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The LPT rule is a heuristic method to distribute jobs among identical machines so as to 
minimize the makespan of the resulting schedule. If the processing times of the jobs are assumed 
to be independent identically distributed random variables, then (under a mild condition on the 
distribution) the absolute error of this heuristic is known to converge to 0 almost surely. In this 
note we analyse the asymptotic behaviour of the absolute error and its first and higher moments 
to show that under quite general assumptions the speed of convergence is proportional to appro- 
priate powers of (log log n)/n and l /n .  Thus, we simplify, strengthen and extend earlier results 
obtained for the uniform and exponential distribution. 

1. Introduction 

Suppose that n j obs  with processing times Pl . . . .  , Pn have to be distributed 
among m uni form machines. Let si be the speed of machine i (i = 1 . . . . .  m). I f  the 
sum of the processing times assigned to machine i is denoted by Zn(i)  (i = 1, . . . ,  m),  
then a common objective is to minimize the makespan Z~ m) = maxi {Zn( i ) / s  i }. For 
this NP-hard problem many heuristics have been proposed and analyzed; we refer 
to [Graham et al. 1979; Rinnooy Kan 1984] for a survey. Among them, the L P T  
rule in which jobs are assigned to the first available machine in order of  decreasing 
pj is a particularly simple and attractive one. The value zn~m)(LPT) produced by this 
rule is related to the optimal solution value zn~m)(OPT) for the case that si = 1 for 
all i by  [ G r a h a m  1969] 
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zn~m)(LPT) 4 1 
zn(m)(OPT) -< 3 3m " (1) 

Computational evidence, however, suggests that this worst  case analysis is unneces- 
sarily pessimistic in that problem instances for which (1) is satisfied as an equality 
appear to occur only rarely. 

To achieve a better understanding of  this phenomenon, let us assume the process- 
ing times pj  ( j = l  . . . . .  n) to be independent, identically distributed random 
variables. The relation between the random variables z~m)(OPT) and _zn~m)(LPT) 
can then be subjected to a probabil is t ic  analysis. In [Frenk & Rinnooy Kan 1984] 
it was shown that (under mild conditions on the distribution of  the pj )  the absolute 
error 

zn(m)(LPT) - zn(m)(OPT) (2) 

converges to 0 almost  surely as well as in expectation.  Thus, the heuristic is asympto-  

tically opt imal  in a strong (absolute rather than relative) sense, which provides an 
explanation for its excellent computational behaviour. 

In [Frenk & Rinnooy Kan 1984], the speed at which the absolute error converges 
to 0 was analyzed for the special cases of  the uniform and exponential distribution 
respectively. Here we extend and generalize the results for almost sure convergence 
and convergence in expectation by showing that for a large class of  distributions 
(essentially those with F ( x ) = x  a (0<x___ 1, 0 < a <  oo)), this speed is proportional to 
appropriate powers of  (log l o g n ) / n  and 1/n respectively. This implies that, 
although the optimality of the LPT rule could only be established asymptotically, 
the convergence of  the absolute error to 0 at least occurs reasonably fast. In some 
sense, to be explained later, these results are the best possible ones obtainable for 
this heuristic. 

The main result for the case of  almost sure convergence, is described and proved 
in Section 2. The case of  convergence in expectation is dealt with in Section 3, where 
we bound first and higher moments of  the expected absolute error. The proof  in this 
Section is of  a particularly attractive simplicity. Some extensions and conjectures are 
briefly examined in Section 4. 

2.  A l m o s t  sure  c o n v e r g e n c e  

In [Frenk & Rinnooy Kan 1984], it is shown that the absolute error of  the LPT 
rule (2) is bounded (up to a multiplicative constant) by 

I D~(a) = max k : ~ - -  l_~k_~n - ~ j  l Pi:n (3) 

where Pl:n~P2:n<~"'<~Pn:n are the order statistics of  the processing times and 
a = 1 +-(m - 1)s 1/s m . Letus  assume that the distribution function of  the processing 
times is given by 
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F(x)=x a (0<x_< 1, 0 < a < o o ) .  (4) 

In that case, pk: ' ,= d U~:n, where Uk:, (k=  1 ....  ,n) are the order statistics of  n in- 
dependent random variables uniformly distributed on [0, 1], and b = 1/a. 

