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Abstract

In this paper we use Markov chain Monte Carlo (MCMC) simulation to calibrate
a two-factor arbitrage-free model for the term structure of interest rates, proposed
by Cairns (2004) based on the positive-interest framework (Flesaker and Hugh-
ston, 1996). The model is a time-homogeneous model driven by latent state vari-
ables which follow a two-dimensional Ornstein-Uhlenbeck process. The standard
Metropolis-Hastings (MH) algorithm was first employed for estimating both model
parameters and latent variables using simulated data in order to validate the algo-
rithm and ensure that it can result in reasonable and reliable estimates. According
to the results, it turns out that the chains of the estimation tend to converge slowly.
Therefore, we carry out some improvements by using the adaptive MH algorithm
associated with a blocking strategy and reparameterising the log posterior of Cairns
bond prices.
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1 Introduction

Interest rate plays a substantial role in several kinds of investment. It lends itself
to a form of security and also the underlying of other securities such as derivatives.
In light of asset and liability management, a change in interest rates affects the
valuation on both sides of a bank’s balance sheet. From an economic point of view,
the interest rate influences decision making for investors and is a key indicator for
the economy that determines the levels of investment, saving and consumption. By
definition, interest rate can simply be thought of as the cost of borrowing from one
to another, but its modelling is far more complicated than this simple definition
suggests.

Typically, interest rates are considered for a wide range of maturities as the yield
curve (i.e. the term structure). In order to develop a model for it, we first need to
understand the behaviour of interest rates. With reference to Cairns (2004), some
desirable characteristics for a term structure model are as follows:

e All interest rates should be positive and can remain values close to zero.

e The model should be arbitrage-free and framed in continuous-time in order to
be able to use for derivative pricing and hedging.

e The model should have a mean-reverting process reflecting that in reality
interest rates will not be completely allowed to move freely, but once they
reach extreme levels, they will be pulled back to some long-term rates (e.g. an
intervention by the Central banks).

e The model should be able to produce yield curves similar to what we can
observe in historical data.

In recent decades, a considerable number of arbitrage-free models have been pro-
posed for the term structure of interest rates. At the beginning, much attention was
drawn to one-factor models for the short-term rates (i.e. risk-free rates) such that
their dynamics are characterised by stochastic processes. Unfortunately, from em-
pirical research (e.g. Litterman et al., 1991), it is suggested that one-factor models
are unlikely to sufficiently capture the dynamics of real market data. Accordingly,
multifactor arbitrage-free models have been developed thereafter. Despite an in-
crease of the number of factors and their rigorous frameworks, several multifactor
models are yet required to impose some restrictions in order to guarantee interest
rates being positive. In effect, this makes those models less flexible and more dif-
ficult to implement. Nevertheless, a new framework introduced by Fleasaker and
Hughton (1996) (the positive-interest framework) allows us to develop a multifactor
model that can ensure the positivity of interest rates in a natural way.

In aspect of model implementation, multifactor models are often incorporated with
unobservable state variables so that advanced and modern statistical techniques are
required for estimation. The main methodologies that frequently appear in literature



related to term structure modelling are maximum likelihood (ML), general method
of moments (GMM) and efficient method of moments (EMM) which all follow the
frequentist statistical approach. For the Bayesian approach, Markov chain Monte
Carlo (MCMC) simulation is the prevailing method for estimation.

In an early stage, likelihood-based estimation played a key role in statistical inference
and modelling. It was widely used in many applications, including the estimation of
term structure models. For instance, Pearson and Sun (1994) and Nowman (1997)
used the ML method to estimate a two-factor CIR model and a one-factor CKLS
model respectively. After a while, much of the attention moved to the general
method of moments when it was first formalised by Hansen (1982). GMM gen-
eralises the standard method of moments (MM) in the sense that the number of
moment functions can be greater than the number of parameters being estimated.
More precisely, the moment functions are initially defined and then we solve an
optimisation problem of equating the sample average of the moment functions to
zero. In case that the number of moment functions is just equal to the number of
parameters, the exact solution thus can be achieved. Examples of applications to
term structure modelling are those by Longstaff and Schwartz (1992) and Chan et
al. (1992), where they applied the GMM methodology to estimate the CIR and
CKLS models respectively.

For the models incorporated with unobserved or latent variables, the GMM method
may not be applicable if the moment functions cannot be numerically evaluated.
Furthermore, in a presence of the latent variables, the complete likelihood function
may also be hard to obtain and hence the ML method is unlikely to be feasible.
Under these circumstances, one may use the simulated method of moments (SMM).
The technical properties of SMM methodology can be found in Duffie and Single-
ton (1993). The efficient method of moments, described by Gallant and Tauchen
(1996), is a kind of SMM. Since introduced, it has appeared in several well-known
literatures of calibrating term structure models such as stochastic volatility models
(Andersen and Lund, 1997), affine term structure models (Dai and Singleton, 2000)
and quadratic term structure models (Ahn et al., 2002). Despite its popularity, one
prevailing shortcoming of EMM is computationally expensive comparing to GMM
and ML.

In recent years, Bayesian estimation has also increasingly been paid attention due
to the development of the MCMC simulation. In the past, the Bayesian approach
was less preferable because of the difficulty of implementation, particularly for high-
dimensional problems. The existence of the MCMC methodology allows us to tackle
such problems in more flexible and feasible ways. One distinct advantage of MCMC
is that we can obtain information about parameter uncertainty directly from the sim-
ulation output. Specifically, MCMC avoids relying on an asymptotic approximation
as do GMM and EMM. With application to term structure modelling, Eraker(2001)
applied MCMC to fit a two-factor model with a latent stochastic volatility compo-
nent using weekly US Treasury data from Jannuary 1954 to May 1997. Hu (2005)
estimated multifactor affine models using MCMC but those models are not in a gen-
eral form since Wiener processes are assumed to be uncorrelated (p = 0). Moreover,
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the chains of several parameters converge rather poorly and need to be improved.
Pooter et al. (2007) employed a Bayesian approach to estimate term structure
models incorporating macroeconomic variables but some results appeared to have a
substantial problem of convergence since some parameters did not converge at all.
Other examples of implementing term structure models using MCMC can also be
found in Bester (2004), and Lamoureux and Witte (2002).

