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The energy and persistent current spectra for a relativistic fermion on a ring are studied in detail.The nonlinear nature of persistent
current in relativistic regime and its dependence on particle mass and ring radius are analysed thoroughly. For a particular ring
radius, we find the existence of a critical mass at which the single ring current does not depend on the flux. In lower mass regime,
the total current spectrum shows plateaus at different height which appears periodically. The susceptibility as well shows periodic
nature with amplitude depending on particle mass. As we move from higher mass to lower mass regime, we find that the system
turns into paramagnetic from diamagnetic. We also show that same behaviour is observed if one vary the radius of the ring for a
fixed particle mass. Hence the larger ring will be diamagnetic while the smaller one will be paramagnetic. Finally we propose an
experiment to verify our findings.

1. Introduction

The existence of a persistent current in a normal metallic ring
threaded by a magnetic flux has stimulated a large number of
studies in last few decades [1–10]. The current is periodic in
flux like the current in a superconducting ring [11–14]. Due to
the recent advances in fabrication techniques, it has become
possible to observe this current experimentally [15–18] in
mesoscopic systems. Such current is also found in carbon
nanotube rings [19–21]. In these carbon based structures,
electrons behave asmasslessDirac particles and they require a
relativistic description. Although there have been significant
amount of work on the energy levels and persistent current of
relativistic fermion regarding graphene [22–32], topological
insulator [33] and for neutrino billiards [34] and Dirac
electron [35], there is still lack of a complete description of
persistent current for relativistic fermions and its variation
with particle mass. Besides, it is well known that supercon-
ducting as well as mesoscopic rings are perfect diamagnets,
but carbon nanotube tori [36] are found to possess a positive
susceptibility. There is no vivid discussion on how the
transition occurs.

In this paper, we have studied the nature of energy and
persistent current spectra for a relativistic particle on a one-
dimensional ring. We describe the scenario for all the mass

regime and explain the massless case as well. For heavy
fermions, our findings are in good agreementwith the nonrel-
ativistic behaviour [3]. Interesting features are revealed as we
move towards the relativistic regime, that is, for lowmass.The
flux dependence of the current becomesmore andmore non-
linear as we decrease the mass. For a particular ring radius,
we find the existence of a critical mass at which the current
becomes constant in flux.The value of this current is the same
as the current produced by a massless particle and it appears
to be the lower cutoff for current as we further decrease the
mass. This nature is prominent for massless particle as well.
We further study the nature of the total current and find that it
shows periodic plateaus. It becomes a multiple step function
at critical mass and becomes discrete below that mass. The
same periodicity is also observed in the susceptibility. More
interestingly, we find that its amplitude changes fromnegative
to positive value as we decrease the mass. This is further
clarified by studying the behaviour of the susceptibility with
respect to mass at a particular flux value. Same behaviour is
observed if we keep the mass fixed and treat the ring radius
as parameter.

The organisation of the paper is as follows. In Section 2,
we give a brief description about the Dirac equation and its
solution on a circle. Then we obtain the energy spectrum in
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presence of an Aharonov-Bohm flux. We derive the resulting
persistent current in Section 3 and show its behaviour for
different mass range specially for a massless fermion. In
Section 4, we discuss the behaviour of total current and in
Section 5, the nature of susceptibility is discussed. Section 6
contains a proposed experiment to verify the result. The
discussion is kept in Section 7.

2. Relativistic Particle on
a One-Dimensional Ring

We start with a very brief description of Dirac equation on
a circle. Then we will derive its solution in presence of an
Aharonov-Bohm flux and obtain the energy spectrum.