To study the asymptotic behaviour of  D',(a), let us define the random variable 
_T n to be the index p e { 1 . . . .  , n} for which the maximum in (3) is actually achieved. 
Hence, T', = p  implies that 

b 1 ~ 1 k U_p:,,-- U jb..',>_U_~:',----b ~ U('_j:n ( k = l  . . . . .  p - l )  (5) 
0~j=l  O~j=l 

i.e., that 

P 
a U~:',+ ~ ~ ' , -aUp~: ' ,_<O ( k = l  . . . . .  p - l )  (6) 

j = k + l  

so that (by addition of these inequalities) 

p - 1  

Z ( ~ + k -  1)_U~:n_<(a- 1 ) ( p -  l)_Up~:n. (7) 
k = l  

Thus, Pr{Tn=p} is bounded from above by the probability of (7). 
Now, it is easily verified that 

Pr{Ub:',<_Xk (k=  1 . . . . .  p - 1 ) l  ub: ,  =y} 

= Pr{(U k :p_ l(ya)) ° <--x k (k = 1 . . . . .  p -  1)} (8) 

where, for any z~  [0, 1], Uk:',(z) (k=  1 . . . . .  p -  1) are the order statistics of  p -  1 in- 
dependent random variables, uniformly distributed on [0, z] [Karlin & Taylor 1981, 
p. 103]. 

Let Fp(y)=Pr{_U~:',_<y}. Then (7) and (8) imply that 

Pr{T~ =p} 

~ t'i Pr IkP~i (c~+k-1)(U_k:p_,(Ya))b<(a-l)(p-l)ylFp(dy) (9) 

Since (U_k:p_l(ya))b/y d U_t:p 1, (9) is bounded by 

Pr (a + k -  1)_U~:p_ l-< ( a -  1 ) ( p -  1 ) . (10) 
k 1 

Lemma 1 in Appendix 1 implies that for certain constants C =  C(ce), c= c(a) 
Pr{ T', =P} -< C e -%  (11) 

To derive our main result from the Borel-Cantelli lemma, we now use (11) to bound 

PrlD_',(ct)>-[~]bl (12) 

(where D is a constant to be chosen later and log2n = log log n) by 
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Pr{ 7". _> log n} 

+ Pr max _U~: n -  1 ~ -g:n -> (13) 
~ l_<k_<log n' 0~j=l 

The first term in (13) is O(n -c) from (11). We again condition on the value _Ulog n :n 
being greater or smaller than (2(log n)/n) b, to bound the second term by 

Pr I_Ulaog.: ~ -> ( ~ - ~ )  ° 1 

~(21ogn/n) b f g k ) 
+ ~ P r )  max ~_Uff:~ - 1  ~ _Uj~n 

J J0 t,1 _< k_< log n t, O ' j= l  

~-~ -elbog n:n = Y  Flog n (dy) .  (14) 

The first term in (14) is O(n -1/4) (cf. [de Haan & Taconis 1979]). To bound the se- 
cond term, we observe that the term within the integral is bounded for everyy ~ (0, 1) 
by (cf. (8)) 

 rlmax _ k : l o g n - l - -  _ j : l o g n - I  ~> 
k l<k_<logn-1 ¢Xj=I y \ /'/ / ) 

+ p r I ( 1  1 ) l l°gn 1 > ; ( O l o g 2 r / . ) b  1 
- - - -  2 -ejb: log n -  1 , (15) 

j = l  

so that the integral itself is bounded by 

I I b 1 k 1 (Dl°g2--n~b~ Pr max _U~ :|og n | ~ b > - Uj :log n -  1 - 
I,.1 _< k_<log n -  1 O~j:l \ 2 1 o g n  ] ) 

+ Pr ~ 0 < 1 - (16) g j  : log n -  
j= l  

The second probability in (16) converges exponentially to 0 (in log n). We again 
bound the first probability by conditioning on the index T(log n - 1 )  (where the 
maximum is attained) being greater or smaller than d logzn, for a constant d still 
to be chosen. From (11), the probability of the former event is O((log n)-Ca). The 
remaining conditional probability is bounded by 

I (Dl°g2n~b~ (17) Pr uablog2~ :log n- l --> \ 2 log n /t )" 

For d=D/4, this term is O((log r/) -D/16) (cf. [de Haan & Taconis 1979]). 
Collecting all our upper bounds on (12), we conclude that, if D = 2 max{ 16, 4/c}, 

then 

PrID_n(ct)>.(Dl°gzn)b I : O(1/(log n)2). (18, 
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Define k. = e". The Borel-Cantelli lemma implies immediately that 

l imsup ~ _Dk°(a)<~ (a.s.). (19) 
n ~  \lOg2Kn/ 

We show in the Appendix (Lemma 2) that _D, (5) is almost surely nonincreasing in 
n. It follows that 

lim sup _D, (5) < oo (a.s.) (20) 
n---, ~ 

and we have proved the main result of this section. 

