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Forecasting the international diffusion of innovations: 
An adaptive estimation approach 
 
 
Abstract 
We introduce an international, adaptive diffusion model that can be used to forecast the cross-
national diffusion of an innovation at early stages of the diffusion curve. We model the 
mutual influence between the diffusion processes in the different social systems (countries) by 
mixing behaviour. Furthermore, we apply the matching procedure as proposed by Dekimpe, 
Parker and Sarvary (1998). This international diffusion model is adaptively estimated using 
an augmented Kalman Filter with Continuous States and Discrete observations, developed by 
Xie, Song, Sirbu and Wang (1997). This is the first application of this procedure in an 
international context. We empirically applied this method to the diffusion of Internet access at 
home, and mobile telephony among households in the 15 countries of the European Union. 
The results show that our international, adaptive model performs well and is by far superior 
when compared to the classical method of estimating diffusion models for each country 
separately. 
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Introduction 
 
Ever since the introduction of the Bass diffusion model (BDM) in 1969, a lot of attention has 
been paid by marketing researchers to the diffusion of new products in a particular market. 
Mahajan, Muller and Bass (1990) provide an extensive overview of the extensions of the 
standard Bass model. These studies mainly focused on one market or country, and so far 
limited attention has been paid to the international diffusion of new products. However, 
nowadays marketing managers launch new products not only into the domestic market, but 
sooner or later new products will often be introduced in foreign markets as well. 
Consequently, insight into the diffusion processes across countries is becoming more and 
more important, which has recently led to a growing interest of marketers to model these 
cross-national diffusion patterns (see e.g. Takada and Jain, 1991; Helsen, Jedidi and Desarbo, 
1993; Putsis, Balasumbramaniam, Kaplan and Sen, 1997; Dekimpe, Parker and Sarvary, 
2000; Talukdar, Sudhir and Ainslie, 2002; Kumar and Krishnan, 2002; Tellis, Stremersch and 
Yin, 2003). 
A significant gap in the global diffusion literature, however, is that to date little research has 
been conducted on forecasting the multi-country diffusion of an innovation, and especially on 
estimation approaches when little or no data are available. According to Putsis and Srinivasan 
(2000, p. 283), �procedures that combine Bayesian approaches with adaptive processes may 
be a promising avenue for future research addressing what to do when little or no data are 
available.� They suggest two approaches in particular, worth exploring when little or no data 
are available, i.e. the Hierarchical Bayes (HB) procedure used by Lenk and Rao (1990), and 
the adaptive procedure suggested by Xie, Song, Sirbu and Wang (1997), i.e. the Augmented 
Kalman Filter with Continuous State and Discrete Observations (AKF(C-D)).  
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Studies by Neelamegham and Chintagunta (1999) and Talukdar, Sudhir and Ainslie (2002) 
extended the HB method proposed by Lenk and Rao (1990) to international markets by 
pooling the data not only across multiple products, as Lenk and Rao (1990) did, but also 
across countries. However, these studies still have some limitations. First of all, the proposed 
HB method requires an analytical solution, i.e. the diffusion model is required to be solvable. 
However, diffusion models often are expressed by differential equations that do not have 
analytical solutions (Xie et al., 1997). Secondly, Talukdar et al (2002) have assumed that, 
consistent with most diffusion research, the parameters of the diffusion model are time 
invariant and use the time-invariant NLS estimation approach developed by Srinivasan and 
Mason (1986). A disadvantage of the time-invariant approach is that it often requires data to 
include the peak sales, which makes it less appropriate for early forecasting. Furthermore, it is 
unlikely that the parameters in a diffusion model will be constant over time. Van den Bulte 
and Lilien (1997, p. 338) have shown that �NLS estimates of the Bass model coefficients are 
biased and that they change systematically as one extends the number of observations used in 
the estimation.�  
Our study overcomes these shortcomings. It contributes to the new product forecasting 
literature by developing an international, adaptive (IA) diffusion model, which can be used 
for early forecasts if only a few data points are available or even prior to launch, and by 
estimating this model with a time-varying Bayesian estimation procedure. Our model 
combines the approaches by Putsis et al. (1997) and Dekimpe, Parker and Sarvary (1998).  
Putsis and Srinivasan (2000) suggested this combination as a potential area for future study, 
but so far, none of the earlier global diffusion studies has combined these approaches. 
Following Putsis et al. (1997), we model the diffusion in multiple countries simultaneously, 
taking into account the cross-country interaction between the individuals of the different 
countries. Since it can be expected that some interaction of individuals takes place across 
countries, it is most likely that the adoption of an innovation in country A influences the 
innovation adoption in country B to some extent, dependent on the level of interaction. When 
studying international diffusion this cross-country interaction should be addressed, and is 
therefore explicitly incorporated in our model. We also apply a sample-matching procedure as 
proposed by Dekimpe et al. (1998). When pooling data across countries to estimate the 
diffusion parameters, Dekimpe et al. (1998) suggest that country samples should be matched 
on external criteria, such as country size, before valid cross-national comparisons can be 
made.  
To estimate our IA diffusion model, we use the adaptive, Bayesian estimation procedure 
proposed by Xie et al. (1997), i.e. the Augmented Kalman Filter with Continuous State and 
Discrete Observations (AKF(C-D)). Xie et al. (1997) have demonstrated the superior 
prediction performance of the AKF(C-D) method over five other methods, amongst which the 
NLS estimation method by Srinivasan and Mason (1986) and the HB method of Lenk and 
Rao (1990). Nevertheless, this method has not yet been applied to an international diffusion 
model. Therefore, we extend the AKF(C-D) method to an international context, in order to be 
able to forecast the diffusion of an innovation across multiple countries.  
To estimate and validate the proposed IA diffusion model, we use a novel data set on the 
penetration of the Internet access and mobile telephony among households in 15 European 
Union countries. The data sets we use have two major features. First of all, it concerns more 
recently introduced innovations as opposed to the products generally included in global 
diffusion studies, such as VCR�s, color TVs, microwave ovens, etc (see Kumar, Ganesh and 
Echambadi, 1998). Consequently, the results of our study are not only useful for scientific 
purposes but also for the suppliers of these relative new products. Secondly, the yearly 
penetration rates included in these data sets are based on real adoption data at the household 
level, instead of annual sales data that are generally used in international diffusion studies. 
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The advantage of real adoption data is that no repeat purchases are included, which is the case 
with sales data.  
The remainder of this article is organized as follows. The next section presents our forecasting 
model, and subsequently we discuss the adaptive estimation technique we use to estimate our 
IA diffusion model. Then, we discuss the data we use for the empirical validation of our 
forecasting approach, followed by a description of the forecasting results. These results are 
compared to the results obtained using the classical approach in order to evaluate the 
performance of our model. We conclude with a discussion of the limitations and suggestions 
for future research.  
 
  
The international adaptive diffusion model 
 
Cross-country interaction 
Takada and Jain (1991) found faster innovation diffusion in the so-called lag countries, i.e. 
countries where the innovation was launched at a later point in time than in the lead country, 
i.e. the first country where the innovation is launched. This might be due to the 
communication between people from different countries. This cross-country interaction may 
influence the cross-country diffusion of a new product. For example, if a product is accepted 
fast in Belgium, does this automatically lead to a fast adoption in neighbor countries France 
and The Netherlands? So far, only a few studies modeled these cross-country influences 
(Mahajan and Muller, 1994; Putsis et al., 1997; Ganesh, Kumar and Subramaniam, 1997; 
Kumar and Krishnan, 2002). Table 1 provides an overview of these studies by summarizing 
the specific characteristics of each of these models. This table also includes the Staged 
estimation procedure by Dekimpe et al (1998), which will be discussed in the next section / 
paragraph.  
 

