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WEAK & STRONG FINANCIAL FRAGILITY

J.L. GELUK, L. DE HAAN, AND C. G. DE VRIES

Abstract. The stability of the financial system at higher loss levels is ei-

ther characterized by asymptotic dependence or asymptotic independence. If

asymptotically independent, the dependency, when present, eventually dies out

completely at the more extreme quantiles, as in case of the multivariate normal

distribution. Given that financial service firms’ equity returns depend linearly

on the risk drivers, we show that the marginals’ distributions maximum do-

main of attraction determines the type of systemic (in-)stability. A scale for

the amount of dependency at high loss levels is designed. This permits a char-

acterization of systemic risk inherent to different financial network structures.

The theory also suggests the functional form of the economically relevant limit

copulas.

1. Introduction

The financial system is inherently fragile due to its exposure to common and

mutual risks and in particular due to the duration mismatch of the assets and

liabilities of the banking sector. Financial crises are a recurrent phenomenon with

important effects on the real economy. It is therefore of great importance to be

able to understand, measure and characterize the systemic stability of the finan-

cial service sector. The theoretical literature on systemic stability, using micro

information asymmetry and macro risks, provides insightful explanations for the

fragility.1 Some research has tried to measure the amount of fragility potentially

present, but a coherent framework within which the fragility of a system can be

evaluated is more or less absent from the literature. In this paper we use statis-

tical multivariate extreme value theory to provide such a framework, linking the

financial stability theories and the empirical work. This theory implies that the

Date: December 21, 2006.
Key words and phrases. Systemic Stability, Multivariate Extreme Value Analysis, Asymptotic

(In-)dependence

JEL codes: C6, G20.
1Empirically, the macro risk drivers appear to be the dominant source behind financial crises.
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interdependency at crisis levels is one of two types. We show that the financial

service institutions (FSI) are either asymptotically independent (weakly fragile)

albeit possibly being correlated, or the FSI are asymptotically dependent (strongly

fragile). If asymptotically independent, the dependency when present, eventually

dies out completely at the extreme quantiles. Per contrast, under strong fragility

the dependency remains, even in the limit. Thus the systemic risk can be quite

different depending on the type of fragility.

Consider the joint loss behavior of correlated bank and other FSI’s equity re-

turns, which are dependent due to e.g. loan syndication, interbank loans and

macro interest rate exposure. Suppose the weak assumption holds that the asset

and liability return distributions are in the domain of attraction of a (univariate)

extreme value distribution. Then the banks’ equity returns interdependencies

display radically different behavior at high loss levels depending on whether the

portfolio components’s returns are e.g. normally, Student-t or uniformly (credit

risk) distributed. We classify the types of different behavior by means of the dif-

ferent domains of attraction of the univariate extreme value distributions. Both

continuous and discrete compounding are covered, so that all three limit distribu-

tions have relevance.2 We show that, due to the balance sheet (portfolio) induced

linearity, the type of extreme value distribution to which the marginal distribu-

tions of the risk factors are attracted determines whether the fragility is weak

or strong. For example, normally distributed asset and liability returns imply

weak fragility and low systemic risk. But this is quite different if the marginal

distributions are Student-t or uniformly distributed. We provide an exhaustive

characterization in terms of weak and strong fragility depending on the type of

the underlying univariate asset return distributions.

Banks provide an important positive externality to the macro economy through

their maintenance of the payment and settlement system and by channeling the

monetary policy decisions. The fallout from a bank failure can therefore sort large

negative effects.3 This not withstanding, central banks, ministries of finance, su-

pervisors and regulators are hard pressed when asked to characterize the fragility

2Credit risk under discrete compounding has a distribution with bounded support. In contrast,

the log returns of equity (market risk) have an unbounded support.
3For example, the US S&L crisis is estimated to have cost the US tax payer an amount in the

order of 4% of GDP, and the Swedish banking crisis of the 1990’s cost as much as 10% of GDP.
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of their financial system, even though one readily receives an answer concern-

ing individual bank risk in terms of the Value at Risk (VaR) level. Thus, as is

forcefully argued by Borio [6], there is great need for a measure which reflects

the amount of systemic risk inherent to a particular financial system and permits

comparisons across systems. Motivated by this need, we develop a scale, dubbed

the Fragility Index FI, which captures the amount of systemic risk at the system’s

level. The FI is comparable to the VaR measure for individual bank risk. The

scale circumvents the pitfalls of correlation analysis. It reflects different possible

intensity levels of systemic dependence, ranging from perfect dependence, to as-

ymptotic dependence, asymptotic independence and just independence and can

be applied to any dimension (number of FSI).

In general the dependency structure of a multivariate distribution and the mar-

ginal distributions are unrelated concepts, but the linearity of portfolios in the

asset returns or risk drivers induces a specific link between the two concepts. We

show that popular theoretical economic explanations for systemic breakdowns,

such as a macro (interest rate) shock, a sunspot or micro based contagion, fit

within our affine setup. The approach is of semi-reduced form, since it takes as

given a certain distribution of the assets and liabilities across the system in char-

acterizing the system’s stability. It does not analyze how such a network is the

outcome of incentives and institutions. The latter question is clearly also of inter-

est, but is outside the scope of a single paper and is well treated elsewhere (e.g.

we take as given there is an incentive to diversify); see e.g. Rochet and Tirole [28],

Lagunoff and Schreft [22], Freixas, Parigi and Rochet [13] and Allen and Gale

[1]. But given a particular FSI network structure, we show how the FI permits

a characterization of the systemic risk inherent to such a network. It is shown

that rankings based on the correlation structure may give an ordering which dif-

fers from the FI, since the FI recognizes better the diversification benefits in the

failure regions. The theory also implies the functional form of the economically

relevant copulas in the systemically relevant regions.4

4The variety of copulas is ‘large’ and the question is which types of copulas are economically

relevant for the problem at hand. As it happens, copulas are often chosen for their convenience

in estimation, but economic criteria have as of yet scarcely received attention when choosing a

particular copula.
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There exists some empirical research which has tried to measure the interdepen-

dence within and between financial systems by correlating bank stock returns, see

e.g. De Nicolo and Kwast [7]. Alternatives for the correlation analysis as measures

of systemic risk are copulas and multivariate extreme value analysis. Copulas give

the dependency structure embedded in the joint distribution function parametri-

cally; see Longin and Solnik [25] for an early empirical application based on the

logistic copula. Extreme value based statistical analysis is a semi-parametric ap-

proach which captures the dependency in the tail regions of the joint distribution

function without committing to a particular functional form. This literature finds

evidence for strong fragility, see Hartmann et al. [18] and Poon et al. [26]. Here

we provide the theory behind these empirical results.

The structure of the rest of the paper is as follows: In section 2 we discuss

discounting and the linearity of bank portfolios and affine fundamentals based

models such as the CAPM. A discussion and comparison of different measures to

characterize linkages during periods of market stress is provided in section 3. The

analytic claims of the paper on the relationship between the risk drivers’ marginal

tail properties and the degree of tail dependence are obtained in section 4. The

cases of weak and strong fragility are treated in separate subsections. Financial

economic analysis is given in section 5. Finally, section 6 provides a summary and

conclusions.

2. Affine Portfolios and Compounding

The FSI are linked in a number of ways. An important linkage is through their

mutual exposures, yielding similar investments and liabilities. Take e.g. a rein-

surance firm which reinsures part of an insurance policy written by an insurance

firm, retrocedes part of this reinsurance contract to another reinsurer and invests

the premia it receives on the reinsurance policy in a portfolio of stocks and bonds.

All this activity is undertaken to diversify the risk of holding an overly specialized

portfolio. The diversification activity on the liability side produces direct linkages

within the insurance and reinsurance sector. But since these companies invest the

premia in well diversified portfolios, there is also an indirect linkage by the risk

factors which drive the market risks. Similarly, commercial banks are typically

heavily exposed to each other through the interbank money market by which the



WEAK & STRONG FINANCIAL FRAGILITY 5

banks manage their liquidity. Typically commercial banks loan to the same sec-

tors in the economy, which again produces the exposure to the same macro risk

drivers (through the movements in the value of the received collateral, e.g. house

prices in case of mortgages). Syndicated loans whereby several banks underwrite

a large loan directly, expose different banks to the same risk. Investment banks

often hold large trading portfolios and hold stakes in commercial companies which

belong to the clientele of the bank, yielding direct exposure to market risk. Last

but not least, banks in many countries do also hold sizable cross-participations in

each other.

In summary, the FSI hold portfolios which are linked and which are directly

or indirectly exposed to the same risks or risk factors. Insofar banks hold the

same assets or finance the same loans, the linearity is direct. Indirectly, the return

on capital of banks is also linearly related through their exposure to macro risk

factors. Finance theory, such as the CAPM and APT, often assumes that returns

are linearly related to the macro risk factors.5 The monetary model of exchange

rates for example, holds that exchange rate returns ∆s0j between the numeraire

currency 0 and the j-th currency are linearly related to changes in the relative

money supply m, real income y and the interest differential (R0 −Rj):

∆s0j = ∆(m0 − φy0 + λR0)−∆(mj − φyj + λRj) + ε0j.

This is not to say that there are no cases where the relationship between the

returns and factors is non-linear. For example, consider a portfolio which both

contains options and the underlying stocks.6 Such portfolios are analyzed in the

economics section below.

2.1. portfolios. Portfolios are by definition linear in the returns of the assets and

liabilities. Indirectly, portfolios are linear in the macro risk factors. Consider two

arbitrarily seized portfolios with returns

Qn =
n∑

i=1

λiXi, Wn =
n∑

i=1

γiXi,

5Boyer, Kumagai and Yuan [5] provide evidence that crises spread internationally through

asset holdings of investors.
6Option theory holds that the returns on both assets are linearly related to the market factor,

but this is only a local result.
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where the Xi are the individual asset returns or (macro) risk factors and the asset

weights satisfy
∑n

i=1 λi =
∑n

i=1 γi = 1. In these portfolios we can allow for short

selling and the portfolios can be ”unbalanced” in the sense that some assets are

not present in both portfolios. In some instances the case of unbalanced portfolios

is qualitatively different from the case of balanced portfolios.

We will repeatedly use the following two two-asset portfolios in examples to

illustrate the theoretical results. Consider the case of two syndicated loans with

independent returns X and Y respectively. Imagine that the loans for the projects

are underwritten by two investment banks or sold on to other FSI. Let bank one

hold the portfolio with return

(2.1) Q = (1− γ)X + γY,

while the loan portfolio return to bank two is

(2.2) W = γX + (1− γ)Y,

and where γε(1/2, 1). This case will be referred to as the zero beta portfolio, given

the independence of the two risk drivers.

The second case considers two asset excess returns X and Y related through

the CAPM. Both returns have the following single factor structure

(2.3) X = βxR + εx

and

(2.4) Y = βyR + εy.

