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Abstract

Long-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from a-linolenic acid (ALA) by elongation and
desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four
major n-3 PUFAs by performing genome-wide association studies in five population-based cohorts comprising 8,866
subjects of European ancestry. Minor alleles of SNPs in FADS1 and FADS2 (desaturases) were associated with higher levels of
ALA (p = 3610264) and lower levels of eicosapentaenoic acid (EPA, p = 5610258) and docosapentaenoic acid (DPA,
p = 46102154). Minor alleles of SNPs in ELOVL2 (elongase) were associated with higher EPA (p = 2610212) and DPA
(p = 1610243) and lower docosahexaenoic acid (DHA, p = 1610215). In addition to genes in the n-3 pathway, we identified a
novel association of DPA with several SNPs in GCKR (glucokinase regulator, p = 161028). We observed a weaker association
between ALA and EPA among carriers of the minor allele of a representative SNP in FADS2 (rs1535), suggesting a lower rate
of ALA-to-EPA conversion in these subjects. In samples of African, Chinese, and Hispanic ancestry, associations of n-3 PUFAs
were similar with a representative SNP in FADS1 but less consistent with a representative SNP in ELOVL2. Our findings show
that common variation in n-3 metabolic pathway genes and in GCKR influences plasma phospholipid levels of n-3 PUFAs in
populations of European ancestry and, for FADS1, in other ancestries.
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Introduction

High levels of n-3 polyunsaturated fatty acids (PUFA) in plasma

phospholipids, cell membranes, and whole blood have been

associated with lower risk of multiple diseases, including sudden

cardiac death [1], fatal coronary heart disease [2], non-fatal

myocardial infarction [3], heart failure [4], thickening of the

carotid arteries [5], metabolic syndrome [6], breast cancer [7],

chronic obstructive pulmonary disease [8], depression [9,10] and

dementia [11,12].

N-3 PUFAs are derived directly from the diet, including the

plant-derived essential fatty acid a-linolenic acid (ALA, 18:3n3)

and the seafood-derived long-chain n-3 PUFAs eicosapentaenoic

acid (EPA, 20:5n3) and docosahexaenoic acid (DHA, 22:6n3)

[13,14]. Long-chain n-3 PUFAs can also be produced from ALA

by the series of desaturation and elongation steps in the pathway

shown in Figure 1; docosapentaenoic acid (DPA, 22:5n-3) can be

produced from EPA. The pathway enzymes may be a major

source of circulating long-chain n-3 PUFAs in people who

consume very little or no seafood. However, the conversion of

ALA to EPA and DHA has been shown to be generally low [15–

17], and it is not known whether common genetic variation in the

pathway affects this conversion. The n-6 essential fatty acid linoleic

acid (LA) is elongated to long-chain n-6 PUFAs by the same

pathway enzymes and could also compete with the conversion of

ALA to EPA; it is not known whether genetic variation affects such

competition.

There is evidence of co-heritability of EPA and DHA levels in

erythrocyte membrane phospholipids [18]. Investigation of genetic

factors influencing PUFA levels has largely focused on candidate

genes, such as the desaturase genes FADS1 and FADS2, among

participants of European ancestry [19–25]. Only one prior study

reported a genome-wide association of n-3 PUFA levels evaluating

total plasma n-3 PUFAs which includes triacylglycerols, phospho-

lipids and free fatty acids, among 1075 participants [26]. The

study found an association of EPA with variants in the FADS1

gene that reached genome-wide significance level; independent

follow-up investigation showed associations of a selected FADS1

variant with erythrocyte membrane levels of EPA, ALA and DPA

and of an ELOVL2 variant with DPA and DHA. These findings

confirm an influence of FADS1 and ELOVL2 on selected n-3

PUFAs. However, statistical power may have been limited to

confirm an influence of these genes on all four major n-3 PUFAs,

of other genes in these pathways (e.g., FADS2), or of additional

genes in other unknown biologic pathways. Prior studies have also

not had adequate power to evaluate potential interaction between

variation in these genes, EPA and DHA, and: (a) diet, (b) ALA

levels, and (c) LA levels. In addition, there is limited information

on genetic variation and n-3 PUFA levels in subjects of non-

European ancestry.

To understand how common genetic variation affects n-3

PUFA phospholipid levels and potentially uncover novel associ-

ations, we conducted a meta-analysis of pre-planned genome-wide

association analyses of plasma phospholipid n-3 PUFAs in 8,866

participants of European ancestry in five population-based studies,

as part of the Cohorts for Heart and Aging Research in Genomic

Epidemiology (CHARGE) Consortium [27]. We evaluated the

four main n-3 PUFAs of the metabolic pathway, (ALA, EPA,

DPA, and DHA) separately and accounted for the intercorrela-

tions between these fatty acids. In addition, we investigated

whether consumption of fatty fish or phospholipid levels of ALA

and LA influenced the association of the identified genetic markers

with EPA and DHA levels. Finally, we studied the most highly

associated SNPs from the meta-analyses among samples of

European ancestry in additional samples from African, Chinese

and Hispanic ancestry.

