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Abstract: In this paper portfolio problems with linear loss functions and multivariate elliptical distributed
returns are studied. We consider two risk measures, Value-at-Risk and Conditional-Value-at-Risk, and two types
of decision makers, risk neutral and risk averse. For Value-at-Risk, we show that the optimal solution does
not change with the type of decision maker. However, this observation is not true for Conditional-Value-at-
Risk. We then show for Conditional-Value-at-Risk that the objective function can be approximated by Monte
Carlo simulation using only a univariate distribution. To solve the equivalent Markowitz model, we modify and
implement a finite step algorithm. Finally, a numerical study is conducted.

Keywords: Elliptical distributions; linear loss functions; value-at-risk; conditional value-at-risk; portfolio opti-
mization; disutility
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Application of a General Risk Management Model to Portfolio

Optimization Problems with Elliptical Distributed Returns for Risk

Neutral and Risk Averse Decision Makers

1. Introduction. In the world of finance and engineering it is desirable to make decisions that
minimize risk. However, quantifying risk differs according to the measure used. There are two central
approaches for modeling risk: it can be identified as a function of the deviation from an expected value or
as a function of the absolute loss. The former approach is the main idea of the Markowitz mean-variance
model. The latter approach involves two recent risk measures, namely Value-at-Risk (VaR) and Condi-
tional Value-at-Risk (CVaR). VaR is the quantile of the distribution function of random loss associated
with a given portfolio at a specified probability level. CVaR , on the other hand, is the conditional
expectation of losses above the VaR value with the corresponding probability level [Rockafellar, R.T. &
Uryasev, S. 2000].

In this paper, we analyze a general risk management model applied to portfolio problems when dealing
with risk neutral and risk averse decision makers. The adopted risk measures are VaR and CVaR , and the
returns of the assets belong to the elliptical world. A similar approach was initiated by Rockafellar, R.T.
& Uryasev, S. [2000] for the risk neutral decision maker and the special case of multivariate normally
distributed returns. When the term elliptical world is used, we actually refer to returns of financial
instruments having elliptical distributions. For instance, normal and student-t are two typical elliptical
distributions. Within this framework, we assume a linear loss function coupled with a disutility function.
The type of the disutility function sets forth the difference between a risk neutral and a risk averse
investor. In the risk neutral case, the disutility function is the identity function while for the risk averse
case the disutility function is increasing and convex. We first give a short new proof of the known
equivalence for the risk neutral decision maker between the use of the VaR and CVaR risk measures and
the well-known mean-variance approach of Markowitz. Actually this equivalence holds for the larger class
of positive homogeneous and translation invariant risk measures. At the same time we explain in our
computational section an adapted version of an algorithm for special quadratic programming problems
originally proposed by Michelot, C. [1986]. We use this algorithm to solve these mean-variance Markowitz
quadratic programming problems. In this algorithm the number of steps to find the optimal allocation of
the assets is finite and equals at most the number of the considered assets. The algorithm boils down to
iteratively finding the analytical solutions of projections onto canonical simplices and elementary cones,
and its main computational burden consists of inverting matrices. In our computational section we show
that this algorithm is much faster than the standard quadratic programming solver quadprog used in
MATLAB. If we deal with a risk averse (risk sensitive) decision maker with a general increasing convex
(concave) disutility function and VaR is taken as the decision measure, it is shown that these decision
makers take the same portfolio decision as a risk neutral decision maker having a linear disutility function.
To our knowledge, this observation is new and can be used as a criticism for not using this well-known
risk measure. However, the same observation does not hold for the CVaR measure, and in this case a
separate convex optimization problem has to be solved. Its solution is different from the solution given
by the Markowitz mean-variance approach used by a risk neutral decision maker. However, modulo an
unknown constant representing the VaR measure for a known univariate spherically distributed random
variable, the objective function has a nice analytical form. To evaluate this unknown constant we may
use Monte Carlo estimation of a simple expectation. This observation implies that within the elliptical
world for risk averse decision makers, it is possible to avoid the difficult task of generating scenarios as
done by Rockafellar, R.T. & Uryasev, S. [2000]. This focus on elliptical distributions allows significant
reduction in the simulation time. Contrary to Rockafellar, R.T. & Uryasev, S. [2000], we do not deal with
applications of financial concepts such as hedging which actually lead to similar models. The important
risk measure CVaR is also discussed by Embrechts, P., McNeil, A. & Straumann, D. [2002] under the
name expected shortfall or mean excess loss together with properties of elliptical distributions. This work
significantly helped us to classify the elliptical world with respect to risk measures and types of decision
makers. The discussion about different decision makers is not given in their work. The theory of coherent
risk measures that we use in our study is thoroughly discussed by Artzner, P., Delbaen, F., Eber, J.M.
& Heath, D. [1999].
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The outline of this paper is as follows. In Section 2 we give a brief introduction to a general risk
management model with a special focus on VaR and CVaR measures. Since we assume that the returns
have elliptical distribution, an introduction to the elliptical world is presented in Section 3. In the first
part of Section 3 we analyze the problem for a risk neutral decision maker. In the second part we consider
the portfolio for a risk averse decision maker. We devote Section 4 to our computational study. We start
with a discussion about a finite step algorithm, and then we modify the algorithm to solve the Markowitz
model. This is followed by a presentation of some numerical results to illustrate the effects of disutility
functions when used with VaR and CVaR measures. We conclude the paper in Section 5.

2. A general risk management model. In this section we introduce a general risk management
model discussed by Rockafellar, R.T. & Uryasev, S. [2000], and show how to apply this model to port-
folio optimization. In portfolio optimization the decision maker tries to allocate capital to n financial
instruments in such a way that a given risk measure is minimized. To start with this model, we observe
that a decision maker faces loss. This loss is given by some real valued random function f(x,Y), where
x ∈ X ⊆ R

n is a decision vector taken by the decision maker from a closed convex set, and Y ∈ R
n is

a random vector denoting uncertainty. The function (x, z) 7→ f(x, z) is called the loss function. In par-
ticular the vector x (called a portfolio) represents the allocations of resources to the n different financial
instruments, whereas the vector Y ∈ R

n denotes the uncertain returns of these financial instruments. It is
assumed that short-selling is not allowed, and hence, x must be nonnegative. The cumulative distribution
function on R of the random loss f(x,Y) is then given by

Ψx(α) := P {f(x,Y) ≤ α}
and this cumulative distribution function is assumed to be continuous. Its corresponding inverse cumu-
lative distribution function, also known as the quantile function, defined on (0, 1) is given by

Ψ←
x

(β) := min{α ∈ R : Ψx(α) ≥ β}.
Within mathematical statistics the value Ψ←

x
(β) for 0 < β < 1 is known as the βth quantile of the cumula-

tive distribution function Ψx, while within risk management it is called the Value-at-Risk, VaRβ(f(x,Y))
of the loss f(x,Y) at probability level β. Moreover, for fixed β the function αβ : X → R given by

