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Abstract 
 
The brand choice problem in marketing has recently been addressed with methods from 
computational intelligence such as neural networks. Another class of methods from 
computational intelligence, the so-called ensemble methods such as boosting and 
stacking have never been applied to the brand choice problem, as far as we know. 
Ensemble methods generate a number of models for the same problem using any base 
method and combine the outcomes of these different models. It is well known that in 
many cases the predictive performance of ensemble methods significantly exceeds the 
predictive performance of the their base methods. In this report we use boosting and 
stacking of neural networks and apply this to a scanner dataset that is a benchmark 
dataset in the marketing literature. Using these methods, we find a significant 
improvement in predictive performance on this dataset. 

 
1. Introduction 
 
A classical topic in marketing is modeling brand choice. This amounts to setting up a 
predictive model for a situation where a consumer or household, to purchase a specific 
product available in k brands, chooses one of these brands, given a number of household 
characteristics (such as income), product factors (such as price) and situational factors 
(such as whether or not the product is on display at purchase time). In the past, numerous 
different models have been proposed for brand choice problems. The most well known 
are the conditional and multinomial logit models (Franses & Paap, 2001; McFadden, 
1973). 
 
During the last decade, methods from computational intelligence such as neural networks 
have been proposed as an alternative to these classical models (Hruschka, 1993; West 
et.al., 1997). A recent contribution to the neural networks for brand choice literature is 
the article (Vroomen, Franses & van Nierop, 2004) in which neural networks are used to 
model a two-stage brand choice process: first a household chooses a so-called 
consideration set (i.e. a subset of the available brands which are most interesting for the 
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consumer at hand), and next the household selects a brand from this consideration set 
(Roberts & Lattin, 1997). 
 
Another line of research which became very popular during the last decade both in the 
statistics and in the computational intelligence community, is the use of ensemble 
methods such as boosting, bagging and stacking (Hastie et al., 2001; Schwenk & Bengio, 
2000; Tibshirani, Friedman & Hastie, 2000). These methods work by building not one 
model for a particular problem, but a whole series (ensemble) of models. These models 
are subsequently combined to give the final model that is to be worked with. The main 
advantage of these ensemble techniques is the sometimes spectacular increase in 
predictive performance that can be achieved. In marketing, ensemble methods are 
proposed in a forthcoming paper by two of the authors of this chapter (van Wezel & 
Potharst, 2004). Stacked neural networks for customer choice modeling was also applied 
in (Hu & Tsoukalas, 2003). 
 
In this chapter we will explain some of these ensemble methods (especially boosting and 
stacking) and use them by combining the results of a series of neural networks for a 
specific brand choice problem. All methods explained will be demonstrated on an 
existing set of scanner data which has been extensively analysed in the marketing 
literature: the A.C. Nielsen household scanner panel data on purchases of liquid 
detergents in a Sioux Falls, South Dakota, market. This dataset contains 3055 purchases 
concerning 400 households of six different brands of liquid detergent: Tide, Wisk, 
Eraplus, Surf, Solo and All. 
 
Summarizing, this chapter contains 

- a brief description of classical models for brand choice 
- a detailed description of how neural networks with one hidden layer may be used 

to model a brand choice problem, including 
- a discussion of the features to be selected as explaining characteristics 
- an explanation of how the concept of a consideration set can be modeled using a 

specific kind of hidden layer for the neural network 
- an exposition on the ensemble methods of boosting and stacking, applied to the 

neural network models considered above 
- demonstrations of all methods described using freely available real life scanner 

data. 
 

