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ABSTRACT

The first three factors resulting from a princigaimponents analysis of term structure
data are in the literature typically interpreteddasing the level, slope and curvature of
the term structure. Using slight generalisationghaforems from total positivity, we
present sufficient conditions under which levegpgl and curvature are present. These
conditions have the nice interpretation of restiigcthe level, slope and curvature of the
correlation surface. It is proven that the SchodmraCoffey correlation matrix also
brings along such factors. Finally, we formulatel aorroborate our conjecture that the
order present in correlation matrices causes slope.

Keywords: Principal components analysis, correlation matriotal positivity,
oscillation matrix, Schoenmakers-Coffey matrix.
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1. Introduction

In an attempt to parsimoniously model the behavaduhe interest rate term structure, many
studies find that using the first three principainponents of the covariance or correlation matrix
already accounts for 95-99% of the variability eault first noted for interest rate term structures
by Steeley [1990] and Litterman and Scheinkman J1.98hese results were also found to hold
for the term structure of copper futures pricesCaytazar and Schwartz [1994], and also for the
multiple-curve case, as shown by Hindanov and Tekn§2002].

This paper does not deal with the question of hamyrfactors one should use to model the
interest rate term structure, or any term strucfareghat matter, but addresses the shape of the
first three factors. The shape hereof is such thahy authors, starting from Litterman and
Scheinkman, have attached an interpretation to e&dchese three factors. The first factor, or
indeed eigenvector of the covariance or correlatiatrix, is usually relatively flat. As such it is
said to determine thievel or tilt of the term structure. The second, which has dfpsgns at
both ends of the term structure, can be interpragedetermining thelopeor trend The third
factor finally, having equal signs at both endghef maturity spectrum, but an opposite sign in
the middle, is said to determine tharvature twist or butterfly of the term structure.

A question that comes to mind is whether the oleskpattern is caused by some fundamental
structure within term structures, or whether itmigrely an artefact of principal components
analysis (PCA). Alexander [2003] in fact claimsttha. the interpretation of eigenvectors as
trend, tilt and curvature components is one ofstyised facts of all term structures, particularly
when they are highly correlated”. In this paperimeestigate sufficient conditions under which
the level-slope-curvature effect occurs. To the bésur knowledge only one article has so far
tried to mathematically explain this level-slopevature effect in the context of a PCA of term
structures, namely that of Forzani and TolmaskyOR0 They demonstrate that when the
correlation between two contracts maturing at timasd s is of the formp™*! wherep is a fixed
positive correlation, the observed factors areysbations of cosine waves with a period which is
decreasing in the number of the factor under cemattbn. This correlation function is widely
used as a parametric correlation function in &g LiBOR market model, see Rebonato [1998].

We formulate the level-slope-curvature effect difaly than Forzani and Tolmasky. As
noted, the first factor is quite flat, the secorak lopposite signs at both ends of the maturity
spectrum, and the third finally has the same sighoth ends, but has an opposite sign in the
middle. This observation leads us to consider thmber of sign changes of each factor or
eigenvector. If the first three factors have retigely zero, one and two sign changes, we say
that we observe level, slope and curvature.

Using a concept named total positivity, Gantmachad Krdén considered the spectral
properties of totally positive matrices in the fifsalf of the twentieth century. One of the
properties of a sub-class of these matrices, dectaiscillation matrices, is indeed that tH& n
eigenvector of such a matrix has exactly n-1 slggnges. These results can be found e.g. in their
book [1960, 2002]. With a minor generalisation lo¢it theorems, we find sufficient conditions
under which a term structure indeed displays tweldslope-curvature effect. The conditions
have the nice interpretation of placing restricsioon the level, slope and curvature of the
correlation curves.

Subsequently we turn to a correlation parametéoisatvhich was recently proposed by
Schoenmakers and Coffey [2003]. In matrix theory idsulting correlation matrix is known as a
Green’s matrix. The exponentially decreasing correlatiomction considered by Forzani and
Tolmasky is contained as a special case of the érhakers-Coffey parameterisation. The
resulting correlation matrix has the nice propertieat correlations decrease when moving away
from the diagonal term along a row or a column.tii@nmore, the correlation between equally



spaced rates rises as their expiries increase.eThesperties are observed empirically in

correlation matrices of term structures. Gantmaeimel Krén derived necessary and sufficient

conditions for a Green’s matrix to be an oscillatratrix, and hence to display level, slope and
curvature. The Schoenmakers-Coffey parameterisattinfies these restrictions, and hence also
displays this effect. This actually confirms andy®es a statement by Lekkos [2000], who

numerically showed that when continuously compodnéteward rates are independent, the

resulting correlation matrix of zero yields dispddgvel, slope and curvature.

Unfortunately total positivity and related conceptdy provide a partial explanation of the
level, slope and curvature phenomenon. We therefatkthe paper with a conjecture that an
ordered correlation matrix with positive elementdl wlways display level and slope. This
conjecture is not proven, but is corroborated lsylts from a simulation study.

The paper is organised as follows. In section Ziige briefly introduce the terminology used
in principal components analysis, and perform apigoal analysis of Bundesbank djtavhich
contains interest rate data for the Euro markehfl®72 onwards. Observing the same empirical
pattern as in other studies, we mathematically fdabe our criteria for the level-slope-curvature
effect. In section 3 we present and slightly modifyne theorems from theory on total positivity,
which will lead to sufficient conditions for leveslope and curvature. We also provide an
interpretation of these conditions. In the fourtittion we turn to the Green’s or Schoenmakers-
Coffey correlation matrices, and show that theysBatthe conditions formulated in the third
section. In the fifth section we consider sign tagty, a concept extending total positivity and
end with our conjecture that positive and orderedetation matrices will always display level
and slope. Section 6 concludes.

2. Problem formulation

As stated before, we will in this paper investigataditions under which we observe the
level-slope-curvature effect. Before mathematicdtlymulating the problem, we will, for the
purpose of clarity, briefly review some conceptspofcipal components analysis in the first
paragraph of this section. For a good introductmPCA we refer the reader to Jackson [2003].
In the second paragraph we will review some emglistudies and conduct a PCA on historical
data obtained from the Bundesbank database tdrdtesthe level-slope-curvature effect we will
be analysing. Finally, the third and final paradrapll formulate our problem mathematically.

2.1. Principal components analysis

Suppose we are considering a model with N randomalas, in our case prices of contracts
within the term structure. These random variabldsbe contained in a column vecfoX. For
notational purposes we will assume that these mandariables are centered. The goal of PCA is
to describe the data we have with K < N orthogomaldom variables, so-called principal
components, which will be linear combinations & tiriginal stochastic variables. We denote the
K™ principal component as:

Y, =X'w, fork=1,...,N (2.1)

Having determined all weight vectong for i = 1, ..., k, the weight vector pfollows from the
following maximisation problem:

® This data can be obtained by selecting the daifyn structure of interest rates from the time eseri
database, subsection capital markehttt//www.bundesbank.de/statistik/statistik_zefitem.en.php
4 As a matter of notation, vectors and matricesbltypeset in bold.




max Var(X'w, )
w, ORN (2.2)
St Dy Wi Wy =T

We maximise the variance of each principal compgnem that each component describes as
large a part of the total variability as possildlae restriction that each weight vector must have
length 1 only serves to remove the indetermina@nck the vectors ywform an orthonormal
system. It is in fact easy to prove that (2.2)dlved by settingv, to be the R eigenvector, i.e.
associated with the"klargest eigenvaluk,, of the covariance matriX. The variance of the'k

principal component is therefore equal@r(X 'w, ) =w; Xw, = A, . In PCA the proportion
of variance explained by th&'Kactor is calculated as:

Var(Y,) _ A,
Var(Y, +..+Y,) A +..+tA,

(2.3)

Note that all eigenvalues of a covariance (or dafian) matrix obtained from data will be
positive, since any proper covariance matrix wallgositive definite

Let us now denote the spectral decomposition ottheariance matrix aB=WAW'. Then it
is obvious that we can writé = WX, and this relationship can be inverted to fkad WY. In
general we will however use K < N principal compuotse so that we will have:

Y = Wi X (2.4)

(K) (K)

where the subscript (K) indicates that we are amding the first K principal components. We
cannot invert this relation directly, but if we regsY k, on X, we can show that the ordinary
least squares estimator f&rin X = AY ) + € is W), so that we finally have:

X=Wy Y te (2.5)

As a final note, we know by definition from (2.hgt the ' entry of a weight vectow, contains
the weight with which Xis embedded within thé"lprincipal component. Within PCA, the scaled

eigenvectors/A, w, are calledactors and its entries are referred tofastor loadings

2.2. Empirical results

As mentioned in the introduction, many studies hdealt with a PCA of term structures, in
particular term structures of interest rates. Alitjio in this paper we will mainly focus on the
level-slope-curvature effect for an arbitrary comace matrix, and the work will be more
mathematical than empirical, it is neverthelesgrigdting to review a number of results from
recent empirical studies that could be importamttfis paper. After this brief review we will
investigate whether we find the level-slope-curvafpattern in the Bundesbank dataset.

