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ABSTRACT

The Elastic Net Algorithm (ENA) for solving the Traveling Salesman Problem
is analyzed applying statistical mechanics. Using some general properties of
the free energy function of stochastic Hop�eld Neural Networks, we argue why
Simic's derivation of the ENA from a Hop�eld network is incorrect. However,
like the Hop�eld-Lagrange method, the ENA may be considered a speci�c dy-

namic penalty method , where, in this case, the weights of the various penalty
terms decrease during execution of the algorithm. This view on the ENA corre-
sponds to the view resulting from the theory on `deformable templates', where
the term stochastic penalty method seems to be most appropriate.
Next, the ENA is analyzed both on the level of the energy function as well as on
the level of the motion equations. It will be proven and shown experimentally,
why a non-feasible solution is sometimes found. It can be caused either by a
too rapid lowering of the temperature parameter (which is avoidable), or by a
peculiar property of the algorithm, namely, that of adhering to equidistance of
the elastic net points.
Thereupon, an alternative, Non-equidistant Elastic Net Algorithm (NENA) is
presented and analyzed. It has a correct distance measure and it is hoped
to guarantee feasibility in a more natural way. For small problem instances,
this conjecture is con�rmed experimentally. However, trying larger problem in-
stances, the pictures changes: our experimental results show that the elastic net
points appear to become `lumpy' which may cause non-feasibility again. More-
over, in cases both algorithms yield a feasible solution, the quality of the solution
found by the NENA is often slightly worse than the one found by the origi-
nal ENA. This motivated us to try an Hybrid Elastic Net Algorithm (HENA),
which starts using the ENA and, after having found a good approximate solu-
tion, switches to the NENA in order to guarantee feasibility too. In practice,
the ENA and HENA perform more or less the same. Up till now, we did not
�nd parameters of the HENA, which invariably guarantee the desired feasibility
of solutions.

1. Motivation and results

Arti�cial Neural Networks (ANN's) are sometimes used to �nd good solutions to

combinatorial optimization problems: for a survey we refer to 6;3. The approach dif-
fers substantially from other search, mostly heuristic methods. The ANN approach
often has a special statistical mechanics interpretation using mean �eld theory. The
dynamics of the neural network should be stable in such way that the �nal, equilib-

rium state corresponds to a good approximate solution of the optimization problem.
The ANN approach is attractive because of the potentiality of straightforward hard-
ware implementations. Many solution methods using neural nets are modi�cations of

one of the Hop�eld models 7;8. The most widely used approach concerns the `penalty'
method, where penalty terms are added to the original energy function 6;9;21. These
terms penalize violation of constraints. This type of constraints enforcement is some-
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times indicated as the `soft' one. In practice, it is hard to determine optimal weight

values of the penalty terms. Another way to treat the constraints is to use Lagrange
multipliers 17. Then, the constrained optimization problem is converted into an un-
constrained extremization one. The correct values of the multipliers are determined
automatically using a gradient ascent. Still another way to deal with the constraints

consists of changing the properties of the neural net 20;12;18;19. Mostly, this is done by
restricting the space of allowed states. Instead of allowing the neurons to be `on' and
`o�' independently, only such states are admitted where exactly one of the neurons is

`on'. In physics, these models are called Potts glass models. The type of constraints
enforcement is sometimes indicated as the `strong' one. We shall use this type of
networks in our analysis.

An alternative, very speci�c ANN for solving the classical Travelling Salesman

Problem (TSP), the so-termed Elastic neural Network Algorithm (ENA), was intro-
duced by Durbin and Willshaw 4. Like a `Feature Map' ANN 6, the ENA tries to �nd
a topology preserving map between two spaces, in this case between a plane and a line.
Durbin and Willshaw derived their ENA from a hypothetical `tea trade model' 10.

The ENA has an important scaling property: the number of variables (2-dimensional
units) needed is linear relative to the number of cities, while in the case of the Hop-
�eld model the number of neurons needed is quadratic relative to that number. Some
researchers 15;2 have proposed small modi�cations of the original algorithm. Analy-

sis shows that, contrary to the conclusions of the various designers, these modi�ed
algorithms achieve less 5. In 1990, Simic 14 introduced an interesting idea of using
statistical mechanics as the underlying theory of both the Hop�eld ANN approach

(and modi�cations) and the ENA approach. Recently, we came across another unify-
ing approach called `deformable templates' 13 which applies statistical mechanics to
another energy function. The overall approach of this method is that a part of the
constraints is enforced in the strong way, while the remaining part is supplied with

noise keeping the original cost function unattached.
In this paper, we �rst argue that Simic's derivation of the ENA (from a certain

constrained Hop�eld model) is incorrect. In our view, the ENA should be consid-
ered as a speci�c dynamic penalty model , where the weights of the various penalty

terms decrease during the execution of the algorithm. If, �nally, a feasible solution is
reached, the energy function is mainly determined by the original cost function. The
other, at that time less important term is a sum of small penalty weights causing small
pits in the energy landscape of the original cost function. It is hoped that the system

will have settled down in a small pit close to the global constrained minimum. The
new view { the ENA being a dynamic penalty method { opens up new avenues for
search for formulations of the TSP using other dynamic penalty terms. The `dynamic

penalty' view corresponds to the approach as applied in the theory on deformable
templates. There, the elastic net algorithm is derived from a di�erent energy func-
tion composed of a cost function to be minimized as well as a sum of penalty terms
of which each one enforces a match between a �xed city and one of the variable net

points. Since stochastic noise is here only added to the penalty terms leaving the cost
function unattached, we introduce the terminology of `stochastic penalty terms'.