Here R is the excess return on the market portfolio over the risk free rate and εx

and εy are the idiosyncratic risks (independently distributed from the market risk

and each other); beta’s indicate how much the projects co-vary with the market

risk. For simplicity we repeatedly take the beta’s equal βx = βy = β in the

examples.

2.2. discrete and continuous returns. Depending on the problem at hand,

either continuous or discrete returns are analyzed. Some classes of assets, such as

in the case of stocks, have almost continuous price formation in time and hence

continuous compounding is typically used for these assets. Other assets only

trade or payout at discrete instances in time, for which discrete returns are more
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appropriate. Portfolio returns can be obtained by summing the weighted discrete

returns; using logarithmic returns this is not possible. Per contrast, aggregation

over time works well with continuous returns, whereas discrete returns do not

add up. For small price movements, the two concepts of a return are close (as a

Taylor approximation shows). Let P (t) denote the asset price at time t, and let

X be the return. The continuously compounded return is given by X(t + 1) =

log P (t + 1)/P (t), where X ∈ R. Discrete returns are computed as Y (t + 1) =

P (t + 1)/P (t) − 1, where (Y + 1) ∈ R+. We investigate the implications for the

joint loss distribution under continuous compounding and discrete compounding.

Under continuous compounding the loss return can be as large as can be imag-

ined, but the discrete return can not be worse than −1. This lower bound is

of particular relevance for credit risk. In the worst case the payoff to a bond is

zero and the return on the principal is minus one. Note that the positive returns

on such credit instruments at maturity are bounded as well. Such bounds have

immediate implications for the possible tail shapes of the multivariate return dis-

tribution on the loss side. Though most of the time we deal with continuously

distributed returns, we also briefly investigate the systemic stability if there are

mass points. The motivation for this is twofold. Many of the theoretical crises

models employ the Bernoulli distribution, i.e. there are only a single good and

a bad state of the world. In reality, options and other non-linear instruments

may have mass points in their return distribution if held to maturity, whereas the

distribution of the underlying asset would not.

3. Measures of Dependency

We first argue why there is a need for a measure of dependency to reflect systemic

risk and why standard concepts like the correlation measure are less suitable for

the question at hand. Then we design a scale which is close in spirit to the popular

VaR measure, but which is suitable at the systems level.

Indeed, why would economists be interested in a measure for systemic risk?

Take the banking sector’s risk regulatory background as laid down in the recently

revamped Basel accords for bank capital holding. The surprising fact is that

the entire approach has a predominant microprudential orientation, focussing on

the risk management practices at individual banks, without much attention for
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the systemic ramifications, even though the systemic stability is often invoked as

the prime motive for the necessity of the Basel rules. The banking sector has

important externalities within the banking sector and to the rest of the economy

through its maintenance of the clearing and settlement services. These services

depend on the reliability of the system as a whole. Moreover, an important part

of the risks are endogenous to the sector.7 Given the specific sensitivity of the

banking sector to the macro and endogenous risks, Borio [6] pleads for giving an

explicit role to the macropudential aspects of bank regulation and supervision on

top of the microprudential framework which is now firmly in place through the

Basel II accord. The existing micro prudential operational framework focusses

on the VaR of each institution individually. The new macro prudential approach

should also care about the tail losses of the banking system as a whole.

The Basel II and Solvency II accords’ microprudential oriented regulatory frame-

work are based on the philosophy that the chain is as strong as its weakest link,

which would imply that regulators focus on containing

1− P (B1 ≤ s,B2 ≤ s),

and where Bi is the i-th bank return exposure. The Basel II accord in practice

is even more conservative as it aims to minimize P (B1 > s) and P (B2 > s)

individually, and where s is the VaR level. In other words

1− P (B1 ≤ s,B2 ≤ s) ≤ P (B1 > s) + P (B2 > s).

Thus the practice is an overly conservative approach, since it safeguards against

a systems breakdown twice:

1− P (B1 ≤ s,B2 ≤ s) + P (B1 > s, B2 > s) = P (B1 > s) + P (B2 > s).

Note that in higher dimensions this effect is even stronger, as the joint failure

region is taken into account as many times as the number of FSI which are part

of the system. From an efficiency point of view overregulation is not desirable,

as is too weak supervision. It is therefore of interest to measure the joint failure

7To give one stark example from the investment industry, recall the popularity and fall from

grace of the portfolio insurance technique for managing risk. While evidently prudential from a

micro oriented point of view, the technique faltered when all institutions were trying hedge by

selling off at the same time on black Monday in October 1987.
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probability P (B1 > s, B2 > s) separately and to adjust the individual bank based

approach for systemic risk. We discuss a number of alternative ways to evaluate

this joint failure probability.

3.1. the correlation measure. In case the return distribution is multivariate

normal, the joint failure probability can be calculated on basis of the correlation

matrix. The coefficient of correlation ρ is perhaps the most commonly used mea-

sure of (linear) dependence. One must ask, however, how well ρ captures the

dependency if it is unknown whether the data are normally distributed or not.

Specifically, the question is whether ρ adequately captures the interdependency at

crisis levels. Embrechts, McNeil and Strauman [11] discuss the pitfalls of the nor-

mal based correlation analysis as a means to measure systemic risk. The empirical

literature moreover, finds little support for normality of the return distribution of

many asset classes, which makes correlation analysis less suitable.

A somewhat realistic, note the martingale structure, financial economic example

is the following bivariate ARCH inspired volatility model:

Xt = NtHt, Nt i.i.d. N(0, 1),

Yt = MtHt, Mt i.i.d N(0, 1),

with common volatility factor:

Ht = w + β(X2
t−1 + Y 2

t−1), 0 ≤ β < 1/2.

The (stationary) returns X and Y exhibit the characteristic heavy tail property,

the clustering of volatility, are interdependent, but nevertheless uncorrelated. The

ρt−k(Xt, Yt) = 0, k = 1, 2... even though Xt and Yt are dependent since they are

driven by the same conditional variance function Ht.
8 Thus, ρ does not capture

the dependency which is in the data.

Another problem is that the correlation concept requires that the first two

moments exist. This is at least of some concern for the non-life branch of the

insurance industry, where the loss distribution often appears to fail to have a

second bounded moment. Lastly, economists evaluating investments within the

expected utility theory framework are not so much interested in the correlation

8Note that regarding volatility spill-overs the correlations measure gives ρt−1(X2
t , Y 2

t ) = 0,

but ρt−k(X2
t , Y 2

t ) 6= 0 for k > 1.
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measure itself; they rather have an interest in the trade-offs between risk measured

as a probability and the associated gains or losses, which are the quantiles of the

return distribution. As such, the correlation is therefore only an intermediate step

in the calculation of this trade-off between quantile and probability. Therefore we

like to turn to measures which are not conditioned on a particular multivariate

distribution and which directly reflect the probabilities and associated crash levels.

3.2. Copulas. Copulas provide a parametric specification of the dependency struc-

ture of multivariate distributions. The popularity of the copula approach partly

derives from the fact that copula lend themselves easily to parametric estima-

tion. Given our objective to uncover the dependency in the tail area, however, the

parametric copula approach shares the same problem with parametric distribu-

tion based approaches, like the Gaussian approach, in that it does not necessarily

do justice to the behavior in the tail area. Moreover, as of to date there does

not exist an economic motivation for choosing one copula over the other. Often

a particular copula specification is chosen for estimation convenience rather than

for economic relevance. We shed some light on both issues below, by deriving the

relevant copula for the tail area from the underlying economic structure. For su-

pervisors and regulators, using a function rather than an index, the disadvantage

is that a function is in general less succinct, and hence may not be acceptable as

a summary measure for dependency. It can also be less robust if one lacks part

of the necessary information to construct the function. Lastly, copulas are again

only an intermediate step in linking loss amounts and their probabilities.

3.3. The Fragility Index FI. For all the reasons given above, we turn to develop

an index of fragility (FI) which does not hinge on a particular distribution or

dependence structure, and which does link losses and probabilities directly. The

FI at the system’s level is comparable to the VaR measure for individual bank risk.

The FI, though, is stated inversely in terms of large loss probabilities, rather than

loss levels. This allows for possibly different loss levels for different FSI, while still

providing a single index number for the entire system.

3.3.1. co-crash probabilities. In the introduction to this section we argued exten-

sively that the macro prudential concern is a heavy loss in one bank going hand

in hand with a heavy losses of other banks, creating a breakdown of the financial



WEAK & STRONG FINANCIAL FRAGILITY 11

system. Since we are interested in the probabilities on such joint extreme out-

comes, we directly evaluate these probabilities, bypassing the correlation concept.

In higher dimensions, though, there are many of such probabilities (bivariate,

trivariate, etc.) and somehow one wants to keep the information manageable.

To strike a balance between these desiderata we propose to adopt a particular

conditional expectation.

Specifically, we ask given that Y > t, what is the probability that X > s, or vice

versa, and where X and Y stand for asset returns and t, s are high loss levels. The

probability measure which conditions on any market crash, without indicating the

specific institution is the linkage measure9

P{X > s}+ P {Y > t}
1− P{X ≤ s, Y ≤ t}

first proposed in Huang [19] and evaluated empirically by Hartmann et al. [18].

Here we broaden its sensitivity and extension to higher dimensions.

The linkage measure, even though it is the sum of two conditional probabilities,

reflects the expected number of crashes given at least one collapse. To see this, let

κs denote the number of simultaneously crashing bank stock returns, that is bank

returns exceeding s. Write the conditionally expected number of bank crashes

given a collapse in at least one bank as E {κs|κs ≥ 1}. Then

E {κs|κs ≥ 1} = E {1X>s + 1Y >s|κs ≥ 1}

= E {1X>s|κs ≥ 1}+ E {1Y >s|κs ≥ 1}

= P {X > s|κs ≥ 1}+ P {Y > s|κs ≥ 1}(3.1)

=
P{X > s}+ P {Y > s}
1− P{X ≤ s, Y ≤ s}

Compare this expression with another quantity which is sometimes used to

measure dependence in the tail:

(3.2) θs :=
P {X > s and Y > s}
P {X > s or Y > s} .

We have

(3.3) E {κs|κs ≥ 1} = 1 + θs.

9Below we take the all quantiles on which we condition equal to s, but this is by no means

necessary. If two banks have quite different levels of capital, one may want to take the loss return

thresholds with a systemic impact differently.
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The advantage of the expectation measure is that it can be easily extended to

higher dimensions, while the θs is more cumbersome and less revealing, see below.

Under quite general conditions, including extreme value conditions, the limit

(3.4) κ = lim
s→∞E {κs|κs ≥ 1} = 1 + lim

s→∞ θs

exists. This limit can be used as an indicator for the amount of dependence in the

tail between X and Y . One reason to take the limit, rather than using a finite loss

level s, is that economics does not say what the critical level is at which systemic

failure sets in. Taking the limit thereby removes some arbitrariness. At the same

time, the limit is still indicative about what happens at high but finite loss levels,

see Balkema and De Haan (1974).