αβ(x) := Ψ←
x

(β) (1)

is within risk management a popular risk measure and used as a selection criterion in the following way.
Given the loss function f(x,Y) one tries to solve the optimization problem

min{αβ(x) : x ∈ X}. (VP)

However, in this framework the function αβ is in general nonconvex even for convex loss functions, and
usually difficult to evaluate. Another risk measure is the function φβ : X → R given by

φβ(x) := (1− β)−1
E

(
f(x,Y)1{f(x,Y)≥αβ(x)}

)
,

and this risk measure is called the Conditional-Value-at-Risk, CVaRβ(f(x,Y)) of the loss function f(x,Y)
at level β [Rockafellar, R.T. & Uryasev, S. 2000]. To explain the name of this risk measure we observe
by the continuity of Ψx that Ψx(Ψ←

x
(u)) = u for every 0 < u < 1 [Serfling, R.J. 1980]. This shows by

relation (1) that

P {f(x,Y) ≥ αβ(x)} = P {f(x,Y) > αβ(x)} = 1−Ψx(Ψ←
x

(β)) = 1− β (2)

and so
φβ(x) = E (f(x,Y) | f(x,Y) ≥ αβ(x)) ,

which justifies the name Conditional-Value-at-Risk. The main reason for introducing this new risk mea-
sure is that the function φβ : X → R is convex on the convex set X for any loss function f satisfying
x 7→ f(x, z) is convex for fixed z. Therefore the optimization problem

min{φβ(x) : x ∈ X} (CVP)

becomes a convex programming problem. To show the convexity of φβ , we introduce for 0 < β < 1 the
function Fβ : X × R→ R given by

Fβ(x, α) := α+ (1− β)−1
E (max{f(x,Y)− α, 0}) .

We now require the following result shown by Rockafellar, R.T. & Uryasev, S. [2000].
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Lemma 2.1 It follows for every x ∈ X that

φβ(x) = min
α∈R

Fβ(x, α).

Moreover, if the closed interval Sβ(x) denotes the set of optimal solutions of the above optimization
problem, then the left point of this interval equals VaR β(f(x,Y)).

An easy corollary of the above lemma is given by the following result.

Lemma 2.2 If the function x 7→ f(x, z) is convex for every z, then the function φβ : X → R is convex.

Proof. Since x 7→ f(x, z) is convex for every z we obtain for every realization Y(ω) of the random
vector Y that (x, α) 7→ max{f(x,Y(ω))− α, 0} is convex on X × R. This shows that Fβ : X × R→ R is
convex on X × R and by Lemma 2.1 the function φβ is also convex. �

By selecting a special loss function it is possible to apply the above risk model to a portfolio man-
agement problem. Throughout this work, we will take f(x,Y) = u(−x⊺Y), where u is either a linear or
convex disutility function. For u linear (with slope 1) the resulting loss function represents the disutility
of the portfolio x for a risk neutral decision maker. If u is a convex increasing function, then we obtain
the disutility of the same portfolio for a risk averse decision maker [Fishburn, P.C. 1970]. Observe that
Rockafellar, R.T. & Uryasev, S. [2000] consider only the risk neutral decision maker. In both cases it is
easy to see that the conditions of Lemma 2.2 are satisfied. In the next section we will focus on a class of
distributions associated with the random return Y of the n financial instruments.

3. An introduction to the elliptical world. To analyze our general risk model for portfolio
management we first introduce the following class of multivariate distributions [Embrechts, P., McNeil,
A. & Straumann, D. 2002, Fang, K.T., Kotz, S. & Ng, K.W. 1987]. Recall that a mapping U is called
orthogonal, if U⊺U = UU⊺ = I. We also adopt the following notation; X =d Z means that the random
vector (variable) X has the same distribution as Z, while X ∼ F means that the random vector X has
the cumulative distribution function F . Moreover, R++ denotes the positive real numbers.

Definition 3.1 A random vector X = (X1, · · · ,Xn)⊺ has a spherical distribution if for any orthogonal
mapping U : R

n → R
n, it holds that,

UX =d X.

Since for any spherical distributed random vector X and an orthogonal mapping U it follows that
UE (X) = E (UX) = E (X) we obtain that its expectation equals 0. Also it can be shown [Fang, K.T.,
Kotz, S. & Ng, K.W. 1987] that the random vector X = (X1, · · · ,Xn)⊺ has a spherical distribution
if and only if there exists some real-valued function φ : R+ → R such that the characteristic function
ψ(t) := E (exp(it⊺X)) is given by ψ(t) = φ(‖t‖2). By this result we immediately obtain for every t ∈ R

and 1 ≤ j ≤ n that
E (exp(itXj)) = φ(t2). (3)

Using the above characterization of a spherical distribution another useful description can also be derived
[Fang, K.T., Kotz, S. & Ng, K.W. 1987]. For completeness a short proof is listed.

Lemma 3.1 The random vector X = (X1, · · · ,Xn)⊺ has a spherical distribution if and only if a⊺X =d

‖a‖X1 for every a ∈ R
n.

Proof. If the random vector X has a spherical distribution, then there exists some function φ :
R+ → R such that E (exp(ia⊺

X)) = φ(‖a‖2) for every a ∈ R
n. Hence for every t ∈ R and a ∈ R

n it
follows by relation (3) that

E (exp(ita⊺
X)) = φ(‖ta‖2) = E (exp(it‖a‖X1)) .

By using the one to one correspondence between a characteristic function and the cumulative distribution
function of the associated random variable [Lukacs, E. 1970], we obtain a⊺X =d ‖a‖X1. To prove the
reverse implication we observe that

E (exp(ia⊺
X)) = E (exp(i‖a‖X1)) . (4)
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This implies for every a ∈ R
n that

E(exp(−ia⊤X)) = E(exp(ia⊤X))

and so the function a 7→ E(exp(ia⊤X)) is real-valued. Hence by relation (4) the function a 7→
E (exp(i‖a‖X1)) is also real-valued and introducing φ : R+ → R given by φ(t) := E(exp(i

√
tX1)) it

follows again by relation (4) that

E(exp(ia⊤X)) = φ(‖a‖2).
Applying the characteristic function description of a spherical distribution, we conclude that X has a
spherical distribution. �

If N(µ,Σ) denotes the multivariate normal distribution with mean µ and covariance matrix Σ it is well
known that UV =d V for any random vector V ∼ N(0, I). This shows with S a real valued nonnegative
random variable independent of V that the random vector X = SV has a spherical distribution. The
distribution of the random vector SV is called a scale mixture of standard multivariate normal distri-
butions, and this class is an important subclass of the set of spherical distributions [Fang, K.T., Kotz,
S. & Ng, K.W. 1987]. Next to the the multivariate normal distribution another well known distribution
belonging to the above class is the multivariate t-distribution with ν degrees of freedom. A related class
of distributions is given by the following [Embrechts, P., McNeil, A. & Straumann, D. 2002, Fang, K.T.,
Kotz, S. & Ng, K.W. 1987].