In this paper, we calibrate a specific two-factor arbitrage-free term structure model
developed by Cairns (2004) using simulated data with Markov chain Monte Carlo
being the central methodology for our estimation. A new family of the Cairns mod-
els is based on the positive-interest framework that can be used in long-term risk
management. In the Cairns model, we are required to estimate both model param-
eters and time-varying latent state variables, driven by a two-dimensional Ornstein-
Uhlenbeck process. Numerical integration methods are also used for computing the
bond prices since their closed-form solution cannot be achieved analytically. Here,
theoretical bond prices are numerically computed using the Trapezoidal rule since
it is most convenient for the programming and, more importantly, we found that by
this simple method there is no significant difference to the prices compared to using
more complicated techniques such as the adaptive Simpson quadrature.

Consequently, the full joint posterior density of the Cairns bond price is derived and
hence the latent variables and model parameters are estimated where the Metropolis-
Hastings (MH) algorithms play a key role for our estimation. We initially employ
the standard MH which can give us fairly acceptable results but it is evident that
the chains converge rather slowly. Accordingly, we then use the adaptive MH with
a blocking strategy and repameterise the bond posterior distribution for improving
the chain convergence.

1.1 Outline of the paper

The remainder of this paper is as follows. In Section 2, we introduce our estimation
framework and the Cairns term structure model. Section 3 outlines the dataset that
we will be used to calibrate the Cairns model. In Section 4, we describe the MCMC
algorithms which are the core methodology for our estimation. In Section 5 and
6, we discuss and analyse the estimation results of using the standadard and the
adaptive MH algorithms with some improvement respectively. Section 7 concludes.



2 Estimation Framework

Suppose that (€2, F, P) is a probability space. We first set up an estimation frame-
work by assuming interest rates in the market follow the Cairns model such that
the observations

P(t7th) :C(Tt]7X(t)78)+5(taj)v (1)
where €(t,j) ~ 1.i.d. N(0,02) for some constant o., P(t,7;) is a zero-coupon bond
price at time ¢ for a bond that pays 1 at time ¢ + 7; of the maturities 7;, for
j=12,...,N;, and C(m;; X(t),6) is the theoretical bond price by the two-factor
Cairns model, i.e.

[ H(u,z)du
C(r,z,0) = "I 9
(r,2,) Jy" H(u,z)du (2)
where
2 1 <~ pii0i0;
Hu,x) = [_ irg e M — — E YT o (cutayul 3
(u,z) =exp | — Pu+ ;:1 0T € 2“:1 ai+aj€ (3)

0 = (B, a1, 9,071,092, p,71,72) is the model parameter vector and X (t) = (X (¢), Xa(t))',

for t =1,..., M, are the latent variables which follow
2
dX;(t) = ci(yi — Xi(t))dt + > a3;dW;(8), (4)
j=1

where Wi (t) and Wh(t) are two independent Wiener processes with respect to a
filtration (F;)¢>o under the real world probability P.

With this setting, we have P(t,7;) ~ N(C(7;; X (t),0),02).

rYe

3 Data

In an initial stage, we consider the estimation of the latent variables and model
parameters with a simulated dataset which will allow us to check the accuracy of
the algorithm with reference to the true values for X (t) = (X;(t), X2(¢))" and 6. To
simulate bond prices according to (1), we define 20 constant maturities (N; = 20,
for all ¢): 0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 12.5, 15.0, 17.5,
20.0, 22.5, 25.0, 27.5, 30.0 years, and then generate unit normal random variables

e(t,j), for 7 =1,2,...,20 with the mean and covariance matrix:
0 a - 0
= 0 0= OE U;E 0 , where o. = 0.001.
0 0 0 - o,



Clearly, we assume here that the bond prices of each time ¢ are independent with
a fixed normal randomness. Additionally, the other model parameter values are
chosen with respect to Cairns (2004) as

B =0.04, a1 = 0.6, a0 = 0.06,01 = 0.6, = 0.4, p = —0.5,

whereas the latent variables can be simulated from the exact solution of a two-
dimensional Ornstein-Uhlenbeck process using the following proposition.

Proposition 1 [The Ezact Solution of a Two-Dimensional Ornstein-Uhlenbeck Pro-
cess] Suppose that X (t) = (X1(t), Xa(t))" follows a two-dimensional Ornstein-Uhlenbeck
process such that

d(30) = (5 2 (i ) (o 22)a (W) o

2
AXi(t) = (i — Xi(t))dt + Y oydWi(1),
j=1
where X1(0) = &1, Xo(0) = o, Wi(t) and Wy(t) are two independent Wiener pro-
cesses. Then, the exact solution of X (t) can be found and achieved at

Xi(t) = 5+ (X,(0) ~ )e az+2%/ IaT(5) )

Hence, (X1(t), Xo(t))" is bivariate normal with
E(Xi(t) = v+ (Xi(0) —w)e

2 2
Var(Xz(t)) — (Uil +0i2> (1 - €—2ait)’
2041'
011021 + 012022 _
Cov(X1(t), Xa(t)) = 1 — e (arta2)ty
ov(X,(0), Xo(1)) e (R

