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Abstract

This paper presents a generic stochastic model for the design of networks compris-
ing both supply and return channels, organized in a closed loop system. Such situations
are typical for manufacturing/re-manufacturing type of systems in reverse logistics.
The model accounts for a number of alternative scenarios, which may be constructed
based on critical levels of design parameters such as demand or returns. We propose a
decomposition approach for this model based on the branch and cut procedure known
as the integer L-shaped method. Computational results show a consistent performance
efficiency of the method for the addressed location problem. The stochastic solutions
obtained in a numerical setting generate a significant improvement in terms of average
performance over the individual scenario solutions. A solution methodology as pre-
sented here can contribute to overcoming notorious challenges of stochastic network
design models, such as increased problem sizes and computational difficulty.
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1 Introduction

Multiple case studies on reverse logistics networks propose deterministic mixed integer
linear facility location models in order to support the network design decisions. Examples
of such cases can be found in a review paper by Fleischmann et al.(2000), which also
provides a thorough analysis of network design issues in the context of recovery networks.
This analysis points out that a high level of uncertainty is characteristic for product
recovery management in general, while the available case studies support this vision with
respect to network design issues in particular. The availability of used products on the
disposer market as well as the demand for recovered products are given as examples of
major uncertain factors. Despite the well identified sources of uncertainty, the authors
note that basically such uncertain factors are not included explicitly in any of the analysed
cases.

In Realff et al. (2000) a robust approach extension of a previously considered case
(see Ammons et al. (1999)) on recycling carpet in US is proposed. In this approach nine
scenarios are identified and a solution is sought which minimizes the maximum deviation
to the optimal objective values of the individual scenarios. The authors conclude that
the robust solution performs well over the set of scenarios and suggest the extension of
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the approach to different other situations with similar system features. However, since
solution times ranging from half an hour to nine hours had been recorded, the need was
stated for the solution approach to be improved in order to be able to address larger
models in reasonable amounts of time. The authors suggest that, given the network
structures embedded in the model and the limited interaction of scenarios, a traditional
decomposition approach may be applicable.

Listes and Dekker (2001) have also considered a stochastic programming based ap-
proach to an illustrative case study on recycling sand from demolition waste in The Nether-
lands, previously reported by Barros et al. (1998). The use of the extensive forms for the
two-stage stochastic models incurred comparable running times as those reported in the
carpet recycling case mentioned above. Moreover, a large increase of computational time
was recorded when testing a three stage approach model formulations which accounts for
a gradual revealing of information with respect to the uncertain factors. Hence, based on
this own experience the authors have stated in their turn that there is need for special-
ized algorithms capable to more efficiently tackle such models and to generate solutions
in significantly lower running times.

Laporte et al. (1994) present an application of the method known in stochastic pro-
gramming as the integer L-shaped method to a facility location model with stochastic
demands. The proposed model aims to locate one type of facilities and to allocate them
to a number of given customers, whose demands are described in terms of normal dis-
tributions. The proposed procedure was tested and performed well on a large number of
instances. In the implementation though some simplifying assumptions were made with re-
spect to some of the model parameters. The references included in this paper may further
provide the interested reader with more extensive discussions on theoretical developments
in stochastic location problems.

The aim of this paper is set up a generic stochastic model for the design of integral
networks (i.e. comprising return channels as well) and to proposed a decomposition based
approach which can tackle this model in an efficient manner. Therefore, we propose an
extension of the methodology in Laporte et al. (1994) to the design of networks compris-
ing both supply and return channels organized in a closed loop system. Thus, we show
that such a stochastic modelling arising from rather theoretical considerations related to
facility location problems may be naturally extended in order to represent a situation of
more practical interest within the context of reverse logistics and integral supply chains.
Our main purpose is to comply with the above mentioned requirements for more efficient
solution methods for recovery networks design models which take the uncertainty explic-
itly into account. Consequently we test the proposed methodology on a number of model
instances in a numerical setting. Given the strategic nature of the considered problem as
well as a rather rough division of available information, typical for more practical consid-
erations, also in application presented here we stick to the representation of uncertainty
by some discrete alternative scenarios.

This paper is organized as follows. In Section 2 we present the model elements and
discuss the two-stage formulation to be considered. A detailed description of the decom-
position approach is given in Section 3. It includes both identifying the relevant elements
related to the decomposition of the linear relaxation of the model as well as the description
of the actual integer L-shaped based approach. The idea is to retrieve all the important
arguments which are then referred to in the implementation discussion in Section 4. Com-
putational results, including the analysis of procedure efficiency and the detailed discussion
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of one application instance, are subsequently presented in Section 5. Potential extensions
of the model are briefly mentioned in Section 6. Finally, in Section 7 we make a short
summary of our findings and present our documented conclusions.

2 A generic supply-and-return network model

Let j = 1, 2, ..., J denote the markets to be served by the network, i = 1, 2, ..., I the
potential plant sites and k = 1, 2, ...,K the potential facility sites. Let s = 1, 2, ..., S
represent a number of scenarios (based on the amounts of demand and return at markets).
The decision variables are defined as follows:

κi binary variable equal to 1 if a plant is located at site i
and equal to 0 otherwise;

κ = (κ1, ..., κI);
εk binary variable equal to 1 if a facility is located at site i

and equal to 0 otherwise;
ε = (ε1, ..., εK);
xij binary variable equal to 1 if a transportation link is established

between plant i and market j;
x = (x11, ..., xIJ);
yjk binary variable equal to 1 if a transportation link is established

between market j and facility k;
y = (y11, ..., yJK);
zki binary variable equal to 1 if a transportation link is established

between facility k and plant i;
z = (z11, ..., zKI);

uij(s) quantity delivered from plant i to market j in scenario s;
u(s) = (u11(s), ..., uIJ(s));
vjk(s) quantity delivered from market j to facility k in scenario s;
v(s) = (v11(s), ..., vJK(s));
wki(s) quantity delivered from facility k to plant i in scenario s.
w(s) = (w11(s), ..., wKI(s)).

The model parameters are defined as follows:

ps probability (weight) of scenario s;
dj(s) demand at market j in scenario s;
rj(s) returns from market j in scenario s;
b average recovery fraction;
ai fixed costs (per planning period) of opening a plant at site i;
a = (a1, ..., aI);
fk fixed costs (per planning period) of opening a facility at site k;
f = (f1, ..., fK);
cij average costs (per planning period) of operating a transportation

service between plant i and market j;
c = (c11, ..., cIJ);
ejk average costs (per planning period) of operating a transportation

service between market j and facility k;
e = (e11, ..., eJK);
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gki average costs (per planning period) of operating a transportation
service between facility k and plant i;

g = (g11, ..., gKI);
prodi variable costs of producing one unit at plant i;
pricej price of one unit at market j;
testk costs of testing one unit at facility k;
repri variable costs of reprocessing one unit at plant i;
t0ij transportation costs for one unit from plant i to market j;
t1jk transportation costs for one unit from market j to facility k;
t2ki transportation costs for one unit from facility k to plant i;
qj penalty costs for not collecting one unit of returns at market j;
hk disposal costs of one unit at facility k;
Pi (maximum) capacity of a plant at site i;
Rk (maximum) capacity of a facility at site k;
Cki = min(Rk, Pi)