2. Modeling brand choice: classical models 
 
A classical problem in marketing is the so-called brand choice problem: trying to model 
the purchase behavior of a consumer given a number of explanatory variables.  At 
purchase occasion i a consumer is faced with a choice between J brands 1, 2, …, J of a 
product he is going to buy. His final choice Yi (which must be one of the brands 1,…, J) 
depends on three kinds of variables. The first kind of variable depends on the consumer 
or the purchase occasion, but not on the brand, for instance consumer income; we will 
denote such a variable by a capital X, so for instance the income of the consumer that 
purchases on occasion i is denoted by Xi. The second kind of variable depends only on 



brand, not on purchase time and consumer. We will denote such a variable by a capital Z, 
so for instance the brand awareness of brand j is Zj. The third group of variables depends 
both on consumer/purchase occasion and on brand. These variables are denoted by 
capital W, so for instance the price of the product of brand j that the consumer has to pay 
on purchase occasion i is Wij.  
 
Many models have been proposed for the brand choice problem in the marketing 
literature. In this section four representative models will be described. We start with the 
multinomial logit model. According to this model, Pr[Yi = j | Xi], the probability that on 
occasion i a consumer chooses brand j, given the value of the expanatory variable Xi, has 
the following hypothesized functional form: for j = 1, … , J – 1 we have 
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Note that, whatever the values of the parameters aj and ßj and whatever the value of Xi, 
the sum of these probabilities over all brands equals one, as it should be. Note further that 
only variables of type X play a role in this type of model, variables of type W or Z are 
excluded. When purchase data is given, one may estimate the parameters aj and ßj of this 
model by maximum likelihood methods. 
 
The second kind of model we will mention is the conditional logit model, originally 
proposed by McFadden(1973). For this model the probability that brand j is chosen 
equals, for j = 1, … , J 
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Note again that the sum over all probabilities equals one, and in this type of model we 
have only variables of type W; here variables of type X and Z are excluded. Note also that 
parameter ß does not have an index: the sensitivity for price-changes is supposed to be 
equal for all brands. This constraint may be relaxed using the model discussed next. 
Again, the parameters may be estimated using maximum likelihood. 
 
The third model is the general logit model in which all three variable types (X, W and Z) 
may play a role. For this model the probability that brand j is chosen equals,  
for j = 1, … , J 
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Note that not only all three variable types are incorporated in this model, but also variable 
W has a brand-specific coefficient, which relaxes the mentioned constraint of the 
conditional logit model.  
 



3. Modeling brand choice: neural network models 
 
In addition to the statistical models layed out in the previous section, brand choice can 
also be modeled using neural networks. This is a technique that was put forward at the 
end of the eighties in the machine learning community and its popularity soon became 
very high in very diverse fields, from linguistics to engineering, from marketing to 
medicine. For the brand choice problem neural networks have been proposed by several 
authors (Hruschka, 1993; Dasgupta et al., 1994; West et al., 1997; Hu et al., 1999; 
Hruschka et al., 2002; Vroomen et al., 2004). The neural network methodology is clearly 
explained in the first chapter of the introductory book (Smith & Gupta, 2002). This work 
also contains a number of other applications of neural network methodology to marketing 
problems, such as (Potharst et al., 2002). 
 
We will introduce neural network modeling for the brand choice problem on the basis of 
a recently proposed neural network model that makes use of so-called consideration sets 
(Vroomen et al., 2004). Let us first review the theory on considerations sets. To this 
purpose, the  process of choos ing a product of a particular brand is viewed as consisting 
of two stages. In the first stage, the consumer reduces the set of available brands to a 
smaller subset: this subset is the consideration set, that will exclusively be considered 
when the consumer makes his final choice. In the second stage the consumer picks his 
final choice from the brands that reside in the consideration set (Roberts & Lattin, 1997). 
(Vroomen et. al., 2004) make use of a neural network with one hidden layer to model this 
two stage process. Their model can be visualized as follows: 
 
 
 
 
 
 
 
 
 
 
 
