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Abstract

Unmanned Areal Vehicles (UAVs) can provide significant contributions to information
gathering in military missions. UAVs can be used to capture both full motion video and
still imagery of specific target locations within the area of interest. In order to improve the
effectiveness of a reconnaissance mission, it is important to visit the largest number of inter-
esting target locations possible, taking into consideration operational constraints related to
fuel usage between target locations, weather conditions and endurance of the UAV. We model
this planning problem as the well-known orienteering problem, which is a generalization of the
traveling salesman problem. Given the uncertainty in the military operational environment,
robust planning solutions are required. As such, our model takes into account uncertainty
in the fuel usage between targets (for instance due to weather conditions) as well as uncer-
tainty in the importance of visiting specific target locations. We report results using different
uncertainty sets that specify the degree of uncertainty against which any feasible solution
will be protected. We also compare the probability that a solution is feasible for the robust
solution on one hand and the solution found with average fuel usage and expected value of
information on the other. In doing so, we show how the sustainability of a UAV mission can
be significantly improved.

1 Introduction

Current military operations pose new challenges for Intelligence, Surveillance and Reconnaissance
missions (ISR) as mentioned by Maj. Gen. Michael Flynn in [19]. Effective and flexible approaches
to data collection are among the critical elements of military operations. Following the successful
employment in Desert Storm (see [23]), Unmanned Aerial Vehicles (UAVs) have become an im-
portant asset in tactical reconnaissance. Depending on the type of information to be gathered,
the use of UAVs can be preferred over collection assets (for instance, in harsh environments, or
when information collection is too tedious for human operators, or when quicker response times
are required). As such, they are often used in reconnaissance missions to capture both motion and
still imagery of potential targets and areas of interest on which up-to-date information is required.
Such locations might include important infrastructure, possible locations of Improvised Explosive
Devices (IEDs), and insurgent locations. The goal of the UAV mission is thus to gather as much
information as possible given operational constraints related to the UAV endurance capabilities
(available fuel capacity since refueling is not permitted during flight). Obviously, some locations
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can be more relevant than others in terms of information gathering for the military operation,
and therefore priorities are usually assigned to the locations. In order to optimize data collection
the UAV should fly a tour including target locations of higher priority, starting and ending at the
UAV recovery point. Hence, this problem can be formulated as the Orienteering Problem (OP),
wherein the set of target locations correspond to nodes, the profits on the nodes model the target
location priorities, the arcs model the flight path from one target location to the other, and the fuel
requirement for such a flight path is given by the cost on the associated arc. The depot represents
the recovery point of the UAV. This generalization of the Traveling Salesman Problem (TSP) does
not require that all the nodes have to be visited and considers a profit associated with each node.
The profit is collected only if a node is visited. The goal is to find a tour of maximum profit,
starting and ending at the depot that is feasible with regard to a cost constraint that restricts the
total costs of the arcs that are included in the tour.

Royset and Reber [18] use this model to plan UAV missions, aiming to locate insurgents
placing IEDs and already placed IEDs. To obtain the profit values, they use the data from an
IED prediction tool. The tool provides the expected number of IEDs for each grid location. Not
only are the profits modeled as deterministic parameters in their model, the same is done for the
cost, which represent the expected fuel consumption. On the other hand, Porto [16] considers
the allocation of multiple reconnaissance UAVs to acquire temporally variable, time-differential
intelligence data (i.e. targets have to be revisited on a periodic basis to obtain time differential
images). In this specific case the tours of the multiple UAVs are optimized over and around the
targets of interest cooperatively, i.e., desired imaging schedules are met via a combination of assets.
In the proposed model, Porto also considers explicitly the probability of survival of the UAVs as
a function of the time the UAV spends traveling through threat zones.

Since UAVs operate in a dynamic and uncertain environment, effective UAV mission plans
should be able to deal with environment changes and with changing expectations. In fact, weather
circumstances like wind have a great impact on the fuel consumption of the UAV (real fuel con-
sumption will differ from the expected fuel consumption). Also, the expected priority assigned to
target locations often varies (priorities change as the mission evolves or due to unexpected events).
Furthermore, since replanning costs can be significant, especially in large systems it is important
to generate UAV tour plans that are robust. In this paper, we explicitly address uncertainty in
the input parameters of the described UAV mission planning. Hence, we assume that both the
costs on the arcs as well as the profits on the nodes are uncertain. As such, we introduce the
Robust Orienteering Problem (ROP) and we will come up with solutions that are robust against
both weather conditions and variations of the target priorities. Our robustness approach is two
folded. Uncertainty related to the fuel constraint (a strict operational requirement) is modeled
using absolute robustness that ensures that the UAV tour can be completed for all possible real-
izations of fuel consumption considered within the so-called uncertainty set. On the other hand,
we use a globalized robustness approach to handle profit uncertainty. In the globalized robust
approach two uncertainty sets are defined. It provides full protection against uncertainty in the
first set, while uncertainty in the second set is only covered to a certain extend. To the best of our
knowledge, no earlier research on the problem described by the ROP exists. In fact, Bertucelli et
al. [6] incorporate target uncertainty in the target value by assuming that the realization of each
target value lies within a certain predefined interval. They consider the situation in which UAVs
need to be assigned to a set of targets in the area. Their approach differs in two aspects from
our research. First of all, Bertucelli et al. consider a task assignment problem of multiple UAVs
in which each UAV is assigned to one target. We, on the other hand, consider a routing problem
of one UAV visiting multiple targets. Secondly, Bertucelli et al. do not take fuel constraints into
account.