We first mention a recent study by Lardic, Priawdat Priaulet [2003]. Noticing that many
studies use quite different methodologies, theyemsiumber of questions in their paper. The

® There are situations where one can obtain amatgifor a covariance matrix that is not positieéirdte,
e.g. when one has missing data for one or morehefabserved variables. However, any proper
covariance matrix must be positive definite, sintfeerwise we can construct a linear combinatioouf
random variables that has a negative variance.cCléasly cannot be the case.



first question is whether one should use interat changes or levels as an input to a PCA.
Naturally, interest rate levels are much more datee than interest rate changes. They find that
interest rate changes are stationary and conchatettierefore a PCA should be implemented
with interest rate changes. Secondly, they invatgigvhether one should use centered changes,
or standardised changes, i.e. whether a PCA sheuttbnducted on a covariance or a correlation.
Since the volatility term structure is typically tnitat, but either hump-shaped or hockey stick
shaped, there certainly is a difference betweeh bwthods. They conclude that a PCA with a
covariance matrix will overweight the influencetbe more volatile short term rates, and hence
that one should use a PCA only with correlationrivaes. Later on we will show that, under
certain restrictions, our definition of level, stopnd curvature will be such that it is irrelevant
whether we use a covariance or a correlation matftieir final questions address whether the
results of a PCA are dependent on the rates tleainatuded in the analysis, and on the data
frequency. Both aspects certainly affect the resoite obtains, but we feel these questions are
less important, as they depend on the applicatioleuconsideration.

The second study we mention is that of Lekkos [208@ criticises the conclusion of many
authors, starting from Steeley [1990] and Litternaard Scheinkman [1991], that three factors,
representing the level, slope and curvature oftéhe structure, are sufficient to describe the
evolution of interest rates. He claims that theultesare mainly caused by the fact that most
studies focus on zero yields, as opposed to (comtisly compounded) forward rates. We will
explain this now. In mathematical models the pdta zero-coupon bond is often written as:

P(t,T) =exp-R(t, T) [(T-1))

- exp(— ! f(t,u)du)

(2.6)
=expg-a(f(tt,t+a)+...+f(t, T-a,T)))

=([@+aFttt+a)) " O+ aFE, T -a,T))™

where P(t,T) is the time t price of a zero-coupond paying 1 unit of currency at time T. The
first formulation uses the zero yield R(t,T) of thero-coupon bond. The second through fourth
formulations are in terms of forward rates. Theosecuses instantaneous forward rates, typically
only used in mathematical models such as the Hdathow and Morton framework. The third is
in terms of continuously compounded forward ratasere f(t,T,S) indicates the time t forward
rate over [T,S]. Finally, the fourth formulationassdiscretely compounded forward rates, which
is the way interest rates are typically quoted he market. Lekkos works with the third
formulation. Relating the zero yields to these fardvrates, where we use a fixed tenor equal to
o, we find that the zero yields are averages ofetloesitinuously compounded forward rates:

R(LT) =< (F(tt,t+0) +...+f(t,T-a,T)) 2.7)

Lekkos claims that the high correlation found foterest rate changes is mainly caused by this
averaging effect in (2.7), and that we should tfoeseanalyse the spectral structurenefiorward
rates instead. In a numerical example he showsathah these-forward rates are independent,
the correlation matrix of the zero yields still glesys the level-slope-curvature effect. We will in
fact prove this result later on, in section 4. Aliigh forward rates are not found to be
independent in his empirical analysis, the spestraicture fora-forward rates he finds is quite
different than that of the zero yields. The secand third factors cannot be interpreted as driving
the slope and curvature of the term structure, farttiermore up to five factors are required to
account for 95% of the total variation.



The final study we consider is that of Alexanderd a.vov [2003]. One of the things
considered in their paper are the statistical pt@xeof a time series of discretely compounded
forward rates. The time series are obtained frooteylirates via three different yield curve fitting
techniques, namely two spline methods, and the Seeh[1994] method. The functional form
of an instantaneous forward rate with time to migtdr in the Svensson model is given by:

fF(T) =B +Brexpt=) + B, expl<) +Bs 7, expl-+) (2.8)

where the six parametefs throughBs; andt; andt, have to be estimated from the data. The
equation (2.8) is an addition of an asymptotic gadind several negative exponentials, which are
able to create humps or U-shapes. This model estabtapture several facts found empirically in
the term structure of forward rates. Alexander amdv conclude that the choice of the yield
curve fitting technique affects the correlation rixamnuch more than the choice of sample size. In
their study they find that the Svensson curve gihesbest overall sample fit, and through its
parametric form it also yields the smoothest catieh matrices. As an interesting note, the first
three factors from their PCA can all be interpresasdiriving the level, slope and curvature of the
term structure, contrary to the study of LekkosthAligh Alexander and Lvov use discretely
compounded forward rates, whereas Lekkos usesncmntsly compounded rates, we would not
expect this to affect the results so markedly. &foee, we suspect that the differences between
Alexander and Lvov’s results and those of Lekkas owinly be attributed to the difference in
yield-curve fitting technique. Lekkos uses the kstraip method, which can give rise to less
smooth yield curves, and hence also to a less $nuootelation surface.

Using these insights, we will now ourselves condacPCA of Bundesbank data, which
contains estimated Svensson curves for the Eurd&enhdrom 1972 onwards. Until 1997 the
curves have been estimated on a monthly basis. rogust 1997 onwards, the curves are
available on a daily basis. As we are only inta@sh reproducing the level-slope-curvature
effect here, we ignore both the sample size amgliecy issues, and use all end-of-month data
from January 1980up to and including June 2004. We calculated theretations between
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Graph 1: Estimated correlations between and first thretofacf monthly log-returns on 1-10 year zero yseld

® The Svensson model is also often referred to asettiended Nelson and Siegel model, as it is an
extension of the original model by Nelson and Sigb@87].
" Data from the seventies was not included asahghd the correlation estimates severely.
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Graph 2: Estimated correlations between and first threeofaadf monthly log-returns on
discretely compounded annual forward rates, wittunitées ranging from 1-10 years

the correlations between logarithmic returns orhkastro yields, with tenors from 1 to 10 years,
as well as on discretely compounded annual forwatels, with maturities also ranging from 1 to
10 years. The estimated correlation surfaces, disawehe first three factors following from a
PCA, can be found in graphs 1 and 2 on this angtéeous page.

We indeed notice that that the resulting corretaarfaces are quite different for the zero
yields than for the forward rates. The relationwsstn zero yields and forward rates in (2.6)
indicates that zero yields are averages of the dawates. This relation by itself causes the
correlations between the zero yields (or log-regunereof) to be higher than those between the
forward rates. For the full sample period, we fihdt in the zero yield case, the first three factor
explain up to 99% of the total variability, wherghgs number is reduced to 91% in the case of
forward rates. However, if we consider a sampléogesimilar to that of Lekkos, e.g. 1987-1995,
we find that the first three factors explain mdrart 97% of the total variability in forward rates,
which is a much higher number than found in thiglgt Furthermore, for any sample period we
still find the level, slope and curvature pattezantrary to Lekkos’ study. The difference could,
as mentioned before, be caused by the differengeeid-curve fitting technique.

We have seen that the observed pattern does naysieccur, i.e. in the case of the estimated
forward rate correlation matrices by Lekkos. A makuquestion one could ask however, is
whether the noticed pattern always occurs in tise cd highly correlated and ordered stochastic
systems. To this end consider the following aiitifly constructed correlation matrix:

1 0649 0598 0.368 0.349
0649 1 0722 0684 0453
R=/0598 0722 1 0768 0.754 (2.9)
0368 0.684 0768 1 0.896
0.349 0453 0754 0896 1

The matrix is a proper correlation matrix, andtiermore it satisfies certain properties which are
typically found in empirical interest rate corrétet matrices:

) PSPy forjzi i.e. correlations decrease when we move away the diagonal;
i) P Sp; forj<i, same asi);

i) P4 S Pisivjsar I-€. the correlations increase when we move fnontheast to southwest.
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Graph 3: Atrtificially constructed correlation matrix whichods not display curvature

In words property (iii) means that the correlatibatween two adjacent contracts or rates
increases as the tenor of both contracts incre&sgsinstance, the 4 and 5 year rate are more
correlated than the 1 and 2 year rate. Hence, ttexmin (2.9) clearly is a correlation matrix of
an ordered and highly correlated system, and coeitthinly be the correlation matrix of a term
structure. The above graph, in which its corretatoirface and first three factors are depicted,
demonstrates however that conditions (i)-(iii).((i¢ (i) and (iii)) are insufficient for a matito
display level, slope and curvature. Although thstfiwo eigenvectors can certainly be interpreted
as level and slope, the third eigenvector dispéaglgferent pattern than we usually find.

