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How much is location information worth? A

competitive analysis of the online Traveling Salesman

Problem with two disclosure dates
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Burg. Oudlaan 50, 3062 PA Rotterdam, The Netherlands
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Abstract

In this paper we derive the worst-case ratio of an online algorithm for the Trav-

eling Salesman Problem (TSP) with two disclosure dates. This problem, a variant

of the online TSP with release dates, is characterized by the disclosure of a job’s

location at one point in time followed by the disclosure of that job’s release date at

a later point in time. We present an online algorithm for this problem restricted

to the positive real number line. We then derive the worst-case ratio of our algo-

rithm and show that it is best-possible in two contexts – the first, one in which the

amount of time between the disclosure events and release time are fixed and equal

for all jobs; and a second in which the time between disclosure events varies for each

job. We conclude that the value of advanced information can be attributed to the

location information alone – yielding an optimal solution in favorable instances.

Keywords: Traveling Salesman; advanced information; competitive ratio; worst-case

ratio; online routing

1 Introduction

Intensely, widely, and well-studied – not to mention important – are all adjectives used to

describe the well-known Traveling Salesman Problem (TSP). In short the TSP addresses

the problem of finding the shortest tour (beginning and ending at a depot or origin
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city) through a set of jobs or cities in a given metric space. If the salesman is traveling

at constant speed, finding the shortest path is equivalent to minimizing the time the

salesman returns to the depot. The literature on this problem begins with the seminal

papers by Dantzig et al. (1954) and Flood (1956), includes at least four books (Lawler

et al., 1985; Reinelt, 1994; Gutin and Punnen, 2002; Applegate et al., 2007), multiple

survey papers (Bellmore and Nemhauser, 1968; Burkard et al., 1995; Jünger et al., 1995,

1997), and a myriad of articles.

The TSP literature contains a variety of extensions to the basic problem formulation.

The extension we are interested in is known as the “TSP with release dates”. In this

variation, the salesman may visit each job only on or after a specified release date. One

method of solving this problem is to assume that all of the job locations and their release

dates are known before a solution algorithm is implemented. This method, referred to

as the offline optimization approach, is not particularly realistic. In the majority of real-

world applications, jobs (or cities) and their release times are revealed over time – often

after the salesman has already left the city of origin (or depot). Methods designed to

handle the arrival of new information during execution are termed online algorithms.

We may add a further level of realism by assuming that the exact location of each job

is also revealed over time. Specifically, the location of each job may be revealed in advance

of information on the release date, which is revealed in advance of the actual release date.

For example, consider a dray company, such as that documented in Mahr et al. (2008),

that must pick up containers from several port terminals. In the morning, the dray

provider learns the location of the terminals that will release containers for transport.

Later in the day, the company learns the exact time at which those containers will be

released from customs for pick-up; for some terminals this information may come early,

for others this information may arrive much later in the day. While the dray company

could wait until all information is known, the containers will certainly be served sooner if

the company can cleverly exploit each piece of information when it arrives. For this the

dray provider needs an online algorithm.

In this small example, the subproblem of finding the best ordering of the jobs for a

single truck is equivalent to the TSP. For this reason we examine, in this paper, a problem

we term the online TSP with two disclosure dates. For the ease of analysis we restrict the

metric space to the non-negative real number line with the depot located at the origin,

R+
0 . We are thus able to indicate the value of each piece of information via the worst-case

ratio of the online algorithm cost to the offline optimal algorithm cost.
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1.1 Literature Review

The offline TSP with release dates on R+
0 is not new. Psaraftis et al. (1990) introduced

this problem as one of routing and scheduling along a shoreline. They examine both path

and tour versions of the problem and demonstrate that in the tour version on such a

restricted metric space these problems are trivially solved in polynomial time.

Blom et al. (2001) provide an algorithm with a worst-case ratio of 3
2

for the online

variant of this problem; they term this version of the problem the online TSP (OLTSP).

They prove that their algorithm, Move-Right-If-Necessary (MRIN), is best-possible for

the OLTSP with release dates. MRIN is a zealous algorithm that sends the salesman

immediately to any job on the right and back to the origin (left) if there are no other

jobs to the right. Jaillet and Wagner (2006) and Wagner (2006), however, note that the

result of Blom et al. (2001) is dependent on the assumption that the disclosure time of a

job’s location and release time occurs at the moment of release. In this way, Jaillet and

Wagner (2006) formulate a TSP scenario with advanced information and demonstrate the

benefit of that advanced information.

Specifically, Jaillet and Wagner (2006) introduce a disclosure time, at which both the

location and the release time are announced. If this disclosure time is equal to the release

time then we are in the case where MRIN yields a solution with worst-case ratio of 3
2
. If,

however, the disclosure time occurs a fixed amount of time in advance of the release date

then the worst-case ratio for an arbitrary homing (or tour) online algorithm improves to

at least (3
2
− a

2lmax
) ∈ [1, 3

2
] where a is the fixed amount of advanced notice time and lmax is

the location of the job farthest from the origin on R+
0 . Note, we use the expression homing

in a manner similar to Ausiello et al. (2001) in order to indicate that the algorithm must

return to the depot or origin at the point in time when all known jobs have been served.

1.2 Our Contribution

We position our work as depicted in Table 1. In this table the name of the problem

examined appears in the far left column. The second column provides a graphical depic-

tion of information arrival over time that characterizes the associated problem; note, ql
i

represents the time the location of a job i ∈ N = {1, . . . n} is disclosed, qr
i represents the

time the release time of job i is disclosed, and ri represents the release time of the job.