- Table 1 about here - 
 
Ganesh et al (1997) investigated the influence between the lead country and the lag countries. 
The learning effect they modelled, works only in one direction, from the lead country to the 
lag country. The diffusion in a lag country is supposed to have no influence on the diffusion 
in both other lag countries and the lead country. However, following communication, the 
influence between countries may take place between all the countries where the innovation is 
introduced (Mahajan and Muller, 1994; Putsis et al., 1997; Kumar and Krishnan, 2002). The 
mutual influence model proposed by Mahajan and Muller (1994) assumes, however, that the 
influence of adopters on potential adopters in another country is equal to the influence on 
potential adopters within their own country. This assumption is very hard to defend and there 
is no empirical evidence to support it. Since very little is known about the influence between 
countries, the model should allow for an intensity of the influence that is based on the 
observations of the diffusion process, which is done in the models of Putsis et al. (1997) and 
Kumar and Krishnan (2002). They both allow for a varying influence between all countries 
investigated, and found significant cross-country interactions. When studying international 
diffusion the cross-country interaction should be addressed.  
To model this cross-country interaction, we use the model of Putsis et al. (1997) as the 
starting point. They model the mutual influence (called mixing behavior) as variable, ranging 
from no mixing at all (pure segregation, countries are isolated) to complete mixing (random 
mixing, mixing occurs freely). The empirical results obtained, show that the mean absolute 
percentage error is lowest when the intermediate form of Bernoulli mixing is used. We 
improve the model of Putsis et al. (1997) in two ways. First of all, Putsis et al. (1997) uses a 
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nonlinear least squares algorithm to estimate the model, which is non-adaptive, i.e. all the data 
is used in one pass. We reformulate the model to make it possible to adaptively estimate the 
parameters, i.e. the parameters estimations will be updated as additional data becomes 
available, a recommended estimation technique by for example Brettschneider and Mahajan 
(1980), Sultan and Farley (1990) and Xie et al. (1997). A second adjustment to the model of 
Putsis et al. (1997) is that we combine it with the matching procedure of the staged estimation 
approach of Dekimpe et al. (1998).  
 
Sample Matching 
When investigating the cross-national diffusion of an innovation, it is important to match the 
countries based on objective criteria, in order to be able to make a valid comparison of the 
diffusion patterns across those countries. Dekimpe et al. (1998) propose to match on three 
dimensions, i.e. the size of the countries, the penetration ceiling, and finally the time of origin. 
They apply this procedure to the diffusion of cellular phones across 184 countries, and show 
that the critical factor in explaining diffusion patterns across countries is the matched 
definition of (1) the social system size, (2) the adoption ceiling and (3) the time of 
introduction. In line with these results, we also apply the matching procedure on these three 
dimensions. 
 
Ad 1. Matching on country size Si 
Of course one should reckon with the size of countries (e.g. in terms of inhabitants) before 
comparing the absolute number of adopters. A straightforward solution is expressing 
penetration as penetration per population. 
Following Dekimpe et al. (1998) we define the market potential of country i, mi(t) as: 
 

)(S)()( ttCtm iii ��         Equation 1  
Where: 
�� Si(t) is the exogenously estimated country size of country i expressed in the number of 

units of adoption (e.g. households or individuals), 
�� and Ci(t) is the estimate at time t of the long-term ceiling of penetration in country i, 

varying between 0 and 100%. 
 
The social system size, Si(t), will be determined using exogenous statistical data on the 
number of units per adoption, and is modeled as an exogenous variable: 
 

 variableexogenous)( �tS        Equation 2 
 
To match on social system size when comparing the progress of diffusion in the different 
countries, we will report the diffusion using the penetration per unit: 
 

)(
)(

tS
tNNPENETRATIO

i

i
i �        Equation 3 

Where: 
�� PENETRATIONi is the penetration per unit of adoption of the innovation in country i, 
�� and Ni(t) is the total number of units that have adopted the innovation at time t in country i. 
 
Ad 2. Matching on penetration ceiling Ci 
A certain percentage of individuals within a given country may never have sufficient intrinsic 
utility for the innovation in question. Therefore an exogenous ceiling, which is independent of 
the size of the country, should be introduced for each of the social systems studied. 
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Determining the long term ceiling, Ci(t), is difficult. Dekimpe et al. (1998) estimate this 
ceiling completely exogenous, and don�t adjust it as additional data points become available. 
Making a good assessment of the long-term utility of an innovation is, however, a complex 
and sometimes impossible task. In our opinion, it is necessary to use data available at later 
points in time to adjust a first assessment. Consequently, the penetration ceiling will be 
included in our model as a vector function of exogenous variables (e.g. income distributions) 
of which the parameters are allowed to vary2: 
 

� � variablesexogenous),()( tt CC βGC �       Equation 4  
Where: 
�� C(t) is the Kx1 vector of the long term ceiling in each of the K countries, 
�� �C(t) is a vector of  time varying parameters, 
�� and GC is a vector function of the parameter vector �C(t) and exogenous variables. 
 
Ad 3. Matching on time of introduction t0i 
The time origin must be matched to correct for the fact that innovation introduction timing 
may vary widely across countries. Before the innovation is introduced in country i there will 
be no diffusion in this country. To match on the time of origin, the following constraint is 
imposed: 
 

ii tttn ,0 if0)( ��         Equation 5 
 
Where: 
�� ni(t) is the speed of diffusion in country i, 
�� and t0,i is the time of introduction of the innovation in country i. 
 
 
Model specification 
We model the cross-country interaction by a Bernoulli noise mixing parameter �i, as was 
found to be the best way to model it (see Putsis et al., 1997). Further, we extend the mixing 
behavior model of Putsis et al. in two ways. First of all, we replace the constant parameters by 
time varying parameters (see Equation 6) in order to be able to use an adaptive estimation 
technique, which allows us to update the estimates as additional data points become available. 
Secondly, we apply matching on country size, penetration ceiling and time of introduction 
(see equations 1 to 5).   
 
For each of the K countries we model the diffusion as follows: 
 

                                                 
2 This is allowed by the adaptive estimation technique used to adapt the initial estimates of the parameters based 
on the observations of the diffusion process. 
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Where: 
�� Ni(t) is total number of units (e.g. households) that have adopted the innovation in country i, 
�� ni(t) is the speed of adoption in country i (the derivative of Ni(t)), 
�� mi(t) is the market potential of country i, 
�� pi(t) is the coefficient of external influence of country i, 
�� qi(t) is the effective contact rate for country i (how gregarious are individuals in country i, 

and how susceptible are they to word-of-mouth influence), 
�� �ij is the mixing probability for individuals in country i with individuals in country j, 
�� t0,i is the time of introduction of the innovation in country i, 
�� and �i is the Bernoulli noise mixing parameter for country i, varying from �i=0 (random 

mixing; country borders do not exist) to �I=1 (no mixing at all; complete segregation).  
 
Use of exogenous covariates 
The possibility to use exogenous covariates to explain the cross-country diffusion differences 
in p and q is secured by the following equations: 

� �
� � variablesexogeneous ),()(

 variablesexogeneous ),()(
tt
tt

qq

pp

βGq
βGp

�

�

                 Equation 7 

Where: 
�� p(t) is the Kx1 vector of the coefficient of external influence in each of the K countries, 
�� q(t) is the Kx1 vector of the effective contact rate in each of the K countries, 
�� �p(t) and �q(t) are vectors of  time varying parameters, 
�� and Gp and  Gp are vector functions. 
 
