
Econometric Institute Report EI-9956/A

A Bilinear Programming Solution to the

Quadratic Assignment Problem

Johan F. Kaashoeky and Jean H.P. Paelinckz

yEconometric Institute, Erasmus University, P.O.Box 1738, NL -

3000 DR - Rotterdam, The Netherlands; e-mail: kaashoek@few.eur.nl

zEmeritus professor, Erasmus University Rotterdam; Oranjelaan 36,

NL - 3062 BT - Rotterdam; e-mail: j.paelinck@poboxes.com

The authors like to thank Rajendra Kulkarni, George Mason University, The

institute of Public Policy, Center for Regional Analysis, who performed useful

programming in the beginning of the research on the present topic.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18522829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 3

2 Speci�cation 3

3 Solution 3

4 Examples 6

4.1 Random 5� 5 matrix . 6

4.2 Random 6� 6 matrix . 6

4.3 Random 7� 7 matrix . 7

4.4 Random 10� 10 matrix . 8

5 Conclusions 9

7 References 9

A Computer program 10

A.1 Complete enumeration of all row-column permutations 10

A.2 Linear- and Bilinear coeÆcients 12

2

1 Introduction

The quadratic assignment problem (QAP) or maximum acyclical graph problem

is well documented (see e.g. Pardanos and Wolkowicz (1994)).

One of the authors has published some material, in which it was tried, by struc-

turing the problem additionally, to bring it as closely as possible in the neighbour-

hood of a binary solution (see Paelinck (1983), pp. 251-256 and 273-277); good

but not optimal solutions could so be obtained (see Paelinck (1985), pp. 247-254).

The problem is taken up again here, in the same spirit but at the same time in

a di�erent vein.

2 Speci�cation

The most compact speci�cation of the QAP is:

max
x

'
4
= x0Hx (1)

s.t.

Jx = i (2)

x̂x = x (3)

in which (1) is a quadratic form to be maximised over a binary vector x [con-

ditions (3)] under a set of assignment constraints [conditions (2)]. Viewed as a

matrix permutation problem, it amounts to maximising the sum of its elements

above the main diagonal by switching simultaneously rows and columns of a given

square matrix A; the elements of x are xijs, assigning row and column i to place

j, conditions (2) and (3) together expressing the fact that each row and column

has to occupy one and only one place. If A is of order n, H is obviously of order

n
2; J is of order (2n� 1)� (2n), one of the conditions being derivable from the

others, and i is a unit column vector.

3 Solution

The basic idea is to substitute (2) into (1), a method that has been successfully

applied in simplifying the solution to mixed integer-continuous linear programs

3

(Paelinck and Kulkarni (1998)). The result is a reduced system in n
2 � 2n + 1

variables, which results in an objective function:

'
� = x0

2
H�x2 + h�

0
x2 + c

� (4)

H� and h� being obtained as follows. From (2) express 2n � 1 variables x1 in

terms of the remaining x2-variables (this is possible, as J is of rank 2n� 1) and

substitute the result in (1), conformably partitioned into H11;H12;H21;H22.

There comes:

H� = J2
0J�1
1

0
H11J

�1
1
J2 � J2

0J�1
1

0
H12 �H21J

�1
1
J2 +H22 (5)

h�
0 = �2i0J�1

0

1
H11J

�1
1
J2 + i0J�1

0

1
H12 + i0J�1

0

1
H0

21
(6)

where J1 and J2 result from partitioning (2) as:

J1x1 + J2x2 = i: (7)

In practice x1 has been chosen as [x11; x21; � � � ; xn�1;1; xn1; xn2; � � � ; xnn]
0, which

allows of writing:

J�1
1

= I� [00; i0] (8)

where i0 is an n� 1 unit row vector; the second matrix in the right hand member

of (8) is a full zero matrix except that in the central row after the diagonal (zero)

element, the row vector i0 is inserted.

