of p—is defined by {y ∈ Rn|〈y, x〉 ≤ p(x) ∀x ∈ Rn};

iv. convex functions with recession (f, f0): (f, f0)D = (f∗|∂f0 , s(domf)|(domf0
)◦), where

the convex function f∗—the conjugate function (or Legendre-Fenchel transform)—is
defined by f∗(y) = sup{〈y, x〉 − f(x)|x ∈ Rn} for all y ∈ Rn.

(b) Closure. The object clO of type O over Rn—called the closure of O—that is defined by
clO = O(clC). Explicitly:

i. convex sets with recession (A,A0): cl(A,A0) equals (clA, 0+clA) if A 6= ∅ and it equals
(∅, clA0) if A = ∅;

ii. convex functions with recession (f, f0): cl(f, f0) = (clf, (clf)0+) if f 6≡ +∞ and it
equals (+∞, clf0) if f ≡ +∞;

iii. for cones containing zero and sublinear functions, the unified definition of closure
agrees with the usual one;

(c) Image. The object ΛO of type O over Rm—called the image of O under Λ—that is defined
by ΛO = O(ΛC).

(d) Inverse image. The object Λ−1Ō of type O over Rn—called the inverse image of Ō under
Λ—that is defined by Λ−1O = O(Λ−1C̄).

Remark. We emphasize a special case of interest. Statement 2.(a)iv shows that the dual-
ity operator on convex functions defined by the conification method—conify, take the polar cone,
deconify—is different from the usual duality operator, the Legendre-Fenchel transform for improper
convex functions (other than the trivial ones: the function that is identically +∞ and the function
that is identically −∞). Moreover, this statement shows that the two duality operators agree for
proper convex functions. We will see later that the duality operator defined by conification has ad-
vantages over the usual one (see the remark following theorem 3.4).

The explicit versions for images and inverse images are the obvious ones—for example Λ(A,A0) =
(ΛA,ΛA0) for convex sets with recession—and have not been displayed in the result above.

Proof.

1. The property of convex cones in Rn to contain zero is preserved by taking polar cones. The
polar cone operator interchanges the properties of nonempty convex cones in Rn × R to be
contained in Rn ×R+ and to contain R++(0n, 1). The property of convex cones in Rn ×R×R
to be contained in Rn × R× R+ and to contain R++ is preserved by the polar cone operator.

2. (a) Duality operator. The equality O(C) = O gives, by proposition 3.1, the inclusions Cl(O) ⊂
C ⊂ Cu(O). Taking closures and using clCl(O) = clCu(O) gives clCl(O) = clC = clCu(O).
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Taking polar cones, and using that a convex cone has the same polar cone as its closure,
that Cl(O)◦ = C◦ = Cu(O)◦. Therefore, OD = O(C◦) is independent of the choice of C.

i. Convex cones C. There is nothing to check here.

ii. Convex sets with recession (A,A0). It suffices to check the equality C(A,A0)◦ =
C(sA|A0). For an element (y, β) ∈ Rn × R to belong to C(A,A0)◦ means that
〈(y, β), (x, α)〉 ≤ 0 for all (x, α) ∈ C(A,A0). By the definition of C(A,A0), this
amounts to the conditions 〈(y, β), (x, 1)〉 = 〈y, x〉n − β ≤ 0 for all x ∈ A, and
〈(y, β), (x, 0)〉 = 〈y, x〉n ≤ 0 for all x ∈ A0. This can be formulated as follows:
(y, β) ∈ epi(sA) and y ∈ A◦0. That is, (y, β) is an element of epi(sA|A◦

0
), that is, of

C(sA|A0).

iii. Sublinear functions p. It suffices to check the equality Cu(p)◦ = C(∂p, (domp)◦).
For an element (y, β) ∈ Rn × R to belong to Cu(p)◦ means that 〈(y, β), (x, α)〉 ≤ 0
for all (x, α) ∈ Cu(p). By the definition of Cu(p), this amounts to the condition
〈(y, β), (x, α)〉 = 〈x, y〉n − βα ≤ 0 for all (x, α) ∈ epip. For β = 1 this reduces
to 〈y, x〉n ≤ α for all (x, α) ∈ epip, that is, y ∈ ∂p. For β = 0 this reduces to
〈y, x〉n ≤ 0 for all (x, α) ∈ epip, that is, y ∈ (domp)◦. That is, (y, β) is an element of
C(∂p, (domp)◦).

iv. Convex functions with recession (f, f0). It suffices to check the equality Cu(f, f0)◦ =
C(f∗|∂f0 , s(domf)|domf0). For an element (y, β, δ) ∈ Rn×R×R to belong to Cu(f, f0)◦

means that 〈(y, β, δ), (x, α, γ)〉 ≤ 0 for all (x, α, γ) ∈ Cu(f, f0). By the definition of
C(f, f0), this amounts to the conditions 〈(y, β, δ), (x, α, 1)〉 = 〈y, x〉n − β − δα ≤ 0 for
all (x, α) ∈ epif , and 〈(y, β, δ), (x, α, 0) = 〈y, x〉n − δα ≤ 0 for all (x, α) ∈ epif0. For
δ = 1 this reduces to β ≥ 〈y, x〉n − α for all (x, α) ∈ epif , that is, (y, β) ∈ epif∗, and
α ≥ 〈y, x〉n for all (x, α) ∈ epif0, that is, y ∈ ∂f0; these conditions can be written as
(y, β) ∈ epi(f∗|∂f0). For δ = 0 this reduces to β ≥ 〈y, x〉n for all (x, α) ∈ epif , that
is, (y, β) ∈ epis(domf), and 〈y, x〉n ≤ 0 for all (x, α) ∈ epif0, that is, y ∈ (domf0)◦;
these conditions can be written as (y, β) ∈ epi(s(domf)|(domf0

)◦). In all, we obtain
that (y, β, δ) ∈ C(f∗|∂f0 , s(domf)|(domf0)◦).

(b) Closure. The equality O(C) = O gives, again, clCl(O) = C = Cu(O). Therefore, clO =
O(clC) is independent of the choice of C.

i. Convex sets with recession (A,A0). It suffices to check that clC(A,A0) is equal to
C(clA, 0+clA) if A 6= ∅ and that it equals C(∅, clA0) if A = ∅.
• The case A = ∅. Then clC(A,A0) = cl(A0 × 0) = (clA0) × 0 = C(∅, clA0), as

required.

