
How to find frequent patterns?

Wim Pijls∗ Walter A. Kosters†

Econometric Institute Report EI 2005-24

June 1, 2005‡

Abstract

An improved version of DF , the depth first implementation of Apriori as devised
in [7], is presented. Given a database of (e.g., supermarket) transactions, the DF
algorithm builds a so-called trie that contains all frequent itemsets, i.e., all itemsets
that are contained in at least minsup transactions with minsup a given threshold value.
In the trie, there is a one-to-one correspondence between the paths and the frequent
itemsets. The new version, called DF+, differs from DF in that its data structure
representing the database is borrowed from the FP-growth algorithm. So it combines
the compact FP-growth data structure with the efficient trie-building method in DF .

1 Introduction

Finding frequent itemsets, also called patterns, in large databases has become a major
research topic in the past decade. Initially, frequent itemsets were used for searching asso-
ciation rules in supermarket transaction data. An example of such an association rule is:
15% of the transactions that include item X and item Y , also include item Z. Besides, fre-
quent itemsets are used in several other data mining issues such as classification, clustering,
correlations, episodes and so on. Application domains nowadays are, among others, direct
mailing, customer relationship management and fraud detection.

One of the oldest algorithms for finding frequent itemsets is Apriori [1, 2], which is
based upon the Apriori-property that, for an itemset to be frequent, certainly any subset
must be frequent. The Apriori algorithm finds the frequent patterns in a breadth-first way.
In 1999 we proposed DF [7], a depth first algorithm based upon this same property. A major
step forward was the FP-growth algorithm, also denoted as FP [4]. In this algorithm the
database is represented by a so-called Frequent Pattern tree (in short FP-tree), a compact
data structure that contains all information needed to find the frequent itemsets. This
paper presents a new variant of DF , called DF+. In the original DF implementation the
database was kept in memory as a two-dimensional array. In the new algorithm this array

∗Econometric Institute, Erasmus University Rotterdam, P.O.Box 1738, 3000 DR Rotterdam, The Nether-
lands, e-mail: pijls@few.eur.nl

†Leiden Institute of Advanced Computer Science, Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden,
The Netherlands, e-mail kosters@liacs.nl

‡This paper was presented at: Operations Research 2004, Annual International Conference of the German
Operations Research Society, Tilburg, The Netherlands, September 2004.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18522586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


is replaced with an FP-tree. This requires less memory as well as less memory inspections.
For sparse transaction databases, the combination of DF with an FP-tree turns out to be
fast.
Preliminaries. A transaction database consists of rows that represent transactions or
records, and columns with each column corresponding to an item. Each entry contains a
boolean value, denoting whether an item is included or not in a transaction. Any database
with only discrete values can be transformed into such a format. A transaction or record
R is said to support an itemset I if R contains the full set I. The support of an itemset I
is the number of transactions that support I. An itemset is frequent if its support exceeds
the minimum support minsup, a threshold value given in advance.
Overview. This paper is organized as follows. In Section 2 we discuss DF . Section 3 first
introduces the FP-tree and the FP-growth algorithm. Next, we show how an FP-tree can
be incorporated into the depth first algorithm, leading to the improved DF+ algorithm.
Section 4 shows results of experiments; Section 5 concludes.

2 The Depth First Algorithm

Suppose that we are given the database on the left hand side of Figure 1, which serves as
our running example. Each line represents a transaction. Let us take the support threshold
equal to 3. The frequent itemsets, the aim of our algorithm, are presented in the right hand
side of the figure. Abusing notation, we omit curly braces and commas from the common
set notation.

Database
nr. items
1 A D
2 A B C E
3 A B C E
4 A B C D
5 A B C D E
6 B D E

Frequent itemsets for minsup = 3

support frequent itemsets
5 A, B
4 AB, C, AC, BC, ABC, D, E, BE
3 AD, BD, AE, CE, ABE,

ACE, BCE ABCE

Figure 1: Example database with its frequent itemsets.

An appropriate data structure to store the frequent itemsets of a given database is the
well-known trie. The trie of frequent patterns is shown in Figure 2. The entries (or cells) in
a node of a trie are usually called buckets, as is also the case for a hash-tree. Each bucket
can be identified with its path to the root and hence with a unique frequent itemset. The
example final trie has 9 nodes and 18 buckets, representing the 18 frequent itemsets. As an
example, the frequent itemset {A,B,E,F} can be seen as the leftmost path in the trie; an
infrequent set as {A,B,C} is not present.