Another structuring element can now be introduced; indeed, if problem (1)

through (3) reaches its maximum, it has a corresponding minimum, which results

obviously from the complete permutation of the optimal (maximising) row-cum-

column numbers : all the maximising elements will clearly then show up below

the main diagonal of A, leaving above it the minimising elements.

Applied to x, this permutation can be obtained through a block-diagonal matrix

P, order n
2, each block being composed of a reverse identity matrix (running

from the south-west to the north-east corners); P is obviously symmetric, and

can also be shown to be auto-reverse, but this property is irrelevant here.

Now, if ' is maximum, so is:

'
] 4
= x0Hx� x0PHPx = x0(H�PHP)x (9)

and to this objective function transformation (4) through (8) is then applied,

which gives:

'
�� = x0

2
H��x2 + h��

0
x2 + c

��
: (10)

H�� has the following properties (see also for an example Maple output (23)):

4

(a) it is of order (n � 1)2; its relevant terms are xij; i = 1; � � � ; n � 1; j =

2; � � � ; n;

(b) it is upper block-triangular;

(c) its diagonal blocks of order (n � 1) are zero; indeed (10) nets out the

quadratic terms, which in fact is due to operation (9);

(d) each non-diagonal block of order (n�1) is anti-symmetric, in the sense that

all of the elements above the main diagonal have the reverse sign but the

same absolute value as their counterparts below that diagonal; this property

is again taken over from H�PHP;

(e) there are no non-admissible bilinear elements [conditions (2)]; one more this

is due to operation (9).

What results from those properties is that a linear-bilinear function has to be

optimised, the bilinear terms moreover being taken care of by a block -triangular

matrix with zero diagonal blocks; it is known that the linear part can be optimized

by linear programming (Murty (1976)), and the bilinear part is sequential; an

eÆcient algorithm to solve non-linear problems should lead to binary solutions

under the following conditions:

J2x2 � i (11)

n� 2 � i0x2 (12)

the relaxed conditions:

x2 � i (13)

being obviously redundant for non-negative x2. Be it noted that J2 should be

given its full 2(n� 1)-order.

Preliminary grooming of largeA-matrices, �rst by rankingA according to its row-

sums, and then checking for the presence of perversely dominating o�-diagonal

terms (Varii Auctores (1966), pp. 17-22), might speed up the solution.

5

4 Examples

n = 5, n = 6, n = 7 and n = 10 examples will be treated next; the solution

algorithm used was the Lasdon-Waren Generalized Reduced Gradient (GRG2)

non-linear optimization code (Lasdon, Waren, Jain and Ratner (1978)).

4.1 Random 5� 5 matrix

Matrix A:

A =

0
BBBB@

0 20 22 13 1

13 0 18 21 9

5 13 0 10 24

10 16 11 0 24

11 23 16 9 0

1
CCCCA (14)

was constructed by drawing at random between 0 and 25 20 integers using Maple's

procedure rand(25)() while putting the diagonal elements to zero (Maple (1998));

see also the Maple program in Appendix section (A.1).

From an initialising vector 0, as will be the case further down unless otherwise

speci�ed, the maximising vector [x41; x52; x13; x24; x35]
0 with �

�� = 53 was ob-

tained under conditions (12) and (13) from the following data:

h��
0 = [�46;�26;�6; 14;�30;�2; 26; 54; 40; 24; 8;�8; 38; 8;�22;�52]

u0H�� = [3; 35; 28; 27; 34; 6]
(15)

where u0H�� denotes the row-vector of values appearing in the upper triangular

part of the o�-diagonal blocks ofH�� in the row order of those blocks. Computing

time: 1s on a desktop using a standard Microsoft Excel routine as will be again

the case further down.