• The case A 6= ∅.
– We check the inclusion clC(A,A0) ⊂ C(clA, 0+clA). We take an arbitrary ele-

ment (x, ρ) ∈ clC(A,A0). We choose an infinite sequence (xk, ρk)k in C(A,A0)
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that converges to (x, ρ). If ρ > 0, then it suffices to show that ρ−1x ∈ clA, as
this implies (x, ρ) = ρ(ρ−1x, 1) ∈ R++(clA × 1) ⊂ C(clA, 0+clA). We assume
that ρk > 0 for all k as we may by going over to a suitable subsequence. Then,
for each k we have (xk, ρk) ∈ R++(A× 1), and so ρ−1

k xk ∈ A. Taking the limit
k → +∞ gives ρ−1x ∈ clA, as required. If ρ = 0, then it suffices to show that
x ∈ 0+clA, as this implies (x, ρ) = (x, 0) ∈ 0+clA × 1 ⊂ C(clA, 0+clA). We
distinguish two cases:

∗ ρk = 0 for at most finitely many k; we assume that ρk > 0 for all k, as
we may by going over to a suitable subsequence. Then for all k one has
(ρ−1

k xk, 1) ∈ C(A,A0) ∩ ((Rn × 1) = A × 1, that is ρ−1
k xk ∈ A. We take an

arbitrary a ∈ A, and choose an infinite sequence (ak)k in A that converges to
a. Then a+x = limk→+∞( 1

1+ρk
ak + ρk

1+ρk
(ρ−1

k xk)) ∈ clA. Therefore, x ∈ 0+A,
as required.

∗ ρk = 0 for infnitely many k; we assume that ρk = 0 for all k, as we may by
going over to a suitable subsequence. Then for all k one has xk ∈ A0 ⊂ 0+A.
We take an arbitrary a ∈ clA and choose an infinite sequence (ak)k in A that
converges to a. Then a + x = limk→+∞ ak + xk. One has for each k that
ak + xk ∈ A as ak ∈ A and xk ∈ 0+A. Therefore, a + x ∈ clA.

– We check the inclusion C(clA, 0+clA) ⊂ clC(A,A0). We take an arbitrary ele-
ment (x, ρ) ∈ C(clA, 0+clA). If ρ > 0, then (ρ−1x, 1) ∈ (Rn×1)∩C(clA, 0+clA) =
clA × 1, and so ρ−1x ∈ clA. We choose an infinite sequence (yk)k in A that
converges to ρ−1x. Then (x, ρ) = limk→+∞(ρyk, ρ) and so (x, ρ) ∈ clC(A,A0).
If ρ = 0, then we choose a ∈ A. We have (x, ρ) = (x, 0) = limk→+∞(k−1a +
x, k−1) = limk→+∞ k−1(a + kx, 1). As a ∈ A and x ∈ 0+clA, we have for all k

that a + kx ∈ clR++(clA × 1) ⊂ cl(R++(A × 1) ⊂ clC(A,A0). It follows that
(x, ρ) ∈ clC(A,A0).

ii. Convex functions with recession (f, f0). It suffices to check that clC(f, f0) equals
C(clf, (clf)0+) if f 6≡ +∞ and that it equals C(+∞, clf0) if f ≡ +∞. These state-
ments follow immediately from the explicit formulas for cl(A,A0) by virtue of the
defining formula Cu(f, f0) = C(epif, epif0). definition of C(f, f0).

iii. Convex cones containing zero and sublinear functions. These statements follow im-
mediately from the definitions.

(c) Image. For convex sets with recession and convex cones, this follows immediately from the
definitions and for convex functions with recession and sublinear functions, this follows
from the inclusions sepiΛf ⊂ Λ(sepif) ⊂ Λ(epif) ⊂ epiΛf .

(d) Inverse image. For convex sets with recession and convex cones, this follows immediately
from the definitions and for convex functions with recession and sublinear functions, this
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follows from the inclusions sepiΛ−1f̄ ⊂ Λ−1(sepif̄) ⊂ Λ−1(epif̄) ⊂ epiΛ−1f̄ .

A convex object is called closed if it is equal to its closure.

Proposition 3.3 Each closed convex object has a unique closed conification. Explicitly, the unique
closed convex cones corresponding to closed convex objects are as follows:

1. for a closed convex set with recession (A,A0), it is C(A,A0);

2. for a closed sublinear function p, it is Cu(p);

3. for a closed convex function with recession (f, f0), it is Cu(f, f0).

Proof. This is a consequence of the propositions 3.1. and 3.2.

Now we are ready to give the main result on convex objects. The relative interior riA of a convex
set is the interior of A, when A is regarded as a subset of its affine hull; this is a convex set. The
usual definitions of polyhedrality of convex objects are that a convex set A is called polyhedral if it is
the intersection of a finite collection of closed half spaces; a convex function f is called polyhedral if
its epigraph is a polyhedral convex set. The unified definition is that a closed convex object is called
a polyhedral convex object if its closed conification is a polyhedral cone. Explicitly, a closed convex
set with recession (A,A0) is polyhedral if A and A0 are polyhedral, a closed convex function with
recession (f, f0) is polyhedral if f and f0 are polyhedral. For convex cones and sublinear functions,
the unified definition of polyhedrality agrees with the usual one.

Theorem 3.4 Let O be one of the four fundamental classes of convex objects. Let Λ : Rn → Rm be
a linear transformation, let O (resp. Ō) be a convex object of type O over Rn (resp. Rm). Then the
following formulas hold true :

1. ODD = clO,

2. (ΛO)D = (Λ′)−1(OD),

3. (Λ−1clŌ)D = cl(Λ′(ŌD)).

