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ABSTRACT

In this paper we present an asynchronous branch and bound algorithm for execu-
tion on an MIMD system, state sufficient conditions to prevent the parallelism from
degrading the performance of this algorithm, and investigate the consequences of having
the algorithm executed by nonhomogeneous processing elements.
We introduce the notions of perfect parallel time and achieved efficiency to empirically
measure the effects of parallelism, because the traditional notions of speedup and proces-
sor utilization are not adequate for fully characterizing the actual execution of an asyn-
chronous parallel branch and bound algorithm.
Finally we present some computational results obtained for the symmetric traveling
salesman problem.
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1. INTRODUCTION

Enumerative methods, especially branch and bound algorithms, are essentially the only tools available to
solve hard combinatorial problems to optimality. The worst case exponential behaviour of these algorithms
[Garey & Johnson 1979], and the anomalies that can happen during execution of these algorithms [Ibaraki
1977], are well known facts of life. In theory, these hard problems can be solved by a parallel algorithm in
polynomial time with an exponential number of processors [Goldschlager 1982]. In practice however, it is
impossible to attain this result because, given a parallel computer system, for problem instances that are
sufficiently large, the number of processors needed is greater than the number of processors available.
Hence, small problem instances might be solvable in polynomial time, but the solving of large problem
instances can only be speeded up by a constant factor.
In [Trienekens 1989] we presented a theoretical analysis of parallel branch and bound algorithms. That
paper contains a taxonomy of parallel branch and bound algorithms, an investigation into the causes of
anomalies during the execution of parallel branch and bound algorithms, and sufficient conditions to
prevent deceleration anomalies from degrading the performance of a parallel branch and bound algorithm.
In this paper we discuss a particular asynchronous parallel branch and bound algorithm. In section 2 we
introduce this particular algorithm. In section 3 we propose a way to measure the effects of the use of
parallelism, and look at the anomalies that can occur during parallel execution. We present sufficient con-
ditions to prevent deceleration anomalies from degrading the performance of our parallel branch and bound
algorithm. In section 4 we report on our experiments solving symmetric traveling salesman problems. For
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a limited number of processors it turned out to be possible to get a nearly perfect speedup.

2. A PARALLEL BRANCH AND BOUND ALGORITHM

2.1. The Branch and Bound Algorithm

Branch and bound algorithms solve discrete optimization problems by partitioning the solution space.
Throughout this paper, we will assume that all optimization problems are posed as minimization problems,
and that solving a problem means finding a feasible solution with minimal value. If there are many such
solutions, it does not matter which one is found.
A branch and bound algorithm can be characterized by four rules [Mitten 1970]: a branching rule defining
how to split a problem into subproblems, a bounding rule defining how to compute a lower bound on the
optimal solution of a subproblem, a selection rule defining which subproblem to branch from next, and an
elimination rule stating how to recognize and eliminate subproblems which cannot yield an optimal solu-
tion to the original problem.
The concept of heuristic search provides a framework to compare all kinds of selection rules, for example,
depth first, breadth first, or best bound [Ibaraki 1976]. In a heuristic search a heuristic function h is defined
on the set of subproblems. This function governs the order in which the subproblems are branched from.
The algorithm always branches from the subproblem with the smallest heuristic value.

A branch and bound process generates a search tree. The root of this tree P 0 corresponds to the ori-
ginal problem, whereas all other nodes Pi correspond to subproblems generated by decomposition. If sub-
problem j is generated by decomposition from subproblem i, there is an arc between Pi and Pj , the two
corresponding nodes in the search tree.

A possible sequential implementation of a branch and bound algorithm can be described as follows.
An active subproblem is a subproblem which is generated and hitherto neither branched from nor elim-
inated. Note that a subproblem which is currently being branched from is still an active subproblem. In
each stage of the computation there exists an active set, i.e., the set containing all active subproblems
which are not being branched from at that moment. There is a main loop in which the following steps are
repeatedly executed. The subproblem in the active set with the smallest heuristic value is extracted from
the active set, and decomposed into smaller subproblems using the branching rule. (If there are many such
subproblems, the tie is broken arbitrarily). For each of the subproblems thus generated the bounding rule is
used to calculate a lower bound. If during the computation of this bound the subproblem is solved, i.e., an
optimal solution to the subproblem is found, the value of the best known solution is updated. This value is
an upper bound on the value of the optimal solution to the original problem. If the subproblem is not
solved during computation of the bound, the subproblem is added to the active set. Finally the elimination
rule is used to prune the active set. The computations continue until there are no more active subproblems.

During execution of a branch and bound algorithm knowledge is continually generated and collected
about the problem instance to be solved. This knowledge consists of all subproblems generated, branched
from and eliminated, lower bounds on the value of the optimal solution, and the feasible solutions and
upper bounds found. The decisions on what to do next, for example, the choice of the next subproblem to
branch from, or the elimination of a subproblem, are based upon this knowledge.

2.2. The Boulder Algorithm

For our research, we are interested in the consequences of the parallelism introduced by branching from
several subproblems in parallel using the knowledge generated in an optimal way. Here ‘optimal’ means
that during execution of the parallel branch and bound algorithm we try to branch only from those subprob-
lems which the sequential algorithm would also branch from. For a complete description of how to paral-
lelize branch and bound algorithms, and for a taxonomy of parallel branch and bound algorithms, we refer
to [Trienekens 1989].