Concluding, although the correlation structure lestw either consecutive zero yields or
forward rates is quite different, we find the leg&pe-curvature effect in both cases, provided
we use a smooth enough yield-curve fitting techaidtinally, the fact that we have a highly
correlated system, in combination with certain rtips that empirical interest rate correlation
matrices satisfy, is not enough for the correlatimatrix to display the observed pattern.
Additional or different conditions are requiredpsthing we will investigate in the next section.
Using these empirical findings we will first mathatically formulate level, slope and curvature
in the next paragraph.

2.3. Mathematical formulation of level, slope andwarvature

Regardless of whether we consider correlations d&tw(returns of) zero yields or forward
rates, we have seen the presence of level, slopewanature. Before analysing this effect, we
have to find a proper mathematical descriptionz&orand Tolmasky [2003] analysed the effect
in case the correlation structure between contratturing at times t and s is equal gb°
Working with a continuum of tenors on [0,T], thayadyse the eigensystem of:

[ o f(y)dy=Af(x) (2.10)

This problem is analogous to determining the eigetors of the correlation matrix, when we
consider a discrete set of tenors. Whempproaches 1, they find that th& aigenfunction
(associated with thé'Hargest eigenvalue), approaches the following tionc

) ___ 2Thp
£(x) :{ cos{™) i even (2.11)

cos(™) nodd



We notice that the first factor, corresponding te A, approaches a constant, and hence will be
relatively flat when the contracts in the term stawe are highly correlated. Similarly, we notice
that the fi' eigenfunction has a period equal to 2T/n. Hertwe,second factor (n = 1) will have
half a period on [0,T], and the third factor (n )=l have a full period on [0, T]. In the follown

graph we display the functions (tos(%) andco ZT"X) on [0,T] where T = 10:
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Graph 4: Limits of eigenfunctions fop'*'whenp - 1

Indeed, these limiting functions do resemble ouiamoof level, slope and curvature. The true
eigenfunctions are perturbations of these cosinewa

For the exponentially decaying correlation functive analysis is much facilitated, as the
eigenfunctions can be calculated explicitly. We ao¢ able to do this in general. Therefore we
use another definition of level, slope and curwtuvhich will not require the knowledge of the
explicit form of the eigenvectors or eigenfunctiokge notice in graphs 1 and 2 that the first
factor is quite flat, and in fact has equal signdth tenors. The second factor has opposite sigjns
both ends of the maturity range. Finally, the thiak equal signs at both extremes, but has an
opposite sign in the middle. If we therefore lodklee number of times each factor or eigenvector
changes sign, we notice that the first factor lex® sign changes, the second has one, and the
third has two. This does not give a full descriptiof what we perceive as level, slope and
curvature. For instance, if in graph 3 the thirdtéa would be shifted slightly upwards, it would
only have two sign changes, although it would $tél dissimilar from the usual pattern. In all
empirical studies we have seen however, our defimitorrectly signals the presence of level,
slope and curvature, so that we expect it to bfecserit.

For a continuous eigenfunction, the number of siganges is easily defined as the number of
zeroes of this function. We will however mainly Wwerking with a discrete set of tenors, which
calls for a slightly different definition. For an X 1 vectorx we mathematically define the
number of sign changes as follows:

S7(x) - the number of sign changes in x., %, with zero terms discarded;

S*(x) - the maximum number of sign changes in X, %, with zero terms arbitrarily
assigned either +1 or —1.

Both functions will only give a different number @i the eigenvector contains zeroes and the
non-zero elements at either side of a sequenceroftg have the same sign. In the next chapter
the distinction between both definitions will ulétely not be that important, as the sufficient
conditions under which we will find the level-sloparvature effect will imply that both
definitions will give the same result when appliedhe eigenvectors at hand. Ignoring zero terms



within an eigenvector, we therefore define leviglpe and curvature as the following sign-change
pattern within the first three eigenvectors:

Level: S (x) =0
Slope: S (x*)=1
Curvature: S7(x%) =2

wherex' is the " eigenvector. In the next section we will consitigal positivity theory, which
will provides us with sufficient conditions undehigh we find level-slope-curvature.

3. Sufficient conditions for level, slope and curvatue

In this section we turn to theory on total postiiyiwhich, for our formulation of the level-
slope-curvature effect, will yield the right todts clarify its occurrence. In the first paragrapé w
introduce some notation and concepts that we eglire in the remainder of this section. The
second paragraph reviews some results from tositiyity theory. Minor generalisations hereof
will yield sufficient conditions under which levetjope and curvature occur. In the paragraph
hereafter we rewrite these conditions, and shoveaveinterpret them as being conditions on the
level, slope and curvature of the correlation stefaVe will mainly work with a discrete set of
tenors, although we also touch upon the case wherehave a continuum of tenors. The
continuous case will greatly facilitate the interfation of the conditions we find.

3.1. Notation and concepts

Before turning to some theorems from total podititheory, we need to introduce some
notation and concepts. First of all we will be deglwith covariance or correlation matrices. A
covariance matri of size Nx N satisfies the following properties:

1. Zis symmetric, that i§ = X';
2. Zis positive definite, i.e. for any non-zero vectddl R" we havex"=x > 0.

Any matrix satisfying these properties is investilaind can be diagonalized s XAX', where

the eigenvectors of the matrix are containeX jrand the eigenvalues M. All eigenvalues are
furthermore strictly positive. The correlation ntatR associated witR is obtained as:

R = diagX) 2 Zdiag(x) V2 (3.1)

where diagk) is a matrix of the same dimensions &scontaining its diagonal and zeroes
everywhere else. NaturalRy is also a covariance matrix.

The theorems in the next section will require tb#ofving concepts. For a given positive
integer N we define:

Lo =i =iy ) 110, <<y < Nf (3.2)

where of course & p< N. WhenZ is an Nx N matrix, we define for, j O I, n:

10



P

@)= Z( J =det@,; ) (3.3)

[

In terms of covariance matrices, definition (3.3gans we are taking the determinant of the
covariance matrix between the interest rates indléxevectori, and those indexed by vecfor

The p" compound matrixZy is defined as the(r’f) x (E) matrix with entries equal to

(E[p] (i,j))i o where the O I,y are arranged in lexicographical order, i.e.j (i #j) if the

first non-zero term in the sequenge-ij, ...,  — Jp IS positive.

3.2. Sufficient conditions via total positivity

Before turning to the theory of total positivity,ewwill solve the level problem. Perron’s
theorem, which can be found in most matrix alga@brtbooks, deals with the sign pattern of the
first eigenvector.

Theorem 1 — Perron’s theorem

Let A be an Nx N matrix, all of whose elements are strictly pwsit Then A has a positive
eigenvalue of algebraic multiplicity equal to 1,iethis strictly greater in modulus than all other
eigenvalues of A. Furthermore, the unique (up toltiplication by a non-zero constant)
associated eigenvector may be chosen so thas albihponents are strictly positive.

The result of the theorem only applies to matrieéh strictly positive elements. Since the term
structures we are investigating are highly coreelatthis is certainly not a restriction for our
purposes. The result is valid for any square matit only for symmetric positive definite
matrices. As long as all correlations between tierést rates are positive, this means that the
first eigenvector will have no sign changes.

This has solved the level problem. For the sigmgeagpattern of other eigenvectors we have
to turn to the theory of total positivity. The résun this paragraph mainly stem from a paper by
Gantmacher and Kne [1937], which, in an expanded form, can be foimd&antmacher and
Krein [1960, 2002]. Most results can also be foundhearhonograph on total positivity by Karlin
[1968]. For a good and concise overview of the thex total positivity we refer the reader to
Ando [1987] and Pinkus [1995]. The latter paperegiva good picture of the historical
developments in this field, and the differencesveen the matrix and the kernel case.