The third and fourth columns indicate the main result and reference for the associated

problem, respectively. This table emphasizes the focus of our work on the impact of early

location disclosure in the context of the TSP on R+
0 .
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Table 1: Overview of work to date and our contribution.
Problem Depiction of Info. Arrival (Time) Main Result on R+

0 Reference

Offline TSP with Re-
lease Dates

Optimal algorithm in O(n) time. (Psaraftis et al., 1990)

Online TSP with Re-
lease Dates

Best-possible algorithm with worst-
case ratio of 3

2 .
(Blom et al., 2001)

Online TSP with Dis-
closure Dates

Disclosure dates give advantage over
release dates; worst-case ratio for
both fixed and variable advanced no-
tice is dependent on time between
disclosure and release, but bounded
by 3

2 .

(Jaillet and Wagner,
2006)

Online TSP with Two
Disclosure Dates

Advanced location information gives
an advantage over simultaneous dis-
closure dates; worst-case ratio for
both fixed and variable advanced no-
tice is dependent on time between
both disclosure dates and the release
time, but bounded by 3

2 .

This paper

In our case, we have two disclosure dates – the disclosure of the job location and the

disclosure of the release time. This split information arrival serves to give our online

algorithm a greater advantage over other online algorithms in comparison to the optimal

offline strategy. This case is also more realistic as there are many real-world instances in

which the job locations are known early in execution, but the release times come later.

We begin by introducing an online algorithm for R+
0 designed to exploit both pieces of

information as they are made available. Our online algorithm is a homing algorithm as

the salesman must return to the origin following the completion of all known jobs.

We prove that our online algorithm is best-possible with a worst-case ratio of

max
{

1, 3
2
− (a+b)

2lmax

}
, where a and b represent fixed amounts of time between the disclosure

events and release of the job.

We also address the case of variable amounts of advanced notice (i.e. the case where

a and b vary by job taking any positive real value). In this case we obtain a ratio of

1 ≤ 1 + min

{(
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

− 1

)+

,

(
maxi∈N

{
ql
i + 2li

}
maxi∈N {2li}

− 1

)}
≤ 3

2

We show that this ratio is the best possible in this setting.

The remainder of this paper is organized as follows: in Section 2 we state the problem

of interest in mathematical terms and define the necessary notation; we also present in

greater detail the optimal offline algorithm and online algorithms for the TSP with release

dates and TSP with disclosure dates. In Section 3 we present our algorithm, Move-Right-

Early-Left-Late (MRELL), for the OLTSP on R+
0 with two disclosure dates. In Section 4

we derive the worst-case ratio for the case in which the amount of time between disclosure
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events is fixed; we also demonstrate that MRELL is best possible in this case. In Section

5 we study the case in which the amount of time between disclosure events varies across

jobs; we demonstrate that MRELL is best possible for that case as well. Finally, we

conclude with a discussion of these results and statement of future research in Section 6.

2 Assumptions, Notation, and Preliminaries

To facilitate an understanding of the exact nature of the problem under consideration, we

begin by stating some assumptions and describing the notation we will use throughout

this paper.

1. All job locations are along the positive real number line, R+.

2. The origin is at the point, 0, on R+ which is where the salesman begins at the start

of each problem at time 0 and must return to after visiting all jobs.

3. The location of a job, i, is only revealed to the salesman at a time in advance of

its release time (and the disclosure of that time); this location disclosure time is

denoted ql
i.

4. A job’s release time is only revealed to the salesman at a time after the disclosure

of its location, but before the time of release; this release disclosure time is denoted

qr
i .

5. The salesman always travels at unit speed along R+; otherwise he is idle.

6. The objective of this online TSP is to minimize the time required to serve all jobs

and return to the origin.

7. In the online problem, the salesman does not know in advance how many jobs are

in a single problem instance. In the offline problem, all jobs and their release times

are known a priori.

8. A problem instance, N , is a collection of n jobs, numbered 1, . . . , n.

Note, we can completely describe a job i ∈ N by the following vector: (ql
i, q

r
i , ri, li) where

li represents the location of job i on R+
0 ; ql

i is the point in time at which li is revealed; and

qr
i is the point in time at which ri is revealed, where ri represents the release time of job

i. In our variation of the online TSP, the information arrives such that 0 ≤ ql
i ≤ qr

i ≤ ri.
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We further specify lmax to represent the job that is farthest from the origin; that is,

lmax = maxi∈N {li}. Similarly, rmax = maxi∈N {ri} represents the job that is released the

latest. The job at lmax is not necessarily the same job with release time rmax. The notation

(x)+ is used as a short hand for max {x, 0}.
As the remainder of this document focusses on competitive analysis, we use the no-

tation CA(N) to represent the cost of an algorithm, A, on an instance, N , of n jobs.

Furthermore, we define the performance ratio of an algorithm A on an instance N as
CA(N)

COPT (N)
. The value ρA is defined as the infimum over all performance ratios, which im-

plies that CA(N) ≤ ρACOPT (N) for any instance N . In the literature, ρA is referred to

as both the competitive ratio and the worst-case ratio; we will use the term worst-case

ratio. A best possible algorithm is thus defined as an algorithm guaranteed to achieve a

performance ratio less than or equal to the infimum over all algorithms of ρA. Finally,

throughout this paper we use the language of Jaillet and Wagner (2006) when writing out

the relevant algorithms and affiliated costs.

The remainder of this section is divided into two subsections – the first in which we

describe the optimal offline algorithm of Psaraftis et al. (1990) and the second in which

we describe the online algorithms of Blom et al. (2001) and Jaillet and Wagner (2006).