Combining equations 1, 2, 6, and 7, we obtain the following differential equation with time 
varying parameters that describes the diffusion in the K countries: 
 

� � variablesexogenous,),(),(),(),(),()()( 0tΦβββNfNn ttttt
dt

tdt qpC��               Equation 8 
 
Where: 
�� n(t) is the Kx1 vector of the speed of adoption in each of the K countries, 
�� N(t) is the Kx1 vector of the total number of units (e.g. households) that have adopted the 

innovation in each of the K countries, 
�� and �C(t), �p(t), �q(t), Ф(t), and t0 are parameter vectors. 
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Model estimation 
 
The Augmented Kalman Filter with Continuous State and Discrete Observations 
We estimate the IA diffusion model (equation 8) using the Augmented Kalman Filter with 
Continuous State and Discrete Observations (AKF(C-D)) approach (Xie et al. 1997). This 
estimation procedure is an adaptive estimation procedure, providing a systematic way of 
incorporating prior information about the likely values of parameters, and a Bayesian 
updating mechanism to upgrade the estimates as additional data becomes available. Such an 
adaptive procedure facilitates forecasting early in the innovation life cycle.  
Figure 1 shows how the AKF(C-D) estimation procedure works. The procedure is initiated by 
giving initial estimates of the parameters and the state (e.g. cumulative sales or the cumulative 
number of adopters) based on a-priori knowledge. The AKF(C-D) procedure updates the 
parameter estimations as soon as an additional data point becomes available. Two 
mechanisms are used for this updating procedure, a time-updating and a measurement-
updating mechanism.  
 

- Figure 1 about here - 
 
At a certain point in time (t=tk), the time-updating mechanism provides a-priori estimates of 
the cumulative number of adopters and the parameters for the period tk+1. As soon as 
observations become available, this a-priori estimate is compared with the observation, and 
the forecasting error (i.e. the difference between the observed and forecasted number of 
adopters) is calculated. This forecasting error is subsequently used by the measurement-
updating mechanism to update the estimation of the parameters, which leads to the a-
posteriori estimates. This time- and measurement-updating mechanism can be repeated for a 
next period. 
Xie et al.(1997) have developed their approach for diffusion models that have only one state. 
International diffusion models that describe the diffusion in multiple countries at a time have 
multiple states (e.g. the penetration in each country). Consequently, AKF(C-D) estimation 
approach is not directly applicable to international diffusion models, but using the underlying 
control engineering theory (Lewis, 1986; Stengel, 1986), it is possible to generalize the 
AKF(C-D) procedure to a procedure that can handle international diffusion models. We 
present this generalization in Appendix A. 
 
 
The AKF(C-D) method compared to other adaptive estimation techniques 
Table 2 compares four time-varying estimation approaches using adaptive estimation 
techniques.  
 

- Table 2 about here - 
 
Xie et al. (1997) have shown that the AKF(C-D) procedure provides better 1-year-ahead 
forecasts than the other three methods, due to three concrete advantages of this method. First 
of all, it can be applied directly to differential diffusion models, since it does not require a 
discrete analogue or an analytical solution as in case of the methods by Brettschneider and 
Mahajan (1980), Sultan, Farley and Lehmann (1990), and Lenk and Rao (1990). Given the 
fact that diffusion models are often represented as continuous differential equations, this is an 
important advantage. Secondly, the method of Xie et al. (1997) is better able to follow the 
changes in parameters over time. And finally, the AKF(C-D) procedure �explicitly 
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incorporates observation error in the estimation process, which is ignored in other procedures 
(Xie et al., 1997, p. 380).� The importance of this is twofold. It allows researchers to make 
better use of market data based on its� reliability. An increase in the variance of the 
measurement noise, implying a less reliable measure, leads to a decreasing importance of the 
measure for the a-posteriori estimation. And the other way around, if the measure is 
characterized by small errors, then the measure becomes more important for the updating of 
the parameters. Additionally, taking into account the measurement noise, improves the 
estimation of the cumulative number of adopters. A procedure that not take into account the 
measurement noise, such as the Adaptive Filtering approach of Bretschneider and Mahajan 
(1980), provides at time tk as the best estimation of the cumulative sales simply the measure 
of the sales at time tk. The AKF(C-D) method estimates the sales by a weighted sum of the 
measure and the previous forecast.  
Given the clear advantages of the AKF(C-D) method as compared to other three adaptive 
estimation procedures in Table 2, and given the fact that this method has not yet been applied 
in an international context, we decided to use this method to adaptively estimate our IA 
diffusion model. In order to be able to apply the AKF(C-D) method we had to reformulate the 
model as expressed in equation 8. Appendix B shows our IA diffusion model written in a 
form that allows the application of the AKF(C-D) estimation technique. 
 
 
 
Empirical application 
 
Data 
Our data includes yearly information, covering the period 1990-1999, on the diffusion of 
Internet access and mobile telephony among the households in the fifteen countries in the 
European Union (Gallup Europe, 2000). The penetration data we use, has been calculated 
based on the responses to the following questions (Gallup Europe, 2000): 
�� �About your Internet access at home, in which year did your household first get Internet 

access at home?� 
�� �In which year did your household get your first mobile telephone?� 
The Figures 2 and 3 show the penetration rates for Internet access and mobile telephony 
respectively. The data is based on over 44000 household interviews executed in the second 
half of 19993 in 130 regions of the 15 Member States. It is by far the largest survey at a 
European level that has been undertaken in the sector. All the European regions have been 
covered and the sub-samples were of sufficient size as to obtain statistically reliable findings. 
A carefully set up sampling plan has been followed closely. The number of respondents 
interviewed per country varies from 1009 for Luxembourg to 5301 for France.  
 

- Figures 2 and 3 about here - 
 
Prior estimates: initiating the forecasting model 
To initiate the filter in the AKF(C-D) method, we need a number of prior estimates. To be 
able to apply the sample matching procedure, we have to use estimates of the size of each 
country, the time of introduction of both products, and the estimated penetration ceiling as 
input in the model. Table 3 shows these input variables. The number of households is used as 
a measure for country size, because we use penetration data at the household level.  

                                                 
3 According to Gallup, the surveys for 1999 have been taken between June and October 1999, an exact date is 
not given. We have approximated this date by July 1, 1999 (1999.5). 
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- Table 3 about here - 

 
In addition to the data in Table 3, we need an a-priori estimate of the cumulative adoption in 
each country at t=t0 (=initial penetration), ( � �00 ,~)0( NPNN ). We have fixed the expected 
values of the initial penetration for Internet access and mobile telephony at the values 
observed in 1994 (Internet access) and 1990 (mobile telephony), the years of introduction of 
these innovations. The variance is fixed at the square root of 0.5%, since we estimate that the 
standard error of the observations is 0.5%.  
Finally, we need initial estimates of the distribution of the parameters p, q, and Ф at t=t0 
( � �00 ,~)0( �Pββ ), and the covariance of the process noise Q and the measurement noise R. 
The initial values of the parameters are assumed to be uncorrelated. Thus the initial 
distribution of the parameters, � �00 ,~)0( �Pββ , consists of the expected value and variance of 
each of the parameters at t=t0. The variances will form the diagonal of the covariance matrix 
Pβ0. All other elements of this matrix will be zero. We also assume that the process noises and 
the observation noises are uncorrelated. Consequently, in order to estimate the covariance 
matrices, we need to estimate the variances of both noises.  
Determining the starting values for the parameters can be based either on expert judgments or 
on the experience with previous products. We do the latter, and construct the priors mainly 
based on the results reported in Sultan, Farley and Lehmann (1990), Putsis et al. (1997) and 
Xie et al. (1997), combined with the specific nature of the two types of innovation under 
study. The initial expected values and variances for the model parameters p, q, and Ф as well 
as for the noise statistics, used to initiate our model, are shown and elucidated in Appendix C. 
 