The DF algorithm starts by determining the support for all single items. For this
purpose the database is examined once. The items are sorted in decreasing order. Let
the n frequent items in decreasing order be denoted by i1, i2, . . . , in. Next, the code from
Figure 3 is executed. Figure 4 illustrates the consecutive steps of the algorithm applied to
our example. The single items surpassing the minimum support threshold 3 are: i1 = A,
i2 = B, i3 = C, i4 = D and i5 = E. In the figure, the shape of T after each iteration of the
main loop is shown. Also the infrequent itemsets to be deleted at the end of an iteration

2



EDCBA
@
@
@
@@











�
�

�
��

CBABABAA
A
A
A
AA

�
�
�
��

BAAA

A

Figure 2: The trie of frequent item sets (without support counts).

(1) T := the trie including only bucket i1;
(2) for m := 2 to n do
(3) T ′ := T ;
(4) T := T ′ with im added to the right and

a copy of T ′ appended to im;
(5) S := T\T ′ (= the subtrie rooted in im);
(6) count(S, im);
(7) delete the infrequent itemsets from S;

(9) procedure count(subtrie S, item i):
(10) for every transaction R containing i do
(11) for every itemset (path) I in S do
(12) if R supports I then increase I.support;

Figure 3: The DF algorithm.

are mentioned. At the start of the iteration with index m, the root of trie T consists of the
1-itemsets i1, . . . , im−1. (We denote a 1-itemset by the name of its only item.) A new trie
T is composed by adding bucket im to the root and by appending a copy of T ′ (the former
T ) to im. The newly added buckets are the new candidates and they make up a subtrie
S. In Figure 4, the candidate set S is in the right part of each trie and is drawn in bold.
Notice that the final trie (after deleting infrequent itemsets) is identical to Figure 2.

The procedure count(S, i) determines the support of each itemset (i.e., bucket) in the
subtrie S. In lines (11) and (12) of the code, each path (itemset) I of S is traversed
and compared with transaction R, increasing the appropriate support counters by 1. The
traversal of I is aborted as soon as an item outside R is found on I. All paths of subtrie S
are traversed using backtracking.

3



i2 = B
�

�
�

B

A

A i3 = C A B
¡

¡
¡

A

C
�
�
�

A B

Ai4 = D

DC (and so the trie underneath)
and DBA are infrequent,
and hence deleted

¢
¢

¢

¡
¡

¡

A B C

A BA

A

D
A
A
A

A B C
�
�
��

B
B
BB

A A B

A

i5 = E

ED (and so the trie underneath)
is infrequent, and hence deleted

¢
¢

¢

¡
¡

¡

A B C D

A B A BA

A

E
@
@
@

A B C D
�
�
�

J
J
JJ

A A B A B

A

Figure 4: Illustrating the DF algorithm.

3 The FP-Tree Improvement

An FP-tree is an efficient and compact data structure for a transaction database. In an
FP-tree each node contains an item, a counter, pointers to its children (if any), a pointer
to its parent and an “extra” pointer to be discussed later on. A transaction is inserted
into the FP-tree constructed so far, by following a unique path, meanwhile increasing all
counters on this path by 1. The path consists of the frequent items in the transaction in
the prescribed order; if necessary, new nodes are created. To be precise, if the transaction
includes item i, we look for child i of the current node in the FP-tree; if this child does not
exist, it is created (with counter initialized to 1), otherwise its counter is incremented by
1; the current node is set to the (new) child, and the insertion process proceeds. In this
way, transactions with the same prefix follow the same path as long as they coincide. The
FP-tree for our example database is depicted in Figure 5. The dotted lines from left to right
indicate the “extra” pointers that connect all occurrences of one item in the tree. Note that
itemset {A,B,C} has support 4, while the support of an itemset like {B,D} is recorded as
2 + 1 = 3.

4



A(5) B(1))
�
�

�
�

@
@
@
@

B(4) D(1) D(1)

C(4) E(1)

D(2) E(2)

E(1)
E

D

C

B

A

→

→

→

→

→

Figure 5: The FP-tree of the database.

