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Chapter 1

Introduction

The skyline of every major port is nowadays dominated by stacks of colorful steel
boxes: containers. The invention of the container is attributed to Malcolm McLean,
who started the movement of trailers on ships (with the Sea/Land line) and rail
from New York to the Gulf Coast in 1956 (see Chadwin et al. (1990)). Later on,
the trailer changed to containers. The container has increased port productivity
enormously and changed the appearance of harbors from large areas with breakbulk
cargo to long stretches of bulkheaded waterfront with many large cranes serving big
container ships. The container has also allowed wages to be increased considerably,
and with the container ICT has made its inroad into harbors.

The introduction of the container not only led to a revolution in transportation,
the whole world trade was affected. Due to its homogeneity, competition in con-
tainer transport is only possible on price. This resulted in low margins, which were
answered by increasing the scale of the operations. As a result, the container has
made transport cheap. Due to these low transportation costs, every country in the
world is now able to take part in the global production of goods. Especially the
Asian economies have benefited from this. It is no coincidence that the rise of the
“Asian Tigers” has taken equal steps with the development of containerization. This
is illustrated in Figure 1.1, which shows the number of containers handled in the
port of Singapore and the development of the Gross National Product (GNP). From
the figure we can see that the development of the GNP keeps equal pace with the
volumes of containers handled.
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Figure 1.1: Development of GNP and container volumes handled, Singapore, 1970 -
2000 (source: Containerisation International Online; Statistics Singapore)

1.1 Containers

Containers are steel boxes of a standard size. The standard width of a container is
8 ft. and its height is 8.6 ft. There are three different lengths, 20, 40 and 45 ft.
Volumes of containers are usually expressed in TEU, which stands for Twenty foot
Equivalent Unit, i.e., a container of 20 ft. Today, there are about 6 million containers,
enough to put a double wall around the globe.

Almost every product can be transported in containers, from traditional break-
bulk like cotton, to high value electronics. There exist also special containers for
refrigerated goods, bulk, chemicals, etcetera.

1.2 Facts and figures

Ever since its introduction in the 1960s, the number of containers handled worldwide
has grown almost every year with double digits. Figure 1.2 shows the increase in the
number of containers handled in the 10 major container ports over the last 30 years.
It was estimated that in total, around 168 million TEU were handled worldwide in
the year 2000 (see Containerisation International Online).
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Figure 1.2: Volumes handled in the 10 major container ports (source: Containerisa-
tion International Online)

Together with the enormous increase in the number of containers handled, also
the vessel size has increased enormously. The first container vessels were converted
cargo carriers from World-War II. These vessels were only able to carry a few tens
of containers. Moreover, they usually had crane facilities on board, since terminal
facilities were not available everywhere. The next generation of container vessels had
a capacity ranging from a few hundred TEU to a few thousand TEU. These so-called
Panamax vessels are still able to pass the Panama channel. A turning point was the
introduction of the so-called Post Panamax vessels in the 1980s. These vessels are so
big that they are not able to pass the Panama channel. Such a Post Panamax vessel
is able to carry more than 4,000 TEU.

The next breakthrough in ship size was established in 1997 with the “Sovereign
Maersk”, the first of a series of vessels able to carry more 6,000 TEU. And in the near
future, vessels up to 10,000 TEU are expected (see e.g. Vickerman (1998)). In fact,
it is said that with current technology, a vessel of 15,000 TEU should be possible.
However, such vessels are not able to pass the Suez channel, which will lead to
significant longer travel times between Asia and Europe. It is therefore questionable
whether such a vessel will ever be built, although there was a similar scepticism with
the introduction of the Post Panamax vessels.
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The operational costs of the current generation of container vessels are high (over
$ 1,000 per hour). As larger ships are expected, these costs will increase. This will
put increasing pressure on terminals to speed up their handling, since the economies
of scale of larger ships can only be realized if the handling speed at the harbors
increases accordingly (see Cullinane and Khanna (2000)).

1.3 Trends in container handling

In the last 50 years, the container shipping business has made a stormy development.
Growth rates in double figures appeared almost every year. For the coming years,
the expected growth rates are somewhat smaller, but still around 5 percent per year.

The trend of increasing ship size is likely to continue, despite a significant over-
capacity in the market, which is as old as the container itself. Together with larger
ships, there is also increasing cooperation between the various shipping lines. This re-
sulted in alliances. The next step will be the merger of shipping lines. This process is
already going on with the mergers of P&O and Nedlloyd and the takeover of Sealand
by Maersk, resulting in the two largest container shipping lines today. Experts expect
that this concentration will finally result in around five major players.

Together with the introduction of larger vessels, also the number of ports at which
these vessels call is likely to decrease. As vessels increase in size, their operating costs
are rising. In order to achieve the economies of scale of such vessels, their in-port
time should decrease. This can be achieved by calling fewer ports, or to increase the
productivity of loading and unloading operations (see also Cullinane and Khanna
(2000)). Hence, there will be a trend to so-called hub-and-spoke networks, in which
there is a point to point connection between two major ports on different continents
(for instance Rotterdam - Hong Kong). The containers destined for other ports are
then transported using so-called short sea vessels. Consequently, such a mega hub
becomes more and more a transhipment terminal of flows destined for other terminals,
covering a large hinterland (continent) in this way. A good example of this is the
port of Singapore, at which more than 80 percent of the incoming containers leaves
the terminal again via water, destined for another port in Asia.

As vessels and their call size increase, container terminals have to grow accord-
ingly, providing sufficient resources for fast loading and unloading of the vessels.
Moreover, as already mentioned, the handling of such large vessels should be faster,
in order to preserve the economies of scale of such large vessels. Obviously, one can
increase the number of handling equipment, although there is a limit to the number
of cranes that can be deployed to handle a ship. Hence, there should be technical
improvements such that the handling speed of cranes is increased. Since there is
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also a physical limit to this, a more efficient use of the equipment will also lead to
increased productivity.

Next to the ongoing development of faster handling equipment, the new trend is
automation of the handling equipment. A pioneering role in this is played by the
Rotterdam based operator Europe Combined Terminals (ECT), which established
the first automated container terminal in 1993, dedicated to handle vessels of the
Sealand shipping company. At the moment, a second automated terminal has been
established by ECT and within the coming years, a few other of these terminals will
be built. Also the port of Hamburg is currently building an automated container
terminal, almost similar to the ECT terminals. This terminal is expected to be
operational by the year 2003. Moreover, also the ports of Singapore and Antwerp
are making plans for automation of the handling equipment.

1.4 Aim and outline of the thesis

The aim of this thesis is to provide models and algorithms for efficient scheduling of
terminal handling equipment. In particular, we will consider automated handling sys-
tems. Efficient scheduling of handling equipment is crucial, especially in automated
systems. First of all, since there is no driver, there has to be a formal scheduling
method, “instructing” the automated equipment exactly which tasks to perform and
in which order. Moreover, since drivers experience is missing, efficient scheduling
is crucial to achieve satisfactory overall performance of the terminal. Furthermore,
better scheduling results in smaller investments in expensive equipment.

The scheduling of terminal equipment is typically an operational problem. It
is necessary for the operation of the terminal to have a detailed schedule for each
piece of equipment that is operating on the terminal. Although the quality of the
scheduling certainly has an influence on more tactical or even strategic decisions
(e.g., the investment in handling equipment), we will not deal with these issues in
this thesis explicitly.

As far as we know, there is no literature available which deals with integrated
scheduling of various types of handling equipment at a container terminal. Obviously,
scheduling the equipment in an integrated way can lead to much better performance
than in case the scheduling is not coordinated. Besides, uncoordinated scheduling of
handling equipment may even lead to overall infeasibility, i.e., deadlock situations.
Our goal is therefore to provide algorithms that produce feasible schedules under any
circumstance (except in case of breakdowns of handling equipment).

The thesis is organized as follows. In the next chapter, we will give an extensive
overview of the problems in container handling that were already dealt with by the
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Operations Research community. In this literature overview, we will consider all the
processes that take place at the terminal: from the berthing of vessels, stacking of
containers, scheduling of equipment, to the interface of the terminal with the landside.

In Chapter 3, we will give a detailed description of the scheduling problem of
handling equipment at automated container terminals. We will describe the charac-
teristics of the equipment and discuss the scheduling problem that appears during the
loading operation of a single vessel. For the specific problem setting which reflects
the current generation of automated container terminals, we develop an exact Branch
& Bound algorithm for solving the integrated scheduling problem. This is done in
Chapter 4, in which we also discuss a Beam Search heuristic that is based on the
Branch & Bound algorithm. Computational experiments are done with both algo-
rithms, in which we assume a static environment, i.e., we assume that all information
about the containers to be handled is known in advance. In Chapter 5, we consider
a dynamic case, i.e., we assume that information about handling times of containers
is uncertain and moreover, new containers may appear within the planning horizon.
For this dynamic case, we test the performance of the Beam Search algorithm of
Chapter 4. Moreover, we develop a number of dispatching rules. The performance
of these dispatching rules is compared with the performance of the Beam Search
algorithm.

A model for more general layouts of container terminals is presented in Chap-
ter 6. For this model, we develop a Mixed Integer Programming (MIP) formulation.
Moreover, for this MIP formulation, we derive several classes of valid inequalities.
We test the effectiveness of these valid inequalities, i.e., the reduction of the number
of nodes in the search tree. Finally, in Chapter 7, we will summarize the thesis, make
concluding remarks and give some directions for further research.



Chapter 2

An introduction to container

logistics

Although container logistics has been a niche area in science, its societal importance
has given rise to several research projects in Europe, the USA and Asia, and as a
result, it is gaining more and more attention in the scientific area. In this chapter,
we will give an overview of the use of operations research models and methods in the
design and operation of container terminals. We will describe the activities that take
place at a container terminal and give an overview of the relevant decision problems at
a strategic, tactical and operational level. For each of these problems the appropriate
operations research contributions are discussed.

We base the overview on three sources, viz. publicly available papers in scientific
journals, papers in professional publications, Master and PhD theses made avail-
able and our own experiences with projects on container handling within the port of
Rotterdam. We refer to Chadwin et al. (1990) for a basic introduction to container
transportation. We do not tackle every aspect of container logistics, like the posi-
tioning of empty containers over the continents. Nor do we discuss terminal issues
for which no quantitative models have been published, like multi- versus single user
terminals and location selection. Very few overviews are available to date. A first
attempt was made by Vis and De Koster (1999).

The structure of this chapter is based on following the flow of sea containers
through a terminal. After a general introduction in Section 2.1, we start by discussing
how containers are stowed in the vessel (stowage planning) in Section 2.2. Next, in
Section 2.3, we discuss the berth allocation problem (the assignment of container
vessels to berths) and the allocation of quay cranes for unloading and loading of

7
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the vessels. We continue in Section 2.4 with a discussion of the literature related to
the scheduling of handling equipment during the (un)loading operation of a vessel.
After that, in Section 2.5, we discuss the stacking, that is, the temporary storage
of containers at the terminal. Finally, we discuss the landside interface and some
overall terminal studies in Section 2.6, followed by some conclusions in Section 2.7.

2.1 Container handling at terminals - description

and problem overview

In this section, we will roughly discuss the activities that take place at a container
terminal. Moreover, we will discuss shortly the kind of decision problems that appear
at each level of the decision hierarchy (strategic, tactical, operational).

2.1.1 Description of activities

In this subsection, we give a short overview of activities at a container terminal. In
this we follow the sequence of events from the arrival of a ship until the departure of
a container to an inland destination. We will briefly introduce the material handling
equipment. A container terminal is based on a maritime interface. Hence, it has
quays with cranes to load and unload ships, a stack to store containers and an
interface with inland transportation either by truck, rail or barge. The quay cranes
are very large in order to handle the containers from sea-going vessels. The size of
the latest generation of vessels is enormous: typically more than 300 m long and 42
m wide, such that 17 boxes can be stored across on deck (P&O Nedlloyd N series).
Often, there are smaller cranes to serve the feeder ships or the inland barges. Most
quay cranes consist of an open structure with a beam extending over the ship. They
have a trolley and a spreader to attach to the containers from the top, which are
then moved by cables.

Once from the ship, the containers are put on a vehicle, e.g. a trailer or an
automated guided vehicle (AGV), which moves the container to the marine stack.
This stack is the main decoupling point between the import and export flows, either
from sea to sea or from sea to land and vice-versa. The stack may consist of containers
on chassis (quite often in the USA), or, of containers stacked on top of each other in
a certain pattern (more common in Europe and Asia, because of space restrictions).
Normally only containers of the same type are put on each other. The stacking
itself occurs by stacking cranes or straddle carriers. Stacking cranes can be rail-
mounted (which is stable, fast, but unflexible), rubber-tired (more flexible) or be put
on a concrete or steel structure (overhead bridge cranes). Besides manually operated
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stacking cranes, there are also (semi-)automated stacking cranes. An alternative
system for the transportation of containers to the stack is the use of straddle carriers.
This equipment combines the functionalities of a stacking crane and a transport
vehicle. A straddle carrier is able to drive over a container, lift it up (3 or 4 containers
high) and move it around. Figure 2.1 shows some terminal equipment.

Figure 2.1: Terminal equipment: quay crane, stacking crane, AGV, straddle carrier

The stack on the ground is usually organized into a block pattern that is served
by one or more cranes. One main problem with stacking containers on top of each
other is that when a bottom container is needed, the containers above it need to be
put at another position in the stack (called reshuffling). A random-access storage
system, like an Automated Storage/Retrieval System in a distribution warehouse
would circumvent these problems. Yet to date none operate for maritime containers.
Several (unpublished) studies were carried out on these systems but the problem is
that containers are much heavier (up to 30 metric tonnes) and larger compared to a
pallet (one ton), which makes the construction of such a storage system prohibitively
expensive.

A container terminal can have several interfaces with inland transportation. First,
there are transfer points for trucks, which are then loaded from the stack using
straddle carriers, reach stackers or other cranes. Next, there can be a rail terminal
or service center, where containers are loaded onto or from trains. Finally, there can
be a barge service center where barges are loaded using specific equipment.

In Figure 2.2, a schematic view of a typical terminal is given, with all its main
components like the quays, the stack and the landside interface.

2.1.2 Classification of decisions

Decisions on container handling equipment and its scheduling can be categorized
according to the time horizon involved. Usually, one distinguishes between strategic,
tactical and operational decisions. Specific at the strategic level is the design of the
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Figure 2.2: Schematic view of a container terminal

terminal. There, one makes decisions on the choice of the handling equipment, on
the way (or concept) in which operations are carried out as well as on the layout of
the terminal. At the tactical level (months/weeks), one decides on capacity levels of
equipment and manning, on layout structures and on timetables of ships and trains
(in terms of frequency and day of week). Finally, at the operational level, one decides
on the allocation of capacity to the work to be done. One may even add a real-time
level, where quite detailed control decisions have to be made regarding automated
equipment, like which route to take for an AGV, which speed to use and when to
make turns. We will only sideways deal with these issues in this chapter.

2.2 Container stowage

Container ship stowage planning deals with the arrangement of containers inside the
ship. In general, a container ship calls at a number of ports on its route and in
each port, containers are unloaded and loaded. The containers that are loaded are
destined for subsequent ports along the route of the vessel. The stowage problem
handles the assignment of containers to positions in the ship. This has to be done is
such a way the first of all, the overall stability of the ship is maintained and secondly,
the number of unnecessary movements is minimized. These unfavorable movements
appear if at a certain port, containers have to be unloaded and reloaded again, since
they are stored on top of containers destined for this port.

Containers differ in weight and size (20, 40 and 45 ft.). The placement of the
containers in the ship should be such that the stability, torsion and strength of the
vessel is maintained. Obviously, heavy containers are usually stored at the bottom
of the vessel. The light containers are then stacked upon them. Moreover, containers
of different size cannot be stacked on top of each other. Next to the weight and
size considerations, a number of other restrictions has to be taken into account. For
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instance, reefer containers require electrical power, which is only available at specific
positions in the ship. Certain containers carrying dangerous materials (with a cer-
tain IMO classification) have specific stowage requirements, which include separate
stowage from other containers. Next to these technical restrictions, also the desti-
nation of containers has to be taken into account when the stowage plan is made.
Obviously, if a vessel calls port A first and then port B, it is not desirable to stack
containers destined for port B on top of containers for port A. This will lead to
so–called shifting moves.

Avriel et al. (1998, 2000) focus on the minimization of the number of shifting
moves. The technical constraints on the stability of the vessel are left out in the
model. In Avriel et al. (1998) a 0-1 programming formulation is given where the
objective is to minimize the number of shifting moves. However, the problem is NP-
hard (see also Avriel et al. (2000)) and solving the model to optimality can not be
done in a reasonable amount of time for real-life problems. As a result, a heuristic
procedure is proposed. In a companion paper, Avriel et al. (2000) elaborate on the
relation between stowage planning and the coloring of circle graphs.

Wilson and Roach (1999) and Wilson et al. (2001) present a very realistic model,
taking into account all technical restrictions in order to arrive at a commercially us-
able decision support system. Their approach is based on decomposing the planning
process into two sub-processes. In the first process, called the strategic process, they
create a rough stowage plan, based on grouping the containers with the same char-
acteristics (size, port, etcetera) and assigning them to blocks of storage space in the
ship. These blocks represent a number of storage spaces below or above deck. The
stability for this rough stowage plan can be calculated to an acceptable degree. In
the second phase, called the tactical planning process, individual containers are then
assigned to specific slots, resulting in a detailed stowage plan. In the strategic phase,
Branch & Bound is used to assign the containers to the blocks in the ship. In the
tactical planning process, packing heuristics together with Tabu Search are used to
make the detailed assignment of containers to slots. This two level approach seems
to be used in practice, where the carriers make the first rough plan and the terminals
the more specific plan. Commercial packages exist for this problem, but according
to Van der Ham (2001) they seem to be based on greedy heuristics.

2.3 Berth and crane allocation

There are several categories of ships, with large ocean-going vessels as the most
important ones and short-sea feeders and barges as the less important ones. A
logical way of assigning arriving ships to the berths available at the terminal seems
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to be in First Come First Served order within the respective category. However, this
may not be a good strategy, especially when the handling time of a vessel depends
on the berth it is assigned to. In container handling, this certainly is the case, since
a common used stacking policy is to store the containers to be loaded on the same
vessel in a more or less dedicated area of the stack. Hence, it is desirable that vessels
berth relatively close to this area. In allocating a ship to a berth, one has to take
the available berths into account as well as the available cranes to unload and load
the ship. Scientific approaches to this problem can therefore be subdivided into
pure berth allocation models and crane allocation models. Below we will discuss the
contributions in more detail.

Imai et al. (1997, 2001) and Nishimura et al. (2001) consider the Berth Allocation
Problem (BAP) in different versions. The BAP is the problem of assigning ships to
berths, such that the sum of the waiting and handling times of the ships is mini-
mized. Each berth can handle only one ship at a time and the handling time of a
ship is berth dependent. The authors consider several versions of the BAP. In the
static BAP, it is assumed that all ships have already arrived in the port at the be-
ginning of the planning horizon. In this case, there is no idle time between the ships
that are handled at a certain berth. The problem can then be formulated as a two
dimensional assignment problem, which can be solved in polynomial time. In Imai
et al. (1997), the static BAP under multiple objectives is investigated. Not only the
sum of the waiting and handling times of the ships are minimized, but also the ships
dissatisfaction that arises from the berthing order. Although it is assumed that all
ships are present at the beginning of the planning period, dissatisfaction may arise
since the optimal berthing order with respect to the waiting and handling times, may
not correspond with the order in which the ships arrived. The multiple objectives
are handled by using the weighting method, which reduces the multiple objectives
into a single one. By varying the weights, the set of noninferior berth allocations is
identified.

In the dynamic BAP (Imai et al. (2001)), the ships arrive during the planning
period and as a result, there may be idle time between two consecutive ships serviced
at a berth. As a result, the problem cannot be solved in polynomial time anymore.
Based on a Mixed Integer Programming formulation, Imai et al. (2001) develop a
Lagrangian relaxation, which is solved using the subgradient method. Another ex-
tension of the model is considered in Nishimura et al. (2001). In this paper, the
authors consider the dynamic BAP in which it is allowed that more than one ship at
a time is handled at a berth, as long as the total length of the ships is smaller than
the length of the berth. Moreover, they include the additional constraint that a ship
can only be served at a berth if its draft is less than the water depth of the berth. The
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problem is then formulated as a non-linear programming problem, which is solved
using a genetic algorithm. Lim (1998) also considers this problem and formulates
the problem as a restricted version of a two-dimensional bin-packing problem. After
proving NP-completeness he develops a heuristic using a graph theoretic model. Fi-
nally, Preston and Kozan (2001a) consider berth allocation such that the ships are
close to the place where the containers to be loaded are stacked. They apply genetic
algorithms to solve the berth allocation problem, with the ships turn around time as
objective.

Next to these analytical approaches, there have been several simulation studies
that employ decision rules for the dynamic allocation problem. We mention Gam-
bardella et al. (1998), Lai and Shih (1992), Legato and Mazza (2001), Silberholz et al.
(1991) and Yun and Choi (1999).

At a slightly more detailed level, the assignments of vessels to berths can be done
by taking into account the assignment of the quay cranes to the vessels. Obviously,
the number of quay cranes assigned to a vessel, influences the handling time of
the vessel. This results in the so-called crane scheduling problem, which has been
investigated by Daganzo (1989) and Peterkofsky and Daganzo (1990).

In the static crane scheduling problem (Daganzo (1989)), a number of quay cranes
have to serve a number of ships such that the costs of delay of the ships is minimized.
Both the berth and the ships are represented by slots. A slot corresponds to a hold
of a ship. Each ship requires a certain number of adjoining slots at the berth and
each hold can be handled by a limited number of quay cranes (usually 1). Moreover,
it is assumed that at time zero, all ships to be handled have arrived at the berth.
A Mixed Integer Programming formulation is given for this problem, which is only
solved for small instances by enumeration. Furthermore, a heuristic procedure is
designed which is based on some crane scheduling principles. In a companion paper
by Peterkofsky and Daganzo (1990), an advanced Branch & Bound algorithm is
presented in order to solve real-life instances.

The static crane scheduling problem can be generalized to allow for different
arrival times of vessels and capacity restrictions on the berth (queuing of vessels).
The proposed solution methods for the static case (Daganzo (1989)), can be modified
to be used for the more general cases.
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2.4 Container loading: scheduling and control of

handling equipment

The loading of containers is done according to the stowage plan (see Section 2.2).
That is, each container should be loaded at the position in the ship that was de-
termined by the stowage planning. Moreover, from the quay crane scheduling (see
Section 2.3) it follows which quay crane handles which holds of the vessel.

The loading process of a container ship consists of the retrieval of the containers
from the stack, the transport to the quay and the loading of the containers by the
quay cranes into the vessel. The unloading operation is the same but reversed.
However, the unloading of a vessel is far less complex than the loading, since during
the loading, the stowage plan has to be respected. Hence, the order in which the
containers arrive for loading at the quay cranes is important. For containers that are
unloaded, the order of unloading is not relevant.

Looking at container terminals worldwide, there are three commonly used han-
dling systems. The first system uses stacking cranes for the retrieval of containers
from the stack. These stacking cranes can either be rubber-tired or rail-mounted.
In case of rubber-tired cranes, the cranes can usually switch from one stacking lane
to another, depending on where the containers for a specific vessel are located. Al-
though this implies more flexibility, changing from one stack lane to another is time
consuming and is therefore not done so often in practice. After a stacking crane has
retrieved the container from the stack, it loads the container onto a transport vehi-
cle, usually a terminal truck or an automated guided vehicle. Usually such a vehicle
can carry one or two containers. However, some terminals use so-called multi-trailer
systems, capable of transporting 10 TEU. The terminal vehicle drives to the proper
quay crane, which lifts the containers off the vehicle. At most terminals, the stacking
cranes and the terminal trucks are manually operated. Several terminals of ECT in
Rotterdam however, have automated equipment. In theory, this does not make a lot
of difference in the scheduling and control problems that arise, although the actions
of drivers can never be completely coordinated. On the other hand, automated sys-
tems are less flexible and lack drivers experience and insight. Therefore, detailed and
efficient scheduling is much more crucial to achieve satisfactory performance at these
automated terminals.

An alternative system for the storage and transport of containers is the use of
straddle carriers. Straddle carriers combine the properties of a crane and a vehicle.
Hence, they are able to retrieve the containers from the stack and deliver them at
the quay cranes. Note that since these vehicles can load and unload the containers
themselves, they never have to wait for a crane (provided that there is sufficient
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buffer space at the cranes). Based on these arguments, the straddle carrier seems to
be the preferable terminal equipment. However, straddle carriers are very expensive
and much more unreliable than a system of stacking cranes and terminal vehicles.
Moreover, straddle carriers need more space in the stack to operate.

The third possible system, stacking all containers on chassis, is not used that
much anymore. Then only terminal trucks are required to drive the trailers to the
quay cranes where they are unloaded. Since each container is stored on a chassis,
a lot of storage space is required. On the other hand, each container is directly
accessible, which makes such a terminal easier to operate.

The choice of handling system is typically a strategic issue since the handling
equipment is used for a large number of years. However, often the geographic location
of a terminal determines which system will be used. For instance, due to extreme
shortage of storage space, most Asian terminals like Hong-Kong and Singapore use
a system of stacking cranes and terminal trucks, since stacking cranes allow for
higher stacking, compared to a system of straddle carriers, which limits the stacking
height to only 3 or 4 containers. On the other hand, if storage space is widely
available, for instance in the USA ports, a system using trailers will be preferred
because of the relative ease such a system can be operated. In Europe the situation is
diverse. Although the stacking height is usually relatively low (2 to 4 containers high),
both straddle carriers (Hamburg, Bremen, Rotterdam and Antwerp) and automated
stacking cranes combined with AGVs (Rotterdam) are used. Within this context of
deciding which handling system to use, we mention the work of Vis et al. (2001b) in
which a simulation study is done comparing these two systems. They claim that on
average, the number of straddle carriers required (for transport of containers only,
not for stacking) is about 30 percent less than the number of AGVs required. This
would favor the use of straddle carriers. However, when deciding on which system
to use, also costs and reliability have to be taken into account, which usually do not
favor straddle carriers.

In the next subsections, we will discuss various scheduling problems of handling
equipment. These problems all appear at the operational level. Obviously, the pur-
pose is to use the available equipment in the most efficient way. However, the overall
objective is to minimize the in–port time of the vessels. Since the operating costs
of a vessel are very large, its economies of scale can only be realized whenever it is
actually transporting containers, not whenever it is waiting at a terminal.
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2.4.1 Scheduling of stacking cranes

Kim and Kim (1997, 1999b) consider the optimization of the routing of a single
stacking crane. Such a stacking crane operates on a stacking block, which is again
divided into a number of bays. The stacking crane picks the containers from the stack
and loads them onto yard trucks which transport the containers to the quay cranes.
The containers to be retrieved by the stacking crane are divided into a number of
categories. The categories are based on size, weight, destination port, etcetera. Each
bay is assumed to be dedicated to a category, i.e., it only contains a certain number
of containers of the same category. Several bays can contain containers of the same
category. For the stacking crane, the work schedule is assumed to be given, that is,
the sequence in which containers of a certain category have to be picked is given.
The problem is then to determine the sequence in which the stacking crane visits the
bays and the number of containers that is picked from a bay each time. Obviously,
this has to be done in such way that the work schedule is satisfied. The problem is
formulated as a Mixed Integer Program on which an optimization algorithm using
Dynamic Programming is based. In a related paper, Kim and Kim (1999c) use a
Beam Search algorithm to solve the model. The performance of the algorithm was
tested using 360 sample problems. Moreover, for several smaller instances, the Beam
Search solution is compared with the optimal solution. The authors report an average
difference in travel distance of about 15 percent.

A comparison between the use of a stacking crane and a straddle carrier to retrieve
containers from the stack, is made by Vis (2002). Both the stacking crane and the
straddle carrier operate on a block, which consists of several rows of containers. The
difference between the equipment is that the stacking crane can switch to another row
at any location, where the straddle carrier always has to drive to the end of a row to
switch. For both cases, an algorithm is presented which minimizes the empty driving
distance. An extensive computational study is done to compare the performance of
both types of handling equipment.

Murty et al. (2000) consider the problem of deploying rubber-tired stacking cranes
during several work shifts. They consider a terminal in which there are stacking
blocks that have a certain workload in every shift. The stacking cranes are allowed
to switch from one block to another. However, the number of switches is restricted to
one per stacking crane, since the movement of such a crane from one block to another
is time consuming and moreover, the roads between the blocks are obstructed for
the terminal trucks. The objective is to assign the stacking cranes such that the
amount of workload that cannot be finished within a shift is minimized. Next to
a Mixed Integer Programming formulation, also an approach based on Lagrangian
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relaxation was developed. However, one of the shortcomings of these models is the
restrictive assumption that all work is available at the beginning of each period,
where in practice, the work “arrives” during the period. Moreover, terminal operators
considered the approaches too complicated for practical implementation. Therefore,
an alternative heuristic approach was developed, based on expert judgement of crane
supervisors.

2.4.2 Scheduling of AGVs

Although AGV systems also appear in flexible manufacturing systems (Egbelu and
Tanchoco (1984)) and warehouses (Van der Meer (2000)), the scheduling and control
problems that appear at automated container terminals are usually more compli-
cated. For instance, deadlocks and congestion are major problems. This is mainly
due to the large number of vehicles that is deployed and the large size of the vehicles
themselves. For instance, the number of AGVs working at the loading operation
of a single vessel is about 30, while their length is some 17 meters and width 2.5
meters. Moreover, the scheduling of the AGVs also interferes with the schedules of
the quay cranes and the stacking cranes, which is a complicating factor (see also
Subsection 2.4.4).

The scheduling of AGVs is considered in Chen et al. (1997) and Kim and Bae
(1999). Chen et al. (1997) consider the dispatching problem of AGVs in an automated
container terminal. To simplify the analysis, they assume that stacking cranes are
always available to load or unload the AGVs. For the case of a single quay crane,
which is either loading or unloading, they derive a greedy algorithm for assigning the
containers to the AGVs, which is shown to be optimal. For the case of multiple quay
cranes, the greedy algorithm does not necessarily give the optimal solution and is
therefore used as a heuristic. The algorithm was tested within a simulation model in
order to investigate its effectiveness and robustness. Moreover, a queuing model was
developed. Given the use of the greedy dispatching policy, this model gives insight
into the effects on the performance of using more AGVs, more cranes, etcetera.

Another approach to the scheduling of AGVs is given by Kim and Bae (1999). For
each container to be transported, they introduce event times which have to be met.
These event times define the exact pickup and delivery times of each container. For
the case of a single quay crane and the given event times, they reduce the dispatching
problem of AGVs to an assignment problem. Next, for the case in which the event
times cannot be met, a heuristic is developed.

Dispatching rules for AGVs in a more general context were investigated by Egbelu
and Tanchoco (1984) and Van der Meer (2000). Although dispatching rules seem to
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be generally applicable, the specific context of an automated container terminal does
not allow for a straightforward implementation, as will be shown in Chapter 5 of this
thesis. Hence, to apply these dispatching rules at an automated container terminal,
like the ECT terminals in Rotterdam, they need to be adjusted, as will be discussed
in Chapter 5.

Vis et al. (2001a) consider the problem of determining the number of AGVs
required at a semi-automated container terminal. They describe a model and give
a minimum flow algorithm to solve the case in which containers are available for
transport at given time instants.

2.4.3 Traffic control of AGVs

Next to the scheduling of AGVs, their control is another main issue. Although
AGVs at container terminals are free ranging, they do follow fixed paths for their
routes. Moreover, since the orientation of containers (the direction of the doors) is
prescribed both in the ship and in the stack, the AGVs have to make complex turns,
which require lots of space. The traffic control mechanism should guarantee that
the AGVs do not collide. For instance, if the paths of two AGVs cross, the control
mechanism should determine which AGV goes first and which AGV has to wait. Or
whenever there are two parallel curves, only one of them can be used by an AGV at
a time, since the other is then blocked.

