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Abstract

The information contained in PP-plots is transformed into a single
number. The resulting Harmonic Mass (HM) index is distribution free
and its sample counterpart is shown to be consistent. For a wide class
of CDFs the exact analytical expression of the distribution of the sam-
ple HM index is derived, assuming the two underlying samples to be
drawn from the same distribution. The robustness of the concomitant
test statistic is assessed, and four different methods are discussed for
applying the HM test in case of asymmetric samples.
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1 Introduction

Research abounds involving comparisons of distributions. In all areas of
economics — empirical, experimental, and theoretical — these comparisons
are used to substantiate conclusions. Do macroeconomic variables assume
different values across countries? Do different experiment treatments yield
different outcomes? Do predictions differ between model simulations based
on varying sets of parameter values? And so on.
In many cases the theoretical distribution of the underlying economic

phenomenon is not known and the comparison of (sample) distributions boils
down to the comparison of (sample) statistics. Next to the traditional con-
sideration of sample moments and extreme values, the most-frequently used
test in applied research involves some version of the Mann-Whitney-Wilcoxon
(Mww) U statistic.1 As this elegant test yields the probability that one vari-
able is less than or equal to another, it is not suited for testing whether
two (sample) distributions differ as such; rejecting the hypothesis that nei-
ther of two random variables exceeds the other does not imply acceptance of
the hypothesis that they are drawn from the same distribution. This paper
introduces a statistic for testing just that.
Other comparisons typically involve graphical displays, most notably quan-

tile-quantile (QQ) plots and percentile-percentile (PP) plots. The former is
the scatter plot of quantiles of two distributions for all entries of their joint
support while the latter displays for all these values the scatter plot of the
two distributions’ percentiles. If distributions differ in scale and location
only QQ-plots consist of straight lines with slope one, which by some is con-
sidered to be a desirable feature (Wilk and Gnanadesikan, 1968). Yet, they
become degenerate in case of non-overlapping supports. Relatedly, QQ-plots
are highly sensitive to observations in either distributions’ tails. While this
readily allows for the identification of outliers it blurs the pattern that is
present in the majority of the data. Also, if one support encompasses the
other QQ-plots can be straight lines (due to the scale-location-invariance
property) even though the probability mass is distributed quite differently
for the two underlying distributions.
Although PP-plots do not carry the scale-location-invariance property

they have several advantages. First, comparisons between distributions are
always available in compact space as PP-plots are scale-invariant. Second,
they are little obscured by outlying observations because they are much more
sensitive to differences in the centre of the mass of the underlying distrib-

1An alternative to the Mww U statistic is the Kuiper or Kolmogorov-Smirnov test. As
this statistic is based on the maximum point-wise deviation between distributions it is
highly sensitive to outliers thus reducing its power substantially.
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utions than to differences in their tails. This property in particular makes
them well-suited for establishing whether two samples are drawn from the
same distribution as the implicit focus is on the pattern exhibited by the
majority of the data. Third, and most importantly, PP-plots contain all nec-
essary information to make scale-invariant comparisons between distributions
(Holmgren, 1995).
The informative features of graphical displays notwithstanding, they do

not provide information from which statistical inferences can be drawn.2

Indeed, in this paper the information of a PP-plot is translated into a single
number between 0 and 1. Because a PP-plot is the diagonal in case the two
underlying distributions are identical, an obvious measure for characterizing
PP-plots is the area between the diagonal and the plot. It is this area,
multiplied by two, that is considered here. As it reflects the extent to which
the probability mass of the two underlying distributions is in harmony, it is
labelled the Harmonic Mass (HM) index.
Theoretically the HM index is readily defined, as is the PP-plot. For

practical use the sample HM index is to be considered, which specifies the
index value for any two discrete samples. The sample HM index is shown to
be consistent. Absent within-sample and between-sample ties, simple rules
are specified to compute the index value without approximation error.
Next, the probability density function (pdf) of the sample HM index is

derived under the assumption that the two underlying samples are drawn
from the same distribution. This readily allows for hypotheses testing. As
this pdf involves burdensome computations, critical percentiles are provided
of the related cumulative density function (CDF) for samples including up
to 350 entries. For larger samples an accurate approximation rule is derived.
To some extent the use of the HM test is ruled by its inherent Type-I

and Type-II error. Outliers are shown to have a mild influence on the HM
test; simulated critical percentiles are hardly affected by data contamination
of up to five percent of all observations, while those at 97.5 and 99 are little
affected by a corruption of 10 percent of the data. This is comfortably in line
with Hampel et al. (1986) who find that 10 percent is the maximum fraction
of pollution in routine data. The acceptance rate of the HM test in case
the two underlying distributions differ, depends on the specific distributions
that are compared. Simulations indicate that the HM test is quite able to
discern the log-normal, uniform, and exponential distribution in case these
distributions are parameterized such that they mimic each other.
Finally, an assessment of the distribution dynamics of the Balassa index

2Another use of PP-plots is to compare different plots. Holmgren (1995) provides
semiparametric and nonparametric tests for these comparisons.
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Figure 1: Theoretical PP-plot (Panel a) and concomitant Harmonic Mass
index (Panel b).

for revealed comparative advantage in the United Kingdom (UK) illustrates
the use of the HM test. In this case it reveals a particular era to be relatively
volatile, an era that is overlooked by a traditional Markov analysis.

2 The Harmonic Mass index

Consider the following set of functions: Ξ1 = {F |∀x, h ∈ R: limx→−∞F (x) =
0, limx→∞F (x) = 1, limh↓0F (x + h) = F (x), and a < b =⇒ F (a) ≤ F (b)}.
Let F and G be CDFs belonging to Ξ1. The concomitant PP-plot depicts
the percentiles of one distribution relative to the other:

p2 = F
¡
G−1(p1)

¢
, 0 ≤ p1 ≤ 1, (1)

whereby G−1(y) = inf {x : G(x) ≥ y}. An example of such a PP-plot is given
in Panel a of Figure 1. Clearly PP-plots are mappings from [0, 1] onto [0, 1]
and depict the correspondence between the two underlying distributions in
probability space.
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2.1 HM index: definition

As the PP-plot coincides with the diagonal if, and only if, the two underlying
distributions F and G are identical, an obvious measure to characterize PP-
plots is the absolute value of the total deviation between the diagonal and
the PP-plot. This notion is much in the same spirit as the Gini coefficient
for Lorenz curves. To normalize this measure to an index value between 0
and 1, the particular surface is multiplied by 2, that is:

Definition 1

HM(F,G) ≡ 2
Z 1

0

¯̄
p− F

¡
G−1(p)

¢¯̄
dp. (2)

Indeed, the HM index corresponds to the shaded area multiplied by 2 in
Panel b of Figure 1.

2.2 HM index: properties

Observe a number of properties of the HM index.

Property P1 (equality): HM(F,G) = 0 ⇐⇒ ∀ q ∈ [a, b] : F (q) = G(q).

As HM(F,G) = 0 implies that p = F (G−1(p)) ∀ p ∈ [0, 1], it follows
that F = G; likewise, F (q) = G(q) implies that F−1(G(q)) = q, from which
an HM index of 0 follows.

Property P2 (symmetry): HM(F,G) = HM(G,F ).

As the PP-plot of F taking G as the basis is the reflection of the PP-plot
around the diagonal of G taking F as the basis, either yields the same value
for the HM index.

Property P3 (range): HM(F,G) ∈ [0, 1] .
Since a PP-plot is an increasing function on its domain, the maximum

deviation with the diagonal is obtained if it never crosses in the interior and
approaches either of the coordinates (0,1) or (1,0), in which case the absolute
surface area between the diagonal and the PP-plot is 1

2
(this maximum value

can also be obtained if the PP-plot crosses the diagonal only once).

3 The sample Harmonic Mass index

For using HM index (2) in practise its sample counterpart needs to be con-
sidered. Let Xn = {x1, ..., xn} be n realizations of finitely discrete random
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Month 1990 1993
January 4070 4114
February 4204 3944
March 3885 3814
April 3866 3813
May 3808 3836
June 3854 3757
July 3762 3824
August 3786 3751
September 3764 3809
October 3872 3896
November 3926 3818
December 4292 4406

Table 1: Maximum water levels of the river Meuse at Borgharen Dorp, in
millimeters, measured on every last day of every month. Source: Koninklijk
Nederlands Meteorologisch Instituut, personal correspondence.

variable X, yielding as empirical CDF Fn, and let Ym = {y1, ..., ym} be m
realizations of finitely discrete random variable Y , with empirical CDF Gm.
The ordered set of values which either X or Y assumes is denoted by c1, ...ck,
whereby k ≤ n + m. In addition let c0 and ck+1 denote −∞ and ∞ re-
spectively and define C ≡ {c0, ..., ck+1}. The horizontal coordinates of the
discrete sample PP-plot are then defined by P [X ≤ ci] ∀ ci ∈ C while the
vertical coordinates are given by P [Y ≤ ci] ∀ ci ∈ C (Bamber, 1975).
Consider for example the water level of the river Meuse as it enters The

Netherlands at Borgharen Dorp in 1990 and 1993. In 1993 the Southern part
of Holland was plagued by severe floods and it is of interest to know whether
the entire year 1993 was exceptional. Table 1 contains the maximum water
levels in millimeters for both 1990 and 1993 recorded on each last day of
every month. The resulting discrete sample PP-plot is depicted in Panel a
of Figure 2.
To compare 1990 with 1993 the Mww U statistic could be computed:

Mww (Xn, Ym) ≡ 1

mn

nX
i=1

mX
j=1

δij, (3)

where

δij =

 0, Xi < Yj,
1
2
, Xi = Yj,
1, Xi > Yj,

i = 1, ..., n, j = 1, ...,m.
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Figure 2: Discrete sample PP-plot for entering heights of the river Meuse
into The Netherlands at Borgharen Dorp, 1990 versus 1993 (Panel a), the
corresponding sample PP-plot (Panel b), and the concomitant sample HM
index (Panel c).
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In case X refers to the 1990 water levels, (3) equals 7
16
and the hypothesis

that P [X ≤ ci] > P [Y ≤ ci] is rejected. The reverse hypothesis is rejected
as well considering the value of 9

16
for the Mww U statistic. Yet, this leaves

undecided whether sample years 1990 and 1993 are different in a probabilistic
sense regarding the entering heights of the river Meuse into The Netherlands.