Note that

lim
s→∞E {κs|κs ≥ 1} = 1

is interpreted as asymptotic independence. In the case that

lim
s→∞E {κs|κs ≥ 1} = 2,

one has maximal asymptotic dependence. Hence

(3.5) H := lim
s→∞E {κs|κs ≥ 1} − 1

is a number between 0 and 1. It can be used as a measure of asymptotic de-

pendence in the tail in a way analogous to the correlation coefficient for the tail

distribution. However, there is no direct connection: Even for a normal distribu-

tion with coefficient of correlation r 6= 0, 1, or −1 one nevertheless has H = 0; see

below.

In the higher dimensional situation with d > 2 random variables, H can be

defined in a completely analogous way:

H :=
lims→∞ E {κs|κs ≥ 1} − 1

d− 1

and the interpretation is the same. Note that the straightforward generalization

of (3.2):

lim
s→∞ θs := lim

s→∞
P {X1 > s, . . . , Xd > s}

P {X1 > s or . . . or Xd > s}
is not directly linked to H and that lims→∞ θs can be zero even if the random

variables are not jointly independent in the tail (even if the random variables are

pairwise asymptotically dependent, this limit can still be zero for d > 2).
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As observed above, for any normal distribution and many other distributions,

we find H = 0. Even in the case of asymptotic independence one can make a

distinction between probability distributions which exhibit more and less depen-

dence by applying a finer scale in the framework of extreme value theory. In the

simple case the domain of attraction condition can be written (cf. Resnick, 1987)

(3.6) lim
t→∞ t {1− F (tx, ty)} = − log G(x, y)

for x, y > 0 where F is the initial distribution and G is the limit distribution.

Assume a ‘second order’ or ‘speed of convergence’ condition: Suppose there exists

a positive function A and a limit function H (not identically 0) such that

(3.7) lim
t→∞

t(1− F (tx, ty)) + log G(x, y)

A(t)
→ H(x, y)

for 0 < x, y ≤ ∞ (we include x = ∞ and y = ∞ since otherwise we would not

control the marginal distributions). It can be proved that A is regularly varying

with index ρ ≤ 0. In the case of asymptotic independence

(3.8) G(x, y) = G(x,∞)G(∞, y) = e−
1
x
− 1

y .

Moreover, (3.7) with y = ∞ or x = ∞ also entails

lim
t→∞

t(1− F (tx,∞)) + log G(x,∞)

A(t)
→ H(x,∞)

lim
t→∞

t(1− F (∞, ty)) + log G(x, y)

A(t)
→ H(∞, y)(3.9)

Then, upon combining (3.7), (3.8) and (3.9), it follows that

(3.10)
tP (X > tx, Y > ty)

A(t)
→ H(x,∞) + H(∞, y)−H(x, y).

Now according to (3.6), P {X > tx or Y > ty} is asymptotically of order t−1,

i.e., regularly varying with index−1, whereas according to (3.10), P {X > tx and Y > ty}
is asymptotically of order t−1A(t), i.e. regularly varying with index ρ− 1.

For the bivariate case, Ledford and Tawn [23] introduced the parameter η de-

fined as

η =
1

1− ρ
∈ [0, 1]

as a measure to distinguish between asymptotically independent distributions.

Note that if H > 0, then η = 1. Note also that for a bivariate normal distribution



14 J.L. GELUK, L. DE HAAN, AND C. G. DE VRIES

η = (1 + r)/2, where r is the coefficient of correlation. Moreover, if X and Y are

independent, η = 1/2, but the converse does not hold.

3.3.2. the FI scale. If we combine the H scale and the η scale, we can define the

Fragility Index FI:

FI =





lims→∞ E {κs|κs ≥ 1} if H > 0

1
2
lims→∞

log P{X>s}+log P{Y >s}
log P{X>s,Y >s} if H = 0.

We will say that the financial system is strongly fragile if FI > 1, while the

system is only weakly fragile if FIε[0, 1]. This index will be used as our scale for

the amount of fragility.

We already noted that E {κs|κs ≥ 1} can be easily extended to higher dimen-

sions. We turn to the extension of Ledford and Tawn’s η measure to higher

dimensions. We start from the extension of (3.7):

lim
t→∞

tP {X > tx or Y > ty or Z > tz} − ( 1
x

+ 1
y

+ 1
z
)

A(t)
= H(x, y, z).

As in (3.9) and the reasoning thereafter, we use

P{X > tx or Y > ty or Z > tz} − P{X > tx} − P{Y > ty} − P{Z > tz}

= −P {X > tx, Y > ty} − P {X > tx, Z > tz} − P {Y > ty, Z > tz}

+P {X > tx, Y > ty, Z > tz} .(3.11)

Suppose that all two-dimensional marginal distributions satisfy (3.10), i.e.

lim
t→∞

tP (X > tx, Y > ty)

A(t)
→ H(x,∞,∞) + H(∞, y,∞)−H(x, y,∞)

lim
t→∞

tP (Y > ty, Z > tz)

A(t)
→ H(∞, y,∞) + H(∞,∞, z)−H(∞, y, z)

lim
t→∞

tP (X > tx, Z > tz)

A(t)
→ H(∞, x,∞) + H(∞,∞, z)−H(x,∞, z)

Then (cf. (3.11)) it remains to deal with P {X > tx, Y > ty, Z > tz}. It is possible

that this probability is of the same order as the two-dimensional distributions, i.e.

of order t−1A(t), or this probability is of lower order and then we are dealing with

a new parameter, smaller than the η that comes from A, determining the joint



WEAK & STRONG FINANCIAL FRAGILITY 15

excess of all three variables. Similar arguments can be made for any d > 2. The

d-dimensional extension of FI thus reads

(3.12) FI =





lims→∞
P{X1>s}+...+P{Xd>s}

1−P{X1≤s,...,Xd≤s} if H > 0

1
d
lims→∞

log P{X1>s}+...+log P{Xd>s}
log P{X1>s,...,Xd>s} if H = 0.

This is the scale we will employ throughout the rest of the paper to judge the

amount of systemic fragility. Note that if H > 0 the fragility is strong, whereas

H = 0 refers to weak fragility.

4. Weak and Strong Financial Fragility

To determine the amount of fragility of a network in the affine FSI portfolio

framework, we need a theory about the dependence between weighted sums of

random variables (asset returns, risk factors) in the tail areas. This section first

deals with discrete returns, then turns to continuous returns. The part on con-

tinuous returns is divided into a part with light and a part with heavy tails. The

main results are summarized at the end of the section in terms of their economic

implications.

The fragility of a bivariate system is linked to the joint tail behavior of linear

portfolio combinations Q =
∑

λiXi and W =
∑

µiXi. It is assumed that the loss

returns Xi (i = 1, . . . , n) are (cross sectionally) i.i.d.10 We are interested in high

values of the vector (Q,W ) and in particular in the dependence between Q and W

in the tail area. Assume that the distribution of Xi is in the domain of attraction

of an extreme value distribution Gτ .
11 The marginal distributions which are in this

class do have a proper limit distribution for the linearly scaled maximum (loss).12

In order to be able to calculate the fragility we need to find the joint tail behavior

of Q and W for different values of τ . For the cases τ > 0 and τ < 0 we give a

complete characterization; in case τ = 0 we cover the cases of subexponential and

10In case the factors or returns in our linear portfolios are time dependent but stationary, this

does not affect the results in the paper.
11Where τ < 0 refers to the Weibull limit law, τ > 0 is the Frechet case, and τ = 0 represents

the Gumbel limit law. The extreme value theorem holds that the limit law for the maximum is

either one of these distributions.
12The tail behavior is closely related to the type of relevant Gτ .
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superexponential distributions (to be defined below)13. Throughout we use the

notation

(4.1) α =: 1/|τ | if τ 6= 0.

4.1. Discrete returns, Case τ < 0. We start by showing that the class of

distributions in the domain of attraction of the Weibull limit law is closed under

addition.

4.1.1. Closure under addition. Let F (x) be a loss distribution with bounded sup-

port [0, a], hence F (a) = 1, 0 < a < ∞. Suppose F (x) is in the domain of

attraction of a Weibull extreme value distribution. It is first shown that convolu-

tions remain in this domain of attraction.

Define the ”upper tail distribution” H(x) as

H(x) ≡ 1− F (−x + a)

Introduce its Laplace transform H̃(y)

(4.2) H̃(y) ≡
∫ ∞

0
ye−yxH(x)dx.

Hence for t > 0 by a transformation of variable

(4.3)
H̃(y/t)

H(t)
= y

∫ ∞

0
e−yx H(tx)

H(t)
dx.

Recall that if F (x) = P{Xi ≤ x}, for i = 1, 2 and if X1 and X2 are independent,

their convolution is F 2∗(x) := P{X1 + X2 ≤ x}. We have the following result:

Lemma 1. Suppose H(x) is in the domain of attraction of the Weibull extreme

value distribution, i.e.

(4.4) lim
t↓0

H(tx)/H(t) = xα, α > 0.

Then the convolution H2∗ of H(x) is again in the domain of attraction of the

Weibull extreme value distribution and satisfies

lim
t↓0

H2∗(tx)

H2∗(t)
= x2α.

13Only subsets of the Gumbel class are covered as it is unknown whether this class is closed

under addition.
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Proof. By (4.3), (4.4) and a transformation of variable

lim
t↓0

H̃(y/t)

H(t)
= y

∫ ∞

0
e−yx lim

t↓0
H(tx)

H(t)
dx

= y
∫ ∞

0
e−yxxαdx

= y−αΓ(1 + α)(4.5)

The justification for interchanging the limit and the integral is as in Feller (1971,

XIII.5). Hence the Laplace transform H̃ varies regularly at infinity with tail index

−α whenever H varies regularly at zero with index α. By the convolution theorem

for Laplace transforms

H̃2∗(y) =
(
H̃(y)

)2
.

Hence, H̃2∗(y) varies regularly at infinity with index −2α. By (4.5) this implies

that the convolution H2∗(x) varies regularly at zero with index 2α. ¤

Thus the class is closed under addition, but the index of regular variation

changes!

Remark 1. This convolution result implies that if portfolios contain an equal

number of assets (with returns in that class), the portfolios have the same index of

regular variation, while if two portfolios differ with respect to the number of assets,

their indices differ.

