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A low-energy theory of the Nambu-Goldstone excitation spectrum and the corresponding speed of sound of an interacting Fermi
mixture of Lithium-6 and Potassium-40 atoms in a two-dimensional optical lattice at finite temperatures with the Fulde-Ferrell
order parameter has been formulated. It is assumed that the two-species interacting Fermi gas is described by the one-bandHubbard
Hamiltonian with an attractive on-site interaction. The discussion is restricted to the BCS side of the Feshbach resonance where
the Fermi atoms exhibit superfluidity. The quartic on-site interaction is decoupled via a Hubbard-Stratonovich transformation by
introducing a four-component boson fieldwhichmediates theHubbard interaction. A functional integral technique and a Legendre
transform are used to give a systematic derivation of the Schwinger-Dyson equations for the generalized single-particle Green’s
function and the Bethe-Salpeter equation for the two-particle Green’s function and the associated collective modes. The numerical
solution of the Bethe-Salpeter equation in the generalized random phase approximation shows that there exist two distinct sound
velocities in the long-wavelength limit. In addition to low-energy (Goldstone) mode, the two-species Fermi gas has a superfluid
phase revealed by two roton-like minima in the asymmetric collective-mode energy.

1. Introduction

Optical lattices are formedby the interference of counter prop-
agating laser beams. If the laser beams have equal frequencies,
the gases of ultracold alkali atoms can be trapped in periodic
potentials (microtraps) created by standing waves of laser
light. Because of the Stark effect the ground-state alkali atoms
couple to the electromagnetic field via an induced electric
dipole moment. From theoretical point of view, the simplest
approach to the trapped fermions is the tight-binding approx-
imation, which requires sufficiently deep lattice potential. In
the tight-binding limit, two alkali atoms of opposite pseu-
dospins on the same site have an interaction energy 𝑈, while
the probability to tunnel to a neighboring site is given by the
hopping parameters. The hopping parameters as well as the
interaction energy depend on the depth of the lattice potential
and can be tuned by varying the intensity of the laser beams.
We assume that the interacting fermions are in a sufficiently
deep periodic lattice potential described by the Hubbard
Hamiltonian. We restrict the discussion to the case of atoms
confined to the lowest-energy band (single-band Hubbard

model), with two possible states described by pseudospins 𝜎.
We consider different amounts of 6Li and 40K atoms in each
state (𝜎 = ↑= Li, 𝜎 = ↓= K) achieved by considering different
chemical potentials 𝜇

↑
and 𝜇

↓
. There are 𝑀 = 𝑀

↑
+ 𝑀

↓

atoms distributed along𝑁 sites, and the corresponding filling
factors 𝑓

↑,↓
= 𝑀

↑,↓
/𝑁 are smaller than unity. The Hubbard

Hamiltonian is defined as follows:

𝐻 = − ∑

⟨𝑖,𝑗⟩,𝜎

𝐽
𝜎
𝜓
†

𝑖,𝜎
𝜓
𝑗,𝜎
− 𝑈∑

𝑖

𝑛
𝑖,↑
𝑛
𝑖,↓
−∑

𝑖,𝜎

𝜇
𝜎
𝑛
𝑖,𝜎
, (1)

where 𝐽
𝜎
is the single electron hopping integral and 𝑛

𝑖,𝜎
=

𝜓
†

𝑖,𝜎
𝜓
𝑖,𝜎

is the density operator on site 𝑖. The Fermi operator
𝜓
†

𝑖,𝜎
(𝜓

𝑖,𝜎
) creates (destroys) a fermion on the lattice site 𝑖with

pseudospin projection 𝜎. The symbol ∑
⟨𝑖,𝑗⟩

means sum over
nearest-neighbor sites of the two-dimensional lattice. The
first term in (1) is the usual kinetic energy term in a tight-
binding approximation. All numerical calculations will be
performed assuming that the hopping (tunneling) ratio
𝐽Li/𝐽K ≈ 0.15. In our notation the strength of the on-site inter-
action 𝑈 > 0 is positive, but the negative sign in front of
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the interaction corresponds to the Hubbard model with an
attractive interaction. In the presence of an (effective) attrac-
tive interaction between the fermions, no matter how weak it
is, the alkali atoms form bound pairs, also called the Cooper
pairs. As a result, the system becomes unstable against the
formation of a new many-body superfluid ground state.
The superfluid ground state comes from the 𝑈(1) symmetry
breaking and it is characterized by a nonzero order parameter,
which in the population-balanced case is assumed to be a
constant in space Δ

0
. Physically, it describes superfluid state

of Cooper pairs with zero momentum. Superfluid state of
Cooper pairs with nonzeromomentumoccurs in population-
imbalanced case between a fermion with momentum k + q
and spin ↑ and a fermion with momentum −k +q and spin ↓.
As a result, the pair momentum is 2q. A finite pairing
momentum implies a position-dependent phase of the order
parameter, which in the Fulde-Ferrell [1] (FF) case varies as a
single plane wave Δ(r) = Δ q exp(2𝚤q ⋅ r), where Δ q is a real
quantity. The order parameter also can be a combination of
two plane waves as in the case of the Larkin-Ovchinnikov
[2, 3] (LO) superfluid states. In both cases we are dealing with
a spontaneous translational symmetry breaking and with an
inhomogeneous superfluid state. When continuous and
global symmetries are spontaneously broken the collective
modes known as the Nambu-Goldstone (NG) modes appear
[4, 5].

Generally speaking, the single-particle excitations man-
ifest themselves as poles of the single-particle Green’s func-
tion, 𝐺, while the two-particle (collective) excitations could
be related to the poles of the two-particle Green’s function,𝐾.
The poles of these Green’s functions are defined by the solu-
tions of the Schwinger-Dyson (SD) equation𝐺−1

= 𝐺
(0)−1

−Σ

[6, 7] and the Bethe-Salpeter (BS) equation [𝐾(0)−1
− 𝐼]Ψ = 0

[8], respectively. Here, 𝐺(0) is the free single-particle propa-
gator, Σ is the fermion self-energy, 𝐼 is the BS kernel, and the
two-particle free propagator 𝐾(0)

= 𝐺𝐺 is a product of
two fully dressed single-particle Green’s functions. Since the
fermion self-energy depends on the two-particle Green’s
function, the positions of both poles must be obtained by
solving the SD and BS equations self-consistently.

Instead of solving the SD and BS equations self-
consistently, it is widely accepted that the single-particle
dispersion can be obtained in the mean-field approximation
or by solving the Bogoliubov-de Gennes (BdG) equations in
a self-consistent fashion, while the generalized random phase
approximation (GRPA) is the one that can provide the collec-
tive excitations in a weak-coupling regime. In the GRPA, the
single-particle excitations are replacedwith those obtained by
diagonalizing the Hartree-Fock (HF) Hamiltonian, while the
collective modes are obtained by solving the BS equation in
which the single-particle Green’s functions are calculated in
HF approximation, and the BS kernel is obtained by summing
ladder and bubble diagrams.

From theoretical point of view, the corresponding expres-
sions for Green’s functions cannot be evaluated exactly
because the interaction part of the Hubbard Hamiltonian is
quartic in the fermion fields. The simplest way to solve this
problem is to apply the so-calledmean-field decoupling of the

quartic interaction. To go beyond the mean-field approxima-
tion, we apply the idea that we can transform the quartic term
into quadratic form by making the Hubbard-Stratonovich
transformation for the fermion operators. In contrast to
the previous approaches, such that after performing the
Hubbard-Stratonovich transformation the fermion degrees
of freedom are integrated out; we decouple the quartic
problem by introducing a model system which consists of
a multicomponent boson field 𝐴

𝛼
interacting with fermion

fields 𝜓† and 𝜓.
The functional-integral formulation of the Hubbard

model requires the representation of the Hubbard interaction
of (1) in terms of squares of one-body charge and spin
operators. It is known that it may be possible to resolve the
Hubbard interaction into quadratic forms of spin and elec-
tron number operators in an infinite number of ways. If no
approximations were made in evaluating the functional inte-
grals, it would not matter which of the ways is chosen. When
approximations are taken, the final result depends on a par-
ticular form chosen. Thus, one should check that the results
obtained with the Hubbard-Stratonovich transformation are
consistent with the results obtained with the canonical mean-
field approximation. It can be seen that our approach to the
Hubbard-Stratonovich transformation provides results con-
sistent with the results obtained with the mean-field approx-
imation; that is, one can derive the mean-field gap equation
using the collective-mode dispersion 𝜔(𝑄) in the limit 𝑄 →

0 and 𝜔 → 0.
There are three advantages of keeping both the fermion

and the boson degrees of freedom. First, the approximation
that is used to decouple the self-consistent relation between
the fermion self-energy and the two-particle Green’s function
automatically leads to conserving approximations because it
relies on the fact that the BS kernel can be written as
functional derivatives of the Fock Σ𝐹 and theHartree Σ𝐻 self-
energy 𝐼 = 𝐼

𝑑
+ 𝐼exc = 𝛿Σ

𝐹
/𝛿𝐺 + 𝛿Σ

𝐻
/𝛿𝐺 = 𝛿

2
Φ/𝛿𝐺𝛿𝐺. As

it is known, any self-energy approximation is conserving
whenever: (i) the self-energy can be written as the derivative
of a functional Φ[𝐺], that is, Σ = 𝛿Φ[𝐺]/𝛿𝐺, and (ii) the SD
equation for 𝐺 needs to be solved fully self-consistently for
this form of the self-energy. Second, the collective excitations
of theHubbardmodel can be calculated in two different ways:
as poles of the fermion Green’s function, 𝐾, and as poles of
the boson Green’s function,𝐷, or equivalently, as poles of the
density and spin parts of the general response function, Π.
Here, the boson Green’s function,𝐷, is defined by the Dyson
equation 𝐷 = 𝐷(0)

+ 𝐷
(0)
Π𝐷

(0) where 𝐷(0) is the free boson
propagator.Third, the actionwhich describes the interactions
in the Hubbard model is similar to the action 𝜓†

𝐴𝜓 in
quantum electrodynamics. This allows us to apply powerful
field-theoretical methods, such as the method of Legendre
transforms, to derive the SD and BS equations, as well as the
vertex equation for the vertex function, Γ, and the Dyson
equation for the boson Green’s function,𝐷.