Secondly, using the analysis method as introduced in 5, the original ENA will be
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discussed both on the level of the energy landscape and on the level of the updating

rule. It will be proven and shown experimentally, why a non-feasible solution is
sometimes found by the ENA. This is caused by either a too rapid lowering of the
temperature parameter (which can easily be avoided at the cost of a certain amount
of additional computation time), or by a peculiar property of the algorithm namely,

that of adhering to equidistance of the elastic net points. Initially, when the elastic
net is stretching out, this property of equidistance may be useful to achieve a good
`�rst order approximation' of the �nal tour of all cities. Eventually, the equidistance

property is unnecessary and may even be the cause of persisting in a non-feasible
solution. The tendency towards equidistance has to do with with the fact that the
tour length is expressed as a sum of square distances between the succeeding elastic
net points instead of as a sum of linear distances.

Knowing this, we searched for an alternative, non-equidistant algorithm (NENA)
which has a correct distance measure and which guarantees feasibility in a better
way. We shall present our �rst idea and give the experimental results with this
new algorithm. This time, the elastic net points appear to become `lumpy' due to

the fact that the mutual attracting forces are strongly reduced. For small problem
instances, the NENA works �ne and better than the original ENA. However, trying
larger problem instances, the new algorithm may lead to non-feasibility too. And, the
larger the problem instance, the easier the NENA appear to yield a non-valid solution.

Moreover, in cases both the ENA and the NENA yield a feasible solution, the quality
of the solution found by the last one is usually slightly worse than the solution found
by the original one. Therefore, we decided to try a hybrid algorithm (HENA), which

was hoped to combine the good properties of the old and new ENA-algorithm. The
HENA starts using the ENA in order to achieve a steady stretching out of the elastic
net (corresponding to solutions of high quality) and, thereafter, switches to the NENA
in order to guarantee feasibility at the end as well. Unfortunately, up to now, we did

not �nd a larger problem instance (a 100-city problem), where the HENA performed
better than the original ENA.

In the �nal section, we evaluate our work calling to mind that static as well
as stochastic penalty methods always have to be tuned carefully. Because elastic

networks appear to behave as a (stochastic) penalty method, they inherently have a
parameter tuning problem. We further conclude, that the quadratic distance measure
of the ENA is an essential ingredient of it.

2. Hop�eld and elastic networks

In this section, we touch upon the background theories of this article. For more
details about the general aspects, we refer to 6;14;16. More speci�c references are
mentioned in the text. We start considering binary Hop�eld networks. Secondly, we

dwell on `elastic networks'.

2.1. Statistical mechanics of Hop�eld networks

In 1982, Hop�eld introduced the idea of an `energy function' into neural network
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theory using an asynchronous updating rule and binary units 7. Like Simic, we shall

use Hop�eld's energy expression multiplied by minus one, that is:

E(S) = 1

2

X
ij

wijSiSj +
X
i

IiSi; (1)

where S 2 f0; 1gn is the state vector (S1; : : : ; Sn) of the neural network, Si the

output value and Ii the external input of neuron i and where wij represents the
interconnection strength from neuron j to neuron i. E(S) equals the energy or `cost
function' to be minimized. In this paper, we suppose that 8i; j : wij � 0.

Making the units stochastic, supposing random 
uctuations, the stochastic neural

net can be analyzed applying statistical mechanics. The starting point of statistical
mechanics is always an energy function often called the Hamiltonian denoted by H�,
in this paper denoted by E(S) a. Next, the central expression to calculate is the
so-called partition function Z� de�ned by

Z� =
X
S

exp(��E(S)); (2)

where the summation takes place over the set of states S of the system. Related to
the partition function is the thermodynamic free energy de�ned by F� = �T ln(Z�),
where T = 1=� is the `temperature' of the system. It can also be written as

F = hE(S)i � TSeq =
X
S

P eq(S)E(S) + T
X
S

P eq(S) lnP eq(S): (3)

hE(S)i represents the average energy of the system at thermal equilibrium, Seq is the

so-called entropy at thermal equilibrium, and P eq(S) is the probability of �nding the
system in state S at thermal equilibrium. The importance of the free energy notion
comes from a variational formulation 11 on it, called the principle of minimal free
energy F (P ). In this case, F is considered as a function of an arbitrary probability

distribution P over the states of the system:

F (P ) = E(P )� TS(P ) =
X
S

P (S)E(S) + T
X
S

P (S) lnP (S) (4)

The principle states that a minimum of the free energy F (P ) corresponds to a (dy-
namic) equilibrium state of the thermodynamic system. Therefore, the free energy
can be used to �nd such a state. Moreover, at high temperatures, the surface of the
free energy function appears to be much smoother than the energy surface of the orig-

inal energy function E(S): this is caused by a high level of the thermal energy under
these circumstances. On lowering the temperature, the smoothing e�ect diminishes
gradually and �ne details of the energy landscape appear, while the free energy goes
over to the original energy function. At the end, it is hoped that the system will not

aIn statistical mechanics, the probability distribution in equilibrium is supposed to be proportional
to the number of di�erent ways the `particles' can be divided over the various energy levels. In
these considerations, the driving mechanism by which the articles of the system { on account of
their mutual interaction { are divided over the available energy levels is ignored. However, one can
construct various dynamics 11 which have the property of leading to `thermal equilibrium'.
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be caught in a local minimum, but that it has reached its ground state, i.e., the state

with the lowest cost. In fact, these properties are the background of simulated and
mean �eld annealing.