Our algorithm features a master process and several slave processes (cf. figure 2.1). The master
takes all important decisions, and the slaves do as they are told by the master. In particular, the master
maintains the active set and decides which subproblems to branch from and when. The slaves perform the
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actual branchings, and compute lower bounds to the subproblems thus generated.
In order to supervise everything properly, the master collects all knowledge generated so far by the slaves
(the subproblems generated, the feasible solutions found, etc.). Interpreting this knowledge, the master
maintains the active set. Each time the master is aware of a slave becoming idle, he extracts the subprob-
lem with the smallest heuristic value from this set, and sends this problem to the slave to branch from. If
there are no active subproblems, the slave is temporarily put into a queue of idle slaves until new subprob-
lems become available. The execution of the parallel branch and bound algorithm is terminated as soon as
all slaves are in the idle queue. Each time the upper bound is updated, the master sends the new upper
bound to all slaves. This enables the slaves to perform lower bound tests on the subproblems they gen-
erate. The slaves do not preempt upon arrival of a new upper bound.
A slave branches from the subproblem it receives from the master. The subproblems thus generated are
sent back to the master. After completing the branching, and returning the subproblems thus generated, the
slave requests new work from the master by notifying the master that it has become idle.
We chose for an asynchronous algorithm (i.e., if a slave process completes working upon a subproblem, it
can start working upon a new subproblem immediately without waiting for all the other slaves processes to
complete their subproblems) because we did not want to waste computing power in case the effort needed
for branching from a subproblem depends on the particular subproblem on hand. Apart from that, because
we intended to run our algorithm on a loosely coupled system where communications are slow and tedious,
we did not want to spend time on communications to synchronize. Note that due to the asynchronicity the
algorithm is nondeterministic (i.e., consecutive executions of the algorithm solving the same problem
instance may yield different solutions) [Trienekens 1989].
We call this parallel branch and bound algorithm the Boulder algorithm. The name is derived from the fact
that we first tested this algorithm while visiting the University of Colorado at Boulder, Colorado.

MASTER

active set
best solution
found so far

list of idle slaves

SLAVE
1

SLAVE
n

subproblem
to branch,

better solution

new subproblem,
better solution,

completion message

Figure 2.1. The Boulder algorithm

At first sight it may seem strange that a slave sends all the subproblems it generates to the master,
and then asks the master for a subproblem to branch from, instead of branching from one of the subprob-
lems it just generated itself. This is done because a slave does not have overall knowledge. The subprob-
lems just generated might not be good ones. By letting a slave ask the master for new work, the amount of
superfluous work done is minimized.

The master process is not strictly necessary. It is also possible to let the slave processes themselves
take all decisions by storing the active set and the knowledge obtained so far in some kind of common
memory. This however introduces all kinds of problems if several slaves try to access and update this
information at the same time. These problems are problems around concurrency control, and can be solved
in various ways [Andrews & Schneider 1983].
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In our algorithm we do not make any assumptions about the computing power of the various slave
processes. We only postulate that a subproblem given to a slave will be branched from eventually. If all
slaves are not equally powerful, the queue of idle slaves becomes a priority queue in which the slaves are
ordered according to decreasing computing power. As a subproblem becomes available, it is given to the
most powerful idle slave.

Because parallel computer systems tend to be complex entities, there is always the possibility of one
or more processing elements or communication channels suddenly failing. It is possible to build a certain
level of fault tolerance and correction into our parallel branch and bound algorithm. By letting the master
keep track of the orders given to the various slaves, it is possible for him to give the same order to another
slave if he detects that a slave has gone dead. However, a failure in the master process is still lethal.

To execute the Boulder algorithm we would like to have a system in which it is possible for a process
to send a message to another process without these two processes becoming synchronized and with the
capability to buffer messages. A process must be able to continue its computations immediately after hav-
ing sent its message, without having to wait for the message to arrive. This type of communication is to be
preferred because, for example, each time a slave obtains new knowledge it has to send this knowledge to
the master. Immediately thereafter the slave wants to continue with the rest of its work. There is no need
(or use) for a slave to wait until the master has received the message. The system must buffer the messages
because it is possible that a process sends a second message before the other process has processed the first
one.
If the system used does not provide the interprocess communication described above, it is still capable of
executing the algorithm, although computing power will be lost due to the unnecessary synchronizations.

3. COMPLEXITY, SPEEDUP, AND ANOMALIES

In order to define the time complexity of sequential branch and bound algorithms some unit of time, i.e.,
some granularity of time, has to be defined with which this complexity can be measured. Defining a granu-
larity involves abstracting from the precise work performed in executing a branch and bound algorithm.
We can define three kinds of granularities here. We talk about a coarse granularity is when the unit of
work is defined in terms of the problem to be solved, for example, as the branching from a single subprob-
lem or the computing of a lower bound. A fine granularity is when the unit of work is defined in terms of
processor operations, for example, the number of machine instructions performed while executing the algo-
rithm. A very fine granularity is when the complexity is defined in terms of the time needed to execute the
instructions of the branch and bound algorithm on a given machine. In essence a coarse granularity defines
the complexity in terms of the search tree generated, whereas a fine granularity defines the complexity in
terms of the effort involved in traversing the search tree.
Coarse and fine granularities are roughly spoken equivalent if the algorithm is executed on a single pro-
cessing element. Due the the fact that all the work to be performed is executed by a single processing ele-
ment, there is a straightforward relation between the number of machine instructions and the time involved
in executing them on one hand, and a single coarse unit of work on the other hand. However, if there are
several processing elements of varying computing power, this relation might be lost. For example, one of
the processing elements could be an order of magnitude more powerful than the other processing elements.
Hence, coarse and fine grain granularities need not be equivalent any more once parallelism is introduced
in a branch and bound algorithm.