The mean-field treatment of the FF and LO phases in a
variety of systems shows that the FF and LO states compete
with a number of other states, such as the Sarma (q = 0) states
and the superfluid-normal separation phase (also known as
the phase separation phase). It turns out that in some regions
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of momentum space the FF (or LO) phase provides the
minimum of the mean-field expression of the Helmholtz free
energy. Phase diagrams for a 6Li-40K mixture at zero temper-
ature were obtained in [9], but the calculations were limited
to the emergence of insulating phases during the evolution of
superfluidity from the BCS to the BEC regime, and the com-
petition between the FF and Sarma phases was ignored. The
polarization versus temperature diagrams in Figure 1 show
that there are three phases: the Sarma phase, the FF phase,
and the normal phase in which the Helmholtz free energy
is minimized for gapless phase. The zero polarization line is
the conventional Bardeen-Cooper-Schrieffer state.The phase
diagram contains a Lifshitz point. When the interaction
strength is increased, the Lifshitz point moves toward the
higher temperatures and larger polarizations. Moreover, con-
trary to the phase diagram of population-imbalanced 6Li
Fermi gas, where the phase separation appears for low
polarizations, the existence of a polarization window for the
FF phase was found. This means that as soon as the system is
polarized it goes into the FF phase if the temperature is low
enough. This polarization window is larger for a majority of
40K atoms compared to the majority of 6Li atoms.

In what follows, the collective-mode dispersion of a
6Li-40K mixture loaded in a two-dimensional optical lattice
is calculated numerically by solving the BS equation in the
GRPA approximation.

2. Collective Modes of 6Li-40K Mixture

The superfluid states can be described in terms of the
Namby-Gor’kov single-particle Green’s function which is a
thermodynamic average of the 𝑇̂

𝑢
-ordered tensor product of

the four-component fermion fields:

Ψ̂ (𝑥) = (

𝜓
↑ (𝑥)

𝜓
↓ (𝑥)

𝜓
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↑
(𝑥)

𝜓
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Here, we introduce composite variables 𝑦 = {r
𝑖
, 𝑢} = {𝑖, 𝑢}

and 𝑥 = {r
𝑖
󸀠 , 𝑢

󸀠
} = {𝑖

󸀠
, 𝑢

󸀠
}, where r

𝑖
, r

𝑖
󸀠 are the lattice site

vectors, and according to imaginary-time (Matsubara)
formalism the variables 𝑢, 𝑢󸀠 range from 0 to ℏ𝛽 = ℏ/(𝑘

𝐵
𝑇).

Throughout this paper we have assumed ℏ = 𝑘
𝐵
= 1, the

lattice constant 𝑎 = 1, and we use the summation-integration
convention: that repeated variables are summed up
or integrated over. The field operators allow us to define the
generalized single-particle Green’s function which includes
all possible thermodynamic averages:
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In the GRPA, the generalized Green’s function (3) is
replaced by its mean field approximation. The Fourier

transform of the mean-field single-particle Green’s function
is as follows:

̂̃
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Here, the FF vector q, as well as the chemical potentials
𝜇
↑
and 𝜇

↓
, and the gap Δ q are defined by the solutions of

following set of four mean-field equations (the number
equations, the gap equation, and the 𝑞-equation) [10]:

𝑓
↑
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𝑁
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(5)

As was mentioned above, as soon as the system is polarized
it goes into the FF phase, and therefore, it is natural to
obtain the collective-mode dispersion using one point from
the FF window shown in Figure 1. This point is defined by
the following system parameters: 𝑓Li = 0.225, 𝑓K = 0.275,
𝑈/𝐽

↑
= 2, and 𝑇/𝐽

↑
= 0.01. The solution of the mean-field

equations (5) provides the FF vector q = (𝑞
𝑥
, 𝑞

𝑦
), the gap,

and the chemical potentials. Since the formation of the FF
superfluid state is driven by the mass and population imbal-
ance, which leads to the distortion of the Fermi surfaces.
There aremany equivalentways to deform the surfaces, and as
a result, the direction of the single FF pairingmomentum q is
not specified. Inwhat follows,we shall assume that the pairing
momentum is along the 𝑥-axis. The corresponding mean-
field solutions are as follows: q = (0.0489𝜋/𝑎, 0), Δ q/𝐽↑ =
0.3668, 𝜇

↑
/𝐽

↑
= 2.0909, and 𝜇

↓
/𝐽

↑
= 0.5561. For the Sarma

state the corresponding mean-field values are Δ/𝐽
↑
= 0.3635,

𝜇
↑
/𝐽

↑
= 2.0466, and 𝜇

↓
/𝐽

↑
= 0.5918. The FF phase is the

most stable as it provides the minimum of the mean-field
expression of the Helmholtz free energy (the ratio between
the FF free energy and the Sarma free energy is about 0.9986).
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Figure 1:The phase diagrams of a 6Li-40Kmixture in a square lattice
[10]. The interaction strength is𝑈 = 2𝐽

↑
. The polarization is defined

as 𝑃 = (𝑓K − 𝑓Li)/𝑓, where the total filling is 𝑓 = 0.5 atoms/lattice
site. Colors: Sarma states = blue (black), FF = red (dark grey), and
normal gas = white.
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Figure 2: The collective-mode dispersion of 6Li-40K mixture in
2D optical lattice along the positive (𝑄

𝑥
, 0) and negative (−𝑄

𝑥
, 0)

directions. The filling factors are 𝑓Li = 0.225 and 𝑓K = 0.275.
The interaction strength and the temperature are 𝑈/𝐽Li = 2 and
𝑇/𝐽Li = 0.01, respectively. The secular determinant 𝑍

8
provides the

speed of sound to the positive direction 𝑐 = 0.614𝐽Li𝑎/ℏ, while the
speeds of sound to the negative direction is 𝑐 = 0.534𝐽Li𝑎/ℏ.

In the case when the order parameter is assumed to
vary as a single plane wave, we have a broken translational
invariance, and as a result, the normal and anomalous mean-
field single-particle Green’s functions have phase factors
associated with the FF quasimomentum q, which can be
eliminated using the corresponding unitary transformation.
In the appendix, we have shown that in the tight-binding
approximation the BS equation (in theGRPA) can be reduced
to a secular determinant, which determines the collective-
mode dispersion. When the generalized Green’s function
(3) is used, the BS approach provides a 16 × 16 secular
determinant 𝑍

8
, defined in the appendix.

In Figure 2, we have presented the dispersion relation
𝜔(Q) calculated for the system parameters listed in Section 1.
The FF vector Q is directed along the 𝑥-axis. The speed of
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sound, 𝑐, to the positive and negative directions of the𝑄
𝑥
axis

is defined by 𝑑𝜔(𝑄
𝑥
)/𝑑𝑄

𝑥
at 𝑄

𝑥
→ 0. For the dispersions

presented in Figure 2, we obtain 𝑐 = 0.614𝐽Li𝑎/ℏ in positive
direction and 𝑐 = 0.534𝐽Li𝑎/ℏ in the negative direction.There
are two rotonminima at𝑄

𝑥
= 0.96𝜋/𝑎 and at𝑄

𝑥
= −0.76𝜋/𝑎.

3. Discussion

We have studied the Nambu-Goldstone excitation spectrum
and the corresponding speed of sound of an interacting Fermi
mixture of Lithium-6 and Potassium-40 atoms Fermi gases in
deep optical lattices by using the Bethe-Salpeter equation in
the GRPA. The generalized single-particle Green’s function,
used in our numerical calculations, takes into account all
possible thermodynamic averages. The chosen temperature
and polarization correspond to a point from the polarization-
temperature window for the FF phase in the phase diagram.
The on-site attractive interaction corresponds to the weak-
coupling regime, where the GRPA is valid.