2.1 Optimal Offline Algorithm for the TSP on R+ with Release

Dates

The offline version of the TSP with release dates on R+
0 was first introduced in the

context of routing and scheduling on a shoreline by Psaraftis et al. (1990). They propose

an optimal offline algorithm entitled TRAVERSE and prove that it solves the problem

exactly in O(n) time. The formal steps of the algorithm are repeated here, for convenience.

TRAVERSE works by going to the farthest job from the origin, waiting at that job until

the point in time where a smooth (i.e. no waiting) return to the origin can be made.

Algorithm 1 TRAVERSE or OPT

1. Go directly to job lmax.

2. Wait at lmax for maxi∈N {max {0, ri − (2lmax − li)}} units of time.

3. Proceed directly back to the origin.

It is clear that the cost of this algorithm (that is the earliest point in time the salesman

will return to the origin) is the time required to travel to the farthest location and back
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to the origin plus any waiting time incurred at that farthest location. Thus, the following

is a closed form expression for CTRAV ERSE(N) (termed COPT (N) for future reference):

COPT (N) = max
i∈N

{max {2li, ri + li}} (1)

2.2 Online TSP Algorithms

In this subsection, we review two different cases of advanced information arrival; for each

we present the best-possible online algorithms. The first case is one in which a job’s

location and release time are disclosed at the moment of release, that is ql
i = qr

i = ri.

This first case is identical to that of the “OLTSP with release dates” originally proposed

and studied by Blom et al. (2001). The second case is one in which the location and

release time are disclosed simultaneously at a time in advance of the release time, that is

ql
i = qr

i < ri. This second case is identical to the “OLTSP with disclosure dates” originally

proposed by Jaillet and Wagner (2006).

2.2.1 OLTSP with Release Dates

In their study of zealous algorithms and fair adversaries for the OLTSP with release dates,

Blom et al. (2001) specify the Move-Right-if-Necessary (MRIN) algorithm as a strategy

in the R+
0 metric space. MRIN is a zealous algorithm in which the salesman moves to jobs

on his right as soon as they are released and returns to the origin if there are no more

jobs on the right.

Algorithm 2 MRIN

1. If there is an unserved job to the right of the salesman, he moves toward it at unit
speed.

2. If there are no unserved jobs to the right of the salesman, he moves back toward
the origin at unit speed.

3. Upon reaching the origin, the salesman becomes idle.

Blom et al. (2001) show that MRIN is a best-possible online algorithm for the OLTSP

with release dates on R+
0 with a worst-case ratio of 3

2
. Therefore, in the case where

ql
i = qr

i = ri, MRIN is the best possible strategy.
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2.2.2 OLTSP with Disclosure Dates

In their study of online routing problems, Jaillet and Wagner (2006) introduce the OLTSP

with disclosure dates and specify the Move-Left-If-Beneficial (MLIB) algorithm as a strat-

egy in the R+
0 metric space. MLIB is based on the idea that with prior knowledge of jobs

to the left of the salesman it is better to wait as far right for as long as possible. In this

way, MLIB represents a compromise strategy between the optimal offline, TRAVERSE

algorithm and the online MRIN strategy.

Algorithm 3 MLIB

1. If there is an unserved job to the right of the salesman, he moves toward it at unit
speed.

2. If there are no unserved jobs to the right of the salesman, he moves back toward
the origin if and only if the return trajectory reaches all unserved jobs on or after
their release date; otherwise the salesman remains idle at his current location.

3. Upon reaching the origin, the salesman becomes idle.

Jaillet and Wagner (2006) show that MLIB is a best-possible online algorithm for the

OLTSP with disclosure dates on R+
0 when the amount of advanced notice (i.e. the time

between disclosure and release) is fixed. We extend their results slightly to show that

MLIB is also best-possible when the amount of advanced notice is variable (see Section

5). In both settings (fixed and variable advanced notice) the worst-case ratio of MLIB is

not constant and instead varies based on the amount of advanced notice; nevertheless the

worst-case ratio never exceeds 3
2
. Therefore, in the case where ql

i = qr
i ≤ ri, MLIB is the

best possible strategy.

3 OLTSP with Two Disclosure Dates

The primary focus of this paper is one in which the location is disclosed earlier than the

release time which is disclosed earlier than the release itself, that is ql
i ≤ qr

i ≤ ri. In

this instance, we can construct an algorithm that not only exploits the advanced release

information but also the earlier disclosed location information. The Move-Right-Early-

Left-Late (MRELL) algorithm is based on the idea that it is better to wait as far in the

field as long as possible than hastily return to the origin.

Note that if this algorithm is applied to a case where ql
i = qr

i = ri then MRELL is
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Algorithm 4 MRELL

1. If there is a job for which the location has been revealed to the right of the salesman
he moves towards it at unit speed.

2. If there are no jobs to the right of the salesman, he moves back to the origin according
to the following rules:

(a) If the salesman knows the release time of all the jobs to his left, whose locations
have been disclosed, then the salesman returns to the origin at the point in
time that allows him to pass all jobs on or after their release time.

(b) If the salesman knows the release time of only some of all jobs to his left, whose
locations have been disclosed, then the salesman remains idle until the time
that allows him to pass all release time disclosed jobs on or after their release
time, but the salesman must stop along this trajectory and wait at any job for
which only the location is known.

(c) If the salesman knows none of the release times for all the location-disclosed
jobs to his left, then he moves toward the nearest job waiting there until its
release.

3. Upon reaching the origin, the salesman remains idle.

equivalent to MRIN (Blom et al., 2001). Furthermore, if this algorithm is applied to a

case where ql
i = qr

i < ri then MRELL is equivalent to MLIB (Jaillet and Wagner, 2006).