The overall complexity of parallel branch and bound algorithms cannot be defined solely in terms of
the work involved in executing the various steps of the algorithm, i.e., the computation complexity. The
complexity also has to account for the effort and time involved in the interactions between the various
processes, i.e., the communication complexity. The ultimate complexity of the execution of a parallel algo-
rithm (i.e., the total time involved in executing the algorithm) is a function of the computation and com-
munication complexities of the algorithm, as well as of the characteristics of the particular processing ele-
ments the processes of the algorithm are executing on.
We can make a few remarks with regard to the complexity of parallel algorithms. Coarse granularity com-
pletely neglects the effort involved in the interactions between processes. Using this kind of granularity
one only looks at the problem to be solved, and from the problem in isolation nothing can be inferred about
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the parallelism used and the interaction between the various processes. Fine granularity takes part of the
effort and time involved in interacting into account. It accounts for the instructions involved in interacting,
but it does not account for the waiting until the actual interaction occurs. For example, if a process sends a
message to another process and receives an answer, than fine granularity accounts for the effort involved in
sending and receiving the message, but not for the waiting time in case the other process does not react
immediately. Only very fine granularity accounts for the full consequences of the interactions.
Therefore coarse grained complexity notions for asynchronous parallel branch and bound algorithms are
adequate only within certain limits. If the characteristics of the processing elements executing the
processes of the parallel algorithm vary heavily, the relation between the work performed and the time
needed to perform the work can become very processing elementing element dependent. Hence such a
complexity notion is of little use for predicting the time needed for executing the algorithm. Note that this
remark only holds for asynchronous algorithms. For synchronous algorithms it holds that, due to the syn-
chronizations, the effort and/or time involved in executing the work in between two synchronizations is
equal to the effort and/or time needed by the process running on the least powerful processing element.

The effects of the use of parallelism on the time needed for executing a synchronous parallel branch
and bound algorithm have been described using the notions of speedup and processor utilization, and by
the way these notions change as a function of the number of processing elements [Kindervater & Lenstra
1988]. The speedup measures the reduction in total execution time due to the parallelism, and is defined as
the number of steps performed by a single processing element to execute the best sequential algorithm,
divided by the number of steps performed by a parallel computer to execute the parallel algorithm. The
processor utilization provides information on the quality of this speedup compared to an ideal speedup, and
is defined as the speedup divided by the number of processing elements used.

However, the notions of speedup and processor utilization described above are not adequate for
characterizing the execution of asynchronous parallel algorithms. Firstly, they do not take into account the
time needed for synchronizing. Secondly, they postulate that the time needed for a single communication
is a constant. In reality, these times not only depend on the number of communications and/or synchroni-
zations, but also on the particular parallel computer system the algorithm is executed on. Thirdly, these
notions postulate that all processing elements used are identical, whereas for many parallel computer sys-
tems, especially loosely coupled systems, the processing elements are different. For a synchronized paral-
lel algorithm this variation in processing power does not matter because the time needed for parallel execu-
tion is the time needed by the least powerful processing element. For asynchronous algorithms however,
there need not be a direct link between the work performed by the various processing elements.

To be able to describe the execution of asynchronous parallel algorithms the above described notions
have to be generalized. We therefore introduce the notions of perfect parallel time and achieved efficiency.
A parallelization is perfect if the use of parallelism does not influence the work to be done, and if the work
to be done is divisible among the processing elements in such a way that, firstly, each processing element
needs the same amount of time to complete its part of the work, and, secondly, all parts are independent of
each other. More powerful processing elements thus will take a larger share of the work, whereas weak
processing elements will take a smaller share. Note that the first assumption implies that interactions
between processing elements do not take time.
The perfect parallel time is the time needed for the perfect parallel execution of an algorithm. Let W be the
total number of units of work to be performed by the processing elements during the perfect parallel execu-
tion. Because this number is independent of the number of processing elements used, W is equal to the
number of units of work performed by the corresponding sequential algorithm, i.e., the parallel algorithm
using only a single process for branching from subproblems. Let Si be the speed of processing element i,
i = 1, . . . , N, i.e., the number of units of work processing element i can perform per unit of time. The per-
fect parallel time is defined as follows:

(3.1) PPT = W /
i =1
Σ
N

Si .

The achieved efficiency is the quotient of perfect parallel time and the actual time needed for parallel exe-
cution. As can be seen from this definition, the achieved efficiency takes the effort and the time involved
in communication and synchronization into account.
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Let I denote a problem instance to be solved. Let Tn(I) denote the amount of time needed to solve
problem instance I by a parallel branch and bound algorithm executed by n processing elements. Let T 1(I)
denote the amount of time needed to solve this problem instance by the corresponding sequential algorithm
executed by processing element 1.
An unsuspecting reader might expect the following relation to hold:

(3.2) Tn(I) =

i =0
Σ
N

Si

S 1.T 1(I)hhhhhhhh = PPT.

I.e., a decrease in execution time which is proportional to the increase in computing power of the system
the parallel branch and bound algorithm is executed by. However, a few computational experiments reveal
that most of the time

(3.3) PPT ≤ Tn(I) < T 1(I).

This is due to the fact that the assumptions on divisibility, independency, and interaction on which our
definition of perfect parallelism is based, are unrealistic in real life. Sometimes it even happens that

(3.4) Tn(I) < PPT

or

(3.5) Tn(I) ≥ T 1(I).