Dirac equation in two dimensions is given by [37]

(𝑐�⃗� ⋅ �⃗� + 𝜎
3
𝑚𝑐2) 𝜓 = 𝐸𝜓, (1)
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are Pauli matrices. Due to the sym-

metry of the problem, it would be easier to work with polar
coordinate (𝑥 = 𝑅 cos(𝜑), and 𝑦 = 𝑅 sin(𝜑): 𝑅 is the ring
radius) in which the Dirac Hamiltonian becomes
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(3)

Note that (2) is similar to the Hamiltonian used in [35]. They
have used 4×4Diracmatrices whereas we use here 2×2 repre-
sentation which finally leads to the same dispersion relation.
It is worthmentioning that one should be careful while deriv-
ing a Dirac Hamiltonian for a lower dimension. Remember
that number of Dirac matrices required for a 𝑑 + 1 (space-
time) dimensional space is 𝑑 + 1 and they must satisfy the
corresponding Dirac algebra. One can start from a two-
dimensional Dirac Hamiltonian and replace the radial vari-
able dependent terms with their expectation values consider-
ing a vanishing width of the radial wave function [24, 25, 38].
In this way, although it is possible to reduce a spatial dimen-
sion, the resulting Hamiltonian may still need three Dirac
matrices (One can check that by using ⟨𝑟⟩ = 0 and ⟨𝜕/𝜕𝑟⟩ =
−1/2𝑅 [38] in a two-dimensional polar Dirac equation.) and
that will be a contradiction about the dimensionality of the
system. A better way would be to use the constraint relations
and obtain the Hamiltonian in terms of the generalised
coordinate which we have done here.TheHamiltonian (2) we
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Φ

Figure 1: A one-dimensional ring of radius 𝑅 threaded by a
magnetic flux Φ. The field is finite only within the shaded region.
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Figure 2: Energy as a function of flux. Here we have used ℎ = 𝑐 =
𝑒 = 𝑚

𝑒
= 1 (𝑒 and 𝑚

𝑒
being electronic charge and mass. The units

of mass, length, and energy are 𝑚
𝑒
, 𝑟
𝑒
= ℎ/𝑚

𝑒
𝑐, and 𝐸

𝑒
= 𝑚
𝑒
𝑐2).

The ring radius and particle mass are 𝑅 = 10 𝑟
𝑒
and 𝑚 = 1𝑚

𝑒
,

respectively. The energy minima are at Φ/Φ
0
= 𝑙 + 1/2. This shift

is a signature of relativistic correction.

derive here involves only two Dirac matrices (𝜎
𝜑
, 𝜎
3
) which is

in tone with the one dimensionality of the system.
Now let us consider a perpendicular magnetic field pierc-

ing the ring (Figure 1). A suitable choice for vector potential
(under symmetric gauge) is

�⃗� = Φ
2𝜋𝑅

𝜑, (4)

where Φ is the total flux passing through the ring.
The energy of the system is given by [35]

𝐸
𝑙
= √𝑚2𝑐4 + (𝑐ℎ/𝑅)2 (𝑙 + (Φ/Φ

0
)) (𝑙 + (Φ/Φ

0
) − 1), (5)

where 𝑙 = 0, ±1, ±2, . . . and Φ
0
= 𝑐ℎ/𝑒 is the flux quanta.

One can see (Figure 2) that the energy varies parabolically
with respect toΦ and has periodicity ofΦ

0
. This is similar to

the case of a nonrelativistic particle [3]. The only difference
is the fact that the minima of the energy are at half integral
multiple of Φ

0
. This shift by Φ

0
/2 appears due to relativistic

correction [35].

3. Persistent Current for a Dirac Particle

Wewill nowdiscuss the nature of energy spectrumand result-
ing persistent current for different mass regime.

Persistent current is the perpetual current flowing in a
superconducting or normal metallic ring in the presence of
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a Aharonov-Bohm flux. It is given by the flux derivative of
the energy [3, 14]

𝐼
𝑙
= −𝑐𝜕𝐸𝑙

𝜕Φ
. (6)

For a Dirac particle on a one-dimensional ring whose energy
is given by (5), the persistent current is
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2𝜋𝑚𝑅2

𝑙 + (Φ/Φ
0
) − (1/2)

√1 + (ℎ/𝑚𝑐𝑅)2 (𝑙 + (Φ/Φ
0
)) (𝑙 + (Φ/Φ

0
) − 1)

.