4.1.2. Domain of attraction. We now set out to prove that the portfolio return

distribution is in the domain of attraction of a multivariate extreme value distri-

bution, if the univariate distributions of the composite parts are in the domain of

attraction of the Weibull extreme value distribution. For simplicity of writing we

assume that the right end point of the distribution function (which must be finite)

is zero. Recall that α = −1/τ when τ < 0. Then for x > 0, i = 1, 2

lim
n→∞nP {−Xi ≤ xa(n)} = xα
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where a(x) is the inverse function of the distribution function of −Xi at the point

1− 1/x. Hence as n →∞ for x, y > 0

n2P{−X1 ≤ xa(n) and −X2 ≤ ya(n)}

= nP{−X1 ≤ xa(n)}nP{−X2 ≤ ya(n)}

→ α2
∫ y

0

∫ x

0
sα−1tα−1dsdt = (xy)α.(4.6)

We claim that the distribution of the random vector

(Q,W ) := (λ1X1 + λ2X2, µ1X1 + µ2X2) (λi, µi > 0)

is in the domain of attraction of an extreme value distribution. In particular we

claim that for x, y > 0 as n →∞

P n2{Q ≤ −a(n)x, W ≤ −a(n)y} → exp
(
−α2

∫

S
(st)α−1 dsdt

)
,

where S = {(s, t) : λ1s + λ2t ≤ x or µ1s + µ2t ≤ y, s > 0, t > 0}. Or equivalently

lim
n→∞n2P{− (λ1X1 + λ2X2) ≤ a(n)x or − (µ1X1 + µ2X2) ≤ a(n)y}

= α2
∫

S
(st)α−1dsdt(4.7)

The limit (4.6) entails

lim
n→∞n2P{x1a(n) ≤ −X1 < x2a(n), y1a(n) ≤ −X2 < y2a(n)}

= α2
∫ y2

y1

∫ x2

x1

sα−1tα−1dsdt,(4.8)

for 0 ≤ x1 < x2 < ∞, 0 ≤ y1 < y2 < ∞, i.e. we have convergence for rectangles

and for finite unions of rectangles.

It clearly suffices for the proof of (4.7) to give a proof for sets Am and Bm such

that Am ⊂ S ⊂ Bm and Bm\Am ↓ ∅,m →∞. Note that in case λ1µ2 6= λ2µ1 and

x/y ∈ (λ1/µ1, λ2/µ2), the boundary of S consists of 4 line segments. The vertices

are (0, 0), (a, 0) := (max( x
λ1

, y
µ1

), 0), (0, b) := (0, max( x
λ2

, y
µ2

)) and

(4.9) (s0, t0) :=
1∣∣∣∣∣∣

λ1 λ2

µ1 µ2

∣∣∣∣∣∣




∣∣∣∣∣∣
x λ2

y µ2

∣∣∣∣∣∣
,−

∣∣∣∣∣∣
x λ1

y µ1

∣∣∣∣∣∣


 .



WEAK & STRONG FINANCIAL FRAGILITY 19

We concentrate on the subarea S1 with vertices (0, 0), (0, b), (s0, t0) and (s0, 0).

Define for i = 1, . . . , m

si :=
(m− i)s0

m
and ti :=

t0 − b

s0

si + b

and the sets

Li := (s, t) : si ≤ s < si−1, 0 ≤ t ≤ ti

and

Ui := (s, t) : si ≤ s < si−1, 0 ≤ t ≤ ti+1.

Then ∪m
i=1Li ⊂ S1 ⊂ ∪m

i=1Ui, and by (4.8)

lim
n→∞n2P{a(n)−1(X1, X2) ∈ ∪m

i=1Li} = α2
∫

(s,t)∈∪m
i=1Li

(st)α−1 dsdt

and

lim
n→∞n2P{a(n)−1(X1, X2) ∈ ∪m

i=1Ui} = α2
∫

(s,t)∈∪m
i=1Ui

(st)α−1 dsdt.

Since clearly ∪m
i=1Ui\ ∪m

i=1 Li → ∅ as m →∞, we have proved (4.7).

Let us now simplify the integral at the right-hand side of (4.7). Write D1 for

the triangle with vertices (0, b), (s0, t0), (0, t0); D2 for the rectangle with vertices

(0, 0), (s0, 0), (s0, t0), (0, t0); D3 for the triangle with vertices (s0, 0), (s0, t0), (c, 0).

Then

α2
∫ ∫

(s,t)∈S1

sα−1tα−1dsdt =: I1 + I2 − I3,

where I1, I2, and I3 are the integrals over D1 ∪D2, D3 ∪D2, and D2 respectively.

The first integral can be written as

I1 = α2
∫ s0

0
sα−1

∫ b−s(b−t0)/s0

0
tα−1dtds

= α
∫ s0

0
sα−1

(
b− s

s0

(b− t0)
)α

ds

= α

(
b2s0

b− t0

)α ∫ 1−t0/b

0
sα−1(1− s)αds.

Define the function ϕ:

ϕ(s, α) :=
∫ s

0
θα−1 (1− θ)α dθ.

Note that this is a special case of the incomplete beta function. Then

I1 = α

(
b2s0

b− t0

)α

ϕ(1− t0/b, α),
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and, similarly

I2 = α

(
c2t0

c− s0

)α

ϕ(1− s0/c, α).

It follows that the right-hand side of (4.7) is

(4.10) α

(
b2s0

b− t0

)α

ϕ(1− t0/b, α) + α

(
c2t0

c− s0

)α

ϕ(1− s0/c, α)− (s0t0)
α .

Reformulation of both sides in (4.7) shows that we have proved the following

theorem.

Theorem 1. With the notation given in the introduction of the section, in case

τ < 0, it follows that the vector (Q,W ) is in the bivariate domain of attraction of

an extreme value distribution, i.e. for x, y > 0

P n{λ1X1 + λ2X2 ≤ −a(
√

n)x, µ1X1 + µ2X2 ≤ −a(
√

n)y}

→ exp
{
−α2

∫

S
(st)α−1dsdt

}
, as n →∞,

where S = {(s, t) : λ1s + λ2t ≤ x or µ1s + µ2t ≤ y, s > 0, t > 0} so that the

logarithm of the right-hand side equals minus (4.10) with (s0, t0) as in (4.9).

So we conclude that the vector (λ1X1 +λ2X2, µ1X1 +µ2X2) is in the domain of

attraction of a multivariate extreme value distribution, with extreme value index

τ/2 and non-discrete spectral measure.

To provide some intuition and interpretation, we conclude this section by cal-

culating the fragility for the two example portfolios.

Example 1. Consider the zero beta portfolios (2.1) and (2.2), where γ ∈ (1
2
, 1),

and X, Y are as X1, X2 in Theorem 1. Note that in this case we take limits as

s ↑ 0. Similar to (3.1) and (3.4) we have

(4.11) κ = lim
s↑0

E {κs|κs ≥ 1} = lim
s↑0

P {Q > s}+ P {W > s}
P {Q > s or W > s}

First suppose 1
2

< γ < 1. In order to evaluate κ we use (4.7) with λ1 = µ2 =

1− γ, λ2 = µ1 = γ and x = y = 1 to find that

n2P{− ((1− γ) X1 + γX2) ≤ a(n) or − (γX1 + (1− γ) X2) ≤ a(n)}

→ 2α [γ (1− γ)]−α
∫ γ

0
sα−1 (1− s)α ds− 1.

For the marginal distribution we find similarly

n2P{− ((1− γ) X1 + γX2) ≤ a(n)}
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→ α2
∫ 1/γ

0

∫ 1−γt
1−γ

0
(st)α−1dsdt =

Γ (α + 1)2

[γ(1− γ)]αΓ(2α + 1)
.

By combining these results, the FI index is found as

(4.12) κ =
2Γ(α + 1)2

Γ(2α + 1){2α ∫ γ
0 sα−1(1− s)αds− [γ(1− γ)]α} .

Example 2. Consider again the zero beta portfolios Q and W , but now suppose

more specifically that the marginal loss distributions of X and Y are uniformly

distributed on [0, 1]. By computing the areas above the portfolio lines in the upper

right hand corner of the unit square by direct integration, one readily finds

P{Q > t} = P{W > t} =
1

2

1

γ (1− γ)
(1− t)2

and

P{Q > t,W > t} =
1

γ
(1− t)2 .

Thus

FI = lim
t↑1

E {κt|κt ≥ 1} =
1

1−
1
γ
(1−t)2

1
γ(1−γ)

(1−t)2

=
1

γ
> 1

as γε (1/2, 1) and the portfolios are asymptotically dependent. Note that if one

takes α = 1 in (4.12), which is the extreme value index for the uniform distribution,

one obtains κ = 1/γ, confirming this specific case for the uniform distribution.

Remark 2. Consider the case of unbalanced portfolios. Suppose the portfolio W

is changed into W = X, but the portfolio Q remains as it is. For the uniform

distribution based example, the unbalanced portfolio implies P{W > t} = 1 − t,

while P{Q > t} remains as before. The joint loss probability becomes

P{Q > t, W > t} =

(
1

2γ
+

1

2

)
(1− t)2 .

In this case κ = limt↑1 E {κt|κt ≥ 1} = 1, as P{W > t} is of larger order than

the other two probabilities; recall the Remark 1 at the beginning of the subsection.

Thus the portfolios are asymptotically independent. One also calculates that the

FI in this case is 3/4, reflecting the weak fragility.

Example 3. Consider the equal beta asset returns X and Y from (2.3) and (2.4)

respectively, with βx = βy = β. Suppose the market factor R, idiosyncratic risk εx
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and εy are independently uniformly distributed on [0, 1]. In this case, the area of

the upper triangle in the (R, εx) space gives for 1 + β > s > max[1, β]

P{βR + εx > s} = P{βR + εy > s} =
1

2β
(1 + β − s)2 .

The joint failure probability is

P{βR + εx > s, βR + εy > s} =
1

3β
(1 + β − s)3 .

Note that the joint failure probability is of smaller order than the individual failure

probability due to the fact that the idiosyncratic risks εx and εy, per definition do

not drive both asset returns. This implies that the FI will be below one and that

the system’s fragility is only weak:

FI = lim
s→1+β

1

2

2 ln 1
2β

(1 + β − s)2

ln 1
3β

(1 + β − s)3 =
2

3
.

4.2. Continuous returns with light tails, Case τ = 0. The class of contin-

uous distributions which are in the domain of attraction of the Gumbel extreme

value distribution can be divided into two subclasses. One subclass exists of

subexponential distributions, and the complement constitutes the other subclass.

The subexponential distributions comprise a subset of the distributions which are

partly in the domain of attraction of the Gumbel limit law, i.e. for which τ = 0,

and contain the entire class of distributions in the domain of the Frechet limit law,

i.e. for which τ > 0. The subexponential distributions are exhaustively treated in

the next section. If a distribution is subexponential, then for all ε > 0

eεx(1− F (x)) →∞ as x →∞.

This justifies the name subexponential, since the tail of F (x) decays at rate slower

than any exponential, see Embrechts et al. [10]. In particular for Weibull type

distributions we have 1− F (x) ∼ exp{−xβ}, so that the above condition holds if

0 < β < 1.