Additionally, note that if 0 = ql
i = qr

i < ri,∀i ∈ N then this algorithm is indistinguishable

from the optimal offline algorithm (see Psaraftis et al., 1990).

Lemma 1. The cost of MRELL is bounded as follows:

CMRELL(N) ≤ max
i∈N

{
max

{
ql
i + 2li, ri + li

}}
(2)

Proof Using logic similar to Jaillet and Wagner (2006), we derive the cost of MRELL by

analyzing the final segment of the salesman’s journey. That is, the segment of the sales-

man’s journey in which he leaves a job to return directly to the origin without stopping

to wait at any other job along the way. We say that this final segment will begin at a

time, t0 with the salesman arriving at the origin at time z = CMRELL(N). According to

the algorithm, MRELL, the salesman may begin his final segment to the origin from any

job (a job we will term the final departure job) to the right of the origin, on the condition

that all jobs in between the final departure job and the origin will be passed on or after

their release time. We proceed by analyzing two cases.
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1. Salesman leaves final departure job as soon as he arrives.

This represents the case where the salesman arrives to the final departure job

after the release time of that job and at a point in time at which all jobs

between that final departure job and the origin can be passed on or after their

release times. Note that in this case, the salesman was traveling away from the

origin just before turning back for the final segment at the final departure job.

Thus, the salesman begins his return segment immediately after arriving to the

final departure job, k. This gives us that t0 = arrival to k ≤ ql
k + lk. Note that

ql
k + lk represents departure from the origin and hence the worst case. Thus,

z ≤ ql
k + lk + lk = ql

k + 2lk.

2. Salesman leaves final departure job after waiting.

This case represents a situation where the salesman must wait for the release

of some job between the final departure job and the origin (possibly the final

departure job itself). In this second case the salesman will already have spent

some time at the final departure job before returning to the origin - thus he

may have come to that final departure job from either the left or the right. In

this case the final segment is timed to pass through some job, m, at a time

t > t0 such that t = rm and rm is the latest release time remaining. Thus, the

salesman will finish the final segment at z = rm + lm.

Because the last segment of the salesman’s trajectory can only be of one case type, we

may say that z ≤ max
{
ql
k + 2lk, rm + lm

}
. Furthermore, because these cases represent

the latest event in the trajectory of the salesman we can write, CMRELL(N) = z ≤
maxi∈N

{
max

{
ql
i + 2li, ri + li

}}
.

The following corollary further illustrates the relationship between CMRELL(N) and

COPT (N). Corollary 1 will also be used in proving Theorem 2.

Corollary 1. If ql
i = 0 and qr

i ≤ ri,∀i ∈ N , then CMRELL(N) = COPT (N).

Related to Corollary 1 we have Lemma 2 that will be used in the proof of both Theorem

2 and Theorem 4.

Lemma 2. For any instance, N , of the online TSP with release dates on R+, we can

construct a related instance, Ñ , in which all jobs in the set Q =
{
i ∈ N | ql

i = 0
}

are

excluded. The performance ratio for instance Ñ will not be less than the performance

ratio for instance N .
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Proof Let CMRELL(Ñ) be the cost of MRELL on the instance Ñ = N \Q; similarly let

COPT (Ñ) be the cost of OPT on the instance Ñ = N \Q.

If maxi∈Q {ri + li, 2li} ≥ CMRELL(Ñ) then CMRELL(N) = maxi∈Q {ri + li, 2li} =

COPT (N); which gives us a performance ratio of 1. As the performance ratio for in-

stance Ñ must be greater than or equal to 1 we have that the performance ratio for

instance Ñ will not be less than the performance ratio for instance N .

If instead, maxi∈Q {ri + li, 2li} < CMRELL(Ñ) then CMRELL(Ñ) = CMRELL(N). Since,

COPT (Ñ) ≤ COPT (N), the performance ratio for instance N is less than or equal to the

performance ratio of Ñ .

4 Fixed Amounts of Advanced Notice

In this case, we imagine that the salesman is told the location of each job at a point in

time (a + b) units of time before the release of the job. Similarly, the release time of each

job is announced a units of time before the release of the job. We may also write this

as follows. For each job in a problem instance, there exist constants a and b such that

(a + b) ∈ [0, rmax], yielding qr
i = (ri − a)+,∀i ∈ N and ql

i = (ri − a− b)+,∀i ∈ N . Given

this notation and noting that 2lmax is a lower bound on the length of the optimal TSP

tour through all jobs, we have the following theorem.

Theorem 1. Let A be an arbitrary homing online algorithm with cost CA(N) on an

instance of n jobs. Then for all n ≥ 2 there exists an instance N of size n where the

performance ratio is at least
[

3
2
− ( a+b

2lmax
)
]
∈ [1, 3

2
].

Proof Using logic similar to Jaillet and Wagner (2006), we begin by establishing an

arbitrary instance N ′ of n− 1 jobs. Given this instance, the time at which the salesman

finishes serving all n−1 jobs and returns to the origin is given by our arbitrary algorithm,

A, as CA(N ′). We now designate an nth job which is further out on R+ than any of the

previous n − 1 jobs. Thus, ln = lmax. To specify the exact location of lmax, we note

that CA(N ′) ≥ COPT (N ′) ≥ 2li,∀i ∈ N ′. Thus, by setting ln equal to CA(N ′) plus some

constant term, we are assured that ln is lmax for this instance of n jobs. We therefore

select ln = (a + b) + CA(N ′). Note, if (a + b) = 0 then ql
n = rn and the analysis of Blom

et al. (2001) applies thus completing our proof. However, if (a + b) > 0, we obtain the

following description of job n:

(ql
n, q

r
n, rn, ln) = (CA(N ′), a + CA(N ′), (a + b) + CA(N ′), (a + b) + CA(N ′)).
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Given this job and the knowledge that the salesman is at the origin at ql
n = CA(N ′),

we obtain the following:

CA(N) ≥ ql
n + 2ln = 3CA(N ′) + 2(a + b).