4.2 Random 6� 6 matrix

The following matrix was explored:

A =

0
BBBBBB@

0 20 22 13 1 13

10 0 21 9 5 13

7 10 0 10 16 11

7 24 11 0 16 9

23 6 24 16 0 17

16 18 0 11 13 0

1
CCCCCCA

(16)

with optimal ranking [x51; x12; x43; x24; x35; x66] and �
�� = 94, which optimal rank-

ing was found by sharpening the left-hand side of constraint (12) to i0x2 = 4, and

6

from the following data:

h��
0 = [� 23;�17;�11;�5; 1;�5; 5; 15; 25; 35; 68; 41; 19;�3;�25;

� 21;�17;�13;�9;�5;�24;�32;�40;�48;�56]

u0H�� = [8; 29; 7;�15; 27;�12; 8; ;�14;�15; 6]

(17)

Computing time: 2s, to be compared to 69s CPU for complete (see Appendix (A.1)).

It should be noted that before constraint (12) was sharpened, a "good" solution

with �
�� = 67 was obtained; from this experience it could be advised to sharpen

the constraint to check for non-optimality from inequality (12).

4.3 Random 7� 7 matrix

The generated matrix was the following one:

A =

0
BBBBBBBB@

0 61 7 49 86 98 66

9 0 81 74 66 73 42

91 93 0 11 38 13 20

44 65 91 0 74 9 60

82 92 13 77 0 35 61

48 3 23 95 73 0 37

57 99 94 28 15 55 0

1
CCCCCCCCA

(18)

From the following data:

h��
0 = [71; 53; 35; 17;�1;�19;�155;�41; 73; 187; 301; 415;

� 265;�117; 31; 179; 327; 475; 213; 149; 85; 21� 43;

284; 192; 100; 8;�43;�176;�24; 12; 48; 84; 120; 156]

u0H�� = [� 14;�167; 28; 41; 23;�29; 98; 77; 109;

26; 145; 46; 11;�136;�102]

(19)

and with sharpened left-hand constraint (12), the optimal minimising ranking

was correctly computed as

[x61; x22; x13; x34; x75; x46; x57]

with �
�� = �418 in 5s computing time; the maximising attempt produced a

fractional solution. The complete enumeration required 1981s CPU time.

7

4.4 Random 10� 10 matrix

The matrix was generated as follows:

A =

0
BBBBBBBBBBBBBB@

0 44 65 91 95 74 9 60 82 92

13 0 49 35 61 48 3 23 95 73

89 37 0 99 94 28 15 55 7 51

62 97 88 0 97 98 27 27 74 25

7 82 29 52 0 85 45 98 38 76

75 74 23 0 19 0 49 47 13 65

44 11 36 59 41 56 0 23 24 93

19 26 50 6 70 35 5 0 36 66

62 87 11 4 75 56 47 85 0 20

22 80 38 95 84 99 10 79 44 0

1
CCCCCCCCCCCCCCA

(20)

and the derived vector were:

h��
0 = [331; 191; 51;�89;�229;�369;�509;�649;�789; 72; 86; 100;

114; 128; 142; 156; 170; 184; 8;�18;�44;�70;�96;�122;

� 148;�174;�200;�724;�584;�444;�304;�164;�24; 116;

256; 396; 50; 66; 82; 98; 114; 130; 146; 162; 178;�68; 0; 68;

136; 204; 272; 340; 408; 476; 477; 311; 145;�21;�187;�353;

� 519;�685;�851; 70; 96; 122; 148; 174; 200; 226; 252; 278;

� 236;�188;�140;�92;�44; 4; 52; 100; 148]

u0H�� = [� 46;�81;�111; 10;�105;�22;�42;�74; 32;�125;�22;

� 53; 82;�9;�9;�72; 44;�42; 49;�21;�41; 107; 134; 121;

78; 116; 40; 95; 23;�53; 110; 33;�33;�78;�130;�60]

(21)

For matrix (20) as ranked there �
�� = 291; the matrix was then groomed ac-

cording to section 3 in �ne, producing �
�� = 903 and that ranking was taken as

starting point for the computations. With a sharpened constraint (12), two ex-

tra constraints blocking the places of rows and columns 3 (ranking �rst after the

grooming) and 10 (from the problem speci�cation), and the constraint ��� � 903,

the value ��� = 1109 was obtained; then without the two extra constraints, but

constraining �
�� � 1109, the value �

�� = 1291 was generated. No further im-

provement could be obtained.