Author Summary

Circulating long-chain n-3 polyunsaturated fatty acids
(PUFAs) derive from fatty fish or from the conversion of
the plant n-3 PUFA by elongation and desaturation. We
looked for common genetic markers throughout the
genome that might influence plasma phospholipid levels
of the four major n-3 PUFAs in five large studies and
pooled the results. We found that levels of all four n-3
PUFAs were associated with genetic markers in known
desaturation and elongation genes. We also found
evidence that conversion of the plant n-3 PUFA to longer
chain n-3 PUFAs is less effective in people with certain
desaturation-gene markers, which could be important for
people who do not eat fish. We also found a marker in a
gene involved in glucose metabolism, called the glucoki-
nase regulator, to be associated with one intermediate n-3
PUFA. Some of these findings were seen across multiple
race/ethnicities. Overall, these results have implications for
how genes and the environment interact to influence
circulating levels of fatty acids.

Genetic Loci Associated with n-3 Fatty Acids
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Results

Meta-analysis of genome-wide associations of n-3 fatty
acids

The study samples for the genome-wide association study

(GWAS) comprised a total of 8,866 subjects of European ancestry.

Table 1 shows sample size, demographic characteristics, fish

consumption and phospholipid n-3 PUFA levels in the 5 cohorts

that contributed to the study. Participants ranged from 21 to 102

years of age. Across the cohorts, mean levels of ALA varied from

0.14% to 0.44% of total fatty acids; EPA from 0.56% to 1.01%;

DPA from 0.83% to 0.98%; and DHA from 2.29% to 5.09%.

Relatively higher ALA levels were seen in the InCHIANTI cohort,

likely reflecting differences in the composition of total plasma fatty

acids (InCHIANTI) versus phospholipid fatty acids (ARIC,

CARDIA, CHS, and MESA).[28]

Figure 2A–2D show the meta-analysis of the genome-wide

association results for ALA, EPA, DPA, and DHA. Variation in

one or both of two major genetic loci was associated with plasma

phospholipid levels of each n-3 PUFA at genome-wide levels of

significance. The two loci are illustrated in association plots for

EPA (Figure 3). One locus, on chromosome 11q12.2, contained

the C11orf9/10, FEN1 and the desaturase genes FADS1, FADS2

and FADS3. The other locus, on chromosome 6p24.2, contained

SYPC2L and the elongase gene ELOVL2. Many highly correlated

SNPs reached genome-wide significance in the associations with n-

3 PUFAs (Table 2 and Table S1A–S1D). Variant alleles at SNPs

in the chromosome 11 locus were associated with higher levels of

ALA and lower levels of EPA and DPA, and variant alleles at

SNPs in the chromosome 6 locus were associated with higher

levels of EPA and DPA and lower levels of DHA (Table 2, Table 3,

Table 4). From the meta-analysis results, we estimated that the

Figure 1. N-3 polyunsaturated fatty acid metabolic pathway and summary of genome-wide associations in pathway. The fatty acids
indicated in bold were examined in this study. The genome-wide significant associations of two loci with each fatty acid are shown with dashed
arrows. + and 2 signs indicate the direction of the associations.
doi:10.1371/journal.pgen.1002193.g001

Table 1. CHARGE cohorts descriptives.*

Plasma phospholipid concentration, % of total fatty acids

Cohort/Ancestry N Age Women % Fish intake¥ ALA{ EPA{ DPA{ DHA{

ARIC/European{ 3268 53.8 (5.6) 51.0 1.2 (0–24) 0.14 (0.05) 0.56 (0.30) 0.90 (0.17) 2.82 (0.88)

CHS/European{ 2326 72.0 (5.1) 61.3 2.0 (0–14) 0.15 (0.05) 0.59 (0.37) 0.83 (0.17) 2.97 (0.96)

CHS/African 427 72.9 (5.5) 68.3 NA 0.14 (0.05) 0.56 (0.29) 0.84 (0.17) 3.52 (0.93)

InCHIANTI/European{ 1075 68.4 (15.5) 54.9 1.6 (0–12) 0.44 (0.25) 0.61 (0.22) NA 2.29 (0.77)

CARDIA/European{ 1507 45.8 (3.4) 53.3 1.0 (0–31) 0.19 (0.09) 0.85 (0.62) 0.94 (0.21) 3.09 (1.12)

CARDIA/African 493 44.6 (3.8) 60.7 1.2 (0–18) 0.17 (0.08) 0.67 (0.41) 0.92 (0.21) 3.27 (0.99)

MESA/European{ 690 61.6 (10.4) 53.3 0.6 (0–11) 0.18 (0.06) 0.88 (0.58) 0.95 (0.21) 3.66 (1.38)

MESA/African 631 61.6 (9.8) 54.2 0.6 (0–14) 0.16 (0.06) 0.89 (0.56) 0.98 (0.22) 4.57 (1.42)

MESA/Chinese 646 62.1 (10.4) 50.8 0.8 (0–11) 0.18 (0.07) 1.01 (0.65) 0.96 (0.24) 5.09 (1.46)

MESA/Hispanic 672 61.0 (10.0) 53.7 0.2 (0–7) 0.17 (0.06) 0.64 (0.41) 0.89 (0.19) 3.34 (1.23)

Descriptive characteristics of the cohorts of European ancestry included in the GWAS analyses and the cohorts of African, Chinese, and Hispanic ancestry included in the
association analyses of selected SNPs.
*Values are mean (SD) unless specified otherwise.
{Included in the meta-analyses of GWAS.
¥ Servings per week, median (range).
doi:10.1371/journal.pgen.1002193.t001
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most highly associated SNPs on chromosome 11 explained 3.8%

of the variance of ALA, 2.0% of the variance of EPA and 8.6% of

the variance of DPA. The most highly associated SNPs on

chromosome 6 explained 0.4% of the variance of EPA, 2.8% of

the variance in DPA and 0.7% of the variance in DHA.