In case β = 1, we are in a class similar to the exponential distribution, see De

Vries [33]. The case β > 1 is treated as an example of the superexponential class

defined below. This class of distributions also comprises the normal distribution as

a special case. The case of the normal distribution was first treated by Sibuya [34].

The complement of the subexponential class within the domain of attraction of the

Gumbel law is, however, larger than the superexponential class. But its closure
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properties under addition are not known. The treatment below is motivated by

the results in Rootzen [30], for which the closure property holds.

4.2.1. The superexponential distributions. The definition of the superexponential

class is based on Rootzen [30]. Consider the following class of distributions.

Definition 1. A distribution function F is superexponential if it satisfies the fol-

lowing conditions:

(1) F has a density f which satisfies

(4.13) f(x) ∼ Kxαe−xp

, as x →∞, with p > 1,

for some constants K > 0, α and p.

(2) The function D defined by D(x) = f(x)exp
satisfies

(4.14) lim sup
x→∞

∣∣∣∣∣
xD′(x)

D(x)

∣∣∣∣∣ < ∞.

For x < 0, it is assumed that (4.13) and (4.14) hold with the same p, but

possibly with different D(x), α and K.

For further reference let q be the conjugate exponent of p, defined by 1/p+1/q =

1. Note that p > 1 in the above definition, which implies q > 1.

For the so defined class of superexponential distributions, Rootzen [30] proves

that the portfolios with n assets and positive portfolio weights summing to one
∑n

i=1 λi =
∑n

i=1 µi = 1, are in the domain of attraction of the Gumbel limit law.

Moreover, Rootzen showed that

(4.15) P{
n∑

i=1

λiXi > x} ∼ A(λ)

(
x

(
∑n

i=1 λq
i )

1/q

)θ

exp

(
− xp

(
∑n

i=1 λq
i )

p/q

)
,

as x →∞, where

θ = n(
1

2
+ α− p

2q
)− p

2

and A(λ) equals

Kn

(
2π

p(p− 1)p−q

)(n−1)/2

p−nq/2+(q/p−1)/2




n∏
i=1

λi

(
∑n

i=1 λq
i )

2/q




(α+1/2)p/q−1/2

.

We can now turn to the question of asymptotic dependence. The derivation

follows the same strategy as was used by Sibuya [34] in the proof for the normal
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distribution. Suppose that

(4.16) (
n∑

i=1

λq
i )

1/q ≥ (
n∑

i=1

µq
i )

1/q.

If the opposite inequality holds, it is treated similarly. First note that the condi-

tional expectation measure (3.1) can be bounded from above as follows:

E {κs|κs ≥ 1} =
1

1− P{∑n

i=1
λiXi>s,

∑n

i=1
µiXi>s}

P{∑n

i=1
λiXi>s}+P{∑n

i=1
µiXi>s}

≤ 1

1− P{∑n

i=1
(λi+µi)Xi>2s}

P{∑n

i=1
λiXi>s}+P{∑n

i=1
µiXi>s}

≤ 1

1− P{∑n

i=1
(λi+µi)Xi/2>s}

P{∑n

i=1
λiXi>s}

.(4.17)

Consider first the case

(4.18) λi = cµi for i = 1, ..., n and some c > 0.

Since the wealth constraints imply
∑n

i=1 λi =
∑n

i=1 µi = 1, it follows that in this

case c = 1 and λi = µi for all i. But the case of complete dependence is obviously

not of interest. Hence, assume that (4.18) does not hold. In that case Minkowski’s

inequality gives

(4.19) (
n∑

i=1

λq
i )

1/q + (
n∑

i=1

µq
i )

1/q > (
n∑

i=1

(λi + µi)
q)1/q.

Note that (4.16) and (4.19) imply

(
n∑

i=1

λq
i )

1/q >
1

2
(

n∑

i=1

(λi + µi)
q)1/q.

From Rootzen [30] we have as s →∞

P{
n∑

i=1

(λi + µi)Xi/2 > s} ∼

A(λ + µ)

(
2s

(
∑n

i=1(λi + µi)q)1/q

)θ

exp

(
− 2psp

(
∑n

i=1(λi + µi)q)p/q

)
.

Note that, if

P{Zj > s} ∼ Kjx
θ exp

(
−

(
s

aj

)p)
, s →∞, for j = 1, 2

and if a1 > a2, then

lim
s→∞

P{Z2 > s}
P{Z1 > s} = 0.
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A combination of the above gives

(4.20) lim
s→∞

P{∑n
i=1(λi + µi)Xi/2 > s}
P{∑n

i=1 λiXi > s} = 0.

In view of (4.17), we have proved the following theorem.

Theorem 2. Suppose the i.i.d. random asset returns Xi have a distribution in

the superexponential class as in Definition 1, then for portfolios
∑n

i=1 λiXi and
∑n

i=1 µiX it holds that κ = lims→∞ E {κs|κs ≥ 1} = 1.

Example 4. Consider again the zero beta portfolios (2.1) and (2.2). Suppose that

the marginal loss distributions of X and Y are standard normally distributed. One

readily finds

P{Q > s} = P{W > s} ∼ 1√
2π

√
(1− γ)2 + γ2

s
exp

(
− s2/2

(1− γ)2 + γ2

)

as t →∞. Similarly

P{Q + W > 2s} = P{X + Y > 2s} ∼ 1

2
√

πs
exp(−s2)

and hence (4.20) follows. Thus the system is only weakly fragile. In order to

compute the joint failure probability for the FI we need more precision in computing

the joint failure probability than is provided through the above bound. Ruben [31]

gives accurate multivariate first order expressions for the joint probabilities; see

also (5.2) below. Using these approximations, we have

P{Q > s, W > s} ∼ 1

2πs2

1√
(1− γ)2 + γ2

exp(−s2)

as s →∞. Thus, recalling γ 6= 1/2,

FI = lim
s→∞

1

2

log P{Q > s}+ log P{W > s}
log P{Q > s, W > s}

=
1

2

1

(1− γ)2 + γ2
< 1.

Example 5. Consider the equal beta asset returns X and Y from (2.3) and (2.4)

respectively, with βx = βy = β. Suppose the market factor R, idiosyncratic risk εx

and εy are independently standard normally distributed. Using similar arguments

as in Example 4, we find that the FI again indicates weak fragility:

FI = lim
s→∞

ln P{βR + εx > s}
ln P{βR + εx > s, βR + εy > s} =

1 + 2β2

2 + 2β2

as t →∞.
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4.3. Continuous returns with heavy tails. Since there is no uniform termi-

nology in the literature, we will focus on the well known class of subexponential

distributions S and formulate the case τ > 0 as a special case. The class comprises

all the distributions in the domain of attraction of the extreme value distribution

with τ > 0 (Frechet limit law). The rest of the class S are distributions which

are in the maximum domain of attraction with τ = 0 (Gumbel limit law); but

it excludes distributions like the superexponentials. The case of subexponential

distributions in the domain of attraction of the Gumbel limit law when τ = 0, was

studied before by Willekens and Resnick [35].

The class S is defined by the property

(4.21) P (X1 + X2 > x) ∼ 2P (X1 > x) as x →∞,

where X1, X2 are i.i.d. random variables.14 Since S is closed under asymptotic

equivalence of the tail of the d.f., the class is closed under addition of i.i.d. random

variables. The result (4.21) was obtained by Feller [12] for distributions with

regularly varying tails at infinity (when τ > 0).

The subclass of S for which τ > 0, are the distribution functions F which have

a first order term similar to the Pareto distribution, i.e.

(4.22) F (s) = 1− s−αL(s) as s →∞,

where L(s) is a slowly varying function such that

(4.23) lim
t→∞

L(ts)

L(t)
= 1, s > 0.

It is easy to see that conditions (4.22)-(4.23) are equivalent to

(4.24) lim
t→∞

F (ts)

F (t)
= s−α, α > 0, s > 0,

i.e., the tail of the distribution function F := 1− F varies regularly at infinity.15

14Alternatively subexponential distributions are characterized by the fact that the ratio of

probability of the sum and probability of the maximum exceeding a threshold from an i.i.d.

sample converges to one for large thresholds, implying that samples of subexponentials are

dominated by the largest observations.
15The tail index α can be interpreted as the number of bounded distributional moments.

And as not all moments are bounded, we speak of heavy tails. Distributions like the Student-t,

F-distribution, Burr distribution, sum-stable distributions with unbounded variance all fall into
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Apart from the distributions functions with a regularly varying tail, the class S

contains distributions like the lognormal and the Weibull distribution 1−exp{−xβ}
with parameter β < 1. The class S is of importance in ruin theory in insurance,

queueing theory and other areas of applied probability. For applications the reader

is referred to Asmussen [2], Embrechts et al. [10] or Rolski et al. [29].

For a portfolio Qn =
∑n

i=1 λiXi with positive portfolio weights λi and i.i.d.

subexponential Xi’s, it is well known that as s →∞

(4.25) P{
n∑

i=1

λiXi > s} ∼
n∑

i=1

P{λiXi > s}.

See e.g. Tang [32], or Geluk and de Vries [15]. We have the following result for

the fragility in this case.

Theorem 3. Suppose the random variables X, Xi (i = 1, . . . , n) are i.i.d. with

a subexponential distribution. Then for portfolios Qn =
∑n

i=1 λiXi and Wn =
∑n

i=1 µiX we have

(4.26) κ = lim
s→∞E {κs|κs ≥ 1} = 1 + lim

s→∞

∑n
i=1 P{X > s

λi
∨ s

µi
}

∑n
i=1 P{X > s

λi
∧ s

µi
} .

Proof of Theorem 3. In order to prove (4.26), we need to prove the relations (4.27)

and (4.28) below in case x = y = 1.

It is well known (see Theorem 5 in [15]) that under the given conditions as

s →∞, for n = 2 and x, y > 0 fixed

(4.27) P{
n∑

i=1

λiXi > sx ∩
n∑

i=1

µiXi > sy} ∼
n∑

i=1

P{X >
sx

λi

∨ sy

µi

}

and

(4.28) P{
n∑

i=1

λiXi > sx ∪
n∑

i=1

µiXi > sy} ∼
n∑

i=1

P{X >
sx

λi

∧ sy

µi

}.

Since the proof of the second relation is similar, we only prove (4.27). The proof

is by induction. For n = 2, (4.27) follows from Theorem 5 in Geluk and de Vries

[15]. Note that linear combinations of i.i.d. subexponential random variables with

positive coefficients have a subexponential distribution function. This follows from

a combination of Theorems 1 and 2 in Embrechts and Goldie [9]. See also Corollary

1 in [15].

this class. It can be shown that the distribution of the stationary solution to ARCH and GARCH

processes also belongs to this class, see De Haan et al. [17] for a proof.
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Next we show that the result holds with n + 1 instead of n. Since x, y > 0

are arbitrary, we may assume that the additional term satisfies λn+1 = µn+1 = 1.