3.1 Sample HM index: definition

To establish if P [X ≤ ci] 6= P [Y ≤ ci], the sample HM index can be con-
sidered. It is derived from the continuous analogue of the discrete sample
PP-plot — referred to as the sample PP-plot — which is obtained by uni-
formly distributing the probability that is concentrated in any point ci over
the interval from ci−1 to ci (Girling, 2000). If the function α is defined as
α(ck) = ck−1, and if υ and ω are independent random variables that are
uniformly distributed over the unit interval, the continuous analogues of X
and Y follow from:

eX = υX + (1− υ)α(X),eY = ωY + (1− ω)α (Y ) .

The sample PP-plot is thus obtained by connecting the points of the discrete
sample PP-plot through straight lines as in Panel b of Figure 2 (Bamber,
1975). The empirical CDFs of eX and eY are denoted by eFn and eGm respec-
tively. These are continuous functions with a finite number of steps.
The sample HM index is then defined as:

Definition 2

HMS
³ eFn, eGm

´
≡ 2

Z 1

0

¯̄̄
p− eFn

³ eG−1m (p)´¯̄̄ dp. (4)

In Panel c of Figure 2 the sample HM index corresponds to the shaded
area and equals 7

36
. In this case the value of the sample HM index can be

obtained by a straightforward geometric argument. In Section 3.2 below a
simple rule is specified that yields the exact value of the sample HM index
when both samples are of equal size and absent within-sample and between-
samples ties (as is the case here, see Table 1). For this special case also the
exact distribution of the HM index is derived under the hypothesis that both
samples are drawn from the same distribution (Section 4). Considering this
distribution indicates that this hypothesis cannot be rejected; statistically
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Figure 3: The relation between the Mww U statistic and sample PP-plots;
a value of 1

2
is obtained for two identical samples (Panel a), and in case all

entries between the two samples differ due to, for instance, a mean-preserving
increase in spread of one sample (Panel b).

1990 and 1993 were not different regarding the entry height of the river
Meuse into The Netherlands.
The notion that the Mww U statistic should not be used to assess if two

samples are different in a probabilistic sense also follows from its relation
to the sample PP-plot. Bamber (1975) shows that the value of the Mww U
statistic (3) corresponds to the area below the sample PP-plot (other versions
of the MwwU statistic can be represented in a similar way, see Girling, 2000).
Obviously, in case Xn = Ym the Mww U statistic equals 12 (Panel a of Figure
3), a value that is also obtained for the sample PP-plot depicted in Panel
b of Figure 3. This latter plot depicts what could happen due to a mean-
preserving increase in spread of one of the underlying samples.
Finally, note that the sample PP-plot converges point-wise to its theoret-

ical counterpart with probability one when n,m→∞ (Mushkudiani, 2000).
The following results are then immediate:

Proposition 1 limn,m→∞HMS
³ eFn, eGm

´
= HM(F,G).

This consistency of the sample HM index implies in particular:

Corollary 1 limn,m→∞HMS
³ eFn, eGm

´
= 0 ⇐⇒ ∀ q ∈ [a, b] : F (q) = G(q).
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Accordingly, the sample HM index converges to zero if, and only if, the two
samples are drawn from the same distribution. This makes it an appropriate
statistic for testing just that. Indeed, in Section 4 below, the distribution of
the sample HM index is derived under the assumption that both samples are
drawn from the same distribution for a set of CDFs that is a subset of Ξ1.

3.2 Sample HM index: computation

To approximate sample HM index (4) numerous computing packages are
available.3 In special cases the sample HM index can be determined without
approximation error.
First, an exact identification of the discrete sample PP-plot is possible

when the following two assumptions hold:

Assumption A1 : rank(Xn) = n, rank(Ym) = m.

Assumption A2 : rank(Xn, Ym) = n+m.

Assumption A1 implies that no ties are present within either sample; as-
sumption A2 precludes ties between samples.
Let R(·) denote the rank of an element from the joint, ordered sample

{Xn, Ym} whereby the largest sample value receives rank 1. The coordinates
of the discrete sample PP-plot then follow (see Appendix A for the proof):

Lemma 1 A1-A2 hold =⇒¡
tX1,i, t

X
2,i

¢
=
³

i
n
, n+m+1−i−R(xi)

m

´
, i = 1, ..., n,¡

tY1,j, t
Y
2,j

¢
=
³
n+m+1−j−R(yj)

n
, j
m

´
, j = 1, ...,m.

Together with the origin (0,0) the coordinates in Lemma 1 provide the exact
discrete sample PP-plot (as in Figure 4 for example). Obviously, reversal of
Xn and Ym results in the reflection of the discrete sample along the diagonal.
Second, from this sample PP-plot the exact concomitant sample HM in-

dex can be computed, using only the “X-coordinates” (the proof is in Ap-
pendix A):

Lemma 2 A1-A2 hold =⇒

HMS
³ eFn, eGn

´
=

nX
i=1

(
Ii
h¡
tX1,i−1 − tX2,i

¢2
+
¡
tX1,i − tX2,i

¢2i
+(1− Ii)

¡
tX1,i − tX1,i−1

¢ ¯̄
2tX2,i − tX1,i − tX1,i−1

¯̄ ) ,

3A GAUSS routine that computes sample HM index (3) using an algorithm based on
Chotikapanich and Griffiths (2001) is available upon request.
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Figure 4: Discrete sample PP-plot based on Lemma 1 for X ∼ N(0, 1), and
Y ∼ N(0, 4), with n = 50, and m = 40.
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whereby

Ii =

½
1 if tX1,i−1 < tX2,i < tX1,i
0 otherwise

.

A simpler form of the exact sample HM index is available if in addition
the following assumption applies:

Assumption A3 : n = m.

Section 4.2 below contains two suggestions for adjusting samples to be of
equal size. For computing the sample HM index this is useful as (Appendix
A contains the proof):

Lemma 3 A1-A3 hold =⇒

HMS
³ eFn, eGn

´
≡ 1

n

nX
i=1

©¯̄
tX1,i − tX2,i

¯̄
+
¯̄
tY1,i − tY2,i

¯̄ª
.

Sample HM index (4) is thus readily computed using Lemmata 1 and 2
provided that A1-A2 hold. If in addition A3 holds, the computationally less
burdensome formulation in Lemma 3 can be used.

4 Hypotheses testing

To test statistically whether two samples are drawn from the same distrib-
ution, the probability density function (pdf) of the sample HM index is to
be retrieved under this hypothesis. Because the number of possible sample
HM index values for any two samples Xn and Ym quickly becomes countably
infinite with increasing sample sizes, a general characterization of this pdf
cannot be provided. For a subset of Ξ1 this is possible however.
In particular, let Ξ2 = {F |∀x, h ∈ R: limx→−∞F (x) = 0, limx→∞F (x) =

1, limh−→0F (x + h) = F (x), and a < b =⇒ F (a) < F (b), for F (a), F (b) ∈
(0, 1)}. Note that Ξ2 ⊂ Ξ1, that functions belonging to Ξ2 are continuous and
strictly increasing CDFs on their support, and that mass points are absent.
Hence, the probability that assumptions A1 — A2 are met for samples drawn
from some F ∈ Ξ2 is one.
Given any two samples Xn and Yn, respectively drawn from (unknown)

distributions F ,G ∈ Ξ2, the hypothesis of interest is:

H 0: F = G.

12



4.1 Symmetric samples

For deriving the pdf of HMS
³ eFn, eGn

´
under H 0 for any two samples of size

n ∈ N, the following notation needs to be introduced:

• Θ(n) ≡ 1 + n(n− 1)/ 2, the number of possible distinct values of the
sample HM index;

• HMS
n ≡

¡
HMS

n (j)
¢
, the vector containing all possible distinct sample

HM index values, wherebyHMS
n (j) ≡ 1−2j/n2, j = 0, ..., n(n− 1)/ 2;

• Ω(n) ≡ 2Qn−2
i=0

[2(n−i)−1]
(n−i) , half the number of possible distinct discrete

sample PP-plots, whereby Ω(1) ≡ 1;
• B(n) ≡ (∆n| 2Υn), whereby ∆n is the upper triangular unit matrix of
size n and Υn the unit vector of size n;

• A(n+1) ≡M(n)B(n), wherebyM(n) ≡ 1 andM(n+1) = (mjk(n+ 1))
with

mjk(n+1) =

½
a(j−k+1)k(n+ 1), j = k, ...,Θ(n) + k, k = 1, ..., n+ 1,

0 otherwise.

In Appendix A the following proposition is proved.