The control system can be either central, so the control is done by a central sys-
tem, or distributed, which implies that the AGVs and certain areas possess a form
of intelligence. The current generation of automated container terminals in Rotter-
dam uses a central control system. However, Evers and Koppers (1996) propose
a distributed control system using a hierarchical system of semaphores. Roughly
speaking, the semaphores act as traffic lights that control the number of AGVs that
enter a zone. The advantages of the approach are the flexibility in modeling a trans-
portation system and the little communication that is needed to control the AGVs
(the AGVs communicate only with local areas). Although one of the purposes of the
traffic control system should be to make the AGV travel times more predictable, they
are still stochastic, making the dispatch a difficult scheduling problem, since sending
the AGVs earlier on their way causes even more traffic and sending them late may
cause them to arrive too late. Finally, the strict loading order at the quay cranes
also causes problems. Since the AGVs should arrive in a certain order at the quay
cranes and overtaking in the queue (AGV track) in front of the quay crane is not
possible, the traffic control system should guarantee that the AGVs enter the queue
in the right order. Taking into account the specific difficulties of the AGV system at
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a container terminal, Duinkerken and Ottjes (2000) have performed extensive simu-
lation studies in order to investigate the performance of such an AGV system under
intelligent traffic control.

2.4.4 Integrated scheduling of stacking cranes and AGVs

The main loss of performance at a container terminal that uses stacking cranes for
the retrieval of containers and AGVs (or terminal trucks) for the quay transport,
is the fact that the schedules of the various equipment are uncoordinated. Hence,
empty AGVs are waiting for stacking cranes to load the next container and vice versa.
In the worst case, even deadlock situations may appear. Therefore, we propose to
schedule quay cranes, stacking cranes and AGVs in an integrated way. The models
that will be presented in this thesis, explicitly take into account the topology of the
terminal. In Chapter 4 of this thesis, which is based on Meersmans and Wagelmans
(2001b), we consider the case in which all AGVs pass a common point after unloading
at the quay cranes (the current situation at ECT’s Delta terminals). It is shown
that the order in which the AGVs start at the common point to pick up their next
container, completely determines the remaining part of the schedule, also for the
stacking cranes. Using this result, we present a Branch & Bound algorithm that uses
several combinatorial lower bounds to cut off unpromising parts of the search tree.
These lower bounds turn out to be very effective, since the algorithm performs well
not only on small instances, but also on large real-life problems. Moreover, based on
this Branch & Bound algorithm, a heuristic Beam Search algorithm is developed. In
most cases, this Beam Search heuristic gives a solution that is within 5 percent of the
optimum, requiring far less time than the Branch & Bound algorithm. A dynamic
version of the Beam Search algorithm is discussed in Chapter 5 of this thesis. In this
chapter, based on Meersmans and Wagelmans (2001a), we also propose a number
of dispatching rules. In an extensive computational study, both the performance of
the dynamic Beam Search algorithm and the performance of the dispatching rules is
investigated.

The case in which the AGVs do not pass a common point after unloading is
discussed in Chapter 6, which is based on Meersmans et al. (2001). In such a more
general layout, AGVs may, for instance, take shortcuts directly after unloading at
the quay crane. For the resulting integrated scheduling problem, we present a Mixed
Integer Programming formulation for which several classes of valid inequalities are
derived. These inequalities turn out to be very effective in reducing the computational
effort to solve the model.
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2.4.5 Scheduling of straddle carriers

An alternative handling system for the retrieval and transport of containers by stack-
ing cranes and AGVs (terminal trucks), are straddle carriers. Unlike AGVs, straddle
carriers are able to pick up and drop off containers themselves. As a result, straddle
carriers can be used for both the retrieval of containers from the stack and the trans-
port to the quay cranes. However, in order to overcome the dependency of the AGVs
on the stacking cranes, straddle carriers are also often used for transport purposes
only.

Böse et al. (2000) consider the dispatching of straddle carriers for several loading
and unloading operations (vessels) at the same time. They use a genetic algorithm
to minimize the delays of container transfers to the quay cranes. Next to a situation
in which there is a static assignment of straddle carriers to quay cranes, they also
investigate the effects of a dynamic assignment, i.e., the pooling of the straddle
carriers which are working on different (un)loading operations. Computational tests
are done for multiple loading and unloading operations and for different layouts of
the terminal. The results show that a dynamic assignment can lead to significant
productivity improvements.

Work done by Winter (1999) concentrates on combining the stowage planning of
the vessel with the scheduling of the straddle carriers. This is done as follows. The
containers that are to be loaded are divided into a number of categories, based on
size, weight, destination port, etcetera. For each quay crane, a sequence of categories
to be loaded is then given. Hence, during the loading of the vessel, there is still
freedom with respect to the choice of the specific container that is delivered, provided
that the container is of the proper category. This additional freedom allows for the
optimization of the movements of the straddle carriers. For the case of a single
quay crane, a Mixed Integer Programming model is given, which provides optimal or
near optimal solutions in short time. For multiple quay cranes a best-fit heuristic is
proposed.

Kozan and Preston (1999) consider the optimization of container transfers using
straddle carriers (called yard machines). The objective is to minimize the time the
vessels stay in the port. Their model explicitly deals with the reshuffling of containers
by introducing setup times. These setup times depend on the order in which all
containers on top of a specific container are handled. The model presented is solved
by using genetic algorithm techniques. In a companion paper, Preston and Kozan
(2001b) solve the model using a tabu search heuristic. Computational results show
that in most cases, the tabu search gives better solutions than the genetic algorithm,
in far less time. The tabu search heuristic is also used investigate the effects of



2.5. Stacking 21

different stack configurations on the time needed to transfer all containers to the
quay.

2.5 Stacking

The stack allows the various transport activities to occur independently of each
other. Would there be no stack then every container ship arrival would have to be
followed by direct unloading to inland barges or to trucks. This would result in a very
complex logistical operation because all arrivals would have to be coordinated. Hence,
congestion and delays would be inevitable. As discussed in Section 2.1, different
stacking systems exist. In this section we will only consider stacking in piles on the
ground, which is done at most terminals.

The determination of the stack capacity is a major design problem of a terminal,
as the stack occupies much costly land. Stacking many containers on each other
may be advocated, but the expected number of reshuffles increases sharply with the
stacking height. A reshuffle is an unproductive move of a container which is required
to access another container that is stored beneath it. This is illustrated in Figure 2.3:
container 1 is directly accessible, container 2 demands one reshuffle.

1 2

Figure 2.3: Reshuffles

Related to the stack capacity is its layout: how long and wide will it be and how
many blocks or lanes will be used? Next, one has to decide in the design what type
of equipment will be used for stacking. The two most common types are straddle
carriers and stacking cranes. Next to these two, some terminals operate with a stack
on wheels, in which all containers are put chassis. Obviously, this requires a large
storage area and high investment costs in chassis.

Quite often stacks are separated into import and export parts. Import containers
usually arrive in large container ships and hence, in a somewhat predictable way.
Yet they are likely to depart in an unpredicted order, so, they cannot be stacked
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that high. Export containers may arrive somewhat randomly, but their departure is
usually connected to a ship and hence, they can be stacked in a much better way.

At the tactical level, one has to decide on allocation of parts of the stack to certain
activities, for instance, the (un)loading of a certain ship. At an operational level, one
has to decide on which container to stack where in order to avoid reshuffles as much as
possible. Note the close relation to the stowage planning as discussed in Section 2.2.
Also in the stowage planning, containers are stored on top of each other, such as to
minimize the number of reshuffles. However, the stacking problem is more difficult
since there can be uncertainty about which container will be needed first. For import
containers, this uncertainty exists because trucks arrive more or less randomly to pick
up a specific container. For export containers, it is usually known with which ship
they depart. However, the stowage plan is usually available only shortly before the
loading starts and thus, most containers are already stored in the stack. This leads
to reshuffles which result in a slowdown of the loading operation. In case the stowage
plan is available earlier, the containers in the export stack may be remarshalled. This
results in an “ideal” stack, i.e., the containers are stacked in the order of loading.
Hence, there is less handling during the loading operation of the vessel. Kim and Bae
(1998) describe a two–stage approach in order to minimize the number of containers
to be moved and to do so in the shortest possible traveling distance. Although such
a re-marshalling approach seems very attractive, it is not often possible to do so.
As already mentioned, the stowage plan is only known shortly before the loading
operation starts. Moreover, building up this “ideal” stack also requires additional
storage space which may not be available.

Stacking problems can be dealt with in two ways: simplified analytical calcu-
lations or detailed simulation studies. The first gives insight into the relationships
between the various parameters on a more abstract level. The second can go in much
more detail, with the negative by-effect that it is time consuming and only few people
really understand its ins and outs. No comprehensive stacking theory exists today,
and a good stack design not only depends on local space conditions but also on the
information characteristics of the ingoing and outgoing flow of containers which may
vary from port to port. Examples of both approaches are given below.

Sculli and Hui (1988) were among the first to develop yardsticks for the relation
between stacking height, utilization (or storage space needed) and reshuffles by ap-
plying a comprehensive simulation study. Taleb-Ibrahimi et al. (1993) discuss this
relation for export containers both at a long-term scale and at an operational scale.
They discuss dynamic strategies which store early arriving containers in a rough pile
until a certain date, after which all containers for a ship are put in a dedicated stor-
age area (usually close to the berthing place of the ship). The developed procedures
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calculate the storage space needed as a function of the stacking height. De Castilho
and Daganzo (1993) continue these studies with the stacking of import containers.
They consider two strategies, one that keeps stacks of the same size versus one that
segregates the containers on arrival time. A slightly more detailed discussion result-
ing in tables and yardsticks (looking at stacking blocks with bays of similar sized
containers), both analytically and by simulation, was given by Kim (1997). Kim
and Kim (1998) extended these studies by also taking the number of stacking cranes
into account. They developed a simple cost model for optimizing this number using
analytical approximations for the various performance measures.

Segregating space allocation strategies of import containers were studied by Kim
and Kim (1999a). In segregation strategies, stacking newly arrived containers on top
of earlier arrived containers is not allowed. Spaces are thus allocated for each arriving
vessel. They study cases with constant, cyclic and varying arrivals of vessels.

An empirical statistical analysis of the actual performance at a Taiwanese con-
tainer terminal was provided by Chen et al. (2000). The number of shift moves was
related to the storage density, the volume of containers loaded and the volume of
containers discharged both for stacking crane blocks and straddle carrier blocks.

More popular discussions of the effect of different stacking heights appeared in the
professional journal Cargo Systems. We mention Ashar (1991), De Castilho (1992)
and Watanabe (1991).

The relation between space allocation and the transport of the containers using
vehicles, is studied using combinatorial optimization by Demir et al. (1998). They
look for strategies for dispatching the vehicles to minimize the total time to down-
load all the containers from the ship. They prove NP-hardness of the problem and
present heuristics for which absolute and asymptotic worst-case performance ratios
are derived. Murty et al. (2000) consider storage space assignment, taking into ac-
count congestion that may appear if too many terminal trucks have to deliver (pick
up) containers in the same area of the stack. A two stage method is proposed. First,
the arriving containers are assigned to blocks in the stack. Next, each container is
put in the best position in its block, taking into account possible reshuffles. Stacking
policies are investigated by Duinkerken et al. (2001), who use a detailed simulation
model that not only models the stack, but also the quay transport in an automated
container terminal.

Decision rules using weight groups for locating export containers were derived
and validated through dynamic programming by Kim et al. (2000). Weight is a
useful criterion since heavy containers are usually stored deep in the ship (see also
Section 2.2).

In an extensive simulation study, Dekker et al. (1999) consider the effect of cre-
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ating groups of exchangeable containers in the stacking. They show that having
such groups not only decreases the number of reshuffles considerably, but also the
workload during the loading of the vessel can be much more evenly distributed in
automated systems. Unfortunately, such exchangeable groups are only likely to be
created for export containers, not for import containers, since import containers have
many different destinations (individual customers). Hence, for the latter, stacking
remains a severe problem.

2.6 Overall terminal studies

Container terminals can grow out into large complexes with several marine terminals,
empty depots, container repair centers, rail terminals, barge service centers, etcetera.
Studying a whole complex and the relation between all the components is therefore
the last aspect of container terminals we like to discuss. The literature on this aspect
is somewhat scattered and we like to distinguish the following groups. First of all,
there is the design of an overall terminal complex. Next, there is the study of the
various other interfaces of a terminal with other modalities, like a rail terminal, and
finally, there is the study of all the transport streams in and between the various
parts of the terminal complex.

2.6.1 Overall container terminal design

Consultants often apply spreadsheet models as little detailed information is known
and quick answers have to be provided using yardsticks and experience. Few of these
approaches have been published. A more detailed model is discussed in Van Hee
et al. (1988) and Van Hee and Wijbrands (1988). The authors describe a decision
support system (DSS) for capacity planning at container terminals. The model uses
several analytical models that are integrated within a single DSS. The DSS contains
models for computing service times of stacking cranes, throughput of quay cranes
and the behaviour of the whole terminal.

Another contribution on tactical level (months) capacity planning is by Zaffalon
et al. (1998), which give a network model for resource allocation of terminal equip-
ment over a number of shifts. A detailed simulation model is presented that is used
to validate the resource allocation.

Wong et al. (1983) present a generic simulation model for terminal layout and
the determination of the type and number of handling equipment. They apply it to
a hypothetical terminal. Generic yardsticks for handling productivity at a container
terminal are given by Al-Kazily (1983).
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2.6.2 Rail terminals

Productivity at rail terminals is studied by Kozan (1997) and Van Zijderveld (1995).
Using probabilistic calculations, Kozan (1997) determines the performance of various
handling activities at a rail terminal. A much more complex study on a rail terminal,
using simulation, was carried out by Van Zijderveld (1995). He considered loading
and unloading of trains at a rail terminal with two concepts: one in which trains
stayed shortly at a terminal and were shunted to a shunting yard quickly thereafter,
and a rail service center where trains stay relatively longer, but without a shunt-
ing yard. The point is that when multiple trains are handled at the same time,
productivity can be improved.

2.6.3 Landside interface

A detailed simulation model for straddle carriers that have to perform landside tasks
is described in Behera et al. (2000). The authors model the route network of the
terminal and take into account the delays that may appear if too many straddle
carriers operate in the same area.

Sinclair and Van Dyk (1987) consider the problem of pick up and delivery of
containers by road transport from a container depot. The problem differs from the
well known pickup and delivery problem in the sense that trailers are used for the
transport of containers. Whenever a truck arrives at a client or the depot, it can
either leave only the container, or both the container and the trailer. The problem
is solved using a two stage heuristic procedure.

2.6.4 Short sea shipping

A new terminal concept for short sea shipping is described by Ottjes and Veeke (1999)
and Veeke and Ottjes (1999). In this concept, containers are stored on frames, which
are picked up by AGVs who drive into the vessel. This concept can be compared
with the traditional “roll on roll off” systems that exist nowadays. Simulation was
used both for proving the feasibility of the concept and for getting insight into the
dimensioning of such a terminal.

2.6.5 Inter terminal transport

Transport in and between several terminals can be time–critical, as incoming sea
containers may have to be loaded on a train during the time window the train is on
the terminal. Hence, a good layout is essential for efficient operations. The transport
may be done with single trailers, multi-trailer systems or straddle carriers. Few
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papers have addressed these issues in a comprehensive way and in fact only scattered
results are available so far. Therefore, we just mention all individual papers.

Kozan (2000) and Kozan and Preston (1999) consider container transfers at a
(multimodal) terminal complex. They model the problem as a large network with a
mathematical programming formulation which is then solved with genetic algorithms.
Some of the elements within this formulation are expected throughput times based
on probabilistic calculations. The technique is applied to the Brisbane Multimodal
Terminal and identifies and solves bottlenecks using sensitivity analysis.

In Kurstjens et al. (1996) and Ottjes et al. (1996), a study is described on the
best transportation system for inter terminal transport at the Rotterdam Maasvlakte
(where ECT resides). Three transportation systems were compared, viz. a multi-
trailer system capable of transporting 10 TEU, an AGV system using existing AGVs
and a new system using so-called automated lift vehicles (ALV), comparable to an
automated straddle carrier. From the study it appeared that all systems have differ-
ent characteristics and that there was quite a difference in their logistic performance.
The first two systems need cranes to put their containers on them, which resulted in
many bottlenecks in the handling, while the ALV could put its container at its des-
tination on the ground and continue with another task. Accordingly, in the scenario
studied, about 65 ALVs had the same logistical performance (the same number of
containers transported within prescribed time windows with about the same number,
1%, too late) as 130 AGVs. As the multi-trailer systems had (manned) trucks which
can be decoupled from their trailers, some 22 trucks were needed with some 130
trailers (each capable of carrying 10 TEU) to achieve the same performance. As the
outcomes depended strongly on the way the transports were planned and controlled,
quite a large part of the study concentrated on these aspects. These problems turned
out to be much more difficult than ordinary vehicle scheduling problems, because of
the interfacing with cranes to finish tasks and the many stochastic elements.

Steenken (1992) and Steenken et al. (1993) consider the routing of straddle carriers
that have to perform internal and landside moves. Each move has to be carried out
before a certain due date. The problem is modeled as a Multiple Rural Postman
Problem and two kinds of heuristics are used for solving it. The first heuristic comes
from the field of printed circuit board assemblies. The second class of heuristics are
dispatching rules like the Earliest Due Date (EDD) and Shortest Processing Time
(SPT) rule.
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2.7 Conclusions

Container terminals are very specific from a material handling point of view, because
of the special characteristics of both the containers and the handling equipment.
Terminals have become increasingly important and more and more scientific literature
is devoted to them. This is even more true for the automated terminals which are
being established to cope with the increase in labor costs. The further increase in
ship sizes makes a productivity improvement in container handling more important
and therefore more research is to be expected. In this chapter, we have discussed the
relevant decision problems within container handling and we have tried to classify
the existing scientific approaches.

Operations Research has made valuable contributions for container terminals.
The techniques employed vary from Mixed Integer Programming formulations, queu-
ing models and simulation approaches. The first are used for planning under several
constraints. The second are used to model and understand some of the queuing phe-
nomena at terminals. The latter are used to gain more specific insight in case many
operational aspects are included. Yet they provide less generic insights and the many
details included make it difficult to claim generality of the results.

Our experience with ECT’s automated terminals shows that the real problems
are extremely complex and that existing approaches need much more development
to help in taking the very costly decisions.





Chapter 3

Integrated scheduling of

handling equipment: problem

description

In this chapter, we give a description of the scheduling problem of handling equip-
ment at an automated container terminal. We will first discuss the layout and the
handling equipment used at such a terminal. Next, in Section 3.2 we will focus on
the (un)loading operation of a container vessel. In Section 3.3, we will shortly discuss
the detailed simulation model of an automated container terminal that we developed,
which is used for testing of the scheduling algorithms we discuss in this thesis. Next,
in Section 3.4, we describe the scheduling problem of terminal equipment in more
detail. Finally, in Section 3.5, we will motivate our solution approach.

3.1 Automated container terminals

The first of a series of automated container terminals was put into operation in
1993, at the ECT peninsula in Rotterdam, The Netherlands. This terminal uses
automated stacking cranes (ASC) for the storage and retrieval of containers in the
stack. Moreover, the transport of containers from the stack to the quay cranes (QC) is
done using automated guided vehicles (AGV). Only the quay cranes are still manually
operated. So far, Rotterdam is the only port in the world in which automated
container terminals are in operation. However, currently, an almost identical terminal
is constructed in Hamburg and plans for such a terminal are made in the ports of
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Singapore and Antwerp.
Figure 3.1 gives an overview of one of ECT’s automated container terminals. We

will now discuss briefly the main elements of this terminal.

Figure 3.1: Overview of one of ECT’s automated container terminals (photo: cour-
tesy of ECT)

3.1.1 Stack and ASCs

The stack covers a major part of the terminal and is used for temporary storage of
containers while they change from one modality to another. For instance, a container
arrives by sea going vessel and leaves by truck or train. The stack is divided into 27
stacking lanes. In each lane, containers can be stored in six rows. Each row provides
42 TEU of ground positions. On each ground position, two or three containers can
be stored on top of each other. At the endpoints of the stacking lanes, there are so-
called transfer points. At the waterside transfer points, the AGVs pick up (deliver)
the containers for further transport to the quay. At the landside transfer points,
straddle carriers pick up (deliver) containers in order to load them on trucks.
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The storage and retrieval of containers within a stacking lane is done by a single
stacking crane (ASC). This ASC is fully automated and can work only on a single
stacking lane since it is rail-mounted. Figure 3.2 shows several stack lanes, each with
its dedicated ASC.

Figure 3.2: Stack lanes with ASCs (photo: courtesy of ECT)

The movements of the ASC necessary to retrieve a container from the stack consist
of hoisting, driving and positioning. These movements are performed sequentially.
On the landside, the ASC puts the containers on the ground, since they are picked up
by a straddle carrier which is able to pickup the container itself. On the waterside,
the ASC always has to wait until an empty AGV has arrived.

3.1.2 AGVs

The AGVs are used for the transport of containers from the stack to the quay and
back. The AGVs used at the ECT terminals have a length of about 17 meters and a
width of about 2.5 meters and are able to carry only a single container of either 20,
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40 or 45 ft. The vehicles have a rather simple structure and always require a crane
to load or unload a container. This is illustrated in Figure 3.3.

Figure 3.3: Loading of an AGV by an ASC (photo: courtesy of ECT)

The AGVs are equipped with sensors in order to locate obstacles at an early
stage. The control of the vehicles is centralized, using a block system. This means
that each AGV claims a number of blocks. These blocks are then not accessible by
other AGVs. In this way, collisions are prevented.

The AGVs operate only in the area between the stack and the quay and follow
predefined tracks. At the current automated terminals of ECT, the AGVs drive
clockwise, in a loop layout. Moreover, after they are unloaded by the QC, they all
pass a common point before they can make a turn towards the stack. This common
point is situated after the last quay crane that is operating on the vessel. The middle
area between the tracks at the waterside and the stack side is reserved for storing the
hatch covers of the vessels. Future container terminals may use AGV tracks which
are not in a loop. For instance, the AGVs may cross the middle area, directly after
unloading at the QC, i.e., the AGVs take shortcuts between the QCs.

Due to the large number of AGVs that are deployed (at most 50), there can be a
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lot of interference between the various AGVs. That is, it is likely that AGVs have to
wait for other AGVs to pass before they can enter a track. This makes the driving
times of the AGVs somewhat unpredictable.

3.1.3 Quay Cranes

The QCs are the only manned equipment at the automated container terminal. They
load and unload containers from the vessels at a rate of about 40 to 50 containers an
hour. Obviously, their performance depends on the performance of the AGVs and
ASCs, which have to make sure that the right containers arrive at the right time at
the quay.

The QCs have a spreader which is attached to the container. The spreader is
moved by cables. Because of this construction, it can be difficult to position a
container in the ship, since the wind may move the container. Therefore, the handling
times on the QCs are rather stochastic.

The QCs handle the containers according to a predefined list, which follows from
the stowage plan and the crane split. More details are given in the next section.

3.2 Loading and unloading operation of a vessel

After the ship has moored at the quay and the containers destined for the port
are unloaded, the loading operation starts. The containers are loaded into the ship
according to a so–called stowage plan. The stowage plan is usually given by the
shipping company and assigns each individual container to a specific position in the
ship. This is done in such a way that the stability of the ship is maintained and the
number of shifts, that is, the unnecessary unloading and reloading of containers at
other ports, is minimized. For more information on stowage planning, we refer to
Section 2.2.

Modern container vessels have up to 25 holds in which containers have to be
loaded. The size of these vessels allows for the deployment of 3 to 6 QCs at the same
time, where each QC handles a number of holds. The crane split, i.e., the assignment
of holds to QCs, and the order in which a QC handles the holds, is a problem in itself
and is assumed to be given. We refer to Section 2.2 for more information. Within a
hold, the containers are loaded in a fixed order. In practice, this is either row-wise
or column-wise. This is illustrated in Figure 3.4, which gives a cross-section of the
vessel. Hence, since we know the order in which the QC handles the holds and since
within a hold also the order in which the containers are loaded is fixed, we obtain a
linear order of the containers to be loaded by a single QC.
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column-wise loadingrow-wise loading

Figure 3.4: Two common loading strategies

Whenever a container is to be loaded into the vessel, the proper ASC picks the
container from the stack and transports it to the transferpoint at the seaside. At
the transferpoint, the ASC loads the container on an empty AGV. Next, the AGV
transports the container to the QC, which lifts the container off the AGV and loads
it into the vessel. The handling of a container that is unloaded from the vessel is
done in reverse order.

The unloading operation of a vessel is far less complex than the loading operation.
Per hold, the containers are unloaded by the QCs and transported by AGVs to a
randomly chosen stack lane. Within a stack lane, containers can be stored arbitrarily.
For instance, heavy weight containers can be stored on top of light weight containers.
Hence, the order in which the containers arrive at a stack lane is not relevant. Note
that because of this, all containers that are unloaded are considered to be more or less
the same. However, in case of a container to be loaded, weight, destination and other
characteristics do matter, since the stowage plan has to be respected. This makes
the operation more complex since the individual containers have to be delivered in
the right order to the QCs. Therefore, we will consider only the loading of containers
in this thesis, since this is the most critical and complex operation in the handling
process of a vessel.

As already mentioned in Chapter 1, the operating costs of seagoing vessels are
very high, over $1,000 an hour for the current generation of vessels. These costs are
likely to increase as even larger vessels are put into operation in the near future.
Since seagoing vessels spend a major part of their time in ports, it is crucial to have
the vessel loaded as fast as possible. Therefore, our goal is to minimize the loading
time of the vessel, that is, to minimize the time at which the last QC has finished
loading. Only then, the ship can depart.
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3.3 A simulation model

In this section, we will discuss the main ingredients of a detailed simulation model of
an automated container terminal. For more details on the simulation model, we refer
to Meersmans et al. (1999). The simulation model was developed in close cooperation
with ECT, the operator of the automated terminals in Rotterdam.

The simulation model was set up to investigate the performance of scheduling
algorithms for terminal equipment. To this purpose, the model can simulate the
unloading and loading operation of a vessel. Next to that, the model also allows for
simulation of additional container moves related to landside activities, i.e., stacking
crane moves to store and retrieve containers that arrive by landside modalities like
trucks or trains.

Another purpose for which the simulation model can be used, is the investiga-
tion of more strategic or tactical issues. For instance, one may like to determine
the number of AGVs that are required to achieve an acceptable performance of the
terminal. Obviously, this number also depends on the algorithms that are used for
scheduling the equipment. But given a certain algorithm which is used, the effect on
the performance of adding several additional AGVs can be easily determined using
the simulation model. Moreover, the simulation model is set up in such a way that it
allows for specifying different kinds of layouts of the terminal. Hence, it is possible to
investigate the effects of different layouts on the overall performance. Note however,
that a drastic change in layout may require the use of other algorithms for schedul-
ing the handling equipment. For instance, the algorithm which we will describe in
Chapter 4 of this thesis, cannot be applied in the situation that is considered in
Chapter 6.

Since the stack is modeled in detail, the simulation model can also be used to
investigate the performance of stacking rules, for instance, the effect of a stacking
rule on the number of reshuffles that are required during a loading operation.

The simulation model consist of a number of components, which we will discuss
shortly in the following subsections.

3.3.1 Generation of a vessel

The first main element of the simulation model is the generator of vessels. Essentially,
a vessel consists of a number of containers to be unloaded and a number of containers
to be loaded. A vessel is divided into a number of holds. Each hold contains a number
of containers below and above deck. This distinction is made since containers below
deck require a longer handling time by the QC than containers above deck.
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The containers that are unloaded from the ship are all considered to be the same.
That is, they are all import containers and the position in the stack where they will
be stored is not important (with respect to weight considerations, etcetera). For
containers that will be loaded however, the position in the ship does matter, i.e.,
the stowage plan (see Section 2.2) has to be respected. For the moment, we use the
model in such a way that each container is treated as an individual. So, each container
belongs to a specific position in the ship and there is no interchanging possible of
containers with the same size, destination and weight. However, the model does
allow for such interchanging, which results in categories of containers.

The number of containers to be loaded and unloaded can be specified by the
user. These containers are randomly divided over the number of QCs, which is also
specified by the user. It is assumed that each QC handles a fixed number of holds
of the vessel (the holds are equally divided over the QCs). The containers are then
divided randomly over the holds (below and above deck) that the QC handles. The
holds are handled by the QC in a fixed order. So, in case of containers that have to be
loaded, it starts with handling hold 1 below deck, then hold 1 above deck, then hold
2 below deck, etcetera. In this way, we get for each QC the sequence of containers
to be loaded. As already mentioned in Subsection 3.2, this sequence is kept fixed.

3.3.2 Generation of a stack configuration

Given the containers to be loaded by the QCs (see the previous section), we have to
assign these containers to positions in the stack. The dimensions of the stack, i.e.,
the number of lanes, the number of rows per lane, the number of ground positions
per row and the maximum stack height, can be specified by the user. In the stack,
we do not distinguish between containers of different size: we assume a “uniform”
container of 30 ft. (the average of 20 and 40 ft.).

The dimensions of the stack determine the maximum number of containers that
can be stored in it. The user can then specify a stack occupancy. Based on this
occupancy, the appropriate number of containers is generated. The containers are
then randomly assigned to ground positions in the stack, keeping into account that no
more containers can be stored on a single ground position than the maximum specified
stack height. So, we end up with a pile of containers on each ground position. These
containers are all dummy containers and influence the loading process since they may
have to be reshuffled.

The matching between the containers to be loaded onto a vessel and the current
stack configuration is then done as follows. For each container to be loaded, we
randomly draw a position in the stack. That is, we do not only randomly pick a
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ground position, we also generate a random level (between 1 and the maximum stack
height). We then check if on this ground position a dummy container is stored on
the generated level. If so, we replace the dummy container by the container that is
to be loaded onto the vessel. If not, we repeat the procedure and pick a new ground
position and a new level.

The result of this procedure is a stack configuration in which the containers to
be loaded are randomly stored. Obviously, this may result in unproductive reshuffle
moves during the loading operation, since (dummy) containers may be stored on
top of containers that have to be loaded. The dummy containers that have to be
reshuffled during the loading of a vessel are then moved to ground positions where
there is no container stored that still has to be loaded onto the vessel. If such a
position does not exists the dummy container is moved to a random ground position.

3.3.3 Generation of landside moves

In case there is no separation between the so-called import and export stacks, i.e.,
incoming and outgoing containers are stored in the same stack, then also containers
related to the landside operations have to be modeled. In the simulation, we model
these activities only by their claim on the ASC capacity, i.e., the retrieval or storage
of containers in the stack by the ASCs. The rest of the landside operations, for
instance, the loading of trucks by straddle carriers, is not modeled.

We assume that the landside tasks arrive according to a Poisson process. With
equal probability, the task concerns the storage or the retrieval of a container from
the stack. In case of storing a container, a random (available) position in the stack
is chosen. In case of a retrieval, a dummy container already in the stack is randomly
chosen (provided that this is not a container that has to be loaded onto the vessel).
Obviously, it may happen that the chosen container also results in one or more
additional reshuffle moves. The landside tasks are generated as long as the unloading
and loading of the ship has not finished yet.

3.3.4 Terminal equipment

In this subsection, we discuss the detailed modeling of the terminal equipment within
the simulation model. For each of the three types of equipment (QC, AGV, ASC), the
handling speed of the various operations can be specified. The equipment handles
its containers based on a list which is specified by the terminal control (see next
subsection). Essential in the modeling of the terminal equipment is the detailed
modeling of the dependencies between the various equipment. That is, the transfer
of containers from ASC to AGV can only take place if the proper AGV has arrived.
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Until that time, the ASC is blocked and cannot continue with its next task. The
same happens at the QC, where the AGV has to wait until it is unloaded by the QC
before it can move on to its next task.

QCs

The QCs handle their containers according to the loading plan, which results from
the vessel generator as discussed in Subsection 3.3.1. Since the handling of containers
by the QCs is still a manual operation, the handling times of the containers are not
known with certainty. The handling time of a specific container can be estimated
based on the position it is assigned to in the ship (see for instance Figure 3.4).
Given this estimate, the actual handling time can be shorter or longer. This can be
modeled by specifying a distribution which defines the deviation from the expected
handling time. In the simulation, any type of distribution for the deviation can be
specified. Note that this results in a handling time distribution which is different for
each container.

AGVs

The AGVs transport the containers from the stack to the quay and back. The actual
path that the AGV follows is not simulated in detail. It is assumed that an AGV
picks up a container at the transfer point at the stack and delivers it at the transfer
point near the QC. Next, it drives back to one of the transfer points at the stack to
pick up its next container. Both operations take a certain handling time. Since there
may be interference between AGVs, the handling times are not deterministic. The
interference between AGVs is only specified in terms of a deviation of the expected
handling time. The distribution of the deviation of the handling time can be specified
by the user. The AGVs handle the containers according to a schedule that is specified
by the terminal control (see next subsection).