The anomalies described by formulae 3.3 - 3.5 are called respectively a detrimental anomaly, an accelera-
tion anomaly, and a deceleration anomaly. In case of a detrimental anomaly the parallelism speeds up the
execution, although not to the extent expected, in case of an acceleration anomaly an unreasonable
speedup occurs, whereas in case of a deceleration anomaly the parallelism slows down the solution process
of the problem instance on hand.
It is also possible that consecutive runs of the same parallel algorithm on the same parallel computer sys-
tem solving the same problem instance need substantially different amounts of time. In that case, a fluctua-
tion anomaly occurs.
The first three kinds of anomalies all compare the execution of a parallel branch and bound algorithm with
the execution of the corresponding sequential branch and bound algorithm. Note that none of these three
anomalies states something about what happens if there is a change in the number of processes executing
the parallel branch and bound algorithm.
For examples of the first three kinds of anomalies we refer to [Li & Wah 1984] and [Lai & Sahni 1984].
Although the examples in these papers are for synchronous branch and bound algorithms, they can be
adapted in a straightforward manner to asynchronous branch and bound algorithms. For an example of a
fluctuation anomaly we refer to [de Bruin, Rinnooy Kan & Trienekens 1988].

3.1. Preventing Deceleration Anomalies

In this section we will state sufficient conditions to prevent deceleration anomalies from degrading the per-
formance of the Boulder algorithm. The already known sufficient conditions for synchronous parallel
branch and bound algorithms [Li & Wah 1984] are also sufficient in our case. For a more general analysis
of the preventing of anomalies, and for the proofs of the lemmas, we refer to [Trienekens 1989].

First we need some definitions.

A basic subproblem is a subproblem which is branched from during execution of the corresponding
sequential branch and bound algorithm. Note that a basic subproblem can only be generated by branching
from a basic subproblem.

The process of extracting a subproblem to branch from from the active set, branching from this sub-
problem, adding the descendants created to the active set, and pruning the active set, is called working upon
a subproblem.
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A heuristic function h is injective if it assigns a unique value to each subproblem:

h (Pi) ≠ h (Pj) if Pi ≠ Pj .

A heuristic function h is non misleading if it never provides misleading information about a subprob-
lem. The heuristic values assigned by the function must be such that no subproblem has a smaller heuristic
value than the subproblem it was generated from by decomposition has, i.e.,

h(Pi) ≤ h(Pj) if Pj is a descendant of Pi .

All anomalies during execution of a parallel branch and bound algorithm are caused by the branching
from several subproblems in parallel. Due to these branchings in parallel, the knowledge generated at a
particular point during the execution of the parallel algorithm can differ from the knowledge generated at
the corresponding point during the execution of the sequential algorithm. This different knowledge can
result in a different order in which the subproblems are branched from, and thus in a different search tree
generated.
Deceleration anomalies can be prevented if two conditions can be met. Firstly, the knowledge generated
and used during execution of the parallel branch and bound algorithm must always be a superset of the
knowledge generated and used during execution of the corresponding sequential algorithm. Or more pre-
cisely, each time the parallel algorithm takes a decision, the knowledge on which this decision is to be
based must include all the knowledge used by the corresponding sequential algorithm at the corresponding
point during its execution. Secondly, at each point in time, at least one of the processes of the parallel
algorithm must be working upon a basic subproblem.
The first condition can be met by accomplishing that for each point in time during execution of the parallel
algorithm, all the subproblems the corresponding sequential algorithm branches from until reaching the
corresponding point during its execution are either branched from by the parallel algorithm, or are elim-
inated by it. To accomplish this, all subproblems must be uniquely identifiable by their heuristic value.
Hence the heuristic function h used by the selection rule must be injective.
The second condition can be met by requiring the heuristic function used to be non misleading. A non
misleading heuristic function precludes the generation of children of non basic subproblems which have a
higher priority to be branched from then some of the basic subproblems.

Lemma 1:
If during execution of the Boulder algorithm a point is reached where there exist no more active basic sub-
problems, enough knowledge has been generated to solve the problem instance on hand. I.e., a feasible
solution has been generated which can eliminate all remaining active subproblems by a lower bound test.

Lemma 2:
During execution of a Boulder algorithm which uses an elimination rule involving only lower bound tests
and a heuristic function which is injective and non misleading, at each point in time some process will be
working upon the active basic subproblem with the smallest heuristic value.

For the proofs of these lemmas we refer to [Trienekens 1989]. As can be seen in that paper, these
lemmas are valid in a much more general setting.
The first lemma states an upper bound on the work to be done while executing the Boulder algorithm. The
second lemma together with the fact that a lower bound function is non misleading, state that the branching
from basic subproblems always continues. Together these two lemma’s imply that the execution of the
Boulder algorithm will not suffer from deceleration anomalies.

Now for an upper bound on the time complexity of the Boulder algorithm. Let Tp(I) be the time
needed for solving problem instance I on a given parallel computer system with the Boulder algorithm. Let
Ts(I) be the time needed by the least powerful processing element of this parallel system for solving prob-
lem instance I by executing the corresponding sequential algorithm. Let N be the number of basic subprob-
lems generated by the corresponding sequential algorithm. Let m be the number of slave processes the
algorithm is executed by. Finally, let b be the time needed by a slave process to interact with the master
process.
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We assume that the master can add a subproblem to the active set and prune this set (i.e., removing all sub-
problems with a higher or equal lower bound), or extract a subproblem from the active set, in constant time
c. The master serves the requests of the slaves using a first come, first served policy.