Another genome-wide significant association with DPA was

observed with SNPs on chromosome 2 in the GCKR gene (most

associated SNP: rs780094, p = 9.061029, Table 2 and Figure 4A).

In addition, DPA showed a possible association with SNPs in

AGPAT3, a gene on chromosome 21 involved in phospholipid

metabolism (most associated SNP: rs7453, p = 2.461027;

Figure 4B and Table S1C).

Levels of EPA and DHA were correlated, as were levels of ALA

and EPA. Spearman correlations in the 5 cohorts ranged from

0.26 to 0.57 for EPA-DHA and from 0.20 to 0.28 for ALA-EPA.

When two outcomes are positively correlated but exhibit genetic

associations in opposite directions, it is possible to increase the

power of discovery efforts by adjusting the association between

SNPs and one fatty acid trait for the other [29]. For this reason, we

performed meta-analyses of genome-wide association results for

ALA adjusted for EPA, EPA adjusted for ALA, EPA adjusted for

DHA and DHA adjusted for EPA. These analyses did not reveal

additional genome-wide significant loci, although the statistical

significance of the adjusted associations was increased (Table 2).

For example, the significance corresponding to the association of

the SNP rs2236212 in ELOVL2 with DHA increased from

p = 1.3610215 to p = 7.0610239 with adjustment for EPA, with

many more genome-wide significant associations in that region. In

addition, the association of rs4985167 on chromosome 16

(PDXDC1) with ALA approached genome-wide significance with

adjustment for EPA (p = 7.661028).

To explore whether the signals in the chromosome 6 and 11 loci

could be explained by one SNP alone, we performed GWAS of

DPA with adjustment for rs2236212 and rs174547 in the ARIC,

CARDIA, CHS and MESA cohorts and meta-analyzed the

results. No new association was found in the chromosome 11 locus

where the adjustment reduced the association for all other SNPs,

from a minimum p-value of 1.1610251 to p.1026 (not shown). In

contrast, 22 SNPs in the ELOVL2 region reached genome-wide

significance, with ten of these SNPs previously undetected (Table 2,

Table S1E). The A allele of rs12662634, the most highly

associated SNP, had minor allele frequency of 0.18 and was

Figure 2. Meta-analysis of genome-wide associations with n-3 polyunsaturated fatty acids. A: a-linolenic acid (ALA), B: eicosapentaenoic
acid (EPA), C: docosapentaenoic acid (DPA), D: docosahexaenoic acid (DHA). Associations were graphed by chromosome position and –log10 (p-value)
up to p-values of 10210. Triangles indicate additional SNPs with p-values less than 10210. Genes of interest in the regions with significantly associated
SNP variants are indicated.
doi:10.1371/journal.pgen.1002193.g002

Genetic Loci Associated with n-3 Fatty Acids
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associated with lower level of DPA (regression coefficient

associated with one copy of A allele: 20.030, p = 2.7610210).

This association was new, as the estimated effect in the unadjusted

GWAS of DPA was 0.008 (p = 0.06). Among the 12 SNPs that had

been detected before, rs9368564 showed the most significant

association (regression coefficient and p-value associated with one

copy of G allele: 0.027, p = 1.461029, in the adjusted GWAS, and

0.048, p = 10240, in the unadjusted GWAS). This result may

reflect residual association in the adjusted analysis or yet another

new association.

To explore if reducing the variability in EPA would reveal

additional associations, we also performed GWAS of EPA adjusted

Figure 3. SNP association plots for EPA–associated regions. Genome-wide association significance level is plotted against the y-axis as –log10

(p-value). Genetic coordinates are as per NCI build 36. A) FADS cluster region. LD is indicated by color scale in relationship to marker rs174538. B)
ELOVL2 region. LD is indicated by color scale in relationship to marker rs3798713. The color scheme is red for strong linkage disequilibrium (LD;
r2$0.8) and fading color for lower LD.
doi:10.1371/journal.pgen.1002193.g003

Genetic Loci Associated with n-3 Fatty Acids
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Table 2. Loci associated with SNP markers with P-values ,5.061028.

