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Abstract The search for models which link tomato

taste attributes to their metabolic profiling, is a main

challenge within the breeding programs that aim to

enhance tomato flavor. In this paper, we compared

such models calculated by the traditional statistical

approach, stepwise regression, with models obtained

by the new generation of regression techniques,

known as penalized regression or regularization

methods. In addition, for penalized regression, dif-

ferent scenarios and various model selection criteria

were discussed to conclude that classical crossvali-

dation, selects models with many superfluous vari-

ables whereas model selection criteria such as

Bayesian information criterion, seem to be more

suitable, when the goal is to find parsimonious

models, to explain tomato taste attributes based on

metabolic information. An exhaustive comparison of

the discussed methodology was done for six sensory

traits, showing that the most important covariates

were identified by the stepwise regression as well as

by some of the penalized regression methods, despite

the general disagreement on the size of the regression

coefficients between them. In particular, for stepwise

regression the coefficients are inflated due to their

high variance which is not the case with penalized

regression, showing that this new methodology, can

be an alternative to obtain more accurate models.

Keywords Penalized regression � Tomato taste

attributes � Metabolites � Phenotype prediction �
Variable selection � Stepwise regression

Introduction

A better understanding of the biochemical basis of

taste attributes is a main challenge within the tomato

breeding programs which aim particularly to improve

tomato flavor. Tomato (Solanum Lycopersicum L.)

belonging to the Solanacea family and originally

from South America, is one of the most consumed

vegetables in the world and it has a big impact upon

human diet as well as on our health (Agarwal and

Rao 2000). Although, it is well known that the main

components contributing to the flavour in tomato

fruits are a mixture of sugars, acids and amino acids
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together with volatiles and minerals (Baldwin et al.

1991; Saliba-Colombani et al. 2001), identification

and quantification of the constituents that account for

the differences in tomato flavour is still to a large

extent an open problem. In this study, various

statistical approaches to provide quantitative models

that explain tomato taste attributes based on meta-

bolic measures, are compared.

Different studies have been conducted to decipher

the relationship between sensory traits and metabo-

lites, ranging from studies based on principal com-

ponent analysis (Krumbein and Auerswald 1998;

Krumbein et al. 2004) to some recent ones, in which

networks were constructed to illustrate the correla-

tions between sensory traits and metabolites (Ursem

et al. 2008; Carli et al. 2009). Multiple linear

regression seems to be one of the most appropriate

platforms to provide quantitative models which link

taste attributes to sensory traits. Multiple linear

regression models have been proposed by Skovgaard

(1995) as a general framework to model relationships

between instrumental and sensory measurements. In

tomato related studies, Verkerke et al. (1998)

presented a model which links a set of pre-selected

metabolites with certain sensory traits. More recent

studies within the same scheme are those reported by

Tandon et al. (2003) and Abegaz et al. (2004), in

which predictive models for tomato taste were

presented, based on volatile and non volatile

compounds.

In the great majority of the aforementioned

studies, multiple linear regression models were

computed based on ordinary least squares, in com-

bination with forward stepwise techniques for feature

selection. In this paper, we compare this existing

methodology with a new generation of regression

techniques, called regularization or penalization

methods. This new methodology enjoys fame for its

ability of performing estimation and variable selec-

tion at once, handling models where the number of

variables is greater than the number of observations

and for producing more accurate models.

In particular, we focused on Lasso (Tibshirani

1996) and elastic net (Zou and Hastie 2005) and

different model selection strategies. We evaluate the

advantages and disadvantages of this new methodol-

ogy in comparison with the traditional stepwise

regression, for the study of tomato sensory traits in

relation to metabolic compounds.

Materials and methods

Data description

The collection of tomato germplasm analyzed in this

study can be divided in three morphological types

which are, beef, round and cherry, consisting of 94

cultivars, provided by six different breeding compa-

nies. This set of cultivars represents, to a large extent,

the important commercial varieties in the market and

have a considerable phenotypic variation between the

different types (beef, round and cherry) as well as

between individuals of the same type.

Sensory and metabolic measurements form the

empirical data for this study. The sensory data covers

the spectrum of fragance, taste, after taste and mouth

feel, and was scored by a trained tasting panel of

observers of taste, smell and texture. At a biochem-

ical level, the data consisted of metabolic records that

can be divided into two categories: volatiles and

derivatized compounds (Table 1), analyzed from ripe

tomato fruits. Of special interest are the volatile

compounds (derived from different precursors includ-

ing amino acids, fatty acids and carotenoids) because

of their large influence on flavor perception. Volatiles

were measured by using Gas Chromatography and

Mass Spectrometry according to the methods for-

merly reported by Tikunov et al. (2005). The organic

acids and sugars were profiled by the same techniques

as described in the protocol employed for quantifica-

tion of volatiles by Roessner-Tunali et al. (2003).

