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ABSTRACT 

The first three factors resulting from a principal components analysis of term structure 
data are in the literature typically interpreted as driving the level, slope and curvature of 
the term structure. Using slight generalisations of theorems from total positivity, we 
present sufficient conditions under which level, slope and curvature are present. These 
conditions have the nice interpretation of restricting the level, slope and curvature of the 
correlation surface. It is proven that the Schoenmakers-Coffey correlation matrix also 
brings along such factors. Finally, we formulate and corroborate our conjecture that the 
order present in correlation matrices causes slope. 
 
Keywords: Principal components analysis, correlation matrix, total positivity, 
oscillation matrix, Schoenmakers-Coffey matrix. 
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1. Introduction 
 
In an attempt to parsimoniously model the behaviour of the interest rate term structure, many 

studies find that using the first three principal components of the covariance or correlation matrix 
already accounts for 95-99% of the variability, a result first noted for interest rate term structures 
by Steeley [1990] and Litterman and Scheinkman [1991]. These results were also found to hold 
for the term structure of copper futures prices by Cortazar and Schwartz [1994], and also for the 
multiple-curve case, as shown by Hindanov and Tolmasky [2002]. 

This paper does not deal with the question of how many factors one should use to model the 
interest rate term structure, or any term structure for that matter, but addresses the shape of the 
first three factors. The shape hereof is such that many authors, starting from Litterman and 
Scheinkman, have attached an interpretation to each of these three factors. The first factor, or 
indeed eigenvector of the covariance or correlation matrix, is usually relatively flat. As such it is 
said to determine the level or tilt  of the term structure. The second, which has opposite signs at 
both ends of the term structure, can be interpreted as determining the slope or trend. The third 
factor finally, having equal signs at both ends of the maturity spectrum, but an opposite sign in 
the middle, is said to determine the curvature, twist or butterfly of the term structure. 

A question that comes to mind is whether the observed pattern is caused by some fundamental 
structure within term structures, or whether it is merely an artefact of principal components 
analysis (PCA). Alexander [2003] in fact claims that “… the interpretation of eigenvectors as 
trend, tilt and curvature components is one of the stylised facts of all term structures, particularly 
when they are highly correlated”. In this paper we investigate sufficient conditions under which 
the level-slope-curvature effect occurs. To the best of our knowledge only one article has so far 
tried to mathematically explain this level-slope-curvature effect in the context of a PCA of term 
structures, namely that of Forzani and Tolmasky [2003]. They demonstrate that when the 
correlation between two contracts maturing at times t and s is of the form ρ|t-s|, where ρ is a fixed 
positive correlation, the observed factors are perturbations of cosine waves with a period which is 
decreasing in the number of the factor under consideration. This correlation function is widely 
used as a parametric correlation function in e.g. the LIBOR market model, see Rebonato [1998]. 

We formulate the level-slope-curvature effect differently than Forzani and Tolmasky. As 
noted, the first factor is quite flat, the second has opposite signs at both ends of the maturity 
spectrum, and the third finally has the same sign at both ends, but has an opposite sign in the 
middle. This observation leads us to consider the number of sign changes of each factor or 
eigenvector. If the first three factors have respectively zero, one and two sign changes, we say 
that we observe level, slope and curvature. 

Using a concept named total positivity, Gantmacher and Kreĭn considered the spectral 
properties of totally positive matrices in the first half of the twentieth century. One of the 
properties of a sub-class of these matrices, so-called oscillation matrices, is indeed that the nth 
eigenvector of such a matrix has exactly n-1 sign changes. These results can be found e.g. in their 
book [1960, 2002]. With a minor generalisation of their theorems, we find sufficient conditions 
under which a term structure indeed displays the level-slope-curvature effect. The conditions 
have the nice interpretation of placing restrictions on the level, slope and curvature of the 
correlation curves.  

Subsequently we turn to a correlation parameterisation which was recently proposed by 
Schoenmakers and Coffey [2003]. In matrix theory the resulting correlation matrix is known as a 
Green’s matrix. The exponentially decreasing correlation function considered by Forzani and 
Tolmasky is contained as a special case of the Schoenmakers-Coffey parameterisation. The 
resulting correlation matrix has the nice properties that correlations decrease when moving away 
from the diagonal term along a row or a column. Furthermore, the correlation between equally 
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spaced rates rises as their expiries increase. These properties are observed empirically in 
correlation matrices of term structures. Gantmacher and Kreĭn derived necessary and sufficient 
conditions for a Green’s matrix to be an oscillation matrix, and hence to display level, slope and 
curvature. The Schoenmakers-Coffey parameterisation satisfies these restrictions, and hence also 
displays this effect. This actually confirms and proves a statement by Lekkos [2000], who 
numerically showed that when continuously compounded forward rates are independent, the 
resulting correlation matrix of zero yields displays level, slope and curvature. 

Unfortunately total positivity and related concepts only provide a partial explanation of the 
level, slope and curvature phenomenon. We therefore end the paper with a conjecture that an 
ordered correlation matrix with positive elements will always display level and slope. This 
conjecture is not proven, but is corroborated by results from a simulation study. 

The paper is organised as follows. In section 2 we first briefly introduce the terminology used 
in principal components analysis, and perform an empirical analysis of Bundesbank data3, which 
contains interest rate data for the Euro market from 1972 onwards. Observing the same empirical 
pattern as in other studies, we mathematically formulate our criteria for the level-slope-curvature 
effect. In section 3 we present and slightly modify some theorems from theory on total positivity, 
which will lead to sufficient conditions for level, slope and curvature. We also provide an 
interpretation of these conditions. In the fourth section we turn to the Green’s or Schoenmakers-
Coffey correlation matrices, and show that they satisfy the conditions formulated in the third 
section. In the fifth section we consider sign regularity, a concept extending total positivity and 
end with our conjecture that positive and ordered correlation matrices will always display level 
and slope. Section 6 concludes. 

2. Problem formulation 
 
As stated before, we will in this paper investigate conditions under which we observe the 

level-slope-curvature effect. Before mathematically formulating the problem, we will, for the 
purpose of clarity, briefly review some concepts of principal components analysis in the first 
paragraph of this section. For a good introduction to PCA we refer the reader to Jackson [2003]. 
In the second paragraph we will review some empirical studies and conduct a PCA on historical 
data obtained from the Bundesbank database to illustrate the level-slope-curvature effect we will 
be analysing. Finally, the third and final paragraph will formulate our problem mathematically. 

 

2.1. Principal components analysis 
 
Suppose we are considering a model with N random variables, in our case prices of contracts 

within the term structure. These random variables will be contained in a column vector4 X. For 
notational purposes we will assume that these random variables are centered. The goal of PCA is 
to describe the data we have with K < N orthogonal random variables, so-called principal 
components, which will be linear combinations of the original stochastic variables. We denote the 
kth principal component as: 
 

k
T

kY wX=  for k = 1, …, N            (2.1) 
 

Having determined all weight vectors wi for i = 1, …, k, the weight vector wk follows from the 
following maximisation problem: 
                                                           
3  This data can be obtained by selecting the daily term structure of interest rates from the time series 

database, subsection capital market, at http://www.bundesbank.de/statistik/statistik_zeitreihen.en.php.  
4  As a matter of notation, vectors and matrices will be typeset in bold. 
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We maximise the variance of each principal component, so that each component describes as 
large a part of the total variability as possible. The restriction that each weight vector must have 
length 1 only serves to remove the indeterminacy; hence the vectors wk form an orthonormal 
system. It is in fact easy to prove that (2.2) is solved by setting wk to be the kth eigenvector, i.e. 
associated with the kth largest eigenvalue λk, of the covariance matrix ΣΣΣΣ. The variance of the kth 

principal component is therefore equal to kk
T
kk

T )(Var λ== ΣwwwX . In PCA the proportion 
of variance explained by the kth factor is calculated as: 
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Note that all eigenvalues of a covariance (or correlation) matrix obtained from data will be 
positive, since any proper covariance matrix will be positive definite5.  

Let us now denote the spectral decomposition of the covariance matrix as ΣΣΣΣ=WΛΛΛΛWT. Then it 
is obvious that we can write Y = WTX, and this relationship can be inverted to find X = WY . In 
general we will however use K < N principal components, so that we will have: 

 

XWY T
)K()K( =               (2.4) 

 
where the subscript (K) indicates that we are only using the first K principal components. We 
cannot invert this relation directly, but if we regress Y(K) on X, we can show that the ordinary 
least squares estimator for A in X = AY (K) + εεεε is W(K), so that we finally have: 
 

εYWX += )K()K(              (2.5) 

 
As a final note, we know by definition from (2.1) that the jth entry of a weight vector wk contains 
the weight with which Xj is embedded within the kth principal component. Within PCA, the scaled 

eigenvectors kk wλ  are called factors, and its entries are referred to as factor loadings. 

 

2.2. Empirical results 
 

As mentioned in the introduction, many studies have dealt with a PCA of term structures, in 
particular term structures of interest rates. Although in this paper we will mainly focus on the 
level-slope-curvature effect for an arbitrary covariance matrix, and the work will be more 
mathematical than empirical, it is nevertheless interesting to review a number of results from 
recent empirical studies that could be important for this paper. After this brief review we will 
investigate whether we find the level-slope-curvature pattern in the Bundesbank dataset. 