It follows from (4.27) that Qn ∧ Wn has a subexponential distribution function.

Application of Theorem 1 in [9] then gives

P{Qn + X > s,Wn + X > s} = P{(Qn ∧Wn) + X > s} ∼

P{(Qn ∧Wn) > s}+ P{X > s} ∼
n+1∑

i=1

P{X >
s

λi

∨ s

µi

},

where the last equivalence follows from the induction hypothesis. This completes

the induction step. ¤

We present several examples to illustrate the use of Theorem 3 in the (heavy

tailed) cases τ > 0 and τ = 0.

4.3.1. Frechet domain of attraction τ > 0. The subexponential distributions in

the Frechet domain of attraction are regularly varying as defined in (4.24). For

this class and two risk factors (4.26) specializes to (4.29) below.

Example 6. In case two portfolios have the structure Q2 = λ1X1 + λ2X2 and

W2 = µ1X1+µ2X2 where X1 and X2 are i.i.d. with a regularly varying distribution

function tail with tail index α, using (4.26) and the regular variation of the d.f.

tail it follows that

(4.29) FI = 1 +
(λ1 ∧ µ1)

α + (λ2 ∧ µ2)
α

(λ1 ∨ µ1)α + (λ2 ∨ µ2)α

The zero beta example for the regularly varying distributed returns as given in de

Vries [33] is a special case. Thus for the portfolios (2.1) and (2.2), (4.29) implies

that

(4.30) κ = 1 + (
1

γ
− 1)±α, as γ > (<)

1

2
.

So the system is strongly fragile.

Remark 3. It pays for intuition to demonstrate this result in a more direct way.

The Feller [12] additivity result (4.21) implies that P{Q > s} ∼ [γα + (1 −
γ)α]s−αL(s) for large s. What transpires is that the probability to be above the

portfolio line is, to a first order, dictated by the marginal probabilities P{γY > s}
and P{(1− γ)X > s}. The rest of the area does not contribute significantly (has
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mass of lower order). Similarly, the joint probability 1− P{Q ≤ s,W ≤ s} is de-

termined by the amount of the probability mass along the X and Y axes, starting

from where the failures area cuts the X and Y axes closest to the origin, i.e. at

(s/γ, 0) and (0, s/γ). Thus 1 − P{Q ≤ s,W ≤ s} ∼ 2γαs−αL(s) for large s. A

direct proof of this result based on regular variation rather than subexponentiality,

is provided in the Appendix for the benefit of the reader. Taking ratios then gives

(4.30).

Example 7. Consider the equal beta asset returns X and Y from (2.3) and (2.4)

respectively, with βx = βy = β. Suppose the market factor R, idiosyncratic risk

εx and εy are i.i.d. with regularly varying tail and tail index α. Application of

Theorem 3 shows that the system is strongly fragile and the fragility measure reads

(4.31) FI = κ = 1 +
βα

βα + 2
.

For the subexponential distributions in the Frechet domain of attraction, i.e.

which are regularly varying as defined in (4.24), (4.26) specializes to (4.29), and

hence the asymptotic dependency is generic. But for the subexponential distribu-

tions with a rapidly varying distribution tail, i.e. those which are in the Gumbel

domain of attraction, the results are more subtle as the examples in the next

subsection show.

4.3.2. Gumbel domain of attraction τ = 0. For the subexponential distributions

in the domain of the Gumbel distribution it depends on the specifics of the case

whether the system exhibits asymptotic dependence or independence.

Example 8. Consider the zero beta portfolios (2.1) and (2.2). Suppose that the

returns X and Y are subexponentially distributed and are in the maximum domain

of attraction of the Gumbel distribution. From Theorem 3 and the rapid variation

of 1−F , it follows that κ = 1 (assume γ 6= 1/2). To compute the FI index, assume

in particular that the returns follow a subexponential Weibull type distribution

F (x) = 1− exp{−xξ}, x > 0 with 0 < ξ < 1.

Using (4.27), we find weak fragility

FI = lim
s→∞

1

2

ln P{Q > s}+ ln P{W > s}
ln P{Q > s, W > s} =

(
1− γ

γ

)ξ

.
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Example 9. Consider again the equal beta asset returns X and Y , with βx =

βy = β. Suppose the market factor R, idiosyncratic risks εx and εy are i.i.d.

with a subexponential distribution in the Gumbel domain of attraction and support

on R+; for example a lognormal distribution. The example is used to build some

intuition for the Theorem 3 result in the Gumbel domain of attraction case. To

do this, we make use of the rule (4.25) and the following result

(4.32) lim
s→∞

P{R > ts}
P{R > s} =





0 if t > 1

∞ if 0 < t < 1
,

which stems from the rapid variation of the upper tail, see Embrechts et al. [10].

The first result is (i = x, y)

(4.33) P{βR + εi > s} ∼





P{βR > s} if β > 1

2P{R > s} if β = 1

P{R > s} if β < 1

.

To show this, note that by (4.25)

P{βR + εx > s} = P{βR + εy > s} ∼ P{βR > s}+ P{R > s}.

Dividing by P{βR > s} in case β > 1, and by P{R > s} in case β < 1, taking

limits and using (4.32) yields the asymptotic equivalences (4.33).

To evaluate the joint failure probability, we resort to using bounds. Note that

an upper bound for the joint failure probability is

P{βR + εx > s, βR + εy > s} ≤ P{2βR + εx + εy > 2s}.

By (4.25) this bound is asymptotic to

(4.34) P{βR +
1

2
εx +

1

2
εy > s} ∼ P{βR > s}+ 2P{1

2
R > s}

for large s. For β < 1, by the rule (4.32)

lim
s→∞

P{βR > s}/P{R > s}+ 2P{1
2
R > s}/P{R > s}

2P{βR > s}/P{R > s}+ 2
= 0.

Thus for β < 1

κ ≤ lim
s→∞

1

1− P{2βR+εx+εy>2s}
P{βR+εx>s}+P{βR+εy>s}

= 1.
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The two assets are therefore asymptotically independent.

For β = 1, combine the upper bound (4.34) with the lower bound (recall the random

variables are non-negative)

(4.35) P{βR + εx > s, βR + εy > s} ≥ P{βR > s},

to sandwich κ

4

3
= lim

s→∞
1

1− P{R>s}
P{R+εx>s}+P{R+εy>s}

≤ κ ≤ lim
s→∞

1

1−1+2P{ 1
2
R>s}/P{R>s}
2+2

=
4

3
.

Hence FI = 4/3, meaning that the two assets are asymptotically dependent.

Lastly, we investigate the case β > 1. Using the upper bound again and dividing

by P{βR > s} gives

κ ≥ lim
s→∞

1

1− 1
2+2P{R>s}/P{βR>s}

= 2.

Thus if β > 1 the dependency is maximal (in the tail area).

One can also verify these results directly by application of Theorem 3 with λ1 =

µ1 = β, λ2 = 1, µ2 = 0, λ3 = 0, and µ3 = 1. This shows that

κ = 1 + lim
s→∞

P{R > s/β}
P{R > s/β}+ 2P{R > s} .

Then use (4.32) to find the κ value.

Remark 4. Note the stark contrast between this last example and the example

7 for the subclass of regular varying distributions. In the example 7 the linkage

measure changes continuously with the value of β, cf. (4.31). At β = {0, 1,∞} the

κ values for the two cases coincide, but at intermediate values the subexponential

distributions in the maximum domain of attraction of the Gumbel either imply

maximal asymptotic dependence or asymptotic independence. Also note that for

both cases the correlation coefficient is β2/(1+β2) and hence changes continuously

with β as well.

4.4. Summary. We summarize these results by returning to the question of sys-

temic risk. As noted before, in the banking industry the risks of an individual

bank are captured by the VaR measure. The systemic risk is that there may occur

multiple failures. Let the critical VaR failure level be denoted by s. For the zero

beta portfolio example, the probability of an individual failure reads

P{Q > s} = P{W > s} = q,



32 J.L. GELUK, L. DE HAAN, AND C. G. DE VRIES

Table 1. Individual and Systemic Failure Probabilities

q ∼ P{Q > s, W > s} ∼ limit

Uniform

1
2

1
γ(1−γ)

(1− s)2 ³ 1
γ

(1− s)2 s → 1−
Pareto, α > 1

[(1− γ)α + γα] s−α ³ 2 (1− γ)α s−α s →∞
Unit exponential

γ
2γ−1

exp
(
− s

γ

)
À 1

2γ−1
exp (−2s) s →∞

say. Thus q is the inverse of the VaR measure s. Focussing on the probability q

rather than the VaR level is useful for comparison with the systemic risk. The

probability of a systemic breakdown is P{Q > s,W > s}. On the basis of the

above, we have collected the following results in the Table 1.16

For γ ∈ (1/2, 1) the systemic risk in case of the exponential distribution is

of lower order than the univariate VaR risk. But for the Pareto and uniform

distribution the systemic risk is of the same order as the univariate VaR risk. In

fact, we have the following summary result.

Proposition 1. Suppose that the FSI’ asset and liability risks are affine combi-

nations of independent risk drivers. The Basel II and Solvency II per individual

FSI based VaR criterion is to a first order also the appropriate criterion for safe-

guarding against systemic risk in case the marginal distributions of the risk drivers

are from the class of the superexponential distributions since the systemic risk is

relatively unimportant.17 If the risk drivers are in the domain of attraction of the

Frechet or Weibull limit distribution, however, the systemic risk is of the same

order as the marginal VaR risk.18 From a system’s perspective the per individual

FSI based VaR criterion is then overly conservative.

16Only the dominant first order terms are represented, f ³ g, means that f/g is bounded

away from 0 and ∞, f À g means f/g →∞.
17The subexponential distributions in the maximum domain of the Gumbel require a case by

case treatment as the examples showed.
18For the Weibull case, all bank portfolios must have an exposure to the same risk drivers

for this result to hold. Otherwise the orders of magnitude differ and systemic risk is relatively

unimportant.
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For two reasons it is important to have a scale like the FI as a measure of

the potential for simultaneous failures. First, like the individual FSI based VaR

measure, however imperfect, it is necessary to have a measure to be able to discuss

and compare the stability of different financial networks. Measurement predates

eventual regulatory and supervisory action. Second, we argued before that the

individual FSI based approach can be overly conservative as it counts the joint

failure as often as the number of FSI in the system. In a non-normal world, the

systemic risk can be of the same order as the univariate VaR risk.

5. ECONOMICS

We return to the economic issues outlined before and discuss implications of the

probability results. We derive economically relevant limit copulas, we investigate

different banking networks and their FI scale, we briefly deal with non-linear

instruments and discuss sunspot equilibria.