This paper is structured as follows. In the following section we will provide some background
on robust optimization. In Section 3 we will formally describe the nominal OP. Next we will
introduce the ROP in which we explicitly model data uncertainty. In Section 5 we illustrate the
effects of incorporating both types of robustness by means of a case study. We conclude in Section
6 with some remarks on how the results of this case study relate to a real-life UAV planning
problem.



2 Robust optimization

In this section we will provide some background on robust optimization theory that will be used
further in the modeling of our UAV planning problem. In a standard linear programming problem
max,{c'r : Av < b} (LP) the parameters described by A, b and ¢ are deterministic. In reality
however, some or all of these parameters might be uncertain. Therefore, the solution to the
deterministic LP might turn out to be infeasible in reality. Robust optimization aims to overcome
this issue by taking into account data uncertainty already at the modeling stage.

In 1973 Soyster [20] was the first to incorporate uncertainty in an LP. One of the characteristics
of the Soyster approach is that it provides very conservative solutions, since resulting solutions
can deal with all worst-case realizations at the same time. This rather conservative approach
sacrifices optimality for the nominal problem, while the probability of all parameters reaching
their worst-case value at the same time is low in practice. However, in the late nineties, Kouvelis
and Yu [12], Ben-Tal and Nemirovski [3], [4] and El Ghaoui et al. [8], [9] developed new robust
optimization frameworks for respectively Integer Programming (Kouvelis and Yu [12]) and Convex
Programming that deal better with this issue.

In the remainder of this section we will focus on the robust optimization of LPs in the framework
as provided by Ben-Tal et al. [2] and we will mention how some approaches applied by other authors
are related to this framework. Ben-Tal et al. consider the situation where the realization of an
uncertain parameter lies in a symmetric interval. For example, when the maximum deviation of
element (¢, j) in A is defined by 055, realization a;; can be expressed by

aij = ij + 045Gij, (1)
where @;; is the nominal value and ¢;; € [—1,1]. The so-called robust counterpart of the LP

provides a solution that is feasible for all realizations of { within a predefined uncertainty set U.
The set U can for example be defined as an intersection of balls:

U={CeR":|(]ls < p;Vs €S} = ﬂB‘SA‘(pS), (2)
ses

where we defined
Bi(ps) ={Ce R": [Clls < ps}
to simplify the notation. The norm ||-||s determines the shape of the ball, while p, defines its size.
S is an index set. We will discuss some examples of uncertainty sets U.
When the goal is to find a solution that is protected against all parameters reaching their
worst-case value at the same time, we need to define S as a singleton with s = oo and p, = 1,
because this gives

U= BL) = (CER": [l < 1} = {ce R mox G <1} ®)

This type of uncertainty is called ‘box-uncertainty’. Note that a solution that is feasible for all
realizations in this uncertainty set, is equivalent to a solution that satisfies the Soyster formulation.

As discussed in the Introduction, Bertucelli et al. address the problem of assigning AUVs to
targets. The approach they use in order to find an assignment that is robust with respect to
uncertainty in the target value, is related to the use of the uncertainty set just defined. More
specifically, Bertucelli et al. maximize the total value of the targets, decreased by p times its
maximum deviation from the nominal target value, where 0 < p < 1. As such, the approach on
robustness applied by Bertucelli et al. is a special case within the framework of Ben-Tal et al,
where the sum of worst-case realizations over the target uncertainty set U = B2 (p) is maximized.

Finally, consider the example where we aim to find a solution that remains feasible if up to p;
uncertain parameters change from their nominal value. This could be implemented in the problem
formulation by defining

U=DB(p1) ={CeR" ¢ < p1} = {C eR": Z|Q| < Pl}- (4)

i=1



Note that if we would only apply this constraint on (, we also allow for realizations of the individual
parameters (;, outside of their predefined interval. Therefore, we could choose the uncertainty set
U against which any feasible solution is protected, as the intersection B (p1) N B (1). This type
of uncertainty is called ‘budget uncertainty’, which is the type of uncertainty set used by Bertsimas
and Sim [5].

3 The nominal orienteering problem

In this section we will give a formal description of the OP in which all input parameters are
assumed to be deterministic. The OP was introduced by Tsiligrides [21] and was shown to be
strongly NP-Hard by Laporte and Martello [13]. An exact algorithm for the OP was proposed by
Fischetti et al. [11]. The OP belongs to the class of TSPs with profits, of which an overview is
given by Feillet et al. [10]. A recent survey on the OP is given by Vansteenwegen et al. [22]. The
OP can be formulated in several different ways (see for example three formulations of the team
orienteering problem given by Poggi et al. [15]). In this section, we will present a formulation that
is based on the Miller-Tucker-Zemlin formulation [14] for the TSP. In this formulation, both the
number of variables and the number of constraints are polynomial in the number of targets.