 
 
Forecasting results 
 
One-step ahead forecasts 
Our IA diffusion model and the AKF(C-D) approach are formulated and estimated in a 
Matlab environment (Mathworks, 2001). First we present the one-step-ahead predictions and 
compare them with the actual observations. The step size is determined by the time between 
the observations, which is one year in our data set. In this application one-step-ahead is thus 
one-year-ahead for all but the last prediction, which is made for half-a-year.  
Each time an observation becomes available, the IA method uses it to generate a new forecast 
(see Figure 1). This forecast consists of distributions that are assumed to be normal and are 
characterized by their expected value and variance. The variance and expected value can be 
used to calculate an interval estimate. We have chosen to show the 68% confidence interval 
estimate (E(x) +/- 1SD(x)), and the point estimate given by the expected value.  
Figure 4 shows the results for the one-step-ahead predictions of the penetration of Internet 
access in Sweden (see Appendix D for the one-step-ahead forecast for mobile telephony in 
Sweden). Internet access was introduced in Sweden in 1994, and therefore the first forecast 
takes place for the year 1995. We have chosen to show the results for Sweden because the 
diffusion process has advanced the most in this country, which makes it also possible to 
compare the long-term forecasts with the observed penetration in the next section. Although 
we show the results for only one country here, we remind the reader that the IA method uses 
an international diffusion model and therefore provides a forecast for all countries 
simultaneously. Appendix E shows the one-step-ahead forecasts for Internet access for all 
countries.   
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- Figure 4 about here - 

 
Figure 4 shows that the observed values always fall within the 68% confidence interval 
estimation. In 161 out of all 172 one-step-ahead forecasts made (15 countries, 2 innovations 
and different years), the observed values fall within the forecasted 68% confidence interval 
(i.e. in 94% of the cases). As such the interval estimation gives a reasonable estimation of the 
uncertainty. Furthermore, we can remark that the point estimate provided by the expected 
value is also close to the observed values. The average absolute one-step-ahead percentage 
prediction error (MAPE) is 12% for the Internet case and 10% for the mobile telephony case. 
Though these errors are substantial, these still are good results since a very simple model is 
used to forecast a process that is characterized by a high level of uncertainty. 
 
 
Long-term forecasts 
The forecasting method not only produces one-step-ahead forecasts. In fact, forecasts are 
obtained for the whole diffusion process. Since we only have observations up to July 1999, 
the long-term forecasts are shown only up to this date. The first available forecast is made 
using the initial estimates that are reported in Table 3 and Appendix C. Then, each time a new 
observation becomes available it is used to adapt the estimates of the parameters and a new 
forecast is made. Figure 5 shows the resulting long-term forecasts for Internet access in 
Sweden (the long-term forecast for mobile telephony in Sweden is shown in Appendix F, 
while Appendix G shows the long-term forecasts for Internet access for all countries).  
 

- Figure 5 about here - 
 
The initial forecast is shown in the upper left corner. We see that in the case of Internet access 
in Sweden our initial estimates have resulted in a forecast of the diffusion that is much too 
slow. In the following graphs, we see the adaptive forecasts provided by our IA approach, 
each time an observation becomes available. We see that the adaptive estimation results in 
forecasts that become better and better as more observations become available. Again, all 
observed values fall within the 68% confidence interval for all the forecasts. For the whole 
study (15 countries, 2 innovations and different years), this is true for 155 out of 172 long-
term forecasts made (i.e. in 90% of the cases).  
Like the expected values, the variances are estimated adaptively by the IA method. In the case 
of Sweden we see that as more observations become available the variance becomes smaller 
which causes the confidence interval to become narrower. This reflects the decreasing 
uncertainty of the predictions as more and more observations have been made, and past 
predictions have proved to be close to the observed values. This trend can also be seen in the 
long-term forecasts for mobile telephony in Sweden (see Appendix F) and the forecasts for 
Internet access for the other countries (see Appendix G). 
 
 
The effect of the international dimension on the forecasting performance 
In our IA diffusion model, the extent to which mixing takes place, or the extent to which the 
diffusion processes in the different countries influence each other, is regulated by the 
Bernoulli mixing parameter, �. This parameter can vary between zero, which implies ideal 
mixing, and one, which implies total segregation. When � equals zero, the European Union is 
modeled as one country without borders that influence the diffusion process. When � equals 
one, the diffusion is supposed to take place entirely within each country without any influence 
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between the countries. A value between zero and one implies that borders play a role (the 
closer � is to one the more), but the diffusion processes in the different countries do influence 
each other (the closer � is to zero the more). 
In order to quantify the contribution of the international dimension of our IA diffusion model 
on the forecasting performance, we have fixed � at different values varying from zero to one. 
The mean absolute percentage errors (MAPE�s) for Internet access in the one-, two- and 
three-step-ahead predictions are used as the performance indicators, and are shown in Figure 
6. Figure 6 clearly shows the contribution of the international dimension. When the countries 
are considered to be isolated (�=1), the forecasting errors are much higher then when a 
moderate influence between the countries is supposed to exist (�=0.7). The results also 
clearly show that country-borders in the European Union still play an important role in the 
diffusion of innovations. When the borders are considered to be non-existent (�=0) the 
forecasting error increases dramatically. 
 

- Figure 6 about here - 
 
The MAPE�s are lowest for �=0.7, a value which is close to the value for Φ found by Putsis 
et al. (1997) for the diffusion of personal computers (PCs), namely Φ=0.72. This doesn�t 
surprise, since these innovations are closely related (the device most widely used to obtain 
access to the Internet is the PC). When constructing our initial estimate of Φ (see Appendix 
C), we already indicated that we expected that � is likely to be similar across innovations 
with similar word-of-mouth networks like PCs and Internet access.  
Based on these results, we can conclude that suppliers, who want to launch a new product 
across Europe, should take the country borders into account. The European Union cannot be 
considered to be one market, as the diffusion processes differ substantially across the 
countries. At the same time, however, the countries should not be treated as totally 
independent of each other, since our results clearly indicate that an important influence 
between the diffusion processes in the separate countries does exist.  
 
 
 
The estimates of parameters p, q, and C 
 
The IA forecasting method not only adaptively estimates the distribution of the diffusion or 
penetration itself, it also adaptively estimates the distributions of the parameters. Like the 
distributions of the penetration in the different countries, the parameter distributions are 
assumed to be normal and are characterized by an expected value and a variance.  
The results show stable estimates of both the expected value of the penetration ceiling C and 
the coefficient of innovation p. For both parameters, no large adjustments with an important 
impact on the forecasts are made by the updating-mechanism. With respect to the effective 
contact rate qi, however, substantial adjustments have been made to the a-priori estimate. 
Table 4 provides an overview of the initial estimates of qi and the estimate after the final 
measurement update (halfway 1999) for all countries.  
 