It is well known that at very low temperatures, the
singularities of the integrals (A.41) in the appendix corre-
spond physically to the possibility of depairing into two
fermion excitations. At a zero temperature, the two fermion
excitations have energies 𝜔

+
(k + Q, q) and −𝜔

−
(k, q). The

spectrum for this kind of excitation is known as the particle-
hole continuum. At a zero temperature, the lower boundary
of the particle-hole continuum is defined by the condition
mink(𝜔+(k + Q, q) − 𝜔

−
(k, q)) where the minimum is to be

taken over all the possible values of k. The collective-mode
dispersion, presented in Figure 2, lies below the particle-hole
continuum, and therefore, the possibility of depairing into
two fermion excitations is not important.

It is known that the superfluid ground state comes from
the 𝑈(1) symmetry breaking and it is characterized by a
nonzero order parameter. If the atoms have different masses
and chemical potentials, the superfluid states of Cooper pairs
are with nonzero momentum. A finite pairing momentum
implies a position-dependent phase of the order parameter.
Based on general symmetry principles, it is known that
when continuous and global symmetries are spontaneously
broken in Lorentz-invariant systems, the number of Nambu-
Goldstone modes is always equal to the number of broken
generators, and all of them have linear dispersion [11, 12]. In
the FF and in the LO cases, we are dealing with a spontaneous
translational symmetry breaking and with an inhomoge-
neous superfluid state; but in case of the FF order parameter,
only one generator is spontaneously broken, because there is
an unbroken combination of𝑈(1) rotations and translations.
Thus, the FF superfluid state is characterized by a single
Nambu-Goldstonemode, and this statement is in accordance
with the fact that the𝑍

8
determinant in the appendix provides

only one mode. It is worth mentioning that in the case
of the LO order parameter, both the particle number 𝑈(1)
symmetry and translations along a given direction are
spontaneously broken, and therefore, there should exist two
Nambu-Goldstone modes. The Bethe-Salpeter description of
the collective modes in the case of LO superfluid states is
expected to bemore complicated because the phase factors of
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Figure 3: The collective-mode dispersion 𝜔(k) (triangles) calcu-
lated by the Bethe-Salpeter formalism for a 2D systemwithq = 𝑞

𝑥
e
𝑥
,

𝑞
𝑥
= 0.06𝜋/𝑎, 𝜇

↑
= 3.5𝐽, 𝜇

↓
= 2.5𝐽, Δ = 0.27𝐽, 𝑈 = 3𝐽, and

𝑇 = 0.07𝐽. The speed of sound to the direction of the 𝑥-axis is
𝑐 = 1.48𝐽𝑎/ℏ. The squire points are calculated by 4 × 4 secular
determinant used in [13], and the corresponding speed of sound is
𝑐 = 1.29𝐽𝑎/ℏ.

the nondiagonal elements of the single-particle Green’s func-
tion (see (A.32) in the appendix) one cannot eliminate as in
the case of FF states.

In view of the fact that most of the previous numerical
calculations are based on the Nambu-Gor’kov single-particle
Green’s function,

𝐺 (𝑥
1
; 𝑦

2
)

= − ⟨𝑇̂
𝑢
(𝜓̂ (𝑥

1
) ⊗ 𝜓̂ (𝑦

2
))⟩

= −(

⟨𝑇̂
𝑢
(𝜓

↑
(𝑥

1
) 𝜓

†

↑
(𝑦

2
))⟩ ⟨𝑇̂

𝑢
(𝜓

↑
(𝑥

1
) 𝜓

↓
(𝑦

2
))⟩

⟨𝑇̂
𝑢
(𝜓

†

↓
(𝑥

1
) 𝜓

†

↑
(𝑦

2
))⟩ ⟨𝑇̂

𝑢
(𝜓

†

↓
(𝑥

1
) 𝜓

↓
(𝑦

2
))⟩

) ,

(6)

which leads to the 4 × 4 secular determinant, one may well
ask whether the collective-mode dispersion, defined by 4 ×
4 determinant, is significantly different in comparison to the
dispersion obtained with the secular determinant 𝑍

8
.

To answer this question, we have calculated the collective-
mode dispersion relation of a population-imbalanced atomic
Fermi gas. The dispersions obtained by means of the secular
determinant 𝑍

8
and 4 × 4 are presented in Figure 3. In the

range of small 𝑘, we find a difference of about 15%between the
speed of sound obtained by means of𝑍

8
secular determinant

and the speed of sound, calculated by 4 × 4 secular determi-
nant used in [13]. The figure also indicates that the difference
between the two dispersion curves tends to increase with 𝑘,
reaching 25% at 𝑘 = 0.5/𝑎.

Appendix

Bethe-Salpeter Approach to the Collective
Modes of 6Li-40K Mixture

Green’s functions in the functional-integral approach are
defined by means of the so-called generating functional with
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sources for the boson and fermion fields. In our problem,
the corresponding functional integrals cannot be evaluated
exactly because the interaction part of the Hamiltonian (1)
is quartic in the Grassmann fermion fields. However, we can
transform the quartic terms to a quadratic form by intro-
ducing a model system which consists of a four-component
boson field 𝐴

𝛼
(𝑧) (𝛼 = 1, 2, 3, 4, 𝑧 = (r

𝑖
, V), 0 ≤ V ≤ 𝛽)

interacting with fermion fields 𝜓̂(𝑦) = Ψ̂†
(𝑦)/√2 and 𝜓̂(𝑥) =

Ψ̂(𝑥)/√2.The action of this model system is assumed to be of
the following form 𝑆 = 𝑆(𝐹)

0
+ 𝑆

(𝐵)

0
+ 𝑆

(𝐹−𝐵), where

𝑆
(𝐹)

0
= 𝜓̂ (𝑦)𝐺

(0)−1
(𝑦; 𝑥) 𝜓̂ (𝑥) ,

𝑆
(𝐵)

0
=
1

2
𝐴

𝛼 (𝑧)𝐷
(0)−1

𝛼𝛽
(𝑧, 𝑧

󸀠
)𝐴

𝛽
(𝑧

󸀠
) ,

𝑆
(𝐹−𝐵)

= 𝜓̂ (𝑦) Γ̂
(0)

𝛼
(𝑦, 𝑥 | 𝑧) 𝜓̂ (𝑥) 𝐴𝛼 (𝑧) .

(A.1)

The action 𝑆(𝐹)
0

describes the fermion part of the system.
The generalized inverse Green’s function of free fermions
𝐺
(0)−1

(𝑦; 𝑥) is given by the following diagonal matrix:

𝐺
(0)−1

(𝑦; 𝑥) = ∑

k,𝜔
𝑚

exp [𝚤k ⋅ (r
𝑖
− r

𝑖
󸀠) − 𝜔

𝑚
(𝑢 − 𝑢

󸀠
)]

⋅ 𝐺
(0)−1

𝑛
1
𝑛
2

(k, 𝚤𝜔
𝑚
) ,

(A.2)

where 𝐺
(0)−1

11
(k, 𝚤𝜔

𝑚
) = −𝐺

(0)−1

33
(−k, −𝚤𝜔

𝑚
) and

−𝐺
(0)−1

22
(−k, −𝚤𝜔

𝑚
) = 𝐺

(0)−1

44
(k, 𝚤𝜔

𝑚
). The symbol ∑

𝜔
𝑚

is used
to denote 𝛽−1∑

𝑚
(for fermion fields 𝜔

𝑚
= (2𝜋/𝛽)(𝑚 + 1/2);

𝑚 = 0, ±1, ±2, . . .). In the case of the FF states of a population-
imbalanced Fermi gas, the noninteracting Green’s function
is

𝐺
(0)−1

(k, 𝚤𝜔
𝑚
)

= (

𝚤𝜔
𝑚
− 𝜉

↑ (k) 0 0 0

0 𝚤𝜔
𝑚
− 𝜉

↓ (k) 0 0

0 0 𝚤𝜔
𝑚
+ 𝜉

↑ (k) 0

0 0 0 𝚤𝜔
𝑚
+ 𝜉

↓ (k)
) ,

(A.3)

where 𝜉
↑,↓
(k) = 2𝐽

↑,↓
(1 − cos 𝑘

𝑥
) + 2𝐽

↑,↓
(1 − cos 𝑘

𝑦
) − 𝜇

↑,↓
.

The action 𝑆(𝐵)
0

describes the boson field which mediates
the fermion-fermion on-site interaction in the Hubbard
Hamiltonian. The bare boson propagator in 𝑆(𝐵)

0
is defined as

𝐷
(0)
(𝑧, 𝑧

󸀠
) = 𝛿 (V − V󸀠)𝑈𝛿

𝑗,𝑗
󸀠(

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

) . (A.4)

The Fourier transform of the boson propagator is given by

𝐷
(0)
(𝑧, 𝑧

󸀠
) =

1

𝑁
∑

k
∑

𝜔
𝑝

𝑒
{𝚤[k⋅(r

𝑗
−r
𝑗
󸀠 )−𝜔𝑝(V−V

󸀠
)]}
𝐷

(0)
(k) ,

𝐷
(0)
(k) = (

0 𝑈 0 0

𝑈 0 0 0

0 0 0 0

0 0 0 0

) .