Given the notation above, the network structure can be schematically illustrated as in
Figure 1.
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Figure 1: Structure of supply-and-return network model

We assume that all costs and revenues are defined for the same planning period. They
can be as well interpreted as average values over that period of time. The entries of the
vectors c, e, g represent the fixed costs only for establishing a transportation link between
two sites and are not related to the actual amount to be transported between the corre-
sponding sites. The amount related figures incorporated into the model are additionally
defined. Furthermore, we assume that there are some sole servicing requirements, namely
that demand of each market can be satisfied from at most one plant, returns from each
market are directed to at most one facility and each facility directs return flow to at most
one plant. These requirements lead to a typical situation with a large number of markets,

4



a low number of facilities and an even lower number of plants.
Before actually formulating the two-stage stochastic model we remark that for a given

network configuration (that is for fixed κ and ε) and a given scenario s the objective
function to be maximized in the second stage is to be expressed as

I∑
i=1

[
J∑

j=1

(pricej − t0ij)uij(s)− prodi[
J∑

j=1

uij(s)−
K∑

k=1

wki(s)]]+

(sales revenues, transportation costs from plants to markets and production costs for new
products)

J∑
j=1

K∑
k=1

(−testk − t1jk)vjk(s)−
J∑

j=1

qj[rj(s)−
K∑

k=1

vjk(s)]+

(testing costs, transportation costs from markets to facilities and penalty costs for not
collected returns)

K∑
k=1

I∑
i=1

(−repri − t2ki)wki −
K∑

k=1

hk[
J∑

j=1

vjk(s)−
I∑

i=1

wki(s)]

(reprocessing costs, transportation costs from facilities to plants and disposal costs)

Grouping the coefficients by decision variables yields the following expression

I∑
i=1

J∑
j=1

(pricej − prodi − t0ij)uij(s)+

J∑
j=1

K∑
k=1

(qj − hk − testk − t1jk)vjk(s)−
J∑

j=1

qjrj(s)+

K∑
k=1

I∑
i=1

(prodi − repri + hk − t2ki)wki(s)

For each s, the term
J∑

j=1

qjrj(s) being constant can be dropped from the second stage

objective function (and re-added after optimizing the second stage for each scenario). For
simplicity we make the following further notations

ρij = pricej − prodi − t0ij

(ρij is net revenue per unit transported from plant i to market j)

µjk = qj − hk − testk − t1jk

(µjk is the net gain per unit transported from market j to facility k)

λki = prodi − repri + hk − t2ki
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(λki is the net gain per unit transported from facility k to plant i)

For every x, y, z and every scenario s we denote the second stage recourse function by
Q(x, y, z, s). The expected recourse function is denoted by Q(x, y, z), that is Q(x, y, z) =

Es[Q(x, y, z, s)] =
S∑

s=1

psQ(x, y, z, s) where Es denotes the expectation with respect to s.

These functions are defined in terms of x, y, z only (and not of κ and ε) as it will be
explained after formulating the model.

Given these preparations, the problem under consideration is then to

min
I∑

i=1

ai κi +
K∑

k=1

fk εk +
I∑

i=1

J∑
j=1

cijxij +
J∑

j=1

K∑
k=1

ejkyjk +
K∑

k=1

I∑
i=1

gkizki −

− Q(x, y, z) (1)

subject to
xij ≤ κi ∀ i, ∀ j (2)
yjk ≤ εk ∀ j, ∀ k (3)
zki ≤ κi ∀ k, ∀ i (4)
zki ≤ εk ∀ k, ∀ i (5)

I∑
i=1

xij ≤ 1 ∀ j (6)

K∑
k=1

yjk ≤ 1 ∀ j (7)

I∑
i=1

zki ≤ 1 ∀ k (8)

κi, εk, xij , yjk, zki ∈ {0, 1} ∀ i, ∀ j, ∀ k (9)

where the recourse function Q(x, y, z, s) is defined by

Q(x, y, z, s) = max
I∑

i=1

J∑
j=1

ρij uij(s) +
J∑

j=1

K∑
k=1

µjk vjk(s) +
K∑

k=1

I∑
i=1

λkiwki(s) (10)

subject to
uij(s) ≤ dj(s)xij ∀ i, ∀ j (11)

J∑
j=1

uij(s) ≤ Pi ∀ i (12)

vjk(s) ≤ rj(s) yjk ∀ j, ∀ k (13)
J∑

j=1

vjk(s) ≤ Rk ∀ k (14)

wki(s) ≤ Ckizki ∀ k, ∀ i (15)
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I∑
i=1

wki(s) ≤ b

J∑
j=1

vjk(s) ∀ k (16)

K∑
k=1

wki(s) ≤
J∑

j=1

uij(s) ∀ i (17)

uij(s), vjk(s), wki(s) ≥ 0 ∀ i, ∀ j, ∀ k (18)

By the first stage problem we will refer to the problem defined by (1) – (9), while
the second stage problem refers to the problem defined by (10) – (18). In the objective
of the first stage problem, the first and the second terms represent the fixed costs for
opening plants respectively facilities, the third, fourth and fifth terms denote the average
costs (per planning period) of operating transportation links between the corresponding
sites, while the last term represents minus the expected revenue resulting from operating
the network configuration and the links given by the first stage variables. Constraints
(2) – (5) impose that links can be established only using open plants or facilities, while
constraints (6) – (8) are the sole servicing requirements mentioned before. The second
stage objective computes for each scenario s the maximum net revenue under restrictions
owing to the existing demands (constraints (11)), existing returns (constraints (13)) and
available capacity (constraints (12),(14),(15)). Moreover balance constraints (16) and (17)
at facility and plant level respectively are added. At the facility level the excess inbound
amount corresponds to the part of returns which is disposed of. Similarly, the returns from
a facility to a plant are required not to exceed the distribution from the plant (the excess
outbound corresponding to new production). From the model formulation it becomes now
clear that the second stage function Q may be defined as a function of x, y and z only,
because in any first stage solution κi = 1 if and only if xij = 1 for one j or zki = 1 for one
k, respectively εk = 1 if and only if yjk = 1 for one j or zki = 1 for one i.

3 The decomposition approach

Using the notation proposed by Laporte and Louveaux (1993), the model described in the
previous section belongs to the class B/C/D, where B stands for binary first stage vari-
ables, C for continuous second stage variables, while D means that the model uses discrete
random parameters. Moreover, the model has so-called relatively complete recourse, that
is for any feasible first stage solution, the second stage problem is feasible (the recourse
function is finite), since u(s) = 0, v(s) = 0, w(s) = 0 is always a feasible second stage
solution. Such models can be tackled by a type of branch-and-cut procedure proposed
by Laporte and Louveaux (1993), called the Integer L-shaped method. In the sequel we
present a fairly detailed description of the arguments and the terms in which an algorithm
of this type may be applied to our problem. During the exposure we will retrieve as well
all the important elements which play a role in the actual implementation.