As can be seen from this graph the network consists of three layers of nodes; roughly 
spoken, there is an input layer, followed by a hidden layer in which the consideration set 
(CS) is modeled, and an output layer that models the probability of the final choice for a 
brand (FC). Three types of input variables are used: household characteristics (Xi) like 
size of household or income level, brand characteristics (Zpj) like price, promotion and 
advertising, and finally choice- and brandspecific characteristics (Wqj) like the observed 
price at the purchase occasion. Let the number of X-type variables be I, the number of Z-
type variables P and the number of W-type variables Q. For each of the J brands there is a 
sigmoidal hidden node CSj, that determines the probability that brand j is in the 
consideration set, as follows. For j =1,…,J 
 

 constant  

Xi
 

CSj
 

Zpj
 

FCj
 

constant 
Wqj
 

Wq'j
 

Zp'j
 



)(
11

0 ∑∑
==

++=
P

p
pjpj

I

i
iijjj ZXGCS βαα  

 
where the coefficients a0j, aij and ßpj are parameters that must be estimated from the data 
and G is the logistic (or sigmoidal) function 
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Next, in the second part of the network model, the probability of the final choice (FCj) is 
determined using the consideration set, as follows. For j = 1,…, J 
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where again the coefficients ?0j, ?kj and dqj are parameters that must be estimated from the 
data. The final outcome of the neural network is the brand j that gets the largest 
probability FCj. In (Vroomen et al., 2004) all these parameters are estimated (or, in the 
usual idiom the network is trained) by using the back-propagation algorithm, which is 
based on gradient descent. 
 
4. The data set: scanner data for six liquid detergent brands 
 
The data set we use to test our methods is the data set also used by (Vroomen et al., 2004) 
which is described by (Chintagunta and Prasad, 1998). This data set is freely available on 
the internet. It consists of scanner data on 3055 purchases of a liquid detergent of six 
possible brands: Tide, Wisk, Eraplus, Surf, Solo and All. These purchases concern 400 
different households. For each purchase, the values of four different household-specific 
variables (Xi) are available (I = 4), furthermore there are four brand-specific variables 
(Zpj, so P = 4) and three extra variables (Wqj, so Q = 3) Specifically, we have the 
following set of variables: 
 
X1 = the total volume the household purchased on the previous purchase occasion 
X2 = the total expenditure of the household on non-detergents 
X3 = the size of the household 
X4 = the inter-purchase time 
Z1j = the price of brand j in cents per ounce 
Z2j = 1 or 0 according to whether brand j was on feature promotion or not 
Z3j = 1 or 0 according to whether brand j was on display promotion or not 
Z4j = an indication of how recently brand j was purchased (between 0 and 1) 
W1j = 1 or 0 according to whether the household bought brand j on the previous purchase 
          occasion, or not 



W2j = 1 or 0 according to whether brand j was the brand most purchased over all previous 
          purchase occasions, or not 
W3j = the fraction of recent purchases of brand j by the household divided by the total of  
         all recent purchases of any detergent by the household 
 
For a complete description of these variables, see (Vroomen et al., 2004). Because of 
incompleteness of some of the records we eliminated 798 of them, so we have 3055-798 
= 2257 complete records available. All non-binary variables were scaled to the [0, 1]-
interval in order to make all scales comparable. 
 
 
 

5. Ensemble methods: bagging, boosting and stacking 
 
In recent years there has been a growing interest in the datamining and statistics 
communities in so-called ensemble methods. These methods, also known as committee 
methods or opinion pools, work by combining different individual models (also called 
base models) for the the same problem. Great advantage of these methods is the gain in 
predictive performance that is often achieved by applying them. We illustrate this 
argument with the following example, based on a credit scoring dataset which is freely 
available on the internet. The problem which is addressed is to predict at the time of 
application for a loan whether the loan would ever be repaid or not. As can be seen from 
the graph below the error rate of such predictions drops from 32% when only one model 
is used to 25% when a combination of 20 models is used to predict the outcome. 
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Three of the most well-known ensemble methods are bagging, boosting and stacking, see 
(Hastie et al., 2001). Bagging is shorthand for 'bootstrap aggregating' and it works 
roughly as follows: from the dataset we draw a random sample1 with replacement and 
build a model using only the data from this sample; a second model is built using only the 
data from a second random sample drawn from the original dataset, and so on. In this 
manner we arrive at a number of base models which are subsequently combined by 
casting votes. For instance, for an ensemble of 10 models, if for a certain input vector, 5 
of the models predict brand 3, 2 models predict brand 1 and the remaining three models 
predict brand 2, the combined model predicts brand 3 (the majority of the votes). Since 
we will not use this method in this chapter we will not outline the exact algorithm for this 
method. 
 
