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Abstract

We give a sufficient condition for i.i.d. random variables X7, X5 in order to
have P{X; — Xy > z} ~ P{|X1| > z} as * — oo. A factorization property for
subexponential distributions is used in the proof. In a subsequent paper the results
will be applied to model fragility of financial markets.
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1 Introduction and results

Suppose Xi, X5 are i.i.d. random variables with distribution function (d.f.) F. Very
often messy arguments in probability theory can be avoided by using symmetrization.
The symmetrization inequalities (see e.g. Feller [6]), state that the tails of F' and of the
d.f. F; of the corresponding symmetrized random variable X; — X5 are of comparable
order.

Theorem 1 (Symmetrization inequalities). For x > 0 we have
1
P{|X; — Xo| >z} <2P{|X;]| > 5:)&} (1)
If a > 0 is chosen so that P{X; < a} > p and also P{X; > —a} > p, then

P{| X1 — X5| >z} > pP{|X1| > v+ a}. (2)

In particular, if 0 is a median for X;,
1
P{’Xl — X2’ > l’} > §P{’X1’ > l’}

Looking at these inequalities, it is a natural question to ask how the order of growth
of the quantities on the right-hand side of both (1) and (2) compare. This suggests to
consider the class of distribution function tails for which P{|X;| > sz}/P{|Xi| > z} is
bounded as x — o0, i.e. distributions with dominatedly varying tails. Tail behaviour of
these random variables is well understood (see e.g. Bingham et al. [2]). However, it is

possible to have
P{|X; — Xso| > 2} ~cP{|X;| >z} asx — o0 (3)

without dominatedly varying tail behaviour, where ¢ is a constant. In this paper we
consider when this happens.

In order to get non-trivial tail behaviour as * — oo, the random variables need to
have unbounded support. First we list some examples:

1. For the standard exponential distribution, the symmetrized random variable has a
double exponential distribution, hence (3) is satisfied with ¢ = 1.

2. For a Pareto distribution F(r) := P(X > x) = 2%, 2 > 1, (3) holds with ¢ = 2.
3. For the normal distribution we have ¢ = oco.

So, in order to obtain a non-trivial result, it seems necessary to restrict the class of
distributions to consider.

Here we consider the case of the so called long-tailed distributions .Z. For a function
¢ we say ¢ € £ to denote ¢(x + a) ~ ¢(x) for a € IR as © — oo. A distribution function
F is long tailed if it has infinite upper endpoint and F € &, i.e. if F(x + a) ~ F(x) as
x — oo (for @ € IR). In this case convergence is uniform on compact subsets of IR.

The class .Z contains the subclass of the subexponential distributions. A distribution
function F' is subexponential (F € .%) if



P(X,+ Xy >1z)~2P(X; > x) as © — 0. (4)

The property of subexponentiality is usually attributed to a.s. non-negative random
variables, but we will not assume this. The theory of subexponential distributions is
well established by now and its relevance is obvious from applications in various areas of
applied probability. For a recent review of applications of subexponentiality in different
areas the reader is referred to the books by Asmussen [1] and Embrechts, Kliippelberg
and Mikosch [5].

In case X,Y are independent random variables, we write F' %« G for the d.f. of the
convolution X + Y, F xG(z) = P(X +Y > x). Moreover we will write H = F * G for
the d.f. of the sum X + Y.

It is well-known that the sum of two independent, not identically distributed subex-
ponential random variables X and Y is not necessarily subexponential. See ([9]) for a
counterexample. A useful notion is the so called max-sum equivalence, which was intro-

duced in Embrechts and Goldie ([4]).

Definition 1. F' and G are said to be max-sum equivalent, written F' ~yr G if
Fx+G(z) ~ F(r)+G(x), © — <. (5)
Note that F(z) + G(z) ~ F(x) + G(z) + F(2)G(x), so we may rewrite (5) as
PX+Y>z)~P(XVY >z) (v — ), (6)

which explains the terminology. Subexponentiality can be expressed in terms of the
relation ~j; as well: F' € ¢ if and only if F' ~,; F.