A square matriA is said to be totally positive (sometimes totalbn-negative, TP), when for
alli,j Olpnand p< N, we have:

Ay (i) =0 (3.4)

In the case of covariance matrices, this meanswieatequire the covariance matrix between
andj to have a non-negative determinant. Wherj this will clearly be the case, as the resulting
matrix is itself a covariance matrix, and will besjtive definite. In the other cases the meaning
of this condition is less clear. In the next pasgdr we will spend some time on interpreting these
conditions. If strict inequality holds then we ghat the matrix is strictly totally positive (STP).
Furthermore, we say that a matrix is,TP(3.4) holds for p = 1, ..., k, and we defineRTn a
similar fashion. Hence, an N x N matrix is TP whens TPy, and STP when it is S|P
Gantmacher and Kie proved the following theorem for general STP ina#. A full version of
their theorem also considers the so-called vanadioninishing property of such matrices, but we
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will here only deal with the sign-change patterrso€h matrices. We reformulate their theorem
for covariance matrices that are not necessarilp, 3t only STR Reading their proof shows
that it can be altered straightforwardly to coves ttase. For completeness we have included the
proof in the appendix.

Theorem 2 — Sign-change pattern in STPmatrices

AssumeX is an Nx N positive definite symmetric matrix (i.e. a vatidvariance matrix) that is
STR. Then we hava; > A, > ... >A¢ > A1 2 ... Ay > 0, i.e. at least the first k eigenvalues are
simple. Denoting th"jeigenvector by, we have 3x) = S'(¥) = j-1, forj=1, ..., k.

Proof: See the appendix.

A consequence of theorem 2 is that a sufficientit@mn for a correlation matrix to display level,
slope and curvature, is for it to be STRaturally all principal minors of a covariance tmaare
determinants of a covariance matrix, and hence bell strictly positive. It is however not
immediately clear what the remaining conditions meawve will find an interpretation hereof in
the following paragraph. The conditions in theor2man be relaxed somewhat further via the
concept of an oscillation or oscillatory matrix,agg due to Gantmacher and Kre The name
oscillation matrix arises from the study of smadtifiations of a linear elastic continuum, e.g. a
string or a rod. An N« N matrixA is an oscillation matrix if it is TP and some powéit is STP.

As in theorem 2, we slightly alter the original dihem by using the concept of an oscillation
matrix of order k.

Theorem 3 — Oscillation matrix of order k
Akin to the concept of an oscillation matrix, weide an oscillation matrix of order k. An XIN
matrix A is oscillatory of the order k if:

1. AisTR;
2. Ais non-singular;
3. Foralli=1,..,N-1we havg;a >0and g;; > 0.

For oscillatory matrices of the order k, we havat &' is STR.
Proof: See the appendix.

Gantmacher and Kfe proved theorem 3 and its converse for the STR.cAs we are only
interested in sufficient conditions for level, sbopnd curvature, we do not prove the converse.
The proof of theorem 3 is included in the apperidixcompleteness, although the original proof
carries over almost immediately.

Corollary 1
In theorem 2 we can replace the condition thaitlagrix is STR with the requirement that some
finite power of it is oscillatory of order k.

Proof:
Suppos& is a positive definite symmetric N x N matrix, fwhich &' is oscillatory of order k. As
the matrix is invertible, we can wri= XAX', and hence:

TN = XA NIXT (3.5)

so thatz' ™" has the same eigenvectorsfasSinceZ '™ is STR, we can apply theorem 2 to
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first find that S(¥) = S(X) = j-1, for j = 1, ..., k. In other words, we hatiee same sign-change
pattern for matrices of which a finite power is ilatory of order k. Finally, the eigenvalues can

be ordered aA\"™® > ... > X" > NV > 0. This directly implies that the first k
eigenvalues are simple.

With this corollary the sufficient conditions frotineorem 2 have been relaxed somewhat. Instead
of requiring that the covariance or correlatiorsiB?, we now only need some finite power of it
to be TR, invertible, and to have a strictly positive supand subdiagonal. The following
corollary states that multiplying an oscillatory tnra by a totally positive and invertible matrix
(both of the same order), yields a matrix whichgsin oscillatory.

Corollary 2
Let A andB be a square M N matrices, wher@ is oscillatory of order k, andl is invertible and
TP«. ThenAB andBA are oscillatory of order k.

Proof:

For a matrix to be oscillatory of order k, we hawecheck the three defining properties in our
proposition. Obviously the first and second prapsrare satisfied for both matrices. We only
have to check the third criterium, concerning thesitivity of the super- and subdiagonal
elements. For the superdiagonal we basically have:

(AB)i,i+1 = Zz\lzlaij B in (3.6)

which is certainly non-negative, due to the faet thoth matrices are TFOne element contained
in (3.6) is &+1bi1+1. FOr A we know that all superdiagonal elements are pesitturthermore,
sinceB is invertible, all its diagonal elements must bec8y positive, so that (3.6) is clearly
strictly positive. The proof is identical for thetsliagonall’

This corollary directly implies the following onghich implies that when analysing the sign
change pattern of oscillatory matrices, it does matiter whether we analyse covariance or
correlation matrices.

Corollary 3
A valid covariance matrix is oscillatory if and grif its correlation matrix is oscillatory.

Proof:

Suppose we have a valid covariance matrix which lwarwritten asX = SRS whereS is a
diagonal matrix containing the (strictly positiviandard deviations on its diagonal, &k the
correlation matrix. The “if” part now follows. Sie& is invertible, so iS. An invertible diagonal
matrix with strictly positive diagonal elements ctearly totally positive. Hence, iR is

oscillatory, so willSRSby virtue of corollary 2. The “only if” part folles similarly._

Corollary 3 states that the sign change pattetheneigenvectors will be the same in covariance
and correlation matrices. A graph of the eigenvsctaill however look quite different in both
matrices, due to the fact that the the term straatfi volatilities is typically not flat. As argued
paragraph 2.3, the actual shape of the eigenve@aysthat the first eigenvector is relatively,fla
is caused by the fact that the term structureghliicorrelated.

Having derived sufficient conditions under whicmatrix displays level, slope and curvature,
we try to interpret these conditions in the nexagaaph.
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3.3. Interpretation of the conditions

As we saw in the previous section, a sufficientdition for a covariance or correlation matrix
to display level, slope and curvature, is for itb® oscillatory of order 3. We will here try to
interpret these conditions. Remember that corolBshowed that our definition is invariant to
whether we use a covariance or a correlation matoixhat we opt to use correlation matrices for
ease of exposure. For an<\N correlation matriR to be oscillatory of order 3, we require that:

1. RisTR;
2. Ris non-singular;
3. Foralli=1, ..., N-1 we havg;.; > 0 andpi.1,; > O.

As any proper covariance or correlation matrix Wwel invertible, condition ii) is irrelevant. In the
term structures we will be analysing, it seems ratio expect that all correlatiopg are strictly
positive. Condition iii) is immediately fulfilledas is the case for the order 1 determinants from i)
Under this mild condition we can already interghet first eigenvector as driving the level of the
term structure. Hence, the level of the correlatidatermines whether or not we have level.

Now we turn to the second order determinants. Asuual interpretation of a second order
determinant as the signed area of a parallelogsamoti very useful here, we need to find another

one. Given thaR is TR, itis also TRif fori < jand k< /:

Pic  Pis

pjk pjé’
It is not immediately clear how this condition shbibe interpreted. However, since all
correlations were assumed to be positive, we camamege (3.7) to find the following condition:

=PwPj ~PiuPK 20 = PP, 2 PPk (3.7

Pic o Pi _ Pir 7Pk > Pir ~Pi

Pi. Py P Pis

(3.8)

In words, condition (3.8) states that the relatihange from moving from k to(k < ¢), relative
to the correlation witlr, should be larger on the correlation curve ofgntton the curve of i,

where i< j. This says that on the right-hand side of tregdnal the relative change on correlation
curves for larger tenors should be flatter thansfuorter tenors, as is depicted in the graph on the
following page. On the left-hand side of the diagjathis is reversed — the relative change there
should be larger for shorter than for larger ten@le derived condition clearly puts a condition
on the slopes of the correlation curves.