Theorem:
For the execution of a Boulder algorithm which uses an elimination rule involving only lower bound tests
and a heuristic function which is injective and non misleading, it holds that

Tp(I) ≤ Ts(I) + 2 . N . (b + (m −1).c).

Proof:
Lemma 1 states that once there are no more basic subproblems, the problem instance has been solved.
Lemma 2 states that at each point in time the active basic subproblem with the smallest heuristic value will
be being worked upon. In the worst case, all basic subproblems are worked upon sequentially by the pro-
cess executing on the least powerful processing element.
The term 2.N. (b +(m −1).c) stems from the fact that apart from the computations on the branchings, there is
also work involved in interactions between the master and the slaves. The additional time needed by a
slave process for subtracting a subproblem from the active set is the sum of the time needed for the interac-
tion with the master process and the waiting time in case of the master process first having to server
requests of other slaves. The same holds for the addition of the descendants created by branching and the
subsequent pruning of the active set. Because there are m slave processes, there are at the most m-1 slave
processes already trying to interact with the master process. The requests by these processes takes at the
most (m −1).c time. Because these interactions are not needed by the corresponding sequential algorithm,
we have to account for it. `

Note that neither the theorem nor lemma 2 state anything about the total number of subproblems
branched from.

4. COMPUTATIONAL EXPERIMENTS

As mentioned before, for our research we were amongst others interested in the consequences of the
branching from several subproblems in parallel with the best possible use of the knowledge generated so
far. By ‘best possible use of the knowledge generated so far’ we mean that during execution of a parallel
branch and bound algorithm we try to branch only from basic subproblems. The branching from non basic
subproblems is considered to be superfluous work which unnecessarily slows down the execution. With
this in mind, we developed the Boulder algorithm described in section 2.2.

We executed the Boulder algorithm using the Distributed Processing Utilities Package (DPUP) of
the Department of Computer Science of the University of Colorado at Boulder, Colorado, United States
[Gardner et al. 1986]. This department owns several Vaxes, Pyramids, and Suns. DPUP is a distributed
programming tool box which allows the user to use the machines on the net as a loosely coupled system
DPUP enables a process to create a remote process and establish a communication link with it. The
machine on which the remote process is created can be determined either by the creating process or by
DPUP itself. In the latter case, DPUP starts the remote process on the machine with the lowest load in the
network. The machine the remote process is created on can be the same as the machine the original pro-
cess is running on. Of course DPUP enables a process to communicate with a remote process created pre-
viously by this process. DPUP also enables a process to kill a remote process it started, and to discard the
corresponding communication link. Finally, DPUP enables different remote processes to communicate
directly with each other. While communicating, the sending process does not become synchronized with
the receiving process. DPUP stores the message in an internal buffer and the sending process can continue
directly after having sent the message. The receiving process can empty the buffer as it is ready to do so.
It is possible to interrupt a remote process. The fact that DPUP enables a process to start another process is
very elegant because it allows a user to initiate the execution of a parallel program by just starting a single
process (which in turn will start all other processes).
Because the machines are connected through an Ethernet, only one process at a time can send a message.
Therefore all communications have to be handled sequentially. Fortunately an Ethernet has a very high
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bandwidth, i.e., a very high communication capacity. So, as long as there are not too many big messages
or too many processes, the probability of two messages colliding or of the Ethernet becoming a bottleneck
is small.

We tested the Boulder algorithm by solving some random generated instances of the symmetric trav-
eling salesman problem.
Let G = (V,E) be an undirected graph with node set V = {1, . . . , N} and edge set E. Each edge ei, j ∈ E has
weight ci, j . The symmetric traveling salesman problem is to find a hamiltonian circuit on G of minimum
total weight.

The sequential branch and bound algorithm we started from has been developed by Jonker & Vol-
genant. We will give a brief description of this algorithm. For a more detailed description we refer to
[Jonker & Volgenant 1982].
The lower bound function used by the algorithm is based on a minimal 1-tree relaxation. A 1-tree of G
consists of a spanning tree on the nodes V\{1} combined with two edges incident to node 1. A minimal 1-
tree is a 1-tree of minimum total weight. Clearly, a hamiltonian circuit is a special case of a 1-tree. There-
fore the weight of a minimal 1-tree is a lower bound on the weight of a hamiltonian circuit, and thus on the
weight of the minimal hamiltonian circuit. Computing a minimal spanning tree is very easy to do using the
greedy algorithm due to Kruskal [1956]. The major part of the work involved in executing this algorithm is
the sorting of the edges according to increasing weight. Given a minimal spanning tree, a minimal 1-tree
can be constructed by adding to the spanning tree the two edges incident to node 1 with minimal weight.
Obviously a weight transformation ĉi, j = ci, j + πi + πj has no influence on the minimal hamiltonian circuit.
Because in a hamiltonian circuit there are exactly two edges incident to each node, the above transforma-
tion will add a constant to the weight of a hamiltonian circuit, and therefore will not change the minimal
hamiltonian circuit. However, the minimal 1-tree will generally be changed. Using the above described
weight transformation as Lagrange multipliers, the quality of the lower bound can be improved upon by a
heuristic iterative process which tries to maximize the weight of a minimal 1-tree.
The branching rule decomposes each problem into three subproblems by requiring and/or forbidding some
of the edges of E to be in the 1-tree. The new required and forbidden edges are chosen in such a way that
they try to break the cycle in the minimal 1-tree, thereby forcing the 1-tree towards a hamiltonian circuit.
The choice of these edges therefore depends on the 1-tree generated during the lower bound process.