3.1 Formulation of the nominal OP

Denote N for the set of targets and |N| for its cardinality. Denote the depot location by vertex
s ¢ N. For notational convenience, define N* = N U {s}. With each target i € N we associate
a target (profit) value p;. We formulate the OP on a complete graph G = (N*, A) with |[N|+1
vertices. With each arc (i,j) = a € A we associate a cost f;; representing the expected fuel
consumption between vertex ¢ and j. The fuel capacity of the UAV is denoted by F'. We introduce
a binary decision variable x;; for every arc (,j) € A. x;; is 1 if arc (7, 7) is used in the tour. An
auxiliary variable w; is introduced to denote the position of vertex i in the tour. The goal is to
find a tour of maximum profit, feasible with respect to the fuel constraint, which starts and ends
at the depot. Based on these definitions, the formulation of the OP is the following:

(OP) mapri Z Tij, (5)
iEN  jeN+T\{i}

such that

szi = ins = 17 (6)

ieN ieN
Z Tk = Z T <1, Vk € N, (7)

iEN+\{k} iEN+\{k}
Z fijzij < F, (8)

(i,j)=a€A

Ui—Uj+1§(1—.Tij)|N|, Vi,jEN, (9)
1 <wu; <|NJ, Vi € N, (10)
z;; € {0,1}, Y(i,7) € A. (11)

Constraint (6) guarantees that the tour starts and ends at the depot. Constraints (7) are the flow
conservation constraints and ensure that a vertex is visited at most once. Constraint (8) is the
capacity constraint. Finally, Constraints (9) prevent the construction of subtours.

4 The robust orienteering problem

In this section we introduce a version of the OP in which uncertainty is taken into account, the
Robust Orienteering Problem (ROP). More specifically, we will explicitly consider uncertainty in



the costs of the arcs, as well as in the profits associated to the nodes. The corresponding robust
UAV mission problem will therefore explicitly model both uncertainty in the fuel consumption
(costs of the arcs) and in the priority of the targets (profits of the nodes). We will formulate and
solve this new version of the OP by applying techniques from the framework provided by Ben-Tal
et al. We will make use of very recent results by Ben-Tal and den Hertog [1] on incorporating
Fenchel duality [17] in the general framework of robust optimization. The robust counterpart of
simple uncertainty sets like box uncertainty is relatively easy to derive. The robust counterpart
of polyhedral uncertainty can be derived using standard duality theory as described in Chapter
1 of [2]. Instead of using such derivations for each uncertainty set separately, the new theory
by Ben-Tal and den Hertog allows us to define a general formulation of the ROP for any given
uncertainty set.

Denote the expected fuel consumption from target i to target j by f;; and the expected
profit of target ¢ by Di- We assume that the realizations of these parameters lie in the intervals
[fij — W fis + Uz]] and [p; — of,p; + of] respectively.

4.1 Absolute robustness in fuel constraint

For later convenience, we rewrite the realizations of the fuel consumption as
fij :ij+01fj<ij7 (12)

where (;; € [-1,1]. As uncertainty set, we allow an arbitrary intersection of balls: we define Z f,
the set of possible realizations of (, by

zF ={¢ce R ¢, < p¥s € S} = () B (ps), (13)
sES

with B?(ps) as defined in Section 2. In Section 5.4, we will explicitly describe the uncertainty sets
that we used in our computational experiments.

A solution for the ROP is absolute robust against the uncertainty in the fuel consumption if
it satisfies Constraint 8 for all realizations ¢ € Z/. That is, if it holds that

S (Fij+olGimi; < F vce z7, (14)
(i,)€A
which is equivalent to
Z fijwij + max Z UZ](U:C” <F. (15)
(4,5)€EA (3,5)EA

In order to determine the second term of Equation 15, first define f(¢,z) = Z(i’j)eA alfj(ija?ij and
consider the indicator function

w61z ={ % e

oo, elsewhere.
Then, the second term of Equation 15 can be rewritten as
max > ol = max {f(6,2) - 5(¢12%)} (16)
(i,5)eA

By Fenchel duality [17] Equation 16 is equivalent to
min {§*(d|Z7) - fH(d,z)}, (17)

deRI4l

where we use ¢g* and g, respectively to denote the convex and the concave conjugate of g : R™ — R
with dom g = {z|g(z) < oo} , defined by

g*(d)= sup {d"z—g(z)} and

z€dom g



g.(d) = inf {d'z — g(z)} respectively.
zredom g

For f!, which is the convex conjugate of f with respect to the first variable (¢), we find

fHda) = inf $d"¢— > ol

¢eRIAI (ig)eA
. 0 if dij = ol ay; V(i j) € A;
_ f di — f ii)Cii = s ij ijLij ) 5 1
Cellg\‘” (‘2;1( 5 = 0% )i { —o0, elsewhere. (18)
1,3

Therefore, Equation 17 boils down to

min {§*(d|Z27) — fH(d,z)} = 6% (o @ x| Z7), (19)
deRIAl

where ® denotes the operation resulting in a vector that contains the element-wise multiplications
of its arguments: (o ® z);; = of xi5. It therefore suffices to evaluate the dual function 0* at

ij
o/ @ . By definition,

6" (d|Zz7) = max {d"¢} = max{d" ¢ : ||¢||s < ps Vs € S} (20)

This can be viewed as a conic optimization problem. By conic duality, it holds that

5*(d|2’) = min {Zpsn oS e = —d, yels < 7o (s 7) € R s € } @

ses seS

where y — [|y||* denotes the dual norm, defined by ||y||* = sup{y?d : ||d|| < 1}. Replacing y; by
—ys and eliminating 74 for all s € S, we obtain

6*(d|Z7) = min {Z pallyslls Y s =d,ys e RIAVs € S} . (22)

ses seS

Substituting this into Equation 19, we find that = is robust against uncertainty in the fuel con-
sumption, if there exist vectors ys € RI4l, such that

Yo Fawii Y pslyslls < F, (23)
(i,7)€A ses

Zys =0l @ (24)

ses

In the special case that S = {s} is a singleton, the above simplifies to

> TFuwij+psllo’ @l < F. (25)