(A.5)

The interaction between the fermion and the boson fields
is described by the action 𝑆(𝐹−𝐵). The bare vertex Γ̂(0)

𝛼
(𝑦

1
; 𝑥

2
|

𝑧) = Γ̂
(0)

𝛼
(𝑖
1
, 𝑢

1
; 𝑖
2
, 𝑢

2
| 𝑗, V) = 𝛿(𝑢

1
−𝑢

2
)𝛿(𝑢

1
−V)𝛿

𝑖
1
𝑖
2

𝛿
𝑖
1
𝑗
Γ̂
(0)
(𝛼)

is a 4 × 4matrix, where

Γ̂
(0)
(𝛼) =

1

2
(𝛾

0
+ 𝛼

𝑧
) 𝛿

𝛼1
+
1

2
(𝛾

0
− 𝛼

𝑧
) 𝛿

𝛼2

+
1

2
(𝛼

𝑥
+ 𝚤𝛼

𝑦
) 𝛿

𝛼3
+
1

2
(𝛼

𝑥
− 𝚤𝛼

𝑦
) 𝛿

𝛼4
.

(A.6)

The Dirac matrix 𝛾
0
and the matrices 𝛼̂

𝑖
are defined as (when

a four-dimensional space is used, the electron spin operators
𝜎
𝑖
have to be replaced by 𝛼̂

𝑖
𝛾
0
[14])

𝛾
0
= (

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

) ,

𝛼̂
𝑖
= (
𝜎
𝑖

0

0 𝜎
𝑦
𝜎
𝑖
𝜎
𝑦

) , 𝑖 = 𝑥, 𝑦, 𝑧.

(A.7)

The relation between the Hubbard model and our model
system can be demonstrated by applying the Hubbard-
Stratonovich transformation for the fermion operators:

∫𝜇 [𝐴] exp [𝜓̂ (𝑦) Γ̂(0)
𝛼
(𝑦; 𝑥 | 𝑧) 𝜓̂ (𝑥) 𝐴𝛼 (𝑧)]

= exp [−1
2
𝜓̂ (𝑦) Γ̂

(0)

𝛼
(𝑦; 𝑥 | 𝑧) 𝜓̂ (𝑥)𝐷

(0)

𝛼,𝛽
(𝑧, 𝑧

󸀠
)

⋅ 𝜓̂ (𝑦
󸀠
) Γ̂

(0)

𝛽
(𝑦

󸀠
; 𝑥

󸀠
| 𝑧

󸀠
) 𝜓̂ (𝑥

󸀠
)] .

(A.8)

The functional measure𝐷𝜇[𝐴] is chosen to be

𝜇 [𝐴] = 𝐷𝐴𝑒
−(1/2)𝐴

𝛼
(𝑧)𝐷
(0)−1

𝛼,𝛽
(𝑧,𝑧
󸀠
)𝐴
𝛽
(𝑧
󸀠
)
, ∫ 𝜇 [𝐴] = 1. (A.9)

According to the field-theoretical approach, the expecta-
tion value of a general operator 𝑂(𝑢) can be expressed as a
functional integral over the boson field𝐴 and the Grassmann
fermion fields 𝜓̂ and 𝜓̂:

⟨𝑇̂
𝑢
(𝑂 (𝑢))⟩ =

1

𝑍 [𝐽,𝑀]

⋅ ∫𝐷𝜇 [𝜓̂, 𝜓̂, 𝐴]𝑂 (𝑢)

⋅ exp [𝐽
𝛼 (𝑧) 𝐴𝛼 (𝑧) − 𝑀(𝜓̂, 𝜓̂)]

󵄨󵄨󵄨󵄨󵄨𝐽=𝑀=0
,

(A.10)

where the symbol ⟨⋅ ⋅ ⋅ ⟩ means that the thermodynamic
average is made. The functional 𝑍[𝐽,𝑀] is defined by

𝑍 [𝐽,𝑀] = ∫𝐷𝜇 [𝜓̂, 𝜓̂, 𝐴] exp [𝐽𝛼 (𝑧) 𝐴𝛼 (𝑧) − 𝑀(𝜓̂, 𝜓̂)] ,

(A.11)
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where the functional measure 𝐷𝜇[𝜓̂, 𝜓̂, 𝐴] =

𝐷𝐴𝐷𝜓̂𝐷𝜓̂ exp(𝑆) satisfies the condition ∫𝐷𝜇[𝜓̂, 𝜓̂, 𝐴] = 1.
The quantity 𝐽

𝛼
(𝑧) is the source of the boson field, while the

sources 𝑀
𝑖𝑗
(𝑦; 𝑥) of the fermion fields are included in the

𝑀(𝜓̂, 𝜓̂) term:

𝑀(𝜓̂, 𝜓̂)

= 𝜓
†

↑
(𝑦)𝑀

11
(𝑦; 𝑥) 𝜓

↑ (𝑥) + 𝜓
†

↓
(𝑦)𝑀

21
(𝑦; 𝑥) 𝜓

↑ (𝑥)

+ 𝜓
†

↑
(𝑦)𝑀

12
(𝑦; 𝑥) 𝜓

↓ (𝑥) + 𝜓
†

↓
(𝑦)𝑀

22
(𝑦; 𝑥) 𝜓

↓ (𝑥)

+ 𝜓
↑
(𝑦)𝑀

31
(𝑦; 𝑥) 𝜓

↑ (𝑥) + 𝜓↓ (𝑦)𝑀41
(𝑦; 𝑥) 𝜓

↑ (𝑥)

+ 𝜓
↑
(𝑦)𝑀

32
(𝑦; 𝑥) 𝜓

↓ (𝑥) + 𝜓↓ (𝑦)𝑀42
(𝑦; 𝑥) 𝜓

↓ (𝑥)

+ 𝜓
†

↑
(𝑦)𝑀

13
(𝑦; 𝑥) 𝜓

†

↑
(𝑥) + 𝜓

†

↓
(𝑦)𝑀

23
(𝑦; 𝑥) 𝜓

†

↑
(𝑥)

+ 𝜓
†

↑
(𝑦)𝑀

14
(𝑦; 𝑥) 𝜓

†

↓
(𝑥) + 𝜓

†

↓
(𝑦)𝑀

24
(𝑦; 𝑥) 𝜓

†

↓
(𝑥)

+ 𝜓
↑
(𝑦)𝑀

33
(𝑦; 𝑥) 𝜓

†

↑
(𝑥) + 𝜓↓ (𝑦)𝑀43

(𝑦; 𝑥) 𝜓
†

↑
(𝑥)

+ 𝜓
↑
(𝑦)𝑀

34
(𝑦; 𝑥) 𝜓

†

↓
(𝑥) + 𝜓↓ (𝑦)𝑀44

(𝑦; 𝑥) 𝜓
†

↓
(𝑥) .

(A.12)

Here, we have introduced complex indices 1 = {𝑛
1
, 𝑥

1
}, and

2 = {𝑛
2
, 𝑦

2
}.

We shall now use a functional derivative 𝛿/𝛿𝑀(2; 1);
depending on the spin degrees of freedom, there are sixteen
possible derivatives. By means of definition (A.10), one can
express all Green’s functions in terms of the functional deriva-
tiveswith respect to the corresponding sources of the generat-
ing functional of the connected Green’s functions𝑊[𝐽,𝑀] =
ln𝑍[𝐽,𝑀]. Thus, we define the following Green’s and
vertex functions which will be used to analyze the collective
modes of our model.

The Boson Green’s function is 𝐷
𝛼𝛽
(𝑧, 𝑧

󸀠
) which is a 4 × 4

matrix defined as𝐷
𝛼𝛽
(𝑧, 𝑧

󸀠
) = −𝛿

2
𝑊/𝛿𝐽

𝛼
(𝑧)𝛿𝐽

𝛽
(𝑧

󸀠
).

The generalized single-fermionGreen’s function𝐺
𝑛
1
𝑛
2

(𝑥
1
;

𝑦
2
) is matrix (3) whose elements are 𝐺

𝑛
1
𝑛
2

(𝑥
1
; 𝑦

2
) = −𝛿𝑊/

𝛿𝑀
𝑛
2
𝑛
1

(𝑦
2
; 𝑥

1
). Depending on the two spin degrees of free-

dom, ↑ and ↓, there exist eight “normal” Green’s functions
and eight “anomalous” Green’s functions. We introduce
Fourier transforms of the “normal” 𝐺

𝜎
1
,𝜎
2

(k, 𝑢
1
− 𝑢

2
) =

−⟨𝑇̂
𝑢
(𝜓

𝜎
1
,k(𝑢1)𝜓

†

𝜎
2
,k(𝑢2))⟩, and “anomalous”𝐹

𝜎
1
,𝜎
2

(k, 𝑢
1
−𝑢

2
) =

−⟨𝑇̂
𝑢
(𝜓

𝜎
1
,k(𝑢1)𝜓𝜎

2
,−k(𝑢2))⟩ one-particle Green’s functions,

where {𝜎
1
, 𝜎

2
} =↑, ↓. Here𝜓+

↑,k(𝑢), 𝜓↑,k(𝑢) and𝜓
+

↓,k(𝑢), 𝜓↓,k(𝑢)
are the creation-annihilation Heisenberg operators. The
Fourier transform of the generalized single-particle Green’s
function is given by

𝐺 (1; 2) =
1

𝑁
∑

k
∑

𝜔
𝑚

exp {𝚤 [k ⋅ (r
𝑖
1

− r
𝑖
2

) − 𝜔
𝑚
(𝑢

1
− 𝑢

2
)]}

⋅ (
𝐺 (k, 𝚤𝜔

𝑚
) 𝐹 (k, 𝚤𝜔

𝑚
)

𝐹
†
(k, 𝚤𝜔

𝑚
) −𝐺 (−k, −𝚤𝜔

𝑚
)
) .