The latent variables X (¢) under the real world probability measure P can be simu-
lated from the exact solution in Proposition 1. Given 7; = 2 = 0 and the instanta-
neous correlation matrix

|1 ] T 1 0
p_{pl}—AA,WhereA—{p 1—p2}’

it follows that
t
Xi(t) = X1(0)e™ " + / e 1 = dy (s),
0
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t t
Xo(t) = X5(0)e " + p/ e~ 2= qW () + /1 — p2/ e~ 2= qWy(s).  (6)
o 0

Specifically,
< Xl(t) > -~ N2 << Xl((:))e*aﬂtf ) ’ < ﬁ(l o e—20¢1t> t I_;_%.612(1 o e—(;xl—l;ag)t) >> |
Xl R N G e N s

Likewise, from time t; to tx,1, where At =t — t;, we will have
Xi(trt1) ~ N Xy (tg)erat >
Xo(ths1) 2 Xo(ty)e a2t )» At

1 o1 201 At I4 _ o (a1tag)At
ZAt = ( 2041(1 € ' ) a1+a2<1 € o ) ) .

4 (1 o e—(a1+a2)At) ﬁ 1— 6—2a2At)

where

Figure 1 shows the simulation results of X;(¢) and X5(¢) from ¢ = 1,2,.... M =
1,000 with time step At = 1/12, given the initial and parameter values: X;(1) =
2, X5(1) = 3,01 = 0.6, 2 = 0.06, p = —0.5.

1 1 1 L 1 1 1 1 1
o] 100 200 300 400 500 600 700 800 900 1000
t

Figure 1: The simulated X;(t)(solid) and X5(t)(dotted) from the exact solution for
t=1,..,1000, At = 1/12 with 8 = 0.04, a; = 0.6, a5 = 0.06,07, = 0.6,05 = 0.4, p =
—0.5,71 =0 and ~, = 0.



4 Estimation Method

In this section, we discuss main MCMC algorithms which are based on a Bayesian
approach and will be our core methodology for estimation. Given observed data
y = (y1,...,yn), an unknown parameter vector 6 of the underlying model in the
Bayesian paradigm is treated as a random variable with some prior beliefs. This
is contrary to the classical approach that 6 is supposed to be a fixed quantity.
The heart of the Bayesian approach is Bayes theorem. Here we assume that 6 is
continuous, and initially the joint distribution of y and 6 can be written as

[y, 0) = f(l0)f(0) = f(Oly)f(y).

Hence, it follows that the posterior distribution of # conditional on vy is

fWl0) o) fylo)f(0)

FOW) = =y = Tl0)7(0)d0

fOly) o f(yl0)f(0), (7)

where f(y|0) is the likelihood of the data, f(#) is the prior density and [ f(y|0)f(6)d0
is the normalising constant satisfying [ f(0|y)df = 1.

4.1 Joint Posterior Distribution of the Cairns Bond Price

Initially, we will look at a mean-reverting bivariate vector autoregressive VAR(1)
model since it can be thought of as a model for the latent variables in discrete-time
version. The derived likelihood will be part of the full posterior distribution of the
Cairns bond price which is required for the MCMC simulation.

Proposition 2 [Likelihood of the Bivariate Normal VAR(1) Model] Suppose that
X(t) = (Xu(t), Xa(t)) follows

(A= ()= (o DY (R )+ (20) o
X(t) = p+ K(X(t—1) = p) + Z(t),

011 012
021 022

where Z(t) ~ No(0,%) and ¥ = ( ) is a covariance matri.



Then, the likelihood of X = {X(1),X(2),...,X(M)}, given the parameter vector
0= (u,K,%), is

f(Xlp, K%)= Li(X(1)]0) - Lo(X(2),..., X(M)]0, X (1))

where Z(t) = X(t) —p— K(X(t —1) — p) and

Providing the framework in (1), the full joint posterior distribution of the Cairns
bond price can be written as

f(OP) o f(P,O) = [(PO)f(O)

M
= [[r®@Xx(@)0)
t:M

< [T foel X@OIX (1 = 1),62) % fou(X(1)]6) % fo(6), (10)

t=2

where P is all bond price data, fi, fo, and fo. are the normal density functions, fy is
the prior density function and © = (X, 0), where X = {X(1), X(2),..., X(M)},0 =
91 U 927 where 91 = {B? 01,02, 08}7 92 = {Oél, A2, P, Y1, 72}

We partition the parameter vector 6 into 6; and #; to make clear which group of
parameters is in the dynamic of the latent variables. In addition, it can be observed
that the full posterior distribution (10) consists of four main components:

e the likelihood of the pricing data; f; (measurement equation),
e the conditional likelihood of the latent variables X (¢); fa. (transition equation),
e the unconditional likelihood of X (1); fo,(X(1)|6), and

e the prior density of of model parameters fy(6).
Since the likelihood fo. and f5, (X (1)|0) are given in Proposition 2, the log posterior
eventually is

F(O) = log f(O[P) = k + log (P, ©), (11)
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where k is a constant and

log f(P,©) = ) log fi(PP|X(t),0)

+ log oo X (£)[ X (£ — 1), 02) + log fou (X (1)]6) + log fo(0)

= > {—% log(2r0%) — 55 3 (P(t, ) — Clys X 1), 9))2}
—(M —1)log(2r) — <M2_ D log |%] — % >z Z()
~log(2m) — 5log || — 5(X(1) =)0 (X(1) =) + log fo(6)
log (B,0) = —=log(2mo?) = 5233 (Pltmy) — Clrig X(0),0))
~Mog(2m) — Stog|] - XD iog|m

where fo(6) is the prior, C'(7;; X (t),6) is theoretical price, P is all bond price data
and P(t, ;) is observed price at time ¢ for the maturity 7;; such that