As the heuristic function guiding the selection of the subproblem to branch from next, we chose the
lower bound computed on a subproblem, i.e., our algorithm performs a best bound first search. We chose
for this selection strategy because, in a sequential branch and bound algorithm, it minimizes the number of
subproblems branched from [Fox, Lenstra, Rinnooy Kan & Schrage 1978]. We did not enforce that all
heuristic values would be distinct, because due to the use of the Lagrange multiplier technique, the proba-
bility of two lower bounds being equal is very small.
As soon as it can be deduced that a subproblem cannot yield a feasible solution, this subproblem is elim-
inated. For example, if a subproblem contains three or more required or (m −1) or more forbidden edges
incident to a particular node (where m is the number of edges incident to this node), then this subproblem
does not have a feasible solution.

4.1. Implementation

We coded the Boulder algorithm in C [Kernighan & Ritchie 1978], the same language DPUP is written in.
This way it was easy to link the DPUP routines into the program.
The program is organized in such a way that the user only has to start the master process. The master pro-
cess in turn starts and kills all slave processes.
As mentioned earlier, DPUP provides the user the opportunity to run several processes in parallel, but some
of these processes might be running on the same processing element. Running more than one process on a
single processing element introduces all kinds of overhead like process control, swapping etc. Therefore
we intended to run all our processes on different processing elements. However, we had to make an excep-
tion for the master process. It turned out that this process had hardly any work to do, so it would have been
a waste to dedicate a processing element to it. We ran the master process together with one of the slave
processes on the same processing element. However, because the work to be done by the master is more
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important than the work to be done by the slave, the master process was given a higher priority.

While implementing the Boulder algorithm, and debugging the program, we encountered some prob-
lems caused by the nondeterminism of the algorithm and the particular computer system used for execut-
ing the algorithm.

The first problem was the nondeterminism of the algorithm. Due to this nondeterminism, consecu-
tive executions of the program could be completely different. Therefore it could be very hard to reproduce
the errors occurred in a given execution. The problems of debugging a nondeterministic program were
partly bypassed by first executing the program using only a single slave process. Because the interactions
between the master and a particular slave are well defined, such a program is deterministic. (The nondeter-
minism is introduced only if several slaves want to interact simultaneously with the master.) Only after
this program executed flawlessly, we started to use more slave processes.
Even using the above described method of program development, debugging a parallel program turned out
to be very cumbersome. The main obstacle was that it was very hard to see what exactly happened inside a
slave process. Because a slave process is started by the master process and not by the user, it could not be
run under control of a debugger.

The second problem was due to the floating point arithmetic of the machines used. While imple-
menting the Boulder algorithm and debugging the program, it turned out that not all the machines on the
net performed their floating point arithmetic in exactly the same way. The outcome of a floating point
operation depended on the machine on which the operation was performed. The differences between the
various machines were minor (in the same order as rounding errors). However, these minor differences
could accumulate and influence the way a subproblem was decomposed into smaller subproblems. (The
way a subproblem is decomposed depends on the minimal 1-tree generated, which in turn depends on the
weights of the various edges. Due to the fact that these weights were computed using floating point arith-
metic, they differed on the various machines. These different weights could result in a different ordering of
the edges, and hence in different 1-trees generated.) Therefore the subproblems generated by decomposi-
tion did not only depend on the branching rule but also on the machine the slave process branching from
this subproblem was running on.
These different decompositions did not affect the correctness of our program. However, they made it very
difficult to compare consecutive executions of the parallel algorithm, or to compare the execution of the
parallel algorithm with the execution of the corresponding sequential algorithm. Because we were
interested in studying the effects of parallelism, we decided to eliminate this variation in decomposition
into subproblems. The only way to do this was by changing all our floating point arithmetic to integer
arithmetic. Although this change decreased the accuracy of the Lagrange multipliers and thereby the qual-
ity of the 1-trees generated, it speeded up the overall execution of the algorithm, especially if the algorithm
was executed on the Suns. This speedup was due to the fact that integer arithmetic is much easier to per-
form than floating point arithmetic. The extraordinary speedup on the Suns was due to the fact that those
machines did not perform their floating point operations in hardware but had to simulate them in software.

The third problem had to do with the communication between processes running on machines of dif-
ferent kind. In essence, communications through DPUP correspond to shipping bit patterns from one pro-
cess to another. Therefore processes on different types of machines can communicate using DPUP if they
use the same interpretation of bit patterns. If two processes use a different internal representation of bit
patterns, one of the two processes has to convert the representation of the message to the representation
used by the other process. Currently the user himself has to arrange for this conversion process.
It turned out that the various C compilers running on the Pyramids and the Suns did not all use the same
internal representation of records, i.e., data structures containing various fields of nonhomogeneous data.
The compilers differed in the way they packed the various fields in a record. By adding dummy fields to a
record, it could be easily arranged that all compilers used the same representation.

The last problem was caused by fact that there were other users on the system. It turned out that a
parallel program executed using DPUP was heavily influenced by other activities occurring in the computer
system. The fact that a machine is executing other processes apart from the processes of the parallel pro-
gram amounts to a decrease in computing power of the processes running on this machine. Next to that, if
there is much traffic on the Ethernet connecting the various machines, the communications between the
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various processes of the program can be interfered with. The real problem in this respect is that all these
circumstances cannot be controlled by the program. Therefore, each time a parallel program is executed,
the environment differs, and the effects caused by the different environment mingle with the effects caused
by the parallelism.
The only way to acquire reliable test results was by using a dedicated system, i.e., a system whose
machines are doing nothing besides the execution of the parallel program. Because we were running our
tests between Christmas and New Year we could obtain exclusive access to all machines during the night.