We start by noting that the first stage problem is equivalent to the following reformu-
lation in which a new variable θ is introduced:

min
I∑

i=1

ai κi +
K∑

k=1

fk εk +
I∑

i=1

J∑
j=1

cijxij +
J∑

j=1

K∑
k=1

eijyjk +
K∑

k=1

I∑
i=1

gkizki + θ (19)
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subject to (2), (3), (4), (5), (6), (7), (8) and

θ ≥ −Q(x, y, z) (20)
κi, εk, xij , yjk, zki ∈ {0, 1} ∀ i, ∀ j, ∀ k (21)

From this formulation two main issues can be distinguished. Firstly, the inequality (20)
can not be used computationally as a constraint since Q(x, y, z) is not defined explicitly,
but only implicitly by a number of optimization problems. The classical L-shaped decom-
position method (Van Slyke and Wets (1969)) provides means to relax this constraint and
replace it by a number cuts, which may be gradually added during an iterative solving
process. This method results from applying Benders (1962) decomposition to two-stage
stochastic models and is applicable to problems with continuous variables. Consequently,
the second issue arising from the formulation above is the integrality of the first-stage
variables. Combining in a certain sense the L-shaped method with the well known branch-
and-bound method for mixed integer problems results in the Integer L-shaped method.
In the next subsection we expose first the ideas of the L-shaped method as applied to
our problem. Then we return to the original problem and address its discrete nature in
subsection 3.2.

3.1 Decomposing the linear relaxation of the model

Hence, we ignore for the moment the integrality constraints and allow the first stage
variables to be continuous in the interval [0; 1]. Let us denote the initial feasible set after
dropping constraint (20) by

F0 := { (κ, ε, x, y, z, θ) | (2)− (8), θ ∈ R, κi, εk, xij , yjk, zki ∈ [0; 1] ∀ i,∀ j, ∀ k }

We want to construct a sequence of additional constraints which can define a monotonically
decreasing feasible set F1 such that eventually the problem

min{ a κ+ f ε+ c x+ e y + g z + θ | (κ, ε, x, y, z, θ) ∈ F0 ∩ F1 } (22)

yields a solution which satisfies θ ≥ −Q(x, y, z). For any particular F1 available at a
given point during the iterative process, the problem (22) is referred to as the current
problem (or the master problem). We will show later that there exists a lower bound
θ0 for −Q(x, y, z) for any feasible x, y, z. The L-shaped method for our problem can be
applied along the following main steps.

Step 1. Let initially

F1 := { (κ, ε, x, y, z, θ) | θ ≥ θ0, κi, εk, xij , yjk, zki ∈ [0; 1] ∀ i,∀ j, ∀ k }

We solve the current problem corresponding to this F1. Denote an optimal solution by
(κ̂, ε̂, x̂, ŷ, ẑ, θ̂).

Step 2. Consider the optimal (first-stage) solution (κ̂, ε̂, x̂, ŷ, ẑ, s) resulted from the last
current problem solved. Clearly in our case Q(x̂, ŷ, ẑ, s) is finite for every s, so implicitly
Q(x̂, ŷ, ẑ) is also finite. For general (x, y, z) we have, as before,

Q(x, y, z) =
S∑

s=1

psQ(x, y, z, s)
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where for every scenario s

Q(x, y, z, s) = max{ ρ u(s) + µ v(s) + λw(s) | (11)− (17), u(s), v(s), w(s) ≥ 0 }

The recourse function Q(x, y, z, s) can be as well expressed as the optimal value of the
dual problem associated to the second stage problem in (10) - (18). More precisely, if
αij(s), φi(s), βjk(s), ψk(s), γki(s), σk(s), τi(s) are the dual variables corresponding respec-
tively to the constraints (11),(12),(13),(14),(15),(16),(17), then

Q(x, y, z, s) = min
I∑

i=1

J∑
j=1

dj(s)xij αij(s) +
I∑

i=1

Pi φi(s) +

J∑
j=1

K∑
k=1

rj(s)yjk βjk(s) +
K∑

k=1

Rk ψk(s) +

K∑
k=1

I∑
i=1

Ckizki γki(s) (23)

subject to
αij(s) + φi(s)− τi(s) ≥ ρij ∀ i, ∀ j (24)

βjk(s) + ψk(s)− b σk(s) ≥ µjk ∀ j, ∀ k (25)
γki(s) + σk(s) + τi(s) ≥ λki ∀ k, ∀ i (26)

αij(s), βjk(s), γki(s), φi(s), ψk(s), σk(s), τi(s) ≥ 0 ∀ i, ∀ j, ∀ k (27)

Now, if θ̂ ≥ −Q(x̂, ŷ, ẑ), we are done: we stop with (κ̂, ε̂, x̂, ŷ, ẑ) being an optimal
solution. If θ̂ < −Q(x̂, ŷ, ẑ), then (κ̂, ε̂, x̂, ŷ, ẑ) is not optimal. In this case, for every
scenario s, let (α̂ij(s), β̂jk(s), γ̂ki(s), φ̂i(s), ψ̂k(s), σ̂k(s), τ̂i(s)) be an optimal dual solution
of the second stage problem corresponding to (κ̂, ε̂, x̂, ŷ, ẑ). We note that the feasible set
of the dual second stage problem does not depend on (x, y, z), that is, for any first stage
decision the recourse function is optimized over the same feasible region. Using this
argument, we can construct the following optimality cut:

θ ≥ −
S∑

s=1

ps[
I∑

i=1

J∑
j=1

dj(s)xij α̂ij(s) +
I∑

i=1

Pi φ̂i(s) +
J∑

j=1

K∑
k=1

rj(s)yjk β̂jk(s) +

+
K∑

k=1

Rk ψ̂k(s) +
K∑

k=1

I∑
i=1

Ckizki γ̂ki(s)]

which must be satisfied by any optimal solution (x, y, z, θ), but is not satisfied by the
(non-optimal) found solution (x̂, ŷ, ẑ, θ̂). This inequality can be re-written in the following
form

θ ≥ −
I∑

i=1

J∑
j=1

Es[dj(s) α̂ij(s)]xij −
I∑

i=1

Es[Pi φ̂i(s)]−
J∑

j=1

K∑
k=1

Es[rj(s) β̂jk(s)] yjk

−
K∑

k=1

Es[Rk ψ̂k(s)]−
K∑

k=1

I∑
i=1

Es[Cki γ̂ki(s)] zki (28)
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where Es denotes the expectation with respect to s, or concisely as

Dx+ E y + F z + θ ≥ δ (29)

where D,E, F are vectors of corresponding sizes and δ is a real value.
So if θ̂ < −Q(x̂, ŷ, ẑ) then we add an optimality cut of the form (29), correspondingly

redefine F1 := F1 ∩ { (κ, ε, x, y, z, θ) | Dx+E y + F z + θ ≥ δ } and continue with step 3.

Step 3. Solve the current problem with the updated F1 and return to Step 2.