The following result shows that for long tailed distributions, asymptotic equivalence in
the symmetrization inequality in the sense of (3) with ¢ = 2 is connected to membership
of the class of subexponential distributions.

In Embrechts and Goldie [4], Thm. 1, it is proved that if FF € £ G € ., and
sup, G(r)/F(x) < 0o, then F € . < F x G € .. A key component in the proof of our
main result is the following improvement.

Theorem 2. If F,G € £ and sup, G(v)/F(x) < oo, then F € ¥ < F xG € .7.
In this case we have

H(z) ~ F(z) + G(z) (r — 00). (7)

In the following we use the notation Fj for the d.f. of the symmetrized random variable
X; — X3 and F, for the distribution function of | X;|. Moreover we denote the d.f. of —X
by F~.

Theorem 3. Suppose X1, X5 are i.i.d. random variables with unbounded support.
e Suppose one endpoint is finite and
P(|Xq| >z +4+a) ~ P(|X1]| > z) for a € R as x — oo. (8)

Then (3) holds with ¢ = 2.



e Suppose the distribution has support (—oo,00) and F, F~ € £. Then the following
statements are equivalent.

1. F,e ¥
2. F,e

Moreover, if 1 or 2 holds, then (3) holds with ¢ = 2.

2 Proofs

In proving properties of subexponential distributions, it is often easy to assume that
the variables are non-negative. This is not a very restrictive assumption, since subexpo-
nentiality is essentially a property of the right tail of the distribution function. This is
confirmed by the following two lemmas, which include subexponential distributions since
& C £. We will use the notation a Vv b for the maximum max(a, b).

Lemma 1. Let X,Y be independent with distribution functions F,.G € £. Then as
T — 00

P(XTVY >2)~P(XVY >2). (9)

and
P(X++Y>x)~P(X+Y>x). (10)

Proof of Lemma 1. The first part is proved by observing that as z — oo
PXVY >z)~F(z)+Gx)=PX">2)+P(Y >z)~P(XTVY >2).

In order to prove the second statement note that
0
PXT+Y >z)=P(X+Y >x) —i—/ (G(z) — G(z —y))dF(y).

—00

Divide the integral on the right-hand side by G(z) and let x — oo. Application of
Lebesgue’s theorem on dominated convergence shows that the limit is 0. It follows that

P(XT+Y >2)=P(X +Y > 1)+ 0o(G(z)), (11)
where o(G(x)) > 0. Note that for z > 0
Gx)=PY >2) < P(XT+Y >2),
hence (10) follows. O

The following result is well known (see e.g. Willekens [13], Omey [10]).

Lemma 2. F € .7 if and only if F* € .7, where F* is the d.f. of XT = X V0. Moreover
if X and Y are r.v.’s satisfying P(X > z) ~ P(Y > x) (v — o0), then F € . if and
only if G € ..



Proof of Lemma 2. Twice application of Lemma 1 (take F' = G) shows that P(XT4+Y " >
z) ~ P(X+Y > z) (x — o0). The proof of the second statement now follows from
the first part and the corresponding property for non-negative random variables with a
subexponential distribution function. [

In the lemmas below we assume that X,Y are independent random variables with
distribution functions F,G and H = F * G is the distribution function of X + Y.

Lemma 3. Let F' € . and G € . Then the following are equivalent:
1. He 7,
2. F ~y G,
3. pF + (1 —p)G € .7 for some (all) p satisfying 0 < p < 1.

Proof of Lemma 3. Since F,G € . C £, it follows from Lemmas 1 and 2 that P(X+Y >
)~ P(XT+Y" >uz). Since . is closed under asymptotic equivalence (see e.g. Pakes
[11] or Teugels [12]), we may assume that X,Y are a.s. non-negative. In this case the
lemma is theorem 2 in Embrechts and Goldie [4]. O

Lemma 4. a ([4], Thm. 3b) L is closed under convolution.
b ([4], Lemma 1) If H € . and the d.f. of X VY is in L, then F ~y G.