Definition 3.2 A random vector Y = (Y1, · · · ,Yn)⊺ has an elliptical distribution if there exists an
affine mapping x 7→ Ax+µ and a random vector X = (X1, · · · ,Xn)⊺ having a spherical distribution such
that Y = AX + µ.

For convenience, an elliptical distributed random vector Y is denoted by (A, µ,X). In the remainder
of this section we assume that the return vector Y of the n-financial instruments in our portfolio model
has an elliptical distribution.

3.1 Risk neutral decision maker. In our portfolio decision model the random loss for a risk
neutral decision maker choosing portfolio x and having returns Y on the n financial assets is given
by f(x,Y) = −x⊺Y. In case the random return vector Y has an elliptical distribution, the following
representation is an immediate consequence of Lemma 3.1.

Lemma 3.2 If Y has an elliptical distribution with representation (A, µ,X) with X = (X1, · · · ,Xn)⊺,
then

− x⊺
Y =d ‖Ax‖X1 − x⊺µ. (5)

for every portfolio x ∈ R
n. Moreover, the parameters of the spherical (marginal) distribution of the

random variable X1 are independent of x.

Proof. Since the elliptical distributed random vector Y has representation (A, µ,X) and X is spher-
ical distributed, it follows that

−x⊺
Y = −x⊺AX− x⊺µ.

Applying Lemma 3.1 with a = A⊺x and using ‖A⊺x‖2 = ‖Ax‖2 yields the desired result. �

Applying Lemma 3.2 one can easily compute the value at risk and the conditional value at risk of the
loss −x⊺Y for Y having an elliptical distribution. To derive these expressions we need some properties
of those risk measures. Since these properties are only mentioned by Embrechts, P., McNeil, A. &
Straumann, D. [2002] but not proved, we give a short proof. Observe that the value at risk and the
conditional value at risk can be seen as real-valued functions defined on the space of real-valued random
variables. In particular for any given real-valued random variable Z the value at risk VaRβ(Z) of Z
at level β is given by VaRβ(Z) := F←(β) with F the cumulative distribution function of Z, while the
conditional values at risk CVaRβ(Z) of Z at level β is defined by CVaRβ(Z) := E (Z | Z ≥ F←(β)).

Definition 3.3 Let B be the space of all real-valued random variables Z. A function ̺ : B → (−∞,∞]
is called positive homogeneous if ρ(λZ) = λ̺(Z) for every λ > 0 and Z ∈ B. The function ̺ is called
translation invariant if ̺(Z + a) = ρ(Z) + a for every a ∈ R and Z ∈ B.



7

It is now possible to show the following result.

Lemma 3.3 The risk measures VaRβ : B → (−∞,∞] and CVaRβ : B → (−∞,∞] are positive homoge-
neous and translation invariant.

Proof. Clearly for every λ > 0 and Z ∈ B with cumulative distribution function F it follows that

P {λZ ≤ x} = P
{
Z ≤ λ−1x

}
= F (λ−1x)

and hence
VaRβ(λZ) = inf{x : F (λ−1x) ≥ β} = λ inf{x : F (x) ≥ β} = λVaRβ(Z).

Since P {Z + a ≤ x} = F (x− a) we also obtain

VaRβ(Z + a) = inf{x : F (x− a) ≥ β} = a+ inf{x : F (x) ≥ β} = a+ VaRβ(Z),

and this shows the result for the value at risk measure. To show the desired properties for the conditional
value at risk measure it follows using VaRβ(λZ) = λVaRβ(Z) that

CVaRβ(λZ) = E (λZ | λZ ≥ VaRβ(λZ)) = E (λZ | Z ≥ VaRβ(Z))

for every λ > 0 and Z ∈ B. This implies

CVaRβ(λZ) = λE (Z | Z ≥ VaRβ(Z)) = λCVaRβ(Z).

Moreover, using VaRβ(Z + a) = a+ VaRβ(Z) we also obtain

CVaRβ(Z + a) = E (Z + a | Z + a ≥ VaRβ(Z + a)) = E (Z + a | Z ≥ VaRβ(Z))

for every a ∈ R and Z ∈ B. This implies

CVaRβ(Z + a) = a+ E(Z|Z ≥ VaR β(Z)) = a+ CVaRβ(Z)

and the result is proved. �

By Lemma 3.2 and 3.3 it follows immediately for Y having an elliptical distribution with representation
(A, µ,X) with X = (X1, · · · ,Xn)⊺ that

VaRβ(−x⊺
Y) = ‖Ax‖VaRβ(X1)− x⊺µ (6)

and
CVaRβ(−x⊺

Y) = ‖Ax‖CVaRβ(X1)− x⊺µ, (7)

for every x ∈ R
n (observe the case Ax = 0 is easy to check). Since β > 0.5 and X1 has a one-dimensional

spherical distribution (see Lemma 3.2) and is therefore symmetric around 0 we obtain that VaRβ(X1)
and CVaRβ(X1) are positive. Hence by relations (6) and (7) the optimization problems (VP) and (CVP)
defined in Section 2 reduce to

min
x∈X
‖Ax‖VaRβ(X1)− x⊺µ (VP)

and
min
x∈X
‖Ax‖CVaRβ(X1)− x⊺µ, (CVP)

respectively. In particular, in both optimization problems the feasible region is given by

X = {x ∈ R
n : e⊺x = 1, µ⊺x = r, x ≥ 0}. (8)

This means that among the set of nonnegative portfolios with the same expected return we like to select
that portfolio with minimal risk. Since VaRβ(X1) > 0 and CVaRβ(X1) > 0 (independent of x) it is clear
for the above feasible region X that the optimization problems (CVP) and (VP) have the same optimal
solutions and this optimal solution can be obtained by solving the corresponding well-known Markowitz
mean-variance problem

min

{
1

2
x⊺Σx : e⊺x = 1, µ⊺x = r, x ≥ 0

}
, (MP)

where Σ := AA⊺ is the covariance matrix (modulo a multiplicative positive constant) of the elliptical
distributed random returns Y. To avoid pathological cases we always assume that the matrix A is
invertible, and hence, the covariance matrix Σ is strictly positive definite. In the next section we will
propose a fast finite step algorithm to solve problem MP. Actually the above equivalence between the
mean-variance approach and the (conditional) value at risk measure for Y having an elliptical distribution
holds for a much larger class of risks measures. Although known [Embrechts, P., McNeil, A. & Straumann,
D. 2002] we list for completeness a short proof.
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Lemma 3.4 If Y has an elliptical distribution with representation (A, µ,X) and the considered risk mea-
sure ρ is positive homogeneous, translation invariant and ρ(X1) > 0, then

ρ(−x⊺

1Y) ≤ ρ(x⊺

2Y)↔ σ2(x⊺

1Y) ≤ σ2(x⊺

2Y)

for any two nonzero portfolios x1 and x2 satisfying Ax1, Ax2 nonzero and r = E (x⊺

1Y) = E (x⊺

2Y).