(i,)€A
4.2 Globalized robustness in profit objective
To take the uncertainty of the profits into account, we first introduce an auxiliary decision variable
t. Then we add the constraint
t<d p ) @ (26)
i€EN  jeNH\{i}

to the formulation of the OP. The objective is now to maximize t. We rewrite the realizations of
the profits as

pi =Di + 07, (27)



where ¢; € [—1,1]. Our goal is to optimize the worst case profit, where we consider the worst case
over all realizations ( € ZP. However, we will also consider profits in the larger set QP O ZP. For
these profits, we allow for a slight loss in profit. This approach is called globalized robustness.
We will now first introduce notation and define the constraints that a robust counterpart solution
should satisfy. Consider the uncertainty sets

W ={¢:l[Clla < pa} and 27 ={C:|<lz < pB}

and the distance function
dist(¢, 2) = min € — 'l (28)

Now consider a constraint
20(2) + 2(2)T¢ < a(dist(¢, Z)) V¢ € Q, (29)

where «(-) is an increasing function with «(0) = 0. Ben-Tal and den Hertog [1] derived that (z, zo)
is a globalized robust counterpart solution if and only if there exists a vector v such that z, zg, v
satisfy

20+ palolla + psllv — 2l + a*(lv - zlle) <0. (30)

For our profit objective we require that for all { € QP it holds that
t—a(dist(C,27) <> pi Y i (31)
€N jeENT\{i}
We can rewrite this constraint matching the structure of Constraint 29 as
t— ZE’ Z Tij — Z e Z ziy < a(dist(¢, 27)). (32)
ieEN  jeN+\{i} ieN JEN+\{i}
For a(s) = (s, the dual function o can be computed easily. It is given by

a*(d):{ 0, ifd<p;

00, otherwise.

We see that the term o*(||v — z||5) reduces to the extra constraint ||v — z||5 < 8. Applying now
the result given by Constraint 30 for «(s) = (s, we find that solution to the OP is globalized
robust against uncertainty in the profit values if and only if

t=> 0 Y witpallla+eslo+(@® o) < 0, (33)
€N jEN+\{i}

lo+ (P o)le < B, (34)

where ® denotes the operation resulting in a vector that contains the elements (6P ® z); =
> JEN+\{i} oPz;;. For later convenience, we introduce an auxiliary variable w € RV that satisfies

w=v+0oP 0Oz

Replacing now v by —v, it holds that x is globalized robust against uncertainty in the profits, if
there exist v and w, such that v, w, z satisfy

=5 S aytpaloli +pslwly <o,
iEN  jEN+\{i}

w+v=0cPOu,
lwle < 8.



4.3 Formulation of the robust OP

This subsection introduces the formulation of the ROP which incorporates both absolute robust-
ness against fuel uncertainty and globalized robustness in the profit objective. The mathematical
formulation reads

(ROP)  max | > 2P — pallvls — psllwlz| (35)
(i,j)=a€A
such that
[wlle: < B, (36)
w; +v; = Z olz;; = (o? ®x);, VieN, (37)
JENT\{i}
Yo wifiy ) pslyslli < F (38)
(i,j)=a€A seS

nyj = alfjwij = (of @ 2)y, V(i,j) =a € A, (39)

seS
Z To; = Z Tjo =1, (40)

jEN jEN
Z Tyj = Z zj; < 1, Vie N, (41)

JENT\{i} JENT\{i}
w —uj; +1 < (1—ua5)|N|, Vi, j € N, (42)
1 <w; <|NJ, Vi € N, (43)
z;; € {0,1}, V(i,j)=a€ A, (44)
vi; € R, Vs € S,(i,7) =a € A, (45)
v; € R, Vi € N, (46)
w; € R, Vi € N. (47)

4.3.1 Simplifications

Note that only the variables x are integer. To ease the formulation of the norms in the Objective
35 and Constraints 36 and 38, the variables v,w and ys; can be restricted to the non-negative
orthant. This is a consequence of the right hand side in Constraints 37 and 39 being non-negative.
To prove this result, we will show that we can transform feasible vectors y, € R into feasible
vectors ys € R‘fl. Let therefore vectors y* € R4l be given that satisfy the above constraints.
Select (4,j) = a € A arbitrarily. Define the sets

ST ={seS:y; <0} and ST ={seS:y;; >0}

If S~ = (), the coordinates y;; > 0 for all s € S and we can define g;; = y;; for all s € S. Otherwise,
as (0 ® x);; is non-negative, it must hold that

Sy== >y >o. (48)
seSt seS—

Define the quantity

Dsest+ Yij Dsest Vi
It follows from Equation 48, that v € [0,1]. Define now yi; =0 for all s € ST and yj; = vy;; for
all s € §’. We then have

ngj = Z Ui =7 Z (I :nyj = (Uf®x)ij-

seS seS+ seSt ses

ESES yfj _ Zses+ yfj + ESES* yisj



Furthermore, it can easily be seen that 77| < |y;;|. Repeating this procedure for all (i, j) = a € A,

we obtain vectors y° € Rf‘, that satisfy Constraint 39 for all (,j) = a € A and that satisfy
1y5;| < lyi;| for all s € S and (4, 7). For all 1 < p < oo, it now holds that

P le=">" lmr< D Iyl =l
(i,j)=a€A (i,j)=a€A

We conclude that ||7°]|, < ||lys|lp- Furthermore, it follows that

1570 = max [yl < max yi = 97l

As all norms that we consider are of one of the above forms, this implies that

19sls < llyslls-

We conclude that also Constraint 38 is satisfied. This proves that we can restrict the domains
of ys to R‘f‘. A similar proof can be given to show that feasible vectors v,w € RNl can be

transformed into feasible vectors v,w € RL]_V‘ that give an objective value that is not worse. This
proves that the auxiliary vectors v, w and ys can be assumed to be non-negative.