4.2. Computational Results

We tested the Boulder algorithm by applying it to two sets of randomly generated symmetric traveling
salesman problems.
To study the effects of the number of processes used in parallel and of processes of varying computing
power, we ran our program on different combinations of machines. Each machine, except the most power-
ful machine, executed a single slave process. The most powerful machine executed next to a slave process
also the master process. We started by using two Pyramids, and than repeatedly added an additional
Pyramid until in the end we used 5 Pyramids. The computing power ratio of these Pyramids was approxi-
mately 1.00 : 0.96 : 0.96 : 0.80 : 0.62 (depending on the size of the problem instance to be solved). The
Pyramids were added in order of decreasing computing power.
Finally we included two Sun-2’s in our tests to study the effects of adding a weak processing element to the
system. The computing power of a Sun-2 is approximately 4 times less than the power of the most power-
ful Pyramid. In these experiments, the master process was executed by one of the Sun-2’s, whereas each
Pyramid and the other Sun-2 were each executing a single slave process.

The first set of test problems consisted of euclidean problems. Using a two dimensional uniform dis-
tribution we generated points in a two dimensional space. The weight of an edge between two nodes is
equal to the euclidean distance in the plane between the two corresponding points. The second set of test
problems consisted of random problems, in which all weights were drawn at random from a uniform distri-
bution.
The random set consisted of five instances of 50 nodes, two instances of 75 and two instances of 100
nodes, whereas the euclidean set consisted of five instances of 50 nodes and a single instance of 75 nodes.
All test problems (except the 75 node euclidean problem) were relative easy to solve. We have chosen to
use these easy test problems because we were primarily interested in the effects and the consequences of
the use of parallelism, and not in solving problem instances as big as possible as fast as possible. We
wanted to study the behavior of a parallel branch and bound algorithm with increasing number of
processes. We were especially interested in whether we could keep all processes busy all the time.

As mentioned earlier, asynchronous parallel branch and bound algorithms are nondeterministic.
While solving our test problems, the nondeterminism only occasionally resulted in different answers
yielded for different executions. The division of the work among the processes however varied heavily for
different runs, and thus the time needed for execution of our parallel program. In order to get reliable
results, we had to make several test runs for each problem instance and average the results.
The small variety in answers yielded is due to the fact that the cardinality of the set of optimal feasible
solutions of a traveling salesman problem tends to be small. Apart from that, if a problem instance has
several optimal solutions, the effort involved in generating these solutions must be nearly comparable, i.e.,
the effort involved in traveling in the search tree from the root to these problems must be comparable.

Figure 4.1 shows the average achieved efficiency and the average number of subproblems branched
from as a function of the number of processes used. The number of subproblems the corresponding
sequential algorithm branches from is shown underneath the problem name. Remember that due to the fact
that not all machines used are equally powerful, there is no direct link between the achieved efficiency and
the total time needed for executing the parallel program. In most cases, this time decreased as the number
of processes used increased. In a few cases, this time suffered from fluctuation anomalies caused by the
varying computing power of the machines used to execute our processes. We will return to these
anomalies in our experiments with the Sun-2’s.
The results show that apparently there exists only a limited amount of parallelism within a problem
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e50a 0.93 0.90 0.68 0.57 1.00 1.11 0.85 0.72
(19) (20.0) (19.0) (20.0) (21.0) (20.0) (19.0) (20.0) (21.0)

e50b 0.88 0.65 0.46 0.39 0.98 0.75 0.54 0.44
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e50d 0.88 0.68 0.52 0.45 0.95 0.76 0.60 0.53
(16) (18.0) (21.0) (24.3) (26.3) (18.0) (21.0) (24.3) (26.3)

e50e 0.89 0.72 0.50 0.41 0.98 0.86 0.60 0.48
(16) (17.0) (17.0) (18.0) (18.0) (17.0) (17.0) (18.0) (18.0)

e75b 0.97 0.94 0.95 0.93 0.99 0.97 1.00 0.99
(260) (260.0) (260.0) (260.0) (260.0) (260.0) (260.0) (260.0) (260.0)
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(22) (22.0) (22.0) (22.0) (23.0) (22.0) (22.0) (22.0) (23.0)
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Figure 4.1
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instance. This can be derived from the fact that the achieved efficiency drastically decreases as soon as the
number of processes used exceeds a certain maximum number (which depends on the particular problem
instance on hand). Until that moment, there is enough parallelism in the problem instance to keep all
processes busy most of the time.

The Boulder algorithm starts by computing a lower bound to the original problem. These computa-
tions are performed by a single process whilst all other processes are idle. As can be easily deduced, this
has bad effects on the achieved efficiency. If we discount for the time needed to compute the lower bound
to the original problem, the achieved efficiencies are much higher. The discounted achieved efficiencies
are also shown in figure 4.1.

