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Abstract

It has been known for a long time that for bootstrapping the probability distri-
bution of the maximum of a sample consistently, the bootstrap sample size needs
to be of smaller order than the original sample size. See Jun Shao and Dongsheng
Tu (1995), Ex. 3.9,p. 123. We show that the same is true if we use the bootstrap
for estimating an intermediate quantile.
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1 Introduction

The definition, most of the properties and possible applications of regularly varying func-
tons are due to J. Karamata. See for example Karamata (1930,1931,1933)

In particular the uniform convergence property discovered by Karamata, has been an
extremely useful tool in applications. Since then the theory has been extended greatly and
many new applications have been discovered. For an overview of this see the monographs
by Bingham et al. (1987) or Geluk and de Haan (1987). Here we shall deal with an
application in extreme value statistics.

A direct generalization of regular variation is the following property. Suppose f is a
measurable function and for all x > 0

lim
t→∞

f(tx)− f(t)

a(t)
=

xγ − 1

γ
, (1.1)

where γ is a real-valued parameter and a a suitable positive function. For γ = 0, the
right-hand side is defined by continuity. This property can be called extended regular
variation. The limit function, if not identically zero, is more or less the only possible one
(see e.g. Geluk et al. (1987), thm. 1.9).

In the problem we are going to consider here, the following second order relation
connected with (1.1) will be used. Suppose f is a measurable function and for x > 0

lim
t→∞

f(tx)−f(t)
a(t)

− xγ−1
γ

A(t)
=

1

ρ

(
xρ+γ − 1

ρ + γ
− xγ − 1

γ

)
, (1.2)

where γ is a real-valued parameter as before, ρ is a non-positive parameter, a a suitable
positive function and A of constant sign and converging to zero as t → ∞. As before
the limit is more or less the only possible one. For γ = 0 and/or ρ = 0 it is defined
by continuity. The function a is always regularly varying of index γ and the function
|A| regularly varying of index ρ. Since the function A controls the speed of convergence
in (1.2), so does ρ, i.e. large values of |ρ| correspond with a high speed of convergence
in (1.2) (cf. de Haan et al.(1996)). Many of the properties discovered by Karamata for
regularly varying functions, have analogues for the relations (1.1) and (1.2), in particular
the uniform convergence property.

For the application we want to consider, we restrict ourselves to the relatively simple
case where ρ < 0 in (1.2) and A(t) ∼ ctρ (t →∞), c 6= 0. In that situation relation (1.2)
is equivalent to

f(x) = c1
xγ − 1

γ
+ c2x

γ+ρ + o(xγ+ρ), x →∞. (1.3)

See e.g. (de Haan et al. (1996), thm. 2(iii)).
Next we discuss the extreme value context. Let X1, X2, . . . Xn be independent and

identically distributed random variables with common distribution function F . Consider
the order statistics X1,n ≤ . . . ≤ Xn,n. The maximum Xn,n, linearly normalized, has a
non-degenerate limit distribution if and only if (1.1) holds for the function

U :=

(
1

1− F

)←
,
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where the arrow indicates the generalized inverse function.
Since most estimators in extreme value theory are functions of extreme and interme-

diate order statistics, one needs also convergence in distribution of linearly normalized
intermediate (as opposed to extreme) order statistics, namely Xn−k,n with k = k(n) →
∞, k(n)/n → 0 as n →∞. A convenient condition to achieve this convergence is condi-
tion (1.2) for the function U .

Let us elaborate a little on the convergence in distribution for intermediate order statis-
tics. Empirical process theory (see e.g. de Haan, Resnick (1993,p. 295) or Drees(1998))
tells us that for Y1, Y2, . . . i.i.d. with distribution function 1− 1/x, x ≥ 1

√
k

(
k

n
Yn−kx,n −

1

x

)
d→ x−2B(x)

for n → ∞, k = k(n) → ∞, k(n)/n → 0 in D(0,∞), where B is Brownian motion and
where Yn−kx,n is a simplified notation for Yn−[kx],n.

Suppose now for simplicity that (1.3) holds for U . Since (U(Y1,n), . . . , U(Yn,n))
d
=

(X1,n, . . . , Xn,n), we can use the former instead of the latter. Note that

Xn−kx,n − U(
n

k
)

d
= U(Yn−kx,n)− U(

n

k
)

= c1(
n

k
)γ ( k

n
Yn−kx,n)γ − 1

γ
− c2(

n

k
)γ+ρ((

k

n
Yn−kx,n)γ+ρ − 1) + op(

n

k
)γ+ρ

as n → ∞ locally uniformly in x. We shall need the local uniformity later, but we shall
not mention it each time. It follows that

Xn−kx,n − U(n
k
)

c1(
n
k
)γ

− x−γ − 1

γ

=
( k

n
Yn−kx,n)γ − x−γ

γ
+ (

n

k
)ρ c2

c1

((
k

n
Yn−kx,n)γ+ρ − 1) + op((

n

k
)ρ)

=
( 1

x
+ x−2B(x)√

k
+ op(

1√
k
))γ − x−γ

γ
+ (

n

k
)ρ c2

c1

(x−γ−ρ − 1) + op((
n

k
)ρ)

=
x−1−γB(x)√

k
+ (

n

k
)ρ c2

c1

(x−γ−ρ − 1) + op((
n

k
)ρ) + op(

1√
k
).