We first mention a recent study by Lardic, Priaulet and Priaulet [2003]. Noticing that many 
studies use quite different methodologies, they pose a number of questions in their paper. The 
                                                           
5  There are situations where one can obtain an estimate for a covariance matrix that is not positive definite, 

e.g. when one has missing data for one or more of the observed variables. However, any proper 
covariance matrix must be positive definite, since otherwise we can construct a linear combination of our 
random variables that has a negative variance. This clearly cannot be the case. 
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first question is whether one should use interest rate changes or levels as an input to a PCA. 
Naturally, interest rate levels are much more correlated than interest rate changes. They find that 
interest rate changes are stationary and conclude that therefore a PCA should be implemented 
with interest rate changes. Secondly, they investigate whether one should use centered changes, 
or standardised changes, i.e. whether a PCA should be conducted on a covariance or a correlation. 
Since the volatility term structure is typically not flat, but either hump-shaped or hockey stick 
shaped, there certainly is a difference between both methods. They conclude that a PCA with a 
covariance matrix will overweight the influence of the more volatile short term rates, and hence 
that one should use a PCA only with correlation matrices. Later on we will show that, under 
certain restrictions, our definition of level, slope and curvature will be such that it is irrelevant 
whether we use a covariance or a correlation matrix. Their final questions address whether the 
results of a PCA are dependent on the rates that are included in the analysis, and on the data 
frequency. Both aspects certainly affect the results one obtains, but we feel these questions are 
less important, as they depend on the application under consideration. 

The second study we mention is that of Lekkos [2000]. He criticises the conclusion of many 
authors, starting from Steeley [1990] and Litterman and Scheinkman [1991], that three factors, 
representing the level, slope and curvature of the term structure, are sufficient to describe the 
evolution of interest rates. He claims that the results are mainly caused by the fact that most 
studies focus on zero yields, as opposed to (continuously compounded) forward rates. We will 
explain this now. In mathematical models the price of a zero-coupon bond is often written as: 

 
( )

( )( )
( ) ( ) 11

T

0

)T,T,t(F1...)t,t,t(F1

)T,T,t(f...)t,t,t(fexp

du)u,t(fexp

)tT()T,t(Rexp)T,t(P
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−⋅−=

∫
         (2.6) 

 
where P(t,T) is the time t price of a zero-coupon bond paying 1 unit of currency at time T. The 
first formulation uses the zero yield R(t,T) of the zero-coupon bond. The second through fourth 
formulations are in terms of forward rates. The second uses instantaneous forward rates, typically 
only used in mathematical models such as the Heath, Jarrow and Morton framework. The third is 
in terms of continuously compounded forward rates, where f(t,T,S) indicates the time t forward 
rate over [T,S]. Finally, the fourth formulation uses discretely compounded forward rates, which 
is the way interest rates are typically quoted in the market. Lekkos works with the third 
formulation. Relating the zero yields to these forward rates, where we use a fixed tenor equal to 
α, we find that the zero yields are averages of these continuously compounded forward rates: 

 
( ))T,T,t(f...)t,t,t(f)T,t(R tT α−++α+= −

α           (2.7) 

 
Lekkos claims that the high correlation found for interest rate changes is mainly caused by this 
averaging effect in (2.7), and that we should therefore analyse the spectral structure of α-forward 
rates instead. In a numerical example he shows that when these α-forward rates are independent, 
the correlation matrix of the zero yields still displays the level-slope-curvature effect. We will in 
fact prove this result later on, in section 4. Although forward rates are not found to be 
independent in his empirical analysis, the spectral structure for α-forward rates he finds is quite 
different than that of the zero yields. The second and third factors cannot be interpreted as driving 
the slope and curvature of the term structure, and furthermore up to five factors are required to 
account for 95% of the total variation. 
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 The final study we consider is that of Alexander and Lvov [2003]. One of the things 
considered in their paper are the statistical properties of a time series of discretely compounded 
forward rates. The time series are obtained from quoted rates via three different yield curve fitting 
techniques, namely two spline methods, and the Svensson6 [1994] method. The functional form 
of an instantaneous forward rate with time to maturity T in the Svensson model is given by: 

 
)exp()exp()exp()T(f

22111

TT
3

TT
2

T
10 τττττ −β+−β+−β+β=                                 (2.8) 

 
where the six parameters β0 through β3 and τ1 and τ2 have to be estimated from the data. The 
equation (2.8) is an addition of an asymptotic value and several negative exponentials, which are 
able to create humps or U-shapes. This model is able to capture several facts found empirically in 
the term structure of forward rates. Alexander and Lvov conclude that the choice of the yield 
curve fitting technique affects the correlation matrix much more than the choice of sample size. In 
their study they find that the Svensson curve gives the best overall sample fit, and through its 
parametric form it also yields the smoothest correlation matrices. As an interesting note, the first 
three factors from their PCA can all be interpreted as driving the level, slope and curvature of the 
term structure, contrary to the study of Lekkos. Although Alexander and Lvov use discretely 
compounded forward rates, whereas Lekkos uses continuously compounded rates, we would not 
expect this to affect the results so markedly. Therefore, we suspect that the differences between 
Alexander and Lvov’s results and those of Lekkos can mainly be attributed to the difference in 
yield-curve fitting technique. Lekkos uses the bootstrap method, which can give rise to less 
smooth yield curves, and hence also to a less smooth correlation surface. 

Using these insights, we will now ourselves conduct a PCA of Bundesbank data, which 
contains estimated Svensson curves for the Euro market from 1972 onwards. Until 1997 the 
curves have been estimated on a monthly basis. From August 1997 onwards, the curves are 
available on a daily basis. As we are only interested in reproducing the level-slope-curvature 
effect here, we ignore both the sample size and frequency issues, and use all end-of-month data 
from January 19807 up to and including June 2004. We calculated the correlations between 

 
Graph 1: Estimated correlations between and first three factors of monthly log-returns on 1-10 year zero yields 

                                                           
6 The Svensson model is also often referred to as the extended Nelson and Siegel model, as it is an 

extension of the original model by Nelson and Siegel [1987]. 
7  Data from the seventies was not included as it changed the correlation estimates severely. 
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Graph 2: Estimated correlations between and first three factors of monthly log-returns on 
discretely compounded annual forward rates, with maturities ranging from 1-10 years 

 
the correlations between logarithmic returns on both zero yields, with tenors from 1 to 10 years, 
as well as on discretely compounded annual forward rates, with maturities also ranging from 1 to 
10 years. The estimated correlation surfaces, as well as the first three factors following from a 
PCA, can be found in graphs 1 and 2 on this and the previous page. 

We indeed notice that that the resulting correlation surfaces are quite different for the zero 
yields than for the forward rates. The relation between zero yields and forward rates in (2.6) 
indicates that zero yields are averages of the forward rates. This relation by itself causes the 
correlations between the zero yields (or log-returns hereof) to be higher than those between the 
forward rates. For the full sample period, we find that in the zero yield case, the first three factors 
explain up to 99% of the total variability, whereas this number is reduced to 91% in the case of 
forward rates. However, if we consider a sample period similar to that of Lekkos, e.g. 1987-1995, 
we find that the first three factors explain more than 97% of the total variability in forward rates, 
which is a much higher number than found in this study. Furthermore, for any sample period we 
still find the level, slope and curvature pattern, contrary to Lekkos’ study. The difference could, 
as mentioned before, be caused by the difference in yield-curve fitting technique. 

We have seen that the observed pattern does not always occur, i.e. in the case of the estimated 
forward rate correlation matrices by Lekkos. A natural question one could ask however, is 
whether the noticed pattern always occurs in the case of highly correlated and ordered stochastic 
systems. To this end consider the following artificially constructed correlation matrix: 

 





















=

1896.0754.0453.0349.0
896.01768.0684.0368.0
754.0768.01722.0598.0
453.0684.0722.01649.0
349.0368.0598.0649.01

R           (2.9) 

 
The matrix is a proper correlation matrix, and furthermore it satisfies certain properties which are 
typically found in empirical interest rate correlation matrices: 
 

i)  ij1j,i ρ≤ρ +  for j ≥ i, i.e. correlations decrease when we move away from the diagonal; 

ii) ij1j,i ρ≤ρ −  for j ≤ i, same as i); 

iii) 1ji,1iji,i ++++ ρ≤ρ , i.e. the correlations increase when we move from northeast to southwest. 
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Graph 3: Artificially constructed correlation matrix which does not display curvature 

 
In words property (iii) means that the correlation between two adjacent contracts or rates 
increases as the tenor of both contracts increases. For instance, the 4 and 5 year rate are more 
correlated than the 1 and 2 year rate. Hence, the matrix in (2.9) clearly is a correlation matrix of 
an ordered and highly correlated system, and could certainly be the correlation matrix of a term 
structure. The above graph, in which its correlation surface and first three factors are depicted, 
demonstrates however that conditions (i)-(iii) (i.e. (i), (ii) and (iii)) are insufficient for a matrix to 
display level, slope and curvature. Although the first two eigenvectors can certainly be interpreted 
as level and slope, the third eigenvector displays a different pattern than we usually find.  

Concluding, although the correlation structure between either consecutive zero yields or 
forward rates is quite different, we find the level-slope-curvature effect in both cases, provided 
we use a smooth enough yield-curve fitting technique. Finally, the fact that we have a highly 
correlated system, in combination with certain properties that empirical interest rate correlation 
matrices satisfy, is not enough for the correlation matrix to display the observed pattern. 
Additional or different conditions are required, something we will investigate in the next section. 
Using these empirical findings we will first mathematically formulate level, slope and curvature 
in the next paragraph. 
 