As the overall optimum was not known at that moment, a control via the minimis-

ing ranking was e�ectuated, starting from the reverse ranking of the maximising

one, and perturbating it by switching at two rows and columns; the program

returned to the value �1291.

The resulting - presumingly - maximising ranking was

[x71; x32; x13; x10;4; x45; x96; x57; x68; x89; x2;10];

8

this was con�rmed by complete enumeration which took 35m CPU computing

time using a compiled pascal version of the Maple code in Appendix (A.1).

Subsequently some other speci�cations have been tried out. For matrix (20), with

sharpened constraint (12), and �xing x21, the correct minimum was obtained in

22s CPU time. The idea was generated by the �rst experiences, showing that

a few additional constraints were instrumental in �nding the absolute optimum;

possibly putting alternatively each row-column pair of the A-matrix in the �rst

position, i.e. running n successive programs, could be the lesson drawn from this,

in fact a polynomial extension of the above exercises.

For the groomed version of (20), the absolute minimum was obtained with �xed

x21 and x7;10 in 15s CPU time, corroborating the hypothesis presented at the end

of section 3; the obvious extension would be to run n
2 successive programs, still

a polynomial case.

5 Conclusions

Once more it has been shown that using the full structural information on a

complex problem leads to extremely simplifying its solution (other examples in

Paelinck (1996), Paelinck (1998) and in Paelinck and Paelinck (1998)).

The algorithm proposed can easily be programmed; the appendix in section (A.2)

presenting the program for the transformations (9) and (10). implements it.

References

Lasdon, L.S., Ware, A.D., Jain, A. and Ratner, M., 1978, Design and testing of

a generalized reduced gradient code for nonlinear programming, ACM Trans-

actions on Mathematical Software, Vol.4, No1, pp/34-49.

Maple V Release 5, 1998, Waterloo Maple Software, Waterloo, Ontario.

Murty, K.G., 1976, Linear and Combinatorial Programming, Wiley, N.Y.et al.

loc.

Paelinck, J.H.P. (with the assistance of J.-P. Ancot and J.H. Kuiper), 1983,

Formal Spatial Economic Analysis, Gower, Aldershot.

Paelinck, J.H.P.,(avec l'assistance de J.-P. Ancot, H. Gravesteijn, J.H. Kuiper

et Th. ten Raa), 1985,El�ements d'Analyse Economique Spatiale, Edition

R�egionales Europ�eennes, Di�usion Anthropos, Paris.

9

Paelinck, J.H.P., 1996, On Solving the Maximal Flow Capturing Problem by

Linear Programming, in Four Studies in Theoretical Spatial Economics, Section

3, University of Munich, Center for Economic Studies, Working Papers Series,

No 100.

Paelinck, J.H.P., 1998, Controlling Complexity in Spatial Modelling, submitted

for publication.

Paelinck, J.H.P. and Kulkarni, R.E.,1998, Location-Allocation Aspects of

Tinbergen-Bos Systems, accepted for publication in The Annals of Regional

Science.

Paelinck, H.C. and Paelinck, J.H.P., 1998, Queuing Problems and Optimal Design

of Conntainer Ports, Tijdschrift vervoerswetenschap, 98/3, pp. 307-316.

Pardanos, P.M. and Wolkowicz, H. (eds), 1994, Quadratic Assignment and Re-

lated Problems, American Mathematical Society, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science.

Varii Auctores, 1966, Etude compar�ee des tableaux d'entr�es et de sorties des

Communnaut�es Europ�eennes, Centre de Recherches Economiques et Sociales,

D�epartement d'�econom�etrie, Namur.

A Computer program

The computer programs are written in Maple (1998). Apart from the dimension

of the problem, given by the Maple variable nx, and the speci�c problem matrix

A, the programs are written in general terms and variables. Output is suppressed

as much as possible.