Proof. Since ρ is translation invariant and r = E (x⊺

1Y) = E (x⊺

2Y) we obtain

ρ(−x⊺

1Y) ≤ ρ(−x⊺

2Y)↔ ρ(−x⊺

1Y + E (x⊺

1Y)) ≤ ρ(−x⊺

2Y + E (x⊺

2Y)) . (9)

Since Y has an elliptical distribution, we know by Lemma 3.2 that −x⊺Y + E (x⊺Y) =d ‖Ax‖X1. This
implies by relation (9) and ρ positive homogeneous that

ρ(−x⊺

1Y) ≤ ρ(−x⊺

2Y)↔ ‖Ax1‖ρ(X1) ≤ ‖Ax2‖ρ(X1).

Using now σ2(x⊤Y) = c‖Ax‖2 with c some positive constant and ρ(X1) > 0 the result follows. �

In the next subsection we discuss the behavior of a risk averse decision maker under the (conditional)
value at risk measures.

3.2 Risk averse decision maker. In case we are dealing with a risk averse decision maker the
loss function under consideration has the form f(x,Y) = u(−x⊺Y) with u : R→ R an increasing convex
disutility function. As an example we might take u(t) = (max{t− τ, 0})2 (see also Section 4). For this
case the loss function is given by f(x,Y) = (max{−x⊺Y − τ, 0})2. Here τ > 0 denotes a fixed positive
number representing the acceptable loss of an investor [see also Embrechts, P., McNeil, A. & Straumann,
D. 2002]. By Lemma 3.2 it follows immediately for the given (convex) disutility function u and Y having
an elliptical distribution with representation (A, µ,X) and X = (X1, · · · ,Xn)⊺ that

u(−x⊺
Y) =d u(‖Ax‖X1 − x⊺µ). (10)

To show that the value at risk measure for any continuous increasing disutility functions yields the same
selection of the optimal portfolio, we need the following property of this risk measure. Observe the proof
is somewhat lengthy due to the fact that u might have flat pieces and so we need to introduce for the
proof two types of inverse functions (see Appendix B). In case the disutility functions are assumed to be
strictly increasing the proof considerably simplifies. However, as mentioned above there are important
convex disutility functions with flat pieces, and so, we cover the increasing continuous disutility functions.

Lemma 3.5 If the disutility function u : R → R is increasing and continuous then VaRβ(u(Z)) =
u(VaRβ(Z)) for any Z ∈ B.

Proof. By definition

CV aRβ(u(Z)) = inf{x ∈ R : P{u(Z) ≤ x} ≥ β}.
Since the distribution function F of Z satisfies F (∞) = limx↑∞ F (x) = 1 it follows that limx↑∞ P{u(Z) ≤
x} = 1 and this shows using 0 < β < 1 that the set {x ∈ R : P{u(Z) ≤ x} ≥ β} is nonempty. Also, by
the definition of u←֓ in Appendix B we obtain

{x ∈ R : P{u(Z) ≤ x} ≥ β} = {x ∈ R : P{Z ≤ u←֓ (x)} ≥ β}

= {x ∈ R : F (u←֓ (x)) ≥ β}.
Since by Lemma B.1 the function u←֓ is increasing and right continuous and F is also increasing and
right continuous the nonempty set {x ∈ R : F (u←֓ (x)) ≥ β} is closed. Hence the infimum of this set
is attained at some xβ ∈ R and satisfies F (u←֓ (xβ)) ≥ β. If range(u) is unbounded from above, then
obviously xβ ∈ cl(range(u)). Also for range(u) bounded from above and so σ := sup{u(y) : y ∈ R}
is finite we may conclude that xβ ∈ cl(range(u)). To show this assume that xβ > σ. This implies for
every y ∈ (σ, xβ) that F (u←֓ (y)) = 1 > β and this contradicts xβ = min{x ∈ R : F (u←֓ (x)) ≥ β}.
Therefore xβ ≤ σ and hence xβ belongs to cl(range(u)). By Lemma B.1 we also know using xβ belongs
to cl(range(u)) that u(u←֓ (xβ)) = xβ and combining the above observations yields

CV aRβ(u(Z)) = min{x ∈ R : P{u(Z) ≤ x} ≥ β} = xβ = u(u←֓ (xβ)).
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In the last part of this proof we only need to verify that u(u←֓ (xβ)) = u(F←(β)). Since F (u←֓ (xβ)) ≥ β it
follows by the definition of F←(β) that u←֓ (xβ) ≥ F←(β). Suppose now by contradiction that u←(xβ) >
F←(β). By Lemma B.1 we know that limk↑∞ u←֓ (xk) = u←(xβ) for any strictly increasing sequence
xk ↑ xβ and so there exist some xk0

< xβ satisfying u←֓ (xk0
) > F←(β) implying F (u←֓ (xk0

)) ≥ β. By
the definition of xβ given by

xβ = min{x ∈ R : F (u←֓ (x)) ≥ β}
this yields xβ ≤ xk0

and we obtain a contradiction. Thus we have verified that u←֓ (xβ) ≥ F←(β) ≥
u←(xβ) and by the monotonicity of u it follows that u(u←֓ (xβ)) ≥ u(F←(β)) ≥ u(u←(xβ)). Applying
Lemma B.1 and xβ ∈ cl(range(u)) we obtain u(u←֓ (xβ)) = u(u←(xβ)) and this shows that u(u←֓ (xβ)) =
u(F←(β)). �

By relation (6) and Lemma 3.5 it follows immediately for u an increasing and continuous disutility
function that

VaRβ(u(−x⊺
Y)) = u(‖Ax‖VaRβ(X1)− x⊺µ). (11)

Hence for a risk averse decision maker (with a convex increasing disutility function u) minimizing the
value at risk measure we need to solve the optimization problem

min
x∈X

u(‖Ax‖VaRβ(X1)− x⊺µ)

with X given by relation (8). Since u is increasing and continuous it follows that

min
x∈X
{u(‖Ax‖VaRβ(X1)− x⊺µ) : x ∈ X} = u(min

x∈X
{‖Ax‖VaRβ(X1)− x⊺µ}).

This shows that the optimal portfolio is the same for a risk averse (risk neutral) and even risk seeking
decision maker for elliptical returns Y and the value at risk measure. Actually by Lemma 3.5, this
observation holds for arbitrarily distributed Y. They all boil down to solving a Markowitz mean-variance
problem. Therefore, this measure may not be a suitable objective for both risk averse and risk seeking
decision makers. This might be an argument (besides the noncoherency in the sense of Artzner, P.,
Delbaen, F., Eber, J.M. & Heath, D. [1999] of the value at risk measure) not to use this measure. In case
we use the conditional value at risk measure (a coherent risk measure [Artzner, P., Delbaen, F., Eber,
J.M. & Heath, D. 1999]) the following result can be shown.

Lemma 3.6 If the disutility function u : R→ R is increasing and continuous, then

CV aRβ(u(Z)) = E(u(Z)|Z ≥ u←(u(V aRβ(Z)))).

Moreover, if V aRβ(Z) is a point of strict increase of u, then

CV aRβ(u(Z)) = E(u(Z)|Z ≥ V aRβ(Z)).