In 16, a thorough analysis is presented of both unconstrained and some constrained
binary Hop�eld neural networks. Among other things, the following theorems are

proved:

Theorem 1. In mean �eld approximation, the free energy of unconstrained stochas-

tic binary Hop�eld networks equals

Fu(V) = �1

2

X
ij

wijViVj �
1

�

X
i

ln[1 + exp(��(
X
j

wijVj + Ii))]; (5)

where 8i : Vi = P(Si = 1). The stationary points of Fu are found at points of the

state space where

8i : Vi =
1

1 + exp(�(
P

j wijVj + Ii))
: (6)

Theorem 2. In mean �eld approximation, the free energy of constrained stochastic

binary Hop�eld networks, submitted to the constraint

X
i

Si = 1 (7)

equals

Fc(V) = �1

2

X
ij

wijViVj �
1

�
ln[
X
i

exp(��(
X
j

wijVj + Ii))]; (8)

where 8i : Vi = P(Si = 1 ^ 8j 6= i : Sj = 0). The stationary points of Fc are found

at points of the state space where

8i : Vi =
exp(��(

P
j wijVj + Ii))P

l exp(��(
P

j wljVj + Il))
: (9)

The �rst theorem can be used to solve the TSP using the `soft' approach with penalty
terms. A generalization of the second theorem can be used to solve the TSP using
a combination of the `strong' and the `soft' approach: if Si

p denotes whether the

salesman at time i occupies space-point p (Si
p = 1) or not (Si

p = 0), and if dpq is
the distance between points p and q, then the corresponding Hamiltonian may be
formulated as 14:

E(S) = 1

4

X
i

X
pq

d2pqS
i
p(S

i+1
q + Si�1

q ) + �
4

X
i

X
pq

d2pqS
i
pS

i
q: (10)

The �rst term represents the sum of distance-squares between visited cities, while

the second term is a penalty term which penalizes the simultaneous presence of the
salesman at more than one position. Note, that in this formulation the dimension of
the energy surface is quadratic in the number of cities, because there are N2 neurons
Si
p (the index p as well as the index i ranges from 1 to N). The other constraints,

which should guarantee that every city is visited once and only once, can be `strongly'
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ful�lled. Using the cost function (10) and applying a generalization of theorem 2, the

following expression of the free energy can be obtained 14;16:

Ftsp1(V) = �1

4

X
i

X
pq

d2pqV
i
p (V

i+1
q + V i�1

q )� �

4

X
i

X
pq

d2pqV
i
pV

i
q �

1

�

X
p

ln [
X
i

exp(��

2

X
q

d2pq(�V
i
q + V i+1

q + V i�1
q ))]: (11)

This energy expression has been used by Simic 14 to derive the elastic net algorithm.
However, we think his derivation is not correct (section 3).

We note, that a more `natural' mean �eld approximation of the free energy may
be obtained as follows:

Ftsp2(V) = 1

4

X
i

X
pq

d2pqV
i
p (V

i+1
q + V i�1

q ) + �

4

X
i

X
pq

d2pqV
i
pV

i
q +

1

�

X
pi

V p
i lnV p

i ; (12)

which has the structure of equation (3), where the entropy equals S = �
P

pi V
p
i lnV p

i .
However, this free energy expression is not used in the rest of this paper.

2.2. The original elastic net algorithm

The term `elastic algorithm' has been introduced by Durbin and Willshaw 4 and
deals with a speci�c type of neural network for solving the TSP. The elastic net
algorithm was derived from a hypothetical tea trade model. Here, we merely mention

the main results. The energy function b to be minimized of the elastic net equals:

Fen(x) =
�2
2

X
i

j xi+1 � xi j2 ��1
�

X
p

ln
X
j

exp(��
2

2
j xp � xj j2): (13)

Here, xi represents the i-th elastic net point (the succeedingM elastic net points form
a ring) and xp represents the location of city p. Application of the gradient descent

method on equation (13) yields the updating rule:

�xi = �2
�
(xi+1 � 2xi + xi�1) + �1

X
p

�p(i)(xp � xi); (14)

where the time-step �t = 1=� equals the current temperature T and where

�p(i) =
exp(��2

2
j xp � xi j2)P

l exp(�
�2

2
j xp � xl j2)

: (15)

In practice, all xp should be normalized to points in the unit square. In that case, the
following parameter values appear to be e�cient 4: �1 = 2:0 and �2 = 0:2. The initial
value of the temperature T = 1=� is set to 0.2, and is reduced by 1% every n iterations
to a �nal value in the range 0.01-0.02. As will be shown, the general e�ect of this

lowering is that large-scale, global adjustments occur early on, resulting in a general

bIn the original paper 4, this energy function is denoted by an E. Since Simic conjectured that the
energy was a type of free energy, he chose the notation F , which we adopt here too.
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stretching out of the elastic net. Later on, smaller re�nements occur corresponding

to a more local adaption of the elastic net towards city points.

3. Why the ENA is a dynamic penalty method

In this section, we shall argue why Simic's derivation of ENA from a certain

constrained stochastic Hop�eld model is invalid. However, the analysis yields another
view on the relationship: the ENA should be considered as a dynamic penalty method.