Proposition 2 Let X ∼ F ∈ Ξ2, and Y ∼ G ∈ Ξ2. Under H0, given any
two samples Xn and Yn with, respectively, concomitant empirical CDFs eFn

and eGn, for any symmetric sample size n ∈ N the following holds:

h
¡
HMS

n (i)
¢
= P

h
HMS

³ eFn, eGn

´
= HMS

n (i)
i
= di(n),

whereby

D(n) = (di(n)) ; di(n) =
M(n)Υn

Ω(n)
, i = 1, ...,Θ(n).

The pdf h(x) of the sample HM index is given in Table 2 for n = 1, ..., 6.
The number of possible distinct outcomes of the HM index increases quadrat-
ically with n and is, for example, equal to 191 for n = 20, and 4,951 for
n = 100. The number of possible distinct discrete sample PP-plots increases
much more rapidly and equals 68,923,264,410 for n = 20, and approximately
equals 4.52743×1058 for n = 100. Also, and in line with corollary 1, the
probability mass moves towards lower values of the sample HM index with
increasing sample sizes, as illustrated in Figure 5.
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HMS
n (i) h

¡
HMS

n (i)
¢

HMS
n (i) h

¡
HMS

n (i)
¢

n = 1 n = 5 (continued)
1 1 15/ 25 7/ 126
n = 2 13/ 25 13/ 126
1 1/ 3 11/ 25 20/ 126
2/ 4 2/ 3 9/ 25 24/ 126
n = 3 7/ 25 32/ 126
1 1/ 10 5/ 25 16/ 126
7/ 9 1/ 10 n = 6
5/ 9 4/ 10 1 1/ 462
3/ 9 4/ 10 34/ 36 1/ 462
n = 4 32/ 36 2/ 462
1 1/ 35 30/ 36 3/ 462
14/ 16 1/ 35 28/ 36 5/ 462
12/ 16 2/ 35 26/ 36 9/ 462
10/ 16 5/ 35 24/ 36 11/ 462
8/ 16 6/ 35 22/ 36 15/ 462
6/ 16 12/ 35 20/ 36 22/ 462
4/ 16 8/ 35 18/ 36 34/ 462
n = 5 16/ 36 37/ 462
1 1/ 126 14/ 36 58/ 462
23/ 25 1/ 126 12/ 36 72/ 462
21/ 25 2/ 126 10/ 36 80/ 462
19/ 25 3/ 126 8/ 36 80/ 462
17/ 25 7/ 126 6/ 36 32/ 462

Table 2: Pdf of the sample HM index under H0 for samples of equal size, for
n = 1,...,6.
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Figure 5: Pdf of the sample HM index for different symmetric sample sizes.

Appendix B lists the first four moments of h(x), four critical percentiles,
and the variance of the distribution for n = 3, ..., 200 and n = 250, 300, 350.4

This allows for obvious hypothesis testing for symmetric samples of modest
size. For larger samples a rather accurate approximation of the various criti-
cal percentiles is available. Table 3 contains these approximations which are
ruled by the linear regression ln(cp) = β0 + β1 ln(n), where cp refers to the
critical percentile, cp = {0.90, 0.95, 0.975, 0.99}.5 These approximations are
accurate indeed as for n ≥ 100 the absolute difference between the actual and
predicted critical percentile is less than 10−3 (considering the goodness-of-fit
of the various regressions this should not come as a surprise).6 For instance,
for n = 1000 the 99th percentile of the sample HM index CDF approximately
equals 0.0673.

4The current state of our technology — Intel Pentium 4 processor with a CPU of 3.06
GHz and 1 GB RAM — does not allow for an assessment of larger sample sizes.

5All regressions in Table 3 are based on the entries in Appendix B for sample sizes
n ≥ 100.

6The estimated slopes are remarkably similar for the various critical percentiles; a
pooled regression yields as slope estimate -0.5002, and intercepts of, respectively, 0.3472,
0.5003, 0.6236, 0.7550. It does not, however, improve the prediction performance of the
regression.
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Critical percentile: ln(cp) = β0 + β1 ln(n)
Percentile 90 95 97.5 99
β0 0.3503 0.5018 0.6230 0.7508

(0.0008) (0.0006) (0.0005) (0.0007)
β1 -0.5008 -0.5005 -0.5001 -0.4994

(0.0002) (0.0001) (0.0001) (0.0001)
R2 0.9999 0.9999 0.9999 0.9999

Table 3: Rule-of-thumb for determining various critical percentiles of the
CDF of the sample HM index; heteroskedasticity-consistent standard errors
in parentheses (White, 1980).

4.2 Asymmetric samples

In practise different samples easily have different sizes, which still allows for
computation of sample HM index (4) though (see also footnote 3). To use
it for hypotheses testing requires either an approximation of its distribution,
or that the problem is converted towards the symmetric sample case.

4.2.1 Monte Carlo

The distribution of the sample HM index under H0 can always be obtained
through simulation. Table 4 contains simulated critical percentiles of the
distribution of sample HM index (4) for various asymmetric sample pairs.
Each simulated distribution is based on 100,000 runs and the underlying
samples are drawn from a standard normal distribution. Note that the critical
values of the two symmetric sample pairs (n = 50 and n = 100) are close
approximations of their true values (see Appendix B).

4.2.2 Symmetric approximation

Alternatively an educated guess is formulated regarding the relevant critical
percentiles. One such guess would be the critical percentiles of the symmetric
distribution with n = (n+m)/ 2 observations (appropriately adjusted in
case n would not be an integer). Considering the entries in Table 4 and in
Appendix B suggests that this procedure yields accurate critical percentile
values in case the smallest sample is not ‘too small’ (say, larger than 30), and
the relative difference in sample size is not ‘too large’ (say, less than 10%).
For instance, for n = 90 andm = 100 the critical values are in Table 4, which
compare rather accurately with the theoretical values for symmetric sample
size n = 95 in Appendix B.
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n1 = 50 n1 = 100
n2 z90 z95 z97.5 z99 z90 z95 z97.5 z99
10 0.3480 0.4040 0.4520 0.5120 0.3327 0.3864 0.4353 0.4916
20 0.2651 0.3091 0.3480 0.3954 0.2443 0.2837 0.3203 0.3663
30 0.2320 0.2693 0.3047 0.3447 0.2087 0.2424 0.2738 0.3113
40 0.2127 0.2483 0.2806 0.3187 0.1871 0.2180 0.2458 0.2806
50 0.2000 0.2336 0.2648 0.2992 0.1731 0.2021 0.2281 0.2604
60 0.1919 0.2236 0.2526 0.2868 0.1628 0.1900 0.2145 0.2467
70 0.1856 0.2161 0.2450 0.2784 0.1559 0.1816 0.2058 0.2331
80 0.1808 0.2096 0.2374 0.2700 0.1501 0.1752 0.1975 0.2254
90 0.1759 0.2055 0.2328 0.2641 0.1456 0.1692 0.1913 0.2188
100 0.1731 0.2015 0.2284 0.2605 0.1418 0.1648 0.1868 0.2122

Table 4: Simulated critical percentiles z of the sample HM index CDF for
various asymmetric sample sizes.

4.2.3 (Random) selection

Because simulation might be considered to be too tedious7 and the symmetric
approximation too much off the mark, alternative solutions to the violation
of A3 equalize the number of observations in both samples. For instance,
the number of observations in the larger sample can be reduced to match
that of the smaller sample. Even though this procedure discards valuable
information and it is not immediate which observations are to be removed,
especially for large sample sizes this can be an effective solution. To tackle the
problem of observation selection various subsamples from the larger sample
could be considered to qualify the robustness of the computed sample HM
index. Alternatively an additional indicator is available (industry or country
code, sex, age, etc.) along which an intersection of samples can be composed.
Comparing the symmetric sample size pairs in Table 4 with the asymmet-

ric pairs suggests the order of the Type-I error of this procedure. Although
for individual cases the effect on the sample HM index of removing observa-
tions from the larger sample is ambiguous, on average it has the effect that
the computed HM index is too large. Hence, H0 is rejected too often and a
sufficient condition emerges; if H0 is not rejected for samples that are sym-
metric by construction, it most likely would not be rejected for the original,
asymmetric setting.

7Yet, the GAUSS routine that simulates the distribution of the sample HM index for
sample pairs of any size is available upon request.
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Percentage of probability mass
Pollution percentage 90% 95% 97.5% 99%
1% 0.9018 0.9506 0.9755 0.9902
2% 0.9001 0.9497 0.9752 0.9903
3% 0.8972 0.9491 0.9742 0.9894
4% 0.8964 0.9481 0.9735 0.9895
5% 0.8921 0.9474 0.9738 0.9897
10% 0.8685 0.9357 0.9692 0.9879
15% 0.8214 0.9157 0.9603 0.9848
20% 0.7457 0.8790 0.9446 0.9798
25% 0.6378 0.8212 0.9171 0.9706
50% 0.0586 0.2053 0.4343 0.7215

Table 5: Fraction of HM index values corresponding to the respective per-
centiles of the HM index CDF for varying degrees of data contamination.

4.2.4 Interpolation

Alternatively the number of observations in the smaller sample is increased
to match the size of the larger sample. Various methods are available for
series fitting to sample data (see, e.g. Cabral and Mata, 2003). These fitted
series then allow for an alignment of the two samples sizes.

5 Robustness

For assessing the robustness of the HM test two situations are considered:
(i) samples drawn from the same distribution whereby a varying proportion
of the data is corrupted, and (ii) samples drawn from different distributions
absent outliers.