We provide now details on the computation of the lower bound θ0. Define ρi =
maxj {ρij}, ρ̃j = maxi {ρij}, µj = maxk {µjk}, µ̃k = maxj {µjk}, λ̃k = maxi {λki}, C̃k =
maxi {Cki}. Given the definition of Q(x, y, z, s) and the constraints (12), (14), (17) we
have that

Q(x, y, z, s) ≤
I∑

i=1

J∑
j=1

ρi uij(s) +
J∑

j=1

K∑
k=1

µ̃k vjk(s) +
K∑

k=1

I∑
i=1

λ̃iwki(s)

=
I∑

i=1

ρi(
J∑

j=1

uij(s)) +
K∑

k=1

µ̃k(
J∑

j=1

vjk(s)) +
I∑

i=1

λ̃i(
K∑

k=1

wki(s))

≤
I∑

i=1

ρiPi +
J∑

j=1

µ̃kRk +
I∑

i=1

λ̃iPi

that is, by taking expectations on both sides we can write

−Q(x, y, z) ≥ −
I∑

i=1

ρiPi −
J∑

j=1

µ̃kRk −
I∑

i=1

λ̃iPi (30)

Now using constraints (11), (13), (15) as well as (6), (7), (8) we get

Q(x, y, z, s) ≤
I∑

i=1

J∑
j=1

ρij dj(s)xij +
J∑

j=1

K∑
k=1

µjk rj(s) yjk +
K∑

k=1

I∑
i=1

λkiCki zki

≤
J∑

j=1

ρ̃j dj(s) (
I∑

i=1

xij) +
J∑

j=1

µj rj(s)(
K∑

k=1

yjk) +
K∑

k=1

λ̃k C̃k(
I∑

i=1

zki)

≤
J∑

j=1

ρ̃j dj(s) +
J∑

j=1

µj rj(s) +
K∑

k=1

λ̃k C̃k

and taking again expectations at both sides yields

−Q(x, y, z) ≥ −
J∑

j=1

ρ̃j Es[dj(s)]−
J∑

j=1

µj Es[rj(s)]−
K∑

k=1

λ̃k C̃k (31)

Combining (30) and (31), we define the lower bound θ0 to be the maximum of the two
right hand sides.

Having prepared the ingredients corresponding to the L-shaped method, we return in
the next subsection to our original problem where the first-stage variables are required to
be integer (binary).
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3.2 The integer L-shaped based algorithm

As already mentioned the idea is to combine an usual branch-and-bound scheme for the
first-stage problem with the iterative cutting planes procedure of the L-shaped method
described above. So we operate with a list of waiting nodes, each node in the list corre-
sponding to a form of the current problem.

Our current problem states as

min
I∑

i=1

ai κi +
K∑

k=1

fk εk +
I∑

i=1

J∑
j=1

cijxij +
J∑

j=1

K∑
k=1

eijyjk +
K∑

k=1

I∑
i=1

gkizki + θ (32)

subject to (2), (3), (4), (5), (6), (7), (8) and

Dn x+ En y + Fn z + θ ≥ δn n = 1, ...,m (33)
I∑

i=1

ρiPi κi +
J∑

j=1

µ̃kRk εk + θ ≥ −
I∑

i=1

λ̃iPi (34)

θ ≥ θ0 (35)
κi, εk, xij , yjk, zki ∈ [0; 1] ∀ i, ∀ j, ∀ k (36)

Denote by Z the objective value of the best found integer first stage solution, by m the
total number of optimality cuts generated up to the current point and by ν the iteration
index. The procedure consists of the following steps:

Step 0. Set ν := 0, m := 0, Z := ∞. The list consists of one node corresponding to the
initial current problem.

Step 1. Choose a node from the list. If the list is empty, stop.

Step 2. Let ν := ν + 1. Solve the current problem and denote an optimal solution by
(κν , εν , xν , yν , zν , θν).

Step 3. If a κν + f εν + c xν + e yν + g zν + θν > Z, fathom the current node and return
to Step 1.

Step 4. If there are unsatisfied integrality constraints, pick a variable with fractional
value and create two new nodes corresponding to setting its value at 0 or 1. Replace the
current node by the two new nodes in the list and return to Step 1.

Step 5. Using the dual formulation in (23) – (27) determine Q(xν , yν , zν , s) for every s.
Along the solving, use the dual solutions to compute the vectors Dm+1, Em+1, Fm+1 and
the value δm+1 as given by (28). Compute Q(xν , yν , zν). Let

Zν := a κν + f εν + c xν + e yν + g zν −Q(xν , yν , zν)

If Zν < Z, set Z := Zν and retain the values κν , εν , xν , yν , zν .

Step 6. If θν ≥ −Q(xν , yν , zν), fathom the current node and return to Step 1. Otherwise,
impose the optimality cut Dm+1 x + Em+1 y + Fm+1 z + θ ≥ δm+1, set m := m + 1 and
return to Step 2.

As it can be noticed from the procedure description above, the fathoming rules here
result from the combination of two methods. In particular, they differ from what is
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usually done in branch-and-bound, in the sense that nodes are not necessarily fathomed
when integrality conditions are satisfied. Instead, an optimality cut may be further added
in order to assure the extra optimality condition involving the θ variable and the expected
recourse function. The procedure eventually generates an exact solution to the problem
by exhausting the list of nodes to be investigated.

4 Implementation issues

The method was implemented on a Windows NT-based 933MHz Pentium III PC with
256MB RAM through a C application which makes use of the CPLEX Callable Library
version 7.1 (see ILOG (2000)). Specifically we work with two LP problem objects, one for
the current problem and one for the dual recourse problem. In the current problem object,
the objective function (32) and the constraints (2), (3), (4), (5), (6), (7), (8), (34), (35) and
(36) are maintained during computation, while the (branching) integrality constraints and
the optimality cuts (33) corresponding to a node are added to the problem object upon
entering that node. For the dual recourse problem, the constraints (24), (25), (26), (27)
are maintained, while the coefficients of the objective function (23) are modified every time
the recourse problem is solved for one scenario. The CPLEX Primal Simplex Optimizer
was used for solving the current problem, since it showed enhanced ability to produce
solutions with a larger number of integer values. For the dual second-stage problem we
used the CPLEX Barrier LP solver, which seemed appropriate for faster evaluations of
the recourse function.

The pendant nodes in the list are in fact the leaves of a branch-and-bound tree. If we
concatenate all first stage decision into one vector (κ, ε, x, y, z) of dimension N , then there
are 2N possible integrality constraints (corresponding to fixing each first stage variable
at 0 or 1). So, they can be indexed from 1 to 2N and referred to by their indices. On
the other hand, during the computation a dynamic list of optimality cuts is maintained
as follows. Each optimality cut is indexed upon generation by m + 1, where m is the
total number of optimality cuts generated up to that point. Such a cut is stored as a list
containing (only) its non-zero coefficients of the first stage variables and its value of the
right hand side. The optimality cuts generated in one node are imposed for all descendant
nodes of the search tree, but removed when backtracking. So, when a node is fathomed, all
the optimality cuts generated inside that node are removed both from the current problem
formulation and physically from memory. Upon removal of some optimality cuts from the
physical memory, all remaining optimality cuts keep the same index which was assigned
to them upon generation.