In order to simplify the formulas somewhat, we provisionally set the parameter
values �1 = �2 = 1. We start by brie
y recapitulating Simic's approach 14. In order

to solve the classical Travelling Salesman Problem (TSP), a `statistical mechanics'
is de�ned regarding `particle trajectories' as an `ensemble', where the paths of legal
trajectories must obey the global constraints of the TSP: the particle (salesman)
cannot visit two space-points (cities) at the same time and it (he) visits all the points

(cities) once and only once. The legal trajectory with the shortest path length equals
the optimal tour for the travelling salesman and that is the solution we are trying
to �nd. Part of the constraints is enforced `strongly' by summing only over those

con�gurations which guarantee that all space points (cities) are visited once and only
once. The other part of the constraints is enforced `softly', by adding a penalty
term in order to guarantee that at any time, one and only one city is visited. The
corresponding energy function or Hamiltonian equals (10). We already mentioned in

the previous section that, in mean �eld approximation, the free energy may be stated
as equation (11) c. From now on, we continue to sketch Simic's derivation (eventually
resulting in the ENA) as well as to formulate our objections against it.

Objection 1. In order to derive an energy expression in the standard form of the
free energy (F = hE(S)i � TS), Simic applies a Taylor series expansion on the last
term of equation (11). We tried to do the same. Taking

f(x) = 1

�

X
p

ln [
X
i

exp(xip)]; (16)

aip = �� �

2

X
q

d2pqV
i
q ; and (17)

hip = �� 1

2

X
q

d2pq(V
i+1
q + V i�1

q ); (18)

we found using the mean �eld equation (9):

f(a+ h) = 1

�

X
p

ln [
X
i

exp(aip)] +
1

�

X
ip

hip
@f

@xip
(aip) +O(h2) (19)

� 1

�

X
p

ln
X
i

exp (� � �

2

X
q

d2pqV
i
q )�

1

2

X
i

X
pq

d2pqV
i
p (V

i+1
q + V i�1

q ):(20)

cIt is interesting to note Simic's observation that expression (11) has the `wrong' sign: indeed, the
structure of that equation suggests, that stationary points in that case correspond to maxima, while
those of the ENA are minima. Especially this phenomenon aroused our suspicions regarding the
derivation.
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Substitution of this result in (11) eventually yields:

Fap(V) = 1

4

X
i

X
pq

d2pqV
i
p (V

i+1
q + V i�1

q ) � �

4

X
i

X
pq

d2pqV
i
pV

i
q �

1

�

X
p

ln
X
i

exp (� � �

2

X
q

d2pqV
i
q ): (21)

Simic found a slightly di�erent expression with the weight value �

2
instead of the

value ��
4
. He simply ignores this term arriving at the following expression for the

free energy:

Fsim(V) = 1

4

X
i

X
pq

d2pqV
i
p (V

i+1
q + V i�1

q )� 1

�

X
p

ln
X
i

exp (� � �

2

X
q

d2pqV
i
q ): (22)

However, inspection of equation (19) reveals that the chosen Taylor-approximation
does not hold for low values of the temperature, i.e., for high values of �. This is a

fundamental objection because during the execution of the ENA, the parameter � is
increased step by step until the end, when it has reached a relatively high value. ut

Objection 2. In order to transform the Hop�eld network formulation of the TSP
into an elastic net, Simic performs a `decomposition of the particle trajectory':

xi = <x(i)> =
X
p

xp<S
i
p> =

X
p

xpV
i
p : (23)

Here, x(i) is the (stochastic) position of the particle at time i, xp is the vector denoting
the position of city point p, and xi denotes the average (or expected) position of the
particle at time i. Using the decomposition by, among other things, writing

X
q

d2pqV
i
q =j xp � xi j2; (24)

he is able to make both a notable as well as a crucial transformation from a linear

function in V i
p into a quadratic one in xi. Using this result, he obtains the free energy

expression (13) of the ENA.

xp

xq�1

xq

xq+1

xi

dpq�1
dpq

dpq+1j xp � xi j
�

�
c

c

c

c

Figure 1: An elucidation of inequality (25).

However, careful analysis shows that in general

X
q

d2pqV
i
q =

X
q

(xp � xq)
2V i

q 6= j xp � xi j2 : (25)
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The left-hand side of this inequality represents the expected sum of distance squares

between city point p and the particle position at time i, while the right-hand side
represents the square of the distance between city point p and the expected particle
position at time i. Under special conditions (e.g., if the constraints are ful�lled), the
inequality sign must be replaced by the equality sign, but in general, the inequality

holds (see also �gure 1). ut

Objection 3. The free energy (11) and (13), the latter of which is in our opinion
incorrectly derived from the former, appear to have very di�erent properties. The
free energy (11) is a special case of the general energy function:

Fcg(V) = �1

2

X
ij

X
pq

wij
pqV

i
pV

j
q �

1

�

X
p

ln [
X
i

exp(��
X
jq

wij
pqV

j
q )] (26)

with stationary points

8i; p : V i
p =

exp(��
P

jq w
ij
pqV

j
q )P

l exp(��
P

jq w
lj
pqV

j
q )
: (27)

As can be concluded from (27), the free energy expression (26) as a whole has the
peculiar property that { whatever the value of the temperature parameter { the sta-
tionary points are found at states where on average all strongly submitted constraints

are ful�lled 19. In case of the present TSP formulation, this is mathematically ex-
pressed by