Turning our attention to the optimal offline algorithm, we have:

COPT (N) = max{max{2li, ri + li}} = 2CA(N ′) + 2(a + b)

As (a + b) > 0 then COPT (N) > 0. We now obtain the desired result:

CA(N)

COPT (N)
≥ 3CA(N ′) + 2(a + b)

2CA(N ′) + 2(a + b)

= 1 +
CA(N ′)

2lmax

= 1 +
lmax − (a + b)

2lmax

=
3

2
− (

a + b

2lmax

)

Given that (a + b) ≤ lmax, we conclude that 3
2
− ( a+b

2lmax
) ∈ [1, 3

2
].

Theorem 2. When the amount of advanced notice is fixed such that, qr
i = (ri − a)+ and

ql
i = (ri − a− b)+,∀i ∈ N , then MRELL is a best-possible algorithm.

Proof Define L =
{
i ∈ N |ql

i > 0
}
. Note that if L = ∅ then the location of all jobs are

known at the start of the day. Thus, by Lemma 2, we obtain CMRELL(N) = COPT (N).

However, if L is not empty, then we rewrite inequality 2 as:

CMRELL(N) ≤ max

{
max
i∈L

{
max

{
ql
i + 2li, ri + li

}}
, max
i∈N\L

{max {2li, ri + li}}
}

Now, by Lemma 2 we can ignore all the jobs not in L without risk of reducing the

competitive ratio. Thus we obtain:

CMRELL(N) ≤ max
i∈L

{
max

{
ql
i + 2li, ri + li

}}
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Using the definition of ql
i we do the following algebra:

CMRELL(N) ≤ max
i∈L

{
max

{
ql
i + 2li, ri + li

}}
= max

i∈L
{max {ri − a− b + 2li, ri + li}}

= max
i∈L

{ri + li + max {li − a− b, 0}}

≤ max
i∈L

{ri + li + max {lmax − a− b, 0}} (3)

We now analyze two cases:

Case 1: lmax − a − b < 0 ⇔ lmax < a + b. This case implies that CMRELL(N) ≤
maxi∈L {ri + li} ≤ COPT (N) which implies that CMRELL(N) = COPT (N).

Case 2: lmax − a− b ≥ 0 ⇔ lmax ≥ a + b. In this case we may rewrite inequality 3 in the

following way.

CMRELL(N) ≤ max
i∈L

{ri + li + lmax − a− b}

= max
i∈L

{ri + li}+ lmax − a− b

≤ COPT (N) + lmax − a− b

Rewriting lmax − a− b as lmax−a−b
lmax

lmax, we obtain the desired result.

CMRELL(N) ≤ COPT (N) +
lmax − a− b

2lmax

2lmax

≤ COPT (N) +
lmax − a− b

2lmax

COPT (N)

=

[
3

2
− (a + b)

2lmax

]
COPT (N)

Thus, recognizing that these cases are disjoint we may state,

CMRELL(N) ≤ max

{
1,

3

2
− (

a + b

2lmax

)

}
COPT (N)

. As Theorem 1 gives us that max
{

1, 3
2
− ( a+b

2lmax
)
}

is the lowest possible performance

ratio for any algorithm we may conclude that MRELL is a best-possible algorithm.
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5 Variable Amounts of Advanced Notice

In this subsection, we explore the worst-case ratio of MRELL in the context of vari-

able amounts of advanced notice time for both the location and release time disclo-

sures. In examining Lemma, 1 we note that the job driving the cost of MRELL

(we will call this job d) can be one of two types: (1) the job may be such such

that maxi∈N

{
max

{
ql
i + 2li, ri + li

}}
= rd + ld or (2) the job may be such that

maxi∈N

{
max

{
ql
i + 2li, ri + li

}}
= ql

d+2ld. If job d is of type one, then the cost of MRELL

will be equal to the cost of the optimal offline algorithm. Given this phenomenon, the

worst-case ratio is primarily determined by the value of maxi∈N

{
ql
i + 2li

}
.

Theorem 3. Let A be an arbitrary homing online algorithm with cost CA(N) on an

instance, N , of n jobs. Then for all n ≥ 2 there exists an instance of size n where the

performance ratio is at least

1 + min

{(
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

− 1

)+

,

(
maxi∈N

{
ql
i + 2li

}
maxi∈N {2li}

− 1

)}
∈
[
1,

3

2

]
.

Proof Applying the same logic as in Theorem 1, we specify an arbitrary instance N ′ of

n − 1 jobs that the salesman serves and then returns to the origin. Thus, the salesman

is at the origin at time CA(N ′). We now specify the nth job at a location on R+ that is

further from the origin than any other of the n− 1 jobs with a release time later than all

others. We may therefore describe the nth job fully as follows.

(
ql
n, q

r
n, rn, ln

)
=

(
ql
max, q

r
max, rmax, lmax

)
=

(
CA(N ′), CA(N ′) + max

i∈N\n
{ri − qr

i } , CA(N ′) + δ, CA(N ′) + δ

)
Note that δ = maxi∈N\n

{
ri − ql

i

}
.