- Table 4 about here - 
 
Comparing the estimates of the expected values of the qi, we see that substantial adjustments, 
ranging from �27% for Luxembourg to +52% for Sweden, have been made for most 
countries. In Luxembourg, the penetration of Internet access happened to be slower than 
expected, while we found the opposite for Sweden. The adjustments to the expected values of 
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qi made by the IA diffusion model can result from two sources. Te initial estimate of the 
expected value may be different from the real value, or the diffusion process has changed in 
terms of qi during its evolvement. For Sweden, for example, the initial estimate appears to be 
a rather imprecise estimate. Figure 7 shows the evolvement of the estimates for q for Sweden 
and Luxembourg. The initial estimate for Sweden was 0.81, and we see that the IA algorithm 
had adjusted this upward every time an observation became available. This upward 
adjustment was necessary because our initial estimate of q resulted in a forecast of the 
diffusion that was much too slow. However, not all adjustments of q are caused by a bad 
initial estimate. A good example of an adjustment that is caused by a changing diffusion 
process is the diffusion in Luxembourg. Figure 7 shows that the estimate of the expected 
value of q remains almost unchanged for the first four years. After the observation of the 
diffusion in 1998, however, the parameter is firmly adjusted downwards, due to a sudden 
change in the real diffusion process (see Appendix G � Long-term forecast for Luxembourg).  
This slowdown could be caused by all kind of effects. One possible explanation is the 
existence of Moore�s chasm: the dissociation between the early adopters and the early 
majority (see Moore 1991,1995).  
 

- Figure 7 about here - 
 
In addition to the parameter adjustments over time, Table 4 shows that the differences 
between the different countries in the final estimate are larger than our initial estimation. The 
expected values of the qi after the final measurement update vary from 0.45 (Greece) to 1.25 
(Sweden). This implies that the differences between the speeds of diffusion in the different 
countries are very large. Consumers from Portugal, Spain and Greece are amongst the slowest 
in adopting Internet, while consumers from Sweden, Denmark, and The Netherlands appear to 
embrace the Internet very rapidly. These differences between countries should be taken into 
account by managers when assessing the diffusion of innovations in the consumer markets in 
the European Union. When compared to the values of q found in other studies of the diffusion 
of innovations, the values of q shown in Table 4 are very high (see for instance Putsis et al. 
1997, Dekimpe et al. 1998 and Sultan et al. 1990). The take up of Internet access in the EU 
has been very fast compared to other innovations like CD-players, VCRs and PCs. 
Finally, the last column of Table 4 shows a strong reduction of the standard deviations of the 
estimated parameters (SD(qi)), ranging from -29% for Portugal to even -83% for 
Luxembourg, which reflects the reduced uncertainty. This implies that the estimates for 
parameter qi have become more precise. 
 
 
 
Evaluation of the forecasting performance of the IA diffusion model 
 
A comparison with the classic approach 
To evaluate the forecasting performance of our IA diffusion model, we compare the 
forecasting results of our model with the results obtained from the classical approach, which 
uses observations of the diffusion process in different countries to estimate the parameters p 
and q in a Bass model for each country separately. Consequently, it doesn�t take into account 
the mutual influence of the diffusion processes across the countries, as our approach does. We 
estimate the parameters of this classical approach with the toolbox made available by 
Mahajan, Muller and Wind (2000). The classical diffusion model is estimated with a 
nonlinear least squares (NLS) estimation technique. Since this is a non-adaptive estimation 
technique, each period the whole diffusion curve is re-estimated, and the parameters p and q 
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are considered to be constant over time. To initiate the NLS estimation procedure, the market 
potential has to be determined exogenously. We have fixed it at the same value as we used to 
initiate our adaptive approach (see Table 3).  
To evaluate the forecasting performance of the IA diffusion model, we focus on the 
forecasting errors. Table 5 shows the mean absolute percentage errors (MAPE�s) for both 
methods, while we also include MAPE�s for the IA approach with the international dimension 
switched off (i.e. IA with Φ=1). These averages are calculated over the cases where both 
methods provide a forecast. Since the classic method needs at least two observations, it does 
not provide a forecast for the first two years following introduction. The results in Table 5 
clearly indicate that the IA diffusion model provides better forecasts as compared to the 
classical approach. For both innovations, we found much smaller MAPE�s for the IA 
diffusion model than for the classical diffusion model. This is even the case for the IA 
diffusion model with the international dimension switched off (Φ=1). Thus both, modeling the 
mutual influence between the countries and the adaptive estimation technique contribute 
substantially to the better performance of our IA diffusion model. The biggest contribution to 
the better performance is, however, made by the adaptive estimation technique. We see only 
minor improvements in the forecasting errors for the IA approach with the international 
dimension switched on as compared to the IA method with Φ=1. The better forecasting results 
suggest that the IA diffusion model should be preferred over a non-adaptive non-international 
forecasting approach when forecasting the international diffusion of innovations. 
 

- Table 5 about here - 
 
 
Sensitivity analysis 
The IA diffusion model needs initial estimates to start the algorithm, which were discussed in 
the section on the empirical application. We have fixed very general initial estimates, which 
may not be the best initial estimates possible. Better initial estimates will of course give a 
better forecasting performance, especially for the first few years after introduction4. 
Therefore, another method to check the forecasting performance of our IA diffusion model is 
to perform a sensitivity analysis of the influence of changing the initial estimates on the 
overall performance indicators. Table 6 shows the results of this sensitivity analysis for the 
Internet case, and indicates that our findings are robust with respect to variations in the initial 
estimates. The results are the most sensitive for the initial estimate of parameter q.  

 
- Table 6 about here - 

 
 
 
Conclusions and implications 
 
We have developed an international, adaptive diffusion model, which can be used to forecast 
the cross-national diffusion curves of a new product, just before, during, or immediately after 
a new product launch, if only a small number of data points are available. As soon as 
additional data points become available, the forecasts are re-estimated and adjusted. The 
model contributes to the literature by combining the approaches of Putsis et al. (1997) and 
Dekimpe et al. (1998). We model the mutual influence between the diffusion processes in the 

                                                 
4 As more observations have been used to update the estimates the influence of the initial estimates on the 
forecasts reduces. 
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different countries. Moreover, we apply a sample-matching procedure by matching the 
samples from the different countries on three dimensions, i.e. (1) the size of the country, (2) 
the penetration ceiling, and (3) the time of introduction of the innovation. To estimate the 
model we extend the AKF(C-D) estimation approach of Xie et al. (1997), which has not yet 
been used for estimating cross-national diffusion patterns, to an international context.  
The data we use involve the diffusion of Internet access and mobile telephony among 
households in the 15 countries of the EU. The empirical application shows good forecasts of 
these two diffusion processes. The IA diffusion model result in much lower mean absolute 
percentage errors (MAPE�s) for the 1-, 2- and 3-year-ahead forecasts as compared to the 
classical approach, i.e. estimating a Bass diffusion model for each country separately. Both 
the international dimension and the adaptive nature of the estimation approach contribute 
substantially to the better forecasting performance of the IA diffusion model. The biggest 
contribution, however, is made by the adaptive estimation, which is caused by the following 
advantages of this estimation technique: (1) the model parameters are allowed to change over 
time, which better reflects the reality then parameters that are not allowed to change, (2) the 
model uses a-priori knowledge through the usage of initial estimates, (3) the observation noise 
is modeled and used as an input for the adaptation of the estimates, and finally (4) it does not 
require the continuous diffusion process to be approximated by a discrete-time model. 
The IA diffusion model leads to a better performance because it more accurately models 
reality. The assumption that diffusion processes in the different countries of the EU do not 
influence each other has little face value. Our results show that this assumption is indeed 
flawed. It appears that the diffusion processes in the different EU countries influence each 
other, but at the same time it is not possible to consider the EU as one big market, since the 
diffusion processes vary enormously across the countries. Especially the pace of the diffusion 
differs a lot.  
When assessing the diffusion of high-tech or disruptive consumer innovations, marketing 
managers should take the mutual influence between the diffusion processes in different 
countries into account. Furthermore, they cannot take it for granted that the diffusion 
processes in the different EU countries show the same pattern. Thus our results indicate that 
when forecasting the diffusion in EU member countries, an international diffusion model, 
explicitly modeling the mutual influence, should be used. 
 