(1.4)

Note that the first term is random and decreases in size with k (variance component)
and the second term is non-random and increases in size with k (bias component).

We have achieved the following. Suppose one wants to estimate a moderately high
quantile of the distribution function F , i.e. suppose we want to estimate U(r(n)) with
r(n) → ∞ and r(n) = o(n), n → ∞. Relation (1.4) gives the asymptotic expansion of
Xn−k,n with

k = k(n) = n/r(n), (1.5)

when used as an estimator for U(r(n)).
In the next section we shall consider the bootstrap intermediate order statistics and

we shall show that for the bootstrap version of Xn−kx,n an expansion holds similar to (1.4)
only if the bootstrap sample size n1 is o(n) as n →∞.
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2 Bootstrap sample size

We consider the bootstrap. Suppose we have available a sample X1, X2, . . . , Xn from a
distribution with cdf F . Let Fn be the corresponding empirical distribution function and
define

Un :=

(
1

1− Fn

)←
.

Note that
Un(

n

kx
) = Xn−kx,n

d
= U(Yn−kx,n) (2.1)

with the Y ’s as before.
Let us also write (1.4) in terms of Un:

Un( n
kx

)− U(n
k
)

c1(
n
k
)γ

=

x−γ − 1

γ
+

x−1−γB(x)√
k

+ (
n

k
)ρ c2

c1

(x−γ−ρ − 1) + op((
n

k
)ρ) + op(

1√
k
).

(2.2)

For the bootstrap we select independently with replacement n1 times (with equal prob-
ability) an element from {X1, X2, . . . , Xn}. This is our bootstrap sample {X∗1 , X∗2 , . . . , X∗n1

}.
We form the order statistics X∗1,n1

≤ X∗2,n1
≤ . . . ≤ X∗n1,n1

.
Note the important relation

X∗n1−k1x,n1

d
= Un(Y ∗n1−k1x,n1

) (2.3)

with Y ∗1 , Y ∗2 , . . . , Y ∗n1
i.i.d. with distribution function 1− 1/x, x ≥ 1. Here Un represents

the randomness of the original sample and the Y ∗’s the extra randomness introduced by
resampling. Note that as before√

k1{
k1

n1

Y ∗n1−k1x,n1
− 1

x
} d→ x−2B∗(x) (2.4)

in D(0,∞) with B∗ Brownian motion for n1 →∞, k1 = k1(n1) →∞, k1(n1)/n1 → 0.
Let us consider an expansion like (1.4) for the bootstrap intermediate order statistics.

Now take
k1 = n1/r(n), (2.5)

similar to what we did before. We use the notation W ∗
n1

= n1

k1
/Y ∗n1−k1x,n1

. In view of
(2.3),(1.5) and (2.5)

X∗n1−k1x,n1
− U(r(n))

c1(
n
k
)γ

=
X∗n1−k1x,n1

− U(n1

k1
)

c1(
n
k
)γ

d
=

Un(Y ∗n1−k1x,n1
)− U(n1

k1
)

c1(
n
k
)γ

=
Un(n

k
( k1

n1
Y ∗n1−k1x,n1

)− U(n
k
)

c1(
n
k
)γ

=
Un(n

k
/W ∗

n1
)− U(n

k
))

c1(
n
k
)γ

.
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In view of (2.2) this equals (note that W ∗
n1

p→ x)

(W ∗
n1

)−γ − 1

γ
+

(W ∗
n1

)−1−γB(W ∗
n1

)
√

k
+ (

n

k
)ρ c2

c1

((W ∗
n1

)−γ−ρ − 1) + op((
n

k
)ρ) + op(

1√
k
).

Using the expansion (2.4), this becomes

(
x−γ − 1

γ
+

x−γ−1B∗(x)√
k1

+ op(
1√
k1

)

)
+

(
x−1−γB(x)√

k
+ op(

1√
k
)

)
+

(
(
n1

k1

)ρ c2

c1

(x−γ−ρ − 1) + op(
n1

k1

)ρ

)
+ op((

n

k
)ρ) + op(

1√
k
) =

x−γ − 1

γ
+

x−γ−1B∗(x)√
k1

+ (
n1

k1

)ρ c2

c1

(x−γ−ρ − 1) +
x−1−γB(x)√

k
+ op((

n

k
)ρ) + op(

1√
k
) + op(

1√
k1

)

Since we want the bootstrap sample to reflect the properties of the original sample
(cf. (1.4)), we need to get rid of the fourth term asymptotically. This is possible only if
we require k1 = o(k), i.e. n1 = o(n) (see (1.5) and (2.5)).
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