P(t, 1) ~ N(C(mj; X(),0) o?),

rTe

Z(t) = X(t) =y = K(X(t =1) =),

1 —2a1 At —(a1+a2)At
z—(m Ul?)_( g (L —e72m80) (1 — emlontes) )),

P _ o (aata2)At 1 1 _ —2a0At
e (L —ertnre)ah) (1 — e =22

J11 g12 —a At
0 — 1-k2  1—kiks K — e 0
x T J21 g22 ) - 0 e—azAt .
1—kike  1-k3

20
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4.2 Markov Chain Monte Carlo (MCMC)

According to (7), one can see that the posterior distribution for a complex model
frequently cannot be analytically obtained in a closed-form and hence this was a
crucial shortfall for implementing the Bayesian estimation in the past. Fortunately,
the development of MCMC methods in recent decades has enabled us to deal with
such problems by achieving a posterior distribution by simulation. Here we describe
the Metropolis-Hastings (MH) algorithms that will be used for calibrating the Cairns
model.

The MH algorithm is a popular MCMC updating scheme since it can eliminate
the difficulty of drawing a sample from the full posterior distribution. Generally,
the algorithm comprises two main steps. First, a candidate point is drawn from
an arbitrary proposal distribution. Second, the candidate point is then used for
calculating an acceptance probability in order to decide a movement of the chain.
If the candidate point is rejected, the chain remains the previous value, otherwise
it moves to the next state. An appropriate choice of the proposal distributions is
therefore crucial for succeeding in implementing the MH algorithm.

With respect to the estimation framework (1), suppose that P represents all bond
price data which are generated from the Cairns term structure model with an un-
known parameter and latent variable vector © = (04,...,0,). Then, we know from
(11) that the posterior distribution of each element of ©, denoted as ©;, is achieved
at

9(@z|Pa @—Z) X eXp<log f(P7 ®Z|®—z))= (12)

where ©_; is a vector of all model parameters and latent variables excluding ©;. Re-
mark that the joint density log f(IP, ©) includes fy(6), the prior of model parameters,
in which we let

fo(0) = fo(B) folan) fo(az) fo(a1) fo(az) fo(p) fo(11) fo(72)
such that

fo(B), folan), folaz), fo(or), fo(oz), ~ T(0.01,100),
folp) ~ U[-1,1],
Jo(n), fo(%) ~ N(0,1.0 x 10°). (13)

In this case, a gamma prior is assigned to the non-negative parameters and a uniform
prior with values in the range [—1,1] to the correlation parameter p. Note that,
for simplicity, o, does not appear here since we fix it as a constant for this time.
Further, a candidate point yg_, for each ©;, will be drawn from the normal proposal
distribution ge,, with mean depending on its previous value with some constant
variance. The detailed procedure of two main MH algorithms for simulating the
model parameters and latent variables from the Cairns bond posterior in (11) are
outlined as follows.
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Algorithm 1. [Standard Metropolis-Hastings Algorithm)|

1. Initialise the chain at j = 1 and start the iteration at 7 = 2 and set i = 1.
2. Generate a candidate point yg. from the proposal
qgo, ~ N(©;(j — 1),v0l(29i), (14)
where volg is some constant volatility.

3. If
{ yo, <0, for ©; = B, a1, 9,01, 02,

&, | > 1, for ©; = p,
set ©;(j) = ©;(j — 1), and then go to step 5, otherwise go to step 4.
4. Then,

e Generate U from ~ U(0, 1).
e Compute the acceptance probability ne,(0:(j — 1),v6,) =

mm{l 9(6,IP,0-4) - qo,(0i(j — 1)|ys,) }
"9(0i(j — )P, 0) - qe,(¥5,10:(j — 1)) |

o If U <1e,(0:(j —1),55,), then ©;(j) = y§,; otherwise ©;(j) = ©;(j —1).

(15)

5. Set i =i+ 1 and repeat step 2 to 4 until i = d (the last element of ©). For
the same iteration j, the recent value of the ©;, which is already updated, will
be used, rather than its value from the previous step 7 — 1.

6. Set j = j+1,7 = 1 and repeat step 2 to 5 until the last iteration (convergence).

Algorithm 2. [Adaptive Metropolis-Hastings Algorithm]

Referring to Haario et al. (2005), another idea for improving the proposal dis-
tribution is to use the empirical variance computed from its previous sample path
(recent ny values), after using a constant variance for some initial iteration ny. More
precisely, the proposal variance is given by

s | Vary, J<mo
volg (j) = { k-Var(©:j —ny),...,0:,j —1)) j > no,

where Var,, is some constant value, Var(-) is the sample variance of values in the
argument and k is a scaling number. For updating several parameters, the covariance
matrix can be used in order to draw a set of candidate points with correlation, i.e.

(16)

Cove, (j) = Covy, 7 <mng
O T k- Cov(©4(j — na),....0:(i — 1)) j > no,

where Cov,, is an initial covariance matrix, C'ov(-) is the sample covariance of a
series of values in the argument and k is a scaling number.