2.3. Mathematical formulation of level, slope and curvature 
 
Regardless of whether we consider correlations between (returns of) zero yields or forward 

rates, we have seen the presence of level, slope and curvature. Before analysing this effect, we 
have to find a proper mathematical description. Forzani and Tolmasky [2003] analysed the effect 
in case the correlation structure between contracts maturing at times t and s is equal to ρ|t-s|. 
Working with a continuum of tenors on [0,T], they analyse the eigensystem of: 

 

)x(fdy)y(f
T

0

|xy| λ=ρ∫
−            (2.10) 

 
This problem is analogous to determining the eigenvectors of the correlation matrix, when we 
consider a discrete set of tenors. When ρ approaches 1, they find that the nth eigenfunction 
(associated with the nth largest eigenvalue), approaches the following function: 
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We notice that the first factor, corresponding to n = 0, approaches a constant, and hence will be 
relatively flat when the contracts in the term structure are highly correlated. Similarly, we notice 
that the nth eigenfunction has a period equal to 2T/n. Hence, the second factor (n = 1) will have 
half a period on [0,T], and the third factor (n = 2) will have a full period on [0,T]. In the following 
graph we display the functions 1, ( )T

xcos π  and ( )T
x2cos π  on [0,T] where T = 10: 

 

 

 

 

 

 

 
 

Graph 4: Limits of eigenfunctions for ρ|t-s| when ρ → 1 

 
Indeed, these limiting functions do resemble our notion of level, slope and curvature. The true 
eigenfunctions are perturbations of these cosine waves. 

For the exponentially decaying correlation function the analysis is much facilitated, as the 
eigenfunctions can be calculated explicitly. We are not able to do this in general. Therefore we 
use another definition of level, slope and curvature, which will not require the knowledge of the 
explicit form of the eigenvectors or eigenfunctions. We notice in graphs 1 and 2 that the first 
factor is quite flat, and in fact has equal sign for all tenors. The second factor has opposite signs at 
both ends of the maturity range. Finally, the third has equal signs at both extremes, but has an 
opposite sign in the middle. If we therefore look at the number of times each factor or eigenvector 
changes sign, we notice that the first factor has zero sign changes, the second has one, and the 
third has two. This does not give a full description of what we perceive as level, slope and 
curvature. For instance, if in graph 3 the third factor would be shifted slightly upwards, it would 
only have two sign changes, although it would still be dissimilar from the usual pattern. In all 
empirical studies we have seen however, our definition correctly signals the presence of level, 
slope and curvature, so that we expect it to be sufficient. 

For a continuous eigenfunction, the number of sign changes is easily defined as the number of 
zeroes of this function. We will however mainly be working with a discrete set of tenors, which 
calls for a slightly different definition. For an N × 1 vector x we mathematically define the 
number of sign changes as follows: 

 

• )(S x−  -  the number of sign changes in x1, ..., xN with zero terms discarded; 

• )(S x+  -  the maximum number of sign changes in x1, ..., xN, with zero terms arbitrarily 
assigned either +1 or –1. 

 
Both functions will only give a different number when the eigenvector contains zeroes and the 
non-zero elements at either side of a sequence of zeroes have the same sign. In the next chapter 
the distinction between both definitions will ultimately not be that important, as the sufficient 
conditions under which we will find the level-slope-curvature effect will imply that both 
definitions will give the same result when applied to the eigenvectors at hand. Ignoring zero terms 
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within an eigenvector, we therefore define level, slope and curvature as the following sign-change 
pattern within the first three eigenvectors: 
 

• Level:  0)(S 1 =− x  

• Slope:  1)(S 2 =− x  

• Curvature:  2)(S 3 =− x  
 
where xi is the ith eigenvector. In the next section we will consider total positivity theory, which 
will provides us with sufficient conditions under which we find level-slope-curvature.  

3. Sufficient conditions for level, slope and curvature 
 
In this section we turn to theory on total positivity, which, for our formulation of the level-

slope-curvature effect, will yield the right tools to clarify its occurrence. In the first paragraph we 
introduce some notation and concepts that we will require in the remainder of this section. The 
second paragraph reviews some results from total positivity theory. Minor generalisations hereof 
will yield sufficient conditions under which level, slope and curvature occur. In the paragraph 
hereafter we rewrite these conditions, and show we can interpret them as being conditions on the 
level, slope and curvature of the correlation surface. We will mainly work with a discrete set of 
tenors, although we also touch upon the case where we have a continuum of tenors. The 
continuous case will greatly facilitate the interpretation of the conditions we find. 

 

3.1. Notation and concepts 
 

Before turning to some theorems from total positivity theory, we need to introduce some 
notation and concepts. First of all we will be dealing with covariance or correlation matrices. A 
covariance matrix ΣΣΣΣ of size N × N satisfies the following properties: 
 

1. ΣΣΣΣ is symmetric, that is ΣΣΣΣ = ΣΣΣΣT; 
2. ΣΣΣΣ is positive definite, i.e. for any non-zero vector x ∈ ÑN we have xTΣΣΣΣx > 0. 
 

Any matrix satisfying these properties is invertible and can be diagonalized as ΣΣΣΣ = XΛΛΛΛXT, where 
the eigenvectors of the matrix are contained in X, and the eigenvalues in ΛΛΛΛ. All eigenvalues are 
furthermore strictly positive. The correlation matrix R associated with ΣΣΣΣ is obtained as: 

 
2/12/1 )(diag)(diag −−= ΣΣΣR             (3.1) 

 
where diag(ΣΣΣΣ) is a matrix of the same dimensions as ΣΣΣΣ, containing its diagonal and zeroes 
everywhere else. Naturally R is also a covariance matrix. 

The theorems in the next section will require the following concepts. For a given positive 
integer N we define: 

 

{ }Ni...i1|)i,...,i(I p1p1N,p ≤<<≤== i            (3.2) 

 
where of course 1 ≤ p ≤ N. When ΣΣΣΣ is an N × N matrix, we define for i, j ∈ Ip,N: 
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p
1,kji

p1

p1

]p[ )adet(
j,...,j

i,...,i
),(

k ==













=

l
l

ΣjiΣ            (3.3) 

 
In terms of covariance matrices, definition (3.3) means we are taking the determinant of the 
covariance matrix between the interest rates indexed by vector i, and those indexed by vector j . 
The pth compound matrix ΣΣΣΣ[p] is defined as the ( )N

p  × ( )N
p  matrix with entries equal to 

( )
N,pI,]p[ ),(

∈ji
jiΣ , where the i ∈ Ip,N are arranged in lexicographical order, i.e. i ≥ j  (i ≠ j ) if the 

first non-zero term in the sequence i1 – j1, ..., ip – jp is positive. 
 

3.2. Sufficient conditions via total positivity 
 

Before turning to the theory of total positivity, we will solve the level problem. Perron’s 
theorem, which can be found in most matrix algebra textbooks, deals with the sign pattern of the 
first eigenvector.  
 
Theorem 1 – Perron’s theorem 
Let A be an N × N matrix, all of whose elements are strictly positive. Then A has a positive 
eigenvalue of algebraic multiplicity equal to 1, which is strictly greater in modulus than all other 
eigenvalues of A. Furthermore, the unique (up to multiplication by a non-zero constant) 
associated eigenvector may be chosen so that all its components are strictly positive.  
 
The result of the theorem only applies to matrices with strictly positive elements. Since the term 
structures we are investigating are highly correlated, this is certainly not a restriction for our 
purposes. The result is valid for any square matrix, not only for symmetric positive definite 
matrices. As long as all correlations between the interest rates are positive, this means that the 
first eigenvector will have no sign changes. 

This has solved the level problem. For the sign-change pattern of other eigenvectors we have 
to turn to the theory of total positivity. The results in this paragraph mainly stem from a paper by 
Gantmacher and Kreĭn [1937], which, in an expanded form, can be found in Gantmacher and 
Kreĭn [1960, 2002]. Most results can also be found in the monograph on total positivity by Karlin 
[1968]. For a good and concise overview of the theory of total positivity we refer the reader to 
Ando [1987] and Pinkus [1995]. The latter paper gives a good picture of the historical 
developments in this field, and the differences between the matrix and the kernel case. 

A square matrix A is said to be totally positive (sometimes totally non-negative, TP), when for 
all i, j  ∈ Ip,N and p ≤ N, we have: 

 
0),(]p[ ≥jiA               (3.4) 

 
In the case of covariance matrices, this means that we require the covariance matrix between i 
and j  to have a non-negative determinant. When i = j  this will clearly be the case, as the resulting 
matrix is itself a covariance matrix, and will be positive definite. In the other cases the meaning 
of this condition is less clear. In the next paragraph we will spend some time on interpreting these 
conditions. If strict inequality holds then we say that the matrix is strictly totally positive (STP). 
Furthermore, we say that a matrix is TPk if (3.4) holds for p = 1, ..., k, and we define STPk in a 
similar fashion. Hence, an N × N matrix is TP when it is TPN, and STP when it is STPN. 
Gantmacher and Kreĭn proved the following theorem for general STP matrices. A full version of 
their theorem also considers the so-called variation-diminishing property of such matrices, but we 
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will here only deal with the sign-change pattern of such matrices. We reformulate their theorem 
for covariance matrices that are not necessarily STP, but only STPk. Reading their proof shows 
that it can be altered straightforwardly to cover this case. For completeness we have included the 
proof in the appendix. 
 