T h e o r e m  1. If the distribution function of the processing times equals F(x)=x a 
( 0 < x _ l ,  0 < a < o o ) ,  then 

lim sup ( ~ )  1/a(Z- (nm)(LpT) - Z- (nmI(OPT)) < (a.s. ). 

This speed of convergence result is the best possible one that can be derived from 
the upper bound (3), as can be seen from the fact that 

PrI-Ul:n->l°g2nn i ' ° ' / = l "  (21) 

It can be shown [Karp 1983] that the speed of  convergence to optimality for the LPT 
rule is at least 1/n for the case that a =  1. In the next section, we shall see that this 
lower bound is also an upper bound when we consider convergence in expectation. 

3. Convergence  in expectat ion 

Again, we assume that F(x)=x a (O<_x< 1, 0 < a <  ~) .  With _T n as defined before, 

I °) E(D_.(a)q)<-Pr{Tn=n}+E(( m a x _  Ub_k:n----1 ~ U_j:. . (22) 
\\l<_k<_n-I 5 j = l  

As before we condition on the value of  the largest order statistic to bound the second 
term by 

1 k b q 

: e ~ u q b  ~1/i/ U k:n b ~ ~ b )q . 
max - -  (_~nn':n) I J-Un'~)) <_k<_n-I 5 j = l  

max U b 1 _Uj: n_ 11 ) ) .  (23) =E(U_qb..n)E(( 1 I_k:n_ 1 ~ b q 
<_k<_n-1 5 j = l  
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Hence, for n sufficiently large, (11) and (23) together imply that 

n 
E(D_n (u) q) < e -Cn + (24) n + qb E(D-n- I (a)q)" 

Let h n =(n  + 1)qbE(O_n(ot)q). Then (24) implies that 

h n <_ (n + 1)qbe -cn + e(qb/n)2h n _ 1. (25) 

This implies that h n is bounded by a constant and we have proved the main result 
o f  this section. 

Theorem 2. I f  the d&tribution f unc t i on  o f  the processing t imes equals F ( x ) = x  ~ 
( 0 < x <  1, 0 < a < c o ) ,  then 

lim sup n q/aE((Z_(nm)(LPT) - _Zn(m)(OPT)) q) < co. 
,q --~ OO 

Identical results for the case that s i = 1 for all i are derived in a different fashion 
in [Boxma 1984], see also [Coffman et al. 1984]. Our proofs,  especially the above 
one, are different and much simpler. Again, they are the sharpest possible ones in 
the sense of  the previous section. It is worth noting that this is the first time that 
bounds on higher moments  have been derived for a heuristic of  this nature. 

4. Extensions and concluding remarks 

Theorems 1 and 2 can both be extended to the case that F ( x ) =  o(xa) ,  i.e., there 

exist positive constants e, L and U such that 

Lxa<_F(x)< Ux a for x ~  [0,e). (26) 

In the case of  almost sure convergence, this is done by showing that one may 
restrict oneself in the maximization (3) to k a { 1 . . . . .  [en]} (as in [Frenk & Rinnooy 
Kan 1984]). This maximization involves only the smaller order statistics and for 
those we are essentially in the situation analyzed in Section 2. 