The second method we consider is boosting. The general idea of boosting is to create a 
sequence of models, where each model is trained on a reweighted version of the original 
dataset. Each training example in the dataset is assigned a weight and these weights are 
dynamically adjusted: when the model in a certain iteration of the algorithm makes an 
error in the classification of the n-th training pattern, the weight associated with this 
pattern is increased. This causes the model of the next iteration to focus on the patterns 
that were misclassified earlier. Continuing this way, an ensemble of models is created. 
The final model is a weighted majority vote of all the models from the ensemble. 
 
The original boosting algorithm is called AdaBoost (Freund & Schapire, 1996), and we 
will now give an exact description of this algorithm. The original version of this 
algorithm is meant for two-class problems, where the classes are called –1 and +1. Since 
in our case we will not work with only two brands but with any number (J) of brands, we 
will have to adapt this algorithm later to our needs. Let us assume we have a dataset 
consisting of N data pairs (xi, yi), where xi is a vector of input values and yi the 
corresponding class value (either +1 or –1). In the description of the algorithm we will 
use the following notation: wi is the weight of the i-th data pair, M is the number of 
boosting iterations (so the ensemble will consist of M models), ?(A) is an indicator 
function for boolean arguments A, which equals 1 if A is true and 0 if A is false. The 
function sgn(x) = 1 if x  ≥ 0  and –1 if x < 0. Note further that Fm(x) can be any model 
based on the data, whether it be a statistical model, a neural network or a decision tree. 
 
Here is the AdaBoost algorithm: 
 
1. Initialize the boosting weights: for i = 1, … , N 

  
N
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=  
2. For m = 1 to M perform each of the following: 
 

(a) Train the base-model Fm(x) on the dataset with weights {wi : i = 1, … , N} 
 
(b) Compute 

                                                 
1 Of the same size as the original dataset! 
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(e) Normalize the weights wi : for i = 1, … , N 
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3. Output the final combined model:  
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Let us take a look at this algorithm somewhat more closely to see how it works. First of 
all, in step 2(a), it is supposed that we are able to train a model on a dataset containing 
observations (purchases!) that each have a different weight. This can be implemented in 
several ways. We used the so-called resampling method which will be explained below. 
In step 2(b) the error rate errm  of the model built in the previous step is calculated. This is 
the in-sample training error rate, that allows for different weights in the dataset. Using 
this error rate, in step 2(c) the am coefficient is calculated. Provided the error rate < 0.5 
(which it should be if the model does better than random guessing), this coefficient will 
be a positive number that increases if the error rate decreases. This am  coefficient will be 
used in step 3 to weigh the votes from different models: the votes of models with lower 
error rates get a higher weight than those from models that perform less well. In step 2(d) 
the weights of the samples in the dataset are updated: for each sample that is classified 
incorrectly its weight is increased with the same factor, that involves the am  coefficient. 
The weights of correctly classified samples remain unchanged. In step 2(e) the weights 
are normalized (they should sum to one). Finally, in step 3 the whole ensemble of models 
developed is combined using the weighted voting scheme as described. 
 