In practice we usually have a continuous functicomf which we generate our correlation
matrix. With a continuum of tenors we do not analifse eigensystem of a covariance matrix, but
of a symmetric and positive definite kernel K C([0,T] x [0,T]). The eigenfunctions and
eigenvalues satisfy the following integral equation

[ K y)oly)dy = o(x) (3.9)

This setting is also analysed in Forzani and TokyaR003] for a specific choice of K.
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Graph 5: Two correlation curves from a FTkatrix

Analysing a continuous problem sometimes makeselifgier, but surprisingly the analysis here
remains essentially the same. The kernel case istmsibally studied prior to the matrix case, by
0.D. Kellogg. Kellogg [1918] noticed that sets athmgonal functions often have the property
“that each changes sign in the interior of therirdkon which they are orthogonal once more
than its predecessor”. He noted that this propddgs not only depend on the fact that the
functions are orthogonal. As in the discrete ctsal positivity of order n is equivalent to:

K(Xl""’xnj:deI(K(xi,y-)),”, >0 (3.10)
YireYn el

for all x,y O [0,T]. When n = 2 we regain condition (3.7): Kg)K(X2,Y2) = K(X1,Y2)K(X2,y1). If
we in addition assume that K is twice different@ghine can show that an equivalent condition is:

O*K(x,y) _ 9K (x,y) OK(x,y) _ K(x,y)? 02 InK(x,y)

K (X,
x.y) oxay 0X oy oxay

>0 (3.11)

Note that if we have a kernel that only dependshendifference of the two arguments, in other
words if K(x,y) = f(x-y), (3.11) states that f sHdbe log-concave. A slightly stronger condition
than (3.11) is obtained by considering the emgirpraperties of correlation matrices of term
structures we mentioned in paragraph 2.2. Typicedlyrelations are positive, i.e. K(x,y) > 0.
Secondly, correlations decrease if we move awam ftioe diagonal along a row or a column,

implying that 25 2589 < 0. From (3.11) we then see that K is,TiP aza'f((axf’ >0. Again, if

K only depends on the difference of its two argutsethis property requires f to be concave.
Although the condition for slope allows for a cléaterpretation, the condition for curvature is

much more cumbersome. We just present the finalltres the intermediate steps again just

follow from rewriting the determinant inequality {8.4) for p = 3. We first define the relative

change from moving from k to(k < ¢), along correlation curve i as:

A, (k) = P " Pic (3.12)

i
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Using this definition, the matrix is obviously 7R and only if A, (k,£) = A, (k,¢) for all i < j

and k <¢. The additional condition we must impose for thetnm to be TRis then:

(8,(£,n) - 2,(m,n)) = (2,(¢,n) - &,(m,n)) N
A;(m,n) = A, (m,n) -

(3.13)
(8 (1) =2, (m,m) - (a,(£,n) - 2, (m,))

A (m,n) =4;(m,n)

The terms A, (¢,n)=A;(m,n) are changes in relative slopes, and hence are asumee of

curvature of correlation curve j. Although it isrtar to visualise (3.13) than (3.8), the condition
states that this (weighted) “curvature” is alloviedthange more from i to j than from j to k.

Summarising we find that the derived sufficientditions for level, slope and curvature are in
fact conditions on the level, slope and curvatdrthe correlation surface. It seems that, provided
the term structure is properly ordered, the coodgido not state much more than that the
correlation curves should be flatter and less alifee larger tenors, and steeper and more curved
for shorter tenors.

4. Parametric correlation surfaces

Many articles have proposed various parametricetation matrices, either to facilitate the
empirical estimation of correlation matrices or tadibration to market data. One example of this
we have seen already is the exponentially decagimgelation function which features in many
articles as a simple, but somewhat realistic cati@wh function. Other examples are the
correlation parameterisations by Rebonato [199&], Jong, Driessen and Pelsser [2004] and
Alexander [2003]. The first two parameterisatiomse Aoth formulated from an economically
plausible perspective, but unfortunately are natags guaranteed to be positive definite. The
latter is a rank three correlation matrix, defingdrestricting the first three “eigenvectors” to be
flat, linear and quadratic. We say “eigenvectorstduse the constructed vectors are not chosen
to be orthogonal, so that these vectors will notheetrue eigenvectors. Since the resulting matrix
is not of full rank, we will not consider it here.

The correlation matrices we consider in this sectidll be based on Green’s matrices, which
in the finance literature are probably better kn@agrSchoenmakers-Coffey correlation matrices.
In a continuous setting they already feature int&&ara and Sornette [2001]. Schoenmakers
and Coffey [2003] analysed the properties of itscdite analog and proposed various
subparameterisations which they claim allow fortabke calibration to market swaption and
caplet volatilities. A motivation for their matriollows directly from the following construction.
We will here take a slightly more general routentisezhoenmakers and Coffey, leading to a more
general correlation matrix. Let,ih = 1, ..., N be an arbitrary sequence which igeasing in

absolute value. We seg b by = 1 and a= 1, a =+/b>-b”, . Finally, let Z,i= 1, ..., N be
uncorrelated random variables, with unit variane. now define:

Y, =sgng,) EELzlaka (4.1)

The covariance between and Y for for i< j is equal to:
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Cov(Y,,Y,;) =sgnp;b,)>, _a’ =sgnp,b, )b’ (4.2)
implying that their correlation is equal to:

min(fo: 1o )

(4.3)
max(|b; [,|b;[)

Corr(Y,, YJ.) = % =sgnp, bj)
j

It is easy to see that we obtain the same cormelatiructure if the & do not have unit variance,
and also when each; Ys premultiplied with a non-zero constant The difference with the
approach of Schoenmakers and Coffey is that we aboer the sequence; ko take negative
values, whereas they only considered non-negativelations. Furthermore, they restricted the
sequence ., to be strictly increasing, which has a nice consege as we will see shortly.
Even without these restrictions, the above constma@lways yields a valid correlation matrix.

We note that an X N correlation matrix of the above form, s&/= (pij)i“fj:l, can also be
written in the following form:

P = |_| ::ipk,kﬂ (4.4)

i.e. we can view it as a parameterisation in teofnsuper- or alternatively subdiagonal elements.
Schoenmakers and Coffey showed that the above p&gdration of the correlation matrix (with
positive 's and with the restriction tha ., = h/b.; is increasing) satisfies properties (i) — (iii)
from paragraph 2.2, properties that are commoniydoin empirical correlation matrices of term
structures. Sometimes it may be necessary to hawera flexible correlation structure at our
disposal, in which case we can relax the restricti@mt /b, is to be increasing. This sacrifices
property (iii), the property that the correlatioativeen two adjacent contracts or rates increases
as the tenor increases. Properties (i) — (ii) naNvever still hold.

Returning to the level-slope-curvature pattern, t®@cher and Kia [1960] prove total
positivity for certain special matrices. One of dbematrices is a Green’s matrix, in which
category the above correlation matrix falls.

Theorem 4 — Total positivity of a Green’s matrix
An N x N Green’s matrix A with elements:

uyv, iz]j
a; = o (4.5)
uyv, i<j

where all yand y are different from zero, is totally nonnegativeaifd only if all yand y have
the same sign and:

\Y
1<, (4.6)

The rank ofA is equal to the number of times where the inetuadi(4.6) is strict, plus onel

We note that in correlation form the concept of i@edh’s matrix is not more general than the
extended Schoenmakers-Coffey matrix in (4.3) of)(4The corresponding correlation matRx
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of the Green’s matriA from theorem 4 has elements equal to:

UV, UV,
= i
Juviuy, o Juy,

i NIVAY,
u;Vv; _ ivi

= i<
Juviuy, o Juy,

4.7)

Indeed, setting b= vi/u; shows that a Green correlation matrix and theneldd Schoenmakers-
Coffey correlation matrix are equivalent. This atvs¢ion combined with theorem 4 leads to the
following corollary.

Corollary 4 — Oscillatoriness of the Schoenmakers-@fey matrix

The Schoenmakers-Coffey correlation matrix, andritse general formulation in (4.3) or (4.4),
is oscillatory provided that all correlations ore thuperdiagonal are positive and smaller than 1.
Hence, the matrix displays level, slope and cumeatu

Proof:

The requirement that all correlations on the supgahal are positive amounts to requiring the
sequence jbto be strictly positive. The requirement that afitries on the superdiagonal are
smaller than 1 implies the sequenceshould be strictly increasing. Setting b vi/u, as
mentioned, and substituting it into (4.6) yields:

b2 <..<bj (4.8)

which is true due to the fact that the sequence btrictly increasing. Furthermore, since the
inequalities are strict, the correlation matriofdull rank. The latter result still remains trifeve
allow the s to take negative numbers, but still require thatsequence is strictly increasing in
absolute value. Since all entries on the super-saidiiagonal are strictly positive, the matrices
are oscillatory. By virtue of corollary 1 this inigd that we have level, slope and curvature.

Hence, if all correlations on the superdiagonal @ositive and smaller than 1, the correlation
matrix in (4.3) or (4.4) will display level, slond curvature. We note that property (iii) clearly
does not imply or affect level, slope or curvatue these matrices — the extended
Schoenmakers-Coffey matrix displays level, slopé emrvature regardless of whether property
(i) holds or not. A nice property of a Green’stnirais that its inverse is tridiagonal. Inversioh
tridiagonal matrices requires only O(7N) arithmetiperations, and is therefore much more
efficient than the O(RI3) operations required for arbitrary matrices.