Proof. By the definition of u← (see Appendix B) and Lemma 3.5 we obtain

{u(Z) ≥ V aRβ(u(Z))} = {u(Z) ≥ u(V aRβ(Z))} = Z ≥ u←(u(V aRβ(Z)))}.

If V aRβ(Z) is a point of strict increase of the function u then by Lemma B.1 we obtain u←(u(V aRβ(Z))) =
V aRβ(Z). Applying now the definition of CV aRβ(Z) and these observations yields the result. �

If in our portfolio model for a risk averse decision maker with convex increasing disutility function
u the value at risk V aRβ(−x⊤Y) given in relation (11) with Y having an elliptical distribution with
representation (A, µ,X),X = (X1, ...,Xn) is a point of strict increase of the function u, then by Lemma
3.6 we obtain

CV aRβ(u(−x⊤Y)) = E(u(−x⊤Y)| − x⊤Y ≥ V aRβ(−x⊤Y)).

This implies for ‖Ax‖ > 0 (sufficient condition: ‖A is invertible) by relations (10) and (11) that

CV aRβ(u(−x⊤Y)) = E(u(‖Ax‖X1 − x⊤µ)|X1 ≥ V aRβ(X1)).

Hence for A invertible and the points of increase assumption the portfolio optimization problem for a
risk averse decision maker is given by

min
x∈X
{E (u(‖Ax‖X1 − x⊺µ) | X1 ≥ VaRβ(X1))}. (12)
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This optimization problem gives in general a different optimal solution for risk neutral and risk averse
(with increasing convex disutility function) decision makers. We already saw that for risk neutral decision
makers this boils down to solving the Markowitz mean-variance problem. Moreover, for risk averse
decision makers with an increasing convex disutility function the above problem is a general convex
optimization problem. To approximate for such general functions the above objective we first need to
compute Varβ(X1). If we consider the special case Y ∼ N(µ,Σ) with Σ = AA⊺ (see the computational
results section), and hence, X1 has a standard univariate N(0, 1) distribution the quantile VaRβ(X1)
can be approximated accurately by a rational function [Tijms, H.C. 1995, Abramowitz, M. & Stegun,
I.A. 1972] or it is listed in a table in almost any standard textbook on statistics [see for example Hogg,
R.V. & Craig, A.T. 1978, Arnold, S.F. 1990]. For X = (X1, · · · ,Xn)⊺ having a scale mixture of standard
normal multivariate distributions one may apply Monte Carlo simulation or numerical techniques to
calculate VaRβ(X1). After having computed this we might use the (unbiased) Monte Carlo estimator of
size m given by

T̂m(x) :=
1

m(1− β)

m∑

i=1

u(‖Ax‖Zi − r)1{Zi≥VaRβ(X1)}
, (13)

where Zi, 1 ≤ i ≤ m are independent copies of the real valued random variable X1. In general m is a
realization of a random variable which depends on the desired width of the chosen 100(1 − α) percent
confidence interval [Ross, S.M. 2002]. If we consider the important case that the random vector X has
a scaled mixture of standard multivariate normal distributions or X =d SV with V = (V1, · · · ,Vn)⊺ ∼
N(0, I) and the real valued nonnegative random variable S independent of V it is obvious that X1 =d SV1

with V1 ∼ N(0, 1). This representation is helpful in generating a sample (Z1(ω), · · · ,Zm(ω)) if it is easy
to generate independent copies of the random variable S. Also for u increasing convex it is obvious that
the random function x 7→ T̂m(x) is convex on X and this shows that the approximating problem

min
x∈X

{
1

m(1− β)

m∑

i=1

u(‖Ax‖Zi(ω)− r)1{Zi(ω)≥VaRβ(X1)}

}
(14)

with a sample (Z1(ω), · · · ,Zm(ω)) is a convex optimization problem. For arbitrary distributed random
vectors Y and convex loss functions x 7→ f(x, z) (z fixed) the CVaR measure x 7→ CVaRβ(f(x,Y) is esti-
mated by Rockafellar, R.T. & Uryasev, S. [2000] by generating scenarios from multivariate distributions.
Due to the special structure of our loss functions and Y having an elliptical distribution, it is sufficient
in our case to simulate from a univariate distribution.

4. Computational study. We start this section with a finite step algorithm to solve Markowitz
problem (MP). Then, we present two disutility functions and illustrate their effects on the considered
portfolio problems.

4.1 Modified Michelot algorithm. At the end of Section 3.1, we have emphasized that when Y

has a multivariate elliptical distribution and f(x,Y) is bilinear, then minimizing VaR and CVaR measures
are equivalent to solving the corresponding Markowitz problem (MP) with the predetermined expected
return r.

The algorithm introduced by Michelot finds in finite steps the projection of a given vector onto a
special polytope [Michelot, C. 1986]. The main idea of this algorithm is to use the analytic solutions of
a sequence of projections onto canonical simplices and elementary cones. To apply Michelot’s algorithm,
we use a transformation y = Σ

1

2 x. Then problem (MP) becomes

min

{
1

2
y⊺y : d⊺y = 1, ν⊺y = r, Ay ≥ 0

}
, (15)

where d⊺ = e⊺Σ−1/2, ν⊺ = µ⊺Σ−1/2 and A = Σ−1/2. Note that the matrix A is the same as the matrix
used for elliptical distributions in Section 3. To modify Michelot’s algorithm according to our problem,
we need to introduce several sets. Let

V = {y ∈ R
n | d⊺y = 1, ν⊺y = r},

YI = {y ∈ R
n | (Ay)i = 0, i ∈ I},
VI = V ∩ YI ,

(16)

where I ⊆ {1, 2, · · · , n} denotes an index set and (Ay)i denotes the ith component of vector Ay. Algo-
rithm 4.1.1 gives the steps of the Modified Michelot Algorithm. The algorithm starts with solving the



11

quadratic programming problem min{y⊺y : y ∈ V}. It is easy to show that the analytic solution for
this quadratic program is given by

ȳ =

[
d⊺

ν⊺

]⊺ [
d⊺d d⊺ν
ν⊺d ν⊺ν

]−1 [
1
r

]
. (17)

Notice that some of the components (Ay)i may be negative. After identifying the most negative com-
ponent and initializing the index set I, the algorithm iterates between projections of the incumbent
solution x̄ onto subspace YI , and then onto subspace VI until none of the components are negative; i.e.,
the solution is optimal. The first projection is given by

PYI (ȳ) := arg min
{

1
2‖y− ȳ‖2 : y ∈ YI

}

=
(
I − [A]⊺i∈I

(
[A]i∈I [A]⊺i∈I

)−1
[A]i∈I

)
ȳ,

(18)

where [A]i∈I denotes the submatrix formed by the rows i ∈ I of A. Similarly, the second projection
[Bertsekas, D.P. 1999] yields

PVI (ȳ) := argmin
{

1
2‖y − ȳ‖2 : y ∈ VI

}
,

= ȳ −




d⊺

ν⊺

[A]i∈I




⊺ 






d⊺

ν⊺

[A]i∈I








d⊺

ν⊺

[A]i∈I




⊺


−1 






d⊺

ν⊺

[A]i∈I



 ȳ −




1
r
0







 .
(19)

Since we have a finite number of assets, the dimension of the index set I is also finite. This shows that
the modified algorithm terminates in at most n iterations [see also Michelot, C. 1986].