The third ensemble method we consider is stacking. This term is usually referred to when 
there are two levels of learning involved: on the first level several models are trained on 
the dataset. These may be models of different types. Next, the models are combined not 
via a fixed voting scheme, but by learning an optimal combination method from the data. 
This is the second level of learning involved. Of course, such a stacking scheme can be 
implemented in many different ways. We will use a simple stacking scheme that is built 
on top of our boosting procedure: instead of combining the models from the boosting 
ensemble directly via Step 3, we will learn an optimal sequence of  am  coefficients from 
the data using the following algorithm: 
 



1. Use the sequence of  am  coefficients that is constructed by the boosting algorithm 
as starting values 

2. For iteration k = 1 to K perform the following steps: 
(a) for observation i = 1 to N do 

i. determine the output O(xi) using equation (2) 
ii. if  O(xi) ≠ yi increase all coefficients am  that belong to a model that 

gives the correct prediction yi with a constant factor c:  am  = c*am. 
(b)  determine the error rate of the new combined model (2) on the validation 

set; if it is lower than the best error rate so far, store this sequence of  am 's. 
3. Output the final model (2) with the optimal sequence of am 's. 

 
Here K is the number of training iterations, and c is the constant update factor. (We will 
use K = 50 and c = 1.01.) The validation set is a dataset that is completely independent of 
our training set. How we construct such a validation set will be explained in section 6. 

 
6. Comparing performance 
 
Now that we have introduced the methods we are going to use and the brand choice 
dataset we will apply these methods to, we are in a position to knot things together. What 
we would like is make a comparison of the performance on the liquid detergent sales 
dataset of the methods we have introduced. Particularly, we would like to see the 
performance of Vroomen’s model in comparison with boosting and stacking. As to 
performance we are especially interested in the predictive performance of the different 
models (since the claim is that it can be improved using ensemble methods). So, in this 
section we will be concerned with the predictive performance of the three methods we 
want to test. 
 
In order to apply the boosting algorithm to the brand choice dataset there are a number of 
decisions to be made and problems to be solved. First of all, it has to be decided what 
kind of models we take as our base models, to serve as members of the ensemble. Since 
we want to make a comparison with Vroomen's model, it would be a good idea to use his 
model as our base model. Next, it should be decided what method we will use build a 
model on a dataset with weighted instances. We decided to use the so-called resampling 
method: we draw N times a random instance from the dataset (with replacement!) giving 
each instance i a weight wi. Thus, we get a dataset of the same size as the original dataset, 
which contains however multiple copies of some instances with large weights while some 
instances with small weights might have disappeared from this new dataset. With this 
new dataset we build a model, which is thus based on a weighted dataset. One 
disadvantage of this method is that the generated model has a stochastic nature, since it is 
based on a random sample from the dataset. Another disadvantage is that some records 
just disappear from some of these randomly chosen datasets. However, this loss is fully 
compensated by the fact that we don't need to adapt the original model building method 
to the case of a dataset with weighted instances. 
 



The most important adaptation we had to make regards the fact that we want our methods 
to work for any J brands, not just for two brands. If we call the brands we consider1,…, 
J, it follows that for the instance pairs (xi, yi) in our dataset we have yi ∈ {1, … , J}. Also, 
for each x, Fm(x) (the output of the neural network) must be an integer in the range 1,…, 
J. With this situation in mind, it is not hard to see that the generalization of equation (2) 
to the situation of J brands should be replaced by the following: 
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This equation expresses the procedure to cast a weighted vote for the brands among the 
M models (with weights am) and to pick the brand that got the largest number of  
(weighted) votes. 
 
Another minor adaptation also had to be devised, regarding the situation of J instead of 
two brands. In equation (1), for the situation of two brands, we have seen that a positive 
coefficient is delivered provided the error rate errm  does not exceed 0.5. In the case of 
two brands this is an acceptable state of affairs, since random guessing between two 
brands results in an error rate of 0.5. So the only requirement that a model should meet, 
would be to be better than random guessing. However, in the situation of J brands, 
random guessing results in an error rate of (J-1)/J since there are J-1 possibilities for an 
incorrect guess. Thus, if we set a comparable requirement to the formula for calculating 
the am  coefficients as in the case of two brands, we should demand that am  be positive as 
long as the error rate errm  does not exceed (J-1)/J. This is the case, if we define am  
according to the following equation: 
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The other important property, namely that am  increases when the error rate errm  decreases 
remains true with this definition and it is equivalent to (1) in case J = 2. For these 
reasons, we used (4) to replace (1) in our boosting procedure.  
 