(A.13)

Here, 𝐺 and 𝐹 are 2 × 2 matrices whose elements are 𝐺
𝜎
1
,𝜎
2

and 𝐹
𝜎
1
,𝜎
2

, respectively.
The two-particle Green’s function𝐾( 𝑛1 ,𝑥1 𝑛3 ,𝑦3𝑛

2
,𝑦
2
𝑛
4
,𝑥
4
) is defined

as

𝐾(
𝑛
1
, 𝑥

1
𝑛
3
, 𝑦

3

𝑛
2
, 𝑦

2
𝑛
4
, 𝑥

4

) = 𝐾(
1 3

2 4
)

=
𝛿
2
𝑊

𝛿𝑀
𝑛
2
𝑛
1

(𝑦
2
; 𝑥

1
) 𝛿𝑀

𝑛
3
𝑛
4

(𝑦
3
; 𝑥

4
)

= −
𝛿𝐺

𝑛
1
𝑛
2

(𝑥
1
; 𝑦

2
)

𝛿𝑀
𝑛
3
𝑛
4

(𝑦
3
; 𝑥

4
)
.

(A.14)

The vertex function Γ̂
𝛼
(2; 1 | 𝑧) for a given 𝛼 is a 4 × 4

matrix whose elements are

Γ̂
𝛼
(𝑖
2
, 𝑢

2
; 𝑖
1
, 𝑢

1
| V, 𝑗)

𝑛
2
𝑛
1

= −

𝛿𝐺
−1

𝑛
2
𝑛
1

(𝑖
2
, 𝑢

2
; 𝑖
1
, 𝑢

1
)

𝛿𝐽
𝛽
(𝑧󸀠)

𝐷
−1

𝛽𝛼
(𝑧

󸀠
, 𝑧) .

(A.15)

Next, we shall obtain the corresponding equations of the
boson and fermion Green’s functions. The poles of these
Green’s functions provide the single-particle and the two-
particle excitations.

It is well known that the fermion self-energy (fermion
mass operator) Σ̂(1; 2) can be defined by means of the SD
equations.They can be derived using the fact that themeasure
𝐷𝜇[𝜓, 𝜓, 𝐴] is invariant under the translations 𝜓 → 𝜓 + 𝛿𝜓

and 𝐴 → 𝐴 + 𝛿𝐴:

𝐷
(0)−1

𝛼𝛽
(𝑧, 𝑧

󸀠
) 𝑅

𝛽
(𝑧

󸀠
)

+
1

2
Tr (𝐺 (1; 2) Γ̂(0)

𝛼
(2; 1 | 𝑧)) + 𝐽𝛼 (𝑧) = 0,

𝐺
−1
(1; 2) − 𝐺

(0)−1
(1; 2) + Σ̂ (1; 2) + 𝑀̂ (1; 2) = 0,

(A.16)

where 𝑅
𝛼
(𝑧) = 𝛿𝑊/𝛿𝐽

𝛼
(𝑧) is the average boson field. The

fermion self-energy Σ̂ is a 4 × 4matrix which can be written
as a sum of Hartree Σ̂𝐻 and Fock Σ̂𝐹 parts. The Hartree part
is a diagonal matrix whose elements are

Σ
𝐻
(𝑖
1
, 𝑢

1
; 𝑖
2
, 𝑢

2
)
𝑛
1
𝑛
2

=
1

2
Γ̂
(0)

𝛼
(𝑖
1
, 𝑢

1
; 𝑖
2
, 𝑢

2
| 𝑗, V)

𝑛
1
𝑛
2

⋅ 𝐷
(0)

𝛼𝛽
(𝑗, V; 𝑗󸀠, V󸀠) Γ̂(0)

𝛽
(𝑖

3
, 𝑢

3
; 𝑖
4
, 𝑢

4
| 𝑗

󸀠
, V󸀠)

𝑛
3
𝑛
4

⋅ 𝐺
𝑛
4
𝑛
3

(𝑖
4
, 𝑢

4
; 𝑖
3
, 𝑢

3
) .

(A.17)
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The Fock part of the fermion self-energy is given by

Σ
𝐹
(𝑖
1
, 𝑢

1
; 𝑖
2
, 𝑢

2
)
𝑛
1
𝑛
2

= −Γ̂
(0)

𝛼
(𝑖
1
, 𝑢

1
; 𝑖
6
, 𝑢

6
| 𝑗, V)

𝑛
1
𝑛
6

⋅ 𝐷
(0)

𝛼𝛽
(𝑗, V; 𝑗󸀠, V󸀠) Γ̂(0)

𝛽
(𝑖

4
, 𝑢

4
; 𝑖
5
, 𝑢

5
| 𝑗

󸀠
, V󸀠)

𝑛
4
𝑛
5

× 𝐾(
𝑛
5
, 𝑖
5
, 𝑢

5
𝑛
3
, 𝑖
3
, 𝑢

3

𝑛
4
, 𝑖
4
, 𝑢

4
𝑛
6
, 𝑖
6
, 𝑢

6

)𝐺
−1

𝑛
3
𝑛
2

(𝑖
3
, 𝑢

3
; 𝑖
2
, 𝑢

2
) .

(A.18)

The Fock part of the fermion self-energy depends on the two-
particle Green’s function 𝐾; therefore the SD equations and
the BS equation for𝐾 have to be solved self-consistently.

Our approach to the Hubbard model allows us to obtain
exact equations of Green’s functions by using the field-
theoretical technique. We now wish to return to our state-
ment that Green’s functions are the thermodynamic average
of the 𝑇̂

𝑢
-ordered products of field operators. The standard

procedure for calculating Green’s functions is to apply Wick’s
theorem.This enables us to evaluate the 𝑇̂

𝑢
-ordered products

of field operators as a perturbation expansion involving only
wholly contracted field operators. These expansions can be
summed formally to yield different equations of Green’s
functions.Themain disadvantage of this procedure is that the
validity of the equations must be verified diagram by dia-
gram. For this reason we will use the method of Legendre
transforms of the generating functional for connectedGreen’s
functions. By applying the same steps as in [15], we obtain the
BS equation of the two-particle Green’s function, the Dyson
equation of the boson Green’s function, and the vertex
equation:

𝐾
−1
(
𝑛
2
, 𝑖
2
, 𝑢

2
𝑛
3
, 𝑖
3
, 𝑢

3

𝑛
1
, 𝑖
1
, 𝑢

1
𝑛
4
, 𝑖
4
, 𝑢

4

) = 𝐾
(0)−1

(
𝑛
2
, 𝑖
2
, 𝑢

2
𝑛
3
, 𝑖
3
, 𝑢

3

𝑛
1
, 𝑖
1
, 𝑢

1
𝑛
4
, 𝑖
4
, 𝑢

4

)

− 𝐼(
𝑛
2
, 𝑖
2
, 𝑢

2
𝑛
3
, 𝑖
3
, 𝑢

3

𝑛
1
, 𝑖
1
, 𝑢

1
𝑛
4
, 𝑖
4
, 𝑢

4

) ,

(A.19)

𝐷
𝛼𝛽
(𝑧, 𝑧

󸀠
) = 𝐷

(0)

𝛼𝛽
(𝑧, 𝑧

󸀠
) + 𝐷

(0)

𝛼𝛾
(𝑧, 𝑧

󸀠󸀠
)Π

𝛾𝛿

⋅ (𝑧
󸀠󸀠
, 𝑧

󸀠󸀠󸀠
)𝐷

(0)

𝛿𝛽
(𝑧, 𝑧

󸀠
) ,

(A.20)

Γ̂
𝛼
(𝑖
2
, 𝑢

2
; 𝑖
1
, 𝑢

1
| 𝑧)

𝑛
2
𝑛
1

= Γ̂
(0)

𝛼
(𝑖
2
, 𝑢

2
; 𝑖
1
, 𝑢

1
| 𝑧)

𝑛
2
𝑛
1

+ 𝐼(
𝑛
2
, 𝑖
2
, 𝑢

2
𝑛
3
, 𝑖
3
, 𝑢

3

𝑛
1
, 𝑖
1
, 𝑢

1
𝑛
4
, 𝑖
4
, 𝑢

4

)

× 𝐾
(0)
(
𝑛
3
, 𝑖
3
, 𝑢

3
𝑛
6
, 𝑖
6
, 𝑢

6

𝑛
4
, 𝑖
4
, 𝑢

4
𝑛
5
, 𝑖
5
, 𝑢

5

) Γ̂
𝛼
(𝑖
6
, 𝑢

6
; 𝑖
5
, 𝑢

5
| 𝑧)

𝑛
6
𝑛
5

.