Most significant SNP

Fatty acid (region) Analysis adjustments Number of SNPs| SNP*, allele MAF P-value Parameter Coefficient (CI)

ALA (11) Main model{ 75 rs174547,C/T 0.33 4610264 0.016 (0.014, 0.018)

ALA (11) EPA{ 86 rs174547,C/T 0.33 7610284 0.019 (0.017, 0.021)

DPA (2) Main model{ 3 rs780094, T/C 0.41 9610209 0.017 (0.011, 0.022)

DPA (6) Main model{ 85 rs3734398, C/T 0.43 1610243 0.040 (0.035, 0.046)

DPA (6) rs2236212, rs174547{ 22 rs12662634, A/G 0.18 3610210 20.023 (20.039, 20.021)

DPA (11) Main model{ 97 rs174547,C/T 0.33 46102154 20.075 (20.069, 20.080)

EPA(6) Main model{ 47 rs3798713, C/G 0.43 2610212 0.035 (0.025, 0.045)

EPA(6) DHA{ 78 rs3798713, C/G 0.43 8610235 0.054 (0.045, 0.062)

EPA(6) ALA{ 77 rs3798713, C/G 0.43 3610212 0.035 (0.025, 0.045)

EPA (11) Main model{ 78 rs174538, A/G 0.28 5610258 20.083 (20.094, 20.073)

EPA (11) DHA{ 77 rs174535, C/T 0.31 2610259 20.072 (20.063, 20.080)

EPA (11) ALA{ 87 rs174535, C/T 0.31 1610284 20.097 (20.088, 20.107)

DHA (6) Main model{ 57 rs2236212, C/G 0.43 1610215 20.113 (20.086, 20.141)

DHA (6) EPA{ 76 rs2236212, C/G 0.43 7610239 20.162 (20.138, 20.186)

Results of the meta-analyses of n-3 fatty acid GWAS; main results with standard adjustments described in Methods, and additional results further adjusted for one other
fatty acid or for selected SNPs.
{Adjustments of the cohort-specific GWAS; the main model included age, sex, and if appropriate study site and principal components to account for population
structure.
{Adjustment in addition to main model adjustments.
| Number of SNPs with p-values ,5.061028.
*The SNPs rs3798713, rs2236212 and rs3734398 are in perfect LD; rs174538, rs174535 and rs174547 are in LD with r2$0.9. Positions for genome built 36.3 are 61327359
(rs174547), 27594741 (rs780094), 11090959 (rs3734398), 11182177 (rs12662634), 11116608 (rs3798713), 61316657 (rs174538), 61307932 (rs174535), 11103001
(rs2236212).
doi:10.1371/journal.pgen.1002193.t002

Table 3. Associations of rs174548 (G allele) with n-3 polyunsaturated fatty acids in samples of different ancestries.

ALA EPA DPA DHA

N MAF Beta* (SE) p-value Beta* (SE) p-value Beta* (SE) p-value Beta* (SE) p-value

European ancestry cohort {

ARIC 3268 0.29 0.013 (0.001) 7610224 20.085 (0.008) 6610227 20.075 (0.004) 1610272 20.095 (0.024) 6610205

CARDIA 1507 0.30 0.019 (0.004) 3610205 20.071 (0.030) 0.02 20.069 (0.008) 4610218 20.066 (0.046) 0.15

CHS 2326 0.28 0.019 (0.002) 2610225 20.102 (0.011) 7610220 20.078 (0.005) 2610248 20.075 (0.029) 0.01

InCHIANTI 1075 0.24 0.033 (0.012) 0.005 20.063 (0.009) 2610211 NA 20.030 (0.037) 0.41

MESA 690 0.29 0.023 (0.003) 5610211 0.077 (0.027) 0.005 20.056 (0.0012) 2610206 20.117 (0.071) 0.10

Overall{ 8866 0.29 0.016 (0.001) 8610259 20.081 (0.005) 8610253 20.074 (0.003) 36102138 20.076 (0.016) 1610206

African ancestry cohort

CARDIA 1493 0.21 0.007 (0.004) 0.05 20.070 (0.018) 9610205 20.042 (0.009) 3610206 20.122 (0.044) 0.005

CHS 426 0.20 0.009 (0.004) 0.03 0.011 (0.299) 0.71 20.099 (0.015) 0.51 0.001 (0.088) 0.99

MESA 628 0.22 0.006 (0.004) 0.13 20.028 (0.036) 0.44 20.033 (0.014) 0.02 20.018 (0.111) 0.87

Overall{ 2547 0.21 0.007 (0.002) 0.001 20.061 (0.016) 161024 20.051 (0.007) 3610214 20.089 (0.037) 0.02

Chinese ancestry cohort

MESA 633 0.58 0.019 (0.004) 1610206 20.046 (0.033) 0.17 20.048 (0.012) 3610205 20.008 (0.072) 0.91

Hispanic ancestry cohort

MESA 661 0.52 0.016 (0.003) 3610207 20.083 (0.020) 4610205 20.078 (0.012) 3610211 20.128 (0.053) 0.02

For each fatty acid, results are shown for the individual cohorts and for the meta-analyses among samples of European ancestry and samples of African ancestry.
*Beta-regression coefficient associated with one copy of the G allele.
{Included in the GWAS.
{Meta-analysis of results of same ancestry cohorts.
doi:10.1371/journal.pgen.1002193.t003
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for estimated fish intake. No additional associations beyond those

previously seen for SNP in FADS1/2 and ELOVL2 were observed

in these analyses (not shown). Finally, adjustment of the GWAS of

the four n-3 PUFAs for levels of triglycerides, high density

lipoprotein and low density lipoprotein did not materially change

the results (not shown). For example, in the GWAS of DPA, the

estimated effect of one copy of the T allele of rs780094 (GCKR)

went from 0.0157 (p = 1.1561028) without adjustment to 0.0175

(p = 2.5261029) with adjustment, in meta-analyses that included

7663 participants.