Some of our test runs show an achieved efficiency of more than 100 %, whereas the work done dur-
ing parallel execution exactly equaled the work done during sequential execution (i.e., the search trees gen-
erated were completely identical). The only way we can explain this unexpected outcome is by looking at
the various tricks a computer uses to speed up the execution of a program. Firstly, a compiler tries to gen-
erate code that is as efficient as possible. This is easier to do for smaller programs than for bigger pro-
grams. The parallel program consists of a set of smaller programs whereas the sequential program is one
big program. Secondly, the amount of memory needed by a slave process for storing its data is smaller
than the amount of memory used by the sequential program. Therefore a greater part of the slave process
fits into the cache (a kind of very fast memory, which is only limitedly available on a computer). Finally, a
slave process can store all its data in static variables, whereas the sequential program has to store its data in
dynamic variables. Again the slave process can be executed faster because accessing static variables is fas-
ter than accessing dynamic variables.

The addition of a slave process running on a Sun-2, even though increasing the power of the system
as a whole, needed not decrease the time needed for executing a parallel program. If a slave process on a
Sun-2 was added, the execution of a program normally ended with all other slave processes being idle and
waiting for the slave process running on the Sun-2 to complete its last task. The speedup caused by this
greater computing power could be completely dominated by the waiting in the end, and execution could
take a longer time even though the work to be done was completely equal (i.e., identical search trees were
generated). Especially problem instances with a small amount of intrinsic parallelism suffered from this
increase in execution time.
Sometimes even the number of subproblems branched from drastically increased. This increase can be
explained by assuming that the least powerful slave process was branching from a basic subproblem at a
time that there were no more basic subproblems available for branching from by the more powerful slave
processes which just completed branching from their subproblem. Hence these other slave processes
started branching from non basic subproblems which would have been eliminated otherwise. As the least
powerful slave process completed branching from its subproblem, the subproblems thus generated were
given to the more powerful slave processes to branch from, and the execution left the wrong track.
Figures 4.2 and 4.3 show minimum and maximum execution times and the number of subproblems
branched from while solving two specific test problems as a function of the machines used. These figures
are characteristic for problem instances with a great and a small amount of intrinsic parallelism. Figure 4.2
displays information about problem e75b, a huge problem with lots of intrinsic parallelism. Therefore most
of the time there was a basic subproblem available for an idle slave process running on a Pyramid and the
speedup at the start of the execution dominated the waiting at the end. Figure 4.3 displays data about prob-
lem e50c, a problem with limited intrinsic parallelism. The waiting time at the end of the execution com-
pletely dominated the speedup at the start and the slave processes running on Pyramids started branching
from non basic subproblems. Next to that, the execution suffered from fluctuation anomalies.

4.2.1. Branching in parallel from the original problem
As already mentioned, the Boulder algorithm has one inherent sequential part: a single slave process com-
putes the lower bound to the original problem and branches from this problem. Until this slave process has
completed these computations, all other slave processes are idle and thus wasting their computing power.
Computing a lower bound to the original problem tends to be a much heavier task than computing a lower
bound to a subproblem generated by branching. In computing a bound to the latter problem often
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iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
slave processes fastest nr of slowest nr of
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Figure 4.2. Problem e75b
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slave processes fastest nr of slowest nr of
running on time nodes time nodesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
2 pyramids 0:49 12 0:51 12
3 pyramids 0:48 15 0:53 14
4 pyramids 0:43 20 0:54 17
5 pyramids 0:49 24 0:53 24iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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3 pyramids + sun 0:49 17 1:03 19
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Figure 4.3. Problem e50e

knowledge is used which has been obtained while computing the bound on the original problem. A good
initial bound tends to lead to good bounds on the subproblems which can also be computed efficiently.
Therefore often a more complex lower bound function is used in branching from the original problem.
It might be possible to speed up the execution of the Boulder algorithm by parallelizing the computation of
the lower bound to the original problem. However, parallelizing this lower bound computation, although
decreasing the computation complexity, increases the communication complexity of the algorithm. There-
fore whether such a parallelization is worthwhile depends on the lower bound function used and the partic-
ular system which the algorithm is executed on.

As one of our computational experiments we tried to speed up the execution of the Boulder algo-
rithm by parallelizing the computation of the lower bound to the original problem. Most of the effort
involved in computing this bound is spent in generating a good 1-tree. This process consists of a main
loop, which repeatedly updates the weights of the edges and constructs a minimal spanning tree and a 1-
tree. Because the way the weights are updated depends on the 1-tree generated in the previous iteration,
the iterations of this main loop are inherently sequential. Therefore the only part fit for parallelizing is the
computation of the spanning tree. The greedy algorithm used for generating the minimal spanning tree is
difficult to parallelize [Anderson & Mayr 1984]. Because we are not primarily interested in parallelizing
spanning tree computations, we tried to speed up this computation by simply parallelizing the sorting of the
edges while constructing the spanning tree. We divided the edges into sets and gave each slave process its
own set of edges to sort. After that, the master process collected the sorted sets and merged them.
It turned out that the increase in communication complexity completely dominated the decrease in compu-
tation complexity. Only when we ran our program solely on the Suns, and still used floating point arith-
metic, it turned out to be faster.

4.3. CONCLUSION

Our experiments showed that it is possible to get high achieved efficiencies while executing the Boulder
algorithm on a loosely coupled system with a limited number of processing elements. If the effort needed
for branching from a single subproblem is big, the frequency with which the various slave processes access



eur.cs.89.02 - 15 - 1.22

the active set is low, and accessing the set is not a bottleneck.
A problem instance contains only a limited amount of parallelism. There exists an upper bound on the
number of processes which can be used successfully in parallel to decrease the execution time.
Adding a weak processing element to the system turned out to be dangerous, especially if the intrinsic
parallelism in the problem instance was small with respect to the number of processes used. Most of the
time such an addition increased the execution time.
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