¢ ([8], Theorem 2.1) If F,G € £ andm < F(x)/G(z) < M,z > 0 for some constants
m, M € (0,00), then F € ¥ < G € .7,

d F €. if and only if the d.f. of aX + b is subexponential for some (all) a > 0 and
belR.

Proof of Lemma 4. a-c Note that in view of Lemma 2, we may assume that X,Y are
a.s. non-negative.

d This is an easy consequence of the fact that ./ C &, .¥ is closed under asymptotic
equivalence and (6).
O

Proof of Theorem 2. a Suppose F' € .. Again we may assume that XY are a.s.
non-negative. Note that as in the proof of Prop. 1 in Embrechts et al. [3], we find
H(z) = O(F(z)) as ¢ — oo, hence

1 < H(x)/F(x) < c for some constant ¢ > 0. (12)

Since F' € . C £, in view of Lemma 4a we have H € . Using the inequality
(12) and F, H € £, F € ., application Lemma 4c shows that H € .. Observe
that (since F,G € .£) the d.f. of X VY is in .Z, being asymptotic to F(z) + G(x).
Because H € .7, application of Lemma 4b shows that (7) holds.



b Suppose H € .. We may assume that X, Y are a.s. non-negative. Note that
PIXVY>z+a)~PX>z+a)+PY >x4+a) ~P(X >z)+PY >z)~
P(X VY > z). Since H € ., we can apply Lemma 4b to see that (7) holds. As
a consequence we have sup, H(x)/F(x) < co. Since F(x)/H(x) < 1, we may use
Lemma 4c to find F' € ..

[

Proof of Theorem 3.

e In view of the assumption (8) and the fact that the distribution of X; — X5 is
symmetric around zero, we may assume that the support is [0,00). Then P(X; —
Xy > ) = [;° P(X1 > 2+ y)dF(y) and consequently, by (8) and Fatou’s Lemma,

it follows that P(X )
. > >x+vy
lim inf ! dF(y) > 1
s /0 PG o) W=

The integral on the left-hand side is bounded above by 1, using monotonicity, which
completes the proof.

o | = 2 Take Xy, Xy, X5 1.i.d. with df. F. Since F, € Z and F € £ we can
apply Theorem 2a (the only if statement) to find that the d.f. of X; + |Xy| is
subexponential and

P(X1+ [Xo| > 2) ~2P(Xy > 2) + P(Xy < —x).

Using Theorem 2a again, it follows that X; — X3 + | Xs| has a d.f. in . and
P(Xy = X5+ [Xo| > 2) ~ 2P(|X4] > 2), (13)
hence
P(Xl — X3+ |X2| —a > 1’) ~ 2P(|X1| > 27),
where a is as in (2). In view of the symmetrization inequality (2) we may apply

Theorem 2b to find that X; — X3 has d.f. F; € . and

P(X1— X3+ |Xa| > 2) ~ P(X1 — X3 > 2) + P(|X3] > ). (14)

2 = 1 Note that with a the constant in (2) we may apply Theorem 2a to find that
X7 — Xo + |X3] —a has a d.f. in ., hence X; — X5 + | X;3| has a subexponential
distribution function.

Note that the distributions of —X, and X; + | Xj3| are long tailed and with a the
same constant as in (2) we have

P(X1 +|Xs| > 0) 2 P(Xi = X3 > 2) = CP{|X| > @ +a)

Pp(—x, > ).

p
~ —P > -
L p(%5] > 2) > &



Application of Theorem 2b shows that X; + | X3| has a subexponential distribution.
Another application of Theorem 2b then shows that the d.f of | X3| is subexponential,
hence F, € .¥.

The proof is complete since combination of (13) and (14) gives (3) with ¢ = 2.
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