Both sides of formula 3. remain the same if the closure operator is omitted, provided one of the
following two assumptions holds true:

a. In the case of convex sets (and so of convex cones): if Ā 6= ∅, then riĀ∩ Im Λ 6= ∅, if Ā = ∅,
then riĀ0∩Im Λ 6= ∅; in the case of convex functions and (and so of sublinear functions): if f̄ 6≡ +∞,
then ridomf̄ ∩ Im Λ 6= ∅, if f̄ ≡ +∞, then ridomf̄0 ∩ Im Λ 6= ∅

b. Ō is a polyhedral object.
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Remark. A special case of interest of this result concerns convex functions. The first statement
of this result means that the duality formula for convex functions holds for all convex functions,
proper as well as improper, if we define the duality operator on convex functions by means of the
conification method: conify, take the polar cone, deconify. From proposition 3.2 2. (a)iv, it follows
that this duality operator equals the usual duality operator, the Legendre-Fenchel transform, for
proper convex functions, but not for improper convex functions (except the convex functions that are
identically +∞ or −∞. As many results from Convex Analysis depend on the duality formula for
convex functions, it follows that in this way one gets satisfactory versions of these results, without
the need to exclude certain special cases.

Proof.

1. Choose a convex cone C ∈ Cn for which O(C) = O. By theorem 2.1, one has C◦◦ = clC.
Moreover, one has O(C◦◦ = O(C◦)D = O(C)DD = ODD and O(clC) = clO(C) = clO. It
follows that ODD = clO.

2. Choose a convex cone C ∈ Cn for which O(C) = O. By theorem 2.1, one has (ΛO)D =
(Λ′)−1OD. Moreover, one has O((ΛC)◦) = O(ΛC)D = (Λ(O(C)))D = (ΛO)D and O((Λ′)−1(C◦) =
(Λ′)−1O(C◦) = (Λ′)−1O(C)D = (Λ′)−1(OD). It follows that (ΛO)D = (Λ′)−1(OD).

3. Choose a convex cone C̄ ∈ Cm for which O(C̄) = Ō. By theorem 2.1 one has (Λ−1clC̄)◦ =
cl(cl)((Λ′)C̄D). Moreover, one has

O(Λ−1clC̄)◦ = (O(Λ−1clC̄))D = (Λ−1O(clC̄)) = (Λ−1clO(C̄))D = (Λ−1clŌ)D

and Ocl(Λ′(C̄◦)) = clO((Λ′(C̄◦)) = clΛ′O(C̄◦) = clΛ′(O(C̄)D) = cl(Λ′ŌD).

It remains to translate the conditions in theorem 2.1 that imply that the closure operation may
be omitted in the third formula from convex cones to convex objects. For the second condition this
is clear. Now we do the first condition. Let C̄ ∈ Cm be a convex cone for which O(C̄) = Ō. In the
case of convex sets with recession, Ō = (Ā, Ā0), we have C̄ = C(Ā, Ā0). Therefore, the condition
is Im Λ ∩ riC(Ā, Ā0) 6= ∅. The relative interior of C(A,A0) equals R++(riA × 1) if Ā 6= ∅ and it
equals riA0 × 0 if A = ∅. Translation of this condition gives : if A 6= ∅, then riĀ ∩ Im Λ 6= ∅, if
A = ∅, then riĀ0 ∩ Im Λ 6= ∅. In the case of convex functions with recession, Ō = (f̄ , f̄0), we can
take C̄ = Cu(f̄ , f̄0) = C(epif, epif0). Therefore, the condition is Im Λ∩ riCu(f, f0) 6= ∅. The relative
interior of Cu(f, f0) equals the relative interior of C(sepi(f |ridom), sepi(f0|ridom)); here we use the easy
fact that a convex function is continuous on the relative interior of its domain. Using what we have
proved above for convex sets with recession, we get that the condition translates into: if f 6≡ +∞,
then ridomf̄ ∩ Im Λ 6= ∅, if f̄ ≡ +∅, then ridomf̄0 ∩ Im Λ 6= ∅
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Remark The following subclasses of convex objects are of special interest.

1. Self dual subclasses. The classes ‘convex sets with recession’ and ‘sublinear functions’ are each
others dual. The following subclass of the convex sets with recession (resp. sublinear functions)
is dual to itself: convex sets containing zero with recession (B,B0) and nonnegative sublinear
functions (or gauges or generalized norms) n. Indeed, for both subclasses, the corresponding
convex cones are the convex cones C ⊂ Rn×R that are contained in the closed halfspace Rn×R+

and that contain the convex cone generated by (0n, 1); the polar operator acts on this collection
of convex cones. The explicit expressions for the polar operators is as follows: (B,B0)D is equal
to (B◦, (0+B)◦), where the polar set B◦ is defined by {y ∈ Rn|〈x, y〉 ≤ 1∀x ∈ B} and where B◦

0

is the polar cone of B0; nD = n∗, where the dual gauge n∗ is defined by n∗(y) is the smallest
element in [0,+∞] for which 〈y, x〉 ≤ n∗(y)n(x) for all x ∈ Rn.

2. Linear subspaces. For the subclass of convex cones, consisting of the subspaces, the duality op-
erator reduces to the orthogonal complement operator, and the closure operator in the formulas
of theorem 3.6 can be omitted as all subspaces of Rn are closed.

3. Polyhedral convex objects. It can be shown that the property ‘polyhedrality’ of a convex object
is preserved under the duality operators and under taking images and inverse images of linear
transformations.

4 Duality of binary operations on convex objects

The aim of this section is to formalize the procedure to construct the binary operations on convex
objects given in [R], but to avoid the exclusion of exceptional cases; moreover, a simple unified proof
of the duality formulas for binary operations, including some new formulas, is given.

Consider the special linear transformations +n : Rn × Rn → Rn : (x1, x2) 7→ x1 + x2 and
∆n : Rn → Rn × Rn : x 7→ (x, x).

Lemma 4.1 The linear operators +n and ∆n are dual to each other: (+n)′ = ∆n and (∆n)′ = +n.

Proof. To prove this lemma, it suffices to show that (x1, x2) has the same inner product with
(+n)′y as with ∆ny: for all x1, x2, y ∈ Rn: indeed, 〈(x1, x2), (+n)′y〉 equals 〈∆n(x1, x2), y〉, by
definition of the dual linear transformation; this equals 〈x1 + x2, y〉; moreover, 〈(x1, x2),∆ny〉 =
〈(x1, x2), (y, y)〉 = 〈x1, y〉+ 〈x2, y〉.