Theorem 2 – Sign-change pattern in STPk matrices 
Assume ΣΣΣΣ is an N × N positive definite symmetric matrix (i.e. a valid covariance matrix) that is 
STPk. Then we have λ1 > λ2 > … > λk > λk+1 ≥ … λN > 0, i.e. at least the first k eigenvalues are 
simple. Denoting the jth eigenvector by xj, we have S−(xj) = S+(xj) = j-1, for j = 1, ..., k. 
 
Proof: See the appendix.  
 
A consequence of theorem 2 is that a sufficient condition for a correlation matrix to display level, 
slope and curvature, is for it to be STP3. Naturally all principal minors of a covariance matrix are 
determinants of a covariance matrix, and hence will be strictly positive. It is however not 
immediately clear what the remaining conditions mean – we will find an interpretation hereof in 
the following paragraph. The conditions in theorem 2 can be relaxed somewhat further via the 
concept of an oscillation or oscillatory matrix, again due to Gantmacher and Kreĭn. The name 
oscillation matrix arises from the study of small oscillations of a linear elastic continuum, e.g. a 
string or a rod. An N × N matrix A is an oscillation matrix if it is TP and some power of it is STP. 
As in theorem 2, we slightly alter the original theorem by using the concept of an oscillation 
matrix of order k. 
 
Theorem 3 – Oscillation matrix of order k 
Akin to the concept of an oscillation matrix, we define an oscillation matrix of order k. An N × N 
matrix A is oscillatory of the order k if: 
 
1. A is TPk; 
2. A is non-singular; 
3. For all i = 1, ..., N-1 we have ai,i+1 > 0 and ai+1,i > 0. 
 
For oscillatory matrices of the order k, we have that AN-1 is STPk. 
 
Proof: See the appendix.  
 
Gantmacher and Kreĭn proved theorem 3 and its converse for the STP case. As we are only 
interested in sufficient conditions for level, slope and curvature, we do not prove the converse. 
The proof of theorem 3 is included in the appendix for completeness, although the original proof 
carries over almost immediately. 
 
Corollary 1 
In theorem 2 we can replace the condition that the matrix is STPk with the requirement that some 
finite power of it is oscillatory of order k.  
 
Proof: 
Suppose ΣΣΣΣ is a positive definite symmetric N x N matrix, for which ΣΣΣΣi is oscillatory of order k. As 
the matrix is invertible, we can write ΣΣΣΣ = XΛΛΛΛXT, and hence: 
 

T)1N(i)1N(i XXΛΣ
−− =              (3.5) 

 

so that ΣΣΣΣ 
i(N-1) has the same eigenvectors as A. Since ΣΣΣΣ i(N-1) is STPk, we can apply theorem 2 to 
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first find that S−(xj) = S+(xj) = j-1, for j = 1, ..., k. In other words, we have the same sign-change 
pattern for matrices of which a finite power is oscillatory of order k. Finally, the eigenvalues can 

be ordered as )1N(i
1

−λ  > … > )1N(i
k

−λ  ≥ … )1N(i
N

−λ  > 0. This directly implies that the first k 

eigenvalues are simple.  
 
With this corollary the sufficient conditions from theorem 2 have been relaxed somewhat. Instead 
of requiring that the covariance or correlation is STP3, we now only need some finite power of it 
to be TP3, invertible, and to have a strictly positive super- and subdiagonal. The following 
corollary states that multiplying an oscillatory matrix by a totally positive and invertible matrix 
(both of the same order), yields a matrix which is again oscillatory. 
 
Corollary 2 
Let A and B be a square N × N matrices, where A is oscillatory of order k, and B is invertible and 
TPk. Then AB and BA are oscillatory of order k. 
 
Proof: 
For a matrix to be oscillatory of order k, we have to check the three defining properties in our 
proposition. Obviously the first and second properties are satisfied for both matrices. We only 
have to check the third criterium, concerning the positivity of the super- and subdiagonal 
elements. For the superdiagonal we basically have: 

 

( ) ∑ = ++ = N

1j 1i,jij1i,i baAB                          (3.6) 

 
which is certainly non-negative, due to the fact that both matrices are TPk. One element contained 
in (3.6) is ai,i+1bi+1,i+1. For A we know that all superdiagonal elements are positive. Furthermore, 
since B is invertible, all its diagonal elements must be strictly positive, so that (3.6) is clearly 
strictly positive. The proof is identical for the subdiagonal.  
 
This corollary directly implies the following one, which implies that when analysing the sign 
change pattern of oscillatory matrices, it does not matter whether we analyse covariance or 
correlation matrices. 
 
Corollary 3 
A valid covariance matrix is oscillatory if and only if its correlation matrix is oscillatory. 
 
Proof: 
Suppose we have a valid covariance matrix which can be written as ΣΣΣΣ = SRS, where S is a 
diagonal matrix containing the (strictly positive) standard deviations on its diagonal, and R is the 
correlation matrix. The “if” part now follows. Since ΣΣΣΣ is invertible, so is S. An invertible diagonal 
matrix with strictly positive diagonal elements is clearly totally positive. Hence, if R is 
oscillatory, so will SRS by virtue of corollary 2. The “only if” part follows similarly.  
 
Corollary 3 states that the sign change pattern in the eigenvectors will be the same in covariance 
and correlation matrices. A graph of the eigenvectors will however look quite different in both 
matrices, due to the fact that the the term structure of volatilities is typically not flat. As argued in 
paragraph 2.3, the actual shape of the eigenvectors, e.g. that the first eigenvector is relatively flat, 
is caused by the fact that the term structure is highly correlated. 

Having derived sufficient conditions under which a matrix displays level, slope and curvature, 
we try to interpret these conditions in the next paragraph. 
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3.3. Interpretation of the conditions 
 

As we saw in the previous section, a sufficient condition for a covariance or correlation matrix 
to display level, slope and curvature, is for it to be oscillatory of order 3. We will here try to 
interpret these conditions. Remember that corollary 3 showed that our definition is invariant to 
whether we use a covariance or a correlation matrix, so that we opt to use correlation matrices for 
ease of exposure. For an N × N correlation matrix R to be oscillatory of order 3, we require that: 
 
1. R is TP3; 
2. R is non-singular; 
3. For all i = 1, ..., N-1 we have ρi,i+1 > 0 and ρi+1,i > 0. 
 
As any proper covariance or correlation matrix will be invertible, condition ii) is irrelevant. In the 
term structures we will be analysing, it seems natural to expect that all correlations ρij are strictly 
positive. Condition iii) is immediately fulfilled, as is the case for the order 1 determinants from i). 
Under this mild condition we can already interpret the first eigenvector as driving the level of the 
term structure. Hence, the level of the correlations determines whether or not we have level. 

Now we turn to the second order determinants. As the usual interpretation of a second order 
determinant as the signed area of a parallelogram is not very useful here, we need to find another 
one. Given that R is TP1, it is also TP2 if for i ≤ j and k ≤ {: 

 

jkijikjkijik
jjk

iik 0 ρρ≥ρρ⇔≥ρρ−ρρ=









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         (3.7) 

 
It is not immediately clear how this condition should be interpreted. However, since all 
correlations were assumed to be positive, we can rearrange (3.7) to find the following condition: 
 

l

l

l

l

ll i

iki

j

jkj

j

jk

i

ik

ρ
ρ−ρ

≥
ρ

ρ−ρ
⇔

ρ
ρ

≥
ρ
ρ

           (3.8) 

 
In words, condition (3.8) states that the relative change from moving from k to { (k ≤ {), relative 

to the correlation with {, should be larger on the correlation curve of j than on the curve of i, 

where i ≤ j. This says that on the right-hand side of the diagonal the relative change on correlation 
curves for larger tenors should be flatter than for shorter tenors, as is depicted in the graph on the 
following page. On the left-hand side of the diagonal this is reversed – the relative change there 
should be larger for shorter than for larger tenors. The derived condition clearly puts a condition 
on the slopes of the correlation curves. 

In practice we usually have a continuous function from which we generate our correlation 
matrix. With a continuum of tenors we do not analyse the eigensystem of a covariance matrix, but 
of a symmetric and positive definite kernel K ∈ C([0,T] × [0,T]). The eigenfunctions and 
eigenvalues satisfy the following integral equation: 

 

)x(dy)y()y,x(K
T

0
φλ=φ∫                         (3.9) 

 
This setting is also analysed in Forzani and Tolmasky [2003] for a specific choice of K. 
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Graph 5: Two correlation curves from a TP2 matrix 

 
Analysing a continuous problem sometimes makes life easier, but surprisingly the analysis here 
remains essentially the same. The kernel case was historically studied prior to the matrix case, by 
O.D. Kellogg. Kellogg [1918] noticed that sets of orthogonal functions often have the property 
“that each changes sign in the interior of the interval on which they are orthogonal once more 
than its predecessor”. He noted that this property does not only depend on the fact that the 
functions are orthogonal. As in the discrete case, total positivity of order n is equivalent to: 

 

( ) 0)y,x(Kdet
y,...,y

x,...,x
K n

1j,iji
n1

n1 ≥=







=

         (3.10) 

 
for all x,y ∈ [0,T]. When n = 2 we regain condition (3.7): K(x1,y1)K(x2,y2) ≥ Κ(x1,y2)K(x2,y1). If 
we in addition assume that K is twice differentiable, one can show that an equivalent condition is: 
 