The main algorithm is implemented through a recursive procedure, which can be con-
cisely described as follows:

procedure SolveNode(Ip, Op, On, ic)
begin
if (ic > 0) then I = Ip ∪ {ic};
O = Op ∪On;
BuildCurrent(I, O);
SolveCurrent;
if (a κ+ f ε+ c x+ e y + g z + θ > Z) then Remove(On); {fathom node}
else begin

12



CheckIntegrality;
if (exists var fractional)
then begin

nic1 = IndexIntConstr(var = 1);
SolveNode(I, O, Ø, nic1);
nic0 = IndexIntConstr(var = 0);
SolveNode(I, O, Ø, nic0);
Remove(On); {fathom node}

end;
else begin

Perform Step 5 described above;
Compute Dm+1, Em+1, Fm+1 and δm+1;
if (θ ≥ −Q(x, y, z)) then Remove(On); {fathom node}
else begin
On = On∪ {opt cut m+ 1};
m = m+ 1;
SolveNode(I, Op, On, 0);

end;
end;

end;
end;

where the symbols not yet defined represent the following:

Ip set of integrality constraints inherited from the parent node;
ic index of the integrality constraint to be imposed inside the node;
Op set of optimality cuts inherited from the parent node;
On set of optimality cuts previously generated inside the same node;
I set of integrality constraints for the current problem;
O set of optimality constraints for the current problem.

The algorithm was executed by giving branching priorities to the first stage binary
variables in the following manner. First we branched on the κi variables, which correspond
to the opening decisions for plants. A second priority level was assigned to the εk variables,
corresponding to the opening decisions for testing centers. Finally, a third priority level
was associated to all the transportation links variables xij , yjk, zki. As already suggested
in the procedure described above, the next node to process when backtracking was chosen
as the most recently created node. At each selected node, within each priority group, the
next variable to branch on was chosen as the variable belonging to the group, which had
the largest fractional value in the current problem solution from that node. The upwards
variable branching direction was chosen first in order to attempt a more aggressive strategy
for determining feasible network configurations.

5 Computational results

We used the model described above to illustrate the analysis of a supply-and-return net-
work in a numerical setting. Specifically, this example follows in broad terms the direction
of a case study on (re)manufacturing of electronic equipment as presented in Fleischmann
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(2000). So we assume that, owing to take-back obligations of the original manufacturer,
used equipment should be collected from customers for remanufacturing or proper disposal.
A substantial penalty is imposed for the returns which are not collected. Due to a strict
legislation prescribing re-processing to the largest extent possible, no collected equipment
may be disposed at the collection sites. Instead, all collected equipment has to be shipped
to some center for inspection, disassembly and testing (in this context, the term ’facility’
will denote a disassembly/testing center). In order to allow for remanufacturing, the used
equipment must meet certain quality standards. The equipment failing such quality tests
is disposed of at the local level, while the acceptable equipment is shipped to the original
manufacturing plants, which are assumed to accommodate also the remanufacturing oper-
ation. After recovering the intrinsic left value, the remanufactured equipment is re-sold in
the same markets as the new products. Apparent drawbacks of this setting are the implicit
assumptions that the plant capacity may be split for production and remanufacturing at
various amount levels, while the remanufactured products are considered equal substitutes
for the new products in the market. Clearly, the remedy would be to consider a multicom-
modity network flow model, where different quality streams and different corresponding
capacities are distinguished. Moreover, an intermediate warehouse level may be consid-
ered for the distribution in the forward supply chain instead of supplying markets directly
from the plants. However, we feel that these elements would not change the essence of our
investigations. Therefore we stick here to the above assumptions for the sake of clarity of
our exposition.

However, in contrast with Fleishmann (2000), we consider also some different elements
in our setting. Firstly, we assume that plants may have two possible capacities P 1 and
P 2 and respectively that disassembly centers may have two possible capacities R1 and R2.
More precisely, we incorporate a notion of ’economy of scale’ for the processing capabilities
and assume that P 1 can be doubled to P 2 at about 65% more fixed costs, while R1 can
be doubled to R2 at 50% more fixed costs. Secondly, in our setting the volume dependent
transportation costs are - relatively to the fixed costs of facilities - slightly higher. This
may stimulate somewhat the choice of more decentralized network configurations. Thirdly,
we consider average costs cij , ejk, gki related only to the existence of transportation links.
These costs are assumed proportional to the distance between the corresponding sites.
Finally, our model does consider penalty costs for not collecting (part of) returns from
the markets, but does not consider penalties for not satisfying (part of) demand of the
markets. Thus, we assume that demand at markets is seen only as a profit opportunity
and not as an obligation by the network investor. The parameters settings for this example
are summarized in Table 1.

We consider three problem settings based on a total number of potential markets of
J = 60, J = 80 and respectively J = 100. The market locations are generated in the
square S = [0; 4000]× [0; 4000] as described in the sequel. In each problem setting, three
demand scenarios are considered, where demands grow both in amount and in locational
diversity at a low (L), medium (M) and high (H) level. We accomplish this by increasing
the number of markets as well as their demand limits at successive levels in the following
manner. First, we randomly generate a low number of markets l according to a uniform
distribution in the square S0 = [1000; 3000]× [1000; 3000], where demand of each market
(in thousand pieces) is randomly generated according to a uniform distribution in [15; 25].
These values define the low demand scenario L. Then, we keep the l sites from scenario
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Description Value

Capacity plant P 1 600,000
Capacity plant P 2 1,200,000
Capacity facility R1 150,000
Capacity facility R2 300,000

Fixed costs plant (per annum) P 1 9,000,000
Fixed costs plant (per annum) P 2 15,000,000
Fixed costs facility (per annum) R1 1,200,000
Fixed costs facility (per annum) R2 1,800,000

Average costs of a link plant – market (per km per annum) 800
Average costs of a link market – facility (per km per annum) 500
Average costs of a link facility – plant (per km per annum) 300

Transportation costs (per prod per km)
plant → market 0.040
market → facility 0.025
facility → plant 0.015

Penalty costs for not collected returns (per prod) 60

Recovery fraction 0.6
Cost savings = production – reprocessing (per prod) 150
Disassembly/Testing costs (per prod) 35
Disposal costs (per prod) 10

Table 1: Parameter settings for the numerical results

L and besides them we randomly generate a further number of m− l markets, uniformly
in S1 = [500; 3500] × [500; 3500] \ S0 (up to a medium number of markets m). Now, for
each of the m sites a demand value (in thousand pieces) is randomly generated according
to a uniform distribution in [20; 40]. These figures result in the medium demand scenario
M. Finally, we keep the m sites from scenario M, generate some h−m = J −m more
markets uniformly in S2 = S \ (S0 ∪ S1) (up to a high number of markets h= J) and
randomly generate a demand figure (in thousand pieces) uniformly in [25; 55] for each
of the h markets. The last demand values define now the high demand scenario H. For
the problem setting with J = 60 we consider l= 20, m = 35 and h= 60; when the total
number of potential markets is J = 80 we set l= 30, m = 50 and h= 80; finally, for the
setting with J = 100 we take l= 40, m = 70 and h= 100. In any problem setting, the
three demand scenarios are assumed to have equal weight (1/3).