4.3.2 Selecting uncertainty sets

The formulation just given, contains constraints based on the general uncertainty sets Zf, ZP and
QP. Here we will illustrate how to further specify these constraints for some specific choices of the
uncertainty set. We will provide this illustration for two choices of the fuel uncertainty set: the
L'-ball and the intersection of the L>°-ball and the L?-ball. Similar derivations hold for other fuel
uncertainty sets, as well as for the sets representing the profit uncertainty. In these derivations
we will need to specify dual norms. In order to do so, we will make use of the following known
theorem on dual norms [2].

Theorem 1. If p,q € [0, 0] satisfy % + % =1, then
lylly, = sup{y"d : [|d]l, <1} = [lyll,-

L'-ball

When we choose to define Z/ as an L!-ball, we have Z/ = B‘lAl(pl) ={¢eRA ¢ < p1}-
The fuel constraints given by Equations 38 and 39 then become

> Fuwi+ o @elf <F, (49)
(i,§)€A

since the index set S = {s} in the definition of Z/ is a singleton. From Theorem 1 we find
llyllt = ||ylloe- Replacing ||of @ z||T by |0/ @ z||s in Constraint 49 and introducing the auxiliary
variable y € R leads to the following reformulation

> {furut+py <F, (50)
(i,7)€A

y > O—gjxij v(i,j) € A, (51)

y > ol V(i,j) € A. (52)

Since both alfj and x;; are nonnegative, the final constraint is redundant. This formulation implies

that we apply a budget of p times the maximum value over all O‘ij’s selected in the tour, to serve
as planned slack against deviations from the expected fuel usage.



Intersection L*°-ball and L2-ball

When we choose Z/ to be the intersection of an L>°-ball and an L?-ball, we have

75 = Bl (pe) N BY (p2) = {¢ € R [[Clloo < pos [I€]l2 < pa}-

The fuel constraints given by Equations 38 and 39 then become
D wiifij + poollyscllic + pallvalls < F, (53)
(,j)=a€A
v + ol =ofwy = (0f @a)y, V@) =acd (54)
From Theorem 1 we find [[y[[%, = [lyllv and [ly[|3 = [lyl|2- Replacing [[yoollZ, by [|ysollr and [|ly2]13

by |[52]]2 in Constraint 53 and introducing the auxiliary variable y € R and vector z € RI4! lead
to the following reformulation

Z xi; fij + Z zij +y < F,

(i,j)=acA (i,j)=a€A
ylojo +y12]:O'1f].’EZ]:(Uf®x)1j V(Z,]):(IGA,
Z”nyjo V(i,j):aeA,
Zij 2 *y?jo V(i,j) = a € A

The final constraint is again redundant, since y;7 > 0 for all (i,7) = a € A, as we showed in
Section 4.3.1. Therefore, these constraints can be reformulated in the following way:

doowmply+ Y yT D W<

(i,j)=a€A (,j)=a€A

uiy + i = ofwiy = (0f @ 2); V(i,j) = a€ A

5 Case study

In this section we will describe the computational experiments performed in order to solve the
ROP. Real instances of AUV planning problems are, due to security reasons, restricted. Therefore
we used representative data in order to illustrate the effects of applying robust optimization on a
UAV planning problem. These data sets were used in earlier research on the OP ([7], [21], [11]),
but since the standard OP is deterministic, the data sets do not include uncertainty parameters.
Therefore, in the next subsection we describe how these data sets were adapted by introducing the
uncertainty intervals for the fuel parameters and the profit parameters. Next, we will describe the
shapes and sizes of the uncertainty sets for both the fuel parameters and the profit parameters.
Finally, we will address the quality and reliability of the robust solution based on the combination
of the uncertainty sets that were selected for the fuel and profit parameters. We also compare the
probability that a solution is feasible for the robust solutions on one hand and the solution found
with nominal fuel usage and nominal profits on the other.

5.1 Nominal data

The survey of the OP by Vansteenwegen et al. [22] contains an overview of benchmark instances
for the OP. For our experiments we used the data set ‘Tsiligrides problem 2’ [21], which contains
20 nodes, each with a profit of either 15, 20, 25, 30, 40 or 50. The nodes are positioned on
a rectangular area of size 15 by 15 units. We use the Euclidian distance dist(i,j) to represent
the fuel requirement between node i and j. Additionally, in order to realistically model the

10



reconnaissance mission of the UAV, we add one parameter to this data set that represents the
fuel required to properly record the target. That is, when the UAV has reached its target it may
need to fly one or more orbits above the target in order to obtain all the information about the
target requested for this mission. Equally for each of the nodes we set this fuel requirement to 2
units. Summarizing, fi; is defined by dist(i, j) + 2 for all (i,5) € A\ {(i,j)|j = s}. Note that the
arcs (i, s), which are the arcs returning to the depot, only have a fuel requirement based on the
Euclidean distance. We set the fuel capacity at 65 units.

5.2 Uncertainty intervals

Since the data set does not contain any uncertainty, we need to define the intervals within which
we assume the realizations of both the fuel and the profit parameters to lie. That is, we need to
define O'Zj and of respectively.