Algorithm 4.1 Modified Michelot Algorithm

Step 1: Set ȳ as in (17). If Aȳ ≥ 0 then stop; ȳ is optimal. Otherwise, select i with most negative (Aȳ)i,
set I ← {i}, and then go to Step 2.

Step 2: Set ȳ← PYI (ȳ) as in (18), and then go to Step 3.

Step 3: Set ȳ ← PVI (ȳ) as in (19). If Aȳ ≥ 0 then stop; ȳ is optimal. Otherwise, select i with most
negative (Aȳ)i, update I ← I ∪ {i}, and then go to Step 2.

To analyze the performance of Algorithm 4.1, we have used MATLAB as our testing environment. All the
computational experiments are conducted on a Pentium III 600 Mhz personal computer running Linux.
First, we have randomly generated a set of test problems for different numbers of assets (n) as follows:

⋄ The components of n× n matrix A = Σ−1/2 are sampled uniformly from interval (−2.5, 5).

⋄ The components of vector µ are sampled uniformly from interval (0.1, 5), and the first two
components are sorted in ascending order; i.e., µ1 ≤ µ2.

⋄ To ensure feasibility, the value r is then sampled uniformly from interval (µ1, µ2).

⋄ For each value of n, 10 replications are generated.

⋄ In all problems, β value is fixed to 0.95.

Clearly, Problem (MP) can be solved by any quadratic programming solver. In MATLAB the procedure
that solves these types of problems is called quadprog, which is also used in the financial toolbox.
Therefore, to compare the proposed algorithm, we also solved the set of problems with quadprog. Table
4.1 shows the statistics of the computation times out of 10 replications. The second and third columns
in Table 4.1 shows the averages and the standard deviations of the computation times obtained by
Algorithm 4.1, respectively. Similarly, columns four and five give the average and the standard deviation
of the computation times found by quadprog, respectively.

The average computational times in Table 4.1 show that Modified Michelot Algorithm is approximately
four times faster than the MATLAB procedure quadprog. However, it is important to note that the MATLAB
procedure quadprog involves many error checks that may also be the cause of higher computation times.
Our implementation of Algorithm 4.1 is straightforward. Therefore, the performance can be improved by
a better implementation. In fact the higher standard deviation figures obtained by Algorithm 4.1 suggest
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Algorithm 4.1 quadprog

n Average Std. Dev. Average Std. Dev.

25 0.0251 0.0152 0.1094 0.2026

50 0.0767 0.0647 0.1565 0.0869

100 0.3018 0.3564 0.5732 0.2604
200 1.6080 1.2740 4.1343 0.9778

400 11.0991 11.0530 42.9040 10.7764

Table 1: Computation time statistics of quadprog and Algorithm 4.1 in seconds.

that matrix inverse calculations should be carried out more efficiently, since these inversions constitute
the main computational burden of Algorithm 4.1. Overall, these results allow us to claim that an efficient
implementation of Modified Michelot Algorithm is a fast and finite step alternative for solving problem
(MP).

4.2 Two disutility functions. In this section we conduct a numerical study to illustrate the ef-
fects of two different disutility functions on VaR and CVaR measures. Again we use MATLAB as our
programming environment.

Rockafellar, R.T. & Uryasev, S. [2000] gave a portfolio optimization example involving three instru-
ments. The returns on these instruments are coming from a multivariate normal distribution. The mean
return vector and the covariance matrix are given as

µ⊺ = (0.01001110, 0.0043532, 0.0137058)

and

Σ =




0.00324625 0.00022983 0.00420395
0.00022983 0.00049937 0.00019247
0.00420395 0.00019247 0.00764097



 ,

respectively. The expected return r is equal to 0.011 and β ∈ {0.90, 0.95, 0.99}. We select two disutility
functions from the literature. The first one is using the max operator [see also Embrechts, P., McNeil,
A. & Straumann, D. 2002], and it is given as

u(t) = (max{t− τ, 0})2,
where we set parameter τ = ( max

i=1,2,3
{µi} + min

i=1,2,3
{µi})/2. As the second distutility function, we use the

exponential function
u(t) = exp(t)− 1.

As discussed by Luenberger, D.G. [1998], exponential-type utility is one of the most frequently used
functions. We subtract 1 to have zero disutility to reflect the case of zero loss.

Before applying the disutility functions, we solve the risk neutral decision maker problem with Algo-
rithm 4.1. We then plug the optimal solution into equation (6) and (7) to obtain VaR and CVaR values,
respectively. These results are given in Table 2 for different values of β. We note that the optimal solution
of this problem is already given by Rockafellar, R.T. & Uryasev, S. [2000]. However, we repeat these
results here for ease of reference.

Risk Measure β = 0.90 β = 0.95 β = 0.99

VaR 0.0678 0.0920 0.1321

CVaR 0.0970 0.1160 0.1530

Table 2: VaR and CVaR values for a risk neutral decision maker (see also [Rockafellar, R.T. & Uryasev,
S. 2000]).

Recall that in case of VaR measure, the optimal solution is the same as the optimal solution of the
corresponding (risk neutral) Markowitz problem. Therefore, we only report for VaR measure the change
in the objective function values. When CVaR measure is used, however, the objective function may
not have an analytical form. Due to the special structure of the example here, it turns out that the
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objective functions can be obtained for both disutility functions. In Appendix A relations (21) and (22)
give the objective functions for max and exponential disutility functions, respectively. Notice that both
relations involve evaluations of the cumulative distribution function of a standard normal variable. There
are standard methods in simulation for approximating the standard normal distribution very accurately
[Ross, S.M. 1997]. In our computational study, we use MATLAB procedure normcdf to evaluate this
approximation. To solve the convex optimization problem (12), we use the default constrained nonlinear
programming procedure in MATLAB called fmincon. This procedure requires an initial solution, x0. In all
our experiments we set x0

⊺ = (0, 0.2893, 0.7107).

Table 3 shows for both disutility functions, the changes in VaR and CVaR values for different values
of β. As expected both VaR and CVaR values increase as β increases for both disutility functions.
It is interesting to observe that when max operator is used, both risk measures yield lower VaR and
CVaR values in comparison with the risk neutral case given in Table 2. On the other hand, when
exponential function is used, both VaR and CVaR values increase. This is due to fact that the first
disutility function with the max operator penalizes only the deviation from an acceptable loss, whereas
the exponential disutility function, in general, penalizes the loss more severely than the risk-neutral case.