Association of top SNPs with n-3 PUFAs in samples from
participants of African, Chinese, and Hispanic ancestry

To determine whether the gene-fatty acid associations were

consistent across different ethnicities, we examined the associations

of genotype at two representative SNPs with phospholipid n-3

PUFA levels, in samples of African, Chinese and Hispanic

ancestry. Results of these analyses for the selected SNPs are

shown in Table 3 and Table 4, together with meta-analysis and

cohort-specific results among the samples of European ancestry.

Frequency of the G allele of rs174548 (FADS1) was 0.29, 0.21,

0.58, 0.52 and frequency of the C allele of rs3734398 (ELOVL2)

was 0.43, 0.25, 0.92, 0.57 in samples of European, African,

Chinese and Hispanic ancestry respectively. Associations of

rs174548 with n-3 PUFA were generally similar across all

ancestries, with the G allele associated with higher ALA and

lower long-chain n-3 PUFA levels, although associations did not

always reach statistical significance, perhaps due to limited sample

sizes (Table 3). The associations of rs3734398 with EPA, DPA and

DHA were similar for samples of African ancestry versus

European ancestry (Table 4). Among samples of Chinese ancestry,

SNP rs3734398 was not highly polymorphic (C allele frequency of

92%) and no significant associations were detected. In samples of

Hispanic ancestry, the C allele of rs3734398 was associated with

higher DPA and lower DHA, but it was not associated with EPA.

Interactions
We evaluated several potential interactions in the samples of

European ancestry, with statistical significance defined at

alpha = 0.004 (0.05 divided by 13 tested interactions). We found

little evidence that fatty fish consumption ($vs. ,0.6 servings/

week) modified the associations of rs1535 (FADS2) or rs3734398

(ELOVL2) with levels of DHA or EPA. We also did not observe any

interaction between plasma phospholipid levels of LA (continuous

linear) and genotype at these two SNPs on the levels of DHA or

EPA. Plasma phospholipid levels of ALA (continuous linear) also

did not modify the association of genotype at these two SNPs with

levels of DHA, or of genotype at rs3734398 with levels of EPA.

However, there was a significant interaction of ALA with rs1535

genotype and EPA levels (meta-analyzed interaction coefficient

p = 9.361027), illustrated in Figure 5. Per one SD unit (0.05% of

total fatty acids) increase in ALA, EPA levels increased by 0.086%

of total fatty acids (23% of one SD) in the absence of the minor

allele (G); by 0.063% (17% of one SD) in the presence of one copy

(G-); and by 0.036% (10% of one SD) in the presence of two copies

(GG).

Discussion

We report here the results of the largest GWAS of plasma

phospholipid n-3 PUFAs to date, with 8,866 participants of

European ancestry. The associations of the two top hits on

chromosomes 6 and 11 are shown in context of the n-3 PUFA

pathway in Figure 1. Genetic variation in the desaturase genes

FADS1 and FADS2 was associated with higher levels of ALA and

lower levels of EPA and DPA suggesting genetic variants that

Table 4. Associations of rs3734398 (C allele) with n-3 polyunsaturated fatty acids in samples of different ancestries.

ALA EPA DPA DHA

N MAF Beta* (SE) p-value Beta* (SE) p-value Beta* (SE) p-value Beta* (SE) p-value

European ancestry cohort {

ARIC 3268 0.42 0.0002 (0.001) 0.87 0.028 (0.008) 2610204 0.042 (0.004) 4610224 20.119 (0.022) 8610208

CARDIA 1507 20.002 (0.003) 0.52 0.055 (0.022) 0.01 0.037 (0.008) 1610206 20.090 (0.041) 0.03

CHS 2326 0.43 0.003 (0.002) 0.08 0.044 (0.010) 7610206 0.040 (0.005) 1610213 20.144 (0.027) 2610207

InCHIANTI 1075 0.43 20.0007 (0.009) 0.94 0.037 (0.010) 2610204 NA 20.092 (0.032) 0.004

MESA 690 0.42 0.0001 (0.003) 0.98 0.014 (0.029) 0.06 0.041 (0.011) 2610204 20.065 (0.068) 0.34

Overall{ 8866 0.43 0.0008 (0.001) 0.37 0.035 (0.005) 4610212 0.040 (0.003) 1610243 20.114 (0.014) 2610215

African ancestry cohort

CARDIA 1493 0.25 20.002 (0.004) 0.57 0.040 (0.017) 0.02 0.045 (0.008) 1610207 20.077 (0.041) 0.06

CHS 426 0.25 0.003 (0.003) 0.37 20.016 (0.022) 0.46 0.043 (0.013) 0.001 20.191 (0.071) 0.008

MESA 628 0.25 20.004 (0.004) 0.32 0.043 (0.035) 0.02 0.030 (0.013) 0.02 20.042 (0.107) 0.69

Overall{ 2547 0.25 20.0002 (0.002) 0.93 0.022 (0.013) 0.08 0.041 (0.006) 7610212 20.099 (0.034) 0.003