8p :
X
i

V i
p = 1; (28)

meaning that, on average, any city p will be visited once. Moreover, the stationary
points of (26) are often maxima.
However, inspection of the free energy (13) yields a very di�erent view: an analysis
of that expression (see the next section) clari�es that each term on its own creates

a set of local minima, the �rst one trying to minimize the tour length, the second
trying to force a valid solution. The current value of the temperature, which is a
weight factor of the second term, determines the overall e�ect of summation over all

these local minima , e.g. which of the two types will predominate. So, a competition
takes place between the two types of minima (likewise, after having applied the above
mentioned transformation of (22) into (13), the two modi�ed terms still compete with
each other). This phenomenon is remarkable, since the competition is similar to the

one found by applying the classical penalty method (with �xed weights). A di�erence
from that classical method is that in the present case { like in the Hop�eld-Lagrange
model 17 { the weights of the penalty terms change dynamically: in the case of the
ENA, the weights (T = 1=�) decrease during updating of the motion equations, while

in case of the Hop�eld-Lagrange model the weights (the multipliers) often increase.
This view on the ENA explains why we consider it a dynamic penalty method . ut

We think the last observation corresponds to the theory of `deformable templates' 13;22.
In that approach, the elastic net is considered as a `template trajectory' (correspond-
ing to Simic's particle trajectory), whose correct parameters should be determined.
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These parameters are the `template coordinates' (the elastic net points) and the bi-

nary Potts spins Spj (where 8p :
P

j Spj = 1). We note that Spj = 1 has the meaning
that net point j is assigned to template coordinate p. The corresponding Hamiltonian
equals

Edt(S;x) =
�2
2

X
i

j xi+1 � xi j2 +
X
pj

Spj j xp � xj j2 : (29)

Thus, the energy Edt is a function of both binary decision functions Spj and of con-

tinuous template coordinates xi. The �rst term in (29) equals the �rst term in the
elastic net energy expression (13) and minimizes the tour length. The second term
enforces a match between each city and one of the elastic net points. In other words,
the energy (29) describes a penalty method! A statistical analysis of EDT using the

fact that the binary spins Spj are stochastic, yields the free energy expression (13)
of the elastic net: the derivation is straightforward 13;22, among other things because
EDT is a linear function in the Potts spins. By inspection of both (13) and (29)

we conclude that the �rst energy expression is derived from the second, by adding
stochastic noise exclusively to the penalty terms of (29). Therefore, one might say
that the deformable template method applies stochastic penalty terms, which may be
considered as a speci�c type of dynamic penalty terms.

4. An analysis of the ENA

We start by presenting a thorough analysis of the forces of the ENA and the
corresponding energy landscapes. We will visualize things as much as possible. It

will become clear, why the ENA may come up with a non-feasible solution. We also
scrutinize the quadratic distance measure of the ENA.

4.1. Energy landscapes and elastic net forces

We can analyze the ENA at two levels, namely at the level of the energy equa-

tion (13) by inspection of the energy surface, and at the level of the updating rule
(14) by analysis of the various forces acting on every net point. Afterwards, we shall
deal { in a direct mathematical way { with the properties of the energy equation

on lowering the temperature. From now on, we adopt the parameter values of the
algorithm as given in subsection 2.2.

Let us start regarding the �rst, so-called `elastic ring term' of (13). It is composed
of a sum of M (the number of elastic net points) quadratic position di�erences. Of

course, this term is minimized if all points coincide at some place. However, if the
elastic net has a given length, this term is minimized whenever all space-points are
equidistant. In �gure 2 and 3, the 2-dimensional energy landscape of one net point
xi = (x; y) is shown at two di�erent positions, one time using d = 0:02 as the mutual

distance between neighbouring net points, the other time taking d = 0:2. The shapes
of the two landscapes do not di�er very much: in both cases, the variable point is
forced to the middle of the other two (temporally �xed) points: in �gure 2, these
points are (0.49;0.5) and (0.51;0.5), in �gure 3 they are (0.5;0.5) and (0.7;0.5). At the
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Fig. 2. The elastic ring term for one

point with d=0.02

the minimum
6

0 0.5 1 0
0.5

1

0.04
0.08
0.12

ert(x,y)

Fig. 3. The elastic ring term for another

point with d=0.2

level of the motion equation (14), we see by writing

xi+1 � 2xi + xi�1 = (xi+1 � xi) + (xi�1 � xi); (30)

that every xi is forced to the midpoint between xi�1 and xi+1. Summarizing, if the
`elastic ring term' would be the only one, the ring points would become equidistant
and, eventually, would coincide at one position, somewhere in state space.

But the second so-called `mapping term' term of (13), makes its in
uence felt too.
It is composed of a sum of N (the number of cities to be visited) logarithms, each
logarithm having a sum of M exponentials as its argument. Every exponential is a
Gaussian function with one local maximum, namely in the position where xp coincides

with xj . We may conclude, that the total mapping term (with the minus sign)
corresponds to a set of `pits' in the energy landscape. The width and depth of these
pits depend on two things, namely the temperature and the distance between a city
and the most nearby elastic net point. Initially, when the temperature T is relatively

high, the attraction of elastic net points by every city is more or less uniformly
distributed: this corresponds to a wide and shallow pit in the energy landscape around
every city. The resulting, total energy landscape shelves slightly and is lowest in

0 0.5 1 0
0.5

1

-1.4

-1.2

mpt(x,y)

Fig. 4. The mapping term, initially

at high temperature.