5.2.1 Fuel usage interval

We assume the deviation in the fuel usage between the nodes to consist of two parts. Both are
mainly due to deviations in the weather circumstances. The first part relates to the flight path
by the UAV between the two points of interest. The second part models the fuel consumption
required to capture full motion video or still imagery at the target location. For the first part, we
assume the maximum absolute deviation of the fuel requirement to reach node j from node i to
be a fixed percentage o of the nominal fuel usage dist(i,j). For the second part, capturing full
motion video or still imagery, we assume a fixed maximum absolute deviation ¢/ that is equal for
all targets. Summarizing, we construct the interval of the fuel usage between node i and node j
by defining o;fj = ol dist(i,j) + ¢f. We choose ¢/ = 0.5 and of = 0.15.

5.2.2 Profit value interval

We assume the uncertainty in the profit value to consist of two parts as well. First, we assume
the realized profit value to depend on the expected profit value. More specifically, we assume the
first part of the maximum absolute deviation between p; and p; to be a fixed percentage af of
the expected profit. Secondly, the size of the uncertainty interval might depend on the type of
target. The mission planners might be able to specify the amount of uncertainty for a certain
target location based on their knowledge about the target type and information obtained from
previous missions. We model this variation in the level of uncertainty in the profit value between
different targets, by introducing a random variable U. Summarizing, we define of = op; + U,
where we set o = 0.2 and we choose U to be a random variable, uniformly distributed between
0 and 80 percent of the profit value.

5.3 Uncertainty sets and parameters

The robust counterpart of the OP requires three uncertainty sets to be defined: the sets defining
all possible realizations of the fuel parameters (Z/), the set of realizations of the profits for which
we want to maximize the worst case profit (ZP) and finally, the set for which we allow a slight
loss in profit (P D ZP). Additionally, for the globalized robust solution, a norm regarding the
distance function, dist((, Z?) needs to be defined. To define the uncertainty sets, we use balls
that are defined with the Li-norm, the Lo-norm and the L.,-norm. For the uncertainty in the
fuel consumption, we also consider two intersections of balls: these intersections are defined with
the Lo.-norm and the Li;-norm and with the L.,-norm and the Ls-norm. For each of the three
uncertainty sets, the associated size needs to be defined and for the distance function we require
the constant § to be defined. This leads to a total of eight settings that are required for any robust
counterpart of the OP.
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5.4 Computational experiments

We implemented the robust counterpart of the ROP as formulated in Section 4.3. We used
Eclipse 3.6 for the implementation and CPLEX 12.1 for the optimization of the OP on an Intel(R)
Core(TM) 2 Duo CPU, 2.40 GHz, 1.95 GB of RAM. As stated before, the robust counterpart
requires eight settings to be defined. The tables below contain the settings of the experiments
we performed. In our first set of experiments, we focus on the effect of implementing robustness
in the fuel consumption. Here we ignore the uncertainty in the profits by setting the sizes of
the associated uncertainty sets (pa and pp) to 0. In the second set of experiments however, we
concentrate only on the effect of globalized robustness in the profit objective and disregard the
uncertainty in the fuel consumption by setting the size of the fuel uncertainty set to 0.

In Table 1 we experiment with the use of different sizes and shapes of the fuel uncertainty
set. Note that setting the size of Z/ to p = 0 corresponds to solving the nominal OP (since we
also disregard profit uncertainty here), while Zf = B(Lé |(1) corresponds to protection against all
worst-case fuel realizations. Since protection against all worst-case realizations at the same time
is a very conservative approach, we vary with several smaller uncertainty sets. The sets given in
Table 1 are all inclusions of Z/ = Bl ‘(1). In Table 2 we gradually increase the size of the profit
uncertainty sets QP O ZP and we experiment with the size of 5. In all tables, the shape of the
uncertainty set (denoted by index p) is not specified when its size is 0.

To address the quality of the solutions produced by the different robust counterparts, we
simulated realizations of both the fuel and the profit parameters. We executed 1000 runs in which
all realizations were drawn randomly from a uniform distribution of the parameters within their
interval and we evaluated the performance of each tour. In this way, we are able to determine the
percentage of UAV tours that are feasible with respect to the fuel constraint. Also, we are able to
determine an empirical distribution of the realized objective value (total priority value of visited
targets) of the tour.

Qr zZP z7 dist [ 3
BN ) | BIN0) | BE(p),p=10,0.1,...0.9,1] NA. |0
BNV o) | BN(0) | B (p),p=10,0.1,...0.9,1] N.A. |0
BN ) | BN | B (p),p=10,0.1,...0.9,1] N.A. |0
BN o) | BN(0) | B2(1)n B (p),p=10,1,...9,10] N.A. |0
BNy | BNy | B2'1)n B (p),p=10,05,...25,3] | NA. | 0
Table 1: Varying size and shape of fuel uncertainty set.
Qr zP z7 dist | 8
B (pa), pa =1[0.1,0.2,...0.9,1] | B (p5), pp = pa — 0.1 B0y | L' |10
BN (pa),pa =1[0.1,0.2,...0.9,1] | BN (pp), ps = pa B0y | L' | 10
BY(1) B (ps), ps =[0,0.1,...09,1] | B©0) | L* | 10
BIY(1) B (pp), pp = 0.2 B0y | L' | [o,...1000]*

Table 2: Varying sizes of the profit uncertainty sets. *For 8 we used several elements ranging between 0
and 1000. The exact values can be found in Table 4.