5.1 Type I errors

Table 5 contains the fractions of the HM index values being less than or equal
to the true HM index value corresponding to the respective percentiles. These
entries are based on 100,000 runs with sample size n = 100. Both Xn and Yn
are drawn from the standard normal distribution with, however, a varying
percentage of the observations in Yn being drawn from N(0, 100). This is
a typical procedure to create outliers (see e.g. Wagenvoort and Waldman,
2002). Note that for fractions of data corruption beyond 50 percent the
identification of the true distribution of Y becomes blurred.
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90%
ln(X) ∼ N(0, 1) X ∼ UNIF (0, 3) X ∼ EXP (1)

ln(Y ) ∼ N(0, 3) 0.9007 0.1610 0.1086
Y ∼ UNIF (0, 1) 0.1610 0.9005 0.0009
Y ∼ EXP (1) 0.1086 0.0009 0.9009
95%

ln(X) ∼ N(0, 1) X ∼ UNIF (0, 3) X ∼ EXP (1)
ln(Y ) ∼ N(0, 1) 0.9502 0.2868 0.1772
Y ∼ UNIF (0, 3) 0.2868 0.9510 0.0023
Y ∼ EXP (1) 0.1772 0.0023 0.9506
97.5%

ln(X) ∼ N(0, 1) X ∼ UNIF (0, 3) X ∼ EXP (1)
ln(Y ) ∼ N(0, 1) 0.9755 0.4220 0.2580
Y ∼ UNIF (0, 3) 0.4220 0.9751 0.0056
Y ∼ EXP (1) 0.2580 0.0056 0.9753
99%

ln(X) ∼ N(0, 1) X ∼ UNIF (0, 3) X ∼ EXP (1)
ln(Y ) ∼ N(0, 1) 0.9903 0.5886 0.3759
Y ∼ UNIF (0, 3) 0.5886 0.9903 0.0139
Y ∼ EXP (1) 0.3759 0.0139 0.9899

Table 6: Fraction of HM index values corresponding to the respective per-
centiles of the HM index CDF for samples drawn from distributions.

On average, data contamination increases the value of the sample HM
index. For fractions of data contamination up to five percent the HM test
remains quite reliable; approximation errors of the critical percentiles are
well within a one percentage point. On the other hand, using the HM test
with the lower critical percentiles is especially prone to Type-I errors if more
than 10 percent of the data are corrupted.

5.2 Type II errors

Alternatively the two underlying distributions differ by construction. As the
number of comparisons is unlimited, all that can be provided is an illustration
of Type-II errors for a particular set of distributions. Our choice of distribu-
tions is ruled by their commonality. The distribution-specific parameters are
chosen such that the distributions mimic each other.
In Table 6 again the true HM index value for the various critical per-

centiles is compared with that of 100,000 runs for each of the distribution
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pairs (with, again, n = 100). In all cases, the fraction of computed HM
index values that is below the HM index value corresponding to a specific
percentile of the HM index CDF, is much lower than the true percentage.
Although these simulations do not provide an exhaustive assessment of the
power of the HM test, they do suggest that the test is capable of discerning
different, commonly used distributions.

6 An application

Using the sample HM index is of particular use for tracing out the devel-
opment of distributions over time because it avoids clustering observations
into a discrete number of cells, as is necessary for instance when applying
traditional Markov analyses. Consider for example the distribution over all
4-digit sectors of the UK regarding their value of the Balassa index — which
measures the comparative advantage of a sector — from 1970 through 1997.
The Balassa index is defined as a sectors’ national export share as a frac-
tion of the sectors’ export share in world exports. It is thus a positive, real
number whereby index values above one refer to a “revealed comparative ad-
vantage” (see Balassa, 1965).8 On average, throughout the sample period the
UK experiences a comparative advantage for 36.7% of all its sectors where a
maximum index value of 10.39 is recorded in 1974 for “Spirits; liqueurs, and
other spirituous beverages (excluding wine, cider, Perry mead, ale, stout and
porter)”.
As comparative advantage tends to be sticky, a five year comparison lag

is used to assess the development of the distribution of Balassa indices over
time. Figure 6 contains the sample PP-plots of the Balassa index distribu-
tion for the UK in 1978 versus 1983 (Panel a), and 1988 versus 1993 (panel
b) including the concomitant values of the sample HM index. The Balassa
indices are calculated using the Feenstra (2000) data. The sample HM in-
dex values for all year-by-year comparisons are in Table 7 together with the
appropriate critical percentiles at the 5 percent significance level, denoted
by z95

¡
HMS

¢
. The latter are obtained using the rule-of-thumb specified in

Table 3 and can thus differ per comparison as the underlying samples vary in
size. The year-by-year comparisons are restricted to the subset of sectors for
which a strictly positive Balassa index is recorded in both years; symmetry in

8Hillman (1980) identifies a sufficient condition for the index value to measure compar-
ative advantage proper in that an increase in a sectors’ exports yields an increase in the
related Balassa index. The analysis here is restricted to observations meeting this Hillman
condition, which boils down to dismissing some 0.01% of all observations that together
represent 0.5% of the value of total trade.
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Sample years HMS z95
¡
HMS

¢
MI

1970, 1975 0.0644 0.0823 0.4219
1971, 1976 0.0681 0.0823 0.4125
1972, 1977 0.0668 0.0823 0.4219
1973, 1978 0.0328 0.0826 0.5315
1974, 1979 0.1147 0.0825 0.5282
1975, 1980 0.1145 0.0848 0.4769
1976, 1981 0.0955 0.0845 0.5033
1977, 1982 0.1273 0.0844 0.5180
1978, 1983 0.1364 0.0839 0.4156
1979, 1984 0.1241 0.0838 0.4141
1980, 1985 0.0979 0.0838 0.4433
1981, 1986 0.0682 0.0840 0.4497
1982, 1987 0.0314 0.0837 0.4389
1983, 1988 0.0229 0.0839 0.4448
1984, 1989 0.0301 0.0840 0.4562
1985, 1990 0.0225 0.0845 0.4572
1986, 1991 0.0312 0.0844 0.4785
1987, 1992 0.0259 0.0841 0.4542
1988, 1993 0.0286 0.0843 0.5001
1989, 1994 0.0281 0.0844 0.3967
1990, 1995 0.0365 0.0844 0.4425
1991, 1996 0.0303 0.0841 0.3889
1992, 1997 0.0263 0.0843 0.4152

Table 7: Year-by-year comparisons of the distribution of the Balassa index
in the UK, using the sample HM index (second column) and a mobility index
based on Markov matrices (fourth column).
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Figure 6: Sample PP-plots based on the Balassa index distribution of some
400 4-digit sectors in the UK for the years 1978 versus 1983 (Panel a), and
1988 versus 1993 (Panel b).

sample size is thus obtained using the selection method discussed in Section
4.2.
For the UK the years 1974 — 1980 stand out in that the distribution of

the Balassa index differs significantly from the same distribution five years
later. An in-depth analysis of the UK economy goes beyond the scope of this
paper but do observe that the identified period coincides with the first and
second oil crisis. Together with the particularities of the labour unions in the
UK at the time would account for the identified pattern (indeed, the same
procedure applied to other European countries does not identify the same
years as particularly volatile regarding revealed comparative advantage).
Alternatively the year-to-year dynamics of the process are captured by

Markov matrices Λi,j, and the information contained in each of these transi-
tion matrices is converted into a single number using an appropriate norm.9

The fourth column of Table 7 contains the so obtained mobility indices MI,
whereby the respective Markov matrices are based on quintiles and the mo-
bility indices defined as (Geweke et al., 1986): MI = (n− tr(Λi,j))/(n−1).10

9This alternative is discussed as it is typically used in the literature for describing the
dynamics of empirical distributions. However, Markov matrices capture the volatility of
the rank of observations while the HM index as applied here captures the volatility of the
shape of the various sample distributions.
10There is an element of discreteness here in the sense that the number of cells in the
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Considering then these mobility indices does not identify the period 1974
— 1980 as being special. Some of the years in this time span could be labelled
particularly volatile if that coincides with MI ≥ 1

2
, but that would then

also apply to 1988. However, and relatedly, no statistical test is available for
comparing mobility indices.11 Indeed, qualitatively the traditional Markov
approach does not identify proper the years that are especially volatile regard-
ing the change in specialization patterns of the UK economy; quantitatively
no test is available to assess the statistical significance of the related mobility
indices.