0
yx

)y,x(Kln
)y,x(K

y

)y,x(K

x

)y,x(K

yx

)y,x(K
)y,x(K

2
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≥
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∂
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∂

∂−
∂∂

∂
     (3.11) 

 
Note that if we have a kernel that only depends on the difference of the two arguments, in other 
words if K(x,y) = f(x-y), (3.11) states that f should be log-concave. A slightly stronger condition 
than (3.11) is obtained by considering the empirical properties of correlation matrices of term 
structures we mentioned in paragraph 2.2. Typically correlations are positive, i.e. K(x,y) > 0. 
Secondly, correlations decrease if we move away from the diagonal along a row or a column, 

implying that 0y
)y,x(K

x
)y,x(K <∂

∂
∂

∂ . From (3.11) we then see that K is TP2 if 0yx
)y,x(K2

≥∂∂
∂ . Again, if 

K only depends on the difference of its two arguments, this property requires f to be concave. 
Although the condition for slope allows for a clear interpretation, the condition for curvature is 

much more cumbersome. We just present the final result as the intermediate steps again just 
follow from rewriting the determinant inequality in (3.4) for p = 3. We first define the relative 
change from moving from k to { (k ≤ {), along correlation curve i as: 

 

l

l
l
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iki
i ),k(

ρ
ρ−ρ

=∆            (3.12) 
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Using this definition, the matrix is obviously TP2 if and only if ),k(),k( ij ll ∆∆ ≥  for all i < j 

and k < {. The additional condition we must impose for the matrix to be TP3 is then: 
 

( ) ( )

( ) ( )
)n,m()n,m(
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≥
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−−−

ll

ll

         (3.13) 

 
The terms )n,m()n,( jj ∆∆ −l  are changes in relative slopes, and hence are a measure of 

curvature of correlation curve j. Although it is harder to visualise (3.13) than (3.8), the condition 
states that this (weighted) “curvature” is allowed to change more from i to j than from j to k.  

Summarising we find that the derived sufficient conditions for level, slope and curvature are in 
fact conditions on the level, slope and curvature of the correlation surface. It seems that, provided 
the term structure is properly ordered, the conditions do not state much more than that the 
correlation curves should be flatter and less curved for larger tenors, and steeper and more curved 
for shorter tenors. 

4. Parametric correlation surfaces 
 
Many articles have proposed various parametric correlation matrices, either to facilitate the 

empirical estimation of correlation matrices or the calibration to market data. One example of this 
we have seen already is the exponentially decaying correlation function which features in many 
articles as a simple, but somewhat realistic correlation function. Other examples are the 
correlation parameterisations by Rebonato [1998], De Jong, Driessen and Pelsser [2004] and 
Alexander [2003]. The first two parameterisations are both formulated from an economically 
plausible perspective, but unfortunately are not always guaranteed to be positive definite. The 
latter is a rank three correlation matrix, defined by restricting the first three “eigenvectors” to be 
flat, linear and quadratic. We say “eigenvectors” because the constructed vectors are not chosen 
to be orthogonal, so that these vectors will not be the true eigenvectors. Since the resulting matrix 
is not of full rank, we will not consider it here. 

The correlation matrices we consider in this section will be based on Green’s matrices, which 
in the finance literature are probably better known as Schoenmakers-Coffey correlation matrices. 
In a continuous setting they already feature in Santa-Clara and Sornette [2001]. Schoenmakers 
and Coffey [2003] analysed the properties of its discrete analog and proposed various 
subparameterisations which they claim allow for a stable calibration to market swaption and 
caplet volatilities. A motivation for their matrix follows directly from the following construction. 
We will here take a slightly more general route than Schoenmakers and Coffey, leading to a more 
general correlation matrix. Let bi, i = 1, …, N be an arbitrary sequence which is increasing in 

absolute value. We set b0 = b1 = 1 and a1 = 1, 2
1i

2
ii bba −−= . Finally, let Zi, i = 1, …, N be 

uncorrelated random variables, with unit variance. We now define: 
 

∑ =
⋅= i

1k kkii Za)bsgn(Y                                      (4.1) 

 

The covariance between Yi and Yj for for i ≤ j is equal to: 
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implying that their correlation is equal to: 
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It is easy to see that we obtain the same correlation structure if the Zi’s do not have unit variance, 
and also when each Yi is premultiplied with a non-zero constant ci. The difference with the 
approach of Schoenmakers and Coffey is that we here allow the sequence bi to take negative 
values, whereas they only considered non-negative correlations. Furthermore, they restricted the 
sequence bi/bi+1 to be strictly increasing, which has a nice consequence as we will see shortly. 
Even without these restrictions, the above construction always yields a valid correlation matrix. 

We note that an N × N correlation matrix of the above form, say N
1j,iij )( =ρ=R , can also be 

written in the following form: 
 

∏ −

= +ρ=ρ 1j

ik 1k,kij                           (4.4) 

 
i.e. we can view it as a parameterisation in terms of super- or alternatively subdiagonal elements. 
Schoenmakers and Coffey showed that the above parameterisation of the correlation matrix (with 
positive bi’s and with the restriction that ρi,i+1  = bi/bi+1 is increasing) satisfies properties (i) – (iii) 
from paragraph 2.2, properties that are commonly found in empirical correlation matrices of term 
structures. Sometimes it may be necessary to have a more flexible correlation structure at our 
disposal, in which case we can relax the restriction that bi/bi+1 is to be increasing. This sacrifices 
property (iii), the property that the correlation between two adjacent contracts or rates increases 
as the tenor increases. Properties (i) – (ii) will however still hold. 

Returning to the level-slope-curvature pattern, Gantmacher and Kreĭn [1960] prove total 
positivity for certain special matrices. One of these matrices is a Green’s matrix, in which 
category the above correlation matrix falls. 

 
Theorem 4 – Total positivity of a Green’s matrix 
An N × N Green’s matrix A with elements: 
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where all ui and vj are different from zero, is totally nonnegative if and only if all ui and vj have 
the same sign and: 
 

N
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≤≤               (4.6) 

 
The rank of A is equal to the number of times where the inequality in (4.6) is strict, plus one.  
 
We note that in correlation form the concept of a Green’s matrix is not more general than the 
extended Schoenmakers-Coffey matrix in (4.3) or (4.4). The corresponding correlation matrix R 
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of the Green’s matrix A from theorem 4 has elements equal to: 
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Indeed, setting bi = vi/ui shows that a Green correlation matrix and the extended Schoenmakers-
Coffey correlation matrix are equivalent. This observation combined with theorem 4 leads to the 
following corollary. 
 
Corollary 4 – Oscillatoriness of the Schoenmakers-Coffey matrix 
The Schoenmakers-Coffey correlation matrix, and its more general formulation in (4.3) or (4.4), 
is oscillatory provided that all correlations on the superdiagonal are positive and smaller than 1. 
Hence, the matrix displays level, slope and curvature. 
 
Proof: 
The requirement that all correlations on the superdiagonal are positive amounts to requiring the 
sequence bi to be strictly positive. The requirement that all entries on the superdiagonal are 
smaller than 1 implies the sequence bi should be strictly increasing. Setting bi = vi/ui as 
mentioned, and substituting it into (4.6) yields: 
 

2
N

2
1 b...b ≤≤                (4.8) 

 
which is true due to the fact that the sequence bi is strictly increasing. Furthermore, since the 
inequalities are strict, the correlation matrix is of full rank. The latter result still remains true if we 
allow the bi’s to take negative numbers, but still require that the sequence is strictly increasing in 
absolute value. Since all entries on the super- and subdiagonal are strictly positive, the matrices 
are oscillatory. By virtue of corollary 1 this implies that we have level, slope and curvature.  
 
Hence, if all correlations on the superdiagonal are positive and smaller than 1, the correlation 
matrix in (4.3) or (4.4) will display level, slope and curvature. We note that property (iii) clearly 
does not imply or affect level, slope or curvature for these matrices – the extended 
Schoenmakers-Coffey matrix displays level, slope and curvature regardless of whether property 
(iii) holds or not. A nice property of a Green’s matrix is that its inverse is tridiagonal. Inversion of 
tridiagonal matrices requires only O(7N) arithmetic operations, and is therefore much more 
efficient than the O(N3/3) operations required for arbitrary matrices. 

As a final point of interest we return to the claim of Lekkos [2000]. We remind the reader of 
equation (2.7), where zero yields were expressed as averages of continuously compounded α-
forward rates:  

 
( ))T,T,t(f...)t,t,t(f)T,t(R tT α−++α+= −

α           (4.9) 

 
In a numerical example Lekkos shows that if these forward rates are statistically independent, the 
correlation matrix of the zero yields displays level, slope and curvature. The way in which the 
Schoenmakers-Coffey matrix was constructed in equations (4.1) – (4.3) shows that if all forward 
rates in (4.9) are independent, the correlation matrix of R(t,t+α), …, R(t,t+Nα) will be a 
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Schoenmakers-Coffey correlation matrix, and as such will display level, slope and curvature. 
Lekkos’ claim is therefore true. In fact, using the Schoenmakers-Coffey matrix for consecutive 
zero yields directly implies that all forward rates must be independent. Similarly, using the 
Schoenmakers-Coffey correlation matrix for changes in consecutive zero yields implies that the 
changes in consecutive forward rates are independent. As we have seen in paragraph 2.2 forward 
rates and forward rate changes are far from independent, so that one should be aware of these 
implications. Schoenmakers and Coffey suggest using their correlation matrix and parameterised 
versions thereof as an instantaneous correlation matrix within the LIBOR market model, where 
the above considerations do not apply directly. 