ASCs

Each stack lane has exactly one ASC assigned to it, which performs all tasks within
the lane. The operations of the ASCs are modeled in detail. They consist of driving,
hoisting and positioning and are carried out sequentially. Each operation is performed
with a certain speed, which can be controlled by the user. This results in the handling
time for each container, which obviously depends on the exact position (including
the height) of the container in the stack. The ASCs perform three kinds of tasks:
storing and retrieving of containers related to the (un)loading of a vessel, storing and
retrieving of containers related to landside operations, and reshuffling of containers.
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The tasks are handled according to the schedule which is determined by the terminal
control (see next subsection).

3.3.5 Terminal control

Terminal control is the most important part of the simulation. It coordinates the
simulation by providing each piece of equipment with a detailed schedule of the
operations it has to perform. For the QCs, the order of the containers follows directly
from the loading plan of the ship. At the start of the simulation, terminal control calls
the vessel generator to generate an unloading/loading plan and the corresponding
lists of containers to be handled by the individual QCs.

Next, given the loading plan, terminal control calls the stack generator in order
to match each container to be loaded with a position in the stack.

A planning horizon can be specified by the user. This planning horizon gives
for each QC the next C containers that will be loaded or unloaded (note that the
planning horizon can also cover the entire sequence of containers of a QC). These
containers are then scheduled on the various equipment. For containers that are
unloaded, we first have to determine the stack lane in which the container will be
stored. This is done randomly. As a result, we then know for every container where
it is located in the stack, or where it will be stored in the stack. So, we can then
generate the tasks that are related to the (un)loading of each container. Next to the
tasks that result from the (un)loading operation of a vessel, there are also ASC tasks
generated which are related to landside operations (see Subsection 3.3.3).

Given all the tasks for the various equipment that are available, a scheduling
module is then called by the terminal control which returns a detailed schedule, both
for the AGVs and ASCs (the order in which the AGVs and ASCs should handle their
containers). When constructing a schedule, we use the expected handling times of
the containers. For the moment, we assume that the scheduling module is a black
box. In the remainder of this thesis, we will focus on algorithms that can be used
within this black box in order to schedule the tasks as efficiently as possible.

The schedule returned by the scheduling module is communicated to the modules
that model the various pieces of equipment. As time passes, tasks are executed and
the information about the realization of the schedule by the various equipment is
given back to the terminal control. Moreover, new tasks may appear within the
planning horizon. So, after a fixed period of time, the available tasks at that time
are rescheduled. The frequency of rescheduling can be specified by the user.

The relations between the terminal control and the other modules of the simula-
tion, and the information flows between them, is illustrated in Figure 3.5.
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Figure 3.5: Relationships and information flows between simulation modules

3.4 Scheduling of handling equipment

Efficient scheduling of the handling equipment is crucial to have satisfactory perfor-
mance of the container terminal. That is, the handling system of ASCs and AGVs
should deliver the right container at the right time such that the QCs do not have
to wait. In this thesis, we will consider the problem of determining the best order
in which the ASCs and the AGVs should handle their containers such that the ship
is loaded as fast as possible. This is typically an operational problem that has to
be solved during every loading operation of a vessel. Throughout the thesis, we will
make the following assumptions.

• The terminal layout, and the number of handling equipment is given. Deter-
mining the layout and the number of handling equipment are typically of a
strategic and/or tactical nature and are beyond the scope of this research. For
an overview of these problems, we refer to Chapter 2.

• We will consider only the loading operation of a vessel, since the unloading is
less complicated (see Section 3.2).

• The stowage plan and the crane split is known. That is, for each QC we know
which containers are handled by this QC and in which order.
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• For each container, the location in the stack is known. Note that this already
defines the ASC which will handle this container, since each stack lane has a
dedicated ASC.

• All handling times are known, or at least estimates are known. In this thesis, we
will consider two variants of the problem: deterministic and stochastic handling
times.

• The traffic control of AGVs is not considered, since this problem appears on
an even lower level in the decision hierarchy. Hence, we assume that there are
no deadlock situations arising from poor traffic control. However, in Chapter 5
of this thesis, we will consider congestion, which results in deviations from the
(expected) driving times of AGVs.

• Reshuffle moves are assumed to be carried out at the moment the container
is retrieved from the stack. So, the handling time of a container includes the
possible time necessary for reshuffles. In Chapter 7, we will shortly discuss
how the models we present in this thesis can be extended in case reshuffles are
allowed to be carried out earlier.

Our objective is to construct a detailed schedule for all the QCs, AGVs and ASCs,
such that time at which the last container is loaded by any of the QCs is minimized.
The schedule we construct determines the timing of containers loaded by the QCs.
Moreover, the containers must be assigned to individual AGVs and the order and
the timing of the containers assigned to the same AGV must be determined. Finally,
for the ASCs, we already know which containers are handled by which ASC (since
we know in which stack lane a container is stored). Thus, we have to determine the
order and the timing of the containers on the individual ASCs.

3.5 Solution approach and motivation

To our knowledge, none of the existing literature explicitly deals with the integrated
scheduling of the various types of handling equipment used at automated container
terminals (see Section 2.4). A straightforward approach would be to divide the
integrated problem into a number of subproblems, which then can be solved by
using some optimization method known from literature, as discussed in Section 2.4.
However, the fact that AGVs cannot load and unload containers themselves makes
the schedules of the AGVs and the ASCs/QCs highly dependent on each other. Also
the fixed loading order of the containers at the QCs is a complicating factor. In the
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following subsections, we will give two examples which show why separate scheduling
of handling equipment is not preferred.

3.5.1 Example 1: deadlocks

The following example shows that a non-integrated approach may lead to deadlocks,
i.e., overall infeasible schedules. Obviously, the occurrence of deadlocks in automated
container handling leads to a substantial loss of performance, since usually a part
of the terminal has to be shut down in order to resolve the deadlock by manual
intervention. Therefore, we feel that any optimization algorithm to be used, should
guarantee feasibility of the schedules produced at all times.

Example
Consider a simplified situation in which we have a single QC, 2 AGVs and 3 ASCs.
The QC has to handle containers 1, 2, 3 in this order. Each container is located in a
different stack lane. Moreover the handling times of the containers on the ASCs are
pasc1 = 3, pasc2 = 2, pasc3 = 1. Since each ASC has exactly one container to handle,
each ASC will start doing so at time t = 0. As a result, the ASCs are ready to
transfer the containers to the AGVs at times t1 = 3, t2 = 2, t3 = 1. Suppose both
the AGVs become available at time t = 0 and assume the driving times to the stack
lanes are negligible. Now using for instance an AGV dispatching rule like First Come
First Served (Egbelu and Tanchoco (1984); Van der Meer (2000)), which assigns an
idle vehicle to the load that is available longest, leads to the assignment of containers
2 and 3 to the two AGVs. This is because containers 2 and 3 are available for trans-
port earliest (at time t = 2 and t = 1, respectively). However, after this assignment,
there is no empty AGV left to transport container 1, which is required first at the
QC. As a result, both AGVs cannot be released from their container and also the
ASC that is retrieving container 1 cannot be released. This results in a deadlock
situation which is illustrated in Figure 3.6.

3.5.2 Example 2: low performance

One might argue that while solving the subproblems (for instance the scheduling of
an ASC), the order of the containers at the QC should be taken into account. In this
way, deadlocks as illustrated in the previous example might be avoided. However, this
may lead to schedules which are far from optimal, as the following example illustrates.

Example
Consider again a single QC with containers 1, 2, 3, 4 which are to be handled in this
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23

1

Figure 3.6: Example 1: a deadlock situation

order and which handling times on the QC are negligible. Moreover, assume there is
only a single ASC that has to handle all four containers. The handling times of the
containers on the ASC are given by pasc1 = 1, pasc2 = 1, pasc3 = 1, pasc4 = 9. Consider
two AGVs and let the driving times from the stack to the QC (pagvi ) and vice versa
(dagvi ) be the same for each container, that is pagvi = 5, dagvi = 5, ∀i := 1 . . . 4. Sup-
pose the objective is to minimize the makespan of the schedule. Obviously, a schedule
for the AGVs that completely respects the order of the containers at the QC is the
following: AGV1: containers 1 and 3, AGV2: containers 2 and 4. Moreover, taking
the order of the containers at the QC into account, this leads to the order 1, 2, 3, 4
on the ASC. This results in a makespan of 25, where reversing containers 3 and 4 on
the ASC results in a makespan of only 17 (an improvement of more than 30 percent).
The Gantt charts in figure 3.7 illustrate both solutions. Note the idle time between
operations. For instance, in the lower chart, AGV2 has to wait with transporting
container 4, since container 3 has to precede on the QC.
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Figure 3.7: Example 2: Gantt charts of solution based on non-integrated scheduling
(upper) and optimal solution (lower)

3.5.3 Solution approach

Examples 1 and 2 show that solving subproblems, instead of the integrated scheduling
problem, does lead to a poor performance or even deadlock situations. Although
Example 1 may seem to be somewhat artificial, it illustrates perfectly the deadlocks
we experienced after implementing simple decision rules into our detailed simulation
model. Hence, we propose an integrated approach for the scheduling of ASCs, AGVs
and QCs. However, as the result of Theorem 4.1 in Chapter 4 will show, there is not
much hope for finding a polynomial time algorithm to solve this scheduling problem.
In this thesis, we will therefore derive both exact enumeration algorithms in order
to find optimal solutions, as well as heuristic procedures. In Chapter 4, we will
discuss a Branch & Bound algorithm, that can be used to construct schedules for
the handling equipment given the existing terminal layouts. Based on this Branch &
Bound algorithm, we also develop a heuristic Beam Search algorithm. In Chapter 5,
we apply this Beam Search algorithm in a dynamic context and we also introduce
several dispatching rules for which we can guarantee feasible solutions. Finally, in
Chapter 6, we consider a terminal with a general layout. For this case, we model
the problem as a Mixed Integer Program (MIP) and give several classes of valid
inequalities that help in reducing the computational effort to solve the model.



Chapter 4

Integrated scheduling of

handling equipment: the

static case

In this chapter we consider the problem of integrated scheduling of various types of
handling equipment at an automated container terminal. We assume a deterministic
scenario, that is, we assume that all handling times are known in advance. Moreover,
we will consider layouts in which all AGVs pass a common point after unloading at
the QCs. For such a layout, we can represent the schedules of both the ASCs and
AGVs in a concise way. Based on this representation, we will develop a Branch &
Bound algorithm that uses various combinatorial lower bounds. Moreover, we also
discuss a Beam Search heuristic that is based on this Branch & Bound algorithm.

This chapter is organized as follows. In the next section, we will shortly discuss
the specific problem setting we consider. In Section 4.2, we will model the problem,
discuss its complexity and derive some results that will be used in a Branch & Bound
algorithm that is presented in Section 4.3. A Beam Search heuristic, based on this
Branch & Bound algorithm, is discussed in Section 4.4. Computational results are
given in Section 4.5, followed by conclusions in Section 4.6.

4.1 Problem definition

In this chapter, we consider the problem of scheduling ASCs, AGVs and QCs in an
integrated way, as discussed in Chapter 3. In particular, we consider a deterministic

45
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situation. Hence, we assume that all handling times of the containers on the various
equipment is known.

Recall the overview of ECT’s automated container terminal as was shown in
Figure 3.1. In Figure 4.1, we give a more schematic layout of this terminal.

AGV area

stack lanes, each with a single ASC

Quay Cranes

transferpoints seaside

transferpoints landside

vessel

common point

empty AGVloaded AGV

Figure 4.1: Schematic layout of an automated container terminal

From Figure 4.1, we can see that the AGVs are driving in a clock-wise loop.
The transparent AGVs are empty, the shaded AGVs are loaded. Note that after the
AGVs are unloaded by one of the QCs, they all pass a common point on their way to
the next container to be picked up at a stack lane. This characteristic of the layout
allows us to represent the schedules of both the ASCs and the AGVs in a concise
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way, as we will see later in this chapter.
As already mentioned before in Chapter 3, all existing literature considers the

scheduling of only a single type of equipment (see Section 2.4). However, most
authors do consider a terminal with both stacking cranes and transport vehicles.
Obviously, the schedules of these cranes and vehicles highly interact since the crane
(vehicle) cannot start with its next container until the vehicle (crane) is ready. Hence,
optimizing only one type of equipment does not necessarily lead to an improvement
of the overall performance of the terminal. In the worst case, it can even lead to
deadlock situations, as was shown in Chapter 3. Therefore, we propose a model
that deals with the integrated scheduling of the handling equipment, allowing for
the optimization of the overall performance of the container terminal. In the next
section, we will discuss this integrated scheduling model.

4.2 Modeling and complexity

In this section we will model the scheduling problem of ASCs, AGVs and QCs for the
case in which we have a layout as shown in Figure 4.1. We will discuss the complexity
of the problem and we will derive the main result on which we will base the Branch
& Bound algorithm (see Section 4.3). However, we will first discuss some modeling
issues.

The loading of a single container corresponds to three tasks, which are carried out
by different types of equipment: the ASC, the AGV and finally, the QC. We will refer
to these tasks as the ASC/AGV/QC task. Our objective is to minimize the time at
which the last QC finishes loading. More formally, we want to design a schedule of
which the makespan (denoted by Cmax) is minimal. Now let n denote the number of
containers to be loaded, and let Q,S and M denote the set of QCs, ASCs and AGVs,
respectively. For the three tasks of which the handling of a container consists of, we
introduce the parameters pasci , pagvi , pqci to represent the handling times of container i
on the ASC, AGV and QC, respectively. Moreover, for each AGV task we introduce
two additional drive times dagvi1 and dagvi2 . These parameters represent the drive time
from the common point to the proper stack lane (where the container is stored) and
the drive time from the QC (where the AGV is unloaded) to the common point,
respectively.

The handling time on the ASC depends on the position of the container in the
stack and the handling speed of the ASC for the different operations (lifting, driving,
positioning). The handling and the drive times on the AGV depend on the stack
lane in which the container is stored and the position of the QC which will handle
the container. Finally, the handling time of a container by the QC depends on the
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position in the hold of the ship to which the container was assigned in the stowage
plan. We assume that all handling and driving times are deterministic and that
preemption is not allowed. For instance, once an AGV has started to transport a
container, this can not be modified anymore, even if the AGV is still on its way to
the stack to pick up the container.

4.2.1 Blocking constraints

An important characteristic of the AGVs is that they are not able to load and unload
containers themselves, i.e., a crane is always needed. This gives rise to blocking
constraints. Once the ASC has picked up a container, it cannot advance to its next
task until the proper (empty) AGV has arrived at the transferpoint and the container
is loaded onto the AGV. Hence, the ASC is blocked by the AGV. Moreover, the AGV
cannot advance to its next task until the QC has lifted the container off the AGV.
So, the QC blocks the AGV.

4.2.2 Time-lags

Consider the loading sequence of a single QC, which follows from the stowage plan
and the crane split (see Section 3.2). Consider two containers i and j from this
sequence, which are loaded by the QC directly after each other. Then we have
that the AGV task related to container j cannot be finished before the QC has
finished loading container i. This is due to the blocking of the AGV by the QC. So,
the loading sequence of the containers of a QC determines a similar order on the
completion times of the related AGV tasks. This allows us to model the QCs not
explicitly, but to represent them by defining time-lags on the AGV tasks. Time-lags
are a generalization of precedence constraints and define general timing restrictions
between start and/or completion times of tasks. So, for containers i and j, such that
j is loaded directly after i, we have that the difference in completion times of the
corresponding AGV tasks is at least the handling time of container i by the QC.
Note that the time-lags are chain-like, i.e., for each QC we have a linear order of the
containers.

4.2.3 One-to-one correspondence QC - stack

Obviously, there is a one-to-one correspondence between the containers to be loaded
by the QCs and the containers located in the stack. From the location of a container
in the stack follows the ASC that will handle this container. Hence, each ASC has
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to handle a subset of all containers, where the contents of the subsets are known in
advance.

4.2.4 Complexity

The complexity of the problem described in this section is stated in the following
theorem:

Theorem 4.1 The integrated scheduling problem of |Q| QCs, |M | AGVs and |S|
ASCs as described in this section is NP-hard.

Proof: The problem of minimizing the makespan on a single machine, subject to
chain-like time-lags is known to be NP-hard, even if all processing times are equal
(Yu (1996)). Following the notation of Graham et al. (1979) we can denote this
scheduling problem by 1|chains(lij); pi = 1|Cmax, where lij denotes the minimum
time-lag between the completion of job i and its immediate successor, job j. In the
recognition version of this problem, the question is whether there exists a feasible
schedule with makespan no more than a given value C̄max.

Given an instance of the above scheduling problem, we construct the following
instance of our integrated scheduling problem.

1. For every job in the instance of 1|chains(lij ; pi = 1)|Cmax, we have a container.

2. All these containers belong to the same stack lane and their ASC handling
times are equal to ε < 1.

3. There is a one-to-one correspondence between chains and QCs. The order in
which a QC handles its containers is exactly the order that is defined by the
corresponding chain. If container i is the immediate predecessor of container j
in one of these chains, then the handling time of i on the QC is equal to lij + 1.

4. There is one AGV. The AGV is initially located at the common point, which
is also the point where the QCs lift the containers from the AGV. To drive
from this common point to the stack takes more than ε time. The total time
to drive from the common point to the stack, pick up a container, drive back
to the common point and lift the container from the AGV is equal to 1.

5. The question is whether there exists a feasible schedule such that the makespan
does not exceed C̄max.

Note that the handling times on the ASC are so small that they do not affect the
scheduling.
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A feasible schedule for the 1|chains(lij ; pi = 1)|Cmax instance, can easily be
translated into a feasible schedule of the integrated scheduling problem that has the
same makespan, by letting the AGV leave from the common point at the starting
time of the corresponding job. Note that if i and j are two containers that need to
be handled consecutively on the same QC, then the AGV will not leave the common
point to pick up container j before lij time units have passed since it has dropped
off container i at the QC.

Now suppose that we have a feasible schedule for our integrated scheduling prob-
lem. Then there exists a feasible schedule with the same makespan in which all the
waiting time of the AGV occurs just before it leaves the common point to pick up
a container. (If waiting time occurs at another point, then it can be eliminated by
letting the AGV leave later.) It is now easy to see that by using the same corre-
spondence as before, we obtain a feasible schedule for the 1|chains(lij ; pi = 1)|Cmax
instance with the same makespan.

We have now shown that the integrated scheduling problem is NP-hard if there
is a single AGV. We will now sketch how one can prove this result also for multiple
AGVs. Add to the constructed instance above an arbitrary number of AGVs and
the same number of containers. All these containers are located in a second stack
lane and all need to be transported to an additional QC that is located “far away”
from the second stack and from the other QCs. The handling times of the additional
containers on the ASC and QC are chosen very small. The idea is to choose the
transportation time from the ASC to the QC such that the makespan is exactly
equal to C̄max if all additional AGVs leave almost immediately to pick up one of the
additional containers. We leave it to the reader to work out the details. 2

4.2.5 Dominant schedules

Theorem 4.1 does not give us much hope for finding a polynomial time algorithm.
Therefore, we will develop a Branch & Bound algorithm in the next section. This
algorithm is based on a result that essentially states that a schedule is completely
determined by the order in which the containers are assigned to the AGVs. Hence,
enumerating over all possible orders will provide us with the optimal solution. First,
we observe the following:

Observation 4.2.1 We may restrict ourselves to schedules in which waiting times
of the AGVs only occur due to the fact that the proper ASC or QC is not ready to
load or unload a container.
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Now recall the common point, as illustrated in Figure 4.1, which every AGV
passes whenever it has delivered a container at the QC and drives back to the stack
area. Now suppose that when an AGV passes the common point, it is assigned its
next container. Furthermore, suppose that this assignment is done according to a
prespecified order of the containers, to which we will refer as an assignment order,
or simply as an assignment.

Next, we will show that we may restrict ourselves to schedules for which the as-
signment order is consistent with the orders in which the ASCs handle the containers.

Definition 4.2 Define the assignment order π as the order in which the containers
are assigned to the (empty) AGVs as they pass the common point. Moreover, define
a suborder πs as a subset of π such that if i is ordered before j in πs, then i is ordered
before j in π, for all i, j ∈ πs.

Theorem 4.3 Consider an optimal schedule. Let πs denote the order in which
ASC s handles its containers. Then there exists an optimal assignment order π,
such that πs is a suborder of π, for each ASC s ∈ S.

Proof: We will prove this theorem by contradiction. Suppose we have an optimal
assignment order π that is not consistent with some πs. Hence, there is a pair of
containers i, j such that i precedes j in πs and j precedes i in π. Next, we will
show that reversing the containers i and j in π, will give a schedule with the same
makespan.

Let ci and cj denote the completion times of the ASC tasks related to containers i
and j. We have ci < cj since i is scheduled before j on the ASC. Due to the blocking
constraints, we have that at time ci, the AGV transporting container i is available
at the ASC. Moreover, since j precedes i in π, we have that the AGV assigned
to container j arrived at the ASC not later than the AGV assigned to container i.
Hence, the AGV assigned to container j is also available at time ci. Now consider the
same assignment order, except that containers i and j swap positions. It is obvious
that both AGVs are available again at the ASC at time ci. Hence, the completion
times of tasks i and j on the ASC can be kept the same. Keeping also the remaining
part of the schedule fixed, we get a schedule with the same makespan. Repeating
this argument for all containers i, j for which the orders π and πs do not correspond,
we get the required result. 2

Theorem 4.3 states that in search for the optimal schedule (with the smallest
makespan), we may restrict ourselves to the schedules in which the order in which
the containers are assigned to the AGVs is consistent with the order in which the
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handling container
time on: 1 2 3 4 5

ASC1 100 30 50
ASC2 25 70
AGV (QC-stack) 75 50 75 50 75
AGV (stack-QC) 50 75 50 75 50
QC1 50 60 70
QC2 75 40

Table 4.1: Handling and driving time of containers on equipment

containers are scheduled on the ASCs. Hence, we have that the assignment order π
completely determines the order of the containers both on the AGVs and the ASCs.
Moreover, in combination with Observation 4.2.1, the assignment order π specifies
the complete schedule, which is illustrated by the following example.

Example
Consider a terminal with 2 QCs, 2 ASCs and 3 AGVs. Suppose there are 5 containers
to be loaded: containers 1,2 and 3 in this order by QC1 and containers 4 and 5 in
this order by QC2. Furthermore, containers 1, 3 and 5 are located in the stack lane
of ASC1, containers 2 and 4 in the stack lane of ASC2. All AGVs are initially lo-
cated at the common point. For convenience, assume the distance between the QCs
is negligible (located at the same position) and that the common point is located
at the position of the QCs. Table 4.1 gives the handling and driving times of the
containers on the various pieces of equipment. Now suppose we have an assignment
order π which is as follows:

π = {1, 4, 2, 3, 5} (4.1)

Given Theorem 4.3, we then have the suborders for the ASCs:

π1 = {1, 3, 5} (4.2)

and

π2 = {4, 2} (4.3)

Executing this schedule will initially assign container 1 to AGV1, container 4 to
AGV2 and container 2 to AGV3. As a result of Observation 4.2.1 we have that a piece
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container
1 2 3 4 5

ASC1 [0, 100]
ASC2 [70, 95] [0, 70]
AGV1 [0, 150]
AGV2 [0, 145]
AGV3 [0, 200]
QC1 [150, 200] [200, 260]
QC1 [145, 220]

Table 4.2: Example: partial schedule resulting from assignment order

container
1 2 3 4 5

ASC1 [0, 100] [100, 220] [220, 270]
ASC2 [70, 95] [0, 70]
AGV1 [0, 150] [150, 320]
AGV2 [145, 270] [0, 145]
AGV3 [0, 200]
QC1 [150, 200] [200, 260] [270, 340]
QC1 [145, 220] [320, 360]

Table 4.3: Example: complete schedule resulting from assignment order

of equipment starts with its next container immediately after the previous container
has been handled. This yields the partial schedule for the first three containers in
the assignment order (1, 4, 2), which is illustrated in Table 4.2.

An entry in Table 4.2 gives the time interval in which a certain piece of equipment
is handling a certain container. Note that this may include waiting time. For in-
stance, AGV3 handles container 2 in the interval [0, 200]. First, the AGV drives from
the common point to the proper stack lane, i.e., ASC2. However, at the stack lane
the AGV has to wait, since according to the schedule (π2), ASC2 handles container 4
first. As a result, AGV3 can only start driving to QC1 at time t = 95 and arrives at
QC1 at time t = 170. However, AGV3 can not be unloaded until time t = 200, the
time at which QC1 is ready with loading container 1 (which should precede container
2 on the QC). In Table 4.3, we illustrate the complete schedule for all containers.
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Now consider for instance AGV2 in Table 4.3, which is the first of the three AGVs
that becomes idle again. According to the assignment order, this AGV is assigned to
container 3. Since AGV2 becomes idle at t = 145, it arrives at ASC1 at time t = 220.
Note from Table 4.3 that ASC1 already started handling container 3 at time t = 100.
The earliest time at which ASC1 could finish with container 3 is at time t = 130, but
it has to wait for the AGV until time t = 220. After container 3 has been loaded,
AGV2 can advance to QC1 at which the AGV arrives at time t = 270. Then it is
immediately unloaded by QC1, since QC1 has been idle since time t = 260.

The example above illustrates how the assignment order π, although it only seems
to consider the AGV assignment, completely determines the remaining part of the
schedule. Moreover, Theorem 4.3 states that we can restrict ourselves to these types
of schedules without loss of optimality. Therefore, by enumerating over all possible
assignment orders π, we can find the optimal schedule. In order to speed up this
enumeration, we will develop a Branch & Bound algorithm which is discussed in
Section 4.3.

4.2.6 Feasible partial schedules

Now define a partial assignment order π′ as an assignment order that only specifies the
assignment of the first k containers. The other containers are not assigned. Given
this partial assignment order, we can then determine the completion times of the
containers on the different types of equipment. Each ASC task that is started, is also
completed, given that there is an empty AGV available (since the AGV and the ASC
schedules match). So, if the kth container is assigned to an AGV, this also means that
this AGV is available and thus, the corresponding ASC task can be completed. For
the QCs we have that every task which is started is also completed. Note however,
that this does not necessarily mean that all k containers are completed on the QCs.
Since the QCs handle the containers in a fixed order, it may happen that although
an AGV task related to a specific container has started, the corresponding QC task
cannot be started, since one of the predecessors of this container on the QC is not
available yet. Consequently, this implies that a container can be assigned to an AGV,
although the related AGV task cannot be finished (given the partial assignment of
only the first k containers). However, it is still possible that this partial schedule is
completed such that it results in an overall feasible schedule. This brings us to the
following definition of a feasible partial assignment order.

Definition 4.4 Let π′ be a partial assignment order of the first k containers. Then
this partial assignment order is called feasible if at least one AGV has a finite finish
time in the corresponding partial schedule.
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Clearly, if for all AGVs the assigned containers have to wait for a predecessor
at the QC, this predecessor can never be transported to the QC, since there is no
empty AGV. As a result, the partial schedule can not be extended to a complete
feasible schedule since no AGV has a finite finish time. However, it will be shown
in Subsection 4.3.4 that if at least one AGV becomes available again, it is always
possible to extend the partial schedule to a complete schedule in which all containers
are handled.

4.3 A Branch & Bound algorithm

Because of Theorem 4.3, it is possible to solve the scheduling problem by enumerating
over all possible assignment orders π. In this section, we will present a Branch &
Bound algorithm that implicitly enumerates these orders. We will now discuss the
main ingredients of the Branch & Bound algorithm, that is, the branching rule, search
strategy and lower and upper bound procedures.

4.3.1 Representation and branching rule

The nodes in the Branch & Bound tree represent a (partial) assignment order. At
level k < n in the tree, the partial assignment order specifies an assignment of the
first k containers. If this partial assignment is feasible (see Definition 4.4), we can
determine the finish times of the QCs and the ASCs and of at least one AGV.

The branching rule is then simply as follows. For each subproblem with the first
k containers fixed, we introduce branches by determining which container is assigned
as the (k + 1)th. Since we generate a branch for each possible candidate, we obtain
n− k branches. Note that by branching in this way, the number of descendants per
node is large in the upper part of the tree (whenever only the assignment order of
a few containers has already been fixed) and small in the lower part of the tree. In
the next subsections, we will explicitly exploit the structure of the subproblem when
calculating lower bounds.

4.3.2 Search strategy and global lower bound

The search strategy chosen is depth-first-search. The advantage of this strategy is
that the size of the tree that has to be stored in the memory is very limited, compared
to, for instance, a best-first or breadth-first strategy.

The algorithm is run several times in a row, each time allowing for a smaller
tolerance (deviation from optimality). Hence, we try to find the optimal solution by
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successive approximation. The approximation is done as follows. Initially, we allow
for a solution value which is 25 percent off the optimum. So, given a best feasible
solution found so far, each node with a lower bound that is within 25 percent less
of the value of this best solution so far is fathomed. In general, however, the gap
between the current fathomed node and the best solution so far will be less than
25 percent. So, during the search we keep track of the largest solution value gap
between any fathomed node and the best solution found so far. Note that if the best
solution so far is updated, we can also update the value of the largest gap.

After the run has finished, we calculate a global lower bound based on the value
of the best solution found and the largest gap of any fathomed node. Next, we restart
the algorithm using the value of the solution found in the previous run as an upper
bound. Moreover, we set the tolerance equal to the largest gap found in the previous
run, minus 1 percent. If after several runs, the tolerance falls under 1 percent, we run
the algorithm using zero tolerance to obtain the optimal solution. Computational
tests show that this strategy provides us quickly with good feasible solutions, which
in turn allow for cutting off large parts of the search tree in successive runs. Whereas
in case of running the algorithm only once (with zero tolerance), we sometimes end
up spending a lot of time in unpromising parts of the tree, trying to slightly improve
a solution that turns out to be far from optimal.

Another advantage of this solution approach is that it allows for applying the
Branch & Bound algorithm as a heuristic. Even if an optimal solution is hard to find,
successively running the algorithm, each time with a smaller tolerance, provides us
with a solution that is guaranteed to be within a known percentage from optimality.
As we will see in Subsection 4.3.5, the Branch & Bound algorithm is stopped if the
number of generated nodes becomes too large. If the current run of the algorithm is
not completed, we use the lower bound from the previous run to calculate a bound
on the gap between the best solution at termination and the optimum.

4.3.3 Combinatorial lower bounds

In this subsection we will discuss several combinatorial lower bounds that are used
within the Branch & Bound algorithm. These lower bounds are all based on con-
sidering subproblems that can be solved efficiently. During the Branch & Bound
algorithm, these lower bounds will be calculated in the order in which they are pre-
sented in the subsections. This order corresponds to increasing computational effort.
Obviously, whenever the value of a lower bound is larger than the best solution found,
we can fathom this node. After the calculation of each lower bound, we make this
check. Hence, if the node can be fathomed, we do not have to calculate the other,
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more time consuming lower bounds. Computational tests show that of all fathomed
nodes, 5 to 10 percent was fathomed due to the first lower bound procedure. About
40 percent was fathomed after calculating the second lower bound and the remaining
part of the nodes was fathomed due to the third lower bound.

Quay Crane lower bound

An obvious lower bound is based on considering the containers to be scheduled on the
same QC. Suppose we have a partial assignment that specifies the first k containers.
From the order of these containers, we obtain for each QC the last container that it
handles and the completion time of this container (see also Section 4.2). Denote by iq
the last container handled by QC q and let fq be the corresponding completion time
on the QC of this container. Moreover, let j � i represent the precedence relations
on the QC, that is, container j succeeds container i. Then we can calculate for each
QC a lower bound on the makespan Cmax as follows:

max
q=1,2,... ,|Q|

{fq +
∑
l�iq

pqcl } (4.4)

One Machine Scheduling lower bound

We now discuss a combinatorial lower bound based on a relaxation to a one machine
scheduling problem. Again, we assume that we have a feasible partial assignment
of the first k containers. From this partial assignment, it follows at which time the
ASCs complete their last container (in the partial schedule). Denote the finish time
of ASC s by fs.

For the remaining containers to be scheduled on ASC s, we can now relax the
problem by assuming that there is unlimited AGV capacity, i.e., the blocking property
is ignored. Moreover, the time-lags between the completion times of the related tasks
on the AGVs are omitted. As a consequence, the remaining containers will be handled
on the ASC with no idle time.