7 Conclusions

In this paper the graphical information of PP-plots is translated into a sin-
gle index number. As PP-plots characterize the extent to which the two
underlying probability masses are in harmony, the index is labelled the Har-
monic Mass index. The sample version of the HM index, which is based on
sample PP-plots, is shown to be consistent. For samples of equal size and
absent within-sample and between-sample ties, elegant rules are derived for
computing the sample HM index exactly.
For a wide class of CDFs the exact distribution of the sample HM index

is derived, under the hypothesis that the two underlying samples are drawn
from the same distribution. Accordingly, a new, nonparametric, distribution-
free statistic is developed for testing exactly that.
Because of the burdensome computations that are involved to determine

critical percentiles of the statistics’ CDF, these are provided for samples that
include up to 350 entries. The current state of available techniques does not
allow for an assessment of larger sample sizes. However, an accurate rule-of-
thumb is presented for determining these critical values for any, symmetric
sample size. Also, as for some applications the sample distributions that are
to be compared are of unequal size, four methods are discussed that translate
any asymmetric setting towards the symmetric case.
Simulations indicate that the HM test is relatively unaffected by out-

liers if these corrupt up to 10 percent of the data. For assessing the type-II
error of the HM test three commonly observed distributions are considered:

Markov matrices are chosen ad hoc. Varying this number yields different values for MI,
but qualitatively leaves the mobility indices unaltered.
11A test for comparing Markov matrices does exist (Anderson and Goodman (1957);

for an application see Proudman and Redding, 2000). However, this particular test does
not specify what to do in case matrix cells are empty, a situation that is quite often
encountered in practise.
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log-normal, uniform, and exponential, whereby the distributions are parame-
terized such that they mimic each other. The simulations suggest that the
HM test is indeed capable of discerning these commonly used distributions.
Finally, an application regarding the dynamic development of revealed

comparative advantage not only stresses the usefulness of the HM index, it
also illustrates the use of one of the methods to compare samples of different
size.
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A Proofs

A.1 Proof of Lemma 1

Consider
¡
tX1i , t

X
2i

¢
. Under Assumption A1 the n andm realizations ofXn and

Ym are unique, dividing the unit interval into n and m steps of size 1/n and
1/m, respectively. Consequently, G−1(i/n) = xi for i = 1, .., n. To determine
the number of observations in Ym smaller than or equal to xi consider the
joint sample {Xn, Ym}. Under Assumption A2 R(xi) denotes the unique rank
from the joint, ordered sample {Xn, Ym}, of which i−1 observations relate to
Xn and the remainder to Ym. Accordingly, n+m−[R(xi)+i−1] observations
in Ym are smaller than xi, such that F (G−1(i/n)) = n+m+ 1− i−R(xi).
Similarly for (tY1j, t

Y
2j).
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Figure 7: Computation of the sample HM index in case there are no within-
sample and no between-sample ties.

A.2 Proof of Lemma 2

Under A1—A2 the coordinates of the points generated by samples Xn and
Ym are unique and given in Lemma 1, such that an asymmetric discrete
sample PP-plot always consists of horizontal and vertical lines only with
tX1,i, t

Y
1,j ∈

©
0, 1

n
, 2
n
, ..., 1

ª
and tX2,i, t

Y
2,j ∈

©
0, 1

m
, 2
m
, ..., 1

ª
. If suffices to calculate

the sample HM index by summation of the step-wise deviation from the diag-
onal of the points

¡
tX1,i, t

X
2,i

¢
generated by sample Xn for i = 1, .., n. There are

two logical possibilities at step i: (i) the sample PP-plot from
¡
tX1,i−1, t

X
2,i−1

¢
to
¡
tX1,i, t

X
2,i

¢
does not cut the diagonal horizontally (Ii = 0) or (ii) the sample

PP-plot from
¡
tX1,i−1, t

X
2,i−1

¢
to
¡
tX1,i, t

X
2,i

¢
does cut the diagonal horizontally

(Ii = 1). These possibilities are illustrated in Figure 7 (where n = 3 and
m = 4) from

¡
tX1,1, t

X
2,1

¢
to
¡
tX1,2, t

X
2,2

¢
, and from

¡
tX1,2, t

X
2,2

¢
to
¡
tX1,3, t

X
2,3

¢
, re-

spectively, where the circles indicate the points generated by Xn, the squares
those generated by Ym, and where the diamonds are auxiliary points. Note
that possibility (ii) does not arise for symmetric samples (see also Lemma 3).
Ad (i). If Ii = 0, the diagonal is not cut horizontally from i − 1 to i,
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as illustrated at i = 2 in Figure 7. The contribution to the sample HM
index from such a step consists of twice the area of the triangle ABC plus
twice the area of the rectangle between the sample PP-plot and the points
AB (both in case the sample PP-plot would be above or below the diago-
nal). The former contribution is equal to

¡
tX1,i − tX1,i−1

¢2
and the latter equals

2
¡
tX1,i − tX1,i−1

¢ ¯̄
tX2,i − tX1,i−1

¯̄
. Since

¡
tX1,i − tX1,i−1

¢ ≥ 0, their sum simplifies to¡
tX1,i − tX1,i−1

¢ ¯̄
2tX2,i − tX1,i−1 − tX1,i−1

¯̄
. Note that the area of the rectangle dis-

appears if the sample PP-plot coincides with the diagonal at i− 1, as is the
case for i = 1 in Figure 7.
Ad (ii). If Ii = 1, the diagonal is cut horizontally from i− 1 to i, as illus-

trated at i = 3 in Figure 7. The contribution to the sample HM index from
such a step consists of twice the area of the triangle CDE plus twice the area
of the triangle EFG. As the points C, E, and G are on the diagonal, their
coordinates are given by (tX1,i−1, t

X
1,i−1), (t

X
2,i, t

X
2,i), and (t

X
1,i, t

X
1,i), respectively.

Twice the area of the triangle CDE is therefore equal to
¡
tX2,i − tX1,i−1

¢2
and

twice the area of triangle EFG equals
¡
tX1,i − tX2,i

¢2
.

A.3 Proof of Lemma 3

The proof evolves along two steps. First note that when there are no within-
sample and no between-sample ties, a discrete sample PP-plot always consists
of horizontal and vertical lines only while both the x- and y-coordinates
include all entries in C ≡ ©

0, 1
n
, 2
n
, ..., 1

ª
. The absence of between-sample

ties precludes diagonal lines, the absence of within sample ties implies all
entries in C to be included once as either coordinate. Second, there is a
one-to-one correspondence between the absolute difference between the x-
and y-coordinates of any point (t1, t2) of a discrete sample PP-plot and its
contribution to the sample HM index (see e.g. Figure 2); any step of size 1

n

(either vertical or horizontal) away from the diagonal accounts for a triangle
with surface 1

2n2
. Accordingly, each step increases the sample HM index

by 1/n2. The contribution of (t1, t2) to the sample HM index thus equals:
|t1 − t2|/n (note that the coordinates are a fraction of n). Summing up over
all coordinates then yields the lemma.

A.4 Proof of Proposition 1

Under assumptions A1 — A3 the pdf of the sample HM index for symmetric
samples of size n, h

¡
HMS

n

¢
, can be constructed on the basis of the pdf for

sample size of n− 1, h ¡HMS
n−1
¢
. In what follows, starting from n = 1, this

iterative procedure is explained up to n = 3. For larger sample sizes the
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same logic applies.
First note that sample PP-plots based on eFn and eGn can be visualized

by dividing the unit square into n2 blocks of size 1/n2. Any possible sample
PP-plot is then a non-decreasing path along the edges of these blocks from
(0, 0) to (1, 1). In Figure 8 this is illustrated for n = 1, 2, 3.
For n = 1 there are two, equally likely pointwise sample comparisons

(with concomitant distinct sample PP-plots), both yielding a sample HM
index value of one:

X1(1) > Y1(1);

X1(1) < Y1(1).

In the first case the sample PP-plot follows path O1D11F in Panel a of
Figure 8 while in the second case the sample PP-plot coincides with O1E11F .
Without loss of generality assume that X1(n) > Y1(n) (symmetry implies
that the actual number of possible sample PP-plots is twice as large without
this assumption; it does not, however, affect the number of possible distinct
sample HM index values, nor the probability of their occurrence). Using the
notation of the main text note:

Ω(1) = 1; Θ(1) = 1; HMS
1 = 1; M(1) = 1;

D(1) = 1; B(1) =
¡
1 2

¢
; A(2) =

¡
1 2

¢
.

Matrices A, B and M are discussed below.
For n = 2, given that X1(2) > Y1(2), there are three, equally likely

pointwise sample comparisons:

X1(2) > X2(2) > Y1(2) > Y2(2);

X1(2) > Y1(2) > X2(2) > Y2(2);

X1(2) > Y1(2) > Y2(2) > X2(2).

In Panel b of Figure 8 these possibilities respectively corresponds to sample
PP-plot O2D21D22D11F , O2D21O1D11F , and O2D21O1E11F . Accordingly,
HMS

2 equals 1 with probability
1
3
, and 1

2
with probability 2

3
.

Observe the iterative structure going from n = 1 to n = 2. First, consid-
ering all possible sample PP-plots from O1 onwards in Panel b corresponds
to examining all possible sample PP-plots as if n = 1. The latter are charac-
terized above assuming that X1(1) > Y1(1). Since this holds by definition at
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Figure 8: Grid for all possible sample PP-plots for n = 1 (Panel a), n = 2
(Panel b), and n = 3 (Panel c).
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O1 in Figure 8 Panel b, all possible sample PP-plots have to be considered
from O1 onwards. This explains the 2Υn in matrix B(n) (and in particular
the entry “2” in B(1)). Second, for all sample PP-plots going through O1 in
Panel b of Figure 8, two times 1/n2 — the surface value of blockD21D22D11O1
multiplied by two — has to be substracted from one for determining the value
of the sample HM index, in addition to all the blocks that have to be sub-
stracted in relation to arriving at O1 in the first place. Third, note that
sample PP-plot O2D21D22D11F can only be reached if X1(1) > Y1(1). This
explains the first column of matrix B(n) (and in particular the entry “1” in
B(1)). For n = 2 the various components of h

¡
HMS

n

¢
read as:

Ω(2) = 3; Θ(2) = 2; HMS
2 =

µ
1
1
2

¶
; M(2) =

µ
1 0
0 2

¶
;

D(2) =

µ
1/ 3
2/ 3

¶
; B(2) =

µ
1 1 2
0 1 2

¶
; A(3) =

µ
1 1 2
0 2 4

¶
.