 
 
Limitations and future research 
 
To validate the IA diffusion model we used data involving only two innovations, Internet 
access and mobile telephony, among households in the 15 EU member states. Moreover, the 
diffusion processes of these two innovations are not yet finished, and therefore our forecasting 
method could only be tested on part of the diffusion process. Data on other innovations and / 
or from countries outside the EU should be used for further validation of our IA diffusion 
model. This will also provide the opportunity to make generalizations, e.g. new products 
diffuse always slower in Greece than in the other EU countries, or the parameter Φ is always 
about 0.7 for Europe.  
To assess the forecasting performance of our IA diffusion model, we compared the results of 
our model with the forecasting results obtained from the classical approach, i.e. estimating a 
Bass model for each country separately. Future research could compare the forecasting results 
of our model with the results of other international diffusion models, such as the model of 
Putsis et al. (1997). 
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A final limitation concerns the fact that we did not use covariates (exogenous variables) in the 
empirical test of our model. For individual companies or managers, however, it could be 
important to see how the diffusion would look like if, for example, a certain amount of the 
budget were spent on advertising for the product. Although we didn�t include covariates in 
our empirical test of the model, our model allows for including such covariates (see Equations 
7 and 8). Including covariates will not only reduce the forecasting errors, but the model will 
also become more useful for the strategic planning of new product introductions, and for 
evaluating the effects of the marketing mix on the sales. 
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Figure 1: The AKF(C-D) estimation procedure (Xie et al., 1997, p. 382). 
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Figure 2: Penetration of Internet access in the households of the EU (Source: Gallup 
Europe, 2000). 
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Figure 3: Penetration of mobile telephony in the households of the EU (Source: Gallup 
Europe, 2000). 
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Figure 4: One-step-ahead prediction for Internet access in Sweden 
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Figure 5: The long-term forecasts for Internet access in Sweden 
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Figure 6: Forecasting errors for different values of Φ (Internet access case) 
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Figure 7: The evolvement of the estimates of q for Sweden and Luxembourg 
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Table 1: Four approaches to international diffusion compared 

 Mutual 
influence, 
Mahajan and 
Muller  1994 

Mixing 
behavior,  
Putsis et al. 
1997 

Learning 
effect,  
Ganesh et al. 
1997 

Mutual 
influence, 
Kumar and 
Krishnan, 
2002 

Staged 
estimation, 
Dekimpe et al. 
1998 
 

Basic principle Adopters from 
each country 
influence the 
potential 
adopters in 
other countries 

Bernouilli 
mixing 
describes the 
way countries 
interact 

Consumers in 
lag countries 
learn from 
adopters in 
lead country 

Adopters from 
each country 
influence the 
potential 
adopters in 
other countries 

Before 
estimating 
diffusion 
parameters a 
matching 
procedure has to 
be followed 

Which influence of 
adoption in one 
country on 
adoption in other 
countries is 
included in the 
model? 

Mutual 
influence 
between all 
countries 

Mutual 
influence 
between all the 
countries 

Lead country 
influences lag 
countries 

Lead-lag, lag-
lead and 
simultaneous 
influence 
between all 
countries 

None 

Does the model 
assume a fixed or 
variable intensity 
of the influence 
between the 
countries? 

Fixed, 
assumed equal 
to influence 
within country 
(q) 

Variable, 
mixing can be 
varied on the 
continuum 
from no 
mixing at all to 
complete 
mixing 

Variable, 
learning 
coefficient 
may be varied 

Variable,  
Interaction 
effects may 
vary. 

Fixed, no 
influence 

Does the approach 
include sample 
matching?  

No No Yes, matching 
on social 
system size by 
using 
penetration per 
population 

No Yes, matching 
on country size, 
ceiling and time 
of introduction 
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Table 2: Four adaptive parameter estimation methods compared 

 Adaptive filtering, 
Bretschneider and 
Mahajan 1980 

Hierarchical 
Bayes, Lenk and 
Rao (1990) 

Bayesian 
updating, Sultan 
and Farley 1990 

AKF(C-D), Xie 
et al. 1997 

Basic principle Feedback filter is used 
to update time 
varying coefficients in 
regression model 

Hierarchical Bayes 
procedure to update 
the a-priori 
parameter estimates 

Bayesian updates 
of prior estimates, 
using data based 
estimates 
obtained by NLS 

Augmented  
extended Kalman 
feedback filter 
applied directly to 
the diffusion 
model 

Does the method 
allow for parameters 
that also vary 
according to 
prescribed dynamics 
(flexible diffusion 
models)? 

No, the parameters 
are considered to vary 
randomly only 

No, the parameters 
are considered to 
vary randomly only 

No Yes, they can 
simultaneously 
vary according to 
prescribed 
dynamics and a 
random process 

Does method require 
model to have 
explicit solution or 
be discrete? 

Yes, the method is 
based on a discrete 
diffusion model 

Yes, the method 
requires analytical 
solution of the 
diffusion model 

Yes, NLS 
requires the 
analytical 
solution of the 
diffusion model 

No, the method is 
applied directly to 
the differential 
equation 

Does the method 
already update the 
prior estimate when 
first data point 
becomes available? 

Yes Yes No, three data 
points are needed 
for the first 
update. 

Yes 
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Table 3: Initial estimates of country size, time of introduction, and expected penetration 
ceiling 
Country Size 

(number of 
households)1 

Time of 
introduction 

Internet 
access2 

Time of 
introduction 

mobile 
phones3 

Expected 
penetration 

ceiling 
Internet 
access4 

Expected 
penetration 

ceiling 
mobile 
phones5 

Austria   3.013.000 1995 1992 71% 98% 
Belgium   3.953.000 1996 1992 73% 98% 
Denmark   2.274.000 1994 1990 75% 99% 
Finland   2.037.000 1994 1990 69% 100% 
France 21.542.000 1996 1993 71% 99% 
Germany 35.256.000 1996 1993 72% 99% 
Greece   3.204.000 1997 1994 49% 96% 
Ireland   1.029.000 1997 1993 60% 89% 
Italy 19.909.000 1996 1990 56% 97% 
Luxembourg      145.000 1995 1992 88% 100% 
Netherlands   6.162.000 1994 1993 69% 100% 
Portugal   3.146.000 1997 1992 44% 85% 
Spain 11.836.000 1996 1992 54% 93% 
Sweden 3.830.000 1994 1990 79% 100% 
United 
Kingdom 

22.422.000 1994 1990 66% 99% 

1. Source: Eurostat (1996) 
2. Operationalized as: �the first year in which 0,4% or more of the households acquired Internet access at 

home� (source: Gallup Europe, 2000) 
3. Operationalized as: �the first year in which 0,4% or more of the households acquired a mobile phone� 

(source: Gallup Europe, 2000) 
4. The percentage of households in the EU-member countries that have an income that is higher then the 

European poverty line (Dekimpe et al. 1998; source: European Communities, 2000) 
5. The percentage of households that has a sufficient income to afford basic telephone service (source: 

European Communities, 2000) 
 