This plus the knowledge that the salesman is at the origin at time CA(N ′) yields:

CA(N) ≥ ql
n + 2ln = 3CA(N ′) + 2δ

Turning our attention to the cost of the optimal offline algorithm we have:

COPT (N) = max
i∈N

{max {2li, ri + li}} = 2CA(N ′) + 2δ
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This gives us the following:

CA(N)

COPT (N)
≥ 3CA(N ′) + 2δ

2CA(N ′) + 2δ
(4)

= 1 +
CA(N ′)

2CA(N ′) + 2δ

= 1 +
CA(N ′) + 2 (CA(N ′) + δ)− 2 (CA(N ′) + δ)

2 (CA(N ′) + δ)

≥ 1 + min

{
ql
n + 2ln − (rn + ln)

rn + ln
,
ql
n + 2ln − 2ln

2ln

}
= 1 + min

{(
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

− 1

)+

,

(
maxi∈N

{
ql
i + 2li

}
maxi∈N {2li}

− 1

)}

We now note that if we let δ decrease to 0 in equation (4), then this fraction increases

to 3
2
; alternately if we take the limit of δ approaching ∞, then this fraction decreases to

1. Therefore,

1 + min

{(
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

− 1

)+

,

(
maxi∈N

{
ql
i + 2li

}
maxi∈N {2li}

− 1

)}
∈
[
1,

3

2

]
.

The following theorem establishes that MRELL is also a best-possible algorithm in

the context of variable notice.

Theorem 4. When the amount of advanced notice varies for each job, i ∈ N , then

CMRELL(N)
COPT (N)

≤ 1 + min

{(
maxi∈N{ql

i+2li}
maxi∈N{ri+li} − 1

)+

,

(
maxi∈N{ql

i+2li}
maxi∈N{2li} − 1

)}
≤ 3

2
and MRELL

is a best-possible algorithm.

Proof Let ql
m + 2lm = maxi∈N

{
ql
i + 2li

}
, rp + lp = maxi∈N {ri + li}, and 2lmax =

maxi∈N {2li}. Note that jobs m, p, and max in the case of lmax may actually represent

the same job depending on the instance. We further define two sets:

L(N) =

{
j ∈ N | ql

j + 2lj = max

{
max
i∈N

{
ql
i + 2li, ri + li

}}}
R(N) =

{
k ∈ N | rk + lk = max

{
max
i∈N

{
ql
i + 2li, ri + li

}}}
Given these two sets we proceed with the proof by examining three cases: (1) L(N) =
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∅,R(N) 6= ∅, (2) L(N) 6= ∅,R(N) 6= ∅, and (3) L(N) 6= ∅,R(N) = ∅. Note if L(N) =

R(N) = ∅ then there are no jobs in the problem instance.

Case 1: L(N) = ∅,R(N) 6= ∅ In this case p ∈ R(N). Thus,

rp + lp = max

{
max
i∈N

{
ql
i + 2li, ri + li

}}
≥ 2lmax

which implies that CMRELL(N) ≤ rp + lp ≤ COPT (N). Thus, CMRELL(N)
COPT (N)

≤ 1 ≤ 3
2
.

We further note, that in this case rp + lp > ql
m +2lm. Hence ql

m+2lm
rp+lp

< 1 which yields

(
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

− 1

)+

= 0.

Therefore, in this case,

min

{(
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

− 1

)+

,

(
maxi∈N

{
ql
i + 2li

}
maxi∈N {2li}

− 1

)}
= 0.

As a result we can conclude that in this case,

CMRELL(N)

COPT (N)
≤ 1 + min

{(
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

− 1

)+

,

(
maxi∈N

{
ql
i + 2li

}
maxi∈N {2li}

− 1

)}
≤ 3

2
.

Case 2: L(N) 6= ∅,R(N) 6= ∅ In this case m ∈ L(N) and p ∈ R(N) which gives us that

ql
m + 2lm = ql

j + 2lj = max
{
maxi∈N

{
ql
i + 2li, ri + li

}}
= rk + lk = rp + lp. Thus,

CMRELL(N) ≤ rp + lp ≤ COPT (N) yielding CMRELL(N)
COPT (N)

≤ 1 ≤ 3
2
. In this case we also

note that rp + lp = ql
m +2lm which gives that

(
maxi∈N{ql

i+2li}
maxi∈N{ri+li} − 1

)+

= 0. Therefore,

min

{(
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

− 1

)+

,

(
maxi∈N

{
ql
i + 2li

}
maxi∈N {2li}

− 1

)}
= 0.
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As a result we conclude that in this case,

CMRELL(N)

COPT (N)
≤ 1 + min

{(
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

− 1

)+

,

(
maxi∈N

{
ql
i + 2li

}
maxi∈N {2li}

− 1

)}
≤ 3

2
.

Case 3: L(N) 6= ∅,R(N) = ∅ In this case, m ∈ L(N). Thus,

ql
m + 2lm = max

{
max
i∈N

{
ql
i + 2li, ri + li

}}
.

So we may conclude that ql
m +2lm > rp + lp. We may also conclude that ql

m +2lm >

2lmax, because Lemma 2 allows us to ignore all jobs for which ql
i = 0. We thus

examine two cases, (1) ql
m +2lm > rp + lp > 2lmax and (2) ql

m +2lm > 2lmax > rp + lp.