Chinese ancestry cohort

MESA 633 0.92 20.005 (0.008) 0.51 20.097 (0.071) 0.17 20.005 (0.026) 0.85 20.200 (0.154) 0.20

Hispanic ancestry cohort

MESA 661 0.57 20.002 (0.003) 0.56 20.006 (0.021) 0.79 0.033 (0.012) 0.01 20.110 (0.055) 0.05

For each fatty acid, results are shown for the individual cohorts and for the meta-analyses among samples of European ancestry and samples of African ancestry.
*Beta-regression coefficient associated with one copy of the G allele.
{Included in the GWAS.
{Meta-analysis of results of same ancestry cohorts.
doi:10.1371/journal.pgen.1002193.t004
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affect the conversion of ALA to EPA and DPA. In the main

analyses, genetic variation in the elongase gene ELOVL2 was

associated with higher levels of EPA and DPA and lower levels of

DHA, suggesting variants that decrease the conversion of EPA and

DPA to DHA. These reciprocal associations support a role of

genetic variation in the pathway for circulating levels of n-3

PUFAs in free-living populations.

The associations of FADS1/2 and ELOVL2 with n-3 PUFAs

were generally consistent with the previous GWAS in In-

CHIANTI (total plasma n-3 PUFAs) and follow-up candidate

Figure 4. SNP association plots for DPA–associated regions. Genome-wide association significance level is plotted against the y-axis as –log10

(p-value). Genetic coordinates are as per NCBI build 36. A) GCKR region. LD is indicated by color scale in relationship to marker rs780094. B) AGPAT3
region. LD is indicated by color scale in relationship to marker rs7435. The color scheme is red for strong linkage disequilibrium (LD; r2$0.8) and
fading color for lower LD.
doi:10.1371/journal.pgen.1002193.g004
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replication in the Genetics of Lipid-Lowering Drugs and Diet

Network (GOLDN) Study (erythrocyte n-3 PUFAs) [26]. In that

prior study, only the association of variation in FADS1 with EPA

reached genome-wide significance. Follow-up investigations in

GOLDN suggested associations of FADS1 gene variation with

ALA and DHA, and of ELOVL2 gene with DHA and DPA, such

as the ones reported here [26]. In the present larger meta-analyses,

these prior suggestive associations reached genome-wide signifi-

cance, providing a definite picture of the association of genes in the

PUFA pathway with phospholipid n-3 PUFAs. While the

InCHIANTI cohort showed similar estimates of association with

ALA, EPA and DHA as the other cohorts in the present study,

further studies are needed to further explore genetic associations of

n-3 PUFAs in triglycerides and other fatty acid compartments.

Using ratios of n-6 PUFAs as proxy of desaturase activities,

Bokor et al reported that the minor allele of FADS1 rs174546 was

associated with lower delta-5 desaturase activity and the minor

allele of FADS2 rs968567 was associated with higher delta-6

desaturase activity [30]. We found both rs174546 and rs968567

were associated with higher levels of ALA and lower levels of EPA

and DPA at genome-wide significance level (Table S1A–S1C).

Furthermore, adjustment of the GWAS of DPA for the most

associated SNP from the FADS1/2 genes and the most associated

SNP from ELOVL2 did not reveal additional associations on

chromosome 11. This result suggests that each associated SNP

conveyed the information contained in the other SNPs of the same

broad region on chromosome 11. In contrast, we found evidence

for two independent associations, exemplified by rs2236212 and

rs12662634, in the region of the ELOVL2 gene.

The associations of the FADS1/2 and ELOVL2 genes with the

phospholipid levels of EPA and DHA did not vary depending on

the frequency of fatty fish consumption, suggesting the genetic

effects are independent of fish intake at the levels of consumption

in the studied populations. The absence of interaction of FADS1/2

by fish consumption is consistent with findings from the Nether-

lands KOALA Birth Cohort Study [31], in which higher levels of

fish consumption were associated with similar slopes of plasma

phospholipid EPA and DHA levels among individuals with 0, 1, or

2 copies of minor FADS1/2 alleles. The associations of FADS1/2

and ELOVL2 genes with EPA and DHA also did not vary

depending on phospholipid LA. Linoleic acid is desaturated and

elongated to n-6 metabolites (e.g. arachidonic acid) using the same

desaturases and elongase(s) as ALA, and in dietary trials, higher

dietary LA reduces plasma phospholipid EPA [32]. Animal

experiments suggest that high dietary LA inhibits FADS2 gene

expression [33]. Our findings do not support an influence of LA

on the association of genetic variation in the pathway with n-3

PUFA levels, at levels of LA consumption in these cohorts.