 25



Table 4: The initial and final estimates of the effective contact rate q (Internet access) 

Country 
Initial estimate 

(t=t0) 

Estimate after final 
measurement update  

(1999.5) 

Difference between  
Initial and 1999.5 

 estimate 
  E(qi) SD(qi) E(qi) SD(qi) E(qi) SD(qi) 
Belgium 0.82 0.45 0.75 0.13 -8% -72% 
Denmark 0.89 0.47 1.11 0.12 +25% -75% 
Germany 0.83 0.46 0.72 0.14 -13% -70% 
Finland 0.79 0.44 0.73 0.10 -7% -78% 
France 0.81 0.45 0.69 0.18 -15% -59% 
Greece 0.57 0.38 0.45 0.26 -20% -32% 
Ireland 0.68 0.41 0.76 0.25 +13% -40% 
Italy 0.69 0.42 0.66 0.19 -5% -55% 
Luxembourg 1.10 0.52 0.80 0.09 -27% -83% 
Netherlands 0.81 0.45 0.93 0.09 +14% -79% 
Austria 0.85 0.46 0.78 0.14 -8% -70% 
Portugal 0.57 0.38 0.59 0.27 +5% -29% 
Spain 0.63 0.40 0.60 0.18 -4% -55% 
United Kingdom 0.69 0.42 0.91 0.10 +31% -76% 
Sweden 0.82 0.45 1.25 0.16 +52% -64% 
 
 
Table 5: Mean absolute percentage errors of the IA and the classical forecasting 
approach 
Forecasting period Internet access Mobile telephony 
 IA IA 

Ф=1 
Classic 

approach 
IA IA 

Ф=1 
Classic 

approach
One-year-ahead 8% 9% 14% 7% 8% 13% 
Two-year-ahead 14% 16% 27% 15% 17% 24% 
Three-year-ahead 12% 16% 39% 23% 25% 32% 

 
 
Table 6: Sensitivity of the forecasting performance to changes in initial estimates 
(Internet access) 

Mean average absolute percentage error Change of initial 
estimate one-step-ahead two-step-ahead three-step-ahead 
With used values 12.2 16.0 17.6 
C+ 25% 12.2 15.9 17.4 
C� 25% 12.3 16.1 18.0 
q+25% 16.5 28.4 40.2 
q-25% 20.3 32.8 43.3 
p+25% 12.2 16.0 17.6 
p-25% 12.2 16.0 17.6 
�+25% 13.1 18.1 18.5 
�+25% 13.0 17.1 20.0 
P+25% 12.3 15.8 17.1 
P-25% 12.3 16.3 18.2 
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Appendix A: The AKF(C-D) estimation procedure. 
 
In this appendix a generalized version of the AKF(C-D) estimation procedure used by Xie et 
al. (1997) is presented. It is based on the books of Lewis (1986, p.260-265) and Stengel 
(1986, p.386-396). The model used by Xie et al. describes the diffusion in one social system. 
They use one state to describe the evolvement in time of the diffusion process. Our 
generalization consists of augmenting the state from one state variable to a (Kx1) vector of 
state variables that describes the evolvement of the diffusion in K social systems (or 
countries) at a time. 
 
When studying the diffusion of innovations in K countries at a time, we study a continuous 
process with K states. The observations of the diffusion process are made only at a finite 
number of discrete times, z = tz. Following control engineering theory, such a dynamic system 
and its discrete observation can be described by two equations. The system equation describes 
the evolution of the state variable in time. The measurement equation describes how the 
observations are related to the state of the system. 

 

� �

� � � � � �RvQwPNN
vNHy

GuNfN

00 ,0~,,0~,,~)0(
)()()(

)(),(),()(

���

���

tzz
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      Equation 9 

 
Where: 
�� N(t) is the state variable vector with dimension (Kx1), and N(0) is assumed to have an 

initial distribution with mean vector N0 and covariance matrix P0, 
�� f  is a vector function of the state, N(t), the control vector u(t), and time t,  
�� u(t) is the control variable vector (for instance the marketing mix variables), 
�� y(z) is the measurement vector at time z, 
�� H(z) is the measurement matrix,  
�� w and v are respectively the process noise and the measurement noise vectors that both are 

assumed to be stationary white noise processes, that are uncorrelated with each other and 
with N(0), 

�� and Q and R are covariance matrices of the process noise and the measurement noise. 
 
In international diffusion research the observations are made directly of the diffusion itself. 
Therefore the measurement matrix will only have non-zero elements in the diagonal. At each 
observation moment t=z, observations of the diffusion process are made in one or more of the 
countries. At instant z, the diagonal elements of the measurement matrix H(z) will be zero 
when the diffusion in the associated country is not observed, and one when the diffusion in 
the associated country is observed. 
 
In this formulation the model parameters are considered to be constant. Following Stengel 
(1986, p.392-6), we can incorporate model parameters that vary with time by writing: 
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    Equation 10 

Where: 
�� �(t) is the parameter vector, 
�� f�  is a vector function of the state N(t), the parameters β(t) and the time t, 
�� w�  is the process noise associated with the modeling of the dynamics of the parameters. 
 
Combining the state and the parameter vector we define the augmented state, x(t) as: 
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Where: 
�� x(t) is the augmented state vector of length K+M, where M denotes the number of model 

parameters that are incorporated. 
 
Then we can rewrite the system equation as: 
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  Equation 12 

 
The observations that are made are only a function of the non-augmented state, N(t). The 
parameters of course are not observed at all. Then the observation function becomes: 
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Where: 
�� HA(t) is the augmented measurement matrix, that is augmented with zeros. This is done to 

give it the right dimension to multiply it with the augmented state x(t), instead of the 
original state N(t). 

 
Following Lewis (1986), Stengel (1986) and Xie et al. (1997) we now define the AKF(C-D) 
estimation procedure that consists of three main steps (see Figure 1). The Filter is initialized 
with prior estimates of the state and the error covariance matrix of the state. Between 
measurements, estimates of the state and the error covariance are obtained by the �time 
update� step. When a measurement becomes available, the state and parameter estimates are 
updated in the �measurement update� step.  
 
Step 1: Initialization 
At t=t0, based on prior information, the best prior estimate of the distributions of the 
augmented state ( ) and the noise statistics, (Q,R) are developed and the filter is 
initialized: 

00
�,� Px
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00 �)0(�,�)0(� xxPP ��         Equation 14 
 
Step 2: Time update 
At a given time t, the filter predicts the future state at t+�t, or future diffusion and parameter 
values, through the time updating process. Time updating is accomplished by the following 
equations over the time interval (t, t+�t).  
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Where: 
�� F(x,t) is the Jacobian of fx. 
 
The output of the time update step is an a priori estimate of the state at t+∆t, , 
and of the error covariance at t+�t, . 

)(�apriori tt ��y
)(�

apriori tt ��P
 
Step 3: Measurement update 
When a new observation becomes available at time z, the estimate is modified using the 
forecasting error (the difference between the observed diffusion and the predicted diffusion). 
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Where: 
�� KC is the Kalman gain, 
�� � �)(�)()( apriori zzz A xHy ��  is the forecasting error, 

�� and denote respectively the a priori estimate of the state and the error 
covariance matrix obtained by the time updating step, 

)(�apriori zx )(�
apriori zP

�� and and are the posterior estimates of the state and the error covariance matrix 
that result from the measurement update step 

)(� zx )(� zP

 
The posterior estimates obtained by the measurement update step will now be used as the 
starting point for the estimates made by the time updating mechanism, until a new observation 
becomes available (see Figure 1). 