As a final point of interest we return to the claiinLekkos [2000]. We remind the reader of
equation (2.7), where zero yields were expressedvasages of continuously compounded
forward rates:

R(LT) =< (f(tt,t+a) +...+f(t,T-a,T)) (4.9)
In a numerical example Lekkos shows that if thesedrd rates are statistically independent, the
correlation matrix of the zero yields displays lev@ope and curvature. The way in which the

Schoenmakers-Coffey matrix was constructed in égpsi4.1) — (4.3) shows that if all forward
rates in (4.9) are independent, the correlationrimaif R(tt+a), ..., R(t,t+Na) will be a
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Schoenmakers-Coffey correlation matrix, and as swithdisplay level, slope and curvature.
Lekkos’ claim is therefore true. In fact, using tBehoenmakers-Coffey matrix for consecutive
zero yields directly implies that all forward ratesust be independent. Similarly, using the
Schoenmakers-Coffey correlation matrix for chanigesonsecutive zero yields implies that the
changes in consecutive forward rates are indepénderwe have seen in paragraph 2.2 forward
rates and forward rate changes are far from inddg@n so that one should be aware of these
implications. Schoenmakers and Coffey suggest usieg correlation matrix and parameterised
versions thereof as an instantaneous correlatianxmaithin the LIBOR market model, where
the above considerations do not apply directly.

5. Level, slope and curvature beyond total positivity

In the previous two sections we have turned tol tptssitivity theory to provide us with
sufficient conditions for level, slope and curvatu®bviously, this is only a partial answer to the
guestion of what drives this phenomenon. In fdalid look at the empirical correlation matrices
from graphs 1 and 2, the theory that we treatetllupow is only able to explain level and slope
for both graphs, as both matrices contain onlytp@storrelations, and the second power of both
correlation matrices is oscillatory of order 2. Tim@sence of curvature however still remains
unexplained. Clearly there must be a more genleealry that allows us to explain the presence of
level, slope and curvature. Here we first takeief ook at the concept of sign regularity, which
extends the notion of total positivity. However, demonstrate that the only correlation matrices
that were not already captured by the class oflyopmsitive matrices are degenerate in some
sense. Finally, we formulate a conjecture whichoaenot prove, but which we suspect is true,
based on an extensive simulation study. This ctumjecdirectly relates the order present in
correlation matrices to level and slope.

5.1. Sign regularity

In the literature the concept of total positivitashbeen extended to the notion of sign
regularity. For a square M N matrix A to be sign regular of order k, or SRve require the
existence of a sequenegthroughey, all O {1,-1}, such that for all p< k andi, j O I, v, such that:

g, (A (,j)20 (5.1)

Analogous to strict total positivity, strict sigegularity can be defined. Sign regularity hence
requires all determinants of a certain order tochiére same sign, whereas total positivity required
them to be positive. The concept of an oscillatorgtrix can easily be extended using sign
regularity. We can consider a square invertiblermad with non-zero diagonal, super- and
subdiagonal elements, that is SR. In this d&ses oscillatory, andA?™™ will be strictly totally
positive, so that we can again apply theorem 2hi® matrix. This extension is however not
useful for our application, as we will see in tbddwing theorem.

Theorem 6 — The set of SRecorrelation matrices is degenerate
The volume of all square K N (for any N> 3) invertible correlation matrices, that are n&,T
but SR, is equal to zero.

Proof:
Let us first consider the case N = 3, where theetation matrix can be written as:
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(5.2)

Py

I
< X P
N ~ X
R N <

where of course -k x, y, z< 1. Via a Cholesky decomposition we can easily kheat this
matrix is positive definite if and only if its deteinant is strictly positive, i.e. when 12 xy* - 7
+ 2xyz > 0. FoA to be TB we would furthermore require:

First order: x> 0,y=0and z 0
Second order: 2 yz, y< xz and 2z xy

Since the matrices we want to consider in this rds@oshould be positive definite and SRut
not TR), we should consider the following three cases:

a) x<0,y<0andz=0,andxyz,y<xzand 2z xy, and 1- X-y* - Z + 2xyz > 0
b) x=0,y=0and 20, and x<yz, y=xz and = xy, and 1- - y*- Z + 2xyz > 0
c) x<0,y<0and =0, andx<yz,y=xzand = xy, and 1- X- y* - Z + 2xyz > 0

Ad a)
From x,y,z< 0, x= yz and z= xy we have X,z 0, which can only be satisfied if x = z = 0. This

implies thatj” o2 1dxdydz =0, i.e. the volume of all such matrices is equaldm.
x=z=0,y°<

Ad b and ¢)

There are three % 2 submatrices oR which are covariance matrices. The corresponding
determinants are 1%x1-y* and 1-Z. If these are required to be negative or zerdn s and c),

we must have X, y, @ {-1,1}. We can check that the determinantotan then only be 0 or -4,
which means that the matrix can never be positéfanie in these cases.

We have proven the theorem for N = 3. Since therties holds for any 3 3 invertible
correlation matrix, it will also hold for any 8 3 principal submatrix of an & N invertible
correlation matrix. This will therefore place thanse restrictions on thesex33 submatrices, so
that the volume of all invertible correlation maés, that are not EPbut SR, is zero![

This last theorem shows that the class of, SRt not TR, invertible correlation matrices is
degenerate. As far as we know, no other classestices are known which have the same sign
change pattern as oscillatory matrices.

5.2. The relation between order, level and slope

As we already mentioned earlier, Alexander [200Bjines that “... the interpretation of
eigenvectors as trend, tilt and curvature companéntone of the stylised facts of all term
structures, particularly when they are highly clated”. Based on an extensive simulation study
we come up with a slightly different conjecture, igthwill follow shortly. The example in
section 2.2 demonstrated that curvature is notyawmesent, even though we have an ordered
and highly correlated system. Similarly we can shbat there are matrices for which no finite
power is oscillatory of order 3, so that the theigm section 3 cannot be used to prove the
presence of slope and curvature for these comelatiatrices. One such example follows.
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Example — Total positivity is not enough
Consider the following correlation matrix:

1 08396 0.8297 0.8204

108396 1 09695 0901

108297 09695 1 09785
08204 0901 09785 1

(5.3)

This correlation matrix itself is clearly not ZRonsider for example its second order compound
matrix R({1,2},{3,4}), i.e. the 2 x 2 matrix in the right-upper corner &. Its determinant is
negative. From matrix theory we know that:

Rk
l[lmo)\_k =x'(xH’ (5.4)
1

where), is the largest eigenvalues axidis the corresponding eigenvector. Since highergsw
of R are also not TR andR?® is almost indistinguishable from the limiting matin (5.4), we can
be sure that no finite power Bf will be oscillatory of order 2.

Since the matrix in (5.3) satisfies propertieq(ifi); as most empirical correlation matrices de w
came up with the following conjecture.

Conjecture — Sufficiency of properties (i)-(iii) fa level, slope and curvature
A quasi-correlation matriR with strictly positive entries, that satisfies:

) PSPy forjzi i.e. correlations decrease when we move away the diagonal;
i) PSPy forj<i, same asi);

i) P4 S Pisinjsar I-€- the correlations increase when we move fnontheast to southwest.

displays level and slope.

By a quasi-correlation matrix we mean a matrix tiesembles a correlation matrix, i.e. has ones
on the diagonal and off-diagonal elements thatsanaller than or equal to 1 in absolute value,
but is not necessarily positive definite. We cldimat the empirically observed properties (i)-(iii)
are sufficient, although still not necessary, fajuasi or proper correlation matrix to display leve
and slope. The fact that these properties are ecéssary is clear from the Green’s matrix —
certain Green’s matrices are still totally positexen though property (iii) is not satisfied, as we
saw in the previous section.

We extensively tested this conjecture by simulatiagdom correlation matrices, satisfying
properties (i)-(iii). Although several methods éxis simulate random correlation matrices, we
are not aware of one that allows the aforementigmegerties to be satisfied. Firstly, we present
the algorithm we used to simulate a random quasekion matrix with positive entries, that in
addition satisfies (i)-(iii). Note that a smoothirigctor a is included in the algorithm that
essentially ensures that two consecutive elemengsrow are at most 1806 apart. Finally, note
that each correlation is drawn from a uniform disttion — this is obviously an arbitrary choice.
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. pi=1forl<i<N.

. For 1 < j< N set LB; equal to f,;.4-0)" and UB; equal top; j.1. Drawp; ~ U[LB;;,UB;j].

3. For2<i<N-landi<] selLBij =ma>((pi,j_l —a)*,pi_lj_l) and UB =p;j1. If LBj > UB;,
a valid matrix cannot be constructed, so that weeha restart our algorithm at step|1.
Otherwise we draww; ~ U[LB;;,UB;].