The same data set, has been studied by Ursem

et al. (2008), van Berloo et al. (2008a, b), where

more details about the data and their preparation can

be found.

Penalized regression

In this investigation we are interested in finding the

relationship between a given quantitative trait Y, for

an observed phenotype and a collection of metabolic

variables X ¼ ðx1; . . .; xpÞ. A simple and yet very

convenient model, to describe this type of associa-

tion, is the so called linear model

Y ¼ Xbþ � ð1Þ

where p; b ¼ fb0; . . .; bpg and � ¼ f�1; . . .; �ng rep-

resent the number of variables, the regression
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coefficients and the errors in the model. The errors

are assumed to be independent and identically

distributed normal random variables, with mean 0

and variance r2.

Ordinary least squares (OLS) estimates, are well

known solutions to the multiple linear regression

problem (1), obtained when minimizing the residual

sum of squares. Although unbiased, OLS estimates

are discredited for being unstable and overfitting of

data in the presence of collinearity or in a high

dimensional set up, i.e when the number of variables,

p is larger than the number of observations, n. In any

of the previous scenarios, OLS estimates are variance

inflated and have a poor prediction accuracy. How-

ever, these problems can be partially alleviated by

conducting variable selection.

Another alternative to the least squares solution

drawbacks, is provided by the so called penalization

or regularization techniques such as Lasso, proposed

by Tibshirani (1996). Lasso, the acronym for least

absolute shrinkage and selection operator, has

became very popular because simultaneously per-

forms estimation and variable selection. The main

idea here to estimate the regression coefficients b,

consists of minimizing the residual sum of squares

plus an L1 constraint on the regression coefficients as

follows

b̂ðkÞ ¼ argminb kY� Xbk2
2 þ kkbk1

n o
ð2Þ

where kY� Xbk2
2 ¼

Pn
i¼1ðYi � ðXbÞiÞ

2
is the resid-

ual sum of squares, kbk1 ¼
Pn

i¼ 1 jbjj and k � 0

being the penalty parameter which controls the

amount of shrinkage, acting as a tuning parameter

for the model. Large values of k account for greater

amount of shrinkage, drawing the model coefficients

towards zero. Besides, the geometry of the L1

constraint ensures that some of them will be exactly

zero, producing in that way sparse models, which

depend on the choice of the penalty parameter k.

Similarly to Lasso, elastic net is a shrinkage and

variable selection method for linear regression,

proposed by Zou and Hastie (2005). Elastic net tries

to combine the good properties of Lasso together with

the ones from Ridge regression (Hoerl and Kennard

1970), to obtain sparse models with reduced standard

error estimates. It solves problem (1) by minimizing

the residual sum of squares, adding a convex

constraint for the regression coefficients to find b̂ as

the following minimizer

b̂ðkÞ ¼ argminb

kY� Xbk2
2 þ k ð1� aÞkbk1 þ akbk2

2

� �n o
ð3Þ

with kbk2
2 ¼

Pn
i¼ 1 b2

j and k � 0 being the penalty

parameter, behaving as in the Lasso regression.

Furthermore, the value a 2 ½0; 1� decides on the type

of constraint applied, being a compromise between

the ones in Lasso and Ridge regression. The first part

of the constraint, equivalent to kbk1 � s (Lasso)

generates a sparse model. The second one kbk2
2 � s

(Ridge), encourages a grouping effect, removes the

limitation on the number of selected variables and,

stabilizes the Lasso regularization path. In addition,

the convex constraint ð1� aÞkbk1 þ akbk2
2; depends

on the value a 2 ½0; 1� which allows the construction

of a broad range of possible models that enjoy

different properties. Finally, it is worth noting that

here, the optimal models will depend on the choice of

the two parameters k and a.