(7)

One can regain the nonrelativistic result for𝑚 → ∞. At
this limit the, current is given by
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= − 𝑒ℎ
2𝜋𝑚𝑅2

(𝑙 + Φ
Φ
0
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2
) . (8)

The expression looks similar to the nonrelativistic current
[3].Theonly difference is that like the energy spectrum, it also
undergoes a shift by Φ

0
/2 with respect to the flux. However

the behaviour of current at relativistic regime (𝑚 → 0) is
rather complicated. To have an idea about the flux depen-
dence of the current, we will study the single particle suscep-
tibilityΩ

𝑙
(𝜅, Φ) defined as
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Now we will discuss the behaviour of Ω
𝑙
(Φ, 𝜅) for differ-

ent ranges of Φ and 𝜅. Consider the following

(a) 𝜅 → 0: Ω
𝑙
(Φ, 𝜅) → −𝐼

0
/Φ
0
which is negative,

constant and independent of 𝑙. Hence the current will
vary linearly with flux for all 𝑙 values. This is actually
the nonrelativistic (𝑚 → ∞) limit.

(b) 𝜅 = 4: Ω
𝑙
(Φ, 𝜅) = 0; that is, the current will not

depend on the flux. We call the corresponding mass
to be the critical mass for radius 𝑅, given by

𝑚𝑅cri =
ℎ
2𝑐𝑅

. (12)

The constant current is given by

𝐼sat = −
𝐼
0

𝜅
= − 𝑒𝑐

2𝜋𝑅
. (13)

This is actually current generated by a massless par-
ticle with charge 𝑒.
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Figure 3: Variation of current with flux for 𝑅 = 10 𝑟
𝑒
and𝑚 = 1𝑚

𝑒
.

Here we have used the same unit system as Figure 2 and current is
measured in units of 𝐼

𝑒
= 𝑒𝑐/𝑟

𝑒
.

(c) 𝜅 > 4: this is the lowmass limit. AtΦ → ∞ limit, the
current becomes constant, given by (13). For 𝜅 > 4,
Ω
𝑙
(Φ, 𝜅) blows up at

Φ
Φ
0

div
= (1

2
− 𝑙) ± 1

2
√1 − (4/𝜅), (14)

which are actually the roots of the denominator of (9).
The divergence in Ω

𝑙
(Φ, 𝜅) suggests discontinuity in

current. For 𝜅 → ∞ (𝑚 = 0, i.e., massless limit),
the divergence occurs at Φ/Φ

0
= −𝑙 and Φ/Φ

0
=

−𝑙+1. Note that within these two diverging limits, the
energy becomes a imaginary quantity and hence the
corresponding states will be decaying states. Appear-
ance of such nonhermiticity of Dirac Hamiltonian is
well known in curved space [39]. In our case, it is an
artefact of the geometry of the system.

The nature of energy and current in these three 𝜅 region
is shown in Figure 4. Figures 2 and 3 show the energy and
current spectra for 𝜅 = 0.01 (𝑅 = 10𝑟

𝑒
,𝑚 = 1𝑚

𝑒
) which are an

example for 𝜅 → 0 regime.
One can also observe the same nature of current by keep-

ing 𝑚 fixed and varying 𝑅 as a parameter. In that case, there
would be a critical radius given by

𝑅𝑚cri =
ℎ
2𝑚𝑐

, (15)

at which, the current becomes constant.This is actually half of
the reduced Comptonwavelength of the particle. However by
tuning the radius, it is not possible study the phenomena for
massless particles.

3.1. Persistent Current for a Massless Dirac Particle. As a spe-
cial case, we will discuss here the nature of persistent current
caused by a massless particle. The energy of such particle can
be obtained by putting𝑚 = 0 in (5) and is given by

𝐸0
𝑙
= (𝑐ℎ

𝑅
)√(𝑙 + (Φ/Φ

0
)) (𝑙 + (Φ/Φ

0
) − 1). (16)
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Figure 4: Nature of the energy and current for different values of 𝜅. Here we use (ℎ = 𝑐 = 𝑒 = 𝑚
𝑒
= 1) 𝑅 = 10𝑟

