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A note on the paper Fractional Programming with convex
quadratic forms and functions by H.P.Benson

J.B.G.Frenk∗

January 23, 2005

Abstract

In this technical note we give a short proof based on standard results in convex analysis of
some important characterization results listed in Theorem3 and4 of [1]. Actually our result is
slightly general since we do not specify the convex setX. For clarity we use the same notation
for the different equivalent optimization problems as done in [1].

1 Introduction.

In [1] some important theoretical results are given in Theorems3 and4. In this note we will give
an alternative short proof of these results. Consider as in [1] optimization problem (P2) given by

max{x>Qx

g(x)
: x ∈ X} (P2)

with X a compact convex set,Q a symmetric positive semidefinite matrix andg a finite convex
and positive function on an open convex set containingX. To avoid the pathological case that(P2)
is a convex program we assume thatg is not affine. Sinceg is a finite convex function on a open
set containingX it is well-known thatg is continuous onX and hence by Weierstrass theorem
(cf.[3])

0 < m := min{g(x) : x ∈ X} andM := max{g(x) : x ∈ X} < ∞

Sincex>Qx ≥ 0 it follows for every givenx ∈ X that

x>Qx

g(x)
= max{x>Qx

t
: t ≥ g(x)} (1)
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and this shows withp(x, t) := x>Qx
t and

F := {(x, t) : x ∈ X, t ≥ g(x),m ≤ t ≤ M} (2)

that the optimization problem(P3)

max{p(x, t) : (x, t) ∈ F} (P3)

is in the following sense equivalent to optimization problem(P2) (see also Proposition3 of [1]).

Lemma 1 The vector(x∗, t∗) is an optimal solution of (P3) if and only ifx∗ is an optimal solution
of (P2) with optimal objective valuet∗ = g(x∗).

We will now investigate the feasible regionF . Sinceg is a continuous convex function on the
compact convex setX we obtain that

epi(g) := ((x, t) : t ≥ g(x), x ∈ X}

is a closed convex set and by relation (2) the setF is a compact convex set . For the convex
functionh(x) = x>Qx it is well-known that its so-called perspective

(x, t) → th(
x

t
) =

x>Qx

t

of h is again convex (cf.[2]) and so the function(x, t) → p(x, t) is convex. We will now further
simplify the optimization problem(P3) using the so-called reduction to principal axes. Since
Q is a symmetric positive semidefinite matrix we know that there exists an orthonormal matrix
W = [w1, ..., wn] with wj the eigenvector ofQ belonging to the nonnegative eigenvalueαj such
thatQ = W>DW. In this caseD is a diagonal matrix consisting of the nonnegative eigenvalues
αj , 1 ≤ j ≤ n. By the definition of an orthonormal matrix it follows thatW>W = I. This implies
substitutingx = Wy in problem(P3) that we obtain the optimization problem(P4) given by

max{p(Wy, t) : (y, t) ∈ F1} (P4)

with the transformed feasible regionF1

F1 = {(y, t) : Wy ∈ X, t− g(Wy) ≥ 0,m ≤ t ≤ M}.

SinceX is compact and convex andW is invertible we obtain thatW−1(X) = {y ∈ Rn : Wy ∈
X} is also compact and convex and soF1 is a compact and convex set. Also by construction it
follows that

p(Wy, t) =

∑n
j=1 αjy

2
j

t

and since we know thatp is convex the objective function of optimization problem(P4) is also
convex. Using now Lemma 1 and the substitutionx = Wy with W> = W−1 we have shown
Theorem3 and4 of [1].
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Lemma 2 The vector(y∗, t∗) is an optimal solution of (P4) if and only if W>y∗ is an optimal
solution of(P2) with optimal objective valuet∗ = g(Wy∗). Moreover, the function

(y, t) → t−1
∑n

j=1
αjy

2
j

is convex on the compact and convex regionF1.

If the convex feasible regionX equals (cf.[1])

X = {x ∈ Rn : gi(x) ≤ 0, 1 ≤ i ≤ q, L ≤ x ≤ U}

we obtain that

F1 := {(y, t) : gi(Wy) ≤ 0, 1 ≤ i ≤ q, t− g(Wy) ≥ 0, L ≤ Wy ≤ U}.

In the remainder of the paper by Benson (cf.[1]) a branch and bound procedure is given to solve
optimization problem(P4). Applying that method we can find by Lemma 2 an optimal solution of
the original problem (P2).
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