Now let 1, . . . , ns be the set of remaining containers to be scheduled on ASC
s. Then for each ASC s, we can calculate the following lower bound on the total
makespan.

Theorem 4.5 Let fs denote the completion time of the last scheduled container
on ASC s. Moreover, w.l.o.g. assume that the remaining containers 1 . . . ns to be
scheduled on ASC s are numbered in order of non-increasing tail, where the tail of



58 Chapter 4. Integrated scheduling of handling equipment: the static case

container i is defined as:

tasci := pagvi +
∑
l�i

pqcl (4.5)

Then a lower bound on Cmax is the following:

max
s=1,2,... ,|S|

max
i=1,2,... ,ns

{fs +
i∑
l=1

pascl + tasci } (4.6)

Proof: Equation (4.6) follows from the fact that, given unlimited AGV capacity, it
is optimal to schedule the containers on the ASC in order of non-increasing tail. To
see that this is indeed optimal, suppose that there is a pair of containers i, j such
that tasci > tascj and j is scheduled immediately before i in an optimal solution of
the relaxed problem. Let PPj denote the total handling time on the ASC of all the
containers in {1, 2, . . . , ns} that are scheduled before j in this optimal solution. Since
j is scheduled immediately before i and tasci > tascj , we have

fs + PPj + pascj + pasci + tasci > fs + PPj + pascj + tascj (4.7)

Hence, the makespan of the optimal solution is at least equal to the left hand side of
this inequality. It is easily verified that reversing containers i and j does not increase
the makespan, since

fs + PPj + pascj + pasci + tasci >

max{fs + PPj + pasci + tasci , fs + PPj + pasci + pascj + tascj } (4.8)

In case there is another pair of consecutive containers that are not in scheduled in
the order of non-increasing tails, we can repeat the argument. 2

Note that the bound (4.6) is calculated for all unassigned containers, since we consider
all ASCs and for each ASC we consider all containers to be scheduled on this ASC.

Parallel Machine Scheduling lower bound

The following lower bound is based on considering the AGVs as a set of identical
parallel machines. Assume that there is unlimited ASC and QC capacity. So, the
ASC is always ready to load a container onto an AGV and the QC is always ready
to unload a container from an AGV. Hence, the blocking property can be omitted.
As a result, we can add the driving times from the common point to the stack lane
(ASC) and the driving time from the QC to the common point to the handling time
on the AGV. So, for each container we redefine the handling time on the AGV as:

p̃i := dagvi1 + pagvi + dagvi2 (4.9)
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where dagvi1 and dagvi2 are the driving times from the common point to the stack lane
and from the QC to the common point, respectively. Note that in case the AGVs
are driving in a loop-layout, we have p̃i = p̃ for all containers i, which we will assume
in the analysis below. For any other layout with a common point, but for which the
redefined handling times are not equal, we can perform the same analysis by defining

p̃i := min
j=1,2,... ,n

{dagvj1 + pagvj + dagvj2 } (4.10)

Similar to the tail defined in the previous subsection by equation (4.5), we define for
each container a tail tagvi as follows:

tagvi =
∑
l�i

pqcl (4.11)

A lower bound on Cmax is now the following:

min max
1,2,... ,n

{ci + tagvi } (4.12)

where ci is the completion time of container i on its AGV. Since all AGV handling
times are equal for all containers, it is easily seen that the containers should be
handled in order of non-increasing tail in order to obtain the minimum in (4.12).
Note that this means that we implicitly respect the precedence constraints among
the containers belonging to the same QC. This is because for every pair of containers
i, j such that i precedes j on the QC, we have that tasci > tascj . However, we do
not necessarily respect the time-lags among the related AGV tasks. That is, for two
consecutive containers i, j on a QC, we do not necessarily have that AGV task j is
completed at least pqci time later than AGV task i is completed.

In general, we have a partial feasible assignment order (Definition 4.4) and a
corresponding partial schedule when the above lower bound is calculated in a node
of the tree. The idea is to handle the remaining (unassigned) containers on the AGVs
in the order indicated above as soon as the AGVs become available. Recall, however,
that there may be AGVs for which the completion time of their current task can not
be determined yet. Therefore, we derive a lower bound on the earliest possible time
that these AGVs become available again. Obviously, we would like this lower bound
to be as large as possible. Hence, we calculate the following two bounds and select
the largest:

1. A QC lower bound, similar to the Quay Crane lower bound as discussed earlier.
Let i be the container handled by the AGV and let j be the last container
handled by the proper QC. Given the finish time of the QC, we can calculate
the earliest time at which the QC is available to handle container i by summing
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up all handling times on the QC of containers j + 1, . . . , i− 1. This gives us a
lower bound on the time at which the AGV becomes available again.

2. A lower bound based on the remaining processing time of the predecessors on
the ASC, similar to the One Machine Scheduling lower bound as discussed
earlier. Let i be again the container handled by the AGV and let j be the last
container handled by the QC. Now define Hs to be the set of containers h that
still have to be handled by ASC s and for which we have that j ≺ h ≺ i on
the QC. Clearly, if we want to have the AGV of container i to be released as
soon as possible, the ASC should first handle all the containers in set Hs, in
the same order in which the containers will be handled by the QC. Hence, we
can calculate the following lower bound on the finish time fi of the AGV to
which container i is assigned:

fi = max
s∈S

max
h∈Hs

 ∑
l∈Hs: l�h

pasck +
l≺i∑
l�h

pqcl

 (4.13)

4.3.4 Upper bound heuristic

In each node of the branching tree, the partial assignment of the first k containers is
completed by applying the following heuristic. The unassigned containers are sorted
in order of non-increasing tail tagvi , as given by (4.11) and are added in this order to
the partial assignment. As a result, we obtain a complete assignment. Now suppose
that the partial assignment is feasible, as defined in Definition 4.4. We will show
below that the complete assignment obtained by the heuristic is feasible in the sense
that all containers will be completed. Clearly, the objective value of any feasible
solution is an upper bound on the makespan.

Theorem 4.6 Consider any partial assignment of the first k < n containers which is
feasible according to Definition 4.4. Completing the assignment by adding the unas-
signed containers in order of non-increasing tails tagvi results in a feasible assignment.

Proof: Since we complete the partial, feasible assignment by adding the unassigned
containers in order of non-increasing tails, it is sufficient to show that adding the first
container in this way, gives us an extended partial assignment that is also feasible or,
if k = n− 1, a complete assignment that is feasible. Note that the latter will be the
case if at least one AGV has a finite finish time, since this means that all containers
are picked up from their ASC and transported to their QC. Hence, in both cases it
suffices to show that after adding the container, again at least one AGV will have a
finite finish time.
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First, observe the following. By definition of the tails tagvi (4.11), the following
property is satisfied. For each pair of containers i, j such that container i precedes
container j at a QC, we have:

tagvi > tagvj (4.14)

Hence, the container to be added to the partial assignment is a container for which
all predecessors on its QC have already been assigned. Moreover, these predecessors
are all completed in the partial schedule, because otherwise it would not be possible
that one of the AGVs has a finite finish time. Hence, the added container is handled
by an AGV that originally had finite finish time. This AGV picks up the container
(which is possible since all ASCs have finite finish time in the original (feasible)
partial schedule) and transports it to the QC, which handles it immediately. As a
result, the AGV has a finite finish time again. 2

4.3.5 Termination of the algorithm

Clearly, the Branch & Bound algorithm is terminated whenever the complete search
tree has been investigated using zero tolerance and thus, the optimal solution is
found. However, for large problem instances, the computation time might become
excessively large. Therefore, we restrict the number of nodes that are generated in
the tree to 1 ·105. Although this number may seem high, an efficient implementation
of the algorithm guarantees that the computation time is still acceptable. Even for
large instances, the maximum number of nodes can be evaluated within 5 to 10
minutes on a Pentium PC 400 MHz.

4.4 A Beam Search variant of the algorithm

In this section, we will show how the Branch & Bound algorithm, as discussed in
the previous section, can be used to design a Beam Search algorithm. First, we will
give a general description of Beam Search, followed by the algorithm we propose for
solving the integrated scheduling problem.

4.4.1 Beam Search

Beam Search is a heuristic search technique that is closely related to Branch &
Bound. Beam Search follows a breadth-first-search strategy for exploring the tree.
However, instead of expanding all the nodes at a certain level of the tree, only a
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limited number of nodes are selected to be expanded further. The number of nodes
selected is called the beam width. The selection of the most promising nodes that
are kept for further branching, is done by using an evaluation function. Since large
parts of the search tree are cut off in this way, the method runs very fast. In fact, the
number of generated nodes is O(bw·n2), where n is the number of containers and bw
is the beam width. Clearly, at every level we generate O(bw·n) new branches (nodes)
and the total tree consists of n levels. Figure 4.2 shows a search tree that illustrates
the Beam Search. From the root node, all branches are generated. At the first level,
the best two nodes (bw = 2) are selected and further expanded. This procedure is
repeated at level two, and so on, until we reach the leaves of the tree at level n.

1

n

3

2

0

Figure 4.2: Beam Search algorithm with beam width equal to 2

Beam Search was first used within the field of artificial intelligence. More partic-
ular, it was used for speech recognition problems by Lowerre (1976). Within the area
of scheduling, Beam Search has been applied by Ow and Morton (1988), Sabuncuoglu
and Karabuk (1998), Sabuncuoglu and Bayiz (1999), and Kim and Kim (1999c).

One of the main issues when using Beam Search, is the selection of the nodes
that will be expanded. Since we only expand a limited number of nodes at each
level, this selection has to be done carefully. However, careful evaluation of a node
can be time consuming. Therefore, several authors propose a two-stage selection. In
the first stage, the nodes are “filtered” using a simple evaluation function. After the
filtering, there are only a limited number of nodes (referred to as the filter width)
left. These nodes are evaluated again, now using a more detailed, time consuming
evaluation function.

In the next three subsections, we will develop a Beam Search algorithm for the
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integrated scheduling problem of handling equipment. This algorithm is based on
the Branch & Bound algorithm presented in Section 4.3. We will discuss the main
ingredients of the algorithm, that is, the evaluation of the nodes, the actual selec-
tion of nodes and the filtering. The remaining part of the algorithm consists of a
straightforward breadth-first-search strategy.

4.4.2 Evaluation of nodes

The main ingredient of the Beam Search algorithm is the evaluation function which
is used to select the nodes that will be further expanded. In our algorithm, we
distinguish between nodes on the basis of their lower bound, that is the largest of
the three lower bounds which were discussed in Subsection 4.3.3. Since at level
k, all nodes represent an assignment schedule for the first k containers, the lower
bound gives an indication of how “efficient” the first k containers are scheduled. In
case of ties, we consider the upper bound of the nodes, which is calculated for every
node. This upper bound equals the objective value of the heuristic solution we obtain
by applying the upper bound heuristic for the remaining unassigned containers, as
discussed in Subsection 4.3.4. Like in the Branch & Bound algorithm, we keep track
of the best solution found so far. Obviously, whenever the lower bound of a node
is higher than the objective value of the best solution so far, we can fathom this
node. Note that since we calculate a heuristic solution during the evaluation of each
node, we actually consider quite some feasible solutions. This is contrary to the usual
practice with Beam Search, where only a feasible solution is calculated at the leaves
of the tree (so only bw feasible solutions are constructed during the search). As a
result of this, it may be possible that although a node is not selected to be further
expanded (since its lower bound is too high), it still provides us with a good feasible
solution.

4.4.3 Selection of nodes

The selection of the nodes is done by simply pooling all nodes at each level and select
the bw most promising ones. Note that this may lead to the selection of nodes that
all have the same parent, which may be undesirable. However, computational tests
show that this rarely happens. An alternative way of selecting the nodes, as proposed
by several authors, would be to select at the first level bw nodes. Next, for each of
these nodes, a single path in the tree is generated by selecting exactly one of its
children for expansion in each following level of the tree. Note that these paths are
disjunct. Hence, we never have that two selected nodes have the same parent. This
latter strategy leads to a “greedy” type of solution, obtained by taking a certain fixed
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initial container (the node at the first level of the tree), and completing the schedule
by selecting at each level the most promising container. However, this means that
the nature of the search tree is omitted, since the search tree allows us to select a
somewhat less promising container at a certain level, which in the end might give us
a very good schedule.

The following remark is in order. Whenever we pool the nodes at each level of
the tree, running the algorithm with a larger beam width does not necessarily give
a solution that is at least as good as in case of a smaller beam width. This can be
explained as follows. Since we select a larger number of nodes, we may choose a
node that produces very good offspring in the next level of the tree. Hence, we select
all these nodes in the next iteration of the algorithm. In the second next iteration
however, it may happen that these nodes produce poor offspring. So, we may end
up with a solution that is worse, compared to a solution found using a smaller beam
width. However, several computational tests have shown that pooling the nodes at
each level gives better results than the alternative of selecting disjunct paths of nodes.

4.4.4 Filtering

Our Beam Search algorithm uses a filter to reduce the number of nodes that are
evaluated thoroughly at each level. This is done in a straightforward way. In each
node of the branching tree, the unassigned containers are sorted in order of non-
increasing tail tagvi (4.11). Now consider a node in the upper part of the tree, that
is, a node for which only a small number of containers have been assigned yet. It is
unlikely that scheduling the container with the smallest tail next, will give us a good
solution. This is because the container with the smallest tail is a container which
is scheduled last on some QC. So, if this container is scheduled next, it will occupy
an AGV for quite some time. Hence, the resulting schedule is likely to have a large
makespan. Therefore, we apply the following filtering mechanism. Whenever a node
is expanded, we only generate a branch for each of the fw unassigned containers with
the largest tails, where fw is the filter width. In this way, we reduce the number of
nodes to be evaluated and, as a result, speed up the algorithm. On the other hand,
the quality of the solution found may decrease compared to the situation in which
we do not apply this filter.

Clearly, setting the beam and filter width requires computational testing and fine
tuning. In Section 4.5, we will give computational results for various sizes of the beam
and filter width. Based on these results, we determine good choices for the beam and
filter width, based on both the quality of the solutions and the computational effort
required.
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4.5 Computational experiments

In this section, we report on the results of computational experiments with both
the Branch & Bound algorithm and the Beam Search algorithm. Moreover, we will
compare the solutions found by the two algorithms. For testing the algorithms, we
used small, medium and large sized real-life instances. The small instances consist
of only 8 to 20 containers. The medium and large size problems contain more than
75 and 160 containers, respectively. All instances were obtained from the detailed
simulation model, which was developed in close cooperation with ECT, the operator
of the automated terminals in Rotterdam (see Section 3.3 for more details). The
simulation model allows for experimenting with different layouts of the container
terminal, different number and speed of equipment, etcetera. Besides, for the same
set of containers, the same loading plan and the same positions of the containers in
the stack, we can construct different instances. This is done by varying the number of
AGVs used, the driving speed of the AGVs and/or the handling speed of the ASCs.
For the QCs, the handling speed was not varied, since this is still a manual operation
and thus can not be carried out faster. Note however, that for each container the
handling time on the QC differs, depending on the position of the container in the
hold (see also Subsection 3.3.4). So, in Table 4.4 and Table 4.6, each line represents
a different instance of the problem.

All computations were carried out on a Pentium PC 400 MHz with 128 Mb
memory, running under WindowsNT.

4.5.1 Results for the Branch & Bound algorithm

Table 4.4 shows the results of the Branch & Bound algorithm for problem instances
of various size.

The first four columns represent the size of the problem, i.e., the number of
containers to be handled and the number of handling equipment, specified per type
(QCs, ASCs and AGVs). The fifth and sixth column show the best lower bound and
best solution found, respectively. The seventh column shows the gap between the
best solution and the lower bound. Recall that whenever the number of evaluated
nodes reaches 1 ·105, the Branch & Bound algorithm is terminated. Hence, whenever
the gap is larger than zero, this means that the Branch & Bound algorithm was
terminated after evaluating 1 · 105 nodes, without finding the optimum. The last
column gives the running time of the algorithm.

As we can see from Table 4.4, most of the small size problems are solved to
optimality within a few seconds. The results for the medium and large size problems
vary. Mostly, we get good solutions, that is, solutions that are guaranteed to be within
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problem size Branch & Bound
n QC ASC AGV lower solution gap (%) time (sec.)

8 2 2 2 815 815 0.0 < 1
8 2 2 4 780 780 0.0 < 1
20 3 4 4 1034 1134 9.7 39
20 3 4 6 1034 1034 0.0 < 1
20 3 4 8 1034 1034 0.0 < 1
20 3 4 4 985 1005 2.0 54
20 3 4 6 942 942 0.0 1
20 3 4 8 942 942 0.0 < 1
76 4 12 22 1632 1729 5.9 301
76 4 12 24 1639 1695 3.4 312
76 4 12 26 1639 1676 2.3 342
80 4 12 22 1732 1756 1.4 252
80 4 12 24 1732 1732 0.0 3
83 4 27 8 1760 1813 3.0 216
83 4 27 10 1726 1726 0.0 < 1
83 4 27 16 1998 2130 6.6 184
83 4 27 18 1998 2050 2.6 111
83 4 27 20 1998 1998 0.0 1
85 4 27 8 1790 1820 1.7 111
85 4 27 10 1694 1694 0.0 10
85 4 27 18 1875 2015 7.5 381
85 4 27 20 1875 1924 2.6 393
85 4 27 22 1875 1900 1.3 411
85 4 27 24 1871 1900 1.5 442
167 4 27 8 3432 3561 3.8 478
167 4 27 10 3410 3410 0.0 34
167 4 27 20 3702 3828 3.4 475
167 4 27 22 3702 3738 1.0 387
167 4 27 24 3664 3702 1.0 346
168 4 27 8 3289 3499 6.4 658
168 4 27 10 3234 3234 0.0 16
168 4 27 20 3403 3646 7.1 579
168 4 27 22 3389 3562 5.1 514
168 4 27 24 3404 3418 0.4 389

Table 4.4: Computational results for the Branch & Bound algorithm
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5 percent of the optimum. Keep in mind that when the gap is larger than 5 percent,
the actual deviation from optimality may still be significantly less. Furthermore, we
see that the running times also vary, however, for all instances, they are relatively
small compared to the makespan they cover (in Table 4.4, the value of the solution
found represents the makespan in seconds), which is important when the algorithm
is to be applied in real time. In case the running times are unacceptable, we can
resort to the Beam Search algorithm.

4.5.2 Results of the Beam Search algorithm

In this subsection, we will discuss the results of the Beam Search algorithm. First,
we investigate the effect of different beam and filter widths on the quality of the
solutions found by the algorithm. Figure 4.3 shows the results of the Beam Search
algorithm for various beam and filter widths1, based on computational data obtained
from solving ten large instances (more than 160 containers). The figure shows the
relative performance of the algorithm with a certain beam and filter width. That
is, we compare the solution found by the algorithm with a certain beam and filter
width combination, with the best solution found by the algorithm with any choice
of these parameters. Note that the best choice of parameter values may vary among
the instances.

From Figure 4.3 we may conclude that the parameter settings of the beam and
filter width do not have a large influence on the results of the algorithm. As we can
see, on average, the difference between the results of a given beam and filter width
combination and the best beam and filter width combination is within 1.5 percent.
As the filter width increases, the differences get even smaller. The figure also shows
for each beam and filter width combination its worst case behaviour. So, for each
combination, we show the maximum deviation from the best makespan found by any
combination, where the maximum is taken over all instances solved. This deviation
is for all combinations of the beam and filter width within 5 percent. Hence, we may
conclude that the Beam Search algorithm is quite robust and that for practical use,
fine tuning of the parameter values for the beam and filter width is not necessary.

Figure 4.3 also shows that taking a larger beam width does not necessarily lead
to a better solution. As pointed out before in Subsection 4.4.3, this is due to the fact
that for a larger beam width, we do not necessarily select the same nodes at each
level than for a smaller beam width.

1Note that the lines between the points corresponding to different filter widths are only drawn

to make it easier to distinguish between the results of the various beam widths. Results were only

generated for filter widths that are a multiple of 5
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Figure 4.3: Average and maximal difference between beam and filter width combi-
nation and the best beam and filter width combination
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Figure 4.4: Effects of increasing filter width, for fixed beam width, on computation
time

Figure 4.4 shows the effect on the computation times of increasing the filter width
under various beam widths. As we can see from this figure, the computation time
grows, for fixed beam width, almost linearly with the filter width. Moreover, doubling
the beam width gives approximately a doubling of the computation time. Hence, the
number of generated nodes, which is O(bw · fw · n) in case of applying a filter, gives
a good estimate of the relative computation times under different beam and filter
widths.

Combining Figure 4.3 and Figure 4.4, it is clear that although the differences in
the solution quality of the various beam and filter width combinations may be small,
the differences in computation time are sometimes significant. In Table 4.5 we show
for a given allowed computation time, what the best combination of parameter values
for the Beam Search algorithm is. Again, we report the relative performance of the
parameter combination with respect to the best combination of the beam and filter
width. Note that this best combination of beam and filter width may require more
time than allowed.

As we can see from Table 4.5, for a given time of, for instance, 30 seconds, the
combination bw = 4, fw = 10 yields the best results. For this combination, the
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time allowed best Beam Search
(sec.) bw fw av. deviation (%)

5 1 5 1.3
10 1 15 0.9
30 4 10 0.7
60 4 25 0.5
≥ 120 10 20 0.2

Table 4.5: Best combinations of beam and filter width for given allowed computation
times

average deviation with the best combination (requiring a larger computation time),
is within 1 percent. Allowing for more computation time clearly gives better results,
however, the improvement is on average only 0.5 percent.

4.5.3 Comparison of results

In this subsection, we will compare the results of the Branch & Bound algorithm with
the results obtained from the Beam Search algorithm. We will set the parameters
for the beam and filter width to 4 and 10, respectively. From Table 4.5 it follows
that for a maximal computation time of 30 seconds, this combination gives the best
results.

In Table 4.6, the first four columns specify again the size of the problem. Next, we
repeat partially the results of Table 4.4 for the Branch & Bound algorithm. That is,
we give the lower bound, the best solution found and the gap. The last two columns
give the results of the Beam Search algorithm, that is, the value of the solution found
and the gap with the best known lower bound obtained from the Branch & Bound
algorithm.

From Table 4.6 it follows that the Beam Search algorithm gives solutions that
are, in most cases, comparable to the solutions obtained by using the Branch &
Bound algorithm, and sometimes even better. Moreover, the Beam Search algorithm
requires only about 30 seconds of computation time for the large instances, where
the Branch & Bound algorithm usually requires 10 to 20 times as much computation
time (see also Table 4.4).
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problem size Branch & Bound Beam Search (4, 10)
n QC ASC AGV lower solution gap (%) solution gap (%)

76 4 12 22 1632 1729 5.9 1737 6.4
76 4 12 24 1639 1695 3.4 1688 3.0
76 4 12 26 1639 1676 2.3 1676 2.3
80 4 12 22 1732 1756 1.4 1784 3.0
80 4 12 24 1732 1732 0.0 1762 1.7
83 4 27 8 1760 1813 3.0 1790 1.7
83 4 27 10 1726 1726 0.0 1726 0.0
83 4 27 16 1998 2130 6.6 2120 6.1
83 4 27 18 1998 2050 2.6 2050 2.6
83 4 27 20 1998 1998 0.0 1998 0.0
85 4 27 8 1790 1820 1.7 1832 2.3
85 4 27 10 1694 1694 0.0 1694 0.0
85 4 27 18 1875 2015 7.5 2029 8.2
85 4 27 20 1875 1924 2.6 1924 2.6
85 4 27 22 1875 1900 1.3 1904 1.5
85 4 27 24 1871 1900 1.5 1900 1.5
167 4 27 8 3432 3561 3.8 3534 3.0
167 4 27 10 3410 3410 0.0 3410 0.0
167 4 27 20 3702 3828 3.4 3761 1.6
167 4 27 22 3702 3738 1.0 3746 1.2
167 4 27 24 3664 3702 1.0 3702 1.0
168 4 27 8 3289 3499 6.4 3394 3.2
168 4 27 10 3234 3234 0.0 3234 0.0
168 4 27 20 3403 3646 7.1 3589 5.5
168 4 27 22 3389 3562 5.1 3544 4.6
168 4 27 24 3404 3418 0.4 3415 0.3

Table 4.6: Computational results for the Beam Search algorithm with bw = 4 and
fw = 10 versus results for the Branch & Bound algorithm
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4.6 Conclusions and further research

In this chapter, we have considered the integrated scheduling of various types of
handling equipment at an automated container terminal. Efficient scheduling of
the equipment both reduces the time vessels spend in the port and increases the
productivity of the terminal. Therefore, great costs savings are at stake.

We have considered a class of layouts in which all AGVs pass a common point
after they are unloaded at the QCs. This is, for instance, the case at the automated
container terminals in Rotterdam. For such layouts, we have shown that we may
restrict ourselves to schedules in which the assignment order of the containers to
the AGVs is consistent with the order of the containers on each of the individual
ASCs. Hence, the assignment order of the containers to the AGVs determines the
schedule completely. This has led to the development of a Branch & Bound algo-
rithm. Within the algorithm, a number of combinatorial lower bounds is used to cut
off unpromising nodes in the search tree. These lower bounds are easy to calculate.
Nevertheless, they turn out to be very effective since the algorithm not only per-
forms well on small instances, but also on moderate and large real-life problems, as
the results of Section 4.5 show. The running times are acceptable, especially when
compared to the length of the period for which the schedule is made. This is im-
portant when rescheduling in real time is necessary, because of deviations from the
expected handling times (see also Chapter 5).

Based on the Branch & Bound algorithm, we also developed a Beam Search
algorithm. This Beam Search algorithm gives similar, or even slightly better, results
as the Branch & Bound algorithm. However, especially for large problem instances,
the required computation time of the Beam Search algorithm is far less. Moreover,
the Beam Search algorithm turns out to be robust with respect to the choice of the
beam and filter width. Hence, the algorithm appears to be practically applicable
without extensive fine tuning.



Chapter 5

Dynamic scheduling of

handling equipment

In the previous chapter, we considered the integrated scheduling of various types
of handling equipment at an automated container terminal in a static context, i.e.,
we assumed that all the information about the containers to be handled is known
beforehand.

In this chapter, however, we consider this scheduling problem within a dynamic
environment. This means that the handling times are not known exactly beforehand
and that the order in which the different pieces of equipment handle the containers
need not be specified completely in advance. Instead, (partial) schedules may be
updated when new information on realizations of handling times becomes available.
Within this dynamic context, we investigate the performance of the Beam Search
algorithms presented in Chapter 4. We test the algorithm using different planning
horizons and different frequencies of updating the schedules. Moreover, we investigate
the performance under stochastic handling times.

As an alternative to the optimization based Beam Search heuristic, we also con-
sider several dispatching rules. These dispatching rules are known from literature,
but they are adjusted for the specific situation of an automated container terminal.

The remainder of this chapter is organized as follows. Next, in Section 5.1, we
will discuss how the Beam Search algorithm presented in Chapter 4 can be adjusted
for a dynamic setting. In Section 5.2, we will report on our computational exper-
iments with this approach both in the deterministic and stochastic case. Next, in
Section 5.3, we will discuss several dispatching rules known from the literature and
we will show that adjustments are necessary in order to guarantee feasible schedules.

73
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Computational results of these dispatching rules will be discussed in Section 5.4.
Finally, in Section 5.5 we will make some concluding remarks.

5.1 Beam Search in a dynamic setting

The Beam Search algorithm of Chapter 4 is based on (partially) enumerating all
the assignment orders π. The assignment order π represents the order in which the
containers are assigned to the AGVs that become idle. The order of the containers
on the ASCs is then kept in accordance with this assignment order π. It was shown
in Theorem 4.3 that there is always an optimal schedule in which this is the case.

Next, we will discuss how the Beam Search algorithm can be applied in a dynamic
setting. In a dynamic setting, we have changing information or new information that
becomes available as time goes by, while the current schedule is executed. As a result,
rescheduling may be advantageous since realized handling times may differ from the
expected handling times that were used in constructing the schedule. Moreover,
there may be additional containers that have to be incorporated in the schedule. In
particular this will happen when we apply a rolling planning horizon approach, which
is what we will do. This means that at any point in time that scheduling decisions
are taken, we only consider the containers that have to be handled relatively soon.

Note that given a complete feasible schedule, differences between the expected
handling times and the realizations do not result in an infeasible schedule. If we keep
the order in which the containers are handled fixed, the schedule always remains
feasible. The following example illustrates this.

Example
Given are 4 containers to be handled, 1 ASC and 2 AGVs and assume the QC han-
dling times to be negligible. The top Gantt chart in Figure 5.1 represents the original
schedule in which the ASC handles the containers 1 to 4 in this order and AGV1

handles containers 1 and 3, and AGV2 handles containers 2 and 4. Note the driving
times back to the stack lane (d3 and d4) after the AGVs have completed the handling
of their first container. The bottom Gantt chart in Figure 5.1 illustrates the schedule
in which the handling time of containers 1 and 4 on the ASC are longer than expected,
and the handling of container 1 on the AGV is shorter than expected. However the
order of the containers is kept fixed. This still results in a feasible schedule, although
the makespan is longer and there is idle time between the containers handled on the
AGVs.

Now suppose that containers are rescheduled, based on updated information
about the handling time of the containers. Given the part of the schedule that
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Figure 5.1: Gantt charts

has already been executed, it is not obvious that the Beam Search algorithm may
find a feasible schedule. This is because the Beam Search does not exploit the search
tree completely. Hence, the node representing the (obviously) feasible solution (as
shown in Figure 5.1) in which the assignment order is kept the same, may not be
generated. So, rescheduling using the Beam Search algorithm should be done care-
fully in order to guarantee feasibility. Therefore, we propose the following procedure
to deal with rescheduling.

Let π represent the assignment order of the containers to the AGVs (and the
ASCs), as defined in Theorem 4.3. Denote by i the container which is currently
handled by some AGV or ASC, and which position in the assignment order π is
largest. Whenever we reschedule, we take the positions of all containers up to i

in the assignment order fixed. So, only the positions of the containers that succeed
container i in the assignment order can be changed. This is illustrated in the example
in Figure 5.2. Let container 4 be the container with the largest position in the
assignment order that is currently handled by some piece of equipment. Then we
may reschedule only the containers 5, 6 and 7.

2 31 7654

2 31 5764

Figure 5.2: Rescheduling containers

Although this may seem to be a restrictive policy, it is necessary to guarantee
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feasibility at all times, since the Beam Search algorithm is used as a “black box”.
Note that by definition, the Beam Search investigates only a part of the search tree.
Hence, we may have that the node which will finally result in a feasible solution, is
cut off in an early stage. The following example illustrates this.

Example
Consider 2 QCs, 2 AGVs and 2 ASCs. The QCs load containers 1,2 and 3,4 respec-
tively. ASC1 has to handle containers 1 and 3, ASC2 handles containers 2 and 4. Sup-
pose we have the initial schedule, represented by the assignment order π = {1, 3, 4, 2}.
Whenever we execute this schedule, ASC1 starts with container 1, ASC2 starts with
container 4. Suppose we reschedule after container 1 has been handled by the ASC.
Moreover, suppose that the tails tagvi (defined by equation (4.11)) of the containers 2,
3 and 4 are equal to 50, 100 and 49, respectively. In the Beam Search algorithm, the
containers are initially sorted in order of non-increasing tails (see Subsection 4.4.4).
Hence, initially, we have the assignment order π = {3, 2, 4}. Now suppose we run the
algorithm with, for example, filter width fw = 2 and beam width bw = 1. We then
get the following search tree, which is illustrated in Figure 5.3.

3 2 4

3 2 4 2 3 4

2 3 4 2 4 3

0

1

2

Figure 5.3: Search tree Beam Search, bw = 1, fw = 2

At level 0, we have the containers sorted according to their tail tagvi . With a
filter width of 2, we generate the assignment orders on level 1. Now suppose the
assignment order on the left leaf, has a larger lower bound than the assignment order
of the right leaf. Since the beam width is only 1, we select the right leaf. This results
then in the assignment orders on level 2, which are both infeasible, since ASC2 has
already started with container 4, but should in both cases deliver container 2 first.
So, for this particular example, the assignment order up till container 4 has to be
taken fixed.
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5.2 Computational experiments with the

Beam Search algorithm in a dynamic context

In this section, we will report on the computational experiments with the Beam
Search algorithm in a dynamic context. More particular, we are interested in the
following:

(a.) The effects on the overall performance of the length of the planning horizon,
i.e., the effects of taking more or less information into account. Although
the running time of the Beam Search algorithm is polynomial in the number
of containers to be scheduled, solving extremely large instances (about 1000
containers) can take quite some computation time. In a real time setting,
or whenever rescheduling is done frequently, one may choose to restrict the
planning horizon if the loss in performance is limited.