Matrix M(n) is constructed to summarize all possible sample PP-plots,
where the row coordinate — from top to bottom — refers to the number of
blocks that have to be substracted, where the column coordinate — from left
to right — corresponds to the position — from top to bottom — along the
vertical line at location 1/n in sample PP-plot space for samples of size n
(for example locations D11 and O1 in Figure 8, Panel b), and the matrix
entry refers to the number of possible sample PP-plots with the related value
of HMS

n . Hence, the sum of the kth row of M(n) is the number of distinct
sample PP-plots for which k − 1 times the number of blocks of size 1/n2
(times two) has to be subtracted from one in order to determine the value
of the sample HM index for these plots (thus being: 1− 2(k − 1)/n2). Note
that for n = 1 zero blocks are subtracted.
Indeed, the rows of M(2) are associated with the number of possible

distinct sample PP-plots yielding HMS
2 . Entry “1” indicates that there is

one sample PP-plot yielding HMS
2 (i) = 1, being O2D21D22D11F , while entry

“2” implies that HMS
2 (i) =

1
2
is obtained for two, distinct sample PP-plots,

namely O2D21O1D11F and O2D21O1E11F . The probabilities, HMS
2 , thus

follow from summing the rows of B(2) and dividing these by the total number
of distinct sample PP-plots, Ω(2). Auxiliary matrices B(1) and A(2) are
defined to construct M(2) on the basis of M(1).
For n = 3, given that X1(3) > Y1(3), there are ten, equally likewise point-

wise sample comparisons giving rise to the various distinct sample PP-plots
(Figure 8, Panel c). First note that the upper North-East block starting at
O2 corresponds to the situation for n = 2, referred to as the “n2-block”.
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However, additional sample PP-plots have to be considered; those that “en-
ter” the n2-block at either D21 or D22. Second, because the n = 2 case was
characterized assuming X1(2) > Y1(2) all possible sample PP-plots from O2
onwards have to be multiplied by 2 as X1(2) < Y1(2) can now also apply
(indeed, the 2Υn again). Note that this does not apply to sample PP-plots
“entering” the n2-block at either D21 or D22 because for the sample PP-plots
going through these points in the n = 2 case the assumption X1(2) > Y1(2)
applies by definition. Third, for determining the value of HMS

3 (i), twice the
surface area of block D31D33D22O2 has to be substracted from one for all
sample PP-plots “entering” the n2-block at O2 (again, in addition to what is
to be substracted for arriving at O2 as such), once the surface area of block
D32D33D22D21 for all sample PP-plots “entering” the n2-block at D21, and
nothing for all sample PP-plots “entering” the n2-block at D22. Note that in
this case:

Ω(3) = 10; Θ(3) = 4; HMS
3 =


1
7/ 9
5/ 9
3/ 9

 ; M(3) =

1 0 0
0 1 0
0 2 2
0 0 4

 ;

D(3) =


1/ 10
1/ 10
4/ 10
4/ 10

 ; B(3) =
 1 1 1 2
0 1 1 2
0 0 1 2

 ; A(4) =

1 1 1 2
0 1 1 2
0 2 4 8
0 0 4 8

 .

Again, the rows of matrixM(3) are associated with the number of possible
distinct sample PP-plots resulting in HMS

3 : M11(3) = 1 indicates that there
is one possibility left for sample PP-plots to arrive at (1,1) from D22 onwards
yielding HMS

3 (1) = 1, M22(3) = 1 implies that starting at D21 there is
one possibility left for sample PP-plots to reach (1,1) giving HMS

3 (2) =
7
9
,

M32(3) = 2 signifies there being two possible PP-plots to end at (1,1) from
entering the n2-block at D22 resulting in HMS

3 (3) =
5
9
, M33(3) = 2 means

that two possible distinct sample PP-plots exist that run through O2 and
yield HMS

3 (3) =
5
9
, and M34(3) = 4 says that there are four distinct sample

PP-plots going through O2 corresponding to HMS
3 (3) =

3
9
. Summing up the

rows of M(3) and dividing these sums by Ω(3) returns D3. To construct
M(3) on the basis of M(2) the auxiliary matrices B(2) and A(3) follow.

B The sample HM index CDF

31



n z90 z95 z97.5 z99 µ1 µ2 µ3 µ4 σ2

2 1.0000 1.0000 1.0000 1.0000 0.6667 0.5000 0.4167 0.3750 0.0556
3 0.7778 1.0000 1.0000 1.0000 0.5333 0.3284 0.2305 0.1796 0.0440
4 0.7500 0.8750 1.0000 1.0000 0.4571 0.2437 0.1498 0.1036 0.0348
5 0.6800 0.7600 0.8400 0.9200 0.3694 0.1936 0.1070 0.0670 0.0285
6 0.6111 0.6667 0.7778 0.8333 0.3694 0.1605 0.0812 0.0468 0.0240
7 0.5510 0.6327 0.7143 0.7959 0.3410 0.1370 0.0643 0.0345 0.0208
8 0.5000 0.5938 0.6563 0.7500 0.3183 0.1195 0.0525 0.0264 0.0182
9 0.4815 0.5556 0.6296 0.7037 0.2995 0.1060 0.0439 0.0209 0.0163
10 0.4600 0.5200 0.5800 0.6600 0.2838 0.0952 0.0374 0.0169 0.0147
11 0.4380 0.5041 0.5537 0.6364 0.2703 0.0864 0.0324 0.0140 0.0134
12 0.4167 0.4722 0.5417 0.6111 0.2585 0.0791 0.0284 0.0118 0.0123
13 0.3964 0.4556 0.5148 0.5858 0.2482 0.0729 0.0252 0.0100 0.0113
14 0.3776 0.4388 0.5000 0.5612 0.2390 0.0676 0.0225 0.0086 0.0105
15 0.3689 0.4311 0.4844 0.5467 0.2307 0.0631 0.0203 0.0075 0.0098
16 0.3594 0.4141 0.4688 0.5313 0.2233 0.0591 0.0184 0.0066 0.0092
17 0.3426 0.3979 0.4533 0.5156 0.2165 0.0556 0.0168 0.0059 0.0087
18 0.3333 0.3889 0.4383 0.5000 0.2103 0.0524 0.0154 0.0052 0.0082
19 0.3241 0.3795 0.4294 0.4848 0.2047 0.0497 0.0142 0.0047 0.0078
20 0.3200 0.3700 0.4150 0.4750 0.1994 0.0472 0.0131 0.0042 0.0074
21 0.3107 0.3605 0.4059 0.4603 0.1945 0.0449 0.0122 0.0038 0.0070
22 0.3017 0.3512 0.3967 0.4504 0.1900 0.0428 0.0114 0.0035 0.0067
23 0.2968 0.3459 0.3875 0.4405 0.1858 0.0409 0.0106 0.0032 0.0064
24 0.2882 0.3368 0.3819 0.4340 0.1818 0.0392 0.0100 0.0029 0.0062
25 0.2832 0.3312 0.3728 0.4240 0.1781 0.0376 0.0094 0.0027 0.0059
26 0.2781 0.3225 0.3669 0.4142 0.1746 0.0362 0.0088 0.0025 0.0057
27 0.2730 0.3169 0.3580 0.4074 0.1713 0.0348 0.0084 0.0023 0.0055
28 0.2679 0.3112 0.3520 0.4005 0.1682 0.0336 0.0079 0.0022 0.0053
29 0.2628 0.3056 0.3460 0.3936 0.1653 0.0324 0.0075 0.0020 0.0051
30 0.2600 0.3022 0.3400 0.3867 0.1625 0.0313 0.0071 0.0019 0.0049
31 0.2549 0.2966 0.3340 0.3798 0.1598 0.0303 0.0068 0.0018 0.0048
32 0.2500 0.2910 0.3301 0.3750 0.1573 0.0294 0.0065 0.0017 0.0046
33 0.2470 0.2874 0.3242 0.3701 0.1549 0.0285 0.0062 0.0016 0.0045

Table 8: Critical percentiles, first four moments, and the variance of the
sample HM index CDF under H0 for symmetric samples.
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n z90 z95 z97.5 z99 µ1 µ2 µ3 µ4 σ2