FP-growth. As mentioned earlier, the FP-tree plays a crucial role in the FP-growth
algorithm, see Figure 6. The main call of FP-growth is FP-growth(∅, D, I) with D the given
database and I the original set of frequent items. A precondition of the procedure FP-
growth is that I is the set of frequent items in D. An essential feature of FP-growth is that
parameter D is given as an FP-tree in any (sub)call. An extra action (clean) is performed
in line (7): the items in the set {i1, i2, . . . , ik−1} with a support lower than minsup in D′ are
not inserted into I ′ to make sure that the precondition of the subsequent subcall is fulfilled.
Note that FP-growth is a typical instance of backtracking.

(1) procedure FP-growth(pattern P , database D, itemset I)
(2) if D = ∅ then exit;
(3) let I be {i1, i2, . . . , in};
(4) for k := 1 to n do
(5) “output” a new pattern P ′ := P ∪ {ik};
(6) D′ := the set of transactions in D that support ik;
(7) I ′ := clean({i1, i2, . . . , ik−1});
(8) FP-growth(P ′, D′, I ′);

Figure 6: The FP-growth algorithm.

A new algorithm. Although FP-growth is fast, a major drawback is that in each recursive
call a new FP-tree D′ has to be built. The depth first algorithm has another drawback.
In each outer iteration, a call of the procedure count is performed. The execution of this
procedure traverses the whole database. Now, we propose a new algorithm, called DF+,
which solves both problems. The code of Figure 3 is performed, where the database is
stored in memory not as a two-dimensional array, but as an FP-tree. So, before the code of
Figure 3 starts, the whole database is put into memory as an FP-tree. The procedure count

5



utilizes this FP-tree. The execution of the call count(S,i) in DF+ includes considerably
less steps compared with DF . The latter one must inspect all transactions of the database,
whereas the former visits only the paths between the FP-root and the buckets containing
item i, using the extra dashed pointers (so line (10) from Figure 3 uses paths instead of
transactions). Note that the counter in the FP-tree node is used in line (12) from Figure 3.
Consequently, using an FP-tree results in a significant speed up. An extra speedup is
achieved by (in the main loop from Figure 3) first discarding the infrequent itemsets with
2 elements (one of them being im); in the example tree {D,C} and {E,D} are deleted in an
early stage, thereby eliminating much counting in their respective subtries.

4 Experiments

The following databases, all available through [3], are used:

• chess (342 kB, with 3,196 transactions),

• accidents (25.5 MB, with 340,183 transactions),

• T10I4D100K (4.0 MB, with 100,000 transactions),

• T40I10D100K (15.5 MB, with 100,000 transactions).

These databases have either few, but coherent records (chess), or many records (accidents
and the two synthetic T-databases).

0

5

10

15

20

25

30

35

40

45

50

40455055606570
0

0.5

1

1.5

2

2.5

3

3.5

4

ru
nt

im
e 

(s
ec

on
ds

)

nu
m

be
r 

of
 s

et
s 

in
 1

,0
00

,0
00

s

relative support (%)

Database chess

execution time DF+
execution time FP-growth

number of frequent sets (scale on right axis)

0

20

40

60

80

100

20253035404550
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ru
nt

im
e 

(s
ec

on
ds

)

nu
m

be
r 

of
 s

et
s 

in
 1

,0
00

,0
00

s

relative support (%)

Database accidents

execution time DF+
execution time FP-growth

number of frequent sets (scale on right axis)

Figure 7: Experimental results for databases chess and accidents.

The experiments were conducted at a Pentium-IV machine with 512 MB memory at
2.8 GHz, running Red Hat Linux 7.3. The programs were developed under the Gnu C++

compiler, version 2.96.
The following statistics are plotted in the graphs: the execution time in seconds of the

DF+ and FP algorithms (scale on left axis), and the total number of frequent itemsets:
in all figures the corresponding axis is on the right hand side. The execution time ex-
cludes preprocessing: in this phase the database is read in order to detect the frequent
items (see before); also excluded is the time needed to print the resulting itemsets. These
actions together usually only take a few seconds. The number of frequent 1-itemsets has
range 31–38 for the experiments on the database chess, 28–40 for accidents, 844–869 for

6



0

5

10

15

20

25

30

00.0050.010.0150.020.0250.030.0350.040.0450.05
0

0.5

1

1.5

2

2.5

3

3.5

4

ru
nt

im
e 

(s
ec

on
ds

)

nu
m

be
r 

of
 s

et
s 

in
 1

,0
00

,0
00

s

relative support (%)

Database T10I4D100K

execution time DF+
execution time FP-growth

number of frequent sets (scale on right axis)

0

10

20

30

40

50

60

70

80

0.60.811.21.41.61.822.2
0

0.2

0.4

0.6

0.8

1

ru
nt

im
e 

(s
ec

on
ds

)

nu
m

be
r 

of
 s

et
s 

in
 1

,0
00

,0
00

s

relative support (%)

Database T40I10D100K

execution time DF+
execution time FP-growth

number of frequent sets (scale on right axis)

Figure 8: Experimental results for databases T10I4D100K and T40I10D100K.

