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1 Introduction

In his Introductory Lectures on Convex Programming Nesterov has given an

algorithm to �nd the analytic centre x�F for a given �-self-concordant barrier

F with bounded domain and a given interior point of this domain. The

intended use of this algorithm is as an auxiliary phase in a primal short-step

path-following method for solving convex programming problems. For the

number of iterations in this auxiliary phase an upperbound is given in [N]

which for � much bigger than 1 is essentially

7:2
p
�
�
ln � + 1

2
lnF 0(y0)

T
F
00(x�F )

�1
F
0(y0)

�
where T denotes transpose.

In this note it is shown that the term ln � can be omitted. Moreover we

make the easy observation that the constant 7.2 can be replaced by 3.2. The

ln �-improvement is achieved in the following way. Using certain inequalities

from [N] we obtain a lower bound for the total decrease of the penalty pa-

rameter in the last two steps of the algorithm which does not depend on �.
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Concerning the constant 7.2 it is clear from [N] how it could be improved: by

optimizing the choice of the centering parameter �. A routine optimization

shows that � � 0:088 gives the constant 3.2.

2 Statement of the result

In this paper we will use notations, de�nitions and results from chapter 4

of [N]. We begin by recalling from [N] a scheme to approximate an analytic

centre; we use a slightly di�erent stopping criterion. Let F be a �-self concor-

dant barrier with bounded domain and let a point y0 in this domain be given.

Choose a centering parameter � <
3
2
� 1

2

p
5 � 0:4 and write  =

p
�

1+
p
�
� �.

Then  > 0. We consider the following scheme.

0. Set t0 = 1

1. k-th iteration (k � 0). Set

tk+1 = max
�
0; tk � 

kF 0(y0)k�y
k

�
yk+1 = yk�F 00(yk)

�1 (�tk+1F
0(y0) + F

0(yk))

2. Stop the process if tk = 0. Set x = xk and N = k.

Theorem 2.1. The scheme above terminates and

N � 2 + max

"
0;

1


(� +

p
�) ln

 
(1 +

p
�)kF 0(y0)k�x�

F

(1�
p
�)

!#

The vector x which is the result of this scheme satis�es

kF 0(x)k�x � �:

Remark 2.2. If �, the parameter of the barrier, is much bigger than 1,

then it is 'optimal' to choose � such that  = (�) is maximal. A routine

calculation shows that this choice is � � 0:088, the unique real root of the

equation 4x3 � 8x2 + 12x � 1 = 0. Then  = 0:317 and so the upperbound

in the theorem is essentially

3:2
p
� ln kF 0(y0)k�x�

F

:
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3 Proof of the result

We write

�(t; y) = [(�tF 0(y0) + F
0(y))TF 00(y)�1(�tF 0(y0) + F

0(y))]
1

2

for all t 2 R and all y 2 dom F . This is well-de�ned: dom F is bounded,

so it contains no straight lines and so, by theorem 4.1.3. of [N] the hessian

F
00(y) is non- degenerate for all y 2 dom F .

Step 1 �(tk; yk) � � for all k and �(tk+1; yk) �
p
�

1+
p
�
for all k with tk > 0.

Start induction: �(t0; y0) is seen to be 0.

Induction step: assume �(tk; yk) � � for some k with tk > 0. Then �(tk+1; yk)

is by the triangle inequality

� (tk � tk+1)kF 0(y0)k�yk + �(tk; yk):

This is �
p
�

1+
p
�
as �(tk; yk) � � and tk � tk+1 � 

kF 0(y0)k�y
k

.

Applying theorem 4.1.12 of [N] we get

�(tk+1; yk+1) �
�

�(tk+1; yk)

1� �(tk+1; yk)

�2

:

This is seen to be � � as

�(tk+1; yk) �
p
�

1 +
p
�
:

Step 2 kF 0(y0)k�yk �
�+

p
�

tk
for all k with tk > 0.

One has tkkF 0(y0)k�yk = k � tkF
0(y0) + F

0(yk)� F
0(yk)k�yk .

By the triangle inequality this is � �(tk; yk) + kF 0(yk)k�yk . By �(tk; yk) � �

and the de�nition of self-concordant barriers this is � � +
p
�.

Step 3. tk �
�
1� 

�+
p
�

�k
for all k with tk+1 > 0.

Start induction: t0 = 1.

Induction step: for all k with tk+1 > 0, we have tk � 

kF 0(y0)k�y
k

> 0.

It follows that

tk+1 � (1�


� +
p
�
)tk:
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The rest is clear.

Step 4. The algorithm terminates and the resulting vector x satis�es kF 0(x)k�x �
�.

By Corollary 4.2.1 of [N] one has

kF 0(y0)k�yk � (� + 2
p
�)kF 0(y0)k�x�

F

:

Therefore for each k with tk+1 > 0 one gets

tk >


(� + 2
p
�)kF 0(y0)k�x�

F

:

Combining this with step 3 it follows that the algorithm terminates, say after

N iterations.

We write x = yN . Then tN = 0, and kF 0(x)k�x = �(tN ; yN) � �.

Step 5. kF 0(y0)k�yN�2
� (1 +

p
�)kF 0(y0)k�yN�1

.

By de�nition

yN�1 � yN�2 = �F 00(yN�2)
�1(�tN�1F

0(y0) + F
0(yN�2)):

Taking the k kyN�2
norm we get kyN�1 � yN�2kyN�2

= k � tN�1F
0(y0) +

F
0(yN�2)k�yN�2

.

This is by de�nition �(tN�1; yN�2); this is �
p
�

1+
p
�
by step 1.

This proves kyN�1 � yN�2kyN�2
�

p
�

1+
p
�
.

Applying theorem 4.1.6. of [N] we get

F
00(yN�1) � (1� kyN�1 � yN�2kyN�2

)�1
F
00(yN�2):

It follows, on taking inverses, that

F
00(yN�2)

�1 � (1 +
p
�)2F 00(yN�1)

�1
:

Therefore

kF 0(y0)k�yN�2
� (1 +

p
�)kF 0(y0)k�yN�1

:

Step 6. kF 0(y0)k�yN�1
� (1�

p
�)�1kF 0(y0)k�x�

F

.

By step 1 �(tN ; yN�1) �
p
�

1+
p
�
, so as tN = 0, we get by theorem 4.1.11 of [N]

that

kyN�1 � x
�
FkyN�1

�
�(0; yN�1)

1� �(0; yN�1)
;
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this is �
p
�. Therefore by theorem 4.1.6 of [N]

F
00(x�F ) � (1� kyN�1 � x

�
FkyN�1

)�2
F
00(yN�1):

It follows on taking inverses that

F
00(yN�1)

�1 � (1�
p
�)�2

F
00(x�F ):

Therefore

kF 0(y0)k�yN�1
� (1�

p
�)�1kF 0(y0)k�x�

F

:

Step 7. N � 2 + max

�
0; 1


(� +

p
�) ln

�
(1+

p
�)kF 0(y0)k�

x
�

F

(1�
p
�)

��
.

On the one hand, by step 3

tN�2 � (1�


� +
p
�
)N�2

:

On the other hand, by tN�1 > 0, we have

tN�2 >


kF 0(y0)k�yN�2

:

Therefore by step 5 and 6 we get

tN�2 >
(1�

p
�)

(1 +
p
�)kF 0(y0)k�x�

F

:

Combining this upperbound and lowerbound for tN�2 gives an inequality; on

taking the logarithm and on using the inequality ln(1 + �) � � we get the

required upperbound for N .
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