5.5 Results

The results of the computational experiments are summarized in Tables 3 and 4 which can be
found in the Appendix. Table 3 contains the results of the experiments where we varied the size
and shape of the fuel uncertainty set, as defined in Table 1. In Figure 1 the feasibility resulting
from the simulation is plotted against the nominal objective value. This figure contains five lines.
Each line corresponds to one of the shapes of the fuel uncertainty set and connects the results
corresponding to different sizes. Table 4 contains the results of the experiments where we varied

12



the sizes and shapes of the profit uncertainty sets as well as the size of 3, as defined in Table 2. For
each combination of the profit uncertainty sets, we report several characteristics of the resulting
empirical distribution. Figure 2 shows a histogram of the empirical distributions of the realized
objective values for both the nominal tour and one of the globalized robust tours.
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04 0a 0B o7 0a 08 1 11
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Figure 1: Fuel robustness: feasibility vs. nominal objective value

Table 3 illustrates how the profit value as well as the length of the tour decreases, when we
gradually increase the size of the fuel uncertainty set. Increasing the size of the uncertainty set
results in saving more planned slack of fuel. As such, a tour obtained by a large fuel uncertainty
set has a lower expected profit on the one hand, but has a higher probability of remaining feasible
on the other. This trade-off between feasibility and expected profit value is illustrated in Figure
1. Note that we cannot simply compare the nominal profit values of the different tours with one
another. In reality, if during the flight the real fuel consumption turns out higher than expected,
one or more targets on the tour might need to be canceled in order for the UAV to be able to
return to its recovery point. Therefore, a robust tour is more likely to actually achieve the nominal
target value, since the UAV is more likely to complete its predetermined flight plan.

T 180 -

8 160

=

§ 140 s B robust taur

=] 120 H nominal tour

w 100

o

€ A0

% B0

e 4[]

§ 20

g D T Il_LI

e ] = [ ] = = ] = = ] = = [ ] = ] = = ] = = [ ] = [ ] =
=I o () - oo [mn] [ — [ o = Lo [ - [n] o = — [ ] [nn] =I Lo () -
[ [ (] [ ] [ ] [ o (] [nn] o2 [nn] [n] o [nn] o [nn] = I = I I = =I =T

proft realizations

Figure 2: Distribution of profit realizations for the nominal tour and the globalized robust tour with
v = BIY(1), z» = BY'(0.2) and 8 = 10

With respect to the profit uncertainty, both Table 4 and Figure 2 show that globalized robust-
ness provides solutions of which the variance of realizations is lower than the spread of realizations
for the nominal tour. Globalized solutions having a relatively low standard deviation mainly occur
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when the set QP is chosen relatively large and [ is not chosen too large. This is in line with our
intuition: for smaller 3, the solution is better protected against realizations in P, which leads
to solution with a lower standard deviation. The decrease in the expected (and realized) profit
however, is relatively high compared to the decrease in standard deviation: with high probability
the nominal tour gives a higher realized profit than a globalized robust tour. We expect this phe-
nomenon to be the result of the discreteness of the solution space and the small size of the instance.
Experimenting with larger instances becomes much more difficult, since solving the ROP requires
not only a selection from the set of targets, but also the determination of a sequence in which the
targets will be visited. On the other hand, the problem size used in this case study is representative
for real-life instances of UAV mission planning. The computational results suggest that globalized
robustness in the objective value does not produce encouraging results. They also suggest that a
better way to deal with profit uncertainty in the objective function for small instances of the UAV
planning problem might be using on-line planning approaches. On the other hand, robustness in
the fuel constraint significantly improves the sustainability of the predetermined flight plan.

6 Conclusion

The optimization of information gathering in reconnaissance missions by UAVs can be modeled
as an orienteering problem. Given the uncertainty in the military operational environment, ro-
bust planning solutions are needed. By applying techniques from robust optimization, we have
introduced a new version of the orienteering problem that takes into account uncertainty in the
parameters already in the modeling stage. We have shown how to find tours for the UAV that
are robust against uncertainty in the fuel usage between targets as well as uncertainty in the
importance of visiting specific target locations.

The results of the case study show that globalized robustness in the profit objective function
is less applicable to our UAV planning problem. Regarding the fuel capacity on the other hand,
incorporating robustness in the planning can significantly improve the sustainability of a predefined
flight plan. In real-life UAV planning problems, when the fuel consumption turns out to be higher
than accounted for, the UAV has to return to its recovery point earlier than planned. As a result,
certain target information cannot be obtained anymore within that flight. Robust optimization
allows the mission planner to overcome this issue by selecting a tour which balances the probability
of infeasibility and the expected objective value, according to his or her preference.
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fuel uncertainty set | nominal profit | nominal fuel consumption | feasibility
BI2T(0) 360 64.921 0.529
B20.1) 355 63.662 0.751
B2(0.2) 345 62.429 0.905
B21(0.3) 340 61.403 0.971
B21(0.4) 330 60.419 0.993
B2(0.5) 325 59.315 1
B21(0.6) 315 58.450 0.999
B2 0.7 310 57.361 1
B21(0.8) 300 56.462 1
B21(0.9) 290 55.734 1
BI(1) 290 54.708 1
B*(0) 360 64.921 0.529
B*(0.1) 360 64.684 0.58
B*(0.2) 360 64.684 0.58
B*(0.3) 355 64.188 0.641
B*(0.4) 355 64.417 0.619
BI*(0.5) 355 64.193 0.643
B*(0.6) 355 64.213 0.656
Bl 0.7) 355 63.662 0.766
B*(0.8) 355 63.610 0.742
BI*(0.9) 355 63.542 0.748
B/ (1) 355 63.542 0.748
B(0) 360 64.684 0.578
B0.1) 355 63.610 0.743
B*(0.2) 355 63.610 0.743
BI(0.3) 355 63.610 0.742
B (0.4) 355 63.594 0.772
B(0.5) 350 63.163 0.807
B*(0.6) 345 62.963 0.845
B (0.7) 345 61.783 0.949
B*(0.8) 345 61.783 0.953
B*(0.9) 345 61.783 0.953
BA(1) 340 61.641 0.959
BET(1)n B™(0) | 360 64.921 0.529
B nB*1) | 355 63.542 0.748
B2l(1)ynB*@) | 345 62.315 0.912
BE(ynB*@) | 335 60.794 0.989
B2(1)ynB*@) | 330 59.829 0.998
B nB*»B) | 325 59.035 1
BAynB*e) | 310 57.591 1
B nB* (7 | 310 57.361 1
BA1)ynB*@®) | 305 56.624 1
BA(ynB*9) | 295 55.816 1
B2y n B 10) | 290 54.945 1
BET(1)n BIY(0) | 360 64.684 0.562
B2I(1)n B (0.5) | 350 63.110 0.82
BA)ynBM 1) | 340 61.336 0.979
B2y n B (1.5) | 330 59.762 0.999
BAynBM@) | 315 58.383 1
By nB*(25) | 305 56.624 1
BE My nB* @) | 290 54.945 1