T10I4D100K and 610–804 for T40I10D100K. Note the very high support thresholds for chess
and accidents.

The experiments show that in the case of the very coherent databases, such as chess
and, in case of a low threshold, accidents, FP performs better, but for T40I10D100K DF+

shows better results in case of low support thresholds; for T10I4D100K the behaviour of DF+

is slightly better. Another problem for FP is the required memory. If a large database has
very long patterns, a machine with a large memory is needed, as we experienced while
conducting our experiments.

5 Concluding remarks

We have addressed DF+, a depth first implementation of Apriori using the data structure
of FP. It turns out that DF+ competes with well-known algorithms, especially when ap-
plied to sparse databases. Real-world transaction databases of supermarkets mostly belong
to this type of database. However, for dense databases, e.g., chess, FP is still preferable,
provided that memory requirements are not a problem.

There is another major difference between FP and DF+. The former generates a file
of all frequent patterns, whereas the latter at first generates a trie, which is transformed
into a file subsequently. If the collection of all frequent sets is processed further, a trie
implementation is preferable to a file.

In the FIMI contest [3] faster results have been achieved. Most of the well-performing
submissions were based upon FP. As far as we understand it, this is however due to very
sophisticated implementation details. In this paper we are rather comparing the underlying
algorithms, using similar programming styles.

Complexity issues are left out of consideration in this paper. Some results on time
complexity are mentioned in [6, 5]. The final aim would be to understand the behaviour
expressed in terms of parameters of the databases, in view of recent results like [8]. In
this paper an important complexity result was proved: counting the number of maximal
frequent itemsets is #P-complete. A maximal frequent itemset has the property that every
subset is frequent and no superset has this property. In a practical sense, pattern finding
has been solved. In the theoretical field several research topics are left.

7



References

[1] Agrawal R., Mannila H., Srikant R., Toivonen H., Verkamo A.I. (1996) Fast Discovery
of Association Rules. In: Fayyad U.M., Piatetsky-Shapiro G., Smyth P., Uthurusamy
R. (Eds.) Advances in Knowledge Discovery and Data Mining, AAAI/MIT Press,
pages 307–328

[2] Agrawal R., Srikant R. (1994) Fast Algorithms for Mining Association Rules. In:
Bocca J.B., Jarke M., Zaniolo C. (Eds.) Proceedings of the 20th International Con-
ference on Very Large Databases, pages 487–499

[3] Goethals B., Zaki M.J. (Eds.) (2003) Proceedings of the First IEEE ICDM Work-
shop on Frequent Itemset Mining Implementations. CEUR Workshop Proceedings,
http://fimi.cs.helsinki.fi/fimi03/.

[4] Han J., Pei J., Yin Y. (2000) Mining Frequent Patterns Without Candidate Gener-
ation. In: Chen W., Naughton J.F., Bernstein P.A. (Eds.) Proceedings 2000 ACM
SIGMOD International Conference on Management of Data (SIGMOD’00), ACM,
pages 1–12

[5] Kosters W.A., Pijls W. (2003) Apriori: A Depth First Implementation. In: [3]

[6] Kosters W.A., Pijls W., Popova V. (2003) Complexity Analysis of Depth First and
FP-Growth Implementations of Apriori. In: Perner P., Rosenfeld A. (Eds.) Machine
Learning and Data Mining in Pattern Recognition, Proceedings MLDM 2003, Springer
Lecture Notes in Artificial Intelligence 2734, Springer Verlag, pages 284–292

[7] Pijls W., Bioch J.C. (1999) Mining Frequent Itemsets in Memory-Resident Databases.
In: Postma E., Gyssens M. (Eds.) Proceedings of the Eleventh Belgium-Netherlands
Conference on Artificial Intelligence (BNAIC1999), pages 75–82

[8] Yang G. (2004) The Complexity of Mining Maximal Frequent Itemsets and Maximal
Frequent Patterns. Accepted for the Tenth ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD’04), August 2004, Seattle

8