𝑒
and vary the mass. We have

taken 𝑚 = 0.1𝑚
𝑒
(𝜅 = 1), 𝑚 = 0.05𝑚

𝑒
(𝜅 = 4), and 𝑚 = 0.01𝑚

𝑒
(𝜅 = 100). 𝑚 = 0.05𝑚

𝑒
is the critical mass (12) at which energy becomes

linear in flux and current attains a constant value 𝐼sat (13). For 𝜅 > 4, 𝐼sat is the lower cutoff of the current.
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Figure 5: Nature of energy and current for massless particles. The lower cutoff value for current is given by 𝑒𝑐/2𝜋𝑅. Here we used 𝑅 = 10𝑟
𝑒

with the same units as in Figures 2 and 3.

Corresponding persistent current by definition (6) is

𝐼0
𝑙
= − 𝑒𝑐

2𝜋𝑅
𝑙 + (Φ/Φ

0
) − (1/2)

√(𝑙 + (Φ/Φ
0
)) (𝑙 + (Φ/Φ

0
) − 1)

. (17)

The variation of 𝐸0
𝑙
and 𝐼0
𝑙
with flux is shown in Figure 5.

From the denominator of (17), one can readily see that for
Φ/Φ
0
= −𝑙 and Φ/Φ

0
= −𝑙 + 1, the current diverges. This is

something that does not happen for a nonrelativistic particle.
At asymptotic region (Φ/Φ

0
→ ∞), the current becomes

constant (Figure 5) and is given by (13) which is the current

produced by amassless particle with charge 𝑒 circling in a ring
of radius 𝑅.

4. Total Current for Odd and
Even Number of Particles

From (17), one can understand that an exact analytic expres-
sion for total current is not possible for our case (For an
approximate result at large mass limit see [35]). We consider
100 particles in a ring with radius 𝑅 = 10𝑟

𝑒
and numerically

evaluate the total current for different𝑚 values. While doing
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Figure 6: Total current (measured in units of 𝐼
𝑒
(Figure 3)) for 100 (Blue) and 101 (red dashed) particles in a ring with 𝑅 = 10𝑟

𝑒
(ℎ = 𝑐 = 𝑒 =

𝑚
𝑒
= 1). Masses and corresponding 𝜅 values are written on the top of each plot. For large mass, (a) total current depends linearly on flux. As

we decrease the mass (b) the dependence becomes nonlinear. For critical mass (12), total current is a step function of flux (c), the step heights
being multiple of 𝐼sat (13). For lower mass (d), total current tends to diverge at values given by (14), the mean position of the plateaus being
multiple of 𝐼sat. On further decrease of mass (e), the spectrum becomes narrower and the divergences come closer to the integral flux values.
As we go to the zero mass limit (f), total current appears as sharp pulses at integral values of flux.

so, we consider only Pauli’s exclusion principle and neglect
any other kinds of interaction among the particles.The result
for both even and odd number of particles is shown in
Figure 6.

From Figure 6, we see that for large mass, total current
varies linearly with flux (Figure 6(a)). This is consistent with
the nonrelativistic result. As we decrease the mass, relativistic
effects start dominating and the current starts showing
nonlinear behaviour (Figure 6(b)). This is manifested by the
periodic appearance of flat regions in Figure 6(b). At𝑚 = 𝑚𝑅cri
(12) (𝜅 = 4) total current becomes a multiple step function of
flux (Figure 6(c)), the step heights being integral multiple of
𝐼sat (13) and each step being 2𝐼sat high. As we further decrease
the mass (𝜅 > 4), the total current starts showing divergences
(Figure 6(d)). The point of divergence is given by (14). The
average of a plateau between two divergences is at some mul-
tiple of 𝐼sat and located at integral values of flux.The width of
the plateau decreases with the decrease of mass (Figure 6(e)).
As we go to the massless limit (Figure 6(f)), the total current
appears as sharp pulses at integral values of flux.

5. Susceptibility of a Many Electron Ring

The total susceptibility is evaluated by taking the flux deriva-
tive of the total current. It is well known that superconducting
rings are perfect diamagnets and so are the mesoscopic

metalic rings. Let us see the nature of the susceptibility for
the relativistic fermions.