Table 3: Results for varying sizes and shapes of Zf
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8 nominal profit | average | median | minimum | maximum | sd

0.1) (0) 10 360 361.24 | 360.03 | 250.57 483.57 40.74
0.2) (0.1) | 10 360 358.94 | 359.22 | 240.72 477.92 40.85
0.3) (0.2) | 10 360 359.68 | 358.62 | 247.96 496.07 41.48
0.4) (0.3) | 10 360 358.94 | 359.22 | 240.72 477.92 40.85
0.5) (0.4) | 10 360 359.68 | 358.62 | 247.96 496.07 41.48
0.6) s (0.5) | 10 360 359.68 | 358.62 | 247.96 496.07 41.48
0.7) (0.6) | 10 345 345.02 | 344.45 | 245.70 480.14 38.48
0.8) (0.7) | 10 320 321.07 | 319.50 | 247.76 409.10 26.40
0.9) (0.8) | 10 320 320.43 | 319.31 | 242.77 409.32 26.44
(0.9) | 10 320 321.07 | 319.50 | 247.76 409.10 26.40

(0) 10 360 359.68 | 358.62 | 247.96 496.07 41.48

1) (0.1) | 10 360 358.94 | 359.22 | 240.72 477.92 40.85
.2) (0.2) | 10 360 359.68 | 358.62 | 247.96 496.07 41.48
.3) (0.3) | 10 360 358.93 | 358.61 | 237.89 478.05 41.03
A4) (0.4) | 10 360 361.24 | 360.03 | 250.57 483.57 40.74
.5) (0.5) | 10 360 358.93 | 358.61 | 237.89 478.05 41.03
.6) (0.6) | 10 360 360.55 | 359.08 | 247.98 475.25 40.17
.7) (0.7) | 10 360 359.68 | 358.62 | 247.96 496.07 41.48
.8) (0.8) | 10 360 358.93 | 358.61 | 237.89 478.05 41.03
.9) (0.9) | 10 360 358.93 | 358.61 | 237.89 478.05 41.03
( 10 360 358.93 | 358.61 | 237.89 478.05 41.03

( 10 320 320.68 | 321.06 | 244.56 403.96 26.62

(0.1) | 10 320 320.43 | 319.31 | 242.77 409.32 26.44

= (0.2) | 10 320 321.07 | 319.50 | 247.76 409.10 26.40

(0.3) | 10 320 320.43 | 319.31 | 242.77 409.32 26.44

(0.4) | 10 320 321.07 | 319.50 | 247.76 409.10 26.40

(0.5) | 10 320 320.43 | 319.31 | 242.77 409.32 26.44

(0.6) | 10 320 321.07 | 319.50 | 247.76 409.10 26.40

(0.7) | 10 320 321.07 | 319.50 | 247.76 409.10 26.40

(0.8) | 10 320 320.43 | 319.31 | 242.77 409.32 26.44

s (0.9) | 10 320 321.07 | 319.50 | 247.76 409.10 26.40

(1) 10 320 321.07 | 319.50 | 247.76 409.10 26.40

(0.2) | O 320 320.43 | 319.31 | 242.77 409.32 26.44

s (0.2) | 0.01 | 320 321.07 | 319.50 | 247.76 409.10 26.40

(0.2) | 0.1 320 321.07 | 319.50 | 247.76 409.10 26.40

(0.2) | 1 320 321.07 | 319.50 | 247.76 409.10 26.40

(0.2) | 2 320 320.43 | 319.31 | 242.77 409.32 26.44

(0.2) | 5 320 320.43 | 319.31 | 242.77 409.32 26.44

(0.2) | 10 320 321.07 | 319.50 | 247.76 409.10 26.40

w (0.2) | 20 335 334.90 | 334.42 | 242.99 434.82 30.92

(0.2) | 50 360 358.94 | 359.22 | 240.72 477.92 40.85

(0.2) | 100 360 358.94 | 359.22 | 240.72 477.92 40.85

(0.2) | 1000 | 360 359.68 | 358.62 | 247.96 496.07 41.48

Table 4: Results Globalized Profit Robustness
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