Disutility Function Risk Measure β = 0.90 β = 0.95 β = 0.99

max VaR 0.0040 0.0073 0.0162
CVaR 0.0092 0.0129 0.0224

exp VaR 0.0702 0.0944 0.1413
CVaR 0.1022 0.1232 0.1655

Table 3: VaR and CVaR values for a risk averse decision maker.

With the optimal CVaR values at hand, we next conduct numerical experiments to illustrate the
convergence behavior of the Monte Carlo estimator (13) as sample size increases. We solve with both
disutility functions the corresponding convex optimization problems (14), and compare our results with
the optimal objective function values given in Table 3. Since the Monte Carlo simulation depends on the
selected random seed, we conduct our experiments over 10 different seeds. Tables 4 and 5 include the
average values over 10 problems for each combination of β and sample size.

β = 0.90 β = 0.95 β = 0.99
m (%) (sec.) (%) (sec.) (%) (sec.)

1.0e+2 26.2933 0.0270 41.5724 0.0267 76.3254 0.0512

1.0e+3 10.0896 0.0475 14.2461 0.0399 24.7877 0.0362

1.0e+4 3.4124 0.2053 4.7921 0.1476 11.2223 0.0919

1.0e+5 0.9649 0.8869 1.2278 0.5673 3.2685 0.3606
1.0e+6 0.3441 7.0481 0.4342 4.4051 1.0562 2.3380

Table 4: Average CVaR deviations and computation times over 10 replications (max disutility).

Table 4 illustrates the results obtained by solving the estimation problem (14) with max disutility
function. The first column of the table gives the sample size. The average percentage deviations of
the estimated CVaR values from the optimal values (see Table 3) are reported in columns 2, 4 and 6,
respectively for each value of β. The corresponding average computation times in seconds are given
in columns 3, 5 and 7. Naturally, as the sample size increases the deviation from the optimal value
decreases. Notice that the summation in evaluating the Monte Carlo estimator (13) causes the main
computational burden. Therefore, the computation times also increase as the sample size becomes larger.
The objective function with CVaR measure involves a conditional expectation, and the sample points
passing the condition decreases as β increases. The figures in columns 2, 4 and 6 from left to right
confirm this observation. However, since a small number of sample points pass the condition, only a few
number of function evaluations are carried out in evaluating the Monte Carlo estimator. One might avoid
generating too much realizations not passing the condition by the use of tilted univariate densities and
hence apply variance reduction of the Monte Carlo estimator (rare event simulation [Ross, S.M. 2002]).
However, we did not do this. Hence, the computation times slightly decrease in almost all cases, except
(m = 102, β = 0.99) combination, as β increases (see columns 3, 5 and 6 from left to right).
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β = 0.90 β = 0.95 β = 0.99

m (%) (sec.) (%) (sec.) (%) (sec.)

1.0e+2 21.3703 0.0303 40.4043 0.0299 78.3227 0.0258

1.0e+3 7.4044 0.0480 11.6809 0.0411 23.4547 0.0362

1.0e+4 2.4530 0.2300 4.0388 0.1477 10.9822 0.0926
1.0e+5 0.7486 0.8903 0.9725 0.5650 3.1080 0.3665

1.0e+6 0.2905 7.2095 0.4120 4.4671 1.0655 2.2760

Table 5: Average CVaR deviations and computation times over 10 replications (exponential disutility).

The layout of Table 5 is exactly the same as Table 4. The figures in the table are obtained by solving
the estimation problem (14) with the exponential disutility function. Again we observe a similar pattern:
On one hand, increasing the sample size improves the accuracy of the approximation at the expense of
longer computation time; on the other hand, higher β values requires larger sample sizes to obtain more
accurate results.

5. Conclusion. In this paper, we discuss the portfolio optimization problem when random asset
returns have elliptical distributions. Concentrating on VaR and CVaR measures, we analyze the cases of
both risk-neutral and risk-averse decision makers. Furthermore, a fast and finite step algorithm is given
for the risk neutral case. When dealing with the risk-averse decision makers, we show that the simulation
from multivariate distributions can be reduced to generating realizations from a univariate distribution.
This becomes important especially when the analytic function of the objective function does not exits,
and hence, Monte Carlo estimation becomes necessary. Finally, we conducted numerical experiments to
support our findings.

There are several directions in which this research can be extended. A natural extension to our work
may also involve hedging. A classification, similar to ours, can be studied for the non-elliptical world.
Notice that in the non-elliptical world, if CVaR is chosen as the risk measure, the overall problem is
still a convex programming problem for loss functions being convex in the decision variable x for fixed z.
However the objective function in general does not have a nice analytical form. If sampling from univariate
distributions is not possible, then the notion of copulas can be analyzed to simulate realizations from
multivariate distributions [Embrechts, P., McNeil, A. & Straumann, D. 2002].

Appendix A. The Risk Averse Objective Functions. To conduct the numerical experiments
for a risk averse decision maker, we need to calculate CVaR objective function

E (u(‖Ax‖X1 − µ⊺x) | X1 ≥ VaR β(X1)) =
1

1− βE
(
u(‖Ax‖X1 − µ⊺x)1{X1≥VaR β(X1)}

)
. (20)

To simplify the notation, define a := ‖Ax‖, α := VaR β(X1), and recall that r = µ⊺x. In the numer-
ical results section, it is assumed that the returns are coming from a multivariate normal distribution.
Therefore, X1 becomes a standard normal random variable. This implies that

E
(
u(aX1 − r)1{X1≥α}

)
=

1√
2π

∫ ∞

α

u(az − r) exp

(−z2

2

)
dz.

When the utility function is given as u(t) = (max{t− τ, 0})2, then

E
(
u(aX1 − r)1{X1≥α}

)
=

1√
2π

∫ ∞

α

(max{az − r − τ, 0})2 exp

(−z2

2

)
dz.

Let γ := max{(r + τ)/a, α}, then

E
(
u(aX1 − r)1{X1≥α}

)
=

1√
2π

∫ ∞

γ

(a2z2 − 2(r + τ)az + (r + τ)2) exp

(−z2

2

)
dz.

Each term of this integration can now be obtained. The first term is given by

a2

√
2π

∫ ∞

γ

z2 exp

(−z2

2

)
dz =

a2

√
2π

(
−z exp

(−z2

2

)
|∞γ +

∫ ∞

γ

exp

(−z2

2

)
dz

)

=
a2γ√
2π

exp

(−γ2

2

)
+ a2Φ(−γ),
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where Φ denotes the cumulative distribution function of a standard normal random variable. The second
and third terms are obtained, respectively, by

−2(r + τ)a√
2π

∫ ∞

γ

z exp

(−z2

2

)
dz =

−2(r + τ)a√
2π

exp

(−γ2

2

)

and
(r + τ)2√

2π

∫ ∞

γ

exp

(−z2

2

)
dz = (r + τ)2Φ(−γ).