Besides demand scenarios, we also consider demand dependent returns scenarios in the
following sense. We assume that rj = η dj for all j, that is there is a uniform return rate
η across all the markets. We consider four equally probable values for η, namely 0.2, 0.4,
0.6 and 0.8. Three alternative settings for demand and four for the return rate result in
3 × 4 = 12 overall scenarios to be investigated. Clearly, as in the previous chapter, the
underlying assumption is that scenarios as such may be build based on field knowledge of
some experts. Moreover, the associated probabilities are of subjective nature and tend to
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reflect the relative importance given to each of the identified alternatives.
In all problem settings we consider 15 potential plant locations and 25 potential dis-

assembly center locations. However, since at any such location 2 possible capacities may
be chosen, this leads to a total number of I = 30 potential plant sites and a total number
of K = 50 potential center sites. In all settings, 7 plant locations and 10 center locations
are first randomly generated according to a uniform distribution in S0 and then 8 more
plant locations and 15 more center locations are uniformly generated in S1. The distance
between any two locations is considered to be the euclidean distance (with kilometer as
distance unit).

The settings given in Table 1 together with the assumptions made above define specific
mechanisms which underly the system under consideration. The generation of scenarios
aims to reflect situations where the markets (possibly for newly designed and developed
products) may expand or alternatively, shrink in the long-run planning time, in terms
of both demand levels and locational diversity. On the other hand, returns may vary at
different levels, depending on the level of demand. Given this close dependency as well
as the co-location of manufacturing and remanufacturing operations, the issue addressed
here is that of an appropriate integral network design, that is the simultaneous optimiza-
tion of both the forward and the reverse network channels. Clearly, for any given level
of demand, in general it is profitable to invest in sufficient production capacity in order
to meet all demanded volumes. Yet, another important observation is that for any given
level of returns, the substantial penalty for not collecting (part of) returns combined with
significant savings resulting from re-manufacturing lead to strong incentives to invest in
sufficient testing capacity for all returned volumes. Since the two channels are closely in-
terrelated at the plant level, the integral network configuration for given demand/returns
values results from the interaction of these two tendencies. More specifically, the new
products will be in general substituted by remanufactured products to the largest extent
possible, such that both the new and the remanufactured products together cover as much
as possible from markets demand. It is expectable that these functioning mechanisms of
the system will be accurately reflected in the optimal solutions of the individual scenar-
ios. However the aim of the stochastic approach is to generate a balanced solution, able
to make a proper trade-off between the investments which would be chosen just on an
individual scenario basis. Within the context of integrated forward and reverse logistics
chains as considered here, the nature of this trade-off should be carefully analyzed, since
besides fixed investment costs and transportation costs, the (potential) penalties may be
an important driver as well. Lower investments may be appropriate for low or medium
levels of demand/returns, but are likely to result in significant loss of market opportuni-
ties and/or high penalties for the returns which can not be collected in other scenarios
due to the lack of testing capacity. By contrary, higher investments will in general avoid
these consequences, but will probably generate a substantial loss in low/medium demand
scenarios due to a substantial part of unnecessary (i.e. unused) opened capacity. Conse-
quently, a trade-off solution should adequately balance the investments against the gains
and the negative effects (including substantial potential penalties!) which may occur in
all the considered scenarios. We discuss in more detail the impact of this uncertainty on
the network design decisions in section 5.2, after addressing the computational efficiency
of the proposed approach in the next section.
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5.1 Computational efficiency

In order to assess the computational efficiency of the method, in each of the three problem
settings (that is, J=60, J=80 and respectively J=100) we applied the described algorithm
on five problem instances. The instances for different values of J were generated indepen-
dently (i.e. there is no correspondence between instances with the same label from two
different problem settings). Computational results are presented in Table 2, Table 3 and
Table 4. These tables report the CPU running time (in seconds), the number of nodes and
cuts generated during the searching process as well as the number of plants and facilities
of each type opened in every instance. The CPU times include both the branch and cut
part of the procedure and the building of the problem objects for the current problem
and for the dual second stage problem. These results indicate a remarkable performance
consistency of the method for the considered problem.

In the problem setting with J = 60 markets the model contains 6,380 binary first
stage variables (80 opening decisions and 6,300 links) and 6,300 continuous second stage
variables for each scenario, i.e. 75,600 continuous variables for all scenarios. The running
times varied roughly between 3 and 7 minutes, with an average running time of about 5
minutes.

When J = 80 markets are considered, the model makes use of 7,980 binary first
stage variables (80 opening decisions and 7,900 links) and 7,900 continuous second stage
variables for each scenario (93,600 continuous variables in total). The running times in
this setting varied between about 4 1/2 minutes and about 10 1/2 minutes. The average
running time on the five instances was slightly less than 8 minutes.

Finally, in the setting with J = 100 markets the model contains 9,580 binary first stage
variables (80 opening decisions and 9,500 links) and 9,500 continuous second stage variables
for one scenario (resulting in a total of 114,000 continuous variables for all scenarios). The
running times among the five instances varied roughly between 7 1/2 min and 20 1/2
minutes, with an average running time of about 14 minutes.

There is a larger increase in the average running times when going from 80 to 100
(potential) markets, than from 60 to 80 markets. However, all the computation times are
rather low, even though a relatively large number of nodes are investigated and a significant
number of cuts are generated. The context of the problem addressed here may not be
directly comparable to that of the specific case study we have previously reported (see
Listes and Dekker (2001)). Nevertheless, the two problems include comparable numbers
of location decision variables, while obviously, the running times resulted here are with one
order of magnitude lower. The difference in speed of the used computers contributes only
to a very small extent to this remarkable reduction in computation times. Clearly, the
essential difference relates to different modelling and solution methodology. In particular,
the first stage problem as formulated here has a special structure, which can be exploited
during solving. Moreover, owing to the decomposition strategy, it is no longer necessary
to work with an extensive form of the model and a large number of second stage variables
(i.e. one set for every scenario). Instead, the number of continuous variables which suffice
for one scenario can be iteratively used for all the scenarios in order to compute the
expected recourse function and where appropriate, the coefficients of the optimality cuts.
Once determined, these elements are then transferred and used within the (first stage)
current problem. It is this modularity which contributes essentially to the efficiency of the
approach.
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Plants Facilities
Instance Time(sec) Nodes Cuts P 1 P 2 R1 R2

1 231 523 69 2 0 4 4

2 426 1021 185 0 2 3 5

3 284 240 91 1 1 3 4

4 178 414 59 2 0 3 4

5 375 732 143 1 1 3 5

Average 298.8 586 109.4 1.2 1 3.2 4.4

Table 2: Computational results on 5 problem instances for J=60

Plants Facilities
Instance Time(sec) Nodes Cuts P 1 P 2 R1 R2

1 573 1242 183 2 1 5 5

2 278 406 67 0 2 5 4

3 486 351 145 1 2 4 6

4 621 1013 212 2 1 5 6

5 369 435 98 1 2 4 5

Average 465.4 689.4 141 1.2 1.6 4.6 5.2

Table 3: Computational results on 5 problem instances for J=80

Plants Facilities
Instance Time(sec) Nodes Cuts P 1 P 2 R1 R2

1 876 1073 193 1 3 6 7

2 619 959 129 2 2 6 6

3 1013 1347 156 1 3 5 8

4 442 731 74 2 2 4 7

5 1228 1785 248 2 3 6 9

Average 835.6 1179 160 1.6 2.6 5.4 7.4

Table 4: Computational results on 5 problem instances for J=100
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Such specialized modelling strategies and solution methods may substantially improve
the computational tractability of stochastic models for logistics network design. In par-
ticular, they may significantly reduce the proficiency gap between stochastic methods and
computationally less demanding, yet theoretically less powerful methods such as sensitiv-
ity or scenario analysis. This is important since scenario analysis generally requires a much
finer gradation of the scenarios to be considered, followed by a cumbersome performance
evaluation of each individual scenario solution over all scenarios. If the running time of a
stochastic method can be reduced far below the prohibitive level (as it is apparently the
case here), multiple runs of such models may be performed in order to investigate in more
comprehensive steps the robustness relative to the uncertainty in parameter values.