The two well-known binary operations on convex cones in Rn containing zero can be expressed in
terms of these linear transformations as follows: C1+C2 = +n(C1×C2) and C1∩C2 = ∆−1

n (C1×C2).
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If a factorization of the given vector space as a product of r factors is chosen, say, Rn =
∏r

i=1 Rni

with n =
∑r

i=1 ni, then this gives a factorization Rn×Rn =
∏r

i=1 Rni ×Rni . Then one gets 2r binary
operations �ω on the convex cones in Rn by considering one of the 2r sequences ω of r minus (−)
and plus (+) symbols, and by acting on the i-th factor Rni × Rni of Rn × Rn (1 ≤ i ≤ r) by +ni if
ωi = + and by ∆−1

ni
if ωi = −. The definition of the convex cone containing zero C1�ω C2 ⊂ Rn—for

all convex cones containing zero Cj ⊂ Rn, j = 1, 2 and each sequence ω of r minus (−) and plus
(+) symbols—can be given in the following explicit form. We denote for each x ∈ Rn its projection
on the i-th factor of Rn by x(i) ∈ Rni (1 ≤ i ≤ r). For all elements x(j) ∈ Cj , j = 1, 2 for which
x(1)(i) = x(2)(i) for all i ∈ {1, . . . , r} for which ωi = −, we define the element x(1) �ω x(2) ∈ Rn

by (x(1) �ω x(2))(i) = x(1)(i) + x(2)(i) if ωi = + and (x(1) �ω x(2))(i) = x(1)(i) = x(2)(i) if ωi = −.
Then C1 �ω C2 ⊂ Rn is defined to consist of all elements x(1) �ω x(2) ∈ Rn that arise in this way.
These binary operations �ω on convex cones in Rn are commutative and associative. For a type
of convex objects O and a natural number n, the standard factorization—into s + 1 factors—of the
conification space Cn(O) = Rn+s is Rn × R × R if s = 2, it is Rn × R if s = 1 and it is Rn if s = 0.
For later use, the binary operation resulting from replacing in ω each choice of + by −, and vice
versa, is denoted by ωd. Note that ωdd = ω. The following binary operations will arise automatically
by means of this construction: 1) on convex sets: intersection, sum, convex hull of the union, and
Kelley sum (defined by A1 � A2 = ∪0≤α≤1(αA1 ∩ (1 − α)A2)); 2) on convex functions: maximum,
sum (with the convention ∞+ (−∞) = −∞), convex hull of the minimum, convolution (defined by
f1 ⊕ f2(x) = inf{f1(x1) + f1(x2)|xj ∈ Rn, j = 1, 2, x = x1 + x2}).

To construct binary operations on convex objects, we apply again the procedure of proposition
3.2.

Proposition 4.2 Let O be one of the four fundamental types of convex objects, let n be a natural
number, let the conification space Cn(O) be Rn+s, and let ω be a sequence of s + 1 minus and plus
symbols. Let Oi, i = 1, 2 be convex objects of type O over Rn. Choose convex cones Ci ∈ Cn(O), i =
1, 2 for which O(Ci) = Oi, i = 1, 2. Then the following statements hold true.

1. C1 �ω C2 ∈ Cn(O).

2. O(C1 �ω C2) is a convex object of type O over Rn that is independent of the choices of Ci, i =
1, 2.

3. The binary operation (O1, O2) 7→ O1�ω O2 = O(C1�ω C2) on the convex objects of type O over
Rn is commutative and associative.

4. Explicit formulas for the binary operations.

(a) Convex sets with recession. (A(1), A0(1))�ω (A(2), A0(2)) equals
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i. (A(1) ∩A(2), A0(1) ∩A0(2)) if ω = (−−);

ii. (A(1) + A(2), A0(1) + A0(2)) if ω = (+−);

iii. ((A(1)co ∪A(2)) ∪ (A(1) + A0(2)) ∪ (A0(1) + A(2)), A0(1) + A0(2)) if ω = (++);

iv. ((A(1) � A(2)) ∪ (A(1) ∩A0(2)) ∪ (A0(1) ∩A(2)), A0(1) ∩A0(2)) if ω = (−+).

(b) Convex functions with recession. (f(1), f0(1))�ω (f(2), f0(2)) equals

i. (max(f(1), f(2)),max(f0(1), f0(2))) if ω = (−−−);

ii. (f(1) + f(2), f0(1) + f0(2)) if ω = (−+−);

iii. (f(1)⊕ f(2), f0(1)⊕ f0(2)) if ω = (+ +−);

iv. ((f(1)co ∧ f(2)) ∨ (f(1)⊕ f0(2)) ∨ (f0(1)⊕ f(2)), f0(1)⊕ f0(2)) if ω = (+ + +).

(c) Convex cones and sublinear functions. For convex cones one has the sum and the inter-
section; for sublinear functions, one has the maximum, the sum, the convolution, and the
convex hull of the minimum.

Proof.

1. To verify the inclusion C1 �ω C2 ∈ Cn(O), we consider each of the four types of convex objects
O separately.

(a) Convex cones contain zero. Then s = 0 and so r = s + 1 = 1. Choose x(j) = 0, j =
1, 2. Then x(j) ∈ Cj , j = 1, 2 as Cj ∈ Cn(O), j = 1, 2, and x(1) = x(2); moreover,
x(1)�ω x(2) = 0. Therefore, 0 ∈ C1 �ω C2. That is, C1 �ω C2 ∈ Cn(O).

(b) Convex sets with recession. Then s = 1 and so r = s + 1 = 2. Choose arbitrary x(j) ∈
Cj , j = 1, 2 for which x(1)(i) = x(2)(i) if i = −. Then x(j)(2) ≥ 0, j = 1, 2 and so
(x(1)�ω x(2))(2) ≥ 0. Therefore, C1 �ω C2 ∈ Cn(O).

(c) Sublinear functions. Then s = 1 and so r = s + 1 = 2. Choose x(j) = (0n, 1), j = 1, 2.
Then x(j) ∈ Cj , j = 1, 2 as Cj ∈ Cn(O), and x(1) = x(2). Moreover, x(1) �ω x(2) is a
positive scalar multiple of (0n, 1) (the scalar is 1 if ω2 = − and it is 2 if ω2 = +). Therefore,
(0n, 1) ∈ C1 �ω C2, and so C1 �ω C2 ∈ Cn(O).