5. Level, slope and curvature beyond total positivity 
 

In the previous two sections we have turned to total positivity theory to provide us with 
sufficient conditions for level, slope and curvature. Obviously, this is only a partial answer to the 
question of what drives this phenomenon. In fact, if we look at the empirical correlation matrices 
from graphs 1 and 2, the theory that we treated up till now is only able to explain level and slope 
for both graphs, as both matrices contain only positive correlations, and the second power of both 
correlation matrices is oscillatory of order 2. The presence of curvature however still remains 
unexplained. Clearly there must be a more general theory that allows us to explain the presence of 
level, slope and curvature. Here we first take a brief look at the concept of sign regularity, which 
extends the notion of total positivity. However, we demonstrate that the only correlation matrices 
that were not already captured by the class of totally positive matrices are degenerate in some 
sense. Finally, we formulate a conjecture which we cannot prove, but which we suspect is true, 
based on an extensive simulation study. This conjecture directly relates the order present in 
correlation matrices to level and slope. 

 

5.1. Sign regularity 
 
In the literature the concept of total positivity has been extended to the notion of sign 

regularity. For a square N × N matrix A to be sign regular of order k, or SRk, we require the 
existence of a sequence ε1 through εk, all ∈ {1,-1}, such that for all p ≤ k and i, j  ∈ Ip,N, such that: 
 

0),(]p[p ≥⋅ε jiA               (5.1) 

 
Analogous to strict total positivity, strict sign regularity can be defined. Sign regularity hence 
requires all determinants of a certain order to have the same sign, whereas total positivity required 
them to be positive. The concept of an oscillatory matrix can easily be extended using sign 
regularity. We can consider a square invertible matrix A with non-zero diagonal, super- and 
subdiagonal elements, that is SR. In this case A2 is oscillatory, and A2(N-1) will be strictly totally 
positive, so that we can again apply theorem 2 to this matrix. This extension is however not 
useful for our application, as we will see in the following theorem. 
 
Theorem 6 – The set of SR3 correlation matrices is degenerate 
The volume of all square N × N (for any N ≥ 3) invertible correlation matrices, that are not TP3, 
but SR3, is equal to zero. 
 
Proof: 
Let us first consider the case N = 3, where the correlation matrix can be written as: 
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















=
1zy

z1x

yx1

R               (5.2) 

 
where of course -1 ≤ x, y, z ≤ 1. Via a Cholesky decomposition we can easily check that this 
matrix is positive definite if and only if its determinant is strictly positive, i.e. when 1- x2 - y2 - z2 
+ 2xyz > 0. For A to be TP2 we would furthermore require: 
 
• First order: x ≥ 0, y ≥ 0 and z ≥ 0 
• Second order: x ≥ yz, y ≤ xz and z ≥ xy 
 
Since the matrices we want to consider in this theorem should be positive definite and SR3 (but 
not TP3), we should consider the following three cases: 
 
a) x ≤ 0, y ≤ 0 and z ≤ 0, and x ≥ yz, y ≤ xz and z ≥ xy, and 1- x2 - y2 - z2 + 2xyz > 0 
b) x ≥ 0, y ≥ 0 and z ≥ 0, and x ≤ yz, y ≥ xz and z ≤ xy, and 1- x2 - y2 - z2 + 2xyz > 0 
c) x ≤ 0, y ≤ 0 and z ≤ 0, and x ≤ yz, y ≥ xz and z ≤ xy, and 1- x2 - y2 - z2 + 2xyz > 0 
 
Ad a) 
From x,y,z ≤ 0, x ≥ yz and z ≥ xy we have x,z ≥ 0, which can only be satisfied if x = z = 0. This 

implies that 0dzdydx
1y,0zx 2

=∫∫∫ <==
, i.e. the volume of all such matrices is equal to zero. 

Ad b and c)  
There are three 2 × 2 submatrices of R which are covariance matrices. The corresponding 
determinants are 1-x2, 1-y2 and 1-z2. If these are required to be negative or zero, as in b) and c), 
we must have x, y, z ∈ {-1,1}. We can check that the determinant of R can then only be 0 or -4, 
which means that the matrix can never be positive definite in these cases. 
 
We have proven the theorem for N = 3. Since the assertion holds for any 3 × 3 invertible 
correlation matrix, it will also hold for any 3 × 3 principal submatrix of an N × N invertible 
correlation matrix. This will therefore place the same restrictions on these 3 × 3 submatrices, so 
that the volume of all invertible correlation matrices, that are not TP3, but SR3, is zero.  
 
This last theorem shows that the class of SR3, but not TP3, invertible correlation matrices is 
degenerate. As far as we know, no other classes of matrices are known which have the same sign 
change pattern as oscillatory matrices. 
 

5.2. The relation between order, level and slope 
 

As we already mentioned earlier, Alexander [2003] claims that “… the interpretation of 
eigenvectors as trend, tilt and curvature components is one of the stylised facts of all term 
structures, particularly when they are highly correlated”. Based on an extensive simulation study 
we come up with a slightly different conjecture, which will follow shortly. The example in 
section 2.2 demonstrated that curvature is not always present, even though we have an ordered 
and highly correlated system. Similarly we can show that there are matrices for which no finite 
power is oscillatory of order 3, so that the theory from section 3 cannot be used to prove the 
presence of slope and curvature for these correlation matrices. One such example follows. 
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Example – Total positivity is not enough 
Consider the following correlation matrix: 

 



















=

19785.0901.08204.0
9785.019695.08297.0
901.09695.018396.0

8204.08297.08396.01

R           (5.3) 

 
This correlation matrix itself is clearly not TP2, consider for example its second order compound 
matrix R({1,2},{3,4}), i.e. the 2 × 2 matrix in the right-upper corner of R. Its determinant is 
negative. From matrix theory we know that: 
 

T11
k
1

k

k
)lim (xx

R =
λ∞→

             (5.4) 

 
where λ1 is the largest eigenvalues and x1 is the corresponding eigenvector. Since higher powers 
of R are also not TP2, and R5 is almost indistinguishable from the limiting matrix in (5.4), we can 
be sure that no finite power of R will be oscillatory of order 2. �  
 
Since the matrix in (5.3) satisfies properties (i)-(iii), as most empirical correlation matrices do, we 
came up with the following conjecture. 
 
Conjecture – Sufficiency of properties (i)-(iii) for level, slope and curvature 
A quasi-correlation matrix R with strictly positive entries, that satisfies: 
 
i)  ij1j,i ρ≤ρ +  for j ≥ i, i.e. correlations decrease when we move away from the diagonal; 

ii) ij1j,i ρ≤ρ −  for j ≤ i, same as i); 

iii) 1ji,1iji,i ++++ ρ≤ρ , i.e. the correlations increase when we move from northeast to southwest. 

 
displays level and slope. �  
 
By a quasi-correlation matrix we mean a matrix that resembles a correlation matrix, i.e. has ones 
on the diagonal and off-diagonal elements that are smaller than or equal to 1 in absolute value, 
but is not necessarily positive definite. We claim that the empirically observed properties (i)-(iii) 
are sufficient, although still not necessary, for a quasi or proper correlation matrix to display level 
and slope. The fact that these properties are not necessary is clear from the Green’s matrix – 
certain Green’s matrices are still totally positive even though property (iii) is not satisfied, as we 
saw in the previous section.  

We extensively tested this conjecture by simulating random correlation matrices, satisfying 
properties (i)-(iii). Although several methods exist to simulate random correlation matrices, we 
are not aware of one that allows the aforementioned properties to be satisfied. Firstly, we present 
the algorithm we used to simulate a random quasi-correlation matrix with positive entries, that in 
addition satisfies (i)-(iii). Note that a smoothing factor α is included in the algorithm that 
essentially ensures that two consecutive elements on a row are at most 100α% apart. Finally, note 
that each correlation is drawn from a uniform distribution – this is obviously an arbitrary choice. 
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1. ρii = 1 for 1 ≤ i ≤ Ν. 
2. For 1 < j ≤ N set LB1j equal to (ρ1,j-1-α)+ and UB1j equal to ρ1,j-1. Draw ρ1j ~ U[LB1j,UB1j]. 
3. For 2 ≤ i ≤ N-1 and i < j set ( )1j,1i1j,iij ,)(maxLB −−

+
− ρα−ρ=  and UBij = ρi,j-1.  If LB ij > UBij, 

a valid matrix cannot be constructed, so that we have to restart our algorithm at step 1. 
Otherwise we draw ρij ~ U[LBij,UBij].  