The elastic net, being a combination of Lasso and

ridge regression was expected to be suitable for the

modeling of sensory traits on a set of metabolites,

Table 1 Volatiles and non derivatized chemical compounds

used in this study

Volatiles Non derivatized

(1) Methylbutanal (18) Glucose

(2) Penten3one (19) Sucrose

(3) 3-Methylbutanol (20) Fructose

(4) 2-Methylbutanol (21) Myoinositol

(5) Cis3hexenal (22) Malic acid

(6) Hexanal (23) Citric acid

(7) Trans2hexenal (24) Aspartic acid

(8) Cis3hexenol (25) Glutamic acid

(9) Trans2heptenal

(10) Methyl5hepten2one

(11) Isobutylthiazol

(12) Phenylacetaldehyde

(13) Methoxyphenol

(14) Phenylethanol

(15) Methylsalicylate

(16) Betadamascenone

(17) Betaionone

Numbers in brackets correspond to the encoding used in this

paper
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where these metabolites are assumed to come from a

small set of metabolic pathways, with metabolites

within pathways showing some correlation. The

Lasso property of the elastic net then should select

the pathways that enter the regression model for a

particular sensory trait. The ridge property subse-

quently shrinks the metabolites within pathways in

about the same amount.

These regularization techniques rely on fast and

efficient computing algorithms, to calculate the

set of possible Lasso or elastic net solutions fb̂ðkÞ;
k 2 ½0;1Þg, that depend on the parameter k, and are

known as solution paths or traces. So far, different

algorithms have been proposed to compute the whole

path of Lasso solutions. One of the most popular, was

a path following algorithm, called the least angle

regression algorithm (LARS) and proposed by Efron

et al. (2004). This algorithm has the same order of

computation as a least square fit (Hastie et al. 2009).

An alternative algorithm for computing Lasso as well

as elastic net path solutions, is the coordinate

descendant algorithm by Friedman et al. (2007). In

addition to being faster for resolving large problems,

this algorithm can be applied to a non convex penalty

functions.

Model selection

Variable selection is a common problem in modern

statistical analysis, arising from the necessity of

identifying the set of important variables among all

the superfluous ones. Noisy variables add complexity

to the models and do not lead to great improvements

in prediction power. The usual variable selection

procedure is based on the residual sum of squares and

a penalty which take into account the number of

parameters in the candidate model. In analogy to

Lasso and elastic net, stepwise regression finds the

candidate model as the minimizer of

b̂ðkÞ ¼ argminb kY� Xbk2
2 þ kkbk0

n o
ð4Þ

where the L0 norm penalty is kbk0 ¼
Pp

i¼ 1 Iðbj 6¼ 0Þ,
that is equivalent to the number of variables included in

the model. For stepwise regression, first the variables

that belong into the model are identified and then once

the model has been identified, the coefficients are

estimated. Regularization techniques offer an alterna-

tive to the traditional variable selection methods such

as forward or stepwise regression (Efroymson 1960),

which are known for being unstable under certain sit-

uations (Breiman 1996). Under the Lasso or elastic

net framework, feature selection is equivalent to

model choice. The penalty parameters there, account

for the amount of shrinkage in the regression

coefficients, and therefore for the number of vari-

ables appearing in the model. When a high penalty is

chosen, few variables are included, whereas when a

very low penalty is selected, most of them will be

present. Because complex models are not necessarily

performing better than the simpler ones, the main

challenge here is to find a trade off between sparsity

and prediction accuracy.

Many model selection techniques have been

developed during the last years and crossvalidation

(Stone 1974), based on the performance of the

estimated model into a new data set (generalization

error), is one of the most widely used among them.

Crossvalidation, based on generalization perfor-

mance, describes the model performance in a new

data set, by selecting those that have the best

prediction performance. Other very popular model

selection criteria are those of the form

UðcÞ ¼ �2 lnðLÞ þ jcjDðnÞ ð5Þ

where L corresponds to the maximized value of the

likelihood function for the estimated model c, |c| is

the effective model dimension and D(n) is a function

of the sample size (Broman and Speed 2002). Very

well known examples of them, are the Akaike

Criteria, (Akaike 1974) in which D(n) = 2, or BIC

(Schwarz 1978) when D(n) = ln(n).

For regression models computed via Lasso regres-

sion the effective model dimension is equal to the

number of variables included in the model (Zou et al.

2007); for the elastic net it is equal to
PsizeðAÞ

j¼ 1
dj

djþ2
,

were A denotes the set of variables in the model and

dj is the jth eigenvalue of the matrix Xt
AXA (van der

Kooij 2007).

Results and discussion

Models selected by crossvalidation

Six tomato sensory traits were analyzed by different

regression techniques, to find their underlying
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metabolic models.Multiple linear regression models

with 3 particular elastic net penalties, namely

a = 0.25, a = 0.50, a = 0.75, as defined in Eq. 3,

and from Lasso were computed. For those fits, the

number of predictor variables selected in each model

is rather large, as can be seen in Table 2, together

with their corresponding goodness of fit R2. The

model selection criterion in all the cases was

crossvalidation. Crossvalidation, tunes models to

achieve the best prediction accuracy (P.A.)