(d) Convex functions with recession. Then s = 2 and so r = s + 1 = 3. To settle this case,
one has to establish the inclusions (0n, 1) ∈ C1 �ω C2 and C1 �ω C2 ⊂ Rn ×R×R+. The
first (resp. second) one of these inclusions can be verified in the same way as in the case
of sublinear functions (resp. convex sets with recessions).

2. The independence of O(C1 �ω C2) of the choices of Cj , j = 1, 2 follow from proposition 3.2 (c)
and (d).
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3. The commutativity and associativity of the binary operation �ω on convex objects of type O is
an immediate consequence of the same properties of the binary operation �ω on convex cones.

4. Now we display the calculations, without comment, for the verification of half of the formulas;
the verification of the other half is similar.

(a) Convex sets with recession. We recall that C(A,A0) = R++(A×1)∪(A0×0) = {ρ(x, 1)|ρ >

0, x ∈ A} ∪ {(x, 0)|x ∈ A0}. For each ω, we want to compute u1 �ω u2 for all ui ∈
C(A(i), A0(i)), i = 1, 2. We have to distinguish four cases:

i. u1 = ρ1(x1, 1) and u2 = ρ2(x2, 1);

ii. u1 = ρ1(x1, 1) and u2 = (x2, 0);

iii. u1 = (x1, 0) and u2 = ρ2(x2, 1);

iv. u1 = (x1, 0) and u2 = (x2, 0).

• ω = (−−).

i. ρ1x1 = ρ2x2 and ρ1 = ρ2. This gives {ρ(x, 1)|x ∈ A(1) ∩A(2)}
ii. ρ1x1 = x2 and ρ1 = 0. This leads to contradiction as ρ1 > 0.

iii. x1 = ρ2x2 and 0 = ρ2. This leads to contradiction as well.

iv. x1 = x2 and 0 = 0. This gives {(x, 0)|x ∈ A0(1) ∩A0(2)}.
• ω = (++).

i. ρ1x1 + ρ2x2 and ρ1 + ρ2. This gives {ρ((1 − α)x1 + αx2, 1)|ρ > 0, 0α < 1, xi ∈
A(i), i = 1, 2}.

ii. ρ1x1+x2 and ρ1. This gives, after replacing x2 by ρ−1x2, {ρ(x1+x2, 1)|ρ > 0, x1 ∈
A(1), x2 ∈ A0(2)}.

iii. The same as the previous case with the roles of 1 and 2 interchanged.

iv. x1 + x2 and 0. This gives {(x, 0)|x ∈ A0(1) + A0(2)}.

(b) Convex functions with recession. We recall that Cu(f, f0) = (R++(epif×1))∪(epif0×0) =
{ρ(x, α, 1)|ρ > 0, α ≥ f(x)} ∪ {(x, α, 0)|α ≥ f0(x)}. For each ω, we want to compute
u1 �ω u2 for all ui ∈ Cu(f(i), f0(i)), i = 1, 2. We have to distinguish four cases:

i. u1 = ρ1(x1, α1, 1) and u2 = ρ2(x2, α2, 1);

ii. u1 = ρ1(x1, α1, 1) and u2 = (x2, α2, 0);

iii. u1 = (x1, α1, 0) and u2 = ρ2(x2, α2, 1);

iv. u1 = (x1, α1, 0) and u2 = (x2, α2, 0).

• (−−−).

i. ρ1x1 = ρ2x2 and ρ1α1 = ρ2α2 and ρ1 = ρ2. This gives

{ρ(x, α, 1)|α ≥ max(f(1), f(2))(x)}.
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ii. ρ1x1 = x2 and ρ1α1 = α2 and ρ1 = 0. This leads to contradiction as ρ1 > 0.

iii. x1 = ρ2x2 and α1 = ρ2α2 and 0 = ρ2. This leads again to contradiction.

iv. x1 = x2 and α1 = α2 and 0 = 0. This gives {ρ(x, α, 0)|α ≥ max(f0(1), f0(2))}.
• (+ + +).

i. ρ1x1 + ρ2x2 and ρ1α1 + ρ2α2 and ρ1 + ρ2. This gives

{(ρ1+ρ2)(
ρ1

ρ1 + ρ2
x1+

ρ2

ρ1 + ρ2
x2,

ρ1

ρ1 + ρ2
α1+

ρ2

ρ1 + ρ2
α2, 1)|ρi > 0, αi ≥ f(xi), i = 1, 2}.

ii. ρ1x1 + x2 and ρ1α1 + α2 and ρ1. This gives

{ρ(x1 + x2, α1 + α2, 1)|ρ > 0, α1 ≥ f(1)(x1), α2 ≥ f0(1)(x2)}.

iii. Similar to the previous case, with the roles of 1 and 2 interchanged.

iv. x1 + x2 and α1 + α2 and 0. This gives (epif0(1) + epif0(2))× 0.

Remark. The procedure above leads to all binary operations on convex objects given in [R], but
with the difference that here we allow recession directions as elements of our convex objects, and that
here the binary operations are defined for all pairs of convex objects. This gives two binary operations
on convex cones containing zero, four on sublinear functions, four on on convex sets with recession,
and eight on convex functions with recession. In the proposition above, we have displayed from the
eight binary operations on convex functions with recession, only the four best known ones. Now we
will describe the other four—nameless—binary operations. These have been described in theorem 5.8
of [R] (‘. . . One is led similarly to eight “natural” commutative associative binary operations in the
collection of all convex functions on Rn, . . ..’ p.39 of [R]). We define for convex functions fi, i = 1, 2
on Rn the following four convex functions on Rn (again observing the convention ∞+ (−∞) = ∞):

f1 � f2(x) = inf{max(f1(x1), f2(x2))|xj ∈ Rn, j = 1, 2, x = x1 + x2},

f1♥f2(x) = inf0<α<1{max(αf1(x1), (1− α)f2(x2))|xj ∈ Rn, j = 1, 2, x = αx1 + (1− α)x2},

f1♦f2(x) = inf0<α<1{αf1(x1) + (1− α)f2(x2)|xj ∈ Rn, j = 1, 2, x = αx1 = (1− α)x2},

f1♠f2(x) = inf0<α<1{α max(f1(x1), (1− α)f2(x2))|xj ∈ Rn, j = 1, 2, x = αx1 = (1− α)x2}.