(b.) In combination with (a.), we investigate the effect of the frequency of reschedul-
ing on the overall performance. It is interesting to see whether taking new
information frequently into account pays off, or whether it leads to a worse
performance, since reacting on every bit of new information may give an un-
stable schedule. Moreover, it is clear that every time we reschedule, an amount
of computation time is necessary. Also this should be taken into account.

(c.) The effects of uncertain handling times of the containers. This uncertainty is
mainly present at the QCs, since this is still a manual operation. Moreover,
there is uncertainty in the driving times of the AGVs, since some congestion
may appear near crossings of AGV tracks. The uncertainty in the handling
times of the ASCs is limited, since an ASC operates fully automated and there
is no interference with other ASCs. We will therefore consider only uncertainty
in the handling times of containers on the QCs and the AGVs. This uncertainty
may influence both the best planning horizon and the frequency of reschedul-
ing. Obviously, taking a lot of information into account, that is, taking a long
planning horizon, may work counterproductive whenever this information turns
out to be uncertain. Also, the best rescheduling frequency is influenced by the
uncertainty in the handling times. Although rescheduling every time that new
information becomes available may seem attractive, rescheduling too often may
lead to “nervousness” and decrease again overall performance.

The overall performance is measured in terms of the in-port time of the vessel.
The minimization of the in-port time is very important because of the high operating
costs of the vessels and the tight schedules they have to meet. Since we consider only
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the loading of a vessel in this thesis, this is reflected by the minimization of the time
at which the last container is loaded, i.e., the minimization of the makespan of the
schedule.

In order to investigate the performance of various algorithms for the scheduling of
terminal equipment, we implement the algorithms in the detailed simulation model
that was developed and which was discussed in Section 3.3. In the experiments that
were used to test the performance of the Beam Search algorithm, approximately 1000
containers were generated, to be loaded by 4 QCs. Again, as in the computational
experiments of Chapter 4, we test the algorithm for different parameter settings of
the simulation model, like the number of AGVs, the speed of the AGV’s, etcetera. In
order to guarantee reliable outcomes, over 150 loading operations were simulated. In
Table 5.1, we show the relative performance under various settings for both the plan-
ning horizon and the frequency of rescheduling, in a complete deterministic scenario.
That is, we assume that the information about the handling times of the containers
is perfectly known. As a reference point, we take for each run the schedule that was
obtained by scheduling all containers to be loaded at once at the beginning of the
operation, and keeping this schedule fixed. In the remainder of this chapter, we will
refer to this as the “static” version of the Beam Search algorithm. The numbers
given in Table 5.1 represent the average deviation in performance and in brackets,
the standard deviation.

The planning horizon is set to 10, 20, 30, 40 and 50 containers per QC, which
represents a workload ranging from about a quarter up to an hour. The reschedul-
ing interval is taken to be 250, 500, 750 and 1000 seconds. Computation times
for the various settings of the planning horizon and the rescheduling interval var-
ied from less than 1 minute to 5 minutes for constructing the initial schedule, and
at most 2 minutes for rescheduling. Note that whenever we reschedule, a part of
the schedule is fixed (see Subsection 5.1) and thus, computation times are shorter.
Scheduling all 1000 containers at once (the static version of the algorithm), led to
computation times which were around half an hour. All computations were done on
a Pentium PC 400 MHz.

The results from Table 5.1 are in line with our expectations; the longer the plan-
ning horizon and the higher the frequency of rescheduling, the better the performance.
In all cases, the static version of the algorithm has the best average performance.
(Note that if the Beam Search were an exact algorithm, the static version would
provide us a lower bound on the time required to load the vessel and hence, would
perform best for every problem instance.) Moreover, we may conclude from Table 5.1
that the length of the planning horizon is more crucial to achieve satisfactory per-
formance than the frequency of rescheduling. Taking a short planning horizon of
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rescheduling planning horizon (containers/QC)

interval (sec.) 10 20 30 40 50

1000 13.2 (6.4) 10.5 (6.7) 9.6 (6.2) 3.4 (3.8) 1.3 (3.8)

750 12.9 (6.7) 10.1 (6.4) 7.5 (4.8) 2.3 (3.9) 1.0 (3.7)

500 12.9 (6.8) 9.5 (6.4) 5.6 (3.9) 1.4 (4.0) 0.8 (3.7)

250 12.0 (6.6) 7.9 (5.2) 3.8 (3.1) 0.8 (3.8) 0.6 (3.5)

Table 5.1: Performance (in percentage deviation from makespan of static schedule)
under different planning horizons / rescheduling intervals

about 20 or 30 containers per QC, which represents about half an hour of workload,
yields a relatively poor performance, even if we reschedule frequently. On the other
hand, when the planning horizon is increased to about an hour of workload (40 to
50 containers per QC), the performance of the dynamic version of the Beam Search
algorithm is on average very close to the performance of the static version.

The results from Table 5.1 also show that the standard deviations are quite high,
even if the planning horizon is large. Looking at individual instances, we observed
that for 10 to 20 percent of the instances, rescheduling resulted in relatively poor
schedules, compared to the schedules obtained by considering all containers at once.
For the remainder of the instances, the schedules result in an almost similar perfor-
mance. Consider for instance the particular combination of a planning horizon of 50
containers per QC and rescheduling every 250 seconds. We found that in the worst
case, the dynamic version of the algorithm performs about 9 percent worse than the
static version. The other way around, the dynamic version performed in the best case
about 5 percent better than the static version (note that the Beam Search algorithm
is a heuristic procedure and does not necessarily give the optimal solution).

In order to investigate the effects of uncertainty in the handling times of con-
tainers, we introduce two stochastic scenarios. In the “low” stochastic scenario, we
assume that both the handling times at the QCs and the AGVs are uniformly dis-
tributed within a range of plus/minus 10 percent of the average handling time. In the
“high” stochastic scenario, this percentage is set to 20. The dynamic version of the
Beam Search algorithm obviously uses the information of the containers that have
already been handled. So, the realizations of the handling times of these containers
are known. However, for the containers that are not handled yet, the schedule is
based on the expected values of the handling times.
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Again we compare the dynamic version of the Beam Search algorithm with the
static version in which we schedule all containers beforehand, using expected handling
times. The results are summarized in Table 5.2 and Table 5.3 and give the average
difference in performance, and between brackets, the standard deviation.

rescheduling planning horizon (containers/QC)

interval (sec.) 10 20 30 40 50

1000 12.9 (6.3) 10.3 (6.8) 9.5 (6.0) 3.5 (4.0) 1.4 (3.7)

750 12.6 (6.6) 9.7 (6.5) 7.2 (4.7) 2.5 (4.0) 1.1 (3.5)

500 12.9 (6.5) 9.3 (6.1) 5.6 (4.0) 1.4 (3.7) 0.9 (3.5)

250 11.6 (6.7) 7.4 (5.0) 3.8 (3.1) 0.9 (3.4) 0.8 (3.4)

Table 5.2: Performance (in percentage deviation from makespan of static schedule)
dynamic scheduling vs. static scheduling, low stochastic

rescheduling planning horizon (containers/QC)

interval (sec.) 10 20 30 40 50

1000 12.5 (6.4) 10.1 (6.6) 9.2 (6.2) 3.4 (3.8) 1.4 (3.5)

750 12.4 (6.4) 9.7 (6.4) 6.9 (4.4) 2.4 (3.7) 1.3 (3.4)

500 12.2 (6.3) 8.9 (6.2) 5.4 (4.1) 1.5 (3.8) 1.0 (3.3)

250 11.3 (6.3) 7.1 (4.9) 3.5 (3.3) 1.1 (3.6) 0.9 (3.3)

Table 5.3: Performance (in percentage deviation from makespan of static schedule)
dynamic scheduling vs. static scheduling, high stochastic

From the results of Table 5.2 and Table 5.3, we may again conclude that the
length of the planning horizon is the most important. However, even in a high
stochastic environment, the dynamic version of the algorithm does not give better
results than the static version. So, we may conclude that the information about the
handling of future containers, although uncertain, is more important than the correct
information about already handled containers.

Note that the schedule we compute in the static version of the algorithm is the
same, whether we consider a deterministic or a stochastic case. From Table 5.2 and
Table 5.3 we may therefore conclude that such a schedule is quite robust. This is
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also illustrated in Table 5.4, which gives the difference in performance of the static
schedules whenever they are evaluated in a more stochastic scenario. As we can
see from the table, the influence of the stochasticity of the handling times of the
containers on the QCs and the AGVs on the overall performance is limited.

stochastic deviation from makespan deterministic case

scenario average (%) stand. dev.

low 0.4 (0.3)

high 1.4 (0.6)

Table 5.4: Impact of stochastic handling times on overall performance of static sched-
ule

5.3 Dispatching rules

The advantages of dispatching rules are obvious. By definition, these rules do not
use complicated underlying mathematical models to calculate the “best” assignment.
Hence, they are easy to implement and therefore often used by practitioners. More-
over, these rules require only little information about the system. For instance, when
using a rule like Nearest Workstation First (Van der Meer (2000)), an idle AGV
simply selects the nearest workstation to pick up its next load. So, especially in
situations in which information is not available or uncertain, these rules seem to be
an attractive alternative. In this section, we will not only compare the performance
of various dispatching rules with each other, we will also compare their performance
with the more complicated Beam Search algorithm.

5.3.1 Some well known dispatching rules

In this subsection, we will discuss several dispatching rules from the literature that
are commonly used within the area of (AGV) scheduling. Early work within this area
was done by Egbelu and Tanchoco (1984), who were among the first to investigate
the performance of various dispatching rules for AGVs within Flexible Manufacturing
Systems. Moreover, we mention Van der Meer (2000) who investigated the perfor-
mance of dispatching rules for various AGV systems, among others, an AGV system
at an automated container terminal. The dispatching rules we will consider are the
following:
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1. Nearest Vehicle/Workstation First (Van der Meer (2000)). Assigns an idle AGV
to the nearest available load or, alternatively, a load is assigned to the nearest
idle AGV.

2. First Come First Served (Egbelu and Tanchoco (1984); Van der Meer (2000)).
Assigns the first idle AGV to the load that has been available for the longest
time.

3. Random Assignment (Egbelu and Tanchoco (1984)). Assigns an idle AGV to
a randomly chosen load.

4. Fixed Assignment of AGVs to QCs. This rule is currently used at container
terminals (see, for instance, Steenken (1992) who applies this rule for straddle
carriers). Under this rule, each AGV will transport only containers destined
for a certain QC.

5. Most Work Remaining. This rule is commonly used in machine scheduling.
The general idea is that the next job that is scheduled on an idle machine is
the job for which the remaining handling time is largest.

6. Earliest Due Date. Another rule that is commonly used in machine scheduling.
Assigns to an idle machine the job that is most urgent with respect to its
due-date.

The dispatching rules as given above, are usually evaluated on a number of per-
formance criteria, for instance:

• Maximization of vehicle utilization

• Maximization of system throughput

• Minimization of throughput times

• Minimization of queue lengths

• Minimization of (empty) driving distance

• Balanced workload

It is obvious that the behavior of some dispatching rules favors one of the criteria
as mentioned above. For instance, the Nearest Vehicle/Workstation First rule will
likely result in short empty driving distances. However, for the specific situation of a
container terminal, all the performance criteria as mentioned above are subordinate
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to minimizing the time required to load all containers, i.e., minimizing the makespan
of the schedule.

Note that the dispatching rules as discussed above only consider the dispatch-
ing of the AGVs. However, as we will see in the next subsection, a straightforward
implementation of the dispatching rules will inevitably lead to deadlock situations.
Moreover, also a schedule for the ASCs has to be determined, which must be co-
ordinated with the AGV dispatching. In Subsection 5.3.3, we will discuss how the
dispatching rules can be implemented such that a feasible schedule for both the AGVs
and ASCs is guaranteed.

5.3.2 Deadlocks

Although the dispatching rules in the previous section seem to be generally applica-
ble, the specific setting of a container terminal as considered in this thesis, does not
allow for straightforward implementation of such a rule. Applying dispatching rules
as presented above instead of solving the integrated scheduling problem by using
the Beam Search or another algorithm calls for some caution. Because of the block-
ing constraints, and the resulting dependence between the ASC and AGV schedules,
deadlocks may appear. A deadlock is a situation in which there is a total standstill of
the system, due to circular waiting of the equipment. All AGVs and ASCs are occu-
pied and cannot be released of their containers. ASCs wait for empty AGVs, which
are not available, since the loaded AGVs wait for a container that should precede at
the QC, but which cannot be transported since all AGVs are occupied. Recall Exam-
ple 1, as discussed in Subsection 3.5.1. In this subsection, a simple example is given
for which the First Come First Served rule results in a deadlock situation. Although
this example may seem somewhat artificial, it illustrates perfectly the complicated
deadlocks that frequently occurred after implementing the dispatching rules in our
detailed simulation model of the container terminal (see Section 3.3).

In Flexible Manufacturing Systems, when deadlocks appear, intervention is usu-
ally possible by directing some vehicle to a special buffer area where the load is
temporarily stored (see Egbelu and Tanchoco (1984)). Although intervention is also
possible at an automated container terminal, this is not preferred since it leads to a
(partial) shutdown of the terminal (AGVs and ASCs are stopped). As a consequence,
there is a great loss of performance. So, any dispatching rule that is implemented
should ideally be such that deadlocks cannot appear. We will therefore adjust the dis-
patching rules as given in Subsection 5.3.1 in such a way that they always guarantee
deadlock free schedules.
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5.3.3 Deadlock free dispatching rules

In this subsection, we will discuss how the dispatching rules as mentioned in Subsec-
tion 5.3.1 can be modified in order to guarantee feasibility. The following result is
used to achieve this.

Theorem 5.1 Consider the integrated scheduling problem of ASCs, AGVs and QCs.
For a schedule to be feasible, the following two conditions are sufficient:

1. The order of the containers on the ASCs and the AGVs coincide, i.e., for each
ASC s, the order πs in which the containers are handled, is a suborder of π,
the assignment order of the containers to the AGVs.

2. The order of the containers on the QCs and the AGVs coincide, i.e., the fixed
order πq of the containers on QC q, should be a suborder of π, for each QC q.

Proof: We will prove the theorem by induction. Given that the first i containers
in the schedule π result in a feasible schedule, we will show that adding the i + 1th

container also results in a feasible schedule.
Note that since the schedule for the first i containers is feasible, we have that all

containers are completed and thus, all AGVs have a finite finish time. Take now the
first idle AGV and assign this AGV to the i+1th container. Clearly, since the orders
πs are in accordance with π, the i + 1th container can be completed on the ASC,
since all its predecessors in πs are completed (the schedule of the first i containers
is feasible). Moreover, since the orders πq are suborders of π, we also have that all
predecessors of the i + 1th container at the QC are completed. So, also the i + 1th

container can be completed on the QC and thus, we have a feasible schedule. 2

Note that Theorem 5.1 only gives sufficient conditions for a schedule to be feasible.
So, there may be schedules that do not satisfy these conditions, but which are still
feasible. However, by their nature, dispatching rules are straightforward priority
rules and therefore, we do not want to complicate them too much.

Theorem 5.1 gives a guide to develop dispatching rules that guarantee a feasible
solution. We will next discuss if and how we can modify the dispatching rules we
discussed earlier. We will focus on the assignment of the containers to the idle
AGVs. The order of the containers on the ASCs is kept in accordance with this
AGV assignment. So, Condition 1 of Theorem 5.1 is always satisfied.

1. Nearest Vehicle/Workstation First. This rule cannot be applied within the
specific setting of container terminals we consider here. Recall the layout of
Figure 4.1 in which all AGVs pass a common point after unloading. So, there is
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in fact only a single delivery location. Applying this rule will assign all AGVs to
containers that are located in the nearest stack lane. Obviously, this will lead
to deadlock situations since this dispatching rule does not respect the order of
the containers at the QCs in any way.

2. First Come First Served. In order to determine which container has been avail-
able the longest time, we define a planning horizon for each QC consisting of k
containers. All containers are pooled in a list of unscheduled containers which
is initially sorted according to the time at which the containers are required at
the QC (based on the expected handling times of the containers at the QC).
After a container is handled by a QC, the k+1th container for this QC is made
available. This container is then added last to the list of unscheduled contain-
ers. If an AGV becomes idle, the first container on the list of unscheduled
containers is assigned to it. In this way, we ensure that the AGV is assigned to
the container that was generated earliest (and is available longest). Note that
by this strategy, the schedule will always respect Condition 2 of Theorem 5.1.

3. Random Assignment. To ensure the feasibility of this dispatching rule, we
assign the empty AGV to the earliest required unscheduled container of a ran-
domly chosen QC. In this way we ensure that the order in which the containers
are assigned to the AGVs corresponds to the order in which a QC handles its
containers.

4. Fixed Assignment of AGVs to QCs. The implementation of this rule is quite
obvious. Each AGV transports containers destined for only a single QC. An
empty AGV is assigned to the unscheduled container which is required earliest
at the QC.

5. Most Work Remaining. Crucial here is to determine which “container” has
the most work remaining. We have implemented this rule by assigning the
idle AGV to the unscheduled container which tail tagvi (see equation (4.11)) is
largest.

6. Earliest Due Date. To implement this rule, we take for each container the time
at which the container should be available at the QC, such that there is no idle
time for the QC. Given this time, we can calculate the time at which the AGV
should leave the common point latest to load the container at the stack lane
and drive to the proper QC in order to be just in time. We take this as the
due date of a container. An empty AGV that arrives at the common point is
then assigned to the container with the smallest due date. For two containers
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i, j destined for the same QC, such that i precedes j, we should have that the
due date of container i is smaller than the due date of container j. This is
obvious whenever we have a perfect loop layout (the time required to handle a
container starting from the common point, to the stack, to the QC and back to
the common point, is the same for all containers). However, in case we only have
a common point that all AGVs pass, we may have that the total handling time
on the AGV of container j is larger than the total handling time of container
i, and hence, the due date of container j may be smaller than the due date of
container i (if containers i and j are in different stack lanes). If this is the case,
we force the due date of container j to be slightly larger than the due date of
container i. In this way, we ensure Condition 2 of Theorem 5.1 holds. Note that
each time a container is loaded by one of the QCs, we can update the due dates
of all the containers related to that QC, taking into account the most recent
information. However, this has to be done carefully. For instance, a container
of which the handling has already been started by the ASC, but not yet by
the AGV, may not be updated. Otherwise, the due date of the container may
increase, and as a result, the idle AGV may be assigned to another container
from that stack lane, resulting in a deadlock situation. So, we should always
guarantee that the AGVs handle their containers in accordance to the order of
the containers on the ASCs (Condition 1 of Theorem 5.1).

5.4 Dispatching rules versus Beam Search

In this section, we will discuss our computational study to investigate the performance
of the various dispatching rules as discussed in Subsection 5.3.3. Moreover, we will
compare the results of the dispatching rules with the results of the Beam Search
algorithm, both in its static and its dynamic version.

Both the Beam Search algorithm and the dispatching rules were tested by imple-
menting them in the simulation model, as discussed in Section 5.2. Moreover, the
same loading operations (over 150 operations) were generated as for the results dis-
cussed in Section 5.2. As a benchmark, we use the results obtained by applying the
static Beam Search algorithm. The results of the dispatching rules are compared with
this benchmark. We only evaluate the dispatching rules based on the time the last
container is loaded onto the ship, i.e., the makespan of the schedule. Other criteria,
like vehicle utilization and driving distance, as mentioned in Subsection 5.3.1, were
not considered since they are all subordinate to the minimization of the makespan.
Table 5.5 gives the average deviation of the dispatching rules (in percent), compared
to the static version of the Beam Search algorithm. Between brackets, the standard
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deviations are given. Note that we repeat the results of the best dynamic Beam
Search algorithm (see Tables 5.1 to 5.3).

dispatching rule scenario

deterministic low stochastic high stochastic

First Come First Served (10) 12.4 (5.7) 12.2 (5.5) 11.8 (5.4)

First Come First Served (50) 2.4 (1.9) 2.3 (2.0) 2.1 (2.1)

Random Assignment 12.5 (4.6) 12.1 (4.6) 11.6 (4.6)

Fixed Assignment 7.1 (4.8) 7.1 (4.7) 7.0 (4.5)

Most Work Remaining 2.4 (3.3) 2.2 (3.2) 1.9 (3.2)

Earliest Due Date 13.8 (6.8) 13.4 (6.5) 13.0 (6.4)

Beam Search (50, 250) 0.6 (3.5) 0.8 (3.4) 0.9 (3.3)

Table 5.5: Dispatching rules vs. Beam Search (performance in percentage deviation
from makespan of static schedule)

The following remarks are in order:

1. The performance of the First Come First Served rule depends on the length of
the planning horizon that is taken into account. In Table 5.5 we give results for
both a horizon of 10 and 50 containers per QC. The more containers that are
within the planning horizon, the less likely it is that an ASC becomes idle, since
if there is a container available it can already start handling this container.

2. For the Fixed Assignment rule, the numbers in Table 5.5 are only based on
cases in which the number of AGVs is a multiple of the number of QCs, since
in the Fixed Assignment rule, each QC has a fixed number of AGVs assigned
to it. So, we have that for each QC and equal number of AGVs is working.

The results in Table 5.5 give rise to the following conclusions. The performance
of the modified dispatching rules varies a lot and the dynamic version of the Beam
Search algorithm still performs best. The dispatching rules that give quite satisfac-
tory results are the Most Work Remaining rule and the First Come First Served rule
with a large planning horizon. These two rules take the information about future
containers into account. Note that their good performance again confirms our conclu-
sion from Section 5.2 that taking information about future containers into account,
is more important than reacting on the current situation, which is a result of the
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partial realization of the schedule. The Earliest Due Date rule, for instance, reacts
on the constantly updated information about when a container is required at the QC.
Its performance however, is the worst of all. Moreover, updating information should
be done carefully, i.e., the conditions of Theorem 5.1 should be taken into account.
From our computational testing we learned that not taking these conditions into ac-
count, for instance, by defining dispatching rules which are more “loose”, will often
lead to deadlock situations. Note that the conditions of Theorem 5.1 are sufficient
to obtain a feasible schedule; they are not proven to be necessary.

Another conclusion we can draw from Table 5.5 is that the dispatching rules tend
to perform slightly better, relative to the Beam Search, as the stochasticity increases.

5.5 Conclusions

In this chapter, we considered the scheduling of container terminal handling equip-
ment within a dynamic and stochastic context. We compared the performance of
various algorithms under both deterministic and stochastic scenarios.

The integrated scheduling problem can be solved by using for instance the Beam
Search algorithm discussed in Chapter 4. This algorithm models the problem ex-
actly and solves it using partial enumeration. A drawback of this method is that,
although it runs in polynomial time (in the number of containers), the computation
time becomes quite large for very large instances (1000 containers). Therefore, we
also considered a dynamic version of the algorithm, which only takes a small number
of containers into account within a rolling horizon. We investigated the performance
of the dynamic version of the Beam Search algorithm and compared it to the perfor-
mance of the static version of the algorithm. In the static version, we solve the whole
problem at once. In the dynamic version, a rolling horizon is used and rescheduling
is done after certain fixed time intervals. The effects of the length of the planning
horizon and the frequency of rescheduling were investigated in an extensive compu-
tational study. The results show that the length of the planning horizon is the most
crucial to achieve satisfactory performance, i.e., a performance which is relatively
close to the performance of the static version of the algorithm. This result holds
both for the deterministic and for the stochastic scenarios. Hence, it seems that tak-
ing information of future containers into account, although note completely reliable,
is advantageous.

The second part of the chapter considered various dispatching rules. It is said
that such rules are very general and easy to implement. Therefore often preferred by
practitioners. However, we have shown that a straightforward implementation of such
rules will lead to deadlock situations. Hence, we presented modified versions of such
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rules which do yield feasible schedules. Moreover, we compared the performance of
these rules with the performance of the Beam Search algorithm we considered earlier.
It is found that, on average, the Beam Search algorithm performs the best, but that
some dispatching rules such as First Come First Served and Most Work Remaining
come very close.

Since the performance of the static version of the Beam Search algorithm is very
good, a good strategy may be to schedule all containers at the beginning of the
loading operation and to execute this schedule. Rescheduling is done only in case of
major breakdowns. Whenever rescheduling is necessary, we take the planning horizon
as large as possible.





Chapter 6
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equipment

In the previous two chapters, we have considered the scheduling of handling equip-
ment for a specific layout of the container terminal in which all AGVs pass a common
point after unloading by the QCs. In this chapter, we will present a model for a
general terminal layout. The problem of scheduling ASCs, AGVs and QCs is now
formulated as a Mixed Integer Program (MIP). Based on this formulation, we derive
some classes of valid inequalities. The effectiveness of the inequalities are tested in
some preliminary computational experiments.

The remainder of this chapter is organized as follows. In Section 6.1, we will dis-
cuss the more general context of the scheduling problem of ASCs, AGVs and QCs,
followed in Section 6.2 by some modeling issues and the complexity of the problem.
Next, in Section 6.3, we model the integrated scheduling problem as a Mixed Integer
Program (MIP). In Sections 6.4 to 6.7, we will derive some valid inequalities for this
formulation. Associated with these valid inequalities are the separation problems,
which are discussed in Section 6.8. In Section 6.9 we will discuss some preprocess-
ing rules and logical constraints. On the computational results, we will report in
Section 6.10. Finally, we will make some concluding remarks in Section 6.11.

91
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6.1 Problem definition

At the current generation of automated container terminals in Rotterdam, the AGVs
drive in a loop layout, all passing a common point after they have been unloaded at
the QC (see Figure 4.1 in Chapter 4). However, the disadvantage of such a layout
is that the AGVs have to drive relatively far, whereas it would be more efficient to
let them drive directly from the stack lane to the QC. Shorter driving distances will
reduce the number of AGVs required. Moreover, since there are fewer vehicles, there
is generally less interference between the AGVs and thus, the traffic control is easier
(see also Subsection 2.4.3).

One possible change of the layout of the AGV area is to allow the AGVs to take
shortcuts. For instance, after an AGV has been unloaded by a QC, it does not have
to follow the loop, but it may cross the middle area directly after the QC. To do so,
there should be enough space between the QCs. In this way, the driving distance to
the stack lane where the AGV should pick up its next container can be reduced. A
layout with shortcuts is illustrated in Figure 6.1. The shaded AGVs are loaded, the
transparant AGVs are empty. Note that between the two most right QCs there is
not enough space and thus, the AGVs cannot take shortcuts.

Evers et al. (1997) also present an alternative layout for automated container
terminals. This layout is illustrated in Figure 6.2. In this layout, the loaded AGVs
cross the middle area on their way from the stack to the QCs. A loaded AGV first
drives onto a turning platform, which turns the AGV parallel to the quay. After the
container is lifted off by the QC, the empty AGV drives to the stack using one of the
outer loops (either right or left).

The layouts as presented in Figures 6.1 and 6.2 are more general than the one
presented in Figure 4.1 of Chapter 4, which represents the current generation of
terminals. In the next section, we will model the scheduling problem of equipment
at the more general terminal.

6.2 Modeling and complexity

In this section, we will model the integrated scheduling problem of S ASCs, M AGVs
and Q QCs, for a general layout of the AGV area, as a Mixed Integer Program (MIP).
Apart from the difference in layout, we make the same assumptions for the scheduling
problem as in Chapters 3 and 4. Before we give the formulation, we will first focus
on some important modeling issues and discuss the complexity of the problem.
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AGV area

stack lanes, each with a single ASC

Quay Cranes

transferpoints seaside

transferpoints landside

vessel

empty AGV
loaded AGV

Figure 6.1: Terminal layout with shortcuts
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Figure 6.2: Alternative layout with direct transport from stack to quay (source:
Evers et al. (1997))
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6.2.1 Modeling

As in Chapter 4, we associate the loading of each container with three tasks: the
ASC, AGV and QC task. Throughout this chapter, we will often refer to the
ASC/AGV/QC task related to container i simply as (ASC/AGV/QC) task i. The
more general layout of the AGV area, as illustrated in Figures 6.1 and 6.2 can be
modeled by introducing for each AGV task a sequence dependent switch-over time.
For instance, if an AGV transports containers i and j directly after each other, there
is a sequence dependent switch-over time sagvij . This time represents the driving time
of the AGV from the QC at which container i is unloaded, to the stack lane at which
container j is picked up. Note that in the model as presented in Chapter 4, we in-
troduced a setup time which only depends on the next container j, since each AGV
passes a common point after it is unloaded. That is, at the common point, all AGVs
can be considered the same, i.e., the previous task of an AGV has no influence.

For the remaining, we use the same assumptions as presented in Chapter 3. More-
over, similar to the problem which was discussed in Chapter 4, we assume to have
blocking constraints (Section 4.2.1), time-lags (Section 4.2.2) and the one-to-one cor-
respondence between the load sequence of the QCs and the stack (Section 4.2.3).
Moreover, we again assume that handling times are known and preemption is not
allowed.

6.2.2 Complexity

The problem as described in this section clearly generalizes the scheduling problem
as discussed in Chapter 4 and as a result, is NP-hard as well. For more details, we
refer to Theorem 4.1.

6.3 Formulation

In this section, we will formulate the integrated scheduling problem of ASCs, AGVs
and QCs as a Mixed Integer Program (MIP). First, we introduce the following pa-
rameters:
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N : the number of containers to be loaded
M : the set of automated guided vehicles (AGVs)
S : the set of automated stacking cranes (ASCs)
N(s) : the set of containers to be handled by ASC s ∈ S
σ(i) : the set of successors of container i on the QC
π(i) : the set of predecessors of container i on the QC
p
qc/agv/asc
i : handling time of QC/AGV/ASC task i
sagvij : switch-over time between AGV tasks i and j

K : sufficiently large number

Next, we define the variables. We introduce binary variables to represent the order
of the containers on the equipment. It is possible to use 0/1 variables with different
interpretations (see Queyranne and Schulz (1994) for more details). In our model
we will use the so-called TSP variables, which are only set to 1 if two containers are
handled directly after each other. An alternative would be to use 0/1 variables that
only indicate if two containers are scheduled after another or not (so, not necessarily
directly after another).

xij =

{
1 if container j is handled directly after container i by same the ASC
0 otherwise

yij =

{
1 if container j is handled directly after container i by the same AGV
0 otherwise

Next to the 0/1 variables, we also define continuous variables to represent the
completion times of tasks.

bi = completion time of ASC task i

ci = completion time of AGV task i

Cmax = completion time of the last container handled by any QC

Note that for the QCs, we define no decision variables, except Cmax. Recall from
Section 4.2.2 that the QCs can be modeled by time-lags on the AGV tasks. We can
now define model the integrated scheduling problem as follows:
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Min Cmax (6.1)

s.t. ∑
j∈N
j 6=i

xij = 1 ∀i ∈ N (6.2)

∑
j∈N
j 6=i

xji = 1 ∀i ∈ N (6.3)

∑
j∈N
j 6=i

j /∈π(i)

yij = 1 ∀i ∈ N (6.4)

∑
j∈N
j 6=i

j 6=σ(i)

yji = 1 ∀i ∈ N (6.5)

K(1− xij) + bj − bi ≥ pascj ∀i, j ∈ N (6.6)

K(1− yij) + bj − ci ≥ sagvij ∀i, j ∈ N (6.7)

ci ≥ bi + pagvi ∀i ∈ N (6.8)

cj ≥ ci + pqci ∀i, j ∈ N : σ(i) \ σ(j) := {j} (6.9)

Cmax ≥ ci + pqci ∀i ∈ N : σ(i) = Ø (6.10)

xij ∈ {0, 1} ∀s ∈ S, ∀i, j ∈ N(s) (6.11)

yij ∈ {0, 1} ∀i, j ∈ N (6.12)

The objective (6.1) is to minimize the makespan, that is, to minimize the loading
time of the ship. Clearly, the ship is loaded whenever the last container is loaded.
To be more specific, the makespan is greater than or equal to the completion time
of an AGV task related to a container that is handled last (σ(i) = Ø) on a QC, plus
the corresponding handling time of this container on the QC. This is modeled by
equation (6.10).