P:A:ðkÞ ¼ 1� 1

n

Xn

i¼ 1

Yi � Xib̂k

1�Hii

 !2

ð6Þ

where Xi is the ith row of X and Hii is the ith

diagonal element of the ‘‘hat’’ matrix H (such that

Ŷ ¼ HY). The prediction accuracy measures the

predictive power of a given model on new sample

data. Nevertheless, crossvalidation does not take

into account the model complexity, as a conse-

quence, correlated predictors may be included in

the model leading to a decrease in prediction

accuracy.

The relative minor influence of the different three

elastic net and Lasso penalties in the final models, is

because the prediction error curves for the four

different models reached their minimum almost at the

same location, as shown in Fig. 1. Crossvalidation

selects optimal models to be the minimizers of those

curves, and in this study the minimum of the four

prediction error curves falls very close together,

producing models which have almost identical num-

ber of regressors. However, in all the cases the most

parsimonious models were those given by the Lasso

since this method applies the strongest constraint to

the regression coefficients.

Models selected by BIC and stepwise regression

Models selected by BIC (Bayesian information

criterion), particular case of (5), for elastic net

penalties, contained a large number of regressors

(Table 3). The selected variables did not show clear

grouping structures which could be interpretable in

terms of chemical pathways. Therefore, we decided

to focus on Lasso and stepwise regression and further

compare the performance between these methods.

Lasso regression models, selected by the BIC

criterion, were superior in terms of the coefficient of

determination R2, from those selected by crossvali-

dation, and achieved similar predictive power as

those from stepwise regression (Table 4). For step-

wise regression, the criteria used to decide whether a

variable entered or left the model, was BIC. It is also

important to notice that the number of variables

selected by stepwise regression is in general smaller

than those selected by Lasso (Table 3). Stepwise

regression coefficients are of larger size than those

from Lasso having an influence on the number of

variables entering into the model. That is shown in

Fig. 2, in particular for the sensory trait taste spicy,

although it was the case for all the traits. In general,

the regression coefficients signs, obtained from Lasso

and stepwise regression coincide in all the cases.

Models calculated by Lasso which contained five

variables, were studied to assess the order in which

predictor variables were selected along the traces. In

addition, it is also of interest to compare the predictor

variables selected by those models, with the ones

obtained by stepwise regression and Lasso when BIC

was used as a selection criterion.

There is a general agreement on the selected

variables by the BIC and step wise regression for all

Table 2 Number of predictor variables included in the models selected by crossvalidation for Lasso and elastic net with penalties:

a = 0.25, a = 0.50, a = 0.75

Sensory trait a = 0.25 R2 P.A. a = 0.50 R2 P.A. a = 0.75 R2 P.A. Lasso R2 P.A.

Taste spicy 18 0.860 0.836 17 0.861 0.836 17 0.861 0.836 17 0.861 0.836

Taste watery 16 0.825 0.799 17 0.826 0.799 17 0.827 0.799 16 0.827 0.799

Scent smoky 14 0.655 0.595 13 0.657 0.599 13 0.657 0.601 13 0.655 0.602

Taste sour 18 0.464 0.536 17 0.459 0.541 17 0.457 0.543 17 0.455 0.545

After taste bitter 18 0.370 0.266 17 0.378 0.274 17 0.386 0.278 16 0.389 0.280

Scent tomato 18 0.343 0.229 17 0.354 0.241 16 0.355 0.246 16 0.359 0.249

The quality of the different models is measured by the coefficient of determination R2 and prediction accuracy values (P.A.)
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the traits except taste spicy (Table 3). Models

which contained exactly five variables succeeded

in selecting those which are more important

although failed on the estimation of the coefficient

value as is clear from Table 3. Furthermore, we are

studying different criteria based on (5), to compare

the performance of stepwise regression, Lasso and

elastic net.

As it was shown by the above comparison, there

are traits such as taste spicy and taste watery, that

were predicted reasonable well by Lasso as well as by

stepwise regression, whereas some others like after-

taste bitter or scent tomato, could hardly be predicted

by the considered set of metabolites, with any of the

studied methodology. For the traits that failed to be

predicted by any of the proposed methods, we can
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Fig. 1 Regression

coefficients for sensory trait

taste spicy computed by

different models, common

variables are shown in blue.

Upper panel: Coefficients

computed by Lasso with

BIC as model selection

criteria. Middle panel:
Coefficients computed by

Lasso stopping the

algorithm when the model

contains five variables.