Therefore, in case of max form of the utility, the objective function becomes

E (u(aX1 − r) | X1 ≥ α) =
1

1− β

(
a2γ − 2a(r + τ)√

2π
exp

(−γ2

2

)
+ a2Φ(−γ) + (r + τ)2Φ(−γ)

)
. (21)

When the utility function is given as u(t) = exp (t)− 1, then

E
(
u(aX1 − r)1{X1≥α}

)
=

1√
2π

∫ ∞

α

exp (az − r) exp

(−z2

2

)
dz − Φ(−α)

= exp (−r) 1√
2π

∫ ∞

α

exp

(−z2 + 2za

2

)
dz − Φ(−α)

= exp

(
a2 − 2r

2

)
1√
2π

∫ ∞

α

exp

(
− (z − a)2

2

)
dz − Φ(−α)

= exp

(
a2 − 2r

2

)
Φ(a− α)− Φ(−α).

Therefore, in case of exponential form of the utility, the objective function becomes

E (u(a− r) | X1 ≥ α) =
1

1− β

(
exp

(
a2 − 2r

2

)
Φ(a− α)− Φ(−α)

)
. (22)

Appendix B. On Some Properties of Inverse Functions. In this appendix we discuss a tech-
nical lemma needed for the proof of Lemma 3.5. Let u : R→ R be an increasing continuous function and
denote by range(u) its range given by

range(u) := {u(x) : x ∈ R}.
Since u is increasing and continuous its range(u) is a convex interval. Moreover, if we adopt the convention
that sup{∅} = −∞ and inf{∅} = ∞ we introduce the increasing inverse functions u←֓ : R → R and
u← : R→ R given by

u←֓ (x) = sup{y ∈ R : u(y) ≤ x}
and

u←(x) = inf{y ∈ R : u(y) ≥ x}
One can now show the following technical result. Before proving this result we introduce the following
notions. If h : R → R is an increasing function the point x is called a point of strict increase if there
exists some ǫ > 0 such that h is strictly increasing on (x−ǫ, x+ǫ). A function h is called right continuous
if limxk↓x h(xk) = h(x) for every x ∈ R and it is called left continuous if limxk↑x h(xk) = h(x) for every
x ∈ R.

Lemma B.1 If u : R → R is an increasing continuous function then u←(x) ≤ u←֓ (x) for every x ∈ R.
Moreover the function u←֓ : R → R is right continuous and the function u← : R→ R is left continuous
and

limk↑∞ u←֓ (xk) = u←(x).

for every strictly increasing sequence xk ↑ x with x ∈ R. Also u(u←(x)) = u(u←֓ (x)) = x for every
x ∈ cl(range(u)) and u←(u(x)) = u←֓ (u(x)) = x for every point x of strict increase.

Proof. For every x ∈ range(u) it follows that these exists some y ∈ R satisfying u(y) = x and
this yields u←(x) ≤ y ≤ u←֓ (x). If x /∈ range(u) then exactly one of the sets {y ∈ R : u(y) ≤ x} and
{y ∈ R : u(y) ≥ x} is empty. If {y ∈ R : u(y) ≤ x} is empty or equivalently {y ∈ R : u(y) ≥ x} = R
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we obtain u←(x) = −∞ and u←֓ (x) = sup{∅} = −∞, while for {y ∈ R : u(y) ≥ x} is empty or
equivalently {y ∈ R : u(y) ≤ x} = R it follows u←֓ (x) = ∞ and u←(x) = inf{∅} = ∞. Hence we
have verified that u← ≤ u←֓ . To show that the function u←֓ is right continuous consider some x ∈ R

and a decreasing sequence xk ↓ x. This implies that the sequence u←֓ (xk) is decreasing with lower
bound u←֓ (x) and so α = limk↑∞ u←֓ (xk) exists (possibly −∞) and α ≥ u←֓ (x). Without loss of
generality we may assume that u←֓ (x) < ∞. If x /∈ range(u) and hence u←֓ (x) = −∞ assume by
contradiction that α > −∞. This implies that there exists some finite M satisfying α ≥ M. Since u
is increasing it follows that the lower level sets L(r) := {y ∈ R : u(y) ≤ r} are convex intervals and
so we obtain (−∞,M) ⊆ L(xk) for every k ∈ N. Since xk ↓ x we also obtain using L(xk+1) ⊆ L(xk)
for every k ∈ N that L(x) = ∩k∈NL(xk) and this implies (−∞,M) ⊆ L(x). However, by assumption
x /∈ range(u) and so L(x) is empty. This yields a contradiction and we have verified for x /∈ range(u)
that limk↑∞ u←֓ (xk) = u←֓ (x). Also for x ∈ range(u) we assume by contradiction that α > u←֓ (x).
This means that u(α) > x and since xk ↓ x one can find some k0 ∈ N satisfying u(α) > xk0

. By the
continuity of u there exist some α0 < α satisfying u(α0) > xk0

and so u←֓ (xk0
) ≤ α0 < α. Since by

definition u←֓ (xk) ↓ α it follows that α < α and we have a contradiction. Therefore α = u←֓ (x∞) and
we have shown that u←֓ is right continuous. Similarly one can show that u← is left continuous. To show
that limk↑∞ u

←֓ (xk) = u←(x) for every strictly increasing sequence xk ↑ x we first observe that xk < x
for every k ∈ N. Since u is increasing this shows u←֓ (xk) ≤ u←(x). Moreover, the sequence u←֓ (xk)
is increasing and so α := limk↑∞ u←֓ (xk) exists and α ≤ u←(x∞). Without loss of generality we may
assume that u←(x) > −∞ and α > −∞. Suppose now by contradiction that α < u←(x). This shows
for both x ∈ range(u) and x /∈ range(u) that u(α) < x and by the continuity of u and xk ↑ x one
can find as before some k0 ∈ N and α0 > α satisfying u(α0) < xk0

. This implies α < α0 ≤ u←(xk0
)

and since u←(xk0
) ≤ u←֓ (xk0

) and u←֓ (xk0
) ↑ α we obtain as before a contradiction. Since for every

x ∈ range(u) the set {y : u(y) ≤ x} is convex and nonempty and u is increasing and continuous we
obtain that this set is actually a closed nonempty set. Hence sup is attained and the same argument
applies to inf. By this observation we obtain u(u←֓ (x)) ≤ x and u(u←(x)) ≥ x. Since u is increasing
and u←(x) ≤ u←֓ (x) this implies x ≤ u(u←(x)) ≤ u(u←֓ (x)) ≤ x and so u(u←(x)) = u(u←֓ (x)) = x
for every x ∈ range(u). If x ∈ R belongs to cl(range(u))\range(u) then x does not belong to range(u)
and either x = sup{u(y) : y ∈ R} finite or x = inf{u(y) : y ∈ R} finite. In both cases it is easy to
verify that u(u←(x)) = u(u←֓ (x)) = x and we have shown that u(u←(x)) = u(u←֓ (x)) = x for every
x ∈ cl(range(u)). To show the last part let x be a point of strict increase. By the monotonicity of u this
implies that {y ∈ R : u(y) ≥ u(x)} = [x,∞) and {y ∈ R : u(y) ≤ x} = (−∞, x]. This shows the last
result. �
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