The promised remaining four binary operations �ω on convex functions with recession on Rn are
as follows:

(f(1) � f(2), f0(1) � f0(2)) if ω = (+−−);

((f(1)♥f(2)) ∨ (f(1) � f0(2)) ∨ (f0(1) � f(2)), f0(1) � f(2)) if ω = (+−+);

((f(1)♦f(2)) ∨ (f(1) + f0(2)) ∨ (f0(1) + f(2)), f0(1) + f0(2)) if ω = (−+ +);

((f(1)♠f(2)) ∨ (max(f(1), f0(2))) ∨ (max(f0(1), f(2))),max(f0(1), f0(2))) if ω = (−+ +).
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Now we come to the main result of this section.

Theorem 4.3 Consider convex objects Oi, i = 1, 2 of type O over Rn. Then the following formula
holds true:

(clO1 �ω clO2)D = cl(OD
1 �ωd OD

2 ).

Both sides of this formula remain the same if the closure operator is omitted, provided one of the
following three assumptions holds true:

a the first sign occurring in the sequence ω is +;

b Oi, i = 1, 2 is a polyhedral convex object;

c in the case of convex sets with recession Oi = (A(i), A0(i)), i = 1, 2, (and so of convex cones con-
taining zero): riĀ(1)∩riĀ(2) 6= ∅; in the case of convex functions with recession Oi = (f(i), f0(i)) i =
1, 2 (and so of sublinear functions): ridomf(1) ∩ ridomf(2) 6= ∅.

Proof. The statement of the theorem follows from the construction of the binary operation
together with theorem 3.4.

This gives four formulas for convex sets, four for sublinear functions, eight for convex functions,
two for convex cones, four for gauges, four for convex sets containing zero. To illustrate that some
of these formulas have a complicated appearance, we display two of these, for the binary operations
‘intersection’ and ‘convex hull of the union’ of convex sets:

s(clA(1) ∩ clA(2))|(D(A(1),A0(1))∩D(A(2),A0(2)))◦ = cl(s(A(1))|A0(1)◦co ∧ s(A(2))|A0(2)◦),

s(max(A(1)co ∪A(2)), ((A(1) + A0(2)), (A0(1) + A(2)))|A0(1)+A0(2))◦ =

max(s(A(1))|A0(1)◦co ∧ s(A(2))|A0(2)◦).

Remark. Four of the formulas obtained by applying this result are novel: the following formulas
for two pairs of dual binary operations for convex functions appear not to be in the literature (for
the other two pairs the formulas are essentially the formulas of Rockafellar-Moreau and Dubovitsky-
Milyutin). For simplicity, we display these formulas only for the special case of proper convex func-
tions fi : Rn → R ∪ {±∞} (proper means ‘not taking the value −∞, and taking a finite value in at
least one point’):

(f1♠f2)∗ = cl(f∗1♥f∗2 ); (f1♥f2)∗ = f∗1♠f∗2 ; (f1♦f2)∗ = cl(f∗1 � f∗2 ); (f1 � f2)∗ = f∗1♦f∗2 .
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5 On convex optimization

The aim of this section is to give some essential aspects of convex optimization theory from the point
of view of reduction to convex cones.

5.1 On supporting hyperplanes to convex cones

In this section we give the main properties of the convex cone problem to find, for a given convex
cone C, elements x ∈ C and y ∈ C◦ for which 〈x, y〉 = 0.

A ray in Rn is a set of the form Rx = {ρx|ρ > 0} for some nonzero x ∈ Rn. For each convex
cone C ⊂ Rn for which C 6= Rn, one can consider the convex cone problem PC to find a pair of rays
(Rx, Ry) where x ∈ C \ {0n} and y ∈ C◦ \ {0n} such that 〈x, y〉 = 0. The geometric interpretation
is that the hyperplane {v ∈ Rn|〈y, v〉 = 0 supports the convex cone C at the point x: that is, this
hyperplane contains the point x ∈ C and it has the entire convex cone C lying entirely on one of its
two sides. The boundary ∂S of a set S ⊂ Rn is the set of points in Rn that are neither in the interior
of S nor in the interior of its complement Rn \ S. In particular, ∂S is a closed set in Rn.

Proposition 5.1 Let C be a closed convex cone in Rn for which C 6= (0n), Rn.

1. For each solution (Rx, Ry) of the problem PC , one has x ∈ ∂C \ {0n} and y ∈ ∂(C◦) \ {0n}.

2. The sets ∂C \ {0n} and ∂(C◦) \ {0n} are nonempty and their intersections with the unit sphere
are closed (and so compact).

3. For each x ∈ ∂C \ {0n} there exists a solution (Rx, Ry) of the problem PC , and for each
y ∈ ∂(C◦) \ {0n} there exists a solution (Rx, Ry) of the problem PC .

Proof.

1. Assume that (Rx, Ry) is a solution of PC . To prove the inclusion x ∈ ∂C, we argue by con-
tradiction. Assume x 6∈ ∂C. Then x ∈ intC, and so one has 〈x̄, y〉 = 〈x + x̄, y〉 ≤ 0 for all
sufficiently small x̄ ∈ Rn, and therefore y = 0n. This contradicts the requirement y 6= 0n. In
the same way, one proves y ∈ ∂C◦.

2. As C 6= (0n), Rn, one can choose nonzero elements xi ∈ Rn, i = 1, 2 such that x1 ∈ C, x2 6∈ C,

and x1, x2 are linearly independent: indeed, if C is contained in some line through the origin,
then we can choose x1 ∈ C, x1 6= 0n and x2 ∈ Rn \ Rx1; otherwise, we can choose x2 ∈ Rn \ C

and then we can choose x1 ∈ C such that x1 6∈ Rx2. The intersection of the closed interval with
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endpoints xi, i = 1, 2 with C is the closed interval with endpoints x1 and d for some d ∈ Rn.
Then d is an element of ∂C \{0n}. Moreover, the intersection of ∂C \{0n} with the unit sphere
equals the intersection of ∂C with the unit sphere, and so it is closed (and so compact).

As C 6= (0n), Rn, it follows that C◦ 6= (0n), Rn. Therefore, it can be proved in the same way
that ∂C \ {0n} is nonempty and that its intersection with the unit sphere is closed (and so
compact).