The change of the magnetic susceptibility with mass
is quite interesting for relativistic fermions (Figure 7). For
large mass the susceptibility is negative and almost con-
stant (Figure 7(a)). The ring behaves as a diamagnet like a
superconducting ring. As we decrease mass, it starts showing
periodic oscillation with negative amplitude (Figures 7(b),
and 7(c)) with periodΦ

0
. The maxima are located at integral

flux values. The susceptibility becomes zero at critical mass
(Figure 7(d)) with a sharp divergence at half integral values
of flux which are due to change of step height in flux-current
relationship curve (Figure 6(c)). As we further decrease the
mass, the periodic oscillation appears again, but this time
with positive amplitude (Figures 7(e) and 7(f)).The suscepti-
bility has a minimum value at integral flux and encounters a
positive divergence at half integral values of flux.The positive
magnetic susceptibility is also reported for carbon nanotube
torus [36] where the electrons behave as massless Dirac
fermions. To understand the dependence of susceptibility on
particle mass, it is better to focus on the vicinity of an integral
value of flux. Here we chooseΦ = 0 and study the variation of
susceptibility both with respect to mass and ring radius.

One can have a better idea about the change of suscepti-
bility with respect to mass from (Figure 8(a)). For large mass,
we see that the susceptibility is negative and varies little with
mass. This is the nonrelativistic limit where the rings behave
as diamagnets. The susceptibility increases with the decrease



6 Advances in Condensed Matter Physics

To
ta

l S
us

ce
pt

.

1 2

0.02
0.04
0.06

Flux (Φ/Φ0)
−2 −1

−0.02

−0.04

−0.06

0

0.00

m =0.100me, = 1.𝜅

(a)

To
ta

l S
us

ce
pt

.

1 2

0.02
0.04
0.06

Flux (Φ/Φ0)
−2 −1

−0.02

−0.04

−0.06

0

0.00

m =0.058me , = 2.973𝜅

(b)

To
ta

l S
us

ce
pt

.

1 2

0.02
0.04
0.06

Flux (Φ/Φ0)
−2 −1

−0.02

−0.04

−0.06

0

0.00

m =0.053me , = 3.56𝜅

(c)

To
ta

l S
us

ce
pt

.

1 2

0.02
0.04
0.06

Flux (Φ/Φ0)
−2 −1

−0.02

−0.04

−0.06

0

0.00

m = 0.050me , = 4.𝜅

(d)

To
ta

l S
us

ce
pt

.

1 2

0.02
0.04
0.06

Flux (Φ/Φ0)
−2 −1

−0.02

−0.04

−0.06

0

0.00

m = 0.047me , = 4.527𝜅

(e)

To
ta

l S
us

ce
pt

.

1 2

0.02
0.04
0.06

Flux (Φ/Φ0)
−2 −1

−0.02

−0.04

−0.06

0

0.00

m = 0.045me , = 4.938𝜅

(f)

Figure 7: Nature of susceptibility for a ring with radius 𝑅 = 10𝑟
𝑒
at different masses which are written on the top of every plot. We have

used the same units as Figure 2 in which the unit of susceptibility is Ω
𝑒
= 𝑒𝐼
𝑒
/𝑟
𝑒
𝐸
𝑒
. For large mass, susceptibility is negative (a) and almost

constant. It shows periodic oscillation with a negative amplitude ((b) and (c)) for 𝑚 > 𝑚cri and becomes zero at critical mass (d). For lower
mass, it again shows oscillation ((e) and (f)) but with positive amplitude. The blue and red dashed lines correspond to even and odd number
of electrons which overlaps with each other.
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Figure 8: Variation of susceptibility at Φ/Φ
0
= 0 with respect to (a) mass (𝑚) for a ring with 𝑅 = 10𝑟

𝑒
and (b) ring radius (𝑅) for 𝑚 = 1𝑚

𝑒
.