In the case of  convergence in expectation, our technique requires that 

Epq(l +b)+ 1 < OO (27) 

for the extension of  Theorem 3 to hold. We strongly suspect, however, that this con- 
dition is not essential. Details of  the proofs for these results can be found in Appen- 

dix 2. 
These unusually strong results, as well as other recent ones in this area confirm 

the remarkable amenability of  the LPT rule to a probabilistic analysis. Extensions 
to other priority rules involving order statistics of  processing times seem feasible and 

interesting. 
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Appendix 1 

Lemma 1. For every fl>_ 1 there are positive constants C= C(fl) and c=c(fl) such 
that 

m 
1/a < 

t l l /a  ~g_k:m a . s .  Proof.  If a>__ 1, then _~k:m- 
Also, if a <  1, we obtain from H61der's inequality [Goffman & Pedrick 1965, 

p. 2] that (take p =  1/a, q= 1/(1 -a),  yk=(B+k)a-uk:m, Xk= 1) 

l/a (fl+k)aU_k:m<-m l-a (#+ k)_U~: m a.s. (A.I) 
k = l  k 1 

This implies that 

Pr[k~=l(fl+k)-u1/..~<--flm 1 

= Pr [ (k~  1 (fl+k)-u1/'Tm)a<flamU 1 

-< Pr Ik~l (fl+k)aU_k:m<-flam I . (A.2) 

Hence we consider the distribution of 

m 

(p+ k)u_U~:m (a_< 1). 
k = l  

Since (_UI:  m . . . . .  _Urn, m ) d (_SI/S_m + 1 . . . . .  S m/S_m + l) with S i = ~ j  = 1 _Vj and Vj i n d e p e n -  

d e n t  exponentially distributed random variables with parameter 2 = 1 (j = 1 . . . . .  m) 
([Karlin & Taylor 1981, p. 103]), we can rewrite the right hand side of (A.2) as 

Pr (fl+k)a(S_m+l-S_k)>-S-m+l Z ( f l+k)a-f l  am • 
L k = l  k 1 

Now for every e >0,  there exists some m0 = too(e) such that, for every m >_ too(e), 
the above probability is bounded from above by 

Pr (1 +/+fl)"+l_vt_>((l -e)m)~+lS_m+l 
I,, 1= 1 

(m+ 1 1 
= P F I  l=~l Cl'm+lV-l~O 

with 

el, m+ 1 = ((1 + l+  fl)/(1 - e)m) a+ l _ 1. (A.4) 
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Clearly 

- 1 <Cl, m+l<((m+2+fl)/(1 - e )m)  a + l -  1 (l= 1 .. . . .  m+ 1) 

and this implies for 2 s [0, ½(2(1-e)/3) a+ 1] and m>_max(mo(e), 2(p+ 2)) that 

(m+ 1 Prl/=~l Cl'm+lV-l>~O 1 f f m + l  _<E~exp~2 ~=1 C,,m+lV_,)) 

m + l  

= H 1/(1-2Q, m+l). (A.5) 
/=1 

From the Taylor expansion of log(1 + x) around x= 0, we then show that the above 
term is bounded by 

e x p  Cl, m+l q-22 E Cl, m+l • 
1 1=1 

Since 

and 

lira Q,m+l m =  1/((a + 1)(1 - e )  a+l) 
m-~oo \ l = l  

lim QZm+ 1 m=l/((2a+ 3)(1-e) 2a+2) 
m~oo \ l = l  

- 2/((a + 2)(1 -e)a+l)+ 1, 

(A.6) 

the desired result follows from the appropriate choice of positive values for 2 and e. 

Lemma 2. 

so that 

Pr{D~+ l(a) > D . ( a ) }  <oo. 
n = l  

Proof. It is easy to verify that D. + l(a)---D~ (ct) unless (perhaps) if the new process- 
ing time is larger than all the previous ones. 

Hence, 

1 n + l  ") 

Pr{_Dn+ l(a)> _Dn(c0} <Pr  I Pn+ l -  ~ j=~ 1 pj>03 

with 

n = l  
Pr{D~+ l(a)>D~(a)} < l o  U((a-1)y)F(dy) (A.9) 

U(x)= ~n~l Fn*(x) the renewal function ([Feller 1971; Van Dulst & Frenk 

(A.7) 
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1984]). The result now follows from 

lim U(x) = ~= x F ( d x ) <  co (A.10) 
x ~  X 30 

and the local boundedness of U(x) on (0, ~) .  

Appendix 2 

The purpose of  this appendix is to describe brief proofs of two results listed in 
Section 4. 