5.1. Copulas. Copulas have gained in popularity as a measure of dependency in

economics and finance due to the dismay over the standard use of correlation.

For this reason it appears important to connect the concept of a copula to our

measure. Recall that the FI only has something to say about the tail region, while

a copula is a global dependency measure. By taking limits, the two concepts can

be connected

(5.1) κ = lim
s→∞E {κs|κs ≥ 1} = lim

p↑1
2(1− p)

1− C(p, p)
,

where C(., .) is the bivariate copula. The Morgenstern copula for example,

C(x, y; δ) = xy[1 + δ(1− x)(1− y)], − 1 ≤ δ ≤ 1,

implies asymptotic independence as κ = 1. whereas The logistic copula,

C(x, y; β) = exp[−{(− ln x)1/β + (− ln y)1/β}β], 0 < β ≤ 1,

induces asymptotic dependence with κ = 21−β ≥ 1. Longin and Solnik [25] used

the logistic copula to estimate the dependency between equity markets. There

exist, however, many other copulas and the question is which copula should be

chosen for the analysis of systemic stability.

Let us come back to the example portfolios and derive an economic motivated

property of the copula. Recall the zero beta portfolios (2.1) and (2.2). Let X and
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Y be i.i.d. random variables with (identical) regularly varying tails as in (4.22).

Suppose γ ∈ (1/2, 1) and let limt,s→∞ t/s = c > 0, some positive constant. For

the joint distribution function P{Q ≤ s,W ≤ t}, one has

P{Q ≤ s,W ≤ t} =





1− [γα+(1− γ)α]c−αs−αL(s) as 1
c
> γ

1−γ

1− γα[1 + c−α]s−αL(s) as 1−γ
γ
≤1

c
≤ γ

1−γ

1− [γα+(1− γ)α]s−αL(s) as 1
c
<1−γ

γ

as s, t →∞. Recall the Remark 3, where we argued that for c = 1, P{Q ≤ s,W ≤
s} ∼ 1− 2γαs−αL(s).

Alternatively, we verify the limit on the right hand side in (5.1). The limit

copula associated with P{Q ≤ s,W ≤ t} reads

CQ,W (x, y) =





y as 1−y
1−x

> ( γ
1−γ

)α

1− γα

γα+(1−γ)α [2− x− y] as (1−γ
γ

)α ≤ 1−y
1−x

≤ ( γ
1−γ

)α

x as 1−y
1−x

< (1−γ
γ

)α

for x and y in a neighborhood of 1.19 Note that if α is close to zero, CQ,W (x, y) is

close to the maximal dependent copula min(x, y). While if α is large, CQ,W (x, y)

is close to x + y− 1, which for x, y in a neighborhood of 1 is the first order Taylor

approximation to the independent copula.20 It readily follows that21

lim
p↑1

2(1− p)

1− C(p, p)
= lim

p↑1
2(1− p)

1− [1− γα

γα+(1−γ)α 2(1− p)]
= 1 + (

1

γ
−1)α.

Note how the limit copula differs from the standard type of copulas. The upshot

of all this is that economically relevant copulas may be quite different from the

popular functional forms from the literature. The choice of copulas in applied

work is partly driven by the ease to which these lend themselves to estimation.

But this may not always yield the economically relevant specification. For the

economic problem of systemic risk in the financial sector, we now at least have a

19A similar result holds for the case of the distributions in the domain of attraction of the

Weibull, i.e. when τ < 0. This is particularly easy to see for the Example 2 of uniform

distributions.
20These are the Frechet Hoeffding bounds.
21Note that for the case of the uniform distributions discussed in the example 2, one finds

C(p, p) = 1− 2γ(1− p).
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theory about the relevant economic (limiting) functional form of the copula in the

failure region.22

5.2. options. Consider how the analysis has to be adapted when the portfolio

includes non-linear instruments like an option. Note this does not necessarily

destroy the linearity of a portfolio, as this is still linear in the option’s return.

Suppose, however, that one portfolio consists in a call option which is held till

maturity and that another portfolio comprises the underlying. Then one has to

take care of the nonlinearities due to the fact that the option may be out of the

money. Let St denote the share price at time t and let Ct denote the price of the

(European) call option. Suppose the call is at the money at the time of purchase

t. The option expires at time T > t. If held till maturity, the gross returns on the

underlying and the call are respectively

ST

St

and max[0, (
ST

St

− 1)
St

Ct

],

where St/Ct > 1. Suppose that ST /St follows a (continuous) distribution F (ST /St)

say, for which the left tail is in the domain of attraction of the Weibull distribution,

and

lim
s↓0

P{ST

St

≤ s} = 0,

while F (1) > 0. So there is a non-zero probability that the option ends out of the

money. It follows that

lim
s↓0

P{max[0, (
ST

St

− 1)
St

Ct

] ≤ s} = F (1).

Note moreover that the joint probability for s < 1 collapses to

lim
s↓0

P{ST

St

≤ s, max[0, (
ST

St

− 1)
St

Ct

] ≤ s} = P{ST

St

≤ s}.

Since if ST < St, the option return is zero and the hence

max[0, (
ST

St

− 1)
St

Ct

] ≤ s < 1

is automatically satisfied. It follows that FI = 1/2, i.e. the two portfolios are

asymptotically independent.

22In case there are more than two assets, the middle line segment in the limit copula is cut up

into multiple straight line segments with different slopes, where the kinks are driven by where

the portfolio hyperplanes cut the portfolio axes.
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To give one other example, consider two portfolios each consisting of an at the

money call option, where each option is written on a different stock. Suppose the

two stock returns are independently distributed, with distribution functions F (.)

and G(.). Thus the loss returns on the two stocks are evidently asymptotically

independent. Assume again that the two stock returns have continuous distribu-

tions and that the there is a non-zero probability that the stock prices fall below

their level at the date of purchase of the option, i.e. F (1) > 0, and G(1) > 0.23 It

follows that for the two option portfolios

lim
s↓0

E {κs|κs ≥ 1} =
1

1− F (1)G(1)
F (1)+G(1)

> 1,

since F (1)G(1) > 0. Thus the option portfolios are asymptotically dependent even

though the stock portfolios are asymptotically independent! While these cases may

appear contrived, they are actually quite relevant given the huge exposures of the

banking book to derivatives.

5.3. sequence of FSI networks and large portfolios. In this section we in-

vestigate how different dependence measures and different tail shapes affect the

ranking of different FSI networks regarding their systemic risk. The network

configurations we discuss are motivated by the cases discussed in the banking lit-

erature on systemic risk, such as Rochet and Tirole [28], Allen and Gale [1] and

Freixas, Parigi and Rochet [13].

Suppose there are four projects with returns: 4U , 4X, 4Y , and 4T . The returns

to the projects U , X, Y , and T are random and are independently distributed.

We investigate and compare the cases where these random variables either follow

a standard normal distribution or have a Student-t distribution with α degrees of

freedom. The projects can be broken down into four equally sized participations.

There are also four distinct banks with returns: B1, B2, B3, and B4. Consider the

following cases of syndicated loans.

Case 1. Each bank finances one entire project. In particular the returns are

B1 = 4U, B2 = 4X, B3 = 4Y, B4 = 4T,

where we identify the portfolio return of each bank with its name tag Bi.

23The options have the same expiration date and are bought on the same date.
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Case 2. Each bank participates in two projects. The specific portfolios are

B1 = 2U + 2X,B2 = 2X + 2Y, B3 = 2Y + 2T, B4 = 2T + 2U.

Case 3. There is further diversification. In particular, the portfolios are

B1 = 2U + X + Y,B2 = 2X + Y + T, B3 = 2Y + T + U, B4 = 2T + U + X.

Case 4. All bank portfolios are fully diversified:

Bi = U + X + Y + T, for i = 1, ..., 4.

Note that these syndicates represent different network configurations as dis-

cussed in Allen and Gale [1] and Freixas, Parigi and Rochet [13], but in this case

for loan syndication rather than for the interbank market. In particular the last

portfolio is reminiscent to the diversified lending case and the second portfolio

resembles the credit chain funding of Freixas et al. [13].

5.3.1. normally distributed returns. Suppose the project returns U , X, Y , and

T are independent and follow a standard normal distribution. For these cases

we evaluate the FI (3.12). With normally distributed returns, the returns are

asymptotically independent except for the fully diversified syndicates and we have

to use the second part of the FI scale. To evaluate the numerator we use Laplace’s

asymptotic expansion, for large s

P{Bi > s} ∼ 1√
2π

σ

s
exp(− s2

2σ2
),

where the variance σ2 is 16, 8, 6 and 4 for the cases 1 to 4 respectively.

For the denominator we need the multivariate analogue of this approxima-

tion which is available from Ruben [31]. Suppose (B1, B2, B3, B4) has a (non-

degenerate) multivariate normal distribution with mean zero and covariance ma-

trix V . Let M = V −1 be the inverse of the covariance matrix and write its

determinant as |M |. Denote the vector (1, ..., 1) by ι and write

(δ1, δ2, δ3, δ4) = ιM.

Then it follows from Ruben [31] that for s large

P{B1 > s,B2 > s, B3 > s,B4 > s} '(5.2)

(2π)−4/2

√
|M |

s4δ1δ2δ3δ4

exp
(
−1

2
s2ιMιT

)
.
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Since the terms in the exponent dominate, it follows that

(5.3)
1

4
lim
s→∞

∑4
i=1 log P{Bi > s}

log P{B1 > s, B2 > s, B3 > s, B4 > s} =
1

σ2

1

ιMιT
.

Thus for normal distribution in combination with the FI the covariance matrix

V is a natural representation of the network dependencies, even far into the tails.

Turning now to the specific cases, in case one the V = 16I, where I is the

identity matrix. Hence ιMιT = 4/16, and from (5.3) it follows that FI = 1/4.

The second case is somewhat non-standard and we cannot immediately apply

(5.3). Note that banks are only partially connected, which is reflected through the

zero’s in the covariance matrix

V =




8 4 0 4

4 8 4 0

0 4 8 4

4 0 4 8




.

But knowing the returns for the first three bank portfolios implies the fourth

B4 = B1 + B3 −B2.

Thus it follows that |M | = 0 and the correlation matrix is singular. Thus we

cannot directly apply Ruben’s result. One can write, however,

P{B1 > s, B2 > s, B3 > s, B4 > s} =

P{B1 > s, B2 > s, B3 > s, B1 + B3 −B2 > s}

and use Ruben’s [31] result in the three dimensional space with the restriction

B1 + B3 −B2 > s. We have from Ruben that

(5.4) P{B1 > s, B2 > s, B3 > s} ∼ (2π)−3/2

√
|M |

s3δ1δ2δ3

exp
(
−1

2
s2ιMιT

)

and where M is the covariance matrix of {B1, B2, B3}. The linear restriction

B1 + B3 − B2 > s only affects the constants δ1δ2δ3 in (5.4). Hence, the FI

measure is

1

4
lim
s→∞

∑4
i=1 log P{Bi > s}

log P{B1 > s, B2 > s, B3 > s} =
1

8

1

1/4
=

1

2
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For case three the covariance matrix has full rank and reads

V =




6 3 4 3

3 6 3 4

4 3 6 3

3 4 3 6




.