Figure 5. Influence of variation in rs1535 on the estimated association of plasma phospholipid ALA levels with EPA levels. Panel A
illustrates the association of ALA with EPA in carriers of 0, 1, and 2 copies of rs1535 G allele with fitted lines constructed from meta-analyzed
estimates. Panel B shows the % change in EPA corresponding to a 0.05 unit increase in ALA in carriers of 0 (top estimate), 1 (middle estimate), 2
(bottom estimate) copies of rs1535 G allele.
doi:10.1371/journal.pgen.1002193.g005
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We report for the first time a GWAS of DPA, a central

intermediate in the n-3 fatty acid pathway (Figure 1). While

present in small quantities in fatty fish, DPA plasma levels appear

unrelated to dietary intake [3], suggesting a primarily metabolic

origin. Supporting this, we found that DPA exhibited stronger

genetic associations than the other n-3 PUFAs.

In addition to its association with variants of desaturase and

elongase genes, DPA was associated with variation in the

glucokinase regulator gene GCKR, a pleiotropic gene associated

with multiple outcomes in GWAS [34]. The T allele of rs780094 is

associated with lower fasting glucose and insulin [35] and with

higher triglycerides [36–38]; this allele was associated with higher

DPA levels in the present study, and the association was

independent of triglyceride levels. Given the known influence of

long-chain n-3 PUFAs on hepatic triglyceride production [39] and

possibly glucose-insulin homeostasis [40], the mechanism of

potential pleiotropic effects of this allele on both DPA and these

pathways merit further attention.

We found a potential association of DPA with AGPAT3, a gene

encoding 1-acylglycerol-3-phosphate O-acyltransferase 3. DPA is

a known substrate for the AGPAT3 protein, which transfers a fatty

acid in sn-2 position of lysophosphatic acid, a step in the

phospholipid biosynthesis pathway. A possible association of

DPA with AGPAT3 variation supports an origin of phospholipid

DPA from de novo phospholipid synthesis. In contrast, phospholipid

EPA and DHA often originate to a greater extent from diet and

are predominantly integrated into phospholipids by the process of

acyl-chain remodelling [41]. The genetic associations reported

here together with growing evidence of the association of DPA

with lower risk of coronary heart disease [3,42,43] should

stimulate further work on factors regulating this fatty acid.

The GWAS of ALA adjusted with EPA revealed a possible new

association of phospholipid ALA with variation in PDXDC1. The

PDXDC1 protein, a vitamin B6-dependent decarboxylase, is

expressed preferentially in the intestine [44], but its function is

not known. Animal studies support an influence of dietary vitamin

B6 (pyridoxal) on serum and liver levels of ALA and other PUFAs

[45,46], which has been interpreted as an effect on desaturase

enzymes activity. The association of PDXDC1 with ALA, if

confirmed in other studies, raises the possibility of another vitamin

B6-dependent protein affecting ALA, for example through

involvement in intestinal ALA absorption.

In addition to an overall association of FADS1/2 variation with

less ALA and more EPA, we found that the minor G allele of

rs1535 was associated with a reduction of the magnitude of the

association between ALA and EPA. In persons with two copies of

the G allele, the association of ALA with EPA was less than half

the association observed in persons with two copies of the A allele.

These results suggest an influence of variation in FADS1/2 on the

rate of conversion of ALA into EPA. This conversion is of great

clinical and public health interest, given the evidence for

importance of long-chain n-3 PUFAs (such as EPA) in many

chronic diseases, their limited dietary supply worldwide, and the

much greater potential supply of plant-derived ALA. On average,

the conversion of ALA to EPA is quite low [47]. Prior tracer

studies in humans have shown that the majority of dietary ALA is

beta-oxidized for energy or directed into long-term storage as

triglycerides, with less than 5% being incorporated into phospho-

lipids where ALA is more readily converted to EPA [16,17,47].

Genetic variation that increases or decreases the rate of conversion

of ALA to EPA could have implications for individual-based

recommendations for consumption of plant- versus seafood-

derived n-3 PUFA. The genetic variation may also indicate novel

targets for drugs that may increase this conversion.

The associations of a representative SNP in the FADS1/2

genes observed in the meta-analyses of samples of European

ancestry were generally similar in samples of African, Chinese,

and Hispanic ancestry. Associations of ELOVL2 were less

consistent in different ancestries. However, the frequency of the

ELOVL2 rs3734398 G allele varied substantially with ancestry,

from 25% in African samples to 92% in Chinese samples. Lack of

association may be due to inadequate statistical power, chance,

different background diet [14], or possible race/ethnic differ-

ences in the activity of elongases from the ELOVL2 and ELOVL5

genes.

Our study, the largest GWAS to-date of fatty acid biomarkers,

demonstrates key associations of genetic variation with phospho-

lipid n-3 PUFA levels, including genes in the n-3 PUFA metabolic

pathway and, for DPA, novel pathways including the pleiotropic

gene GCKR. Our results also imply that common variation may

result in less efficient conversion of ALA to EPA.

Materials and Methods

Ethics statement
All cohort participants gave written informed consent, including

consent to participate in genetic studies. All studies received

approval from local ethical oversight committees.