A.1 Complete enumeration of all row-column permuta-

tions

In this section a Maple program is given for calculating the optimal value

of sum of upper diagonal minus lower diagonal elements over all row-column

permutations of given matrix A by just enumerating.

> restart:
> with(combinat, permute):
> with(linalg):

Procedure Perm matrix(vects) outputs for given permutation vector vects, a row-

column permutation matrix.

10

> perm_matrix := proc (vects) local k, n, m;
> n := vectdim(vects); m := matrix(n,n,0);
> for k to n do m[vects[k],k] := 1 od;
> evalm(m);
> end:

The dimension of the problem is de�ned by nx:

> nx := 5:

De�ning speci�c problem matrix A:

> AA0:=matrix(nx,nx,0):

An example of a random matrix (not used here):
> # random matrix
> #AA0:=matrix(nx,nx,(i,j)->rand(100)()):
> #for k from 1 to nx do AA0[k,k]:=0:od:evalm(AA0);

Here we use the following 5� 5 matrix:
> AA5:=matrix([[0, 20, 22, 13, 1], [13, 0, 18,21, 9],
> [5, 13, 0, 10, 24], [10, 16, 11, 0, 24], [11, 23, 16, 9,0]]);

AA5 :=

2
66664

0 20 22 13 1

13 0 18 21 9

5 13 0 10 24

10 16 11 0 24

11 23 16 9 0

3
77775

> AA0:=evalm(AA5):

Initialisation:

> NumberofPerm:=nx!:

All permutations are given by the Maple procedure permute:

> permvec:=permute(nx):

> StartTime := time():

> maxoverall := -infinity:

Start of loop:

> for kk from 1 to NumberofPerm do

Given permutation permvec[kk], the row-column permutation Pn is calcu-

lated:

> P_n:=evalm(perm_matrix(permvec[kk]));

Row-column permutation applied to matrix A00:

> A:=evalm(transpose(P_n)&*AA0&*P_n);

Calculation of sum of upper-diagonal minus lower-diagonal elements:

> sumd:=0:
> for k from 1 to nx-1 do for m from (k+1) to
> nx do sumd:=sumd+A[k,m]-A[m,k]:od:od:

Check for new maximal value and keep new optimal permutation inmaxperm:

11

> if sumd>=maxoverall then maxperm :=
> permvec[kk]:maxoverall:=sumd:fi
> od:

End of loop.

> EndTime:=time()-StartTime:print(`Time used `= EndTime);

Time used = 7:110

The optimal permutation is given as maxperm:

> print(`Optimal permutation` = evalm(maxperm));

> print(`Maximal value` = maxoverall);

> P_n:=evalm(perm_matrix(maxperm)):

Optimal permutation = [4; 5; 1; 2; 3]

Maximal value = 53

> print(`Optimal permutation of A ` =
> evalm(transpose(P_n)&*AA0&*P_n));

Optimal permutation of A =

2
66664

0 24 10 16 11

9 0 11 23 16

13 1 0 20 22

21 9 13 0 18

10 24 5 13 0

3
77775

A.2 Linear- and Bilinear coeÆcients

In this program formula (10) is calculated for given matrix A.
> restart:
> with(linalg):

The dimension of the problem is de�ned by nx:

> nx := 3:

Some non problem speci�c de�nitions, depending only on the dimension of the

problem:

> nx1:=2*nx-1:nn:=nx*nx:nx2:=nn-nx1:

> ti0:=vector(nx1,1):

The matrix J:

12

> J := matrix(2*nx-1,nn,0):
> for m from 1 to nx do for k from 1 to nx do
> J[m,k+nx*(m-1)]:=1: od:od:
> for m from 1 to nx-1 do for k from 1 to nx do
> J[m+nx,2+(k-1)*nx+(m-1)]:=1: od: od:

Permutation lists (see de�nition of x1 and x2 above equation (5)):
> listAll:=[seq(k,k=1..nx*nx)]:
> listExcl:=[seq(1+(k-1)*nx,k=1..nx)
> ,seq(k+(nx-1)*nx,k=2..nx)]:
> listIncl:=[op(fop(listAll)g minus fop(listExcl)g)]:

> listIncl:=sort(listIncl):listExcl:=sort(listExcl):
> listTot:=[op(listExcl),op(listIncl)]:

The matrix J1 (see eq. (7) and (8)):

> J1:=matrix(nx1,nx1,0):
> for k from 1 to nx1 do for l from 1 to nx1 do
> J1[k,l]:=J[k,listExcl[l]]: od: od:

> J1inv:=evalm(inverse(J1)):

And the matrix J2:

> J2:=matrix(nx1,nx2):

> for m from 1 to nx1 do for k from 1 to nx2 do

> J2[m,k]:=J[m,listIncl[k]] od:od:evalm(J2):

Make a vector xx with elements in proper notation according to the text:
> x:=matrix(nx,nx):xx:=matrix(1,nn,(i,j)->x[1+floor((j-1)/nx),
> 1+((j-1) mod nx)]):

Make permutation xp of vector xx according to x = [x1jx2]:
> xp:=matrix(1,nn):for k from 1 to nn do
> xp[1,k]:=xx[1,listTot[k]]:od:

Make subvectors x1 and x2:
> x1:=matrix(1,nx1):for k from 1 to nx1 do
> x1[1,k]:=xx[1,listExcl[k]]:od:
> x2 := matrix(1,nx2):for k from 1 to nx2 do
> x2[1,k]:=xx[1,listIncl[k]]:od:evalm(x2);

�
x1; 2 x1; 3 x2; 2 x2; 3

�

Construction of permutation matrix P to get the matrixH�PHP with P0 = P:
> II:=matrix(nx,nx,0):for k from 1 to nx do
> II[nx-k+1,k]:=1: od: IO:=matrix(nx,nx,0):

> Dum:=matrix(nx,nx):IK:=array(1..nx):

> for k from 1 to nx do if (k=1) then IK[k] :=
> II else IK[k] := IO fi od:

13

> for k from 1 to nx do for m from 2 to nx do
> if (k=m) then Dum := II else Dum:=IO fi:
> IK[k]:=augment(IK[k],Dum): od: od:

> P:=IK[1]:for k from 2 to nx do
> P:=stackmatrix(P,IK[k]) od:

De�ning speci�c problem matrix A:
> AA0:=matrix(nx,nx,(i,j)->rand(100)()):for k
> from 1 to nx do AA0[k,k]:=0:od:evalm(AA0);

2
4 0 70 97

63 0 38

85 68 0

3
5

The matrix A:

> A:=evalm(AA0):

Make matrix H based on matrix A:

> H:=matrix(nn,nn,0):
> for t from 1 to nx-1 do for k from 2+(t-1) to
> nx do for l from 1 to nx do for m from 1 to nx do
> H[1+(t-1)+(m-1)*nx,k+(l-1)*nx]:=A[m,l]:od:od:od:od:

Make the matrix H0 = H�PHP, with P permutation matrix de�ned above:

> H0:=evalm(H - P&* H&* P):

The matrix H�PHP has a special form:

> `H - PHP`=evalm(H0);

H � PHP =

2
6666666666664

0 0 0 0 70 70 0 97 97

0 0 0 �70 0 70 �97 0 97

0 0 0 �70 �70 0 �97 �97 0

0 63 63 0 0 0 0 38 38

�63 0 63 0 0 0 �38 0 38

�63 �63 0 0 0 0 �38 �38 0

0 85 85 0 68 68 0 0 0

�85 0 85 �68 0 68 0 0 0

�85 �85 0 �68 �68 0 0 0 0

3
7777777777775

(22)

Make a matrix Hp which is reordening of H0 according to x = [x1jx2]:
> Hp:= matrix(nn,nn):
> for k from 1 to nn do for l from 1 to nn do
> Hp[k,l]:=H0[listTot[k],listTot[l]]:od:od:

Partitioning of matrix Hp; see text above equation (5):

> H11:=matrix(nx1,nx1):
> for k from 1 to nx1 do for l from 1 to nx1 do
> H11[k,l] := Hp[k,l]: od od:

14

> H12:=matrix(nx1,nx2):
> for m from 1 to nx2 do for k from 1 to nx1 do
> H12[k,m]:=Hp[k,nx1+m]: od:od:

> H22:=matrix(nx2,nx2):for m from 1 to nx2 do
> for k from 1 to nx2 do H22[m,k]:= Hp[nx1+m,nx1+k]:od:od:

> H21:=matrix(nx2,nx1): for m from 1 to nx2 do
> for k from 1 to nx1 do H21[m,k]:=Hp[nx1+m,k]:od:od:

Writing the problem in a quadratic, linear and constant part; see equations (4)

and (10):

First quadratic part:
> Hq:=evalm(transpose(J2)&*transpose(J1inv)&*H11&*J1inv&*J2
> -transpose(J2)&*transpose(J1inv)&*H12-H21&*J1inv&*J2+ H22):

Already the matrix Hq will give the correct bilinear form x0
2
H��x2. However, the

matrix referred in the text as H��, see equation (10), is given below as the matrix

H00:
> H_00:=matrix((nx-1)^2,(nx-1)^2,0):
> for k from 1 to (nx-1)^2 do for l from k to (nx-1)^2 do
> H_00[k,l]:=Hq[k,l]+Hq[l,k]:od:od:

So we get the very special form of H��:

H �� =

2
664

0 0 0 �35

0 0 35 0

0 0 0 0

0 0 0 0

3
775 (23)

The linear part (h��0 in equation (10)):

> h0:=evalm(ti0&*transpose(J1inv)&*H11&*J1inv&*J2):

> h1:=evalm(ti0&*transpose(J1inv)&*transpose(H11)&*J1inv&*J2):

> h2:=evalm(ti0&*transpose(J1inv)&*H12):

> h3:=evalm(ti0&*transpose(J1inv)&*transpose(H21)):

> Linpart:=evalm(-1*h0-1*h1+h2+h3);

Linpart := [11; �13; 25; 85]

Now writing object function as sum of quadratic, linear and constant terms. First

quadratic part (based on Hq one will get precisely the same quadratic form)::

> qap:=simplify(evalm(x2&*H00&*transpose(x2))[1,1]);

15

> lap:=evalm(Linpart&*transpose(x2))[1];

> cap:=evalm(ti0&*transpose(J1inv)&*H11&*J1inv&*ti0);

So �
�� as in (10), is the sum of the next three terms:

x0
2
H��x2 = �35 x1; 2 x2; 3 + 35 x1; 3 x2; 2

h��
0 = 11 x1; 2 � 13 x1; 3 + 25 x2; 2 + 85 x2; 3

c
�� = �36

As a conclusion, the relevant elements are collected in h��0 and u0H��:

> CC:=matrix(nx-1,nx-1,0):
> for k from 1 to (nx-2) do
> k0:=1+(k-1)*(nx-1):dx:=x2[1,k0]:d1:=coeff(qap,dx):k1:=k0+nx;CC[k+1,1]:
> =dx:for l from 1 to (nx-2) do
> dxx:=x2[1,k1+(l-k)*(nx-1)]:d2:=coeff(d1,dxx):CC[1,l+1]:=dxx;CC[k+1,l+1
>]:=d2;od:od:

> `Coefficients Matrix Bilinear`=evalm(CC);

CoeÆcients Matrix Bilinear =

�
0 x2; 3

x1; 2 �35

�

> uH00:=[]:for k from 2 to (nx-1) do for l from
> k to (nx-1) do uH00:=[op(uH00),CC[k,l]]:od:od:

> `h**'`=evalm(Linpart);

h � �0 = [11; �13; 25; 85]

> `u'H**` = uH00;

u 0H � � = [�35]

16