The degree constraints, that is, equations (6.2) to (6.5), state that each con-
tainer handled on an ASC or AGV is succeeded and preceeded by exactly one other
container. Therefore, we introduce for each AGV and each ASC two dummy contain-
ers. One dummy representing the first and the other representing the last container
handled.

The difference between the completion times of two containers handled succes-
sively by the same ASC has to satisfy (6.6), which states that this difference should
be at least equal to the handling time of the latter. Note that this restriction also
prevents the existence of subtours among ASC tasks, that is, we cannot have a cyclic
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order in which xij , xjk, . . . , xli are all set to 1.
The blocking of the ASC by the AGV, as discussed in Subsection 4.2.1 is mod-

eled by restriction (6.7), which says the following. Suppose some AGV transports
containers i and j directly after each other. Then the AGV will finish task i at time
ci. Next, some switch-over time is needed before the AGV can start transporting
container j, i.e., the AGV has to drive to the proper ASC to pick up container j.
Hence, the ASC cannot complete task j earlier than the time at which the AGV
arrives. As a result, the completion time on the ASC of task j should be greater
than or equal to the completion time on the AGV of task i, plus the switch-over time
sagvij . Similarly like (6.6), this restriction also rules out subtours on AGV tasks.

The completion time of an AGV task is always greater than or equal to the
completion time of the corresponding task at the ASC (by definition the starting
time of the AGV task), plus the handling time of the container on the AGV. This is
modeled by (6.8).

The time-lags, as discussed in Section 4.2.2, which represent the handling of the
containers by the QCs, are modeled by restriction (6.9). So, for two containers i
and j that are handled by the same QC, such that j is the immediate successor of
container i on the QC, we have that the completion time of AGV task j is greater
than or equal to the completion time of AGV task i, plus pqci : the handling time of
container i on the QC. This is due to the blocking of the AGV by the QC as discussed
in Subsection 4.2.1.

Finally, restrictions (6.11) and (6.12) define integrality of the binary decision
variables. Note that the variables xij are only defined for containers i and j that are
stored in the same stack lane and thus are to be handled by the same ASC. Moreover,
for containers i, j such that j precedes i on the QC, we can set yij = 0, since setting
yij = 1 would imply that container i is handled before container j on the QC (this
follows directly from (6.7) and (6.8)).

In the next sections, we will derive several classes of valid inequalities for the
formulation given by equations (6.1) to (6.12).

6.4 Cycle and clique inequalities

In this section, we will discuss the cycle and clique inequalities. These inequalities
consist of binary variables xij and yij only. Furthermore, we will discuss lifted versions
of these inequalities.
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6.4.1 Basic cycle and clique inequalities

In Theorem 6.1, the cycle inequalities are defined which consist of both xij and
yij variables:

Theorem 6.1 Suppose we have K containers, K := {1, . . . , k}. Moreover, define
k + 1 = 1. Now let S ⊆ K be an arbitrary subset of the containers and S̄ := K \ S
the complement. Then we have the following valid inequality:∑

i∈S
xi,i+1 +

∑
i∈S̄

yi,i+1 ≤ |K| − 1 (6.13)

Proof: Recall from our MIP formulation, equations (6.7) and (6.8). By substituting
(6.8) into (6.7) we obtain:

K(1− yij) + bj − bi ≥ pagvi + sagvij (6.14)

So, by equation (6.14) we have that yi,i+1 = 1 implies bi < bi+1. Moreover, from
equation (6.6) it follows directly that setting some xi,i+1 = 1 gives bi < bi+1. Hence,
setting all variables in the cycle equal to 1, will give b1 < bk and bk < b1, a contra-
diction. 2

Next, we define the mixed clique inequalities, i.e., clique inequalities that involve
both ASC and AGV tasks.

Theorem 6.2 Suppose we have K containers, K := {1, . . . , k}. Now let C1 ⊆ K

be an arbitrary subset of the containers and let C2 be the complement. Then the
following inequality is valid:∑

i∈C1

∑
j∈K

xji +
∑
i∈C2

∑
j∈K

yji ≤ |K| − 1 (6.15)

So, set C1 is associated with ASC tasks (xji) and set C2 is associated with AGV tasks
(yji)

Proof: Suppose the inequality does not hold, i.e., we can set at least |K| variables
equal to 1. From the degree constraints (6.3) and (6.5) and the definition of the
inequality, it follows then that the sum of the incoming variables is at most 1 for
each task. Since we have to set at least |K| variables equal to 1, and we only have
|K| tasks, this means that each task has exactly one incoming variable equal to 1.
But this means that we must have a (mixed) cycle, which is not possible by Theorem
6.1. 2
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6.4.2 Lifting cycle inequalities

Lifting, cf. Nemhauser and Wolsey (1988), is a technique to strengthen valid inequal-
ities. In this section, we will apply this technique to the cycle inequalities as defined
in the previous section.

Dk inequalities

Assume we have a cycle consisting of variables xij or yij only. By sequentially lifting
additional variables, we can obtain various classes of inequalities. Well known classes
are the so-called D−k and D+

k inequalities, which hold for the Asymmetric Traveling
Salesman Problem (ATSP), cf. Grötschel and Padberg (1977).

Starting with a cycle inequality on |K| tasks, sequential lifting gives us (among
others) the D−k and D+

k inequalities which are defined by equations (6.16) and (6.17)
respectively.

k∑
i=1

yi,i+1 + 2
k∑
i=3

y1,i +
k∑
i=4

i−1∑
j=3

yi j ≤ |K| − 1 (6.16)

k∑
i=1

yi,i+1 + 2
k−1∑
i=2

yi,1 +
k−1∑
i=3

i−1∑
j=2

yi j ≤ |K| − 1 (6.17)

An example of a D−k inequality is given in Figure 6.3.

Figure 6.3: D−k inequality for |K| = 6

Clearly, theDk inequalities are valid. We will only give a sketch of the proof, based
on Figure 6.3. Suppose we select none of the variables (arcs) with coefficient 2. Then
we should select |K| arcs, such that the degree constraints (indegree and outdegree
at most one) hold. Hence, we must have a cycle, which cannot be the case. If we
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do select a variable with coefficient 2, we should select another |K − 2| arcs. Taking
again the degree constraints into account, we should have a path connecting all |K|
nodes. However, the only possible predecessor in the path of node 2 is node 1. But
since we have chosen an arc with coefficient 2, which is an outgoing arc of node 1,
this cannot be the case anymore.

Note that in general, the number of different lifted cycle inequalities can grow
fast if K (the length of the cycle) increases.

Other classes of inequalities that are valid for the ATSP, and are also valid for
the scheduling problem we consider, were introduced by Balas and Fischetti (1999).
These are the shell, fork and curtain inequalities.

6.5 Precedence based inequalities

In this section, we will discuss some classes of valid inequalities that can be derived
by using the precedence constraints among the containers to be handled on the same
QC. As in the previous section, we will focus only on inequalities that involve binary
variables.

Let Nq denote the set of AGV tasks related to the containers to be handled
by QC q. Recall from Section 4.2.2 that the order in which the containers are
handled by a single QC is fixed and that this order can be translated to time-lags
on the corresponding AGV tasks. Moreover, these time-lags are chain-like. For the
remainder of this section, we will treat the time-lags as if they were ordinary chain-
like precedence constraints, as illustrated in Figure 6.4. Note that each AGV task
is in exactly one chain. Now define i ≺ j if container i precedes container j on the

Figure 6.4: Chain-like precedence constraints

same QC, and so we have that ci < cj by equation (6.9). Note that this does not
necessarily imply bi < bj , even if containers i and j are related to the same ASC.
Moreover, define N+

q as the set of tasks iq ∈ Nq and all its successors in the chain,
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that is:

N+
q := {i ∈ Nq|i � iq} (6.18)

Similarly, we define N−q as the set consisting of task iq ∈ Nq and all its predecessors
in the chain:

N−q := {i ∈ Nq : i � iq} (6.19)

For notational convenience, we define the following parameter, which represents the
precedence constraints among the containers on the QC:

zij =

{
1 if container i precedes container j on the same QC
0 otherwise

Note that, because of transitivity, we have that if zij = 1 and zjk = 1, this implies
zik = 1. Next, we will derive some properties which are induced by the precedence
constraints (zij ’s).

Property 6.5.1 If xij = 1 ∧ zjk = 1 or yij = 1 ∧ zjk = 1, then bi < bj < ck. That
is, whenever task i and j are scheduled consecutively on the same ASC or AGV, and
container j must precede container k on the QC, then the completion time of ASC
task i is smaller than the completion time of AGV task k.

Proof: From equation (6.14) (see Theorem 6.1), it follows that bi < bj if xij = 1 or
yij = 1 . Combining this result with equations (6.8) and (6.9), gives us bj < cj < ck.

2

Property 6.5.2 If zij = 1 ∧ yjk = 1, then bi < ci < cj < bk. So, if container i
precedes container j on the QC, and AGV tasks j and k are scheduled consecutively on
the same AGV, then the completion time of ASC task i is smaller than the completion
time of ASC task k.

Proof: From equation (6.8) it follows immediately that bi < ci. Moreover, since
zij = 1 we have ci < cj . Finally, from (6.7) it follows immediately that cj < bk. 2

A similar property for the case zij = 1 ∧ xjk = 1 cannot be given. Although zij = 1
implies bi < ci < cj and xjk = 1 implies bj < bk, this does not necessarily result in
bi < bk.

In the next sections, we will discuss several classes of valid inequalities that can
be derived, using the precedence constraints, represented by the parameters zij .
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To facilitate the exposition, the parameters zij appear on the left hand side of the
equations. Clearly, they can be moved to the right hand side, decreasing the right
hand side with their value.

6.5.1 Precedence based cycle inequalities

The first class of precedence based inequalities are generalizations of the (mixed)
cycle inequalities, as defined in Section 6.4. These generalized cycle inequalities,
will satisfy the conditions of Properties 6.5.1 and 6.5.2. Note that we only have to
consider generalized cycle inequalities in which we have no consecutive zij ’s, since
in that case we can replace them with a single zij and decrease the right hand side
by 1.

Theorem 6.3 Consider K containers, K := {1 . . . k} and define k + 1 = 1. More-
over, let S1, S2 and S3 be a partition of K with the property that if i ∈ S3, then
i+ 1 /∈ S1. Then the following inequality is valid:∑

i∈S1

xi,i+1 +
∑
i∈S2

yi,i+1 +
∑
i∈S3

zi,i+1 ≤ |K| − 1 (6.20)

That is, any generalized cycle inequality that consists of arbitrary variables xij ,
yij and parameters zij , all equal to 1, is valid provided that no zij is immediately
succeeded by some xjk.

Proof: First note that if not all zij are equal to 1, the inequality is trivial. So given
all zij equal to 1, the inequality implies that some xij or yij should be set to 0.

From the proof of Theorem 6.1, it follows that xij = 1⇒ bi < bj and yij = 1⇒
bi < bj . Besides, zi,i+1 = 1 ∧ yi+1,i+2 = 1 for some i ∈ S2 implies bi < bi+2

(Property 6.5.2). Note that any generalized cycle inequality that consists of zij ’s
only is not valid by definition, and that cycle inequalities with no zij ’s are valid by
Theorem 6.1. Hence, w.l.o.g. we may assume that y12 is the first variable in the
cycle inequality and zk1 is the last parameter in the inequality, since by definition
of the inequality, we cannot have that zk1 precedes x12 in the cycle. By successively
applying Properties 6.5.1 and 6.5.2, we obtain b1 < b2 < bk. Moreover, bk < b2

(Property 6.5.2), which yields a contradiction. 2

It follows from Theorem 6.3 that we can generalize the mixed cycle inequalities
by using the parameters zij , provided that zij is not succeeded by some xjk. This
implies the following:
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Corollary 6.4 Given a set of K containers, K := {1 . . . k} and k + 1 = 1 and a
partition S1, S2 of K, the following inequality is valid:∑

i∈S1

yi,i+1 +
∑
i∈S2

zi,i+1 ≤ |K| − 1 (6.21)

I.e., any cycle consisting of yij ’s and zij ’s, all equal to 1, is not allowed.

Proof: Follows directly from Theorem 6.3 by taking S1 in equation (6.20) empty.
2

6.5.2 Extended cycle inequalities

In this section, we will extend the general cycle inequalities (6.20) by introducing
additional variables that are related to successors and/or predecessors of containers
in the cycle K. Suppose we have a variable yij in our general cycle inequality (6.20).
Since the degree constraints (equations (6.4) and (6.5)) hold, we can introduce the
variables ykj such that k � i into the inequality, without increasing the right hand
side. In more general form, we obtain the following:

Theorem 6.5 Consider a set of containers K, K := {1 . . . k} and k+ 1 = 1. More-
over, let S1, S2, S3, S4 and S5 be a partition of K with the properties:

1. If i ∈ S2 ∪ S4 ∪ S5 then i+ 1 /∈ S1 ∪ S2.

2. If i ∈ S5 then i+ 1 /∈ S3.

3. If i ∈ S4 then i+ 1 /∈ S5.

4. If i ∈ S1 then i+ 1 /∈ S3 ∪ S4 ∪ S5.

Then the following inequality is valid 1.∑
iq∈S1

xiq,iq+1 +
∑
iq∈S2

∑
j∈N−q+1

xiq,j +
∑
iq∈S3

∑
j∈N+

q

yj,iq+1

+
∑
iq∈S4

∑
j∈N−q+1

yiq,j +
∑
iq∈S5

ziq,iq+1 ≤ |K| − 1 (6.22)

Proof: Assume the inequality does not hold. Then we can obtain a left hand side
of at least K. Consider two successive containers iq and iq + 1. Clearly, if iq ∈ S1,

1Note that the first property is necessary to obtain a valid inequality, the other properties only

imply stronger inequalities
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we have xiq,iq+1 = 1 and if iq ∈ S5 we have ziq,iq+1 = 1. Moreover, for each iq ∈ S2

we should have: ∑
j∈N−q+1

xiq,j ≤ 1 (6.23)

because of the degree constraint on iq. A similar condition holds for all containers
iq ∈ S4. Finally, for all jobs iq ∈ S3 we have:∑

j∈N+
q

yj,iq+1 ≤ 1 (6.24)

because of the degree constraint on iq + 1. Since we have |K| containers in our cycle,
setting |K| variables equal to 1, would result in a cycle as in Theorem 6.3, which is
not valid. 2

An example of an extended cycle inequality (6.22) is given in Figure 6.5.

y

y
x

Figure 6.5: Extended cycle inequality

Next, we will show that the extended cycle inequalities, dominate the inequalities
given by (6.20).

Theorem 6.6 The extended cycle inequalities dominate the inequalities given by
(6.20).

Proof: Consider the extended cycle inequality (6.22). Now take N−q = Ø and
N+
q = Ø. As a result, we obtain the following inequality:∑

iq∈S1∪S2

xiq,iq+1 +
∑

iq∈S3∪S4

yiq,iq+1 +
∑
iq∈S5

ziq,iq+1 ≤ |K| − 1 (6.25)

which is equivalent to (6.20). 2
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6.5.3 Cut set inequalities

In this section we will give another class of inequalities which is valid for the binary
variables yij only.

Let Q be a subset of the QCs and w.l.o.g., assume Q := {1, . . . , |Q|}. Recall the
definition of Nq, that is, Nq is the set of AGV tasks corresponding to the containers
to be handled by QC q. Now define a cut set C := {i1, . . . , i|Q|} as a set of AGV
tasks such that for each set Nq : q ∈ Q, we select exactly one task iq in the cut set.
Moreover, let N+

q and N−q be as defined before. A cut set is illustrated in Figure 6.6.
We can now construct the following valid inequalities:

Figure 6.6: A cut set

Theorem 6.7 Given a subset Q of QCs, and a cut set C := {i1, . . . , i|Q|}, the
following inequalities are valid:∑

q∈Q
q 6=1

∑
j∈N+

q

yj i1 + . . .+
∑
q∈Q
q 6=|Q|

∑
j∈N+

q

yj i|Q| ≤ |C| − 1 (6.26)

∑
q∈Q
q 6=1

∑
j∈N−q

yi1j + . . .+
∑
q∈Q
q 6=|Q|

∑
j∈N−q

yi|Q|j ≤ |C| − 1 (6.27)

Proof: We will prove only the validity of equation (6.26), the proof of the validity
of (6.27) is similar. Suppose we can set |C| variables equal to 1. Since the degree
constraint holds, i.e., equation (6.5), this means that for every iq ∈ C we must have:∑

p∈Q
p6=q

∑
j∈N+

p

yj iq = 1 (6.28)

Consider the variable equal to 1, associated with task iq ∈ C. By definition, this
variable is originating from some i+p ∈ N+

p , p ∈ Q. Hence, we have yi+p ,iq = 1 and
moreover, zip,i+p = 1 with ip ∈ C. So, we have a path from ip ∈ C to iq ∈ C. Next,
for ip we can repeat the same arguments, and we obtain zir,i+r = 1 ∧ yi+r ,ip = 1, for
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some ir ∈ C, ir 6= iq. Hence, repeating another |C|−2 times, we must end up in some
task iq ∈ C for the second time, since otherwise we would require at least |C| + 1
tasks in the cut set, which is by definition not the case. But since we end up in a
node iq ∈ C for the second time, we have a cycle as defined in Corollary 6.4, which
cannot be the case. 2

Theorem 6.8 Equation (6.26) is satisfied with equality if and only if there is a
iq ∈ C such that there is a path from iq to all other nodes in the cut set, using only
variables that are included in equation (6.26).

Proof: Whenever we have a path from a node iq ∈ C to all other nodes in the cut
set, we need to set at least |C| − 1 variables to one. Since Theorem 6.7 holds, this
means that we have exactly |C| − 1 variables set to 1.

To see that the opposite statement holds, suppose that there is no such node iq.
Since (6.26) is satisfied with equality, and since the degree constraints hold (each
node has at most one incoming variable), we should have a (sub)cycle, which is not
possible by Corollary 6.4. 2

The cut set inequalities are illustrated in Figure 6.7. Observe that inequality

Figure 6.7: Cut set inequalities on successors and predecessors, respectively

(6.26) has the form of a clique inequality on the tasks i1, . . . , i|Q|, extended with
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all incoming variables of the successors of the tasks in the chain. We will use this
observation in the separation of the inequalities as will be discussed in Section 6.8.
Note that it is possible to enumerate all possible cut set inequalities. The number of
different cut sets is O(n|Q|), where n is the total number of tasks and |Q| is the total
number of QCs. So, for a fixed number of QCs, there is a polynomial number of cut
set inequalities. In practice, the number of QCs is quite low, i.e., 4 to 6.

6.5.4 Dominance of cut set inequalities

In this section, we will show that the cut set inequalities dominate the successor and
predecessor inequalities, which are known from the literature on the Asymmetric
Traveling Salesman Problem (ATSP), cf. Balas et al. (1995). Also the clique inequal-
ities given by (6.15) in which C1 = Ø are dominated by the cut set inequalities, since
these clique inequalities are already dominated by the successor inequalities.

Successor and predecessor inequalities

For the ATSP, Balas et al. (1995) define the successor and predecessor inequalities,
which hold for general structures of precedence constraints. For the chain-like prece-
dence constraints we consider, the cut set inequalities given by (6.26) and (6.27)
form subsets of successor and predecessor inequalities. However, we will show that
it is sufficient to consider only the cut set inequalities, since for any other violated
successor or predecessor inequality, we can find a corresponding (violated) cut set
inequality.

For notational convenience, define x(S1, S2) as follows:

x(S1, S2) :=
∑
i∈S1
j∈S2

yij (6.29)

Moreover, let σ(S) and π(S) denote respectively the set of successors and predecessors
of the tasks in set S. Then we can rewrite the cut set inequalities (6.26) and (6.27)
as follows:

x(C,C) + x(σ(C), C) ≤ |C| − 1 (6.30)

x(C,C) + x(C, π(C)) ≤ |C| − 1 (6.31)

The successor and predecessor inequalities are defined as:

x(S, S) + x(S̄ ∩ σ(S), S) + x(S̄ \ σ(S), S ∩ σ(S)) ≤ |S| − 1 (6.32)

x(S, S) + x(S, S̄ ∩ π(S)) + x(S ∩ π(S), S̄ \ π(S)) ≤ |S| − 1 (6.33)
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In the next theorem, we will show that, in case we have chain-like precedence con-
straints, the cut set inequalities dominate the successor and predecessor inequalities.

Theorem 6.9 Given chain-like precedence constraints, such that each task is exactly
in one chain. Then the cut set inequalities defined by (6.30) and (6.31) dominate
respectively the successor inequalities (6.32) and the predecessor inequalities (6.33).

Proof: We will prove only the case of the successor inequality. The proof for the
predecessor inequality is similar.

Note that we consider only chain-like precedence constraints. In case S is a cut
set, i.e., S contains at most one task of each chain, we have that:

S̄ ∩ σ(S) = σ(S) (6.34)

and

S ∩ σ(S) = Ø (6.35)

Hence, in this case the successor inequality is similar to the cut set inequality (6.30).
The remainder of the proof considers the case when S is not a cut set, that is,

there is a chain for which S contains more than one task. We will show that the
successor inequality can be decomposed into a cut set inequality plus a number of
degree constraints. Hence, whenever no cut set inequality is violated, it cannot be
the case that a successor inequality is violated.

Now consider a successor inequality on set S and let C define a cut set in such
a way that C ⊂ S and for all i ∈ C there is no task j ∈ S such that j ≺ i. That
is, C is the subset of S such that the tasks in C have no predecessors within the set
S. Distinguishing between C and S \ C, we obtain the following equivalent for the
successor inequality (6.32):

x(C,C) + x(S \ C, C) + x(S, S \ C)

+x(S̄ ∩ σ(S), C) + x(S̄ ∩ σ(S), S \ C) (6.36)

+x(S̄ \ σ(S), C ∩ σ(S)) + x(S̄ \ σ(S), (S \ C) ∩ σ(S)) ≤ |S| − 1

Note that x(S̄ \ σ(S), C ∩ σ(S)) = 0, since C ∩ σ(S) = Ø by the way we choose the
cut set C. Moreover, we have that

σ(C) = σ(S) (6.37)

as well as

S̄ ∩ σ(S) = σ(C) \ (S \ C) (6.38)
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and

(S \ C) ∩ σ(S) = S \ C (6.39)

This leads to the following form of (6.36):

x(C,C) + x(S \ C, C) + x(S, S \ C)

+x(σ(C) \ (S \ C), C) + x(σ(C) \ (S \ C), S \ C) (6.40)

+x(S̄ \ σ(C), S \ C) ≤ |S| − 1

The following terms of (6.40) imply no more than the degree constraints on the tasks
in S \ C, i.e., we have that:

x(S, S \ C) + x(σ(C) \ (S \ C), S \ C) + x(S̄ \ σ(C), S \ C) ≤ |S \ C| (6.41)

As a result, a successor inequality (6.32) can only be violated whenever for the
remaining part of (6.40) we have:

x(C,C) + x(S \ C, C) + x(σ(C) \ (S \ C), C) > |C| − 1 (6.42)

Since C is chosen such that each task in S \ C is a successor of some task in C, we
have that:

(S \ C) ∪ (σ(C) \ (S \ C)) = σ(C) (6.43)

Hence, (6.42) reduces to:

x(C,C) + x(σ(C), C) > |C| − 1 (6.44)

which implies the violation of a cut set inequality (6.26) on C. 2

Balas et al. (1995) also define another class of valid inequalities, the so-called
predecessor-successor inequalities. These inequalities are given for sets S1 and S2

such that i ≺ j for each pair of i ∈ S1, j ∈ S2. The chain-like precedence constraints
only allow for such inequalities with |S1| = |S2| = 1. However, the inequalities are
not valid for our problem, since they use implicitly the fact that a single salesman
(a single AGV) visits all nodes. In our case however, we have multiple AGVs, and
thus, multiple tours.

Clique inequalities

Recall from Section 6.4 that the clique inequality on a set S ⊆ N of AGV tasks is
given by: ∑

i∈S

∑
j∈S

yji ≤ |S| − 1 (6.45)
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Following the notation as introduced in this subsection, this inequality can be rewrit-
ten as:

x(S, S) ≤ |S| − 1 (6.46)

Next, we state the following theorem about the dominance of the cut set inequalities
over the clique inequalities:

Theorem 6.10 The clique inequalities given by (6.45) are dominated by the cut set
inequalities (6.26).

Proof: It is obvious that the successor inequality as given by equation (6.32) dom-
inates inequality (6.46). Since the successor inequality is dominated by the cut set
inequality (6.30), it follows that the cut set inequality also dominates the clique
inequality. 2

Note that the result above only holds for clique inequalities consisting of variables
related to AGV tasks. The clique inequalities for sets that contain ASC tasks, or a
combination of AGV and ASC tasks, are not dominated by the cut set inequalities.

6.5.5 Mixed cut set inequalities

The cut set inequalities as defined so far, only consider AGV tasks. In this subsection,
we will extend these inequalities to include also variables related with ASC tasks.

Now consider again a cut set inequality, which is slightly modified by deleting
the variables among the tasks in the cut set. Let i+q denote a task associated with
some task that succeeds iq at the QC, i.e., ziqi+q = 1. Now select a cut set C and a
cut set C+ of successors of C, that is, C := {i1, . . . , i|Q|} and C+ := {i+1 , . . . , i

+
|Q|}.

Moreover, redefine N+
q as:

N+
q := {i ∈ Nq|i � i+q } (6.47)

Then we can state the following:

Theorem 6.11 Given |Q| chains Nq, a cut set C := {i1, . . . , i|Q|} and a cut set
C+ := {i+1 , . . . , i

+
|Q|}, as defined above, the following inequality is valid:∑

q∈Q
q 6=1

xi1,i+q + . . .+
∑
q∈Q
q 6=|Q|

xi|Q|,i+q

+
∑
q∈Q
q 6=1

∑
j∈N+

q

yj,i1 + . . .+
∑
q∈Q
q 6=|Q|

∑
j∈N+

q

yj,i|Q| ≤ 2 |C| − 2 (6.48)
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Proof: The proof is in line with the proof of Theorem 6.7. Suppose the inequality
does not hold, i.e., we can set 2 |C|−1 variables equal to 1. Note that because of the
degree constraints (6.2), we have that:∑

q∈Q
q 6=1

xi1,i+q + . . .+
∑
q∈Q
q 6=|Q|

xi|Q|,i+q ≤ |C| (6.49)

Moreover, by Theorem 6.7 we have:∑
q∈Q
q 6=1

∑
j∈N+

q

yj,i1 + . . .+
∑
q∈Q
q 6=|Q|

∑
j∈N+

q

yj,i|Q| ≤ |C| − 1 (6.50)

Now, setting 2 |C| − 1 variables equal to 1, implies that:∑
q∈Q
q 6=1

xi1,i+q + . . .+
∑
q∈Q
q 6=|Q|

xi|Q|,i+q = |C| (6.51)

and ∑
q∈Q
q 6=1

∑
j∈N+

q

yj,i1 + . . .+
∑
q∈Q
q 6=|Q|

∑
j∈N+

q

yj,i|Q| = |C| − 1 (6.52)

First, we consider the consequences of (6.51). Since the degree constraints hold,
this implies for each individual task i+q in C+ that:∑

ip∈C,p 6=q

xip,i+q = 1 ∀i+q ∈ C+ (6.53)

So, for each task i+q ∈ C+, there is an incoming variable xip,i+q set to 1.
The consequences of (6.52) follow directly from Theorem 6.8, that is, there is

a node iq ∈ C for which we have a path to all other nodes in C. Obviously, by
definition of the sets N+

q , we have that all these paths pass node i+q . So, for i+q we
have a path to all nodes ip ∈ C, ip 6= iq. Combining this with (6.53) gives us a cycle
like (6.20), which by Theorem 6.3 cannot be the case. 2

In Figure 6.8 we illustrate the mixed cut set inequality. The dotted arcs represent
the xij ’s. The solid arcs represent the yij ’s.

6.6 Inequalities on completion times of tasks

In this section, we will discuss some inequalities for the continuous variables in our
MIP formulation, i.e., the variables bi, which represent the completion times of the
ASC tasks.
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Figure 6.8: Extended cut set inequality

The scheduling of a single ASC can be viewed as a single machine scheduling
problem. The inequalities we give in this section are only valid for tasks that are to
be scheduled on the same ASC.

The following inequalities were introduced by Queyranne (1993) for the single
machine scheduling problem. Consider a set of tasks S that is to be scheduled on the
same ASC. Then the following inequality holds (for notational convenience denote
pasci by pi): ∑

i∈S
pibi ≥

∑
i∈S

p2
i +

∑
i∈S

∑
j∈S
j>i

pipj (6.54)

For the simple problem in which we only have (positive) handling times and no release
or due dates, these inequalities give a complete description of the convex hull for the
single machine scheduling problem. Note that in this case we have a schedule with
no idle time between the tasks. However, in the problem we consider, there might
be idle time between two containers on the ASC, due to the limited availability of
AGVs. So, it is obvious that equation (6.54) gives us a lower bound on the completion
times of the ASC tasks. In a similar way, we can also derive an upper bound on the
completion times, that is:∑

i∈S
pibi ≤ Cmax ·

∑
i∈S

pi −
∑
i∈S

∑
j∈S
j>i

pipj (6.55)

Note that on the right hand side Cmax appears. Clearly, this can be replaced by any
upper bound on Cmax. However, every feasible solution gives such an upper bound.
So, whenever a better solution is found during the solving of the problem, Cmax is
decreased and the inequalities (6.55) are strengthened.

Next, we will show how inequality (6.55) can be strengthened by using the fact
that each ASC task is followed by the corresponding AGV task. Moreover, the AGV
task is followed by the handling of the container on the QC, which has a number of
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successors on the QC. Hence, for each ASC task, we can define a tail tasci as follows:

tasci = pagvi +
∑
j�i

pqcj (6.56)

Given a value for Cmax, an ASC task i has to be completed on time, taking into
account its tail. So we should have that:

bi ≤ Cmax − tasci (6.57)

So, the tail tasci can then be interpreted as a due-date. This allows for the following
strengthening of inequality (6.55), cf. Queyranne and Schulz (1995):∑

i∈S
pibi ≤ (Cmax −min

i∈S
tasci ) ·

∑
i∈S

pi −
∑
i∈S

∑
j∈S
j>i

pipj (6.58)

In order to extend inequality (6.54) in a similar way, a head hasci , that is, the
earliest time an ASC task can start, should be determined. Unfortunately, it is
not possible to derive a similar expression like (6.56) for the hasci ’s in advance, i.e.,
initially hasci = 0. Only if variables are set to one, it is possible to determine heads
hasci > 0, since the variables that are set to one define a partial order, that is, some
of the predecessors of task i on the ASC may be set by this partial order.

6.6.1 Strengthening the subtour elimination constraints

In this section we show how we can strengthen the subtour elimination constraints of
the original formulation, i.e. equations (6.6) and (6.7). Recall these equations from
Section 6.3:

K(1− xij) + bj − bi ≥ pascj (6.59)

K(1− yij) + bj − ci ≥ sagvij (6.60)

The value of the parameter K should be sufficiently large in order to ensure validity
of the inequalities in case xij or yij equals 0. On the other hand, we would like to
choose the value of K as small as possible, since a large value of K results in a weak
LP-relaxation. Whenever the values xij and yij are fractional in equations (6.59)
and (6.60), and K is very large, the values of the continuous variables representing
the completion times of the tasks do not have to differ much in order to satisfy the
equations. As a result, the lower bound on the makespan we obtain is low.

Equations (6.59) and (6.60) can be strengthened by using the upper and lower
bounds of the continuous variables that are included in the inequality. Hence, for
specific tasks i and j we can introduce a parameter Kij . Consider for instance
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equation (6.59). We can then set the value of Kij as the difference between the
upper bound of variable bi, minus the lower bound of variable bj , plus the value of
the right hand side. So, even if xij = 0, the inequality is satisfied. We will next
determine the values of the Kij ’s more formally.