Study samples
The data were obtained from 2 cohort studies in the CHARGE

Consortium, the Atherosclerosis Risk in Communities (ARIC)

Study and the Cardiovascular Health Study (CHS), and 3

additional cohort studies, the Coronary Artery Risk Development

in Young Adults (CARDIA) Study, the Invecchiare in Chianti

(InCHIANTI) Study, and the Multi-Ethnic Study of Atheroscle-

rosis (MESA).

Fatty acid measurements
In all cohorts but InCHIANTI, plasma phospholipids were first

isolated by thin layer chromatography; fatty acids were then

separated by gas chromatography. In InCHIANTI, total plasma

fatty acids were measured using a similar gas chromatography

technique. Details of fatty acid measurements are provided in Text

S1. Levels of EPA, DHA, ALA and DPA were expressed as % of

total fatty acids.

Imputation and statistical analysis
Genotyping was done in each cohort separately using high-

density SNP marker platforms (ARIC, CARDIA and MESA -

Affymetrix 6.0, CHS - Illumina 370, InCHIANTI - Illumina 550).

Samples with call rates below 95% (ARIC, CARDIA, MESA), or

97% (CHS, InCHIANTI) at genotyped markers were excluded.

Genotypes were imputed to approximately 2.5 million HapMap

SNPs by using either MACH [48] (ARIC, InCHIANTI),

BIMBAM [49] (CHS), BEAGLE [50] (CARDIA) or IMPUTE

[51] (MESA). SNPs for which testing Hardy Weinberg equilibrium

resulted in p,1025 (CHS) or p,1026 (ARIC) were excluded from

imputation. SNPs with minor allele frequency (MAF) #1% were

excluded from the meta-analyses. Additional details on genotyping

and imputation per cohort are provided in Text S1.

Association analysis between genotype and each fatty acid was

done separately within each study cohort according to a pre-

specified plan. All studies conducted linear regression analysis

using an additive genetic model, i.e. regression of phenotype on

the number of reference alleles, or equivalently the imputed

dosage for imputed genotypes. All analyses were adjusted for age,

sex, and site of recruitment where appropriate, and used robust
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standard errors. In addition, CARDIA, CHS and MESA analyses

were adjusted for principal components to account for possible

population genetic substructure. The results in InCHIANTI

included in the present study have been previously published [26].

Meta-analysis of main effects
For each SNP and fatty acid, GWAS-specific results were

combined using inverse-variance weighted meta-analysis in

METAL (www.sph.umich.edu/csg/abecasis/metal). Genomic

control correction was applied to each study prior to the meta-

analysis. Genomic control correction factors ranged from 1.00 to

1.07 (ALA), 1.00–1.08 (EPA), 1.00–1.03 (DPA) and 1.01–1.13

(DHA). P-values less than 561028 were considered significant.

Because total plasma levels of ALA (measured in InCHIANTI) are

higher than plasma phospholipid levels of ALA (measured in the

other cohorts), we performed a z-score based meta-analysis of

ALA with the 5 cohorts as a sensitivity analysis. Results did not

differ from that of inverse-variance weighted meta-analysis, i.e.

from those presented. The proportion of fatty acid variance

explained by a particular variant allele was calculated from the

formula.

(b2*2*MAF(1-MAF))/Var(Y), where b is the regression coeffi-

cient for one copy of the allele, MAF is the minor allele frequency

and Var(Y) is the variance of the fatty acid.

Interaction analyses
We tested 13 interactions using cross-products in the linear

regression models. Two of the most associated SNPs available in

all cohorts (rs1535 in FADS2 and rs3734398 in ELOVL2) were

chosen for investigation of interactions with a) fatty fish intake

(dichotomized at 0.6 servings/week, a cut-point around the 25th

percentile of fish consumption in the CHS and ARIC cohorts), b)

plasma phospholipid ALA levels (continuous linear) and c) plasma

phospholipid LA levels (continuous linear) on the outcomes of EPA

and DHA. Additionally, we tested the interaction between rs1535

and plasma phospholipid EPA with DHA levels as the outcome.

Interaction coefficients from cohort-specific analyses were meta-

analyzed. For interactions of SNPs with ALA on the outcomes of

EPA and DHA, we performed z-score meta-analysis with all the

cohorts to assess statistical significance, and inverse-variance

weighted meta-analysis excluding InCHIANTI to estimate the

magnitude of the interaction. P-values less than 0.004 (0.05/13

tests) were considered significant for the interactions.

Analyses of selected SNPs in cohorts of African, Chinese,
and Hispanic ancestry

We investigated the association of two selected SNPs which had

been directly genotyped as part of candidate gene studies in the

African American cohort in CARDIA and the African, Chinese

and Hispanic American cohort in MESA, and which were

available from genome-wide scans on African Americans in the

CHS cohort. We used linear regression and additive models as

described above. Results in the 3 African American cohorts were

meta-analyzed using inverse-variance weighted meta-analysis.
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Table S1 Supplementary results from the CHARGE consor-

tium. A. Comprehensive results for ALA with p,5*1026. B.

Comprehensive results for EPA with p,5*1026. C. Comprehen-

sive results for DPA with p,5*1026. D. Comprehensive results for

DHA with p,5*1026. E. Results for DPA adjusted for rs2236212

and rs174547 with p,5*1028.
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