 29



Appendix B: Formalizing the IA diffusion model to apply the Kalman 
Filter. 
 
Following Xie et al. (1997) and Putsis (1998), we will model parameter variation as purely 
stochastic. Because there are only very weak priors for the nature of parameter variation in 
diffusion models (Putsis 1998, p.235), we do not impose a systematic variation. This gives: 

�

� w
dt

td
�� 0)(          Equation 17 

 
Where: 
�� �(t) is the vector of unknown time varying parameters of the model, 

, it is assumed that� �T0),(),(),(),((t) tΦββββ tttt qpC� � �00 ,~)0( �Pββ  is a white noise 
��  is vector of process noise in the parameters that is assumed to be white noise: �w

� ��Q,0~�w . 
 
Adding a noise term, wN, to equation 8, combining it with equation 17 by augmenting the state 
and writing the measurement equation5, the AKF(C-D) model is: 
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 Where: 
�� N(t) is the vector of the of the total number of units that have adopted the innovation in 

each country, it is assumed that � �00 ,~)0( NPNN  is a white noise, 
�� �(t) is the vector of unknown time varying parameters of the model, 

, it is assumed that� �T),(),(),(),((t) tΦββββ tttt� � �,~)0( Pββ  is a white noise, 
N b

0qpC 00 �

�� [w ,w ]T is the vector of process noises that is assumed to be white noise: 
� � � �Qw ,0~, T

�wN , 
�� y(z) is the vector of observations at time t=tz, 
�� H(z) is the observation or measurement matrix, 
�� v is the vector of measurement noises, that is assumed to be white noise, . � �Rv ,0~
 
It is assumed that all the white noise processes are not correlated to one another. 
 
As is shown in the measurement equation, the observations y(z) of the diffusion process are 
made only at a finite number of discrete times, z = tz. The observations are made of the 
diffusion itself. Therefore the measurement matrix will only have non-zero elements in the 
diagonal. At each observation moment t=z, observations of the diffusion process are made in 
one or more of the countries. At instant z, the diagonal elements of the measurement matrix 
H(z) will be zero when the diffusion in the associated country is not observed, and one when 
the diffusion in the associated country is observed. 

                                                 
5 This equation describes the relation between the observations and the dynamic states of the system 
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Appendix C: Prior estimates  
 
The prior estimates of the parameter distributions 
Following Xie et al. (1997), we define the variance of the parameters as follows: 

. The expected initial value for the parameter C has already been given 
in Table 3. The expected initial values we use for the other parameters are summarized in 
Table C1 and elucidated below. 

)(25.0)(Var 00 ββ E��

 
Table C1 : Expected values of the parameters. 
Parameter Internet access Mobile telephony 
Coefficient of innovation 
(p) 

E0(pi)=1e-5 E0(pi)=1e-3 

Effective contact rate (q) 
25000

50005.0)(0
�

��
i

i
GDPPCqE E0(qi)=0.5 

Penetration ceiling (C) % of households with 
income above European 
poverty line 

% of households that can 
afford basic telephone 
service 

Bernoulli mixing 
coefficient (�) 

E0(�)=0.7 E0(�)=0.7 

 
 
p 
For Internet access we have initiated p with a low expected value: E0(pi)=1e-5. It is a new 
interactive medium that needs to build an entirely new network and that requires substantial 
learning to use. Moreover, network effects are at work, and therefore adopting it 
independently of others seems unlikely. For mobile telephony we have fixed the initial 
expected value of p higher: E0(pi)=1e-3. We expect a higher p for mobile phones than Internet 
because the mobile phone seamlessly fits into the existing telephone network and does not 
require learning to use it.  
 
q 
The effective contact rate q is closely related to the coefficient of imitation in the Bass model 
that is also labeled q. In their meta-analysis of applications of diffusion models, Sultan et al. 
(1990) show that the average value of q found in past research, mostly of diffusion processes 
before 1980, was about 0.4. We expect that the take up of the Internet will be quicker than the 
take up of the average innovation in the past, and also expect that the speed of diffusion will 
be strongly related to the GDP per capita (GDPPC). The Internet is complex to use, requiring 
computer skills, and a substantial investment in a PC. Furthermore, network externalities play 
an important role. The Internet is a new interactive medium that needs to build a new network 
to become really valuable. One of the most important applications of the Internet is e-mail 
that only has value when the people you want to communicate with have access. We expect 
word-of-mouth communication to play an important role in the adoption decision process. 
Therefore we have initiated q using the following equation that gives rather high values for q 
varying between 0.6 and 1.16 (see Table C2 for the exact values for each country): 

25000
50005.0)(0

�
��

i
i

GDPPCqE  

                                                 
6 The GDP per capita of the richest country (Luxembourg) is about 30000 Euro and of the poorest country 
(Greece) it is 5000 Euro. We have used this equation to roughly fix the qi at values between 0.5 for the poorest 
countries and 1 for the richest. 

 31



Table C2: Initial estimates of the expected value 
of the effective contact rate q 
Country E (qi) Internet 
Austria 0.85 
Belgium 0.82 
Denmark 0.89 
Finland 0.79 
France 0.81 
Germany 0.83 
Greece 0.57 
Ireland 0.68 
Italy 0.69 
Luxembourg 1.10 
Netherlands 0.81 
Portugal 0.56 
Spain 0.63 
Sweden 0.81 
United Kingdom 0.69 
 
For mobile telephony we expect that the speed of diffusion will be slightly higher than the 
average innovation. We have initiated q on the same value for all countries (E0(qi)=0.5). 
Measures like GDP per capita will not be useful to predict the speed of mobile phone 
diffusion, because the innovation is easy to use and does not require a large upfront 
investment by the adopters.  
 
� 
Finally, as an initial estimate of the expected value of the Bernoulli mixing parameter we have 
used the value found by Putsis et al (1997) for Home Computers: E0(�)=0.7, both for the 
Internet access and the mobile telephony. The � may be considered to be similar across 
innovations with comparable word-of-mouth networks like PCs and Internet access. It is very 
likely that people, who talk to each other about PCs, also talk about Internet access at home, 
and other technological innovations like mobile telephones. 
 
 
The noise statistics 
 
Process noise Q 
Xie et al. (1997) fix the process noise at a value of the order of magnitude of 1% of the 
penetration. We assume, however, that the process noise depends on the level of penetration, 
and we set Q by the following two rules: 
�� the minimum value of Q is 0.5%; 
�� Q equals 5% of the predicted penetration N(t). 
Thus we obtain: 

� �)(05.0,5.0max)( tNtQ ��  
If the penetration N(t) is below 10%, then we use a process noise of 0,5%; as soon as the 
penetration level is above 10%, the process noise is calculated as 5% of N(t). 
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Measurement noise R 
Based on the information Gallup (2000) gives about the accuracy of the results we have 
estimated the observation error (measurement noise) to be 0.5% for all countries. This 
resulted in the following variance: KxKR I�� 5.0 . 
A very attractive feature of the AKF(C-D) estimation procedure that is used in the IA 
forecasting method is that the observation noise can be specified for each observation 
separately. This is especially useful when multiple sources of different reliability are used, as 
is often the case in the practice of forecasting. Since we have only one source, we do not use 
this possibility. 
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Appendix D: The one-step-ahead forecast for mobile telephony in Sweden 
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Appendix E: The one-step-ahead forecasts for Internet access for all 
countries 
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Appendix F: The long-term forecast for mobile telephony in Sweden 
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Appendix G: The long-term forecasts for Internet access for all countries 
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