34 0.2439 0.2837 0.3201 0.3633 0.1525 0.0276 0.0059 0.0015 0.0044
35 0.2392 0.2784 0.3159 0.3584 0.1503 0.0268 0.0057 0.0014 0.0042
36 0.2361 0.2747 0.3102 0.3534 0.1482 0.0261 0.0054 0.0013 0.0041
37 0.2330 0.2710 0.3061 0.3484 0.1462 0.00254 0.0052 0.0012 0.0040
38 0.2299 0.2673 0.3019 0.3435 0.1442 0.0247 0.0050 0.0012 0.0039
39 0.2268 0.2636 0.2991 0.3399 0.1424 0.0241 0.0048 0.0011 0.0038
40 0.2238 0.2612 0.2950 0.3350 0.1406 0.0235 0.0046 0.0011 0.0037
41 0.2219 0.2576 0.2909 0.3314 0.1388 0.0229 0.0045 0.0010 0.0036
42 0.2188 0.2551 0.2880 0.3277 0.1372 0.0223 0.0043 0.0010 0.0035
43 0.2158 0.2515 0.2839 0.3240 0.1355 0.0218 0.0041 0.0009 0.0034
44 0.2138 0.2490 0.2810 0.3202 0.1340 0.0213 0.0040 0.0009 0.0034
45 0.2109 0.2454 0.2780 0.3165 0.1325 0.0208 0.0039 0.0008 0.0033
46 0.2089 0.2429 0.2750 0.3129 0.1310 0.0204 0.0037 0.0008 0.0032
47 0.2069 0.2404 0.2721 0.3092 0.1296 0.0199 0.0036 0.0008 0.0031
48 0.2049 0.2378 0.2691 0.3064 0.1282 0.0195 0.0035 0.0007 0.0031
49 0.2020 0.2353 0.2661 0.3036 0.1269 0.0191 0.0034 0.0007 0.0030
50 0.2000 0.2336 0.2640 0.3000 0.1256 0.0187 0.0033 0.0007 0.0030
51 0.1980 0.2311 0.2611 0.2972 0.1244 0.0184 0.0032 0.0007 0.0029
52 0.1960 0.2286 0.2581 0.2944 0.1232 0.0180 0.0031 0.0006 0.0028
53 0.1947 0.2268 0.2560 0.2916 0.1220 0.0177 0.0030 0.0006 0.0028
54 0.1927 0.2243 0.2538 0.2888 0.1209 0.0174 0.0029 0.0006 0.0027
55 0.1907 0.2225 0.2516 0.2866 0.1198 0.0170 0.0029 0.0006 0.0027
56 0.1894 0.2207 0.2494 0.2838 0.1187 0.0167 0.0028 0.0005 0.0026
57 0.1874 0.2182 0.2472 0.2810 0.1176 0.0164 0.0027 0.0005 0.0026
58 0.1861 0.2164 0.2449 0.2788 0.1166 0.0162 0.0026 0.0005 0.0026
59 0.1841 0.2146 0.2427 0.2766 0.1156 0.0159 0.0026 0.0005 0.0025
60 0.1828 0.2128 0.2406 0.2739 0.1147 0.0156 0.0025 0.0005 0.0025
61 0.1814 0.2110 0.2389 0.2717 0.1137 0.0154 0.0025 0.0005 0.0024
62 0.1800 0.2092 0.2367 0.2695 0.1128 0.0151 0.0024 0.0004 0.0024
63 0.1781 0.2079 0.2351 0.2673 0.1119 0.0149 0.0023 0.0004 0.0023
64 0.1768 0.2061 0.2329 0.2656 0.1110 0.0146 0.0023 0.0004 0.0023
65 0.1754 0.2043 0.2312 0.2634 0.1101 0.0144 0.0022 0.0004 0.0023
66 0.1740 02029 0.2296 0.2612 0.1093 0.0142 0.0022 0.0004 0.0022
67 0.1731 0.2016 0.2279 0.2595 0.1085 0.0140 0.0021 0.0004 0.0022

Table 9: Continued
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n z90 z95 z97.5 z99 µ1 µ2 µ3 µ4 σ2

68 0.1717 0.1998 0.2262 0.2574 0.1077 0.0138 0.0021 0.0004 0.0022
69 0.1703 0.1985 0.2245 0.2556 0.1069 0.0136 0.0020 0.0004 0.0021
70 0.1690 0.1971 0.2229 0.2539 0.1061 0.0134 0.0020 0.0003 0.0021
71 0.1680 0.1958 0.2212 0.2521 0.1054 0.0132 0.0020 0.0003 0.0021
72 0.1667 0.1944 0.2195 0.2504 0.1046 0.0130 0.0019 0.0003 0.0021
73 0.1657 0.1931 0.2182 0.2486 0.1039 0.0128 0.0019 0.0003 0.0020
74 0.1644 0.1917 0.2166 0.2469 0.1032 0.0126 0.0018 0.0003 0.0020
75 0.1634 0.1904 0.2153 0.2452 0.1025 0.0125 0.0018 0.0003 0.0020
76 0.1624 0.1891 0.2136 0.2438 0.1018 0.0123 0.0018 0.0003 0.0019
77 0.1611 0.1877 0.2123 0.2420 0.1012 0.0122 0.0017 0.0003 0.0019
78 0.1601 0.1867 0.2110 0.2406 0.1005 0.0120 0.0017 0.0003 0.0019
79 0.1591 0.1854 0.2097 0.2389 0.0999 0.0118 0.0017 0.0003 0.0019
80 0.1581 0.1844 0.2084 0.2375 0.0992 0.0117 0.0016 0.0003 0.0018
81 0.1571 0.1831 0.2071 0.2361 0.0986 0.0116 0.0016 0.0003 0.0018
82 0.1562 0.1820 0.2058 0.2347 0.0980 0.0114 0.0016 0.0003 0.0018
83 0.1552 0.1810 0.2045 0.2333 0.0974 0.0113 0.0015 0.0002 0.0018
84 0.1545 0.1797 0.2032 0.2319 0.0968 0.0111 0.0015 0.0002 0.0018
85 0.1535 0.1787 0.2022 0.2304 0.0963 0.0110 0.0015 0.0002 0.0017
86 0.1525 0.1777 0.2009 0.2290 0.0957 0.0109 0.0015 0.0002 0.0017
87 0.1515 0.1766 0.1999 0.2279 0.0952 0.0108 0.0014 0.0002 0.0017
88 0.1508 0.1756 0.1986 0.2265 0.0946 0.0106 0.0014 0.0002 0.0017
89 0.1499 0.1746 0.1976 0.2251 0.0941 0.0105 0.0014 0.0002 0.0017
90 0.1491 0.1738 0.1965 0.2240 0.0935 0.0104 0.0014 0.0002 0.0016
91 0.1482 0.1728 0.1953 0.2228 0.0930 0.0103 0.0013 0.0002 0.0016
92 0.1474 0.1718 0.1942 0.2214 0.0925 0.0102 0.0013 0.0002 0.0016
93 0.1467 0.1710 0.1932 0.2203 0.0920 0.0101 0.0013 0.0002 0.0016
94 0.1460 0.1700 0.1922 0.2191 0.0915 0.0100 0.0013 0.0002 0.0016
95 0.1450 0.1690 0.1911 0.2180 0.0910 0.0098 0.0013 0.0002 0.0016
96 0.1443 0.1682 0.1903 0.2168 0.0906 0.0097 0.0012 0.0002 0.0015
97 0.1436 0.1674 0.1893 0.2156 0.0901 0.0096 0.0012 0.0002 0.0015
98 0.1429 0.1664 0.1883 0.2147 0.0896 0.0095 0.0012 0.0002 0.0015
99 0.1421 0.1656 0.1872 0.2135 0.0892 0.0094 0.0012 0.0002 0.0015
100 0.1414 0.1648 0.1864 0.2124 0.0887 0.0094 0.0012 0.0002 0.0015
101 0.1407 0.1640 0.1854 0.2114 0.0883 0.0093 0.0011 0.0002 0.0015

Table 10: Continued
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n z90 z95 z97.5 z99 µ1 µ2 µ3 µ4 σ2

102 0.1399 0.1632 0.1845 0.2103 0.0879 0.0092 0.0011 0.0002 0.0015
103 0.1394 0.1624 0.1837 0.2094 0.0574 0.0091 0.0011 0.0002 0.0014
104 0.1387 0.1616 0.1827 0.2084 0.0870 0.0090 0.0011 0.0002 0.0014
105 0.1380 0.1608 0.1819 0.2074 0.0866 0.0089 0.0011 0.0002 0.0014
106 0.1374 0.1600 0.1810 0.2065 0.0862 0.0088 0.0011 0.0002 0.0014
107 0.1367 0.1592 0.1802 0.2053 0.0858 0.0087 0.0011 0.0001 0.0014
108 0.1361 0.1586 0.1794 0.2046 0.0854 0.0087 0.0010 0.0001 0.0014
109 0.1354 0.1578 0.1785 0.2036 0.0850 0.0086 0.0010 0.0001 0.0014
110 0.1349 0.1572 0.1777 0.2026 0.0846 0.0085 0.0010 0.0001 0.0013
111 0.1342 0.1564 0.1769 0.2017 0.0842 0.0084 0.0010 0.0001 0.0013
112 0.1336 0.1558 0.1762 0.2007 0.0838 0.0083 0.0010 0.0001 0.0013
113 0.1331 0.1550 0.1753 0.1999 0.0835 0.0083 0.0010 0.0001 0.0013
114 0.1325 0.1544 0.1745 0.1990 0.0831 0.0082 0.0010 0.0001 0.0013
115 0.1318 0.1537 0.1738 0.1982 0.0827 0.0081 0.0009 0.0001 0.0013
116 0.1312 0.1529 0.1730 0.1974 0.0824 0.0081 0.0009 0.0001 0.0013
117 0.1307 0.1523 0.1723 0.1964 0.0820 0.0080 0.0009 0.0001 0.0013
118 0.1301 0.1517 0.1715 0.1956 0.0817 0.0079 0.0009 0.0001 0.0013
119 0.1296 0.1510 0.1708 0.1948 0.0813 0.0079 0.0009 0.0001 0.0012
120 0.1290 0.1504 0.1701 0.1940 0.0810 0.0078 0.0009 0.0001 0.0012
121 0.1286 0.1498 0.1695 0.1932 0.0806 0.0077 0.0009 0.0001 0.0012
122 0.1281 0.1492 0.1688 0.1924 0.0803 0.0077 0.0009 0.0001 0.0012
123 0.1275 0.1485 0.1681 0.1916 0.0800 0.0076 0.0009 0.0001 0.0012
124 0.1270 0.1480 0.1674 0.1908 0.0797 0.0075 0.0008 0.0001 0.0012
125 0.1265 0.1474 0.1667 0.1901 0.0793 0.0075 0.0008 0.0001 0.0012
126 0.1260 0.1468 0.1660 0.1893 0.0790 0.0074 0.0008 0.0001 0.0012
127 0.1254 0.1463 0.1654 0.1885 0.0787 0.0074 0.0008 0.0001 0.0012
128 0.1250 0.1456 0.1647 0.1879 0.0784 0.0073 0.0008 0.0001 0.0012
129 0.1245 0.4151 0.1641 0.1871 0.0781 0.0072 0.0008 0.0001 0.0011
130 0.1240 0.1445 0.1634 0.1864 0.0778 0.0072 0.0008 0.0001 0.0011
131 0.1235 0.1440 0.1629 0.1857 0.0775 0.0071 0.0008 0.0001 0.0011
132 0.1230 0.1434 0.1622 0.1850 0.0772 0.0071 0.0008 0.0001 0.0011
133 0.1226 0.1429 0.1616 0.1842 0.0769 0.0070 0.0008 0.0001 0.0011
134 0.1222 0.1423 0.1609 0.1836 0.0766 0.0070 0.0008 0.0001 0.0011
135 0.1216 0.1418 0.1604 0.1829 0.0763 0.0069 0.0007 0.0001 0.0011