4. Setp; =p;j fori>j.

N

Algorithm 1: Simulation of a quasi-correlation matrix with stiycpositive entries, satisfying (i)-(iii)

Algorithm 1 can easily be adapted to generate aixntitat only satisfies (i)-(ii), by replacing
P11 in step 3 bypiyj. Adapting this algorithm to yield a positive defenmatrix can be achieved
if we use the angles parameterisation of Rebonatb Hickel [1999]. They shéwhat any
correlation matrixR 0 R"*™ can be written aR=BB', whereB [ R"™" is lower triangular and
has entries equal tqf= 1, and:

b, =cosd, [1,.sin6, b, =[7,,sin6, (5.5)

fori>jandi> 1. Using this parameterisatiodin be shown that the first row of the correlation
matrix follows directly from the first column of ¢hmatrix with angles, i.g,; = cos6;, for j > 1.

Hence, adapting step 2 is easy: we only have iedol 6;; in step 2. Adapting step 3 is slightly
more involved. For i < j we have:

Py =20y,

i-1 -1 . . i-1 . . (56)
= zmcosem cosd;, [ |, sin6; sin6 +cosh; [ |, sinb, sinb
At entry (i,j) of the correlation matrix, we havkemdy solved for the angles in columns 1 up to
and including i-1, as well as angl@g for k < i. The only new angle in (5.6) is th@s Since we
necessarily have 4 cos6; < 1, (5.6) places a lower and upper bounggprAll we have to do is

incorporate these additional restrictions into s&p- this ensures that the new algorithm
terminates with a positive definite correlation matThe algorithm hence becomes:

1. pi=1forl<i<N.

2. For 1 <j< N set LB; equal to 14-0)" and UB; equal top; j.1. Draw ps; ~ U[LB4;,UBy].
Solve®;; from p,; = cosBy,.

3. For2<is<N-landi<jsettB, =maX(p,,;, ~)",p,4,.) and UG = pijs. Incorporate
lower and upper bound from (5.6) into |.Bnd UB. If we then have LB> UB;, a valid
matrix cannot be constructed, so we have to restartlgorithm at step 1. Otherwise we
drawp; from U[LB;;,UB;] and solve foB; from (5.6).

4. Setp; =p;j fori>|j.

Algorithm 2: Simulation of a valid correlation matrix with stiicpositive entries, satisfying (i)-(iii)

Using algorithms 1 and 2 we performed a large armadirsimulations, for various sizes of

8 Their article uses N(N-1) angles, but it can beven that it suffices to use as many angles asleions,
i.e. %aN(N-1).
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matrices and values of. In each simulation we kept track of the percemtafjmatrices without
slope and/or curvature. The pattern was the saraadh simulation, so that we here only display
results for sizes equal to 3, 4 and 5 arefjual to 20%. The results can be found below:

Properties (i)-(ii) Properties (i)-(iii)
Size| Noslope| Nocurvaturge Noslope No curvatyre
3 0% 0% 0% 0%
4 0.04% 19.1% 09 23.05%
5 0.01% 27.98% 0% 43.81%

Table 1: Percentage of random quasi-correlation matricessiafoe and/or curvature
Results based on 10,000 random matrices from &hgorl, usingx = 20%

Properties (i)-(ii) Properties (i)-(iii)
Size| Noslope| Nocurvaturge Noslope No curvatyre
3 0% 0% 0% 0%
4 0.13% 14.91% 0% 18.31%
5 0.02% 23.1% 09 35.38%

Table 2: Percentage of random proper correlation matricesstape and/or curvature
Results based on 10,000 random matrices from &hgor2, usingx = 20%

As is clear from the tables, for both types of ncas properties (i)-(iii) seem to imply the
presence of slope. Leaving out property (iii) causeme violations of the slope property, albeit
in a very small number of cases. The results seenmdicate that our conjecture has some
validity, although this is of course far from arfwal proof.

6. Conclusions

In this article we analysed the so-called levefpsl and curvature pattern which one
frequently observes when conducting a principal ponents analysis of term structure data. The
first factor which one usually finds is relativelgt, the second has opposite signs at both ends of
the maturity spectrum, and the third finally has #ame sign at both ends, but an opposite sign in
the middle of the maturity range. As such, manyhaxg have interpreted these factors as driving
respectively the level, slope and curvature of tdren structure. Forzani and Tolmasky [2003]
analysed this pattern for an exponentially decagimgelation function and showed that, for high
correlations, we indeed have the observed levgbesand curvature pattern.

We mathematically define the observed pattern byirgf that if the first three factors or
eigenvectors have respectively zero, one and tqroianges, the corresponding matrix displays
level, slope and curvature. This characterisateatd$ us to the theory of total positivity. If all
correlations are positive, the first factor wilinays have no sign changes, by virtue of Perron’s
theorem. For the remaining two factors, we turrseweral theorems by Gantmacher andifre
[1937, 1960, 2002]. Slight alterations hereof pdevsufficient conditions for level, slope and
curvature. The conditions can be interpreted asliions on the level, slope and curvature of the
correlation surface. In essence, the conditionghiyustate that the correlation curves should be
flatter and less curved for larger tenors, andpgteand more curved for shorter tenors.

Using the concepts of total positivity, we analy#feel correlation matrix of Schoenmakers and
Coffey [2003], and a generalisation thereof. Therameterisation is in matrix theory better
known as a Green’s matrix. Provided all correlatian the superdiagonal are positive and
smaller than 1, the matrix displays level, slopd aarvature. In Lekkos [2000] it is claimed that
since zero yields are averages of (continuouslypmamded) forward rates, the correlation matrix
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of zero yields will always display level, slope anatvature if the forward rates are independent.
Since the resulting correlation matrix is then dad@mmakers-Coffey or Green’'s matrix, this
claim has now been proven mathematically. Vice asenghen this correlation matrix is used as a
correlation matrix of consecutive zero yields oamtjes hereof, the underlying assumption is that
(continuously compounded) consecutive forward ratashanges thereof are independent.

Finally, we demonstrated that there are matricesvftich we cannot prove the existence of
slope and curvature using total positivity theoryertensions hereof. We ended the paper with an
unproved conjecture that the order present in taifo@ matrices drives the slope pattern, and
corroborated this with results from a simulatioundst
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Appendix - Proofs of various theorems

In this appendix we have included the proofs obthen 2 and our proposition are included for
the sake of completeness. Before this however weradquire the following theorems from
matrix algebra.

Theorem A.1 — Cauchy-Binet formula
Assume A = BC where A, B and C arexNN matrices. The Cauchy-Binet formula states that:

A=Y, BulKICyK.i) (A1)

In other words, A B, .C,.,, the operations of matrix multiplication and corapd are

(Pl ~ Prp1~p1

interchangeable.
The next theorem is useful when studying the eig&iesn of compound matrices.

Theorem A.2 — Part of Kronecker’s theorem

Let £ be an invertible Nx N matrix with eigenvalued, , ... , Ay listed to their algebraic

multiplicity. The matrix can be decomposedZas XAX', whereA contains the eigenvalues on
its diagonal, an contains the eigenvectors. In this calg, and Xy, contain respectively the

eigenvalues and eigenvectors Hf;. The (g) eigenvalues ofZy,, listed to their algebraic

multiplicity, are 7\i1 (... )\ip ,fori O g

Proof:

When X is a general square matrix, the theorem concertfigg eigenvalues is known as
Kronecker’s theorem. Its proof is easy and candumd in e.g. Karlin [1968], Ando [1987] or
Pinkus [1995]. In cas& is invertible everything is simplified even furtheéBy virtue of the

Cauchy-Binet formula we have th&X = A and XX' = | implies thatZ[p]X[Tp] =A, and

T _ _ . . . .
X1 Xpp =lppy =1 - Indeed, this means tha, and Xy, respectively contain the eigenvalues

and eigenvectors &p;. [
We are now ready to prove theorem 2.

Theorem 2 — Sign-change pattern in STPmatrices

AssumeX is an Nx N positive definite symmetric matrix (i.e. a vatidvariance matrix) that is
STR. Then we hava; > A, > ... >A¢ > A1 2 ... Ay > 0, i.e. at least the first k eigenvalues are
simple. Denoting thé"jeigenvector by, we have IX) = S(¥)) = -1, forj=1, ..., k.