For notation purposes, relate K1
ij to equations (6.59) and K2

ij to equations (6.60).
The values of the parameters are then defined as follows:

K1
ij = Cmax − pagvi −

∑
k�i

pqck (6.61)

K2
ij = Cmax −

∑
k�i

pqck − p
asc
j + sagvij (6.62)

Note that for Cmax we need initially an upper bound. A trivial bound is to sum up all
handling times of all containers. However, if we find a better feasible solution during
the optimization, Cmax is decreased and also the Kij ’s can be updated accordingly.
So we can replace equations (6.59) and (6.60) with:

K1
ij(1− xij) + bj − bi ≥ pascj (6.63)

K2
ij(1− yij) + bj − ci ≥ sagvij (6.64)

Another way to improve equation (6.60), i.e. the subtour elimination constraint
on the AGV tasks, is to make use of the precedence constraints. This can be done
by taking next to yij , also all the variables associated with the successors of i in the
chain into the inequality:

K2
ij(1−

∑
k�i

ykj) + bj − ci ≥ sagvij (6.65)

6.7 Path inequalities using precedence constraints

In this section we will derive some valid inequalities that are based on variables that
represent paths between AGV tasks related to two containers which are handled
by the same QC. These constraints combine both the binary and continuous vari-
ables. Recall from Section 6.3 the equations (6.7) and (6.8) of the MIP formulation.
Combining these restrictions gives us:

K(1− yij) + cj − ci ≥ sagvij + pagvj (6.66)

Note that in case containers i and j are handled by the same QC, and i ≺ j, we have
that cj > ci by inequality (6.9). Hence, we can rewrite (6.66) as follows:

cj − ci ≥ yij(sagvij + pagvj ) (6.67)
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Equation (6.67) states that if an AGV transports container j directly after container
i, then the difference in completion time of the tasks is at least the switch-over time
plus the handling time. Note that (6.67) only holds whenever i ≺ j. For notational
convenience, we define the following parameter:

P qcij =
∑
k�i
k≺j

pqck (6.68)

Parameter P qcij represents the minimal difference between the completion time of task
i and task j where container i precedes container j on the QC, i.e., we have

cj ≥ ci + P qcij (6.69)

which follows directly from equations (6.9) of the original formulation. Combining
(6.67) and (6.69) gives then the following inequality:

cj − ci ≥ P qcij + yij(s
agv
ij + pagvj − P qcij ) (6.70)

Next, we can generalize this inequality in the following way:

Theorem 6.12 Given AGV tasks i, . . . , j, such that i ≺ . . . ≺ j on the same QC,
the following inequalities are valid:

cj ≥ ci + P qcij +
∑
k�i
k≺j

ykj(P
qc
ik + sagvkj + pagvj − P qcij ) (6.71)

cj ≥ ci + P qcij +
∑
k�i
k�j

yik(sagvik + pagvk + P qckj − P
qc
ij ) (6.72)

Proof: We will only prove (6.71), the proof of (6.72) is similar. Clearly, because of
the degree constraint on j, we have:∑

k�i
k≺j

ykj ≤ 1 (6.73)

Hence, in any integer solution at most one variable is set to 1. W.l.o.g. assume
ykj = 1. Consequently, (6.71) reduces to:

cj ≥ ci + P qcik + sagvkj + pagvj (6.74)

Obviously, we have that

ck ≥ ci + P qcik (6.75)



6.7. Path inequalities using precedence constraints 117

by equation (6.69). And by equation (6.67) we have:

cj ≥ ck + skj + pagvj (6.76)

Combining equations (6.75) and (6.76) gives then the required result. 2

Clearly, in equation (6.71) we should consider only tasks k for which we have that
P qcik + sagvkj + pagvj > P qcij . An equivalent condition holds for equation (6.72).

6.7.1 Extended path inequalities

In this section, we will show how to extend the path inequalities (6.71) and (6.72) by
introducing additional variables. These additional variables represent paths between
i and j that use other chains. In the remainder of this subsection, we will only extend
inequality (6.71). Obviously, similar extensions are possible for inequality (6.72).

For the remainder of this subsection, define variable γij as:

γij =
∑
k�i
k≺j

ykj(P
qc
ik + sagvkj + pagvj − P qcij ) (6.77)

Then we can extend inequality (6.71) as follows:

Theorem 6.13 Given tasks i, j and k, l belonging to different chains, such that i ≺ j
and k ≺ l, the following inequality is valid:

cj ≥ ci + P qcij + γij + (yik + ylj − 1)(sagvik + pagvk + P qckl + sagvlj + pagvj − P qcij ) (6.78)

Proof: Obviously, we only have to prove the case in which yik + ylj > 1, otherwise
inequality (6.78) is weaker than inequality (6.71).

In case yik + ylj > 1, we must have (in any feasible solution) yik = ylj = 1. This
results in γij = 0 by the degree constraint on j. So, as a result of yik = ylj = 1,
inequality (6.78) reduces to:

cj ≥ ci + sagvik + pagvk + P qckl + sagvlj + pagvj (6.79)

which follows immediately from equations (6.7), (6.8) and (6.9) from the original
MIP formulation. 2

Obviously, tasks k and l should be chosen in such a way that:

sagvik + pagvk + P qckl + sagvlj + pagvj > P qcij (6.80)

otherwise the inequality is redundant.
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Inequality (6.78) can be extended further by additional variables. For instance,
we can take any variable yig such that g ≺ k or any variable yhj such that h � l. We
then get the following inequality:

cj ≥ ci + P qcij + γij (6.81)

+

∑
g�k

yig +
∑
h�l

yhj − 1

 · (sagvik + pagvk + P qckl + sagvlj + pagvj − P qcij
)

Note that inequality (6.81) only holds if:

sagvig + pagvg + P qcgk ≥ s
agv
ik + pagvk ∀g ≺ k (6.82)

and

P qclh + sagvhj + pagvj ≥ sagvlj + pagvj ∀h � l (6.83)

For specific layouts of the container terminal, e.g. a loop layout (see Chapter 4),
this is always the case. For the more general layouts we consider in this chapter, the
condition has to be checked for a specific set of tasks.

It is also possible to extend (6.78) similarly like (6.81) by considering successors of
task i and predecessors of task j. In the next section we will show that it is possible
to obtain a far more general form of inequality (6.81) by taking any path between
tasks i and j.

6.7.2 General path inequalities

Recall Subsection 6.5.2 in which we introduced a general cycle inequality involving
both variables related to AGV and ASC tasks. In a similar way, we can describe
a path from AGV task i to AGV task j. Hence, it is possible to extend inequality
(6.71) using any path between tasks i and j.

Note that each variable xij or yij or parameter zij that is chosen in the path, can
be associated with a certain amount of handling time, say pij . For instance, setting
xij = 1 gives a difference in completion time between ASC task i and ASC task j

of pascj (see equation (6.6)). Similarly, we can also associate a handling time with
yij and zij . We can then make the following statement:

Theorem 6.14 Consider a set of containers K := {1 . . . k}. Let 1 and k represent
containers belonging to the same chain such that 1 ≺ k. Moreover, let S1, S2, S3, S4

and S5 be a partition of K with the following properties:

1. If i ∈ S2 ∪ S4 ∪ S5 then i+ 1 /∈ S1 ∪ S2.
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2. Containers 1, k − 1 ∈ S3 ∪ S4

Then the following inequality is valid:

ck ≥ c1 + P qc1k +
∑
i�1
i≺k

yik(P qc1i + sagvik + pagvk − P qc1k)

+

∑
iq∈S1

xiq,iq+1 +
∑
iq∈S2

∑
j∈N−q+1

xiqj +
∑
iq∈S3

∑
j∈N+

q

yj iq+1 (6.84)

+
∑
iq∈S4

∑
j∈N−q+1

yiqj +
∑
iq∈S5

ziq iq+1 − (|K| − 2)

 ·(∑
i∈K

pi i+1 − P qc1k

)

Proof: The proof mainly follows the same line as the proof of Theorem 6.13. Again
we only have to consider the case in which the variables on the path from 1 to k have
all value 1. In any other case the inequality is dominated by (6.71). As a result, we
have that: ∑

i�1
i≺k

yik = 0 (6.85)

Obviously, the inequality then follows directly from relating a variable xij or yij or a
parameter zij which is set to 1, with the corresponding handling time pij . 2

Inequality (6.84) is fairly complicated. Hence, given a fractional LP-solution,
deciding whether or not the LP-solution satisfies all inequalities of this class might
be quite complicated. In Section 6.8 we will give a separation algorithm which only
finds inequalities of a subclass of (6.84).

6.8 Separation

Given the MIP formulation of the problem as given in Section 6.3, we have discussed
several classes of valid inequalities in the previous sections (6.4 to 6.7). Whenever
we consider a certain class of inequalities, it is possible to include all the inequalities
belonging to this class in our initial LP, that is, to include all inequalities in the root
node of the Branch & Bound algorithm. However, some of these classes are very
large. So, including all the inequalities would give a huge number of rows in our LP,
which results in large computation times for the optimal LP in every node of the
branching tree. Therefore, to keep the size of the LP small, we would like to include
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only the inequalities that are violated. In order to identify violated inequalities, we
have to solve the separation problem. So, given an optimal solution x̄ to the current
LP problem, we have to verify that x̄ satisfies all inequalities of a class which we have
shown to be valid for our optimization problem, or if not, find an inequality of this
class that is violated by x̄.

In this section, we will give separation algorithms for the various classes of in-
equalities we derived in Sections 6.4 to 6.7. Some of these procedures are exact, that
is, the procedure either finds an inequality that is violated, or returns that none of
the valid inequalities in the class is violated. Other procedures are heuristic, which
implies that whenever no violated inequality is returned, this does not necessarily
mean that there is no violated inequality.

In the following subsections, we will discuss separation procedures for various
classes of inequalities, starting with the cycle inequalities.

6.8.1 Separation of extended cycle inequalities

In this section we will give an exact separation algorithm for finding (violated) ex-
tended cycle inequalities. The algorithm is based on finding shortest paths in a graph
and runs in polynomial time.

Recall from Section 6.5.2 the cycle inequalities, given by equation (6.22). Obvi-
ously, this is the most general form we derived, i.e., all other cycle inequalities are
within this class:∑

iq∈S1

xiq,iq+1 +
∑
iq∈S2

∑
j∈N−q+1

xiq,j +
∑
iq∈S3

∑
j∈N+

q

yj,iq+1

+
∑
iq∈S4

∑
j∈N−q+1

yiq,j +
∑
iq∈S5

ziq,iq+1 ≤ |K| − 1 (6.86)

Where S1, S2, S3, S4, S5 is a partition of the set K := {1 . . . k} with k+ 1 = 1, which
satisfies several conditions (see Theorem 6.5). Next, we will describe the separation
algorithm for the cycle inequalities.

An exact separation procedure

Given a fractional LP solution (x̄, ȳ), we now can find a violated inequality (6.22) as
follows. Construct a directed graph which node set is given by the set of AGV and
ASC tasks. The arc set and the arc lengths are defined as follows:
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1. For each pair of AGV tasks i, j we define an arc (i, j) with length:

1−max


∑
k∈N+

i

ȳk j ,
∑
k∈N−j

ȳik

 (6.87)

2. For each pair of ASC tasks i′, j′ related to the same ASC, we define an arc
(i′, j′) of length 1− x̄i′j′ .

3. For each combination of an AGV task i and an ASC task j′, we define an arc
(i, j′) of length

1−
∑
k∈N+

i

ȳk j (6.88)

where j is the corresponding AGV task of ASC task j′. Note that these arcs
correspond to containers i, j in the cycle inequality (6.86) such that i ∈ S3 and
j ∈ S1 ∪ S2.

4. For each combination of an ASC task i′ and an AGV task j, we take an arc
(i′, j) of length

1−
∑
k∈N−j

x̄i′k′ (6.89)

where k′ is the ASC task that corresponds to AGV task k. These arcs represent
containers i, j in the cycle such that i ∈ S2 and j ∈ S3 ∪ S4 ∪ S5.

5. For any pair of AGV tasks i, j such that i ≺ j, we take an arc (i, j) of length 0.

Note that for a pair of ASC and AGV tasks related to the same container, we do not
introduce an arc. The connection between these tasks is implicitly made by the arcs
in 3. and 4.

Given the graph as described above, we then calculate the shortest path from
each node to itself. If the length of any of these paths is less than one, we have found
a violated extended cycle inequality. Note that we can determine which arcs are in
the cycle inequality by backtracking the shortest path.

Since calculating a shortest path can be done in polynomial time and since we have
to do this for each node n, we may use the Floyd-Warshall algorithm for calculating
all pairs shortest paths. This algorithm requires O(n3) time.

Some modifications may be possible to improve the calculation of the shortest
paths. Note that we do not have to consider variables with value zero, since these
can never be in a violated cycle inequality. Thus we do not have to add arcs to our
graph that are related to variables which value equals zero. Therefore, the graph is
sparser, which increases the speed of the shortest path algorithm.
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6.8.2 Separation of clique inequalities

In this subsection, we will discuss the separation problem of the clique inequalities as
given by equation (6.15). The procedure we propose is heuristic and can be applied
to the separation of cut set inequalities as well (see also Subsection 6.8.3).

Consider a mixed clique inequality given by equation (6.15). Such a clique in-
equality is violated if we have that:∑

i∈C1

∑
j∈K

xji +
∑
i∈C2

∑
j∈K

yji > |K| − 1 (6.90)

For the remainder of this subsection, we will assume that subset C1 is empty, i.e.,
we have a clique of AGV tasks only. Clearly, the results can be easily extended to
the case in which we have a clique of both AGV and ASC tasks.

Let ȳij denote a fractional solution, obtained from the LP-relaxation. Now, we
want to find a set of tasks K such that the following term is maximal:∑

i,j∈K
ȳij − |K|+ 1 (6.91)

That is, we look for a clique K for which the corresponding clique inequality is most
violated.

Next, we will consider some algorithmic aspects of finding a violated clique in-
equality. First, we will give a MIP formulation of the problem, followed by a heuristic.

A MIP formulation

The problem of finding the most violated clique inequality, given a fractional LP so-
lution ȳ, can be formulated as a MIP. Therefore, we introduce the following variables:

αi =

{
1 if task i is chosen in the clique
0 otherwise

βij =

{
1 if variables ȳij and ȳji are chosen in the clique
0 otherwise



6.8. Separation 123

In order to find the most violated clique inequality, we can formulate the following
optimization problem:

Min η =
∑
i∈N

αi −
∑
i,j∈N
j>i

βij(ȳij + ȳji) (6.92)

s.t. ∑
i∈N

αi ≥ 2 (6.93)

βij ≤ αi ∀ i, j ∈ N : j > i (6.94)

βij ≤ αj ∀ i, j ∈ N : j > i (6.95)

βij ≥ 0 ∀ i, j ∈ N : j > i (6.96)

βij ≤ 1 ∀ i, j ∈ N : j > i (6.97)

αi ∈ {0, 1} ∀ i ∈ N (6.98)

The objective (6.92) is to find a clique of maximal weight. Whenever the value
of the objective function η < 1, we have a violated clique inequality. Whenever no
task is selected into the clique, the objective function is minimal. In order to avoid
this, we introduce restriction (6.93) which states that a clique should at least contain
two or more tasks. Equations (6.94) and (6.95) state that βij can only be set to 1,
whenever both task i and task j are selected in the clique. That is, βij = 1 implies
αi = 1 and αj = 1. Note that βij appears with a negative coefficient in the objective.
So, βij will always be set as large as possible. As a result, we do not have to define
βij as a binary variable. Instead, we define βij as a continuous variable between 0
and 1, i.e., equations (6.96) and (6.97). Finally, equation (6.98) requires αi to be
either 0 or 1.

The problem of finding a maximal edge-weighted clique, as formulated by (6.92)
to (6.98) is NP-complete, cf. Dijkhuizen and Faigle (1993), since it generalizes the
maximal clique problem. Therefore, we will use a heuristic approach for finding a
violated clique inequality. This heuristic is described in the following subsection.

A heuristic

In this subsection, we will describe an algorithm for finding a maximal edge-weighted
clique of size K. For convenience, we assume an undirected graph, where we is the
weight associated with an edge e between two nodes i, j. Hence, for a LP solution ȳ,
we define we := yij + yji.

The algorithm that finds a maximal edge weighted clique of size K simply starts
by choosing randomly a clique of size K. Given this initial clique, we then try to
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exchange a node c that is in the clique with a node d that is not in the clique. If the
sum of the edge weights increases, we replace node c by node d, else not. This local
search algorithm looks then as follows:

Algorithm 1 Separation clique inequality of size K
Given a graph G(N,E) with edge weights we

Select randomly a clique C of size K

while improvement do

for all c ∈ C do

for all d /∈ C do

C′ := (C \ {c}) ∪ {d}
if
∑
e∈C′ we >

∑
e∈C we then

C := C′

end if

end for

end for

end while

Obviously, it is possible to run the algorithm several times in a row, that is, to
start with different randomly chosen initial cliques. If for the clique C that is found
by the algorithm we have that

∑
e∈C we > K − 1, we have found a violated clique

inequality on C.

6.8.3 Separation of cut set inequalities

In this section, we will discuss the separation of cut set inequalities. We will show
that the problem of finding a violated cut set inequality can be transformed into
finding a violated edge weighted clique inequality. As a result, finding a violated cut
set inequality can be done using the same method as described in Section 6.8.2.

Recall from Section 6.5.3 the cut set inequalities:∑
q∈Q
q 6=1

∑
j∈N+

q

yj,i1 + . . .+
∑
q∈Q
q 6=|Q|

∑
j∈N+

q

yj,i|Q| ≤ |C| − 1 (6.99)

∑
q∈Q
q 6=1

∑
j∈N−q

yi1,j + . . .+
∑
q∈Q
q 6=|Q|

∑
j∈N−q

yi|Q|,j ≤ |C| − 1 (6.100)

From the definition of the cut sets, it follows that we have at most O(n|QC|)
different cut sets, where n denotes the total number of containers and |QC| is the
total number of QCs (chains). Clearly, it would be possible to enumerate all different
cut set inequalities, since for a fixed number of QCs, we have a polynomial number of
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them. However, for |QC| in the range 4 to 6 and for large n, the required computation
time may still be too large. Hence, we transform the problem of finding a violated cut
set inequality into finding a maximal edge weighted clique in a graph. We can then
solve the separation problem using the heuristic algorithm for the clique inequalities
as given in Subsection 6.8.2. It is obvious that since we solve the clique problem
heuristically, we also cannot guarantee that a violated cut set inequality is always
found.

Now we will show how to transform the cut set inequalities into a graph with
corresponding edge weights. For each AGV task, we introduce a node in the graph.
Note that by definition of a cut set, we only want to select at most one node from
every chain in the cut set. Therefore, we define only edges between nodes of different
chains. In case of a cut set inequality given by (6.99), the edge-weight for an edge e
between nodes i and j is then calculated as follows:

we :=
∑
k�i

ykj +
∑
k�j

yki (6.101)

In case we want to search a violated cut set inequality given by (6.100), the edge-
weights are defined as:

we :=
∑
k�j

yik +
∑
k�i

yjk (6.102)

Now, given the weights we, we want to select a clique C such that∑
e∈C

we > |C| − 1 (6.103)

In case we find such a clique C, we have found a violated cut set inequality. Thus,
we have transformed the problem of finding a violated cut set inequality into the
problem of finding a violated clique inequality on the graph as defined above.

6.8.4 Separation of inequalities on completion times of tasks

In this subsection, we will discuss the separation of the inequalities as given in Sec-
tion 6.6. We will only discuss the separation for inequalities (6.54), the separation
for inequalities (6.58) can be done in a similar way.

Recall inequality (6.54) from Section 6.6:∑
i∈S

pibi ≥
∑
i∈S

p2
i +

∑
i∈S

∑
j∈S
j>i

pipj (6.104)
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Clearly, we would like to find the most violated inequality, that is, we would like
to maximize the right hand side minus the left hand side:

max
S⊆N


∑
i∈S

p2
i +

∑
i∈S

∑
j∈S
j>i

pipj −
∑
i∈S

pibi

 (6.105)

Obviously, it is possible to enumerate over all possible sets S in order to find
the most violated inequality. However, as |S| increases, the number of possible sets
explodes. An algorithm proposed by Queyranne (1993), requires only O(n) evalua-
tions. The algorithm is based on the following observation (for details see Queyranne
(1993)):

Property 6.8.1 Let S be the set that maximizes equation (6.105), given the relax-
ation b̄. Then for each pair of tasks i, j such that b̄j < b̄i, we have that:

i ∈ S ⇒ j ∈ S (6.106)

For given b̄i’s, Property 6.8.1 implies that out of all candidate sets S, we only have to
consider |N | of them, namely, the ones which contain the nth smallest b̄i’s, for each
n := 1 . . . |N |. Algorithm 2 sketches the outline of the separation procedure.

Algorithm 2 Separation inequality on completion times (Queyranne (1993))
Given tasks {1, . . . , n}, sorted in non-decreasing order of the b̄i’s.

W.l.o.g. assume that b̄1 ≤ . . . ≤ b̄n.

S = Ø; Sbest = Ø; best = 0;

for i := 1 to n do

S := S ∪ {i}
if best <

∑
i∈S p

2
i +

∑
i∈S
∑
j∈S,j>i pipj −

∑
i∈S pib̄i then

best =
∑
i∈S p

2
i +

∑
i∈S
∑
j∈S,j>i pipj −

∑
i∈S pib̄i

Sbest := S

end if

end for

Starting with an empty set S and adding the tasks one by one, the actual calcu-
lations of (6.105) can be done recursively. This allows for a very efficient implemen-
tation of the algorithm. The algorithm is exact, that is, it either gives us the most
violated inequality, or it returns that there is no inequality violated.

For the case of inequality (6.55), a similar algorithm can be constructed. Also
whenever we introduce tails, i.e., equation (6.58), we can still use the same algorithm
in a somewhat modified version. However, in this case, the separation is not exact
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anymore. That is, Property 6.8.1 does not necessarily hold for the set S which
represents the most violated inequality. As a result, there might be a set S′ for
which the inequality is violated, but this set S′ might not belong to the group of
|N | sets that are considered by the algorithm. Therefore, the algorithm is used as a
heuristic procedure for separating inequalities (6.58).

6.8.5 Separation of path inequalities

In this section we will give a separation procedure for the inequalities which were
discussed in Section 6.7. Recall the basic path inequalities:

cj ≥ ci + P qcij +
∑
k�i
k≺j

ykj(P
qc
ik + sagvkj + pagvj − P qcij ) (6.107)

cj ≥ ci + P qcij +
∑
k�i
k�j

yik(sagvik + pagvk + P qckj − P
qc
ij ) (6.108)

Note that in both path inequalities, we will only include variables ykj for which we
have that:

sagvkj + pagvj > P qckj (6.109)

Obviously, checking whether or not a path inequality is violated, can be done by
enumerating over all i, j in the same chain. This requires at most O(n2) evaluations.

In order to determine whether or not there is an general path inequality violated,
i.e., an inequality like (6.84), we propose the following procedure. For each chain
separately, we will search for a violated inequality. Note that we are only interested
in path inequalities for which the values of the binary variables that represent the
path are sufficiently large. Therefore, we construct a graph in which we will search
a shortest path (consisting of binary variables) from AGV task i to AGV task j in
the same chain.

The graph is then constructed as follows. For each task we take a node. The arc
set is defined in a similar way as it is in the graph we use for the separation of the
cycle inequalities (see Section 6.8.1). The only modification is that between nodes
belonging to the current chain under consideration, we take no arcs. Moreover, from
nodes in the current chain to any other node, we only take arcs representing variables
yij . This follows directly from the definition of the generalized path inequalities (see
Theorem 6.14).

Next, we calculate a shortest path in the graph from node i to node j, where i, j
are in the current chain. If the length of this shortest path is greater or equal to
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one, we may conclude that there is no violated path inequality on nodes i and j. If
the length of the path is less than one, this path may induce a violated inequality.
We then have to check this by taking the basic path inequality for tasks i and j and
adding the variables representing the path, multiplied with their coefficients pij (see
also Subsection 6.7.2).

Note that the procedure sketched above does not give certainty about the exis-
tence of a violated inequality. Suppose that there are two paths between nodes i
and j in the constructed graph, both with length less than 1. The shortest path
algorithm will find the shortest of the two paths. The corresponding path inequality
may not be violated, while the inequality corresponding to the other path may.

An alternative procedure to find a violated extended path inequality, i.e., inequal-
ity (6.78), is the following. Check for which pair of AGV tasks i, j the difference in
completion times cj − ci is tight, that is, for which i, j we have:

cj − ci ≈ P qcij (6.110)

For such a pair of tasks, there might be a violation of the path inequality (6.78).
Next, look for a violation by considering only paths through tasks k, l such that
k ≺ l. In this case, we simply enumerate of all possible k, l.

6.9 Preprocessing and logical constraints

In this section we will derive several preprocessing rules and logical constraints that
can be applied in any node of the Branch & Bound tree. These rules allow us to set
variables equal to their upper or lower bound. Moreover, it is possible to introduce
additional restrictions which relate the values of several variables to each other. In
order to justify these rules, we have to show that by applying them it is not possible
that the entire set of optimal solutions is eliminated from the search tree. Clearly,
this would be the case if solutions are only eliminated from consideration when it has
been established that there exists a solution with a strictly better objective value.
However, our rules do not have this property, since we can only show that there exists
another solution in the tree with an objective value that is not worse. Therefore, we
will use a more subtle argument, for which we introduce the following three additional
criteria:

1. The number of pairs of tasks i, j for which i is scheduled before j on the ASC,
but for the corresponding containers i, j we have that j ≺ i on the QC (to be
minimized).
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2. The number of pairs of tasks i, j for which i is scheduled before j on the ASC
such that pasci > pascj (to be maximized).

3. The variance in waiting time of AGVs between the completion of the previ-
ous task and the start of the next task, i.e.,

∑
i,j((bj − s

agv
ij − ci)yij)2 (to be

minimized).

The objective value and the three additional criteria (in the given order) define a
lexicographical ordering on the solutions. For each preprocessing rule, we will show
that certain solutions can be eliminated from consideration because, somewhere else
in the tree, there exists a strictly better solution with respect to this ordering.

Theorem 6.15 If solutions are only eliminated when there exists a better solution
with respect to the lexicographical ordering defined by the objective value and the
additional criteria 1., 2. and 3., then this will never lead to the deletion of the entire
set of optimal solutions, i.e., there always remains at least one optimal solution in
the tree.

Proof: Consider the set of optimal solutions. By definition, these solutions all have
the same objective value. Take the subset of optimal solutions for which the value of
criterion 1 is lowest. From this subset, take the subset of all solutions with highest
value of criterion 2 and, finally, take from that set the subset of solutions with the
lowest value of criterion 3. The optimal solutions in the latter subset are “the best”
with respect to the lexicographical ordering and, therefore, can never be eliminated.

2

6.9.1 Preprocessing on xij variables

In this section, we will discuss some preprocessing rules on the xij variables which
represent the order in which the tasks are scheduled on an ASC. Our first result is
the following.

Theorem 6.16 For all containers i and j such that j ≺ i on a QC and pascj ≥ pasci ,
we have xij = 0.

Proof: Suppose xij = 1 . We will show that setting xji = 1 instead, gives a schedule
with an objective value that is as least as good, but which is better with respect to
criterion 1.

It is obvious that setting xji = 1 instead of xij = 1 gives us a better value for
criterion 1. Hence, the only thing we have to show is that we get a schedule which
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has an objective value that is as least as good. We will do this by showing that
setting xji = 1 instead of xij = 1 , has no effect on the total time the ASC requires
to handle both containers. Moreover, we will show that the completion times of the
corresponding AGV tasks do not increase. Hence, it is possible to complete both
tasks within the time of the original schedule.

Assume xij = 1 and let t1, t2, t1 ≤ t2 denote the arrival times of the AGVs that
transport containers i and j. Note that the containers are not transported by the
same AGV, since yij = 1 would contradict j ≺ i. Moreover, pascj ≥ pasci , so reversing
the tasks will not lead to additional waiting time of the ASC for the AGVs. This
can be shown as follows. In case of xij = 1 , we have by definition that t1 ≤ bi and
t2 ≤ bj . Furthermore, bj ≥ bi + pascj . In case of setting xji = 1, we get the following
completion times on the ASC:

bnewj = bi + (pascj − pasci ) (6.111)

bnewi = max{t2, bi + (pascj − pasci ) + pasci } (6.112)

It is obvious that bnewi ≤ bj , i.e., the completion time of the last task does not
increase.

Next, we complete the proof by showing that the completion times of tasks i and
j on the AGV will not increase. In case of xij = 1 , the earliest possible completion
time of task j on the AGV equals bj + pagvj . Since j ≺ i, the QC can start handling
the containers not earlier than bj + pagvj . For the case of xji = 1 it is now sufficient
to show that both containers are also available at the QC at latest at time bj + pagvj .
If this is the case, the completion times of the tasks on the AGVs will not be larger
than in the case of xij = 1 . Since bnewi ≤ bj , and pagvi = pagvj , we have that both
AGVs are available at the QC at time less than or equal to bj+pagvj , which completes
the proof. 2

Another inequality that we can derive whenever xij = 1 , is the following.

Theorem 6.17 Suppose xij = 1 for containers i and j such that j ≺ i on a QC.
Then we can assume:

bj < bi + pasci (6.113)

Proof: Note that in case pascj ≥ pasci we cannot have xij = 1 because of Theo-
rem 6.16. Hence we have pascj < pasci . Now assume that (6.113) does not hold. As
in the proof of Theorem 6.16, we will show that reversing tasks i and j will not lead
to a schedule that is worse, while setting xji = 1 instead of xij = 1 leads to a better
schedule with respect to criterion 1.
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Reversing the order in which tasks i and j are scheduled does not increase the
time window compared to the situation in which xij = 1 . Since pascj < pasci , task
j can be completed before time bi. Moreover, since equation (6.113) does not hold,
there is sufficient time to schedule task i before time bj .

Since we showed that the completion time of task i on the ASC is less than or
equal to the completion time of task j on the ASC in case of xij = 1 , the remainder
of the proof is similar to the proof of Theorem 6.16. 2

Theorem 6.18 Suppose xij = 1 for containers i and j such that j ≺ i on a QC.
Moreover, suppose pasci − pascj ≤ pqcj . Then for k such that xjk = 1 we may assume:

bk < bi + pasci + pasck (6.114)

Proof: Again we have that pasci > pascj by Theorem 6.16. We will show that by
reversing tasks i and j on the ASC, we obtain a schedule which has an objective
value that is as least as good, and that is better with respect to criterion 1.

It is obvious that if (6.114) does not hold, setting xji = xik = 1 instead of
xij = xjk = 1 does not lead to a larger time window required to handle containers
i, j and k on the ASC. Moreover, note that the completion time of task k on the
ASC, i.e., bk does not increase.

By Theorem 6.17 we have that bj < bi + pasci . Hence, reversing the order of i and
j, leads in the worst case to a completion time of task i on the ASC which is larger
than the completion time of task j on the ASC in case xij = 1 . So, as a consequence
of xji = 1, we have:

bj ≤ bnewi ≤ bj + (pasci − pascj ) (6.115)

Since j ≺ i, the completion time of task i on the AGV is at least:

c≥bj + pagvj + pqcj (6.116)

whether xij = 1 or xji = 1. So, we only have to show that in case xji = 1, this
completion time will not be larger. Given the completion time of task i on the ASC,
we have that the AGV is ready at the QC for unloading (completion time of AGV
task i) at time:

bj + (pasci − pascj ) + pagvi (6.117)

which is not larger than (6.116) since pagvi = pagvj and pasci −pascj ≤ pqcj by assumption.
2



132 Chapter 6. An integer programming approach

Theorem 6.19 Suppose xij = 1 and pascj > pasci for containers i and j. Then for
the corresponding AGV tasks, we can assume:

ci < bj + pagvi (6.118)

Proof: Note that containers i and j are handled by different QCs, otherwise xij = 0
by Theorem 6.16. Now suppose (6.118) does not hold, i.e., ci ≥ bj + pagvi . We will
show that for any schedule for which xij = 1 and that does not satisfy (6.118), the
alternative schedule that results after reversing i and j on the ASC has a makespan
at least as good. Note that since i and j belong to different QCs, reversing the
containers on the ASC cannot affect the value of criterion 1. However, it will lead to
a better value of criterion 2 since pascj > pasci and j is scheduled first if xji = 1.

The case in which the same AGV transports both containers i and j is trivial,
i.e., yij = 1 implies bj > ci which contradicts ci ≥ bj + pagvi . Hence we assume that
two different AGVs transport the containers.

First, we will show that reversing tasks i and j on the ASC leads to a strictly ear-
lier arrival time of container j at the QC. Moreover, we will show that the completion
times of tasks i and j on the AGV are not worse. Since task j is now scheduled first
on the ASC, we have bnewj < bj and thus, also the arrival time at the QC is smaller
for container j. Moreover, the time window required to handle both containers j and
i on the ASC does not increase since pascj > pasci (see also Theorem 6.16), i.e., we
have bnewi ≤ bj . So, the arrival time of container i at the QC is less than or equal
to bj + pagvi . Since we assumed that (6.118) does not hold, we have arrived at the
desired result for ci, the AGV completion time of task i.