Table 11: Continued
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n z90 z95 z97.5 z99 µ1 µ2 µ3 µ4 σ2

136 0.1212 0.1413 0.1598 0.1822 0.0761 0.0069 0.0007 0.0001 0.0011
137 0.1208 0.1407 0.1593 0.1816 0.0758 0.0068 0.0007 0.0001 0.0011
138 0.1204 0.1402 0.1587 0.1809 0.0755 0.0068 0.0007 0.0001 0.0011
139 0.1199 0.1397 0.1581 0.1803 0.0752 0.0067 0.0007 0.0001 0.0011
140 0.1195 0.1393 0.1576 0.1796 0.0750 0.0067 0.0007 0.0001 0.0011
141 0.1191 0.1388 0.1570 0.1790 0.0747 0.0066 0.0007 0.0001 0.0010
142 0.1186 0.1383 0.1564 0.1783 0.0744 0.0066 0.0007 0.0001 0.0010
143 0.1182 0.1378 0.1559 0.1778 0.0742 0.0065 0.0007 0.0001 0.0010
144 0.1178 0.1372 0.1553 0.1771 0.0739 0.0065 0.0007 0.0001 0.0010
145 0.1174 0.1368 0.1548 0.1765 0.0737 0.0064 0.0007 0.0001 0.0010
146 0.1170 0.1363 0.1543 0.1759 0.0734 0.0064 0.0007 0.0001 0.0010
147 0.1166 0.1359 0.1537 0.1753 0.0732 0.0064 0.0007 0.0001 0.0010
148 0.1162 0.1354 0.1532 0.1747 0.0729 0.0063 0.0006 0.0001 0.0010
149 0.1158 0.1350 0.1527 0.1741 0.0727 0.0063 0.0006 0.0001 0.0010
150 0.1155 0.1345 0.1522 0.1735 0.0724 0.0062 0.0006 0.0001 0.0010
151 0.1150 0.1341 0.1517 0.1729 0.0722 0.0062 0.0006 0.0001 0.0010
152 0.1147 0.1337 0.1511 0.1724 0.0719 0.0061 0.0006 0.0001 0.0010
153 0.1143 0.1332 0.1507 0.1719 0.0717 0.0061 0.0006 0.0001 0.0010
154 0.1139 0.1327 0.1502 0.1713 0.0715 0.0061 0.0006 0.0001 0.0010
155 0.1135 0.1323 0.1497 0.1707 0.0712 0.0060 0.0006 0.0001 0.0010
156 0.1132 0.1319 0.1492 0.1702 0.0710 0.0060 0.0006 0.0001 0.0009
157 0.1128 0.1315 0.1488 0.1696 0.0708 0.0060 0.0006 0.0001 0.0009
158 0.1125 0.1311 0.1483 0.1691 0.0706 0.0059 0.0006 0.0001 0.0009
159 0.1121 0.1307 0.1478 0.1685 0.0703 0.0059 0.0006 0.0001 0.0009
160 0.1117 0.1302 0.1473 0.1680 0.0701 0.0058 0.0006 0.0001 0.0009
161 0.1114 0.1298 0.1469 0.1675 0.0699 0.0058 0.0006 0.0001 0.0009
162 0.1110 0.1294 0.1464 0.1670 0.0697 0.0058 0.0006 0.0001 0.0009
163 0.1107 0.1291 0.1460 0.1665 0.0695 0.0057 0.0006 0.0001 0.0009
164 0.1104 0.1286 0.1455 0.1660 0.0693 0.0057 0.0006 0.0001 0.0009
165 0.1100 0.1282 0.1451 0.1655 0.0690 0.0057 0.0005 0.0001 0.0009
166 0.1097 0.1279 0.1447 0.1650 0.0688 0.0056 0.0005 0.0001 0.0009
167 0.1094 0.1275 0.1442 0.1645 0.0686 0.0056 0.0005 0.0001 0.0009
168 0.1091 0.1271 0.1438 0.1640 0.0684 0.0056 0.0005 0.0001 0.0009
169 0.1087 0.1267 0.1434 0.1635 0.0682 0.0055 0.0005 0.0001 0.0009

Table 12: Continued
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n z90 z95 z97.5 z99 µ1 µ2 µ3 µ4 σ2

170 0.1084 0.1264 0.1429 0.1630 0.0680 0.0055 0.0005 0.0001 0.0009
171 0.1081 0.1260 0.1425 0.1625 0.0678 0.0055 0.0005 0.0001 0.0009
172 0.1078 0.1256 0.1421 0.1620 0.0676 0.0054 0.0005 0.0001 0.0009
173 0.1075 0.1253 0.1417 0.1616 0.0674 0.0054 0.0005 0.0001 0.0009
174 0.1071 0.1249 0.1413 0.1611 0.0672 0.0054 0.0005 0.0001 0.0009
175 0.1069 0.1245 0.1409 0.1607 0.0670 0.0053 0.0005 0.0001 0.0008
176 0.1065 0.1242 0.1405 0.1603 0.0668 0.0053 0.0005 0.0001 0.0008
177 0.1063 0.1238 0.1401 0.1598 0.0667 0.0053 0.0005 0.0001 0.0008
178 0.1059 0.1235 0.1397 0.1593 0.0665 0.0052 0.0005 0.0001 0.0008
179 0.1056 0.1231 0.1393 0.1589 0.0663 0.0052 0.0005 0.0001 0.0008
180 0.1054 0.1228 0.1389 0.1585 0.0661 0.0052 0.0005 0.0001 0.0008
181 0.1050 0.1224 0.1385 0.1580 0.0659 0.0052 0.0005 0.0001 0.0008
182 0.1048 0.1221 0.1381 0.1576 0.0657 0.0051 0.0005 0.0001 0.0008
183 0.1045 0.1218 0.1377 0.1572 0.0656 0.0051 0.0005 0.0001 0.0008
184 0.1042 0.1215 0.1374 0.1567 0.0654 0.0051 0.0005 0.0000 0.0008
185 0.1039 0.1211 0.1370 0.1563 0.0652 0.0051 0.0005 0.0000 0.0008
186 0.1037 0.1208 0.1367 0.1559 0.0650 0.0050 0.0005 0.0000 0.0008
187 0.1034 0.1205 0.1363 0.1554 0.0649 0.0050 0.0005 0.0000 0.0008
188 0.1031 0.1201 0.1359 0.1550 0.0647 0.0050 0.0005 0.0000 0.0008
189 0.1028 0.1198 0.1356 0.1546 0.0645 0.0049 0.0004 0.0000 0.0008
190 0.1025 0.1195 0.1352 0.1542 0.0643 0.0049 0.0004 0.0000 0.0008
191 0.1023 0.1192 0.1348 0.1538 0.0642 0.0049 0.0004 0.0000 0.0008
192 0.1020 0.1189 0.1345 0.1534 0.0640 0.0049 0.0004 0.0000 0.0008
193 0.1017 0.1186 0.1342 0.1530 0.0638 0.0048 0.0004 0.0000 0.0008
194 0.1015 0.1183 0.1338 0.1526 0.0637 0.0048 0.0004 0.0000 0.0008
195 0.1012 0.1179 0.1335 0.1522 0.0635 0.0048 0.0004 0.0000 0.0008
196 0.1009 0.1177 0.1331 0.1519 0.0633 0.0048 0.0004 0.0000 0.0008
197 0.1007 0.1174 0.1328 0.1514 0.0632 0.0047 0.0004 0.0000 0.0008
198 0.1004 0.1171 0.1324 0.1511 0.0630 0.0047 0.0004 0.0000 0.0007
199 0.1002 0.1168 0.1321 0.1507 0.0629 0.0047 0.0004 0.0000 0.0007
200 0.1000 0.1165 0.1318 0.1503 0.0627 0.0047 0.0004 0.0000 0.0007
250 0.0894 0.1042 0.1179 0.1345 0.0561 0.0037 0.0003 0.0000 0.0006
300 0.0816 0.0951 0.1076 0.1228 0.0512 0.0031 0.0002 0.0000 0.0005
350 0.0755 0.0880 0.0996 0.1136 0.0474 0.0027 0.0002 0.0000 0.0004

Table 13: Continued
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