(A.21)

Here,

𝐾
(0)
(
𝑛
2
, 𝑖
2
, 𝑢

2
𝑛
3
, 𝑖
3
, 𝑢

3

𝑛
1
, 𝑖
1
, 𝑢

1
𝑛
4
, 𝑖
4
, 𝑢

4

)

= 𝐺
𝑛
2
𝑛
3

(𝑖
2
, 𝑢

3
; 𝑖
2
, 𝑢

2
) 𝐺

𝑛
4
𝑛
1

(𝑖
4
, 𝑢

4
; 𝑖
1
, 𝑢

1
)

(A.22)

is the two-particle free propagator constructed from a pair
of fully dressed generalized single-particle Green’s functions.
The kernel 𝐼 = 𝛿Σ/𝛿𝐺 of the BS equation can be expressed
as a functional derivative of the fermion self-energy Σ̂. Since
Σ̂ = Σ̂

𝐻
+ Σ̂

𝐹, the BS kernel 𝐼 = 𝐼exc +𝐼𝑑 is a sum of functional
derivatives of the Hartree Σ𝐻 and Fock Σ𝐹 contributions to
the self-energy:

𝐼exc (
𝑛
2
, 𝑖
2
, 𝑢

2
𝑛
3
, 𝑖
3
, 𝑢

3

𝑛
1
, 𝑖
1
, 𝑢

1
𝑛
4
, 𝑖
4
, 𝑢

4

) =

𝛿Σ
𝐻
(𝑖
2
, 𝑢

2
; 𝑖
1
, 𝑢

1
)
𝑛
2
𝑛
1

𝛿𝐺
𝑛
3
𝑛
4

(𝑖
3
, 𝑢

3
; 𝑖
4
, 𝑢

4
)
,

𝐼
𝑑
(
𝑛
2
, 𝑖
2
, 𝑢

2
𝑛
3
, 𝑖
3
, 𝑢

3

𝑛
1
, 𝑖
1
, 𝑢

1
𝑛
4
, 𝑖
4
, 𝑢

4

) =

𝛿Σ
𝐹
(𝑖
2
, 𝑢

2
; 𝑖
1
, 𝑢

1
)
𝑛
2
𝑛
1

𝛿𝐺
𝑛
3
𝑛
4

(𝑖
3
, 𝑢

3
; 𝑖
4
, 𝑢

4
)
.

(A.23)

The general response function Π in the Dyson equation
(A.20) is defined as

Π
𝛼𝛽
(𝑧, 𝑧

󸀠
) = Γ̂

(0)

𝛼
(𝑖
1
, 𝑢

1
; 𝑖
2
, 𝑢

2
| 𝑧)

𝑛
1
𝑛
2

⋅ 𝐾 (
𝑛
2
, 𝑖
2
, 𝑢

2
𝑛
3
, 𝑖
3
, 𝑢

3

𝑛
1
, 𝑖
1
, 𝑢

1
𝑛
4
, 𝑖
4
, 𝑢

4

)

⋅ Γ̂
(0)

𝛽
(𝑖

3
, 𝑢

3
, 𝑖
4
, 𝑢

4
| 𝑧

󸀠
)
𝑛
3
𝑛
4

.

(A.24)

The functions𝐷,𝐾, and Γ̂ are related by the identity:

𝐾
(0)
(
𝑛
2
, 𝑖
2
, 𝑢

2
𝑛
3
, 𝑖
3
, 𝑢

3

𝑛
1
, 𝑖
1
, 𝑢

1
𝑛
4
, 𝑖
4
, 𝑢

4

) Γ̂
𝛽
(𝑖

4
, 𝑢

4
; 𝑖
3
, 𝑢

3
| 𝑧

󸀠
)
𝑛
4
𝑛
3

𝐷
𝛽𝛼
(𝑧

󸀠
, 𝑧)

= 𝐾(
𝑛
2
, 𝑖
2
, 𝑢

2
𝑛
3
, 𝑖
3
, 𝑢

3

𝑛
1
, 𝑖
1
, 𝑢

1
𝑛
4
, 𝑖
4
, 𝑢

4

) Γ̂
(0)

𝛽
(𝑖

4
, 𝑢

4
; 𝑖
3
, 𝑢

3
| 𝑧

󸀠
)
𝑛
4
𝑛
3

⋅ 𝐷
(0)

𝛽𝛼
(𝑧

󸀠
, 𝑧) .

(A.25)

By introducing the boson proper self-energy 𝑃−1
𝛼𝛽
(𝑧, 𝑧

󸀠
) =

Π
−1

𝛼𝛽
(𝑧, 𝑧

󸀠
) + 𝐷

(0)

𝛼𝛽
(𝑧, 𝑧

󸀠
) one can rewrite the Dyson equation

(A.20) for the boson Green’s function as

𝐷
−1

𝛼𝛽
(𝑧, 𝑧

󸀠
) = 𝐷

(0)−1

𝛼𝛽
(𝑧, 𝑧

󸀠
) − 𝑃

𝛼𝛽
(𝑧, 𝑧

󸀠
) . (A.26)

The proper self-energy and the vertex function Γ̂ are related
by the following equation:

𝑃
𝛼𝛽
(𝑧, 𝑧

󸀠
) =

1

2
Tr [Γ̂(0)

𝛼
(𝑦

1
, 𝑥

2
| 𝑧) 𝐺 (𝑥

2
, 𝑦

3
)

⋅ Γ̂
𝛽
(𝑦

3
, 𝑥

4
| 𝑧

󸀠
)𝐺 (𝑥

4
, 𝑦

1
)]

=
1

2
Γ̂
(0)

𝛼
(𝑖
1
, 𝑢

1
; 𝑖
2
, 𝑢

2
| 𝑧)

𝑛
1
𝑛
2

𝐺
𝑛
2
𝑛
3

(𝑖
2
, 𝑢

2
; 𝑖
3
, 𝑢

3
)

⋅ Γ̂
𝛽
(𝑖

3
, 𝑢

3
; 𝑖
4
, 𝑢

4
| 𝑧

󸀠
)
𝑛
3
𝑛
4

𝐺
𝑛
4
𝑛
1

(𝑖
4
, 𝑢

4
; 𝑖
1
, 𝑢

1
) .

(A.27)
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It is also possible to express the proper self-energy in terms
of the two-particle Green’s function 𝐾̃ which satisfies the BS
equation 𝐾̃−1

= 𝐾
(0)−1

− 𝐼
𝑑
, but its kernel 𝐼

𝑑
= 𝛿Σ

𝐹
/𝛿𝐺

includes only diagrams that represent the direct interactions:

𝑃
𝛼𝛽
(𝑧, 𝑧

󸀠
) = Γ̂

(0)

𝛼
(𝑖
1
, 𝑢

1
; 𝑖
2
, 𝑢

2
| 𝑧)

𝑛
1
𝑛
2

𝐾̃ (
𝑛
2
, 𝑖
2
, 𝑢

2
𝑛
3
, 𝑖
3
, 𝑢

3

𝑛
1
, 𝑖
1
, 𝑢

1
𝑛
4
, 𝑖
4
, 𝑢

4

)

⋅ Γ̂
(0)

𝛽
(𝑖

3
, 𝑢

3
; 𝑖
4
, 𝑢

4
| 𝑧

󸀠
)
𝑛
3
𝑛
4

= Γ̂
(0)

𝑛
1
𝑛
2

(𝛼) 𝐾̃ (
𝑛
2
, r

𝑗
, V 𝑛

3
, r

𝑗
󸀠 , V󸀠

𝑛
1
, r

𝑗
, V 𝑛

4
, r

𝑗
󸀠 , V󸀠) Γ̂

(0)

𝑛
3
𝑛
4

(𝛽) .

(A.28)

One can obtain the spectrum of the collective excitations as
poles of the boson Green’s function by solving the Dyson
equation (A.26), but one has first to deal with the BS equation
for the function 𝐾̃. In other words, this method involves two
steps. For this reason, it is easy to obtain the collective modes
by locating the poles of the two-particle Green’s function 𝐾
using the solutions of the corresponding BS equation.