(17)
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5 Estimation Results using Standard MH Algo-
rithm

In this section, we are implementing the standard MH algorithm (Algorithm 1) to
the two-factor Cairns term structure model in which the sampling is facilitated by
the normal proposal distribution with a “constant” variance using 100 months of
the simulated data (with the latent variables from time ¢ = 1 to 100 in Figure 1
and model parameter values as specified in Section 3). With this dataset, 200 latent
variables and 8 model parameters are being estimated. Regarding the number of
maturities of the bond prices, we use 20 constant maturities (/V; = 20, for all ¢):
0.25, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 12.5, 15.0, 17.5, 20.0, 22.5,
25.0, 27.5, 30.0 years. We simulate each parameter for 15,000 iterations starting
from the true values in order to shorten the runtime and particularly concentrate on
the convergence assessment. We now demonstrate the results in a series of figures,
and comment as follows:

e Figure 2 illustrates the sample paths of model parameters, where v, and ~, are
fixed to be zero and each parameter is updated individually. From the figure,
we can observe that all chains encompass reasonably well the true values but
with different velocities of convergence. Compared with the others, o; tends to
converge slowest whereas «a; is found to be most stable and has long excursions
in our simulation. Despite poor convergence of o1, the means of all parameters
are clearly close to the true values (within one standard deviation) as can be
seen from the summary statistics in Table 1. Table 1 also shows the constant
normal proposal standard deviations used for the simulation in which these
values are discovered to be suitable for this dataset after extensive tuning
up. It should be mentioned that for the model parameters we noticed that
the constant proposal standard deviations should be as close to the posterior
standard deviations as possible, otherwise the chains will easily drift away
since these parameters are too sensitive to be sampled from the proposal with
high and low standard deviations. For the MH acceptance rates, we obtain
the rates varying from 8.0% to 22.0%.

e Figure 3 shows the selected sample paths of latent variables X (t) and Xs(t),
for t = 1, 20,40, 60, 80 and 100, where they are updated as a pair for each ¢ in
which we use the constant normal proposal standard deviations 0.055 and 0.04
for all ¢ since it is not practical to tune up the proposal distribution for each
t individually. Unlike the model parameters, these values are approximately
1.5 to 2.5 times higher than the resulting posterior standard deviations of all
Xi(t) and X5(t) (the posterior standard deviations of X;(t) range from 0.020
to 0.036 and of X5(¢) from 0.013 to 0.019). According to the MH acceptance
rates, the pairs of X;(t) and X,(¢) are accepted with the rates between 5.12%
to 10.03% which is rather low. It is noticed that the latent variables seem to
be least sensitive quantities in the Cairns term structure model and hence they
are easier controlled than the model parameters. As to the results, the chains
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strongly converge for almost all ¢ except the unconditional latent variable
X;(1) that is found to be most negatively correlated with o;.

e Figure 4 provides the 95% credible interval constructed from the sample paths
of latent variables. As can be observed, all include the true values fairly well.

e In Figure 5, the scatter plots for the model parameters are shown and we also
consider their cross-correlations in Table 2 in order to further our analysis in
the interactions among all unknown quantities in the Cairns model. Among
the model parameters, it turns out that there exist strong positive correlations
between aq and o7 and between as and o9, while the former is in the lesser
degree. Furthermore, f3 is strongly negatively correlated with a pair of (az, 09),
whereas p is least correlated to all other parameters.

Between the model parameters and latent variables, it can be found that as
and 0, have moderate negative correlation with almost all X5(¢). While o is
hardly correlated to X (t), oy is found to be most correlated to X () (can be
either positive or negative, with very strong negative correlation with the first
Xi(1), X1(2),...,X1(6)). Furthermore, p has consistently positive correlation
(around 0.3 to 0.5) to all X (¢) but almost zero correlation with all Xs(t).

Among all the latent variables X;(t) and X3(¢) (not shown in the figure),
there is no evidence of high correlations except in the group of X;(¢) for t =
1,2,...,6, in which they are highly positively correlated (around 0.48 to 0.83).

e The components of the log-likelihood are also monitored during the simulation
as illustrated in Figure 6. As can be seen, although the log-likelihood of pricing
data constitutes of the largest part of the total log-likelihood, it is most stable
and hence we may infer that the variations influencing the overall MH sampling
are actually from the log-likelihood of latent variables and priors. The total
log-likelihood of all components has a very similar picture to the log-likelihood
of pricing data but has not been shown here.

We first summarise for this section that tuning for the suitable constant variances
of the proposal distribution plays a substantial role in order to obtain good MH
convergence. Due to high interaction complexity among the unknown quantities in
this model, too small and too large variances of only one parameter can easily make
the chain either drift away or diverge. Once one parameter, for example as, starts
shifting away from the true values to some extent, so do the others (to which as
is highly correlated). The total variation of the simulation is hard to be controlled
by using the constant proposal variance and much relies on the variation of the
log-likelihood of latent variables. In general, the parameters and latent variables in
the same term of the function H(u,x) in (3) tend to be correlated to one another
in some way.
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Figure 2: Sample paths of model parameters of the two-factor Cairns term structure
model using the standard MH algorithm with constant normal proposal variance.

(True value) | Mean Std. 95% Credible Proposal | Acceptance
Interval std. rate
B (0.04) 0.0400 | 0.00003 | (0.03995, 0.04007) | 0.00003 16.12%
a1 (0.6) 0.605 | 0.0062 (0.5921, 0.6158) 0.0060 21.03%
1% (0.06) 0.0600 | 0.00018 | (0.05956, 0.06026) | 0.00010 18.04%
o1 (0.6) 0.598 | 0.0104 (0.5756, 0.6150) 0.0100 9.08%
P (0.4) 0.400 | 0.0026 (0.3935, 0.4038) 0.0050 7.69%
p (-0.5) -0.485 | 0.0180 | (-0.5218, -0.4555) 0.0200 9.40%