We have used the same units as Figure 2 and susceptibility is measured in units ofΩ
𝑒
(Figure 7). In both cases the susceptibility curve cut the

𝑥-axis at corresponding critical value, that is, at𝑚 = 𝑚𝑅cri = 0.05𝑚𝑒 in (a) and at 𝑅 = 𝑅𝑚cri = 0.5𝑅𝑒 in (b). Both these points corresponds 𝜅 = 4.

of mass and becomes zero at critical mass. On further
decrease of mass, the susceptibility becomes positive and
keeps increasing as we proceed to the zero mass limit many
particle fermionic rings thus make a smooth diamagnetic to
paramagnetic transition with decrease of mass. One must
have noticed that for single particle susceptibility, the real
governing parameter is 𝜅 (9) which is proportional to the
inverse of the product of 𝑚 and 𝑅 (11). Hence the same
behaviour of total susceptibility can be observed if one keeps

𝑚 fixed and tune 𝑅. We choose a fixed value of the particle
mass (𝑚 = 1𝑚

𝑒
) and plot the total susceptibility against the

ring radius (𝑅) (Figure 8(b)) andwe find the nature to be sim-
ilar to that of the total susceptibility, mass curve (Figure 8(a)).
The zero susceptibility occurs at 𝑅 = 𝑅𝑚cri which is half the
reduced Compton wavelength of the particle (15). Thus from
Figure 8(b), we can easily see that for larger radius, the ring
will be diamagnetic whereas smaller rings will be paramag-
netic.
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6. Possible Experiment

In this paper we have discussed everything keeping mass
as a parameter. But for experimental purpose variation of
particle mass is not a very useful idea. One can alternatively
fix the mass and vary the radius (𝑅) of the ring. The critical
radius (𝑅𝑚cri) (15) at which the single particle current becomes
constant (𝐼sat) and consequently susceptibility becomes zero
is found to be half of the reduced Compton wavelength of the
particle. But designing such small ring is a great challenge and
in this way we cannot go to the massless limit either. On the
other hand, doped graphene can be a good testing ground for
such experiment. On a pure graphene sheet, electrons behave
asmasslessDirac fermions. In case of a doped graphene, there
is band gap [40–42], which corresponds to a massive Dirac
fermion. The band gap can be controlled by the doping con-
centration.Thus instead of mass, one can use doping concen-
tration as the driving parameter. Another way to introduce a
mass gap in energy spectrum is to grow the graphene sheet
on different substrate [43]. By controlling the mass gap, it
may be possible to study the nature of the persistent current.
However confining electron in a one dimensional ring in
graphenewould be a great challenge. Due toKlein tunnelling,
potential barriers will not be sufficient for confinement. The
edge of a graphene disk can provide a one-dimensional path,
but due to edge effect, the physicswould be different from that
of a simple Dirac fermion.

7. Conclusion

In this paper, we thoroughly study the nature of persistent
current for relativistic fermion. From our analysis, it is clear
that the current is a sensitive function of the particle mass as
well as the radius of the ring. For large mass, the total current
is linear in fluxwith constant negative susceptibility. But as we
move to low mass regime, the behaviour is more and more
nonlinear which is clearly shown in Figure 6. We find the
existence of a critical mass (𝑚𝑅cri) below which the energy
becomes imaginarywhich indicates unstable states for certain
range of flux. The current shows a divergence within this
range. Evenmore interesting is the nature of the susceptibility.
For large mass, it is negative and constant like a nonrela-
tivistic case. As we go to low mass regime, the susceptibility
appears to be a periodic function of flux with periodicity
Φ
0
(Figure 7). Not only that, its amplitude also increases

with the decrease of mass. At 𝑚 = 𝑚𝑅cri (𝜅 = 4) the
susceptibility becomes zero (Figure 7(d)) and gradually turns
positive with further decrease in mass. The same behaviour
can also be observed ifwe fix themass and vary the ring radius
(Figure 8(b)). We show that a ring with bigger radius (𝑅 >
𝑅𝑚cri, where 𝑅

𝑚

cri is half the reduced Compton wavelength of
the particle (15)), is diamagnetic while that with smaller one
(𝑅 < 𝑅𝑚cri) is paramagnetic.
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