As we have already mentioned, the BS equation and
the SD equations have to be solved self-consistently. In
what follows, we use an approximation which allows us to
decouple the above-mentioned equations and to obtain a
linearized integral equation for the Fock term. To apply this
approximation we first use (A.25) to rewrite the Fock term as

Σ
𝐹
(𝑖
1
, 𝑢

1
; 𝑖
2
, 𝑢

2
)
𝑛
1
𝑛
2

= −Γ̂
(0)

𝛼
(𝑖
1
, 𝑢

1
; 𝑖
3
, 𝑢

3
| 𝑗, V)

𝑛
1
𝑛
3

𝐷
𝛼𝛽
(𝑗, V; 𝑗󸀠, V󸀠)

⋅ 𝐺
𝑛
3
𝑛
4

(𝑖
3
, 𝑢

3
; 𝑖
4
, 𝑢

4
) Γ̂

𝛽
(𝑖

4
, 𝑢

4
; 𝑖
2
, 𝑢

2
| 𝑗

󸀠
, V󸀠)

𝑛
4
𝑛
2

,

(A.29)

and after that we replace𝐷 and Γ̂ in (A.29) by the free boson
propagator 𝐷(0) and by the bare vertex Γ̂(0), respectively. In
this approximation the Fock term assumes the form:

Σ
𝐹

0
(𝑖
1
, 𝑢

1
; 𝑖
2
, 𝑢

2
)
𝑛
1
𝑛
2

= −Γ̂
(0)

𝛼
(𝑖
1
, 𝑢

1
; 𝑖
3
, 𝑢

3
| 𝑗, V)

𝑛
1
𝑛
3

⋅ 𝐷
(0)

𝛼𝛽
(𝑗, V; 𝑗󸀠, V󸀠) Γ̂(0)

𝛽
(𝑖

4
, 𝑢

4
; 𝑖
2
, 𝑢

2
| 𝑗

󸀠
, V󸀠)

𝑛
4
𝑛
2

⋅ 𝐺
𝑛
3
𝑛
4

(𝑖
3
, 𝑢

3
; 𝑖
4
, 𝑢

4
)

= −𝑈𝛿
𝑖
1
,𝑖
2

𝛿 (𝑢
1
− 𝑢

2
)

⋅ (

0 𝐺
12 (1; 2) 0 −𝐺

14 (1; 2)

𝐺
21 (1; 2) 0 −𝐺

23 (1; 2) 0

0 −𝐺
32 (1; 2) 0 𝐺

34 (1; 2)

−𝐺
41 (1; 2) 0 𝐺

43 (1; 2) 0

) .

(A.30)

The total self-energy is Σ̂(𝑖
1
, 𝑢

1
; 𝑖
2
, 𝑢

2
) = Σ̂

𝐻
(𝑖
1
, 𝑢

1
; 𝑖
2
, 𝑢

2
) +

Σ̂
𝐹
(𝑖
1
, 𝑢

1
; 𝑖
2
, 𝑢

2
), where

Σ̂
𝐻
(𝑖
1
, 𝑢

1
; 𝑖
2
, 𝑢

2
) =

𝑈

2
𝛿
𝑖
1
,𝑖
2

𝛿 (𝑢
1
− 𝑢

2
)

⋅(

𝐺
22 (1; 2) − 𝐺44 (1; 2) 0 0 0

0 𝐺
11 (1; 2) − 𝐺33 (1; 2) 0 0

0 0 𝐺
44 (1; 2) − 𝐺22 (1; 2) 0

0 0 0 𝐺
33 (1; 2) − 𝐺11 (1; 2)

) .

(A.31)

The contributions to Σ(𝑖
1
, 𝑢

1
; 𝑖
2
, 𝑢

2
), due to the elements on

themajor diagonal of the abovematrices, will be included into
the chemical potential. To obtain an analytical expression for
the generalized single-particle Green’s function, we assume
two more approximations. First, since the experimentally

relevant magnetic fields are not strong enough to cause spin
flips, we shall neglect𝐺

12
= 𝐺

21
= 𝐺

34
= 𝐺

43
= 0. Second, we

neglect the frequency dependence of the Fourier transform
of the Fock part of the fermion self-energy. Thus, the Dyson
equation for the generalized single-particle Green’s function
becomes

𝐺
−1
(1; 2) =(

𝐺
(0)−1

11
(1; 2) 0 0 −Δ𝑒

𝚤2q⋅r
𝑖1𝛿 (r

𝑖
1

− r
𝑖
2

)

0 𝐺
(0)−1

22
(1; 2) Δ𝑒

𝚤2q⋅r
𝑖1𝛿 (r

𝑖
1

− r
𝑖
2

) 0

0 Δ𝑒
−𝚤2q⋅r

𝑖1𝛿 (r
𝑖
1

− r
𝑖
2

) 𝐺
(0)−1

33
(1; 2) 0

−Δ𝑒
−𝚤2q⋅r

𝑖1𝛿 (r
𝑖
1

− r
𝑖
2

) 0 0 𝐺
(0)−1

44
(1; 2)

). (A.32)
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We can eliminate the phase factors 𝑒𝚤2q⋅r𝑖1 by performing the
unitary transformation between the old generalized single-
particle Green’s function 𝐺 and the new one ̂̃𝐺; that is,
̂̃
𝐺(1; 2) = 𝑈(1) ⋅ 𝐺(1; 2) ⋅ 𝑈

†
(2), where the corresponding

matrix is as follows:

𝑈 (1) = (

𝑒
−𝚤q⋅r
𝑖1 0 0 0

0 −𝑒
−𝚤q⋅r
𝑖1 0 0

0 0 −𝑒
𝚤q⋅r
𝑖1 0

0 0 0 𝑒
𝚤q⋅r
𝑖1

). (A.33)

After performing this unitary transformation, Green’s func-
tion ̂̃𝐺(1; 2) becomes functions of ̂̃𝐺(r

𝑖
1

− r
𝑖
2

; 𝑢
1
−𝑢

2
), and the

corresponding Fourier transform is

̂̃
𝐺 (1; 2)

= ∑

k,𝜔𝑚

exp [𝚤k ⋅ (r
𝑖1
− r

𝑖2
) − 𝜔

𝑚
(𝑢

1
− 𝑢

2
)]

⋅(

𝐺
11
(k, 𝚤𝜔

𝑚
) 0 0 𝐺

14
(k, 𝚤𝜔

𝑚
)

0 𝐺
22
(k, 𝚤𝜔

𝑚
) 𝐺

23
(k, 𝚤𝜔

𝑚
) 0

0 𝐺
32
(k, 𝚤𝜔

𝑚
) 𝐺

33
(k, 𝚤𝜔

𝑚
) 0

𝐺
41
(k, 𝚤𝜔

𝑚
) 0 0 𝐺

44
(k, 𝚤𝜔

𝑚
)

) .

(A.34)

The spectrum of the collective modes will be obtained by
solving the BS equation in the GRPA. As we have already
mentioned, the kernel of the BS equation is a sum of the
direct 𝐼

𝑑
= 𝛿Σ

𝐹
/𝛿𝐺 and exchange 𝐼exc = 𝛿Σ

𝐻
/𝛿𝐺 inter-

actions, written as derivatives of the Fock (A.30) and the

Hartree (A.31) parts of the self-energy. Thus, in the GRPA
the corresponding equation for the BS amplitude ΨQ

𝑛
2
,𝑛
1

=

∫(𝑑Ω/2𝜋) ∫(𝑑
𝑑k/(2𝜋)𝑑)ΨQ

𝑛
2
,𝑛
1

(k; Ω) can be obtained by per-
forming integration over the momentum vectors:

Ψ
Q
𝑛
2
𝑛
1

= 𝐾
(0)
(
𝑛
1
𝑛
3

𝑛
2
𝑛
4

| 𝜔 (Q))

⋅ [𝐼
𝑑
(
𝑛
3
𝑛
5

𝑛
4
𝑛
6

) + 𝐼exc (
𝑛
3
𝑛
5

𝑛
4
𝑛
6

)]Ψ
Q
𝑛
6
,𝑛
5

,

(A.35)

where the two-particle propagator 𝐾(0) and the direct and
exchange interactions are defined as follows:

𝐾
(0)
(
𝑛
1
𝑛
3

𝑛
2
𝑛
4

| 𝜔 (Q))

≡ 𝐾
𝑛
1
𝑛
3
𝑛
4
𝑛
2

= ∫
𝑑Ω

2𝜋
∫
𝑑
𝑑k

(2𝜋)
𝑑
𝐺
𝑛
1
𝑛
3

(k +Q, Ω + 𝜔 (Q)) 𝐺𝑛
4
𝑛
2

(k, Ω) ,

𝐼
𝑑
(
𝑛
1
𝑛
3

𝑛
2
𝑛
4

) = −Γ
(0)

𝛼
(𝑛

1
, 𝑛

3
)𝐷

(0)

𝛼𝛽
Γ
(0)

𝛽
(𝑛

4
, 𝑛

2
) ,

𝐼exc (
𝑛
1
𝑛
3

𝑛
2
𝑛
4

) =
1

2
Γ
(0)

𝛼
(𝑛

1
, 𝑛

2
)𝐷

(0)

𝛼𝛽
Γ
(0)

𝛽
(𝑛

4
, 𝑛

3
) .