Since we now have a complete description of the methods we used on the detergent 
dataset, we will now describe the experiments that we performed and their results. In 
order to get a fair view of the performance of a model, it should be tested on a completely 
independent test set. By the same token, a validation set, that is used to get an optimal 
sequence of  am  coefficents using the stacking algorithm, should be completely 
independent of both the training set and the test set. We used the following procedure to 
arrive at completely independent training, validation and test sets and an associated 
experimental cycle: 
 

1. Split the 400 households randomly into a three groups, one of size 200 (training 
households, TR), and two groups each of size 100 (validation households and test 
households, VA and TE). 

2. Training set = all purchases in the original dataset of 2257 records of the 
households from TR; validation set = all purchases of the households from VA; 
test set = all purchases of the households from TE. 



3. Using the backpropagation algorithm on the training set a Vroomen model was 
created, and the accuracy of this model on the training set, the validation set and 
the test set was determined. 

4. Using the boosting algorithm on the training set a whole ensemble of Vroomen 
models + a combined model was built; the accuracy of the combined model was 
determined for the training set, the validation set and the test set. 

5. Using the stacking algorithm, starting from the ensemble of step 4 and making use 
of the validation set, an optimal sequence of  am  coefficents was trained for a new 
combined model; for this model the accuracy on training, validation and test set 
was determined.  

 
This complete cycle was repeated ten times. The resulting mean accuracies over these ten 
runs, together with their standard deviations are displayed in the following table: 
 

 Vroomen Boosting Stacking 
training accuracy 80.7 ± 1.5 81.3 ± 1.9 81.8 ± 1.9 

validation accuracy 76.4 ± 2.8 79.4 ± 2.3 79.3 ± 2.6 
test accuracy 75.9 ± 1.8 78.6 ± 2.1 79.1 ± 2.5 

 
We conclude from this table that the use of boosting and stacking results in a clear 
increase in performance, especially on validation data and completely independent test 
data. A stacked model predicts on average 3.2% better on unseen data than a Vroomen 
model. Actually, both boosting and stacking perform better than Vroomen on the test set 
in all of our ten runs. With boosting the increase varies from 0.6% to 4.5% and with 
stacking from 0.7% tot 5.5%. So indeed, the expected increase in predictive performance 
is confirmed on the detergent dataset. 
 
Another remarkable outcome of these experiments is that in our experiments the 
Vroomen model does better than reported in (Vroomen et al., 2003) on the same dataset: 
they report an accuracy of 73.9% on an independent test set, whereas we get 75.9% on 
average. One reason for this difference might be that we use three extra variables in the 
second stage of the model (the Wqj variables) while they use only one extra variable, 
namely price. Another difference is that we repeat the whole experiment ten times, 
whereas they reported only one experiment. Their random split of the dataset into 
training, validation and test set might just have been an unlucky one. By repeating the 
experiment ten times we get a fair idea of the stability of our results on this dataset. 
 
7. Trends and conclusions  
 
In this chapter we showed how some new methods from the field of computational 
intelligence (ensemble methods such as boosting and stacking) could be used for a 
traditional marketing problem like brand choice. We found that indeed the predictive 
performance of the models based on the ensemble techniques improved even compared to 
the most sophisticated existing model that we found in the literature. Although predictive 
performance is one aspect that candidate models should be judged with, there are more 



aspects that should be taken into consideration. One aspect that has not been considered 
here is the interpretability of the generated model. Since models built by ensemble 
methods consist of a combination of different (sometimes many!) base models the 
complexity of the final model is usually high, making it difficult to interprete. This is one 
of the themes that should be taken into account by future serious work into this direction.  
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