0 0.5 1 0
0.5

1

8
9

10
11

mpt(x,y)

Fig. 5. The mapping term, in case

of non-feasibility.

regions with a high city density. This phenomenon is quite independent of the (initial)
position of the elastic net points in the unit square. A simple example is given in

�gure 4: again, the energy landscape of one of �ve elastic net points is shown, while
the positions of the city points are (0.2;0.63), (0.8;0.63), (0.65;0.37), (0.37;0.37) and
(0.33;0.37). The city positions will be kept the same in the next examples and can be

found in �gure 7. As can be seen in �gure 4, the lowest part of the energy landscape of

11



the mapping term is found around the last two, closely situated, cities. Experiments

show, that the positions of the other four elastic net points do not matter very much,
i.e., whatever these positions are, in all cases approximately the same energy surface
is found provided that the initially high temperature T = 0:2 is used.

On lowering the temperature, a city will attract nearby net points more and more

and distant net points less and less because, in general, the pit in the energy landscape
around a city becomes narrower. However, a second parameter plays an important
part. If a city remains without a nearby elastic net point, the width of the pit shrinks

only slowly and the depth even grows: apparently, the city persists in trying to catch
a not too remote elastic net point. In �gure 5, an example is given at T = 0:027,
which is an almost �nal temperature of the algorithm. The four net points are still
chosen around the center of the unit square, far away from any city. The basins of

attraction around every city are clearly present.
If, on the other hand, a city has been able to (almost) catch a net point, the

surrounding pit in the energy landscape will become very narrow and shallow. In
�gure 6, an example is given with, once more, four (temporally) �xed net points.

Again, T = 0:027. The position of one net point coincides exactly with a city, the
position of a second one is chosen close to a city, a third net point is situated on a
somewhat larger distance from another city, and the position of the fourth net point
is precisely in the middle between two close city points. The city point and net point

positions are shown in �gure 7. The energy landscape in �gure 6 shows narrow and
shallow pits around cities: the smaller the distance of the most neighbouring elastic
net point is, the narrower and shallower the pit. The �gure also demonstrates an

unpleasant phenomenon concerning the elastic net point in the middle of the two
close cities. Both cities seem to consider themselves owner of that elastic net point.
Consequently, the surrounding energy landscape of the two cities will generally not be
able to catch another elastic net point, so, in those circumstances, the system persists

in non-feasibility!

0 0.5 1 0
0.5

1

0.08
0.12
0.16

mpt(x,y)

Fig. 6. The mapping term, in case

of an almost feasible solution.
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Fig. 7. The positions of net

and city points.

4.2. The total energy landscape

Of course, we should analyze the combined e�ect of the elastic ring and the map-

ping term. For that purpose, we selected some, more or less representative examples
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starting with an initial elastic net situated around the center of the unit square at

T = 0:2. Then, the energy landscape appears to resemble that of �gure 4 (as ex-
pected): the mapping term predominates, pushing the elastic net to regions of high
city density (in practice, there may exist more than one such region, resulting in a
stretching out of the net). In the background, the elastic net term keeps the net more

or less together. On lowering the temperature a little, until T = 0:15, the mapping
term becomes more important as long as feasibility has not been reached. In �gure 8,
the energy landscape of the free elastic net point is shown under the assumption that

the initial con�guration of all other points would have remained the same. It is clear
that the landscape has become somewhat steeper. Thus, the system is trying to reach

0 0.5 1 0
0.5

1

-0.2
0

0.2

mpt(x,y) + ert(x,y)

Fig. 8. The total energy landscape,

initially at T = 0:15.
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1

0.8

1

mpt(x,y) + ert(x,y)

Fig. 9. The total energy landscape, an

intermediate state at T = 0:08.

feasibility with a bit more strength. Now supposing the more realistic scenario that
the elastic net has stretched out somewhat (with elastic net positions (0.57;0.44),
(0.43;0.44), (0.35;0.56), (0.65;0.56), while the `free' elastic net point is supposed to

be somewhere between the last two given positions), then more details in the energy
landscape are apparent: in �gure 9, the energy landscape is shown at T = 0:08.

Next, we show two potential, nearly �nal states. In �gure 10, a solution is shown,

0 0.5 1 0
0.5

1

1
2
3

mpt(x,y) + ert(x,y)

Fig. 10. The total energy landscape,

a non-feasible state at T = 0:027.
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Fig. 11. The total energy landscape, an

almost feasible state at T = 0:027.

where all cities except one have caught an elastic net point. If the remaining net point
is not too far away from the non-visited city, it can still be attracted by it, otherwise

this city will never be visited. This shows, that a too rapid lowering of the temperature
may lead to a non-valid solution, because a further lowering of the temperature will
lead to a further narrowing of the energy pit of �gure 10. Note too, that in this case
the pits corresponding to the elastic ring term are not visible: comparatively, they

are too small. In �gure 11, an almost feasible solution is shown, where the positions
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of three net points coincide with the position of a city, while a fourth elastic net point

is precisely in the middle between the two close cities. Because an almost feasible
solution has been reached, the mapping term becomes relatively small (corresponding
to some small pits), and the remaining elastic net point is forced to the middle of
its neighbors. The �nal state will be equidistant, but not feasible! The example

shows clearly that in case of (almost) feasibility the in
uence of the mapping term
becomes small and, at the same time, is capable of maintaining feasibility. Under
these conditions, the algorithm tries to realize equidistance.