Table 1: Summary statistics of parameter posterior estimates of the two-factor
Cairns term structure model using the standard MH algorithm with constant normal
proposal variance (15,000 iterations).
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Figure 3: Sample paths of latent variables (for ¢ = 1,20,40,60,80 and 100) of
the two-factor Cairns term structure model using the standard MH algorithm with
constant normal proposal variance.
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Plots of 95% credible interval constructed from the sample paths with

the true values of X;(t) and Xy(t) for t = 1,...,100, of the two-factor Cairns term
structure model using the standard MH algorithm with constant normal proposal

variance.
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Figure 5: Scatter plots of model parameters of the two-factor Cairns term structure
model using the standard MH algorithm with constant normal proposal variance.

g Qg a9 o1 09 P X1 (t) Xo(t)
6 | 1.00 | 0.28 | -0.54 | -0.08 | -0.71 | 0.37 0.00 to 0.30 | -0.37 to 0.35
Qaq 1.00 | 0.01 | 0.57 | -0.19 | 0.02 || -0.42 to 0.22 | -0.42 to 0.32
a2 1.00 | 0.39 | 0.85 | -0.16 || -0.38 to 0.21 | -0.68 to 0.02
o1 1.00 | 0.31 | -0.02 || -0.86 to 0.52 | -0.86 to 0.02
o9 1.00 | -0.18 || -0.30 to 0.23 | -0.68 to 0.17
p 1.00 0.29 to 0.55 | -0.22 to 0.31

Table 2: Correlation matrix of model parameters and latent variables of the two-

factor Cairns term structure model using the MH algorithm with constant normal
proposal variance.
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Figure 6: Log posterior components (referring to equation 5.9): log-likelihood of
pricing data (top, left), conditional and unconditional log-likelihood of latent vari-
ables (top, right and bottom, left) and log prior density (bottom, right) using the
MH algorithm with constant normal proposal variance.

6 Estimation Results using Adaptive MH Algo-
rithm with Some Improvement

Although the chains according to the results in the previous section tend to converge
slowly, they result in reasonable inference for all the model parameters and latent
variables. Nonetheless, some improvements are yet required in order to implement
the MH algorithm with more complex data. Having the standard MH algorithm with
constant normal proposal variance (Algorithm 1) as a base case, we here consider to
improve the proposal distribution using the adaptive Metropolis-Hastings algorithm
(Algorithm 2) associated with a blocking strategy, reparameterising the log posterior
of Cairns bond prices and re-evaluating the prior distributions. All of these will be
first described below, before we move to look at the results.

6.1 Reparameterising

From Table 2, there is evidence of strong correlation between some parameters,
particularly o; and oy where they are highly correlated to X;(t) and X,(t) for all ¢
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respectively. In the bond price formula, o; and o, are actually the local volatilities
of all the latent variables X;(¢) and X5(¢). Thus, here we attempt to eliminate such
correlations by re-parameterisation.

Let Y(t) = (Yi(t),Ya(t))', where Y1(t) = 01X;(t) and Ya(t) = 02X5(t) and v, =
(Yrs Vuo)'> Where 7y, = 0171 and 7y, = 0272. Then, the log posterior in (11) can be
re-written as

MN 1
t 2
log f(OP) o —— log<2m§>—Qagggm,m)—cmj;Y(t),e))

1 M—-1
M log(2m) — S log ||~ XD iog 3

—S V(1) = ) QY (1) =)
—% > Zy(t)ST Zy (t) + log fo(6), (18)

where

2
—a1u —aou 1 ’L]O.’LUJ —(aitaj)u
H(u,y)zeXp[—5U+yle oy 0 52 ; ]

‘7_2 _ o201 At poio _ o (a1ta)At
Ey=<011 012>:< g (L - G —emT )),

pO102 (1 o e—(a1+a2)At) 0’_2(1 . €—2a2At)

a1+tas 200

6.2 Adaptive MH Algorithm and Blocking Strategy

Previously, we made an observation that the normal proposal distribution with
constant variance may not facilitate the MH algorithm for the model parameters
well. Moreover, it did spend long time to explore suitable variance values. As
already described in an earlier section, one way to improve this is to use the adaptive
Metropolis-Hastings algorithm (Algorithm 2) in which it will be here associated with
a blocking strategy. First of all, based on some evidence of the correlation structure,
we group the model parameters and latent variables as follows.
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I. ay,0; and p.
II. as, 05 and (.
ITI. v, and s.
IV. X;(t) and X,(t) for each ¢.

In each group, the parameters or latent variables will be updated together. For our
simulation, candidate points for the parameters in group I and II will be sampled
from a multivariate normal distribution where means depend on their previous values
with a covariance matrix computed from most recent previous 200 values of sample
paths of the parameters in each group (an arbitrary fixed covariance matrix will be
used for the first 200 iterations). For example, at 601st iteration, the covariance
matrix of the proposal distribution is of sample paths from 401st to 600th iteration,
at 602nd iteration from 402nd to 601st iteration and so on. Similarly, candidate
points for the parameters and latent variables in group III and IV, will be generated
by the same way as the first two groups except we will impose zero correlation to
the proposal covariance matrix at all time.