4. Set ρij = ρji for i > j. 

Algorithm 1: Simulation of a quasi-correlation matrix with strictly positive entries, satisfying (i)-(iii) 

 
Algorithm 1 can easily be adapted to generate a matrix that only satisfies (i)-(ii), by replacing     
ρi-1,j-1 in step 3 by ρi-1,j. Adapting this algorithm to yield a positive definite matrix can be achieved 
if we use the angles parameterisation of Rebonato and Jäckel [1999]. They show8 that any 
correlation matrix R ∈ ÑN ×N can be written as R=BBT, where B ∈ ÑN ×N is lower triangular and 
has entries equal to b11 = 1, and: 
 

∏∏ −

=

−

=
θ=θθ= 1i

1k ikii

1j

1k ikijij sinbsincosb           (5.5) 

 
for i > j and i > 1. Using this parameterisation it can be shown that the first row of the correlation 
matrix follows directly from the first column of the matrix with angles, i.e. ρ1j = cos θj1 for j > 1. 
Hence, adapting step 2 is easy: we only have to solve for θj1 in step 2. Adapting step 3 is slightly 
more involved. For i < j we have: 
 

∏∑ ∏
∑

−

=

−

=

−

=

=

θθθ+θθθθ=

=ρ
1i

1k jkikji

1i

1

1

1k jkikji

i

1 jiij

sinsincossinsincoscos

bb

l

l

ll

l ll

      (5.6) 

 
At entry (i,j) of the correlation matrix, we have already solved for the angles in columns 1 up to 
and including i-1, as well as angles θjk for k < i. The only new angle in (5.6) is thus θji. Since we 
necessarily have -1 ≤ cos θji ≤ 1, (5.6) places a lower and upper bound on ρij. All we have to do is 
incorporate these additional restrictions into step 3 – this ensures that the new algorithm 
terminates with a positive definite correlation matrix. The algorithm hence becomes: 
 
1. ρii = 1 for 1 ≤ i ≤ Ν. 
2. For 1 < j ≤ N set LB1j equal to (ρ1,j-1-α)+ and UB1j equal to ρ1,j-1. Draw ρ1j ~ U[LB1j,UB1j]. 

Solve θj1 from ρ1j = cos θj1. 
3. For 2 ≤ i ≤ N-1 and i < j set ( )1j,1i1j,iij ,)(maxLB −−

+
− ρα−ρ=  and UBij = ρi,j-1. Incorporate 

lower and upper bound from (5.6) into LBij and UBij. If we then have LBij > UBij, a valid 
matrix cannot be constructed, so we have to restart our algorithm at step 1. Otherwise we 
draw ρij from U[LBij,UBij] and solve for θji from (5.6).  

4. Set ρij = ρji for i > j. 

Algorithm 2: Simulation of a valid correlation matrix with strictly positive entries, satisfying (i)-(iii) 

 
Using algorithms 1 and 2 we performed a large amount of simulations, for various sizes of 

                                                           
8  Their article uses N(N-1) angles, but it can be shown that it suffices to use as many angles as correlations, 

i.e. ½N(N-1). 
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matrices and values of α. In each simulation we kept track of the percentage of matrices without 
slope and/or curvature. The pattern was the same in each simulation, so that we here only display 
results for sizes equal to 3, 4 and 5 and α equal to 20%. The results can be found below: 
 

 Properties (i)-(ii) Properties (i)-(iii) 
Size No slope No curvature No slope No curvature 

3 0% 0% 0% 0% 
4 0.04% 19.1% 0% 23.05% 
5 0.01% 27.98% 0% 43.81% 

Table 1: Percentage of random quasi-correlation matrices w/o slope and/or curvature 
Results based on 10,000 random matrices from algorithm 1, using α = 20% 

 
 Properties (i)-(ii) Properties (i)-(iii) 
Size No slope No curvature No slope No curvature 

3 0% 0% 0% 0% 
4 0.13% 14.91% 0% 18.31% 
5 0.02% 23.1% 0% 35.38% 

Table 2: Percentage of random proper correlation matrices w/o slope and/or curvature 
Results based on 10,000 random matrices from algorithm 2, using α = 20% 

 
As is clear from the tables, for both types of matrices properties (i)-(iii) seem to imply the 
presence of slope. Leaving out property (iii) causes some violations of the slope property, albeit 
in a very small number of cases. The results seem to indicate that our conjecture has some 
validity, although this is of course far from a formal proof. 

6. Conclusions 
 
In this article we analysed the so-called level, slope and curvature pattern which one 

frequently observes when conducting a principal components analysis of term structure data. The 
first factor which one usually finds is relatively flat, the second has opposite signs at both ends of 
the maturity spectrum, and the third finally has the same sign at both ends, but an opposite sign in 
the middle of the maturity range. As such, many authors have interpreted these factors as driving 
respectively the level, slope and curvature of the term structure. Forzani and Tolmasky [2003] 
analysed this pattern for an exponentially decaying correlation function and showed that, for high 
correlations, we indeed have the observed level, slope and curvature pattern. 

We mathematically define the observed pattern by stating that if the first three factors or 
eigenvectors have respectively zero, one and two sign changes, the corresponding matrix displays 
level, slope and curvature. This characterisation leads us to the theory of total positivity. If all 
correlations are positive, the first factor will always have no sign changes, by virtue of Perron’s 
theorem. For the remaining two factors, we turn to several theorems by Gantmacher and Kreĭn 
[1937, 1960, 2002]. Slight alterations hereof provide sufficient conditions for level, slope and 
curvature. The conditions can be interpreted as conditions on the level, slope and curvature of the 
correlation surface. In essence, the conditions roughly state that the correlation curves should be 
flatter and less curved for larger tenors, and steeper and more curved for shorter tenors. 

Using the concepts of total positivity, we analysed the correlation matrix of Schoenmakers and 
Coffey [2003], and a generalisation thereof. Their parameterisation is in matrix theory better 
known as a Green’s matrix. Provided all correlations on the superdiagonal are positive and 
smaller than 1, the matrix displays level, slope and curvature. In Lekkos [2000] it is claimed that 
since zero yields are averages of (continuously compounded) forward rates, the correlation matrix 
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of zero yields will always display level, slope and curvature if the forward rates are independent. 
Since the resulting correlation matrix is then a Schoenmakers-Coffey or Green’s matrix, this 
claim has now been proven mathematically. Vice versa, when this correlation matrix is used as a 
correlation matrix of consecutive zero yields or changes hereof, the underlying assumption is that 
(continuously compounded) consecutive forward rates or changes thereof are independent. 

Finally, we demonstrated that there are matrices for which we cannot prove the existence of 
slope and curvature using total positivity theory or extensions hereof. We ended the paper with an 
unproved conjecture that the order present in correlation matrices drives the slope pattern, and 
corroborated this with results from a simulation study. 
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Appendix - Proofs of various theorems 
 
In this appendix we have included the proofs of theorem 2 and our proposition are included for 
the sake of completeness. Before this however we will require the following theorems from 
matrix algebra. 
 
Theorem A.1 – Cauchy-Binet formula 
Assume A = BC where A, B and C are N × N matrices. The Cauchy-Binet formula states that: 
 

∑ ∈
=

N,p
),(),(),( ]p[]p[]p[ Ik

jkCkiBjiA                       (A.1) 

 
In other words, ]p[]p[]p[ CBA = , the operations of matrix multiplication and compound are 

interchangeable.  
 
The next theorem is useful when studying the eigensystem of compound matrices. 
 
Theorem A.2 – Part of Kronecker’s theorem 
Let ΣΣΣΣ be an invertible N × N matrix with eigenvalues λ1 , ... , λN listed to their algebraic 
multiplicity. The matrix can be decomposed as ΣΣΣΣ = XΛΛΛΛXT, where ΛΛΛΛ contains the eigenvalues on 
its diagonal, and X contains the eigenvectors. In this case, ΛΛΛΛ[p] and X [p] contain respectively the 

eigenvalues and eigenvectors of ΣΣΣΣ[p]. The ( )N
p  eigenvalues of ΣΣΣΣ[p], listed to their algebraic 

multiplicity, are 
p1 ii ... λ⋅⋅λ , for i ∈ Ip,N. 

 
Proof: 
When ΣΣΣΣ is a general square matrix, the theorem concerning the eigenvalues is known as 
Kronecker’s theorem. Its proof is easy and can be found in e.g. Karlin [1968], Ando [1987] or 
Pinkus [1995]. In case ΣΣΣΣ is invertible everything is simplified even further. By virtue of the 

Cauchy-Binet formula we have that ΣΣΣΣX = ΛΛΛΛ and XXT = I  implies that ]p[
T

]p[]p[ ΛXΣ =  and 

IIXX == ]p[
T

]p[]p[ . Indeed, this means that ΛΛΛΛ[p] and X [p] respectively contain the eigenvalues 

and eigenvectors of ΣΣΣΣ[p].  
 
We are now ready to prove theorem 2. 
 
Theorem 2 – Sign-change pattern in STPk matrices 
Assume ΣΣΣΣ is an N × N positive definite symmetric matrix (i.e. a valid covariance matrix) that is 
STPk. Then we have λ1 > λ2 > … > λk > λk+1 ≥ … λN > 0, i.e. at least the first k eigenvalues are 
simple. Denoting the jth eigenvector by xj, we have S−(xj) = S+(xj) = j-1, for j = 1, ..., k. 
 