Lower panel: Coefficients

obtained by stepwise

regression

Table 3 Number of variables selected in the optimal models computed by BIC for elastic net

Sensory a = 0.25 Nr. var. R2 P.A. a = 0.50 Nr. var. R2 P.A. a = 0.75 Nr. var. R2 P.A.

Taste spicy 18 0.865 0.834 10 0.830 0.819 10 0.836 0.164

Taste watery 17 0.829 0.798 15 0.827 0.799 15 0.828 0.799

Scent smoky 6 0.516 0.502 5 0.544 0.529 5 0.554 0.540

Taste sour 10 0.508 0.484 3 0.346 0.343 3 0.383 0.378

After taste bitter 10 0.155 0.148 7 0.175 0.165 1 0.021 0.029

Scent tomato 3 0.059 0.063 3 0.074 0.076 1 0.037 0.043

Goodness of fit is expressed by the coefficient of determination, R2, and prediction accuracy values (P.A.)
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conclude that the chemical basis behind them was not

contained in the set of studied metabolites. For the

sensory traits that were predicted well, the relevance

of some variables is clear since they appeared in all

the models regardless of the technique used.

Concluding remarks

In this study we have compared existing regression

methodology for linear models, namely stepwise

regression, with a new generation of regression

Table 4 Sensory traits linear models based on volatiles and non derivatized tomato chemical compounds, computed by Lasso

Sensory Lasso Nr.

var.

R2 P.A. Lasso for

5 predictors

Nr.

var.

R2 P.A. Stepwise

regr.

Nr.

var.

R2

Taste

spicy

23, 2, 14, 20, 19,

9, 21, 24, 12

9 0.836 0.823 19, 23, 20, 14, 2 5 0.510 0.507 2, 20, 9, 14, 10, 1 6 0.836

Taste

watery

23, 14, 20, 9, 21,

3, 17, 12, 7

9 0.773 0.764 23, 14, 20, 21, 9 5 0.619 0.616 23, 14, 20, 17 4 0.774

Scent

smoky

15, 13, 23 3 0.527 0.518 15, 13, 23, 19, 16 5 0.539 0.528 15, 23 2 0.447

Taste sour 3, 23, 17 3 0.392 0.387 3, 23, 17, 11, 25 5 0.420 0.413 3, 23 2 0.586

After taste

bitter

14 1 0.057 0.062 14, 4, 19, 13, 6 5 0.104 0.104 19 1 0.111

Scent

tomato

11 1 0.067 0.070 11, 7, 1, 16, 4 5 0.123 0.118 11 1 0.128

Shown are the optimal models selected by BIC, models containing five variables, calculated from the Lasso traces, and models

obtained by stepwise regression. The models goodness of fit is illustrated by the coefficient of determination R2 and prediction

accuracy values (P.A.)
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Fig. 2 Prediction error

curves for the studied

sensory traits. The x-axis

represents the grid of 70

log10k values for which

models were computed,

y-axis presents the

corresponding prediction

error values. Prediction

error values on the right
side of the x-axis

correspond to models for

which few variables were

included while moving

towards the left along the

x-axis lead to models which

contain more variables
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procedures known as elastic net and Lasso. The aim

was to analyze the different approaches to find

optimal biochemical models based on metabolic

information to predict a group of sensory traits. In

the set up of this investigation, that is, when the

number of variables in the model is smaller than the

number of observations, Lasso models, selected by

BIC, achieved a comparable fit to those from

stepwise regression in terms of R2, not being very

clear which method was superior. However, looking

at the size of the regression coefficients, it was clear

that those estimated by stepwise regression, had

larger size than the ones calculated by the Lasso

approach. The Lasso models contained more corre-

lated predictors than the stepwise regression models

which may have induced the smaller estimates for the

coefficients.

Based on our analysis, stepwise regression pro-

vided a very good platform to find satisfactory

prediction models a as we have seen in this study.

Elastic net and Lasso models selected by cross-

validation failed finding the set of most important

variables. That result, agreed with the conclusions in

Leng et al (2006), where they proofed that regular-

ization models selected by techniques based on

prediction accuracy, as is the case with crossvalida-

tion, are not consistent in terms of variable selection.

In other words, variable selection and model predic-

tion are different issues which need to be simulta-

neously taken into account suggesting that model

selection criteria such as BIC lead to more appropri-

ate models.

To further improve the prediction accuracy of

the sensory traits that were not well predicted by

none of the discussed methods a further analysis

with a more extensive set of metabolites will be

carried out. Finally, we aim to obtain more accurate

sensory-metabolic models by including genetical

considerations.
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