4.3. Non-feasibility

The analysis of the previous subsection reveals that it is possible to end up in a
non-feasible solution for at least two reasons:

� The parameter T may be lowered too rapidly yielding a non-feasible solution,
where one or more cities have not `caught' an elastic point.

� Two close cities may have received the same elastic net point as the nearest
one.

The determination of the optimal schedule for decreasing T is often mentioned in
literature and is also associated with `optimal simulated annealing'. We want to em-

phasize here, that the similarity is less than would appear. In simulated annealing 1,
the temperature should be decreased carefully in order to escape from local minima.
Here, this lowering should be done carefully in order get and keep a valid solution, in
other words, to end up in a local (constrained) minimum!

Like any other penalty method, the ENA tries to ful�ll two competing require-
ments: in this case these are minimal equidistance and feasibility (a tour through all
city points). To be able to ful�ll both requirements, it is generally necessary to use
more elastic net points than city points (see �gure 12). It should be clear that the

more diversity exists in the shortest distances between cities, the more elastic net
points are needed d. Using a large number of elastic net points gives rise to the addi-
tional drawback of increasing computation time. Finally, we note that the property

of equidistance { which is a consequence of the quadratic distance measure of the
ENA { is not at all a necessary quali�cation of the �nal solution.

The above mentioned observations that (a) a non-feasible solution might be found
and (b) the ENA pursues equidistance, motivated us to investigate alternative elastic

net algorithms (section 5 and 6). For reasons of clarity, experimental results of the
ENA are given together with those of the NENA and the HENA in section 7.

5. A non-equidistant elastic net algorithm

In order to get rid of the equidistance property, we only need to change the

�rst term of the original energy expression (13). Here, a linear distance function is

dDurbin and Willshaw choose as relation between the number M of elastic net points and N , the
number of city points: M = 2:5N .
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Figure 12: To realize both feasibility and equidistance many net points are needed.

chosene, whose minimal constrained length equals, by de�nition, the global minimal
tour length. The new energy function is:

Flin(x) = �2

X
i

j xi+1 � xi j ��1
�

X
p

ln
X
j

exp(��
2

2
j xp � xj j2): (31)

Applying gradient descent, the corresponding motion equations are found 5:

�xi = �2
�

 
xi+1 � xi

j xi+1 � xi j

!
+

 
xi�1 � xi

j xi�1 � xi j

!
+ �1

X
p

�p(i)(xp � xi); (32)

where again, the time-step �t equals the current temperature. We notice that all
elastic net forces are normalized now. Moreover, if 9i : xi+1 = xi, we get into

trouble f. A self-evident analysis 5 shows that, as in the original ENA, the elastic net
forces try to push elastic net points onto a straight line. There is however another
important di�erence: once a net point is situated at any point on the straight line
between its neighbouring net points, it no longer feels any elastic net force (this is

simply caused by the normalization of the elastic net forces: see �gure 13). This
means, that equidistance is no longer pursued. Consequently, elastic net points will

i� 1

i i+ 1

Fres

-

� W

�

� �

i� 1 i i+ 1
� -

� � �

Figure 13: The new elastic net force: general case (left), 3 points in line (right).

have more freedom in moving towards cities. It is therefore hoped that application
of the NENA (a) will nearly always yield feasible solutions (of high quality), if the

same number of elastic net points is used as in the original ENA and-or (b) will often

eAt some places in the literature 14;22 , a linear distance measure is suggested, but nowhere did we
�nd an elaborated implementation of this idea.
fIn practice, this fortunately never occurred.
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yield feasible solutions too, if a smaller number of elastic net points is chosen g. Or

stated in more general terms, we hope the new algorithm will yield valid solutions
more easily than the original ENA.

Since the elastic net forces are normalized by the new algorithm (those of the old
one are not), a tuning problem arises. To solve this problem, the following simple ap-

proach is chosen: in the motion equations (32), all elastic net forces will be multiplied
by the same factor

A(x) = 1

M

MX
1

j xi+1 � xi j; (33)

which represents the average distance between two elastic net points. Thus, the
average elastic net force is roughly equal to the average in the original algorithm, and
the �nal updating rule becomes:

�xi = �2
�
A(x)

 
xi+1 � xi

j xi+1 � xi j
+

xi�1 � xi

j xi�1 � xi j

!
+ �1

X
p

�p(i)(xp � xi); (34)

where the values �1; �2 and � are chosen conform the original ENA. Experimental

results with this updating rule are described in section 7.

6. The Hybrid Approach

A fundamental problem of ENA is, that it might lead to non-feasible solutions

due to adhering to equidistance of the elastic net points. Moreover, equidistance is
not required for the �nal solution of the elastic net, although it might be very useful
in the initial phase of the algorithm in order to realize a smooth stretching out of
the elastic ring. A fundamental problem of NENA is, that net points may become

too lumpy, which, at least for larger problem instances, leads to non-feasibility and a
lower quality of the subsequent solutions.

Contemplating these considerations we tried to merge the two algorithms into a
hybrid one retaining the best properties of both. The approach of the Hybrid Elastic

neural Net Algorithm (HENA) is simple: the algorithm starts using ENA and, after
a certain number of iterations, switches to NENA. The �rst phase is used in order to
get a balanced stretching of the elastic net which is hoped to lead to solutions of high
quality, the second phase is used in order to try to guarantee feasibility at the end.

A consequence of this hybrid approach is the introduction of two new parameters.
First, we have to decide at what time the switch should take place, and then, we have
to choose the starting temperature after the switch. The experimental results using

the HENA are presented in the next section.