Case 3.1: ql
m + 2lm > rp + lp > 2lmax

CMRELL(N) ≤ ql
m + 2lm

=
ql
m + 2lm
rp + lp

(rp + lp)

≤
[(

ql
m + 2lm
2lmax

− 1

)
+ 1

]
COPT (N)

Thus, CMRELL(N)
COPT (N)

≤ 1+
(

ql
m+2lm
rp+lp

− 1
)+

≤ 1+
(

ql
m+2lm
2lmax

− 1
)
. Which gives us the

result that CMRELL(N)
COPT (N)

≤ 1+min

{(
maxi∈N{ql

i+2li}
maxi∈N{ri+li} − 1

)+

,

(
maxi∈N{ql

i+2li}
maxi∈N{2li} − 1

)}
.

Case 3.2: ql
m + 2lm > 2lmax > rp + lp

CMRELL(N) ≤ ql
m + 2lm

=
ql
m + 2lm
2lmax

(2lmax)

≤
[(

ql
m + 2lm
rp + lp

− 1

)
+ 1

]
COPT (N)

Thus, CMRELL(N)
COPT (N)

≤ 1 +
(

ql
m+2lm
2lmax

− 1
)
≤ 1 +

(
ql
m+2lm
rp+lp

− 1
)+

, which gives us the
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result that CMRELL(N)
COPT (N)

≤ 1+min

{(
maxi∈N{ql

i+2li}
maxi∈N{ri+li} − 1

)+

,

(
maxi∈N{ql

i+2li}
maxi∈N{2li} − 1

)}
.

We conclude Case 3 by proving that

1 + min

{(
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

− 1

)+

,

(
maxi∈N

{
ql
i + 2li

}
maxi∈N {2li}

− 1

)}
≤ 3

2
.

Proving this statement is done via contradiction. Assume that

1 + min

{(
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

− 1

)+

,

(
maxi∈N

{
ql
i + 2li

}
maxi∈N {2li}

− 1

)}
>

3

2
.

This implies:(
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

− 1

)+

>
1

2
∧

(
maxi∈N

{
ql
i + 2li

}
maxi∈N {2li}

− 1

)
>

1

2

⇒
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

>
3

2

⇒ 2
(
ql
m + 2lm

)
> 3 (rp + lp) > 3 (rm + lm) > 3

(
ql
m + lm

)
⇒ lm > ql

m

⇒ 2 (3lm) > 2
(
ql
m + 2lm

)
> 3(2lmax)

⇒ 2lm > 2lmax = max
i∈N

{2li}

Which is a contradiction. Thus,

1 + min

{(
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

− 1

)+

,

(
maxi∈N

{
ql
i + 2li

}
maxi∈N {2li}

− 1

)}
≤ 3

2
.

As these three cases cover all possible situations we obtain the desired result:

CMRELL(N)

COPT (N)
≤ 1 + min

{(
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

− 1

)+

,

(
maxi∈N

{
ql
i + 2li

}
maxi∈N {2li}

− 1

)}
≤ 3

2
.
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This analysis also serves to further the results of Jaillet and Wagner (2006). In their

paper, Jaillet and Wagner (2006) give a rather complex worst-case ratio of MLIB under

conditions of variable advanced notice. However, by noting that when ql
i = qr

i the two

algorithms, MRELL and MLIB, are equivalent, we may give the following expression as

the competitive ratio of MLIB under conditions of variable advanced notice.

CMLIB(N)

COPT (N)
≤ 1 + min

{(
maxi∈N {qr

i + 2li}
maxi∈N {ri + li}

− 1

)+

,

(
maxi∈N {qr

i + 2li}
maxi∈N {2li}

− 1

)}
≤ 3

2
.

Furthermore, by following a similar set of arguments as outlined in Theorems 3 and

4, it is possible to prove that MLIB is a best-possible algorithm when ql
i = qr

i ∀i ∈ N and

conditions of variable amounts of advanced notice prevail.

6 Discussion of Results

Given these elaborate worst-case ratios for MRELL under conditions of fixed and variable

advanced notice, what can be said about the value of location information? We begin by

noting that MRIN is an algorithm that uses no advanced information; all actions are take

at ri. MRELL on the other hand uses advanced location and release time information;

actions are taken at both ql
i and qr

i . Therefore by comparing these two extreme algorithms

we may specify a value for the advanced location information.

In previous papers (see e.g. Jaillet and Wagner (2006)) the comparison between differ-

ent algorithms was undertaken by subtracting the worst-case ratios of the two algorithms.

We too will begin our comparison between MRIN and MRELL using this methodology.

We then show that this method may yield a deceptive value for the location informa-

tion. As a final result we specify a realistic range of values and describe policies that give

MRELL a consistent improvement over MRIN.

We begin our comparison by studying the difference ρMRIN − ρMRELL. If we calculate

this value directly we obtain:
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ρMRIN − ρMRELL =
1

2
−min

{(
maxi∈N

{
ql
i + 2li

}
maxi∈N {ri + li}

− 1

)+

,

(
maxi∈N

{
ql
i + 2li

}
maxi∈N {2li}

− 1

)}
(5)

As this expression is strictly positive, we may be inclined to conclude that advanced

location information is similarly strictly beneficial. However, if we recall that 1 ≤
CMRIN (N)
COPT (N)

≤ ρMRIN ≤ 3
2

and 1 ≤ CMRELL(N)
COPT (N)

≤ ρMRELL ≤ 3
2
. Then, we may say:

− 1

2
≤ 1− ρMRELL ≤

CMRIN(N)− CMRELL(N)

COPT (N)
≤ ρMRIN − 1 ≤ 1

2
(6)

Equation (6) implies that in some instances advanced location information can be

detrimental. Given these conflicting observations, stemming from the broad range in

which CMRIN (N)−CMRELL(N)
COPT (N)

can fall, we cannot immediately specify a value for advanced

location information. We therefore explore the full implications of this range in more

detail.