6.3 Re-evaluating the Priors

Finally, we allow priors of the parameters [, ai, s, 01 and oo to be slightly more
informative. We set their means with reference to the posterior means of the ear-
lier simulations and reduce the coefficient of variation to around 5.3 (previously a
['(0.01,100) prior, which provides a mean of 1.0 and coefficient of variation of 10,
was assigned to all of these parameters). Specifically, the priors of all the model
parameters now become

folB) ~ T(0.036,1.13),
folan), folor) ~ T(0.036,16.67),
folan) ~ T(0.036,1.67),
(02) ~ T(0.036,11.25),
folp) ~ Ul-1,1],
folm), fo(w) ~ N(0,1.0 x 10%). (19)

6.4 Estimation Results with Improvements

To begin with, we provide a narrative summary of the effects for each improvement
from several simulations compared with the base case as follows.

o We first started using adaptive proposal distributions for each parameter in-
dividually, but it was not possible to notice any distinct difference according
to the results.
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e Then, the reparameterisation for the latent variables X;(¢) and X,(t) (i.e.
define Yi(t) = 01X4(t),Ys = 09X5(t)) was therefore considered. In effect,
it turned out that the convergence of o; was clearly improved but o, still
converged slower than expected.

e Next, we re-evaluated the priors for 3, aq, as, 01, 09. That is, their prior means
were shifted from 1.0 to the values with respect to their posterior means with
variances of 10.0. However, any difference was hard to notice. Consequently,
we also decreased the coefficient variations of the priors to around 5.3 but once
again distinct improvement could not be observed.

e Eventually, we attempted to improve the convergence by incorporating the
blocking strategy. In effect, we found that the convergence of o, was evidently
better.

With the evidences mentioned above, we therefore exclude the re-evaluation for the
priors as an improvement. In the following results, we run MCMC simulation for
20,000 iterations for each chain using the adaptive MH algorithm with the repa-
rameterised log posterior in (18) and a blocking strategy where ~,, and =,, are now
unrestricted and then estimated.

e Figure 7 shows the resulting sample paths of model parameters. We can
easily see that the convergence of the parameters oy, as and ( are all clearly
improved (compared with Figure 2). Parameter a4 still converges well same as
the previous result, while p is not significantly different. Furthermore, it can
also be noticed that the posterior standard deviations (Table 3) are relatively
higher (about twice than before). In addition, v,, and 7,, undoubtedly get
stationary although the range of v,, is rather wide.

e Figure 8 demonstrates the sample paths of latent variables Y;(t) and Ya(t),
for t = 1, 20,40, 60,80, and 100. As can be noticed, the convergence of Yi(1)
compared with X;(1) in Figure 3 is evidently better, whereas the remaining
still converge well.

e In Figure 9, plots of the 95% credible interval constructed from the sample
paths of Yi(t) and Ys(t) for all ¢ are illustrated. Comparing to those of X ()
and X5 (t) in Figure 4, these intervals are generally wider which infers higher
posterior standard deviations.

e Figure 10 provides scatter plots of the model parameters. We can observe
that overall the correlation structure of the model parameters is much better
than those obtained with the standard MH algorithm (Figure 5). However,
we observe strongly positive correlations among all parameters in group II
(g, 09,5). In the previous result (Table 2), although  was found to be
strongly negatively correlated to ay and o9, we found that this was not always
the case. Specifically, since the chains converged rather slowly, their estimated
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correlations are much less reliable than those after the reparameterisation in
which we can easily see that the chains generally converge much faster.

Between the model parameters and latent variables, it turns out that p is most
likely to correlate with Y7 (¢) for all t. Among the latent variables themselves,
there is no evidence of any strong correlation among them. Moreover, the
strong negative correlations previously found for the first X3 (1), X;(2),..., X1(6)
now disappear.

e Additionally, we also compare the log-likelihood components monitored during
the simulation as shown in Figure 11. While the log-likelihood of pricing data
roughly remains unchanged, the variations of other components are much more
stable. This corresponds to the better convergence achieved for both model
parameters and latent variables.

To this end, we conclude for this section that the achieved results using the adaptive
MH algorithm with a blocking strategy and reparameterising the log posterior dis-
tribution were substantially improved from those with the standard MH algorithm
in terms of both convergence and correlation structure. Furthermore, we observed
that the chains of almost all parameters and latent variables can achieve station-
arity much easier than using the standard MH algorithm. Although parameter p
is still rather sensitive to the proposal variance and hard to converge, this is not a
surprising result since p appears in the minor term in the bond price posterior which
tends to be most difficult to be estimated accurately.
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Figure 7: Sample paths of model parameters of the two-factor Cairns term structure
model using the adaptive MH algorithm with the reparameterised posterior and a

blocking strategy.

(True value) | Mean Std. 95% Credible Acceptance Scaling of
Interval rate the proposal std.
o (0.6) 0.604 | 0.0056 (0.5924, 0.6143) 9.99% 2.0
o1 (0.6) 0.616 | 0.0230 (0.5688, 0.6616) 9.99% 2.0
p (-0.5) -0.495 | 0.0158 | (-0.5250, -0.4673) 9.99% 2.0
1% (0.06) 0.0606 | 0.00061 | (0.05958, 0.06190) 16.11% 1.4
0P (0.4) 0.405 | 0.0042 (0.3977, 0.4138) 16.11% 1.4
Ié] (0.04) 0.0401 | 0.00006 | (0.03996, 0.04021) 16.11% 1.4
Yon (0.0) 0.151 | 0.2798 (-0.3976, 0.7117) 54.80% 1.0
Vya (0.0) 1.522 | 1.0214 | (-0.5068, 3.4789) 54.80% 1.0

Table 3: Summary statistics of parameter posterior estimates of the two-factor
Cairns term structure model using the adaptive MH algorithm with the reparame-
terised posterior and a blocking strategy (20,000 iterations).
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Figure 8: Sample paths of latent variables (for ¢ = 1,20, 40,60, 80 and 100) of the
two-factor Cairns term structure model using the adaptive MH algorithm with the
reparameterised posterior and a blocking strategy.
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Figure 9: Plots of 95% credible interval constructed from the sample paths with
the true values of Y;(t) and Ys(t) for t = 1,...,100, of the two-factor Cairns term
structure model using the adaptive MH algorithm with the reparameterised posterior

and a blocking strategy.
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Figure 10: Scatter plots of model parameters of the two-factor Cairns term structure
model using the adaptive MH algorithm with the reparameterised posterior and a
blocking strategy.