Proof:
We will first prove that at least the largest k exgalues are distinct. We know that the

eigenvalues ok are strictly positive, so we can wrikg = ... = Ay > 0. SinceX is STR, we can
apply Perron’s theorem to find thiet > A, > ... = Ay. Assume we have proven the statement for
the largest j-1 eigenvalues, j-1 <k, this meankn@wv thatA; > A, > ... >Aj1 > A2 ... Ay > 0.
SinceX is STR, each element dfj is strictly positive. Perron’s theorem (theoremmajv states
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that X,;; has a unique largest eigenvalue. From Kroneckbesrem (theorem A.2) we deduce

that this eigenvalue i&, [...[A, . Hence:
MDA >A LA A, = A >A (A.2)

i.e., since we know that all eigenvalues are pasitihis implies the property also holds for j. For
j equal to 1 the property has already been proserhy induction it follows that the largest k
eigenvalues are distinct.

Now we turn to the number of sign changes of tlyemiectors associated with the largest k
eigenvalues. SincE is positive definite, orthogonal eigenvectatghroughx™ exist. Eigenvector

X' is associated with eigenvalage We write X = XAAT, whereX is the matrix containing the
eigenvectors as its columns, afticcontains the eigenvalues on its diagonal. Letings &ssume
that S(x) = j, for j < k. Then there arediy < ... << N and ari] = +1 such that:

e(-)'x) 20 fort=0, ..., ] (A.3)

Now setx’ = x), and we exten¥ asX to includex, as its first column. Obviously we must have

—(g el . . .
that X( 0 _'J = 0. On the other hand, we can expand this determirattie first column:

0,...,]

X(igm’i]) — zizo(_l)gxi(i (io,-..,i(]:pi(jrln-.,iiJ (A.4)

" o]

From (A.3) we have that the first part of the swgrof one sign. The determinant on the right-
hand side is an element of the first columnXgf. Via theorem 2 we know that this column
contains the eigenvectors Bf;, which contains strictly positive elements by #ssumption that
2 is STR for j < k. Perron’s theorem then implies that this firgje@vector is either strictly
positive or negative, i.e. every element on thatrlgand side is of one sign. If the left-hand side

is therefore going to be zero, we must have bt]ogt= X,J is zero fort = 0, ..., j. Note that the

determinant on the right-hand side is the deterntio&the submatrix formed by only using the
rows p through j, excluding i, and columns 1 through j. bfs = xlJ is zero fort =0, ..., j, we
would be taking the determinant of a matrix whiobntains a column filled with zeroes.
Necessarily this determinant would be equal to ,zetdch is a contradiction as we just saw. We
can therefore conclude that(€) < j-1, for j < k.

The second part of the proof is very similar. Fribia definitions of Sand S it is clear that we
must have ¥x) < S'(¥)) < j-1. Let us assume thaf(®) = p< j-2 for j < k. This implies that there
exist 1< ip < ... << N and ar] = £1 such that:

e(-)'x} >0fore=0,...,p (A.5)
, . i
Again, we sek’ =x. Then obviously the determinarx{ (O) p] = 0. As before, we find:
1-"1p

—{Tgyeeni ; Fgueveal yogo b g seeeil
X[ 0 | = NP Ly i@ x| o e sl A6
(0,...,p] 2 oYX ( 1...p } (A.6)
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From before, we know that the determinants on itfet-hand side can be chosen to be strictly
positive. Together with (A.5) this implies that thight-hand side is positive, which is a
contradiction. Therefore &) must be larger than j-2, and we have provei)s= S(X) = j-1
forj<k.U

To prove our proposition, we will also require tHadamard inequality for positive semi-definite
matrices. In Gantmacher and Krg1937] this was originally proven for TP matricés Karlin
[1968] we can find the following formulation.

Theorem A.3 — Hadamard inequality
ForZ an Nx N positive semi-definite matrix we have:

E(L...,st2(1,...,kJ[E(k+1,...,Nj A7)
1...,N 1..k k+1....N
fork=1, ..., N-1[1

Now we are ready to prove our theorem about osicilanatrices of order k.

Theorem 3 — Oscillation matrix of order k

Akin to the concept of an oscillation matrix, wedide an oscillation matrix of order k. An KIN
matrix A is oscillatory of the order k if:

1. AisTR;

2. Aisnon-singular;

3. Foralli=1, ..., N-1we havg;a >0 and g.; > 0.

For oscillatory matrices of the order k, we havet &'* is STR.

Proof:
First we prove that for all matrices satisfyingii)).and iii), we haveAy(i,j) > 0, for p< k and for
alli andj O I, satisfying:

li, —j,|<landmax(,,j,) <min(,..j,.) (=1, ...p (A.8)

where j.1 = jp+1 = 0. Gantmacher and Kire dubbed these minors quasi-principal minors. Wk wi
prove this by induction on p. For p = 1 all quasipipal minors are all diagonal and super- and
subdiagonal elements. The latter are positive byraption. Furthermore, from the assumption of
non-singularity and the Hadamard inequality (theore3) for totally positive matrices, we have:

0<detA<[]. 4 (A.9)

i.e. all diagonal elements are non-zero, and frbm @assumption of total positivity are hence
positive. Now assume that the assertion holds by lput that it does not hold forpk. Hence,
all quasi-principal minors of order smaller thanape positive, but there aieandj O I,
satisfying (A.8) such that:
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iy
A[. .pj =0 (A.10)
Jiredp

From the induction assumption we have that:

el o eyl
AP ljm(.z P1>0 (A.11)
J]_’"-ajp_l 12""’Jp
Consider the matrix (®with elements i =i i;+1 throughj, and j = j, j:+1 through j. These last

two results and corollary 9.2 from Karlin [1968]piy that the rank of this matrix is p-1. Now set
h = max(i,ky). Then it follows from (A.8) that h+p-& min(is,j,). This implies that:

h,h+1,...h+p-1

A (A.12)
h,h+1,...h+p-1

is a principal minor of order p d&, and hence is equal to zero. Since the ma&{ris positive
definite, so is the square submatriy) (@ith i,j = h, ..., h+p-1. Therefore (A.10) cannailti, and
sinceA is TR, we must have Af) > 0.
Now we will prove that B=A" is STR. Indeed, for any, j O |, n, Where p< k we have, from the
Cauchy-Binet formula:

B(i 'J) = Zau),,,_ﬂw-z) :l:_ll A(a(é_l) ,a(/’)) (A.13)

where eactn® 0 I,y and we sett®® =i anda™" =j. SinceA is TR, B(i,j) is a sum of
nonnegative determinants, and hence is itself ngathe. Following Gantmacher and Kmene
can now construct a seriesaff’ such that each determinant in (A.13) is a quasiejpal minor
of order smaller than or equal to k, and henceHhgy frevious result is strictly positive. The
construction works as follows.

1. Seta®=iands=1.
2. Comparg with a®. Writing downa®? in lexicographical order, we see it can be divided
into consecutive parts, each of which contains elema & that are either smaller than,

larger than, or equal te. We will refer to these parts as the positive atieg and zero parts.
3. We now constructi® from a®® by adding 1 to the last s elements in each pesjiart and
subtracting 1 from the first s indices in each tieggpart. Each zero part is left unchanged.
If any part has less than s elements, we alt@iethents.
4. Repeat2and 3fors=2, ..., N-1.

As an example, consider the vectors (2, 3, 5, &né) (2, 4, 6, 7, 9). Let the first vector play the
role of a® and the second the role pfWe groupa® as ((2), (3,5), (8), (9)), and see that it
consists of a zero, a positive, a negative, anéra part, in that order. We are now ready to
constructr™, and find that it is equal to (2, 3, 6, 7, 9).

We will now prove that each pair®?Y, a® for s = 1, ..., N-1 satisfies (A.8). The first pat
(A.8) is obviously satisfied, as each elementat¥ differs by at most 1 from the corresponding
entry ina®Y. That the constructen® O lon €. thatl<a® <..< o('gs’ < N is easy to check; we
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will omit this here. We will now prove that ® <a (" for eachv. If both entries come from the

same part oti®Y, this obviously holds. Hence, we need to checkttiia condition holds at the

boundary of two parts. In fact we only have to ¢héwose cases wherd ﬁ"ll) belongs to a

negative part. This means:
ai =aiy) —1zj,, (A.14)

Sincea® 0 I,n, we immediately havea® <a® <a®™. Hence, all A¢“", a®) we have

constructed for s = 1, ..., N-1, are quasi-principaiors. We will now prove that™? =j. Note
thatt < i, and j < N-p+¢ are true. These inequalities imply:

li,=j,|<N-p (A.15)

From the construction we followed, it is clear tfat any i # j,, the ("™ element o©, a®, ...

will have the value,iup to a certain point, and will then approachvith increments of 1. The
convergence towards il start when s = p, at the latest. Due to (A.% will have certainly
achieveda™" =, as we have then performed N-1 steps of the algoriThis implies that we
can construct an element of the summation in (AWBgre each element is a quasi-principal
minor of order p< k. By the previous result, each of these minorstiitly positive, so that
indeed the matrix B=X'is STR. [
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