Proof: 
We will first prove that at least the largest k eigenvalues are distinct. We know that the 
eigenvalues of ΣΣΣΣ are strictly positive, so we can write λ1 ≥ ... ≥ λN > 0. Since ΣΣΣΣ is STPk, we can 
apply Perron’s theorem to find that λ1 > λ2 ≥ ... ≥ λN. Assume we have proven the statement for 
the largest j-1 eigenvalues, j-1 < k, this means we know that λ1 > λ2 > … > λj-1 > λj ≥ … λN > 0. 
Since ΣΣΣΣ is STPj, each element of ΣΣΣΣ[j]  is strictly positive. Perron’s theorem (theorem 1) now states 
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that ]j[Σ  has a unique largest eigenvalue. From Kronecker’s theorem (theorem A.2) we deduce 

that this eigenvalue is j1 ... λ⋅⋅λ . Hence: 
 

1jj1j1j1j1 ...... ++− λ>λ⇔λλ⋅λ>λ⋅⋅λ           (A.2) 
 
i.e., since we know that all eigenvalues are positive, this implies the property also holds for j. For 
j equal to 1 the property has already been proven, so by induction it follows that the largest k 
eigenvalues are distinct.  
Now we turn to the number of sign changes of the eigenvectors associated with the largest k 
eigenvalues. Since ΣΣΣΣ is positive definite, orthogonal eigenvectors x1 through xN exist. Eigenvector 

xi is associated with eigenvalue λi. We write TXΛΛΣ = , where X is the matrix containing the 
eigenvectors as its columns, and ΛΛΛΛ contains the eigenvalues on its diagonal. Let us first assume 
that S+(xj) ≥ j, for j ≤ k. Then there are 1 ≤ i0 < ... < ij ≤ N and an ∈ = ±1 such that: 
 

0)1( j
i ≥−ε
l

lx  for ℓ = 0 , ..., j           (A.3) 
 

Now set x0 = xj, and we extend X asX to include x0 as its first column. Obviously we must have 

that 0
j,...,0

i,...,i j0 =
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
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


X . On the other hand, we can expand this determinant on the first column:  
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XX         (A.4) 

 
From (A.3) we have that the first part of the sum is of one sign. The determinant on the right-
hand side is an element of the first column of X [j] . Via theorem 2 we know that this column 
contains the eigenvectors of ΣΣΣΣ[j] , which contains strictly positive elements by the assumption that 
ΣΣΣΣ is STPj for j ≤ k. Perron’s theorem then implies that this first eigenvector is either strictly 
positive or negative, i.e. every element on the right-hand side is of one sign. If the left-hand side 

is therefore going to be zero, we must have that j
i

0
i

ll

xx =  is zero for ℓ = 0, …, j. Note that the 

determinant on the right-hand side is the determinant of the submatrix formed by only using the 

rows i0 through ij, excluding iℓ, and columns 1 through j. If j
i

0
i

ll

xx =  is zero for ℓ = 0, …, j, we 

would be taking the determinant of a matrix which contains a column filled with zeroes. 
Necessarily this determinant would be equal to zero, which is a contradiction as we just saw. We 
can therefore conclude that S+(xj) ≤ j-1, for j ≤ k. 
The second part of the proof is very similar. From the definitions of S+ and S− it is clear that we 
must have S−(xj) ≤ S+(xj) ≤ j-1. Let us assume that S−(xj) = p ≤ j-2 for j ≤ k. This implies that there 
exist 1 ≤ i0 < … < ip ≤ N and an ∈ = ±1 such that: 
 

0)1( j
i >−ε
l

lx  for ℓ = 0 , ..., p           (A.5) 
 

Again, we set x0 = xj. Then obviously the determinant 0
p,...,0

i,...,i p0 =







X . As before, we find: 
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From before, we know that the determinants on the right-hand side can be chosen to be strictly 
positive. Together with (A.5) this implies that the right-hand side is positive, which is a 
contradiction. Therefore S−(xj) must be larger than j-2, and we have proven S−(xj) = S+(xj) = j-1 
for j ≤ k.  
 
To prove our proposition, we will also require the Hadamard inequality for positive semi-definite 
matrices. In Gantmacher and Kreĭn [1937] this was originally proven for TP matrices. In Karlin 
[1968] we can find the following formulation. 
 
Theorem A.3 – Hadamard inequality 
For ΣΣΣΣ an N × N positive semi-definite matrix we have: 
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ΣΣΣ                       (A.7) 

 
for k = 1, …, N-1.  
 
Now we are ready to prove our theorem about oscillation matrices of order k. 
 
Theorem 3 – Oscillation matrix of order k 
Akin to the concept of an oscillation matrix, we define an oscillation matrix of order k. An N × N 
matrix A is oscillatory of the order k if: 
1. A is TPk; 
2. A is non-singular; 
3. For all i = 1, ..., N-1 we have ai,i+1 > 0 and ai,i+1 > 0. 
 
For oscillatory matrices of the order k, we have that AN-1 is STPk. 
 
Proof: 
First we prove that for all matrices satisfying i), ii) and iii), we have A [p](i,j ) > 0, for p ≤ k and for 
all i and j  ∈ Ip,n satisfying: 
 

1ji ≤−
ll

 and )j,imin()j,imax( 11 ++<
llll

 { = 1, …, p           (A.8) 

 
where ip+1 = jp+1 = ∞. Gantmacher and Kreĭn dubbed these minors quasi-principal minors. We will 
prove this by induction on p. For p = 1 all quasi-principal minors are all diagonal and super- and 
subdiagonal elements. The latter are positive by assumption. Furthermore, from the assumption of 
non-singularity and the Hadamard inequality (theorem A.3) for totally positive matrices, we have: 
 

∏ =
≤< N

1i iiadet0 A                         (A.9) 

 
i.e. all diagonal elements are non-zero, and from the assumption of total positivity are hence 
positive. Now assume that the assertion holds for p-1, but that it does not hold for p ≤ k. Hence, 
all quasi-principal minors of order smaller than p are positive, but there are i and j  ∈ Ip,N 
satisfying (A.8) such that: 
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From the induction assumption we have that: 
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Consider the matrix (aij) with elements i = i1, i1+1 through ip, and j = j1, j1+1 through jp. These last 
two results and corollary 9.2 from Karlin [1968] imply that the rank of this matrix is p-1. Now set 
h = max(i1,k1). Then it follows from (A.8) that h+p-1 ≤ min(ip,jp). This implies that: 
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is a principal minor of order p of A, and hence is equal to zero. Since the matrix A is positive 
definite, so is the square submatrix (aij) with i,j = h, …, h+p-1. Therefore (A.10) cannot hold, and 
since A is TPk, we must have A(i,j ) > 0. 
Now we will prove that B=AN-1 is STPk. Indeed, for any i, j  ∈ Ip,N, where p ≤ k we have, from the 
Cauchy-Binet formula: 
 

( ) ( )∑ ∏−
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ααAjiB
l

ll         (A.13) 

 
where each αααα(ℓ) ∈ Ip,N and we set αααα(0) = i and αααα(N-1) = j . Since A is TPk, B(i,j ) is a sum of 
nonnegative determinants, and hence is itself nonnegative. Following Gantmacher and Kreĭn we 
can now construct a series of αααα(ℓ) such that each determinant in (A.13) is a quasi-principal minor 
of order smaller than or equal to k, and hence by the previous result is strictly positive. The 
construction works as follows. 
 
1. Set αααα(0) = i and s = 1. 
2. Compare j with αααα(s-1). Writing down αααα(s-1) in lexicographical order, we see it can be divided 

into consecutive parts, each of which contains elements )1s( −α
l

 that are either smaller than, 

larger than, or equal to jℓ. We will refer to these parts as the positive, negative and zero parts. 
3. We now construct αααα(s) from αααα(s-1) by adding 1 to the last s elements in each positive part and 

subtracting 1 from the first s indices in each negative part. Each zero part is left unchanged. 
If any part has less than s elements, we alter all elements. 

4. Repeat 2 and 3 for s = 2, …, N-1. 
 
As an example, consider the vectors (2, 3, 5, 8, 9) and (2, 4, 6, 7, 9). Let the first vector play the 
role of αααα(0) and the second the role of j . We group αααα(0) as ((2), (3,5), (8), (9)), and see that it 
consists of a zero, a positive, a negative, and a zero part, in that order. We are now ready to 
construct αααα(1), and find that it is equal to (2, 3, 6, 7, 9).  
We will now prove that each pair αααα(s-1), αααα(s) for s = 1, …, N-1 satisfies (A.8). The first part of 
(A.8) is obviously satisfied, as each element of αααα(s) differs by at most 1 from the corresponding 
entry in αααα(s-1). That the constructed αααα(s) ∈ Ip,N, i.e. that N...1 )s(

p
)s(

1 ≤α<<α≤  is easy to check; we 
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will omit this here. We will now prove that )1s(
1

)s( −
+α<α

ll
 for each {. If both entries come from the 

same part of αααα(s-1), this obviously holds. Hence, we need to check that this condition holds at the 

boundary of two parts. In fact we only have to check those cases where )1s(
1
−

+α
l

 belongs to a 

negative part. This means: 
 

1
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Since αααα(s) ∈ Ip,N, we immediately have: )1s()s(
1

)s( −
+ α<α<α

lll
. Hence, all A(αααα(s-1), αααα(s)) we have 

constructed for s = 1, …, N-1, are quasi-principal minors. We will now prove that αααα(N-1) = j . Note 
that ℓ ≤ iℓ and jℓ ≤ N-p+ℓ are true. These inequalities imply: 
 

pNji −≤−
ll

                                   (A.15) 

 
From the construction we followed, it is clear that for any iℓ ≠ jℓ, the ℓth element of αααα(0), αααα(1), … 
will have the value iℓ up to a certain point, and will then approach jℓ with increments of 1. The 
convergence towards jℓ will start when s = p, at the latest. Due to (A.15) we will have certainly 
achieved αααα(N-1) = j , as we have then performed N-1 steps of the algorithm. This implies that we 
can construct an element of the summation in (A.13) where each element is a quasi-principal 
minor of order p ≤ k. By the previous result, each of these minors is strictly positive, so that 
indeed the matrix B=AN-1 is STPk.  