5.2 Impact of uncertainty

As mentioned previously, we dedicate this section to a more detailed discussion of the
impact of uncertainty on network design decisions. In order to make things concrete,
we present in more detail the results obtained in instance 5 of the problem setting with
J = 80 potential markets. The optimal solutions for each of the twelve scenarios and the
stochastic solution can be found in Table 5. We note that in this table the plant sites and
test center sites are numbered separately, either numbering being done in increasing order
of distance to the central point (2000, 2000). The network configuration in the stochastic
solution is further illustrated in Figure 2 (for the sake of clarity, the links to and from the
markets are omitted in the picture).

The stochastic solution differs from any of the individual scenario solutions on both
the opened plants and the opened testing centers, but seems closer to the configuration
from M0.8 scenario. However, at first sight it can be noticed that the plant capacity
opened in the stochastic solution is higher that in the M scenarios, while the opened test
center capacity shifts even more to the upper side of the investment levels involved in
scenarios. In order to explain this effect we take a closer look to the actual profit figures.
To this end, Table 6 gives the optimal profit values for each individual scenario, the profit
generated by the stochastic solution in each scenario as well as the difference between the
optimal profit and the profit generated by the stochastic solution configuration (regret).
One remark is in order. When evaluating the stochastic solution over the scenarios, only
the location of the plants and the test centers is fixed, the transportation links are allowed
to be re-chosen according to the situation in each scenario. This will hold as well when
evaluating an arbitrary individual scenario solution configuration over all the scenarios.

Table 6 shows that the stochastic solution configuration achieves an expected profit
equal to 69.92% of the weighted average of the individual optima. Moreover, it gives regret
figures which are spread over a rather short range. Higher regret values are given in the L
scenarios due to too much investment costs and in scenario H0.8 due to the payment of a
penalty for not collecting a small fraction of returns. The stochastic solution configuration
achieves the lowest regret in scenario M0.8.
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Legend

market

plant  P1

plant  P2

test center R1

test center R2

plant site

test center site

Figure 2: Network configuration in the stochastic solution (J=80, instance 5)

In Table 7 a worst case analysis for this instance is presented. The worst case con-
figuration for each scenario is considered to be the configuration taken from the twelve
scenarios which gives the lowest profit (or alternatively, the highest loss) in that scenario.
It turns out that the solution from scenario H0.8 gives the worst performance on the first
seven scenarios due to too high investment costs, while the solution from scenario L0.2
performs worst on the last five scenarios due to too less manufacturing/testing capacity
which results in important loss of market opportunities and in huge penalties for not being
able to test large volumes of returns. We note that in the worst case an actual loss is being
generated in the first four and the last two scenarios, such that the expected worst case
outcome is in the end a small negative value (loss). This means that for the considered
system and its dynamics the expected worst regret basically equals the expected profit
which would be only ideally achieved in case of perfect information (that is the weighted
average of the individual optima). The loss generated by too high investments has about
two times lower extent than the loss generated when paying the largest penalties. On the
other hand, the loss due to high penalties in scenarios H0.8 and H0.6 is reduced in larger
steps in scenarios H0.4 and H0.2 (which involve less returns), while the loss generated by
too high investments are to a lower rate attenuated when processing increasing volumes of
returns in scenarios L0.2 - L0.8. These remarks show that both the investments costs and
the potential penalties are strong drivers of system performance. However, the impact of
penalties shows a potentially more striking effect on the final outcome. For example, in the
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Optimal Stochastic Stoch Regret =
Scenario profit profit Opt−Stoch

L0.2 29,235,100 1,168,400 28,066,700
L0.4 33,647,300 6,433,100 27,214,200
L0.6 37,861,700 11,306,600 26,555,100
L0.8 41,849,200 15,893,500 25,955,700
M0.2 57,863,400 35,652,100 22,211,300
M0.4 65,241,700 45,046,900 20,194,800
M0.6 72,126,400 54,488,200 17,638,200
M0.8 78,419,900 65,293,800 13,126,100
H0.2 103,835,800 84,489,900 19,345,900
H0.4 115,432,600 96,779,800 18,652,800
H0.6 126,057,300 108,832,700 17,224,600
H0.8 137,041,100 102,992,700 34,048,400

Expected 74,884,291 52,364,808 22,519,483

Table 6: Optimal values for scenarios and stochastic solution, J=80, instance 5

Optimal Worst Case Worst Regret =
Scenario profit profit (loss) Optimal−Worst

L0.2 29,235,100 − 23,326,500 52,561,600
L0.4 33,647,300 − 18,498,400 52,145,700
L0.6 37,861,700 − 13,594,800 51,456,500
L0.8 41,849,200 − 9,326,300 51,175,500
M0.2 57,863,400 11,567,500 46,295,900
M0.4 65,241,700 21,385,200 43,856,500
M0.6 72,126,400 32,599,100 39,527,300
M0.8 78,419,900 19,219,800 59,200,100
H0.2 103,835,800 44,842,400 58,993,400
H0.4 115,432,600 14,877,800 100,554,800
H0.6 126,057,300 − 23,246,800 149,304,100
H0.8 137,041,100 − 59,483,700 196,524,800

Expected 74,884,291 − 248,725 75,133,016

Table 7: Worst case analysis, J=80, instance 5
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worst case performance, the penalties (associated as well with a loss of market shares) in
the last three scenarios lead to up to four times higher absolute regret (relative to the in-
dividual optima) than the regret due to high investments in the first seven scenarios. This
explains why the the stochastic solution shifts more to the upper side of the investment
range, especially with regard to the test center capability.

We extend further our analysis and present in Table 8 a full listing of the regret
associated with the individual solutions of three scenarios, L0.8, M0.8 and H0.8. It can be
noticed that the three scenarios feature different patterns of regret when evaluated over all
the 12 scenarios. While L0.8 scenario solution incurs huge regret in the H scenarios, the
H0.8 scenario solution incurs large regret especially on the L scenarios. The M0.8 scenario
solution performs well on the first 8 scenarios, but still incurs substantial regret in the
last 4 scenarios, especially in the very last one due to a higher penalty. Nevertheless, the
solution in scenario M0.8 achieves the lowest expected regret among the individual scenario
solutions (and implicitly the highest expected profit among scenarios). The trade-off made
by the stochastic solution becomes now more clear, in that it incurs as less differences
between the various regret values as possible. Overall, the network configuration from the
stochastic solution achieves 2.67% higher expected profit and 6.05% less expected regret
than the one from scenario M0.8 solution (that is, the best one in expectation among
scenarios). This analysis points out that the variations in demand and returns have a
critical impact on the profitability of system operation. Moreover, the actual uncertainty
in such factors at the moment of strategic planning has a considerable impact on the
network design decisions as well. While the impact of uncertainty seems less dependent on
the specific design in the ”middle” scenarios, the design based on extreme scenarios shows
highly increased risk of instability. From here, the need arises for a coherent method for
balancing the investment decisions, as actually achieved through the stochastic approach.