We shall prove that Theorems 1 and 2 can be extended to the case that, for 
x •  [0,e) (e>0) ,  

Lxa<_F(x)<_ Ux a with 0 < L <  U<  oo. (A.11) 

Theorem la. 

l/a 
lim s u p (  n '~ (_z~m)(LPT)-Z~m)(OPT)<oo (a.s.). (A.12) 

n~o \ log2n/  

Proof .  As before, we consider 

_Dn(~ ) = max k : n -  ~ (A.13) 
l<_k<_n - j 

and distinguish between the case that k e { 1 . . . . .  [enl } and k • { [enl + 1 . . . . .  n}.  With 
respect to the latter range, we showed in [Frenk & Rinnooy Kan 19841 that, for every 
sequence d(n) T ~ ,  

l  l J:o,01 lim d(n) max k :~-  =0  (a.s.). (A.14) 
n ~  [enl<k<_n -~ j 

With respect to the former range, we have that for every D>O,  e e (0, 1), 

Pr max k :n -  "= > 

= P r  max _ - Z F-1(_Uj:.) >-- - -  _ l (Uk : . ) _  1 1 2n 
t.l _<k< [en] ~ j =  1 

< Pr I Ut~nl:n-< 2e, max 
1 < k -<  [en] 

+ Pr{_Utenl:n > 2e} 

_< P r  I U[enl : n < 2~, m a x  
1 _< k < [en] 

+ e -  (e/4)n 

, ,  , 1 
,..>I_>( ° 

(A. 15) 
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Now (A.11) implies that the first term on the right-hand side is bounded by 

Prl max I(U_k.n)'/a 1 k n,l/al> l~°ng2n)t/a 1 

- < P r l  max t., ~e_<. ~_ ((U _e:n,  , , / . _  1 a,j~=, •(Uj:n,'/al>(D*lffg2n)'/a 1 _ (A. 16, 

where a*=aU/L and D*=D/U l/a, with 

O<Lxl/a <_F-l(x)< (Jxl/a < oo (A.17) 

for x sufficiently small. But with (A.16) we are essentially back in the situation 
analysed in Section 2, and we can copy the arguments there and use (A. 14) to prove 
Theorem la. 

Theorem 2a. If 
Epq(l + b ) +  1 < 0 o ,  

then 
lim sup (n + 1)qbE((Z_(nm)(LPT ) - Z n ( m ) ( O P T ) )  q )  < oo .  

n ---~ oo 

(A.18) 

(A. 19) 

Proof. For every q>O and ee(O, 1), 

E((max lpe:. -1  ~p_j:nl) q) 
\\l<_k<_n - ~ j = l  

< E ( ( m a x ( l m a x  IPk:. - 1  k ~JElP-J:nl'P-n:n= l 1 t~l \ \ q \  

~f ( ( l~a~en]IP-k:n--~j~__lP-J:nl)  q)  

( (  l p l[*n] 1 )  q) + E  max . .n--  ~ pj:n.O . (A.20) 
- ' ~ j = l  - 

The first term on the right hand side of (A.20) can be bounded by 

E ( (  1 max IF-l(U_k.n) -1-- ~F-l(Uj:n)l)qI{u_,..,:.>_2e}) 
<-k<-[en] - " ~ j=l 

+E(( max F - ' ( _ U ~ : , ) - -  ~ F - l ( ~ : , )  Ilu,..,.~<2~/ 
\\l<-k<-[enl ~ j = l  - 

<_ E((F - l (_U[enl : q n)) I{ Ul..l:.>--2E}) 

_l(Uk:n) 1 E F-l(-Uj:n) I { U l e , , l : , , < 2 e }  • (n.21) + E max - - 
\ \ 1  _<k_< [en] 0~ j =  1 
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As in the previous proof, (A. 11) implies that the second term is O(n-qb). The first 
term can easily be seen to be O(n-qb). 

The second term on the right hand side of  (A.20) can be bounded by conditioning 
on Pn : n being smaller or greater than fin > 0. In the former case, the conditional ex- 
pectation can be seen to be bounded by 

p r l l  [O~j= [~1-PJ: n--< f i r / 1 1  "O(nq)" (A.22) 

In the latter case, it is bounded by 

E(pq:nlpo:,>fn)<-n yqf(dy) .  (A.23) 
- - f i l l  

Now (A. 11) implies that, for an appropriate choice of fl, the probability in (A.22) 
decreases to 0 exponentially fast. The remaining term (A.23) then implies the need 
for (A.18) to hold for the theorem to be satisfied. 
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