3. Let x ∈ ∂C \ {0n}. Then C + R++(−x) is not equal to Rn. To prove this, it suffices to
demonstrate the existence of an element z ∈ Rn \ (C + R++(−x)). To this end we observe
that one can choose an infinite sequence of nonzero vectors (xi)i converging to 0 for which
x + xi 6∈ C, and then one can take a limit point z of the infinite sequence (‖xi‖−1xi)i. Then
z ∈ Rn \ {0n} and x + tz 6∈ C for all t > 0. To prove that z 6∈ C + R++(−x), we argue by
contradiction. Assume that z ∈ C +R++(−x), say, z = c+α(−x) with c ∈ C and α > 0. Then
x + α−1z = α−1c ∈ C, which contradicts the property of y above.

It follows from C + R++(−x) 6= Rn, that the polar cone (C + R++(−x))◦ contains a nonzero
element y. Then (Rx, Ry) is a solution of the problem PC .

5.2 Convex optimization problems: existence of solutions

The aim of this section is to give the connection between convex optimization problems and convex
cone problems PC . This leads to an extended solution concept for convex optimization problems.
For each closed convex optimization problem, an extended solution exists.

A continuous parametrization, (rρ)ρ∈[−∞,+∞], of the upper unit circle {x ∈ R × R+|‖x‖ = 1}
is defined by rρ = ‖(−ρ, 1)‖−1(−ρ, 1) for ρ 6= ±∞, r−∞ = (+1, 0) and r+∞ = (−1, 0). Then a
parametrization, (Rρ)ρ∈[−∞,+∞], of the rays of the convex cone R×R+ is defined by Rρ = R++rρ for
all ρ ∈ [−∞,+∞].

Proposition 5.2 Let (f, f0) be a convex function with recession over Rn.

1. Assume that (f, f0) is closed. Let ρ ∈ [−∞,+∞]. Then the following conditions are equivalent:

(a) there exists a ray Rv in Rn × R× R for which the pair of rays (Rv, R(0n,rρ)) is a solution
of the problem PCu(f,f0);

(b) ρ = inf f or ρ = −∞.

2. If inf f 6= ±∞, then for each ray Rv in Rn × R× R the following conditions are equivalent:

(a) the pair of rays (Rv, R(0n,rinf f )) is a solution of the problem PCu(f,f0);
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(b) v is a positive scalar multiple of (x̂, f(x̂), 1), where x̂ is a solution of the convex optimization
problem f(x) → min, x ∈ Rn, or v = (x̄, 0, 0) for some x̄ ∈ Rn for which f0(x̄) = 0.

Proof.

1. We will use the property that (0n ×R×R) ∩ ∂((Cu(f, f0))◦) \ {0n} consists of the rays R(0n,ρ)

with ρ = inf f and ρ = − inf f . Here, we only display the verification that (0n, inf f) ∈
∂((Cu(f, f0))◦); the remaining verifications are similar.

• The case inf f 6= ±∞. Then one has (Cu(f, f0))◦ = (C(epif, 0))◦ and

rinf f = ‖(− inf f, 1)‖−1(− inf f, 1).

One has 〈(0n, rinf f ), (x, ρ, 1)〉 = ‖(− inf f, 1)‖−1(inf f − ρ) ≤ 0 for all (x, ρ) ∈ epif . This
proves the inclusion (0n, rinf f ) ∈ (Cu(f, f0))◦. Moreover, for each ε > 0, one can take
(x, ρ) ∈ epif with ρ < inf f + ε, and then one has 〈(0n, rinf f+ε), (x, ρ, 1)〉 = ‖(− inf f −
ε, 1)‖−1(−ρ + inf f + ε) > 0. This proves that (0n, rinf f+ε) 6∈ (Cu(f, f0))◦. It follows that
(0n, rinf f ) ∈ ∂((Cu(f, f0))◦), as required.

• The case inf f = +∞. Then one has Cu(f, f0) = C(∅, epif0) and rinf f = (−1, 0). One
has 〈(0n, rinf f ), (x, ρ, 0)〉 = 0 for all (x, ρ) ∈ epif0. This proves the inclusion (0n, rinf f ) ∈
(Cu(f, f0))◦. Moreover, for each ε > 0, one has (0n, 1) ∈ epif0 and

〈(0n, rinf f + (0,−ε)), (0n, 1, 0)〉 = ε > 0.

This proves that (0n, rinf f+(0,−ε)) 6∈ (Cu(f, f0))◦. It follows that (0n, rinf f ) ∈ ∂((Cu(f, f0))◦)
as required.

• The case inf f = −∞. Then one has Cu(f, f0) = C(Rn × R, 0) and rinf f = (1, 0). One
has 〈(0n, rinf f ), (x, ρ, 1)〉 = −1 ≤ 0 for all x ∈ Rn, ρ ∈ R. This proves the inclusion
(0n, rinf f ) ∈ (Cu(f, f0))◦. Moreover, for each ε > 0, one has (0n,−2ε−1) ∈ Rn × R, and
〈(0n, rinf f +(0, ε)), (0n,−2ε−1, 1)〉 = −1+2 = 1 > 0. This proves that (0n, rinf f +(0, ε)) 6∈
(Cu(f, f0))◦. It follows that (0n, rinf f ) ∈ ∂((Cu(f, f0))◦) as required.

2. Now we prove the first statement of the proposition. Assume that (f, f0) is closed and let
ρ ∈ [−∞,+∞].

• (a) ⇒ (b). Assume (a) holds. Then, by statement 1 of proposition 5.1, (0n, rρ) is contained
in ∂((Cu(f, f0))◦), and so ρ = inf f or ρ = −∞. That is, statement (b) holds true.

• (b) ⇒ (a). Assume (b) holds. Then (0n, rρ) ∈ ∂((Cu(f, f0))◦ \ {0n}, and so, by statement
3 of proposition 5.1, statement (a) holds true.
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3. Now we prove the second statement of the theorem. Assume that inf f 6= ±∞ and let Rv be a
ray in Rn × R× R.

• (a) ⇒ (b). Assume that condition (a) holds true. Then

(0n, rinf f ) = ‖(− inf f, 1)‖−1(0n,− inf f, 1).