One computes that ιMιT = 1/4, so that FI = 4/6.

The fully diversified portfolios imply that all banks become perfectly corre-

lated, so that we are in a case of maximal asymptotic dependence and FI =

lims→∞ E {κs|κs ≥ 1} = 4. The measure nicely reflects the increases in network

connectedness as we move from first case to the last case.

5.3.2. fat tails. Now suppose the project returns are rescaled Student-t distributed,

so that the projects still have the same first two moments as under normality but

exhibit heavy tails. This implies that for large s

Pr{U > s} = Pr{X > s} = Pr{Y > s} = Pr{T > s}

∼ as−α (a, α > 0, s →∞),

where α is the number of degrees of freedom. In this case (3.4) is a natural measure

for the extreme network dependencies. It is immediate that for case 1 we have

FI = κ = 1.

For case 2, using Feller’s convolution theorem [12] as s →∞

Pr{2U + 2X > s} ∼ 2a2αs−α.

Moreover by the arguments above, the probability of no failures

Pr{2U + 2X ≤ s, 2X + 2Y ≤ s, 2Y + 2T ≤ s, 2T + 2U ≤ s, }

can be found by noting that the set

(2U + 2X = s, 2X + 2Y = s, 2Y + 2T = s, 2T + 2U = s)

cuts the four axes at the points

(
s

2
, 0, 0, 0); (0,

s

2
, 0, 0); (0, 0,

s

2
, 0); (0, 0, 0,

s

2
).
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Above each of the these points there is (approximate) mass a2αs−α along the axes.

The mass above the four points together gives the probability

1− Pr{2U + 2X ≤ s, 2X + 2Y ≤ s, 2Y + 2T ≤ s, 2T + 2U ≤ s, }

∼ 4× a2αs−α.

Combining gives

FI = κ =
4× 2a2αs−α

4× a2αs−α
= 2.

The third case is interesting since the denominator is as in the second case.

Note that the set

(2U + X + Y = s, 2X + Y + T = s, 2Y + T + U = s, 2T + U + X = s)

cuts the axes at the points

(
s

2
, 0, 0, 0); (0,

s

2
, 0, 0); (0, 0,

s

2
, 0); (0, 0, 0,

s

2
)

as in the previous case. Since we need the probability to be below planes like

2U + X + Y = s,

the binding point is where this plane cuts the axes closest to the origin, i.e. along

the U−axis where the triangle cuts at s/2. Thus

1− Pr{2U + X + Y ≤ s, 2X + Y + T ≤ s,

2Y + T + U ≤ s, 2T + U + X ≤ s, }

= 4× a2αs−α.

The numerator is straightforward by Feller’s convolution result and equals

4× Pr{2U + X + Y > s} ∼ 4(2α + 2)as−α.

Hence, the third network implies

FI = κ =
4(2α + 2)as−α

4a2αs−α
= 1 +

1

2α−1
.

Note that for α > 1, this network is less fragile than the previous one.

Lastly, with full diversification, the four portfolios become totally dependent so

that FI = κ = 4.

We compare the sequence of networks by their ranking of systemic dependencies,

see the Table 2. If we were to use the correlation matrices, we would conclude that
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Table 2. Fragility Index and Bank Portfolios

Portfolio B1 FI Index

Normal Student-t

4U 1/4 1

2U+2X 1/2 2

2U+X+Y 2/3 1 + 1
2α−1

U+X+Y+T 4 4

the networks become increasingly more interdependent and exposed to systemic

risk. A different picture emerges if we use the FI scale. Indeed, for networks 1,

2 and 4, the measure κ is also increasing under the Student-t assumption. But

the third network has a lower asymptotic dependency measure than the second

network as long as the first moment is bounded, i.e. α > 1. Thus the monotonicity

is upset under fat tails. The intuition for this non-monotonicity is as follows. Both

under normality and in case of the Student-t assumption, the univariate failure

probabilities decrease as we move from case 2 to case 3. This is the benefit of

diversification. In case of the normal, this reduction does not lower the joint

failure probability24, so that the mass is moved in the direction where there are

no failures and the multidimensional disc representing normal iso probability sets

becomes more pointed, i.e. the dependence increases in the center. In case of the

fat tailed distributions though, when moving from case 2 to 3, the joint failure

probability is reduced even though the probability on at least one failure remains

constant. This causes the drop in the FI index.

5.4. sunspots. The theoretical economics literature also devotes a considerable

attention to the issue of multiple equilibria and how agents coordinate on these

equilibria. With multiple equilibria fundamentals do not fully determine outcomes,

somehow one of the equilibria is being played by coordination on a sunspot. We

now show that this approach can also be subsumed under our reduced form ap-

proach.

Consider the Diamond and Dybvig liquidity preference model of banking. In

this model there are two Nash equilibria, one with and the other without a bank

24In fact P{B1 > s,B2 > s, B3 > s} is the same for all four cases under normality.
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run. Assume that agents can coordinate on one of the equilibria via the exogenous

device of a sunspot. The sunspot is a random variable that has no direct effect

on the economy. Suppose there is a Bernoulli random variable representing the

sunspot that indicates which of the two equilibria is relevant. More specifically,

take three independently distributed asset returns X, Y and Z. Let the portfolio

returns be Q = X + Y with probability π, and Q = Y with probability 1 − π.

Similarly, let W = X + Z with probability π, and W = Z with probability 1− π.

Note that with probability 1− π the portfolio returns are independent. All three

assets X, Y and Z are i.i.d. distributed with Pareto type tails

P{X > s} = P{Y > s} = P{Z > s} = cs−α, c > 0, sε[c1/α,∞).

Application of Theorem 3 then gives

κ = lim
s→∞

P{Q > s}+ P{W > s}
1− P{Q ≤ s,W ≤ s}

= 1 +
π

2 + π
.

In case the random variables are normally distributed one also checks that the

fragility index reduces to FI = 3/4, since the correlation is 1/2 in case of the π

state, while the other state does not count.

6. Conclusion

FSI systems are well known to be inherently unstable. Thus there is need for

a measure of the potential for systemic breakdown. It is well understood that

the correlation measure may not accurately reflect the risk of joint breakdowns.

To remedy this deficiency we have constructed a scale FI which accurately mea-

sures the severity of joint tail risk in higher dimensions. The FI scale reveals the

type of tail dependence (asymptotic dependence or independence), which either

implies strong or weak fragility of the system, and also indicates the amount of

such dependence. FSI portfolios are essentially linear in their exposures, either

directly through the portfolio asset and liability returns or indirectly through the

relation with macro risk factors. This permits an evaluation of the FI under a

very wide range of asset return distributions. Assuming that the marginal dis-

tributions of the risk drivers are in the domain of attraction of an (univariate)

extreme value limit law, we showed when the system would be weakly and when
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it is strongly fragile. For example, discrete returns and with all types of assets

present in all bank portfolios imply strong fragility. Under continuous discounting,

normal distributed returns induce weak fragility, but Student-t type returns ren-

der the system strongly fragile. Subsequently we studied different kind of banking

networks and their fragility in terms of FI and used the arguments to construct

the characteristics of economically relevant copula. It is hoped that this charac-

terization of the financial fragility will help in bridging the gap between theory

and practice and be especially helpful in evaluating the systemic aspects of FSI

supervision.
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7. Appendix

Since the proof for the general case of subexponentials comprising the Gumbel

part is quite involved, we provide a simple proof for the Frechet subcase τ > 0 to

enhance the reader’s intuition. By the domain of attraction assumption

(7.1) lim
n→∞nP {X1 > xa(n)} = x−α for x > 0, i = 1, 2,

where a is again the inverse function of the distribution function of Xi at the point

1− 1/x. Hence, for x, y > 0 and independence

lim
n→∞nP {X1 > xa(n) or X2 > ya(n)} =

lim
n→∞nP{X1 > xa(n)}+ lim

n→∞nP{X2 > ya(n)}

− lim
n→∞nP{X1 > xa(n)}P{X2 > ya(n)} =

x−α + y−α + 0.(7.2)

From (7.1) and (7.2) we get for x, y > 0 as n →∞

nP{X1 ≤ xa(n) and X2 > ya(n)} =

nP{X1 > xa(n) or X2 > ya(n)} − nP{X1 > xa(n)} → y−α.

By subtracting two similar expressions this gives for 0 < x1 < x2 and y > 0

(7.3) nP{x1a(n) ≤ X1 < x2a(n) and X2 > ya(n)} → 0.

Also by (7.1) and (7.2)

(7.4) lim
n→∞nP{X1 > xa(n) and X2 > ya(n)} = 0.
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Next, consider the joint tails of the portfolios. We need to evaluate asymptotically

(7.5) nP{λ1Y1 + λ2Y1 > xa(n) or µ1Y1 + µ2Y2 > ya(n)}.

Look at the problem from a geometric point of view. Consider the area

S := {(s, t) ∈ R+ × R+ | λ1s + λ2t > x or µ1s + µ2t > y}.

For simplicity let µ2x < λ2y and µ1x > λ1y. Now

S ⊃ {(s, t) | s >
y

µ1

or t >
x

λ2

}.

Hence by (7.2) the limit (7.5) is at least

(
x

λ2

)−α

+

(
y

µ1

)−α

.

Also

S ⊂ {(s, t) | s > ε
x

λ1

and t > ε
y

µ1

} ∪
[
0, ε

x

λ1

]
×

[
(1− ε)

x

λ2

,∞
)
∪

∪
[
0, ε

y

µ1

]
×

[
(1− ε)

x

µ2

,∞
)

,

and thus by (7.3) and (7.4) the limit (7.5) is at most

(
(1− ε)

x

λ2

)−α

+

(
(1− ε)

y

µ1

)−α

.

It follows that in the limit (7.5) is

(
x

λ2

)−α

+

(
y

µ1

)−α

.

So far we have considered the case µ2x < λ2y and µ1x > λ1y. Checking the other

cases yields that

lim
n→∞nP {λ1Y1 + λ2Y2 > xa(n) or µ1Y1 + µ2Y2 > ya(n)}

=

(
x

λ1

∧ y

µ1

)−α

+

(
x

λ2

∧ y

µ2

)−α

.

It follows that the vector (X1, X2) is in de domain of attraction of an extreme value

distribution with marginal extreme value index τ = 1/α and discrete spectral
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measure concentrated on two points in the interior of its range. In particular, we

have the denominator for (4.29).
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