7. Experiments

We now describe some of the results as obtained with the NENA and the HENA,

gIn 14, it is even conjectured that, using a linear distance measure, the number of elastic net points
could be equal to the number of cities.
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and compare them with results found using the original ENA.

7.1. A small problem instance

We start by using the con�guration of cities as described in the theoretical analysis
of section 4 (the 5 cities are situated as given in �gure 7). In all cases, we used the

following initialization of the elastic net: elastic net points are put in a small ring
in the center of the state space, where the position of every net point is slightly
randomized.

Using 5, 7, 10 or 12 elastic net points, the ENA produced only non-feasible so-

lutions: in all experiments, one elastic net point is found in the middle between the
two closely situated city points. The other 3 cities are always visited, while all other
net points are more or less spread equidistantly. However, using 15 elastic net points,
the optimal and feasible solution is always found: apparently, the number of elastic

net points is now large enough to guarantee both feasibility and optimality.
Using 5 elastic net points, the NENA nearly always produced a non-feasible so-

lution, but sometimes the optimal, feasible one. A gradual increase of the number

of elastic net points results into a rise of the percentage of optimal solutions found.
Using only 10 elastic net points yields a 100% score. An inspection of the �nal re-
sults reveals that the elastic net points become lumpy: they appear to come together
around a city, which is, in all probability, a consequence of their increased freedom.

The number of net points per city depends the initialization as well as the location
of the city.

We conclude that for this small problem instance the NENA produces better re-
sults than the ENA, or, stated more precisely, using a smaller number of elastic net

points the NENA �nds the the same optimal solution as the original ENA. The de-
scribed experimental results are completely consonant with the theoretical conjectures
of section 4.

7.2. Larger problem instances

Using a 15-city-problem, we had the similar experiences: it is easier to arrive at a
feasible solution using the NENA. E.g., using 30 elastic net points, the NENA always
yielded the same solution (namely the best solution found with both the ENA and the

NENA), while the ENA sometimes yielded that solution, and sometimes a non-valid
one.

However, the picture starts to change, if 30-city problem instances are chosen. As
a rule, both algorithms are equally disposed to �nding a valid solution, but another

phenomenon turns up: the quality of the solutions found by the original ENA was
generally better. Inspection of the solutions found by the NENA, demonstrated a
strong lumping e�ect. The lumping can be so strong that sometimes a city is left
out completely. Especially cities which are situated at a point, where the �nal tour

bends strongly, may be overlooked. Apparently, by disregarding the property of
equidistance, a new problem has originated. Re-evaluating, we conclude that the
equidistance property of the ENA has an important contribution towards �nding
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solutions of high quality, i.e., short tours.

At this point, the hybrid approach of HENA comes to mind. Because for small
problem instances the NENAworks better than the ENA, we only tried larger problem
instances. Unfortunately, in our experiments the HENA appears to be slightly worse
than the original ENA both in relation to the quality of the solution and in relation to

feasibility. E.g., taking a 100-city problem, the ENA usually yielded a solution where
99 of the 100 cities are visited, while in case if the HENA, on average 98 to 99 cities are
visited. Moreover, the encountered tour length using the ENA is, on average, slightly

better than the tour length found by the HENA. Trying larger problem instances, we
were unable to �nd parameters of the HENA, which yield better solutions than the
original ENA or which guarantee feasibility of solutions.

8. Discussion and outlook

A fundamental conclusion of the analysis of elastic neural networks as given in
this paper is that, in principle, they are penalty methods (using a type of dynamic

penalty terms). A consequence is, that any application using such a method is always

confronted with a tuning problem, that should be resolved in practice. This is, of
course, a fundamental drawback of this type of networks.

From the angle of the theory on deformable templates, elastic net algorithms can
be considered stochastic penalty methods, where, contrary to simulated annealing and

to what is mentioned in the literature, the network should end up in a local, i.e., a
constrained minimum.

Considering the original ENA, we conclude that it is relatively well-tuned: for
small problem instances, it generally yields a valid solution of high quality. A non-

valid solution may come up, if two cities are very close to each other. For larger
problem instances, up to 100 cities, solutions are often almost-feasible or can be
made so, by enlarging the number of elastic net points or the number of iterations
of the algorithm. Of course, in practice it is relatively easy to transform (such) a

non-feasible solution in a valid one, by taking up the non-visited city (cities) at a
logical place on the ring.

In order to fundamentally improve the ENA (especially, to guarantee feasibility),

we proposed a new algorithm, named the NENA, having a linear distance measure.
This measure seems to be more natural from a theoretical point of view. However,
the success of this algorithm is limited to small problem instances as experiments
have shown. Apparently, the quadratic distance measure is an essential ingredient of

the original ENA!
Thereupon, we proposed the HENA which would combine the good properties of

the ENA and the NENA. We are still trying to �nd a better tuning of the parameters,
so a �nal judgement is di�cult. But up to now, the old ENA performed slightly better

than the new HENA, if larger problem instances were tried.
In future research, an alternative for HENA could be considered by realizing a

gradual switch from the ENA to the NENA in order to enlarge the `freedom of the
elastic net points' little by little. This could be implemented by applying a gradual

normalization of the elastic net forces. It should be noted that this approach may
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introduce new tuning di�culties. Another possible would be try other penalty terms:

some explorations have been done 5, but in all cases, parameter tuning seems to be a
tough job.
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