(A.36)

The BS equation (A.35) written in the matrix form is (𝐼 +
𝑈𝑍)Ψ̂ = 0, where 𝐼 is the unit matrix, thematrix𝑍 is a 16×16
matrix, and the transposed matrix of Ψ̂ is given by

Ψ̂
𝑇
= (Ψ

Q
1,1
Ψ

Q
1,2
Ψ

Q
1,3
Ψ

Q
1,4
Ψ

Q
2,1
Ψ

Q
2,2
Ψ

Q
2,3
Ψ

Q
2,4
Ψ

Q
3,1
Ψ

Q
3,2
Ψ

Q
3,3
Ψ

Q
3,4
Ψ

Q
4,1
Ψ

Q
4,2
Ψ

Q
4,3
Ψ

Q
4,4
) . (A.37)

The 16 × 16 secular determinant det |𝐼 + 𝑈𝑍| can be
rewritten as a block diagonal determinant:

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐷
8×8

0 0

0 𝐷
4×4

0

0 0 1̂
4×4

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, (A.38)

where 1̂
4×4

is a 4 × 4 unit matrix. The block structure of
the secular determinant allows us to separate the sixteen
BS amplitudes into three independent groups related to the
blocks𝐷

8×8
,𝐷

4×4
, and 1̂

4×4
. The determinant

𝑍
8
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑈
−1
−
𝐾

1414

2
𝐾

1411

𝐾
1111

2
0 0

𝐾
1414

2
𝐾

1114
−
𝐾

1111

2

−
𝐾

4414

2
𝑈

−1
+ 𝐾

4411

𝐾
1411

2
0 0

𝐾
4414

2
𝐾

1414
−
𝐾

1411

2
𝐻

4444

2
0 𝑈

−1
−
𝐻

1414

2
𝐻

1444
𝐻

4414
−
𝐻

4444

2
0

𝐻
1414

2
𝐻

1444

2
0 −

𝐻
1114

2
𝑈

−1
+ 𝐻

1144
𝐻

1414
−
𝐻

1444

2
0

𝐻
1114

2
𝐻

4414

2
0 −

𝐾
1411

2
𝐻

1414
𝑈

−1
+ 𝐻

4411
−
𝐻

4414

2
0

𝐻
1411

2
𝐻

1414

2
0 −

𝐻
1111

2
𝐻

1114
𝐻

1411
𝑈

−1
−
𝐻

1414

2
0

𝐻
1111

2

−
𝐾

1444

2
𝐾

1414

𝐾
1114

2
0 0

𝐾
1444

2
𝑈

−1
+ 𝐾

1144
−
𝐾

1114

2

−
𝐾

4444

2
𝐾

4414

𝐾
1414

2
0 0

𝐾
4444

2
𝐾

1444
𝑈

−1
−
𝐾

1414

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(A.39)
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of the 𝐷
8×8

block determines the amplitudes ΨQ
1,1
, ΨQ

1,4
, ΨQ

2,2
,

Ψ
Q
2,3
, ΨQ

3,2
, ΨQ

3,3
, ΨQ

4,1
, and ΨQ

4,4
. The other four amplitudes ΨQ

1,2
,

Ψ
Q
2,1
, ΨQ

3,4
, and ΨQ

4,3
are related to the 𝐷

4×4
block. The last

four amplitudes are equal to zero; that is, ΨQ
1,3

= Ψ
Q
2,4

=

Ψ
Q
3,1
= Ψ

Q
4,2
= 0. The collective-mode dispersion is defined

by the secular determinant (A.39). At a finite temperature the
elements of 𝑍

8
are

𝐾
1111

=
1

2
(𝐼

𝑚,𝑚
+ 𝐼

𝛾,𝛾
− 2𝐽

𝛾,𝑚
− 𝐿

𝑙,𝑙
− 𝐿

𝛾,𝛾
+ 2𝐾

𝛾,𝑙
) ,

𝐾
4444

=
1

2
(𝐼

𝑚,𝑚
+ 𝐼

𝛾,𝛾
+ 2𝐽

𝛾,𝑚
− 𝐿

𝑙,𝑙
− 𝐿

𝛾,𝛾
− 2𝐾

𝛾,𝑙
) ,

𝐾
1144

=
1

2
(𝐼

𝑙,𝑙
+ 𝐼

𝛾,𝛾
+ 2𝐽

𝛾,𝑙
− 𝐿

𝑚,𝑚
− 𝐿

𝛾,𝛾
− 2𝐾

𝛾,𝑚
) ,

𝐾
4411

=
1

2
(𝐼

𝑙,𝑙
+ 𝐼

𝛾,𝛾
− 2𝐽

𝛾,𝑙
− 𝐿

𝑚,𝑚
− 𝐿

𝛾,𝛾
+ 2𝐾

𝛾,𝑚
) ,

𝐾
1114

=
1

2
(−𝐼

𝑙,𝑚
+ 𝐼

𝛾,𝛾
+ 𝐽

𝑙,𝛾
− 𝐽

𝛾,𝑚
− 𝐿

𝑙,𝑚

+𝐿
𝛾,𝛾
+ 𝐾

𝛾,𝑚
− 𝐾

𝑙,𝛾
) ,

𝐾
4414

=
1

2
(𝐼

𝑙,𝑚
− 𝐼

𝛾,𝛾
+ 𝐽

𝑙,𝛾
− 𝐽

𝛾,𝑚
+ 𝐿

𝑙,𝑚
− 𝐿

𝛾,𝛾

+𝐾
𝛾,𝑚
− 𝐾

𝑙,𝛾
) ,

𝐾
1414

=
1

2
(𝐼

𝑙,𝑙
− 𝐼

𝛾,𝛾
− 𝐿

𝑚,𝑚
+ 𝐿

𝛾,𝛾
) ,

𝐾
1444

=
1

2
(𝐼

𝑙,𝑚
+ 𝐼

𝛾,𝛾
+ 𝐽

𝑙,𝛾
+ 𝐽

𝛾,𝑚
+ 𝐿

𝑙,𝑚
+ 𝐿

𝛾,𝛾

+𝐾
𝛾,𝑚
+ 𝐾

𝑙,𝛾
) ,

𝐾
1411

=
1

2
(−𝐼

𝑙,𝑚
− 𝐼

𝛾,𝛾
+ 𝐽

𝑙,𝛾
+ 𝐽

𝛾,𝑚
− 𝐿

𝑙,𝑚
− 𝐿

𝛾,𝛾

+𝐾
𝛾,𝑚
+ 𝐾

𝑙,𝛾
) ,

(A.40)

where the symbols 𝐼, 𝐽, 𝐿, and𝐾 are defined as

𝐼
𝑎,𝑏
=
1

2𝑁
∑

k
𝑎
q
k,Q𝑏

q
k,Q

⋅ [
1 − 𝑓 (𝜔

− (k, q)) − 𝑓 (𝜔+ (k +Q, q))
𝜔 + Ωq (k,Q) − 𝜀q (k,Q)

−
1 − 𝑓 (𝜔

+ (k, q)) − 𝑓 (𝜔− (k +Q, q))
𝜔 + Ωq (k,Q) + 𝜀q (k,Q)

] ,

𝐽
𝑎,𝑏
=
1

2𝑁
∑

k
𝑎
q
k,Q𝑏

q
k,Q

⋅ [
1 − 𝑓 (𝜔

− (k, q)) − 𝑓 (𝜔+ (k +Q, q))
𝜔 + Ωq (k,Q) − 𝜀q (k,Q)

+
1 − 𝑓 (𝜔

+ (k, q)) − 𝑓 (𝜔− (k +Q, q))
𝜔 + Ωq (k,Q) + 𝜀q (k,Q)

] ,

𝐾
𝑎,𝑏
=
1

2𝑁
∑

k
𝑎
q
k,Q𝑏

q
k,Q

⋅ [
𝑓 (𝜔

− (k, q)) − 𝑓 (𝜔− (k +Q, q))
𝜔 + Ωq (k,Q) + 𝜖q (k,Q)

+
𝑓 (𝜔

+ (k, q)) − 𝑓 (𝜔+ (k +Q, q))
𝜔 + Ωq (k,Q) − 𝜖q (k,Q)

] ,

𝐿
𝑎,𝑏
=
1

2𝑁
∑

k
𝑎
q
k,Q𝑏

q
k,Q

⋅ [
𝑓 (𝜔

− (k, q)) − 𝑓 (𝜔− (k +Q, q))
𝜔 + Ωq (k,Q) + 𝜖q (k,Q)

−
𝑓 (𝜔

+ (k, q)) − 𝑓 (𝜔+ (k +Q, q))
𝜔 + Ωq (k,Q) − 𝜖q (k,Q)

] .

(A.41)

Here, 𝜀q(k,Q) = 𝐸q(k + Q) + 𝐸q(k), 𝜖q(k,Q) = 𝐸q(k + Q) −
𝐸q(k), Ωq(k,Q) = 𝜂q(k) − 𝜂q(k + Q), and 𝑎 and 𝑏 are one of
the following form factors:

𝛾
q
k,Q = 𝑢

q
k𝑢

q
k+Q + V

q
kV

q
k+Q, 𝑙

q
k,Q = 𝑢

q
k𝑢

q
k+Q − V

q
kV

q
k+Q,

𝛾
q
k,Q = 𝑢

q
kV

q
k+Q − 𝑢

q
k+QV

q
k , 𝑚

q
k,Q = 𝑢

q
kV

q
k+Q + 𝑢

q
k+QV

q
k .

(A.42)

The elements 𝐻 are defined by 𝐻
𝑖𝑗𝑘𝑙
(q,Q, 𝜔) = 𝐾

𝑖𝑗𝑘𝑙
(q, −Q,

−𝜔). The secular determinant det |𝐷
8×8
| also provides the

gap equation in the limit Q → 0 and 𝜔 → 0. Thus, our
Hubbard-Stratonovich transformation is in accordance with
the canonical mean-field approximation.
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