2

So far, we only assumed that a single variable xij is set to one. Based on this
variable, we were able to derive some additional inequalities. Next, we consider the
case in which we have multiple variables set to 1. More specific, we consider the
case of a partial schedule on the ASC, i.e., for tasks i, . . . , j we have an ordering
represented by the variables xik, . . . , xlj , all set to 1. Now suppose we have that
j ≺ i. Then we can make the following claim.

Theorem 6.20 Suppose we have a partial schedule on the ASC for tasks i, . . . , j,
such that container j precedes container i on the QC. Then for task k such that
xik = 1, we must have:

pasci ≥ pasck (6.119)

Proof: Suppose (6.119) does not hold, i.e., pasci < pasck . Then by Theorem 6.19 we
may assume that ci < bk + pagvi . However, since k is scheduled before j on the ASC,
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i.e., bk < bj , we have ci < bj +pagvi . Moreover, since i and j are handled by the same
QC, and thus pagvi = pagvj , this would lead to ci < bj +pagvi ≤ cj . Clearly this cannot
be the case because j ≺ i implies cj < ci. 2

Theorem 6.21 Given a partial schedule on the ASC for tasks i, . . . , j, such that
container j precedes container i on the QC. Let l be the task scheduled directly after
task i. Then for all other tasks k scheduled between i and j (including j) on the ASC,
such that pasck > pasci and there is no container m ∈ i, . . . , k such that m ≺ k, we
have that:

bl < bi + (pasck − pasci ) + pascl (6.120)

Proof: Suppose (6.120) does not hold. Reversing tasks i and k on the ASC will
lead to an earlier completion time of k on the ASC. Moreover, since (6.120) does not
hold, the completion time of task l on the ASC is not influenced. For i we get a
larger completion time on the ASC. However, the completion time of i on the AGV
will not increase. This is obvious since the completion of task i on the AGV is still
blocked by task j, which is scheduled after task i on the ASC in any case.

Note that we assumed that container k does not have any predecessor that was
scheduled before task k on the ASC in the original schedule. Hence, swapping tasks
i and k in the schedule will not lead to a worse value with respect to criterion 1.
Moreover, the schedule is better in terms of criterion 2, since pasck > pasci . 2

6.9.2 Preprocessing on yij variables

Similar statements like in Subsection 6.9.1 can also be made whenever variables yij
are set to 1. Consider for instance the following:

Theorem 6.22 Suppose yki = ylj = 1. Moreover assume container k precedes con-
tainer l on a QC. Then we should have:

bi − sagvki ≤ bj − s
agv
lj (6.121)

Proof: Again we prove by contradiction, i.e., we assume (6.121) does not hold. We
will show that setting ykj = yli = 1 will never give a worse schedule. Obviously,
whenever i and j are handled by different ASCs, criteria 1 and 2 are not influenced.
In case the containers are handled by the same ASC, and assuming (6.121) does
not hold, we have bi > bj , i.e., task i is scheduled after task j. However, setting
ykj = yli = 1 instead of yki = ylj = 1 only influences the AGV assignment and
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thus, does not influence criterion 1 or criterion 2. Moreover, we will show that with
respect to criterion 3, setting ykj = yli = 1 gives a better solution. Since k ≺ l, that
is, containers k and l are handled by the same QC, we have that sagvki = sagvli and
sagvkj = sagvlj . With respect to criterion 3, setting yki = ylj = 1 gives the following:

(bi − sagvki − ck)2 + (bj − sagvlj − cl)
2 (6.122)

However, setting ykj = yli = 1 gives:

(bi − sagvki − cl)
2 + (bj − sagvlj − ck)2 (6.123)

which is obviously smaller than (6.122), since bi − sagvki > bj − sagvlj and ck < cl. 2

Given Theorem 6.22, we can make the following statement.

Corollary 6.23 Suppose we have yki = ylj = 1. Moreover, assume k ≺ l and i and
j to be handled by the same ASC. Then xji = 0.

Proof: Setting xji = 1 would imply bi > bj , which clearly contradicts Theorem 6.22.
2

6.9.3 Preprocessing on xij and yij variables

Whenever both xij and yij variables are set to 1, we can derive the following state-
ment about the completion times of jobs:

Theorem 6.24 Suppose xij = yki = 1 for containers i, j, k. Moreover assume j ≺ i
on a QC. Then we may assume:

ck + sagvki > bi − pasci + pascj (6.124)

Proof: Note that we may assume pascj < pasci since pascj ≥ pasci would imply xij = 0
by Theorem 6.16.

Again suppose (6.124) does not hold, i.e., the AGV transporting container i ar-
rives at the ASC before time bi − pasci + pascj . Moreover, the ASC finishes task j

by definition at time bj ≥ bi + pascj . We will show that scheduling tasks i and j in
reverse order on the ASC and switching the assignment of the AGVs as well, does
not lead to a worse schedule. Obviously, setting xji = 1 instead of xij = 1 gives a
better value for criterion 1.

Since we assume (6.124) does not hold, scheduling task j before task i on the
ASC and switching the AGV assignment will lead to the completion of task j on the
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ASC at latest at time bi − pasci + pascj . Note that at this time, the ASC can advance
to container i, since the AGV has already arrived at this time. So, the ASC is ready
to load container i on the AGV at time bi + pascj which is clearly less than or equal
to bj in case of xij = 1 , regardless of the arrival time of the AGV. 2

6.10 Computational testing

In this section, we will report on some computational experiments that were carried
out with the MIP formulation as given in Section 6.3 and the valid inequalities we
derived for this formulation in the previous sections. We will test the effectiveness of
the various classes of inequalities by adding the whole class to the MIP and then using
the commercial solver CPLEX (version 6.6) to solve the model. The effectiveness of
a class of inequalities can be measured by considering the number of required nodes
in the Branch & Bound tree that CPLEX needs to solve the model. Next to adding
a whole class of inequalities, we also consider a cutting plane approach in which we
repeatedly solve the LP relaxation in the root node of the search tree and separate
valid inequalities, until we cannot find any violated valid inequality. We then give
the resulting problem to CPLEX to solve.

In the testing of the inequalities, we will not consider all classes, simply because
some of them are (exponentially) large. Initially, we will test the effectiveness of the
following inequalties:

1. The cut set inequalities given by equations (6.26) and (6.27).

2. The mixed cut set inequalities given by equation (6.48). We only consider cut
sets C and C ′ such that for each pair i ∈ C, i′ ∈ C ′, we have that i′ immediately
succeeds i in the chain.

3. The inequalities on the completion time variables as discussed in Section 6.6,
i.e., inequalities (6.54) and (6.58).

4. The path inequalities in their basic form, i.e., inequalities (6.71) and (6.72),
which only consider variables related to AGV tasks of containers handled by
the same QC.

5. Addition of some logical constraints. Note that for instance the constraints of
Theorem 6.17 and Theorem 6.19, which result from setting binary variables
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number of LP value optimal number of added
containers root node (best MIP) nodes B & B inequalities

20 662 942 53660 -
20 662 942 159619 1
20 662 942 110878 2
20 942 942 61783 3
20 662 (1494) 250000 4
20 662 942 30669 5
20 662 942 9103 6

Table 6.1: Effectiveness of valid inequalities

equal to one, can be rewritten as an inequality using a big constant K:

bj < bi + pasci + (1− xij)K ∀j ≺ i (6.125)

ci < bj + pagvi + (1− xij)K ∀i, j : pascj > pasci (6.126)

Moreover, we set variables equal to zero according to Theorem 6.16. Other
logical constraints are not considered.

6. A cutting plane approach in which we repeatedly solve the LP relaxation and
the separation problems in the root node, until no violated inequality can be
found. So, we add only the violated inequalities that are found by the separation
procedures instead of adding whole classes of inequalities. We consider all the
inequalities for which we discussed a separation procedure in Section 6.8. After
the addition of the violated inequalities in the root, we solve the problem using
CPLEX.

As a benchmark, to compare the effectiveness of the various inequalities, we take
the number of nodes in the Branch & Bound tree that CPLEX requires to solve
the MIP formulation given by equations (6.1) to (6.12), without any additional valid
inequalities. Since in some cases, CPLEX does not manage to solve the problem to
optimality in reasonable time, we set the limit of the number of nodes in the Branch
& Bound tree to 2.5 ·105. In Tables 6.1 to 6.4, we give computational results for some
(small) but typical instances of general layouts. Again, all instances were generated
using the simulation model as discussed in Section 3.3. In case the optimal solution is
not found within 2.5 · 105 nodes, we give the best solution found so far (in brackets).

From Tables 6.1 to 6.4 we conclude the following. The inequalities on the binary
variables only (1,2), have a variable effect on the required number of nodes in the
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number of LP value optimal number of added
containers root node (best MIP) nodes B & B inequalities

20 738 1034 238426 -
20 738 1034 165302 1
20 738 1034 74201 2
20 1034 1034 17578 3
20 738 1034 62889 4
20 738 1034 20360 5
20 1034 1034 1593 6

Table 6.2: Effectiveness of valid inequalities

number of LP value optimal number of added
containers root node (best MIP) nodes B & B inequalities

20 928 1170 27953 -
20 928 1170 32663 1
20 928 (1315) 250000 2
20 1170 1170 50418 3
20 928 1170 18658 4
20 928 (1261) 250000 5
20 1170 1170 6916 6

Table 6.3: Effectiveness of valid inequalities

number of LP value optimal number of added
containers root node (best MIP) nodes B & B inequalities

20 881 (921) 250000 -
20 881 (903) 250000 1
20 881 (954) 250000 2
20 881 903 2917 3
20 881 903 116750 4
20 881 903 3225 5
20 903 903 280 6

Table 6.4: Effectiveness of valid inequalities
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Branch & Bound tree. In one case they are very effective (Table 6.2), in the other
cases not. Moreover, the size of these classes is quite large, that is, there are many
inequalities of this type. Adding all these inequalities therefore results in a large LP,
which again results in slower computation times. Note that the results in Tables 6.1
to 6.4 only consider the number of nodes in the search tree and not the required
computation time.

The inequalities on the continuous variables (3) have a large impact on the value
of the LP relaxation in the root of the search tree. In most cases, this LP value turns
out to be equal to the value of the optimal solution. Moreover, the number of nodes
that are needed to find the optimal solution, is decreased considerably.

For the path inequalities (4) and the logical constraints (5), the results vary. In
some cases they perform (very) well, in other cases they perform even worse than the
MIP without any added inequalities.

Finally, solving the problem by adding only violated inequalities in the root node
of the tree seems the best option. This not only results in a good value of the LP
relaxation in the root of the tree (in all cases, this value is equal to the value of
the optimal solution), it also reduces the number of nodes required in the Branch &
Bound tree significantly. For instance, in Tables 6.2 and 6.4, the number of nodes is
only a fraction of the number of nodes that is required without adding any cuts.

Hence, we may conclude that although most classes of inequalities we derived are
quite effective, solving the problem with a cutting plane approach in the root of the
search tree gives the best results. In Table 6.5 we give some additional computational
evidence on this. In this table, we not only compare the number of required nodes
in the Branch & Bound tree that CPLEX needs, we also compare the computation
times. Next to the total required time of the cutting plane approach, we also give
the time required in the cutting phase, i.e., the time required to repeatedly solve the
separation problems and to reoptimize the LP with the added inequalities. Moreover,
we do not restrict anymore the maximal number of nodes in the Branch & Bound
tree to 2.5 · 105. Instead, we solve every instance to optimality, regardless of the
computational effort.
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As we can see from Table 6.5, the decrease in the number of nodes required
by CPLEX to solve the problem after addition of violated inequalities in the root
decreases significantly. Also the required computation time is far less, although a
significant amount of computation time of the cutting plane approach is needed for
the separation of the violated inequalities. Hence, we may conclude that the various
inequalities are already very effective, even if we only add them in the root node
of the search tree. Obviously, one may solve the separation problems in every node
of the search tree, using a Branch & Cut approach. This will likely lead to even
better results, both in the required number of nodes and the computation times.
However, the lack of a commercial package that supports such an approach prevents
us from applying this technique. Some computational experiments were done with
the academic package ABACUS (see Thienel (1995)), but this package requires too
much PC memory and can only be used to solve very small test instances.

6.11 Conclusions

In this chapter, we have considered the integrated scheduling of ASCs, AGVs and
QCs at a container terminal with a general layout of the AGV area. As a result,
of this general layout of the AGV area, we cannot apply the model as presented in
Chapter 4.

We have formulated a Mixed Integer Programming (MIP) formulation for this
scheduling problem. Moreover, we derived several classes of valid inequalities. Some
of these classes consider only the binary variables of our MIP formulation, some
only the continuous variables and some inequalities combine both the binary and
continuous variables. Not only did we derive the valid inequalities, we also considered
the associated separation problems, that is, given the fractional LP relaxation of the
MIP formulation, find the valid inequality that is violated (most) by the current LP
solution. For the most important classes of valid inequalities, we derived separation
algorithms, some exact, some heuristic.

Next to the valid inequalities, we also derived some preprocessing rules and logical
constraints. These rules can be applied in any node of the Branch & Bound tree and
exploit the fact that one or more binary variables are set to one.

In order to test the effectiveness of the various classes of inequalities, we did
some computational experiments in which we added all the inequalities of a class
to the formulation and then solved to model with the commercial solver CPLEX.
Moreover, we did experiments with a cutting plane approach in which we separated
violated valid inequalities in the root node and then solved the resulting problem
with CPLEX. From the preliminary computational results, we may conclude that the
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inequalities that only involve binary variables are not that effective. More effective
are the inequalities on continuous variables and the inequalities that combine binary
and continuous variables. However, as the results of Tables 6.1 to 6.5 show, a cutting
plane approach, which adds only violated inequalities, works best. In most cases,
solving the instance using this cutting plane approach requires only a fraction of the
nodes and computation time, compared to the situation in which we add no valid
inequalities.





Chapter 7

Conclusions and further

research

In the last chapter of this thesis, we will summarize the results and make some
recommendations for further research

7.1 Conclusions

Containers can be considered as the transport revolution of the previous century.
Containers turned cargo into a standard commodity. This led to the development
of specialized handling equipment which increased productivity at ports enormously.
Moreover, increased size of container vessels led to economies of scale. All this, made
intercontinental transport of goods cheap, allowing for the globalization of production
we know nowadays.

Container terminals form the link between the transport of containers over sea
and the hinterland for which the containers are destined. However, also in ports,
space, personnel and equipment is expensive. Operations should therefore be carried
out as efficiently as possible. Moreover, the high operating costs of seagoing vessels
put an increasing pressure on terminals to increase efficiency, in order to preserve the
economies of scale of the large container vessels. In this thesis, we gave a detailed
overview of the work that has already been done in the field of Operation Research
in order to optimize terminal operations.

In Chapters 3 to 6, we considered the scheduling of handling equipment at an
automated container terminal. The first of a series of automated container terminals
was put into operation by the Rotterdam based company ECT in 1993. Since the
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handling equipment is automated, and therefore drivers experience is missing, effi-
cient scheduling is crucial to achieve satisfactory overall performance of the terminal.
The layout of the terminal, especially the way in which the AGVs drive, has a large
influence on the optimization models that can be applied to schedule the equipment.
In this thesis, we considered two types of layouts. The first layout is similar to the
current situation at the ECT terminals. In this layout, the AGVs drive in a loop,
all passing a common point after they have been unloaded by one of the QCs. How-
ever, in the design process of next generation terminals, one also considers layouts in
which this is not the case, i.e., the AGVs do not drive in a loop (see e.g. Evers et al.
(1997)). This usually results in shorter driving distances for the AGVs.

For the case in which the AGVs drive in a loop and pass a common point af-
ter unloading by the QCs, we developed a fast Branch & Bound algorithm. This
algorithm essentially enumerates all the assignment orders, i.e., the order in which
the containers are assigned to the idle AGVs. It is shown that there always exists
an optimal solution in which the order of the containers on the individual ASCs is
in accordance with the assignment order. Hence, enumerating over all assignment
orders gives us the optimal solution. In order to speed up the enumeration, a number
of combinatorial lower bounds is calculated in each node of the search tree. Although
these bounds are relatively easy to calculate, they are very effective. Computational
results show that optimal or near optimal solutions can be found within a reasonable
computation time, even for large sized real-life problems.

Based on the Branch & Bound algorithm, we also developed a heuristic Beam
Search algorithm. This Beam Search algorithm only exploits a part of the search
tree. This is done by following a breadth-first-search strategy and expanding only a
limited number of nodes (the beam width) at each level of the tree. The nodes that
are further expanded are selected on two criteria, their lower bound on the optimal
solution, and in case of ties, their upper bound, which represents a heuristic (feasible)
solution. Moreover, we refined the algorithm by introducing a filter, which already
disposes the most unpromising nodes at each level in the search tree. As a result,
the evaluation of the lower and upper bound has to be done for only a small number
of nodes, decreasing the computational effort. The results of the computational
tests with the Beam Search algorithm show that this algorithm performs similar to
the Branch & Bound algorithm. However, the main advantage of the Beam Search
algorithm is that it uses less time.

In Chapter 5, we applied the Beam Search algorithm in a dynamic setting in
which we assumed a rolling horizon and stochastic handling times. In this chapter,
we also discussed several dispatching rules. These dispatching rules are known from
literature, but cannot applied in a straightforward manner. They have to be adjusted



7.2. Directions for further research 145

in order to deal with the specific characteristics of an automated container terminal.
More general layouts of the AGV area were considered in Chapter 6. In this

chapter, we gave a Mixed Integer Programming (MIP) model for scheduling the
handling equipment. Moreover, for the MIP model, we derived several classes of valid
inequalities. Connected with the valid inequalities, we also discussed the separation
algorithms that can find the valid inequalities that are violated by a fractional LP
solution. Computational tests show that some classes are very effective in reducing
the computational effort to solve the MIP model. Moreover, using a cutting plane
approach in the root node only, gives quite good results. However, the size of the
instances that we can solve with this formulation is somewhat limited compared to
the instances we can solve with the Branch & Bound algorithm. One may therefore
conclude that although a more general layout of the AGV area may result in shorter
driving distances, and therefore higher productivity, this productivity gain may be
reduced significantly, since the resulting scheduling problem becomes more difficult
to solve.

7.2 Directions for further research

The following areas are worthwhile for further investigations.
As already mentioned several times in this thesis, the fact that AGVs cannot load

and unload containers themselves makes the schedules of the AGVs and QCs/ASCs
highly interdependent. One may argue that for instance an automated lifting vehicle
(ALV) may overcome these problems and as a result, the scheduling problems may
become easier and not so sensitive to deadlock situations. However, this still does not
allow for decomposing the scheduling problem into the scheduling of the ASCs and
the scheduling of the ALVs. Although an ALV may be able to load and unload the
containers it transports by itself, there is still the situation that there is only limited
buffer capacity at the interface with the cranes, especially at the QCs. So, the
situation of zero buffers (AGVs) in which the AGVs block the ASCs and the QCs
block the AGVs, will result in a situation of limited buffers (ALVs), in which the
blocking property is still present! Hence, also in case of ALVs, integrated scheduling
of the handling equipment seems the only way to go.

Instead of considering each container as an individual container in the ship (ac-
cording to the stowage plan), one may group containers of similar size, destination,
weight, etcetera. Especially for the future (and even larger) container vessels, this
will be relevant. Such a division into categories of containers, allows for more free-
dom during the loading process of a vessel. For instance, if a container of a certain
category is needed at the QC and the category is still available in a number of stack
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lanes, one may choose to retrieve the container from the stack lane of which the ASC
has the less work to do. However, note that this complicates the decision problem,
since in the end, all the containers of a certain category have to be loaded onto the
vessel. So, initially there is a lot of choice in which container to choose from which
category, but as the loading operation proceeds, the choice becomes more and more
limited. Some work on this subject has already been done by Winter (1999), who
combines the scheduling of straddle carriers together with the stowage planning of
the vessel.

We have not explicitly dealt with reshuffle moves. We assumed that the reshuffles
are carried out by the ASC at the time the container is to be retrieved from the
stack, i.e., the handling time of a container includes the time required for (possible)
reshuffles. The reshuffles can be incorporated in the models by introducing them
as containers with zero handling time on the AGV and QC. Moreover, additional
precedence constraints have to be taken into account. However, the model which
we presented in Chapter 4, does not need to be adjusted structurally. Recall the
assignment order π which represents the schedule. Then for a reshuffle i′ belonging
to container i, we should have that i′ precedes i in the assignment order, otherwise
the assignment order is not feasible. Since the AGV and QC handling times of the
reshuffle are zero, this does not influence the AGVs. Although the incorporation of
reshuffle moves is relatively easy, as we illustrated above, it may lead to an increase
in computation time, since in principal, the problem size and thus the number of
assignment orders we have to enumerate, grows accordingly with the number of
reshuffles. Hence, it may be interesting to investigate whether there is a more elegant
way of dealing with these reshuffle moves.

One of the ways to increase productivity of QCs that terminal operators are
planning to use in the near future, is the so-called twin-lift concept. This means that
a QC will load two 20 ft. containers at the same time, i.e., two 20 ft. containers are
more or less considered as a single 40 ft. container. However, this means that also
the AGV has to deliver both 20 ft. containers at the same time at the QC. This will
complicate the scheduling problem of the handling equipment, since an AGV may
have to pick up the two containers at different stack lanes.

So far, we have only considered the loading operation of a vessel. However, it
is possible to load and unload containers at the same time. For instance, one QC
is loading and another QC is unloading. In this case, the model as presented in
Chapter 6 can still be applied, although it has to be modified slightly. While loading
and unloading at the same time, it may happen that an ASC first handles a container
to has be loaded and immediately after this, a container that is unloaded. Hence,
for the ASC tasks, we have to introduce switch-over times as well, similar to the
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switch-over times we defined for the AGV tasks.
In Chapter 5, we derived two conditions sufficient for a schedule for the AGVs and

ASCs to be feasible. Based on these conditions, we developed a number of dispatching
rules. Additional research may focus on determining necessary conditions which can
then be used to refine the developed dispatching rules and also to speed up the
enumeration in for instance, the Branch & Bound algorithm.
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De container kan worden beschouwd als de transportrevolutie van de afgelopen eeuw.
Vrijwel alle producten kunnen in containers worden vervoerd. Naast de standaard
containers geschikt voor traditioneel stukgoed, zijn er speciale containers voor koel-
transport, bulk en chemicaliën. Door de container is het vervoeren van vracht
gestandaardiseerd en dientengevolve zijn de vrachtkosten sterk afgenomen. Met
name de Aziatische economieën hebben hiervan geprofiteerd. Immers, door de lage
vrachtkosten is het aantrekkelijk geworden om in deze landen te produceren. Het
is derhalve geen toeval dat de opmars van de container gelijke tred houdt met de
opmars van de “Aziatische Tijgers”.

De voordelen van containers ten opzichte van traditioneel stukgoed zijn legio. In
containers zijn goederen beter beschermd tegen weersinvloeden en transportschade.
Het belangrijkste voordeel is echter dat containers standaard afmetingen hebben.
Dientengevolge wordt de overslag enorm vergemakkelijkt en is er een enorme stijging
in de productiviteit van overslagterminals. Waar vroeger tientallen havenarbeiders
nodig waren om een schip te laden, wordt het werk nu uitgevoerd door enorme kra-
nen die worden bediend door een handjevol mensen. Gevolg: lagere overslagkosten.
Hierdoor is sinds zijn uitvinding in de jaren zestig, het aandeel van de container in
de totale vervoerstroom sterk toegenomen. De toename van dit volume heeft geleid
tot forse schaalvergroting in het zeetransport van containers. Waar in de jaren zestig
schepen slechts enkele tientallen TEU (twenty foot equivalent unit; een container van
ongeveer 6 meter lengte) konden vervoeren, zijn de huidige zeeschepen in staat om
tot 8.000 TEU te vervoeren. Hierdoor zijn er enorme schaalvoordelen te behalen.
Echter, de kosten van deze schepen zijn minstens zo omvangrijk. Daarom dienen de
schepen zo kort mogelijk in de haven te verblijven om te laden en te lossen. Immers,
enkel wanneer het schip vaart kan er geld verdiend worden. Dientengevolge ontstaat
er een toenemende druk op terminals om de overslag sneller uit te voeren. Een van de
manieren om het laden en lossen van schepen te versnellen is het efficiënt gebruiken
van het overslagmaterieel. Hierdoor is het mogelijk om met hetzelfde materieel, in

157



158 Nederlandse samenvatting

dezelfde tijd, meer containers over te slaan. Dit draagt bij aan de noodzakelijke
productiviteitsverhoging van containerterminals.

Containerterminals vormen de schakel tussen verschillende modaliteiten. Zo wordt
door een zeeschip een enorme hoeveelheid containers aan wal gebracht die vervol-
gens naar het achterland worden afgevoerd met behulp van vrachtwagens, treinen
en binnenvaartschepen. Omgekeerd leveren deze laatstgenoemde modaliteiten weer
de containers aan die via de zee vertrekken naar een andere regio/continent. Een
van de belangrijkste elementen van een containerterminal is de stack. Hierin worden
de containers die via de zeezijde binnenkomen tijdelijk opgeslagen in afwachting van
hun vertrek naar het achterland. Omgekeerd worden in de stack ook de containers
bestemd voor de zeezijde tijdelijk opgeslagen. Naast de stack zijn er enorme kades,
uitgerust met kranen, waaraan de zeeschepen geladen en gelost worden. Daarnaast
zijn er aparte afhandelingscentra voor vrachtwagens, treinen en binnenvaartschepen.
Op een containerterminal is verschillend overslagmaterieel aanwezig. Bijvoorbeeld
voertuigen voor het transport van containers tussen de kade en de stack, of stapelkra-
nen voor het neerzetten en oppakken van containers in de stack.

In dit proefschrift worden wiskundige modellen en oplosmethoden beschreven
waarmee de efficiëntie op containerterminals kan worden vergroot. Dit is met name
van belang op geautomatiseerde terminals. Geautomatiseerde terminals maken ge-
bruik van automatisch geleide voertuigen (AGV’s) voor het transport van containers
van de kade naar de stack (en vice versa). In de stack worden de containers op
elkaar gestapeld met behulp van geautomatiseerde stapelkranen. Aangezien er op
de voertuigen en de kranen geen bestuurder aanwezig is, en daardoor het menselijk
inzicht ontbreekt, is het van groot belang dat de voertuigen en kranen zo efficiënt mo-
gelijk worden aangestuurd. De aansturing vindt plaats door een planning te maken.
Gegeven deze planning krijgt elk voertuig en elke kraan een lijst met opdrachten die
in een bepaalde volgorde dienen te worden uitgevoerd. Doel van dit proefschrift is te
komen tot een betere planning met behulp van wiskundige technieken.

In hoofdstuk 2 van dit proefschrift wordt uitvoerig ingegaan op de bijdragen die
de wetenschap tot nu toe heeft geleverd aan het optimaliseren van containeroverslag
met behulp van wiskundige modellen. Er komt een veelheid van onderwerpen aan
de orde. Van strategische beslissingen zoals de layout van de terminal en de keuze
van het overslagmaterieel, tot planningsproblemen op operationeel niveau. Doel van
dit hoofdstuk is om de lezer een inzicht te geven over de stand van zaken en om de
huidige literatuur te structureren.

Hoofdstuk 3 beschrijft de centrale doelstelling van dit promotieonderzoek: het
optimaliseren van de handelingen op een geautomatiseerde containerterminal door
middel van het efficiënter plannen van het overslagmaterieel. De moeilijkheid hierbij
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is om de handelingen van verschillende soorten materieel beter op elkaar af te stem-
men. Om tot een betere planning te komen, worden in dit proefschrift een aantal
wiskundige modellen en bijbehorende oplosmethoden gepresenteerd. Om de resul-
taten van deze modellen te testen, is een gedetailleerd simulatiemodel ontwikkeld.
Het simulatiemodel bootst de werkelijkheid op de terminal na en zodoende kan de
effectiviteit van de modellen en methoden getest worden. Dit simulatiemodel wordt
kort beschreven in hoofdstuk 3. Tevens wordt in dit hoofdstuk nader ingegaan op
het belang van een zogenaamde gëıntegreerde planning. Dat wil zeggen dat, in plaats
van overslagmaterieel separaat te plannen (bijvoorbeeld het afzonderlijk plannen van
automatische voertuigen en het afzonderlijk plannen van automatische kranen), er
beter een gëıntegreerde planning kan worden gemaakt. Hierdoor worden zogenaamde
deadlocks vermeden. Deadlocks doen zich voor wanneer de planning van voertuigen
en kranen niet op elkaar is afgestemd. Als gevolg hiervan kan het voorkomen dat de
terminal (gedeeltelijk) moet worden stilgelegd om de deadlock op te heffen, met alle
nadelige gevolgen voor de productiviteit.

Het gëıntegreerd plannen van kranen en voertuigen is rekenkundig zeer complex.
Dit houdt in dat wanneer we op zoek gaan naar een optimale planning, in theorie,
dit excessief veel rekentijd kan kosten, zelfs op de meest moderne computers. Om
de rekentijd in te perken, wordt er in hoofdstuk 4 een Branch & Bound algoritme
beschreven. Dit algoritme gebruikt een zoekboom om alle mogelijke oplossingen af
te tellen. Op die manier wordt dan de optimale oplossing gevonden. Het Branch &
Bound algoritme dat in dit proefschrift wordt gepresenteerd is toegesneden op het
probleem van het gëıntegreerd plannen van verschillende soorten overslagmaterieel.
Hoewel in het slechste geval de rekentijd van dit algoritme nog steeds groot kan zijn,
is met behulp van een groot aantal experimenten aangetoond dat in de praktijk het
algoritme goed werkt, dat wil zeggen: de rekentijd is beperkt. Een andere manier om
de rekentijd te beperken is, om in plaats van naar de optimale oplossing te zoeken,
op zoek te gaan naar een goede heuristische oplossing. Dat wil zeggen, een oplossing
die niet te ver van het wiskundig optimum verwijderd is. Hiertoe is op basis van het
Branch & Bound algoritme een Beam Search heuristiek ontwikkeld. Deze heuristiek
beschouwt slechts een beperkt gedeelte van alle mogelijke oplossingen. Rekenkundige
experimenten tonen aan dat in de meeste gevallen een zeer goede oplossing wordt
gevonden en dit in een beperkte rekentijd.

In de praktijk worden planningsproblemen vaak opgelost met vuistregels. Deze
vuistregels zijn eenvoudig en daardoor makkelijk te implementeren. Echter, wanneer
ze worden toegepast voor het plannen van overslagmaterieel op geautomatiseerde
containerterminals, garanderen ze geen deadlock vrije planning. In hoofdstuk 5 wor-
den een aantal van deze vuistregels beschreven en er worden voorwaarden afgeleid
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waaraan de vuistregels moeten voldoen opdat ze onder alle omstandigheden een
correcte planning geven. De prestatie van de vuistregels wordt vergeleken met de
prestatie van de Beam Search heuristiek uit hoofdstuk 4. Het blijkt dat de prestatie
van de Beam Search heuristiek in de meeste gevallen veel beter is dan de prestatie
van de (aangepaste) vuistregels. Slechts voor enkele van deze vuistregels zijn de
verschillen beperkt.

Hoofdstuk 6 beschouwt een algemeen wiskundig model voor het gëıntegreerd
plannen van voertuigen en kranen op een geautomatiseerde containerterminal. Dit
model kan worden opgelost met behulp van commerciele software. Echter, door de
rekenkundige complexiteit van het probleem kunnen slechts problemen van beperkte
grootte worden opgelost. Om toch grotere problemen te kunnen oplossen, kan het
model worden uitgebreid met zogenaamde geldige ongelijkheden. Deze ongelijkhe-
den beperken de zoekruimte en dientengenvolge wordt de rekentijd beperkt. Voor
de gegeven wiskundige formulering wordt een groot aantal klassen van deze geldige
ongelijkheden afgeleid. De effectiviteit van de diverse klassen van ongelijkheden is
getest. Uit de rekenresultaten blijkt dat het toepassen van geldige ongelijkheden een
aanzienlijke reductie in rekentijd kan opleveren.

Tot slot wordt in hoofdstuk 7 het proefschrift kort samengevat. Tevens worden
er in dit hoofdstuk nog enkele ideeën voor vervolgonderzoek gegeven.
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