We begin our more complete comparison of MRIN and MRELL by examining the ex-

treme left of the range. It appears from the analysis in equation (6) that CMRIN (N)−CMRELL(N)
COPT (N)

can be as low as −1
2
. This is, however, not true as there are no instances such that

CMRIN (N)
COPT (N)

= 1 at the same time that CMRELL(N)
COPT (N)

= 3
2
. Instead, we put forth the following

conjecture.

Conjecture 1. CMRIN (N)−CMRELL(N)
COPT (N)

≥ −1
3

for all instances N .

An example of one such instance that drives the difference in the algorithms’ costs to

its lowest value of −1
3

is: l1 = l2 = 2, r1 = 2, ql
1 = 0, qr

1 = 1, r2 = ql
2 = qr

2 = 4.

We now explore the extreme positive end of the range for CMRIN (N)−CMRELL(N)
COPT (N)

. We

can immediately see that there exist instances such that CMRIN (N)−CMRELL(N)
COPT (N)

= 1
2
. Take

for example the instance where ql
1 = 0 and qr

1 = r1 = 1. We, therefore, conclude that:

− 1

3
≤ CMRIN(N)− CMRELL(N)

COPT (N)
≤ 1

2
. (7)

If we assume a uniform distribution of instances across this range then we can say

that on average using MRELL to exploit advanced location information will yield a cost

improvement of 1
12

. Of course, if the instances are distributed differently the benefit

of advanced location information may be drastically reduced. We therefore turn our

attention toward policies that can improve the value of advanced location information.
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We first note that the instances rendering advanced location information detrimental

are those for which an earlier job drives the cost of MRIN while a later job with no

advanced notice drives the cost of MRELL. Thus, the best policy strategy is one that

requires all job locations to be announced at some point in advance of their release date.

In fact this is the reasoning behind the analysis of fixed information in section 4. It is

important to note that in instances of fixed advanced notice, where a > 0 and b > 0,

CMRIN(N) ≥ CMRELL(N). This is because given the point in time that the location is

revealed, the release time can be computed. As both a and b are positive this information

can be computed in advance of the actual release time thereby avoiding the types of

detrimental instances examined above.

An alternate strategy is to introduce a job pricing scheme that charges a premium

for those jobs not willing or able to announce the location until a time close to the job’s

release date. This premium can be set dynamically to cover any costs originating from

acting too soon for a previous job. For example, by specifying a price per job equal to

the time the location is revealed plus the round trip distance of the job (i.e. ql
i + 2li),

then customers will have an incentive to provide the job location information early. If a

job location is revealed late then such a fee would cover the cost of service regardless of

the situation created by a previous job. Admittedly, while this scheme is theoretically

sufficient to cover the cost of jobs revealed too late it may be confusing to customers who

are likely to prefer fixed rates based solely on distance. Nevertheless this still provides

some benefit to the customer as they do not need to reveal the release time any earlier –

only the location of the job.

This observation yields the following question, does providing information on the re-

lease time early yield any benefit? We answer this question by noting that the earliest

that the release time may be disclosed is qr
i = ql

i. If this is done for all jobs i ∈ I, then

CMLIB(N) = CMRELL(N); thus, CMLIB(N)−CMRELL(N)
COPT (N)

= 0. From this analysis, we may

conclude that the value of location information is immense. The revelation of location

information alone brings all the benefit or detriment. This value ranges, dependent on the

problem instance, from −1
3

to 1
2

in terms of the difference in the cost of these algorithms

as compared to the optimal solution.

These results represent only a first step towards a meaningful analysis of the vehicle

routing problem presented as an example in Section 1. A clear first extension to this

work is an analysis of the same problem in more realistic metric spaces, such as a general

metric space or R2. A second extension of interest is the design of an online job selection

algorithm. For example, by rejecting jobs based on a comparison of their disclosed loca-
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tions to already accepted job locations might yield significant performance gains. Finally,

we recommend studying other versions of the TSP – such as the TSP with pick-up and

delivery or the TSP with multiple salesmen.

References

Applegate, D. L., R. E. Bixby, V. Chvtal, W. J. Cook. 2007. The Traveling Salesman

Problem: A Computational Study . Princeton Series in Applied Mathematics, Princeton

University Press.

Ausiello, G., E.Feuerstein, S. Leonardi, L. Stougie, M. Talamo. 2001. Algorithms for the

on-line travelling salesman. Algorithmica 29(4) 560–581.

Bellmore, M., G.L. Nemhauser. 1968. The traveling salesman problem: a survey. Opera-

tions Research (16) 538–558.

Blom, M., S. O. Krumke, W. de Paepe, L. Stougie. 2001. The online tsp against fair

adversaries. INFORMS Journal on Computing 13(2) 138–148.

Burkard, R., V. Deineko, R. van Dal, J. van der Veen, G. Woeginger. 1995. Well-

solvable special cases of the tsp: A survey. Manuscript, Institute of Mathemat-

ics, University of Technology, Graz, Austria. URL http://citeseer.ist.psu.edu/

burkard95wellsolvable.html.

Dantzig, G., R. Fulkerson, S. Johnson. 1954. Solution of a large-scale traveling-salesman

problem. Journal of the Operations Research Society of America 2(4) 393–410.

Flood, M. M. 1956. The traveling-salesman problem. Operations Research 4(1) 61–75.

Gutin, G., A.P. Punnen, eds. 2002. The Traveling Salesman Problem and Its Variations .

Combinatorial Optimization , Vol. 12, Springer.

Jaillet, P., M. R. Wagner. 2006. Online routing problems: Value of advanced information

as improved competitive ratios. Transportation Science 40(2) 200–210.
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