! p Qs 02 B Yor | Ve Yi(t) Ya(t)
aq 1.00 | 0.37 | -0.27 | 0.00 | -0.02 | 0.03 | 0.01 | -0.03 || -0.23 to 0.20 | -0.20 to 0.29
o1 1.00 | -0.34 | 0.29 | 0.35 | 0.43 | 0.05 | -0.01 || -0.10 to 0.29 | -0.22 to 0.29
p 1.00 | -0.02 | -0.05 | -0.03 | -0.01 | 0.02 0.24 to 0.44 -0.10 to 0.32
Qo 1.00 | 0.98 | 0.91 | 0.06 | 0.03 -0.11 to 0.45 | -0.40 to 0.30
o9 1.00 | 0.90 | 0.06 | 0.03 || -0.09 to 0.46 | -0.35 to 0.31
153 1.00 | 0.07 | 0.03 || -0.06 to 0.49 | -0.52 to 0.37
Yo 1.00 | -0.32 || -0.03 to 0.07 | -0.07 to 0.045
Vys 1.00 -0.04 to 0.05 | -0.04 to 0.04

Table 4: Correlation matrix of the simulation using the adaptive MH algorithm with
the reparameterised posterior and a blocking strategy.
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Figure 11: Log posterior components (referring to equation 5.9): log-likelihood of
pricing data (top, left), conditional and unconditional log-likelihood of latent vari-
ables (top, right and bottom, left) and log prior density (bottom, right) using the
adaptive MH algorithm with the reparameterised posterior and a blocking strategy.

7 Conclusions

In this paper, we have developed MCMC algorithms (specifically, the Metropolis-
Hastings algorithms) to estimate the two-factor Cairns term structure model us-
ing simulated data. The main contribution is therefore the development and use
of MCMC simulation for estimating both the driving latent variables and model
parameters of the Cairns arbitrage-free model which has a non-linear bond price
formula. The existence of latent variables is a common issue that causes difficulty
to the estimation of many continuous-time term structure models, and here it can
be effectively dealt with by using MCMC methodology under a Bayesian approach.
According to the results, the standard MH algorithm gives rise to reasonable esti-
mation but the chains of model parameters converge rather slowly. Nevertheless,
by using the adaptive MH algorithm associated with a blocking strategy and repa-
rameterising the log posterior distribution, the resulting estimates are significantly
improved. We can conclude that our algorithm based on the MCMC framework
estimates the term structure model very well and it seems efficient enough to deal
with real market data which is more complex than simulation data.

26



References

Ahn, A.-H., Dittmar, R.F., and Gallant, A.R. (2002). Quadratic term structure
models: theory and evidence. Review of Financial Studies, 15: 243-288.

Andersen, T.G., and Lund, J. (1997). Estimating continuous-time stochastic volatil-
ity models of the short-term interest rate. Journal of Econometrics, 77: 343-377.

Bester, A.C. (2004). Random Fields and Affine Models for Interest Rates: An
Empirical Comparison. Working Paper, Duke University.

Cairns, A.J.G. (2004). A Family of term-structure models for long-term risk man-
agement and derivative pricing. Mathematical Finance, 14: 415-444.

Chan, K.C., Karolyi, G.A., Longstaff, F.A., and Sanders, A.B. (1992). An empirical
comparison of alternative models of the short-term interest rate. Journal of Finance,
47: 1209-1227.

Dai, Q., and Singleton, K. (2000). Specification analysis of affine term structure
models. Journal of Finance, 55: 1943-1978.

Duffie, D., and Singleton, K.J. (1993). Simulated moments estimation of Markov
models of asset prices. Econometrica, 61: 929-952.

Eraker, B. (2001). MCMC Analysis of Diffusion Models with Application to Finance.
Journal of Business & Economic Statistics, 19, 177-191.

Fleasaker, B., and Hughston, L. (1996). Positive interest. Risk, 9(1): 46-49.

Gallant, A.R., and Tauchen, G. (1996). Which moments to match? FEconometric
Theory, 12: 657-681.

Haario, H., Laine M., Mira, A., and Saksman E. (2005). DRAM - efficient adaptive
MCMC. Statistics and Computing, 16: 339-354.

Hansen, L.P. (1982). Large sample properties of generalized method of moments
estimators. Fconometrica, 50: 1029-1055.

Hu, H. (2005). Markov Chain Monte Carlo Estimation of Multi-Factor Affine Term-
Structure Models. Ph.D. Dissertation, University of California Los Angeles.

Lamoureux, C.G., and Witte, H.D. (2002). Empirical Analysis of the Yield Curve:
The Information in the Data Viewed through the Window of Cox, Ingersoll, and
Ross. Journal of Finance, 57: 1479-1520.

Litterman, R., and Scheinkman, J.A. (1991). Common factors affecting bond re-
turns. Journal of Fized Income, 1: 54-61.

Longstaff, F.A., and Schwartz, E.S. (1992). Interest rate volatility and the term
structure: a two-factor general equilibrium model. Journal of Finance, 47: 1259-
1282.

Nowman, K.B. (1997). Gaussian estimation of single-factor continuous time models
of the term structure of interest rates. Journal of Finance, 52: 1695-1706.

27



Pearson, N.; and Sun, T.-S. (1994). An empirical examination of the Cox, Ingersoll
and Ross model of the term structure of interest rates using the method of maximum
likelihood. Journal of Finance, 54: 929-959.

Pooter, M., Ravazzolo, F., and Dijk, D. (2007). Predicting the Term Structure of
Interest Rates: Incorporating parameter uncertainty, model uncertainty and macroe-
conomic information. Tinbergen Institute Disccusion Paper, T12007-028/4.

28