The optimal network configurations for L0.8, M0.8 and L0.8 scenarios are illustrated
in Figure 3, Figure 4 and respectively Figure 5. A first remark is that the consideration
of multiple processing capacities significantly enhances the ability of adjustment of net-
work configuration to the specific requirements in each situation. Besides contributing
to tailoring the scenario solutions as close as possible to the necessities in each case, the
multiple capacities assumption also generates more flexibility when it comes to the design
of a network which should be balanced between the individual scenarios. When compared
with the configuration in the stochastic solution, the last three pictures reflect once again
through a visual representation the trade-off explained by the numerical results analysis.
It is the reverse channel dimension with its associated possibility for large penalty appli-
cation which drives investments in higher testing capability in the stochastic solution than
in an imaginary ”middle” scenario. Moreover, given the usage of this testing capacity
and the potentially larger volumes it could direct for re-manufacturing, a slightly ”higher
than average” manufacturing/re-manufacturing capacity as well is chosen in the stochastic
solution. In this choice, the economies of scale involved by high capacity plants and high
capacity testing centers are also exploited. As a result of uncertainty, the stochastic solu-
tion points out the in general the logistics system tends to be somewhat redundant. At the
same time, however, the stochastic approach meets the implicit requirement to determine
the most effective form of redundancy required, as well as an operating strategy which
will be able to exploit it. The findings in this section support the main conclusion that
volume is a strong driver in the design of logistics systems with remanufacturing options.
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Figure 3: Optimal configuration in scenario L0.8 (J=80, instance 5)
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Figure 4: Optimal configuration in scenario M0.8 (J=80, instance 5)
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Figure 5: Optimal configuration in scenario H0.8 (J=80, instance 5)
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Regret in case of design
Scenario Scenario L0.8 Scenario M0.8 Scenario H0.8

L0.2 2,329,500 20,268,900 52,561,600
L0.4 1,405,200 19,587,200 52,145,700
L0.6 583,800 18,829,300 51,456,500
L0.8 0 17,865,600 51,175,500
M0.2 20,589,300 13,718,300 46,295,900
M0.4 22,324,700 9,334,700 43,856,500
M0.6 23,812,500 5,748,500 39,527,300
M0.8 47,209,400 0 36,351,400
H0.2 57,148,900 39,193,400 18,112,800
H0.4 83,451,200 32,613,800 11,324,100
H0.6 121,560,700 36,322,500 5,502,900
H0.8 159,497,100 73,101,200 0

Expected 44,992,691 23,881,950 34,025,850

Table 8: Scenario regret analysis, J=80, instance 5

We resume this section with the remark that in this example the model gives insight
into the appropriate network configuration based on a fairly rough division of informa-
tion. Such situation is a common feature of strategic planning. The model takes such
information into account based on a two-stage decision making assumption. The possible
refinement of the available information, including the timing of its revealing, may require
the addition of possible corrective decisions (including locational ones) to the overall anal-
ysis. However, the proposed two-stage model certainly generates valuable first step insight
into the design problem by explicitly accounting for a number of alternatives. At the same
time, it may serve as a potential starting point for even further advanced extensions, some
of which are briefly mentioned in the next section.

6 Extensions

The presented model is a basic stochastic model for capacitated integral network design.
This model may be extended in various ways in order to more accurately describe specific
practical situations or to appropriately capture more complex decisional issues. As already
mentioned, a possible extension may lead for instance to a multi-commodity model, where
different quality streams may be distinguished concerning both the kind of products to be
sold (new/re-manufactured) as well as various categories of returns. However, as resulting
also from the numerical example above, probably one of the most desirable extensions is
the explicit modelling of long-term, dynamic effects such as the step by step expanding
(or shrinking) of the network based on the gradual revealing of extra information. Of
specific need for building such multi-period or multi-stage models is the clarification of
certain timing issues. For example, the actual amount of time for setting up the different
facilities to be located should be more precisely specified in order to determine if corrective
locational decisions are actually feasible in specific situations. More generally, the process
of ”accumulation” of incoming information should be more explicitly modelled in order to
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determine when the solution of each stage should be executed to determine the appropriate
resulting infrastructure. Extensions as such certainly deserve further attention. A general
drawback, however, is expected to be the computational tractability of such formulations.
Presently there is a lack of a general methodology (either exact or approximative) capable
to address multi-stage stochastic integer models. In particular, network design models
falling into this category in are likely to incur extreme algorithmic challenges. Main means
for tackling such potential extensions are expected to remain a careful and structured
modelling together with the exploitation of the resulting model structure in the solution
methodology.

7 Summary and conclusions

We have considered in this paper a generic stochastic model for design of networks com-
prising both supply and return channels organized in a closed loop system. Such situations
are typical for manufacturing/re-manufacturing type of systems in reverse logistics. The
model accounts for a number of alternative scenarios which may be constructed based on
critical levels of design parameters such as demand or returns. We propose a decomposi-
tion approach for this model based on the branch and cut procedure known as the integer
L-shaped method. Computational results show a consistent performance efficiency of the
method for the addressed location problem. Such solution methodology may overcome
generally recognized features of stochastic network design models, such as increased prob-
lem sizes and computational difficulty. Therefore, the approach may be further employed
in multiple runs in order to make a comprehensive investigation of robustness relative to
the uncertainty in parameter values.

The stochastic solutions generated in a numerical setting do not coincide in general
with any of the optimal solutions for the individual scenarios considered. It generates a
significant improvement in terms of average performance over most of the scenario solu-
tions. Moreover, the stochastic approach has the ability to generate qualitatively different
solutions, which give increased insight into the functioning of the system. It generally ex-
ploits features such as the flexibility offered by multiple possible capacities or by economies
of scale. In the particular setting considered, the attention is drawn over the finding that if
one can only roughly anticipate the levels of determinant parameters such as demand and
returns, the integral network to be design tends to be somewhat redundant. A stochas-
tic solution as generated here seems particularly suitable since it is capable to determine
the most effective form of redundancy required and to properly balance its usage among
various alternative situations.

The findings of the overall analysis lead to the main conclusion that volume is a
powerful driver in integral networks with remanufacturing options. Furthermore, the
processes which can adjust as accurate as possible to the overall requirements generally
enjoy a natural advantage, provided that their investment costs are not prohibitive.

We believe that models as the one considered in this paper may considerably enhance
the body of quantitative approaches able to represent and highlight important issues aris-
ing in the design of reverse logistics networks. Extensions of this model may be considered
in order to contribute to a broadening of the modelling approaches presently available.
Eventually such models may step by step find utilization in dedicated decision support
systems able to shed light on the efficient design of logistics systems of the future.
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