We distinguish two cases:

– v is a positive scalar multiple of (x, ρ, 1) where ρ ≥ f(x): then we have by condition
(a) that 〈(x, ρ, 1), (0n,− inf f, 1)〉 = 0. That is, −ρ + inf f = 0. It follows that x is
a solution of the convex optimization problem f(x) → min, x ∈ Rn and that v is a
positive scalar multiple of (x, f(x), 1).

– v = (x, ρ, 0) where ρ ≥ f0(x): then we have by condition (a) that

〈(x, ρ, 0), (0n,− inf f, 1)〉 = 0.

That is, −ρ = 0 and ρ inf f0 ≥ 0. Therefore, f0(x) ≤ ρ = 0. As f0 ≥ 0+f and
inf f 6= ±∞, it follows that f0(x) ≥ 0. It follows that v = (x, 0, 0) and f0(x) = 0.

• (b) ⇒ (a). This implication is proved in the same way, by reversing the arguments.

The second statement of this proposition suggests to define the concept extended solution of the
convex optimization problem determined by the convex function with recession (f, f0) to be a ray Rv

in Rn × R× R for which the pair (Rv, R(0n,rinf f )) is a solution of the problem PCu(f,f0).

Theorem 5.3 Let (f, f0) be an arbitrary closed convex function with recession over Rn. Then there
exists an extended solution of the convex optimization problem determined by (f, f0). If inf f 6= ±∞,
then an extended solution is either an element x̂ ∈ Rn for which f(x) ≥ f(x̂) for all x ∈ Rn or a ray
Rx̄ in Rn for which f0+(x̄) = 0; if inf f = −∞, then it is a ray in the epigraph of f0+; if inf f = +∞,
then it is a ray in the epigraph of f0.

Proof. The existence of an extended solution follows from the first statement of proposition 5.2.
The given concrete interpretation of extended solutions follows in the case inf f 6= ± inf from the
second statement of proposition 5.2. We do not display the verifications in the cases inf f = +∞ and
inf f = −∞.

Remark. If inf f = ±∞, then the rays Rv in Rn×R×R for which the pair of rays (Rv, R(0n,rρ))
is a solution of PCu(f,f0) correspond to the rays R++(x, α) of epif0. Therefore, it would be natural for
inf f = ±∞ to consider a stricter solution concept, requiring for example that the angle between the
ray R++(x, α) in epif0 and the ray R++(0n,−1) is minimal. We note that there exists an extended
solution in this strict sense for the convex optimization problem determined by an arbitrary closed
convex function (f, f0).
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5.3 Duality of convex optimization problems

One can proceed in a similar way to derive an extended version of the duality theorem for convex
optimization problems. Here we will only give the main idea. One should consider for a convex
function with recession (F, F0) on Rn × Rm, the problem PCu(F,F0) with the additional condition
that one looks for solutions (Rv, Rw) where w is of the form (0n, y, rρ) for suitable y ∈ Rm and
ρ ∈ [−∞,+∞].

5.4 Conditions of optimality and subdifferential calculus.

The subdifferential of a convex function f on Rn at a feasible point x̂ is defined to be ∂f(x̂) = {x′ ∈
Rn| f(x̂)+ 〈x′, h〉 ≤ f(x̂+h) ∀h ∈ Rn}. Applications of the subdifferential in optimization are based
on the criterion 0 ∈ ∂f(x̂) for solutions x̂ of convex optimization problems f(x) → min, x ∈ Rn.
Part of the convex calculus for subdifferentials of convex functions is contained in the following result
(we do not give the chain rule for convex functions and not the list of subdifferentials of basic convex
functions). For simplicity, we have omitted in the notation the point at which the subdifferential is
taken.

Theorem 5.4 1. ∂(Λf) = (Λ′)−1∂f ,

2. ∂(Λ−1clf) = clΛ′(∂f),

3. ∂(clf1 ∨ clf2) = cl(∂f1co ∪ ∂f2),

4. ∂(f1 � f2) = ∂f1 � ∂f2,

5. ∂(clf1 + clf2) = cl(∂f1 ⊕ ∂f2),

6. ∂(f1 ⊕ f2) = ∂f1 ∩ ∂f2,

7. ∂(clf1♠clf2) = cl(∂f1co ∪ ∂f2),

8. ∂(f1♥f2) = ∂f1 � ∂f2,

9. ∂(clf1♦clf2) = cl(∂f1 ⊕ ∂f2),

10. ∂(f1co ∧ f2) = ∂f1 ∩ ∂f2,

Proof. We give a brief sketch of the proof. The subdifferential of a convex function f on Rn at the
point x̂ equals the subdifferential of the sublinear function function pbx on X such that strictepi(pbx) =
cone(strictepif − (x̂, f(x̂))) under a suitable assumption of general position, for example that x̂ is an
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internal point of domf . Therefore, applying the calculus rules for subdifferentials of convex functions,
all required formulas are obtained.

Remark. By applying the conditions from theorems 3.4 and 4.3 under which closure operations
can be omitted, one gets conditions under which closure operations can be omitted in the formulas
of theorem 5.5.
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France, Paris, 1966.

[19] Yu.E. Nesterov and A.S. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Program-
ming. SIAM Studies in Applied Mathematics 13. SIAM, Philadelphia, 1994.

[20] Yu. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic
Publishers, Dordrecht, 2004.

[21] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[22] R.T. Rockafellar. Conjugate Duality and Optimization. Regional Conference Series in Applied
Mathematics 16. SIAM Publications, 1974.

[23] R.T. Rockafellar and R.J.-B. Wets. Variational Analysis. Springer Verlag, Heidelberg, 1998.

[24] E. Steinitz. Bedingt konvergente Reihen und konvexe Systeme, I, II, III, Journal der Reine und
Angewandte Mathematik, 143-144-146, 128-175;1-40;1-52, 1913-1916.

[25] R.T. Rockafellar and R.J.-B. Wets. Variational Analysis. Springer Verlag, Heidelberg, 1998.

[26] V.M. Tikhomirov. Fundamental Principles of the Theory of Extremal Problems. John Wiley and
Sons, 1986.

[27] V.M. Tikhomirov. Convex Analysis. In R.V. Gamkrelidze (Ed.), Analysis II. Encyclopaedia of
Mathematical Sciences, Volume 14, Springer-Verlag, Heidelberg, 1980.

33


