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Abstract

The decision tree algorithm for monotone classi�cation presented in [4, 10] re-

quires strictly monotone data sets. This paper addresses the problem of noise due

to violation of the monotonicity constraints and proposes a modi�cation of the al-

gorithm to handle noisy data. It also presents methods for controlling the size of

the resulting trees while keeping the monotonicity property whether the data set is

monotone or not.

Keywords: ordinal classi�cation, monotone decision trees, noise, pruning

1 Introduction

Ordinal classi�cation refers to the category of problems, in which the attributes of the

objects to be classi�ed are ordered. Ordinal classi�cation has been studied by a number

of authors, e.g. [1, 2, 3, 4, 7, 8, 9, 10] in the context of decision trees, decision lists, logical

analysis of data, rough sets theory, etc. However a number of problems require further

research in order to successfully apply ordinal classi�cation in practice.

Noise in the data is a problem that often occurs in practical applications of the classi-

�cation algorithms and is extensively studied by many authors. The traditional de�nition

of noise considers data points which do not agree with the underlying function because of

wrong classi�cation, incorrect/imprecise measurements, typing mistakes, etc. Such points

can mislead the classi�cation algorithm and cause the generation of an overly complicated

and/or inaccurate classi�er.

The ordinal classi�cation methods, however, might su�er from a speci�c type of noise

that is not relevant for the general methods. The restriction of monotonicity of the data
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might be violated and data points can be inconsistent with each other, i.e. one point might

dominate another on all attribute values but be classi�ed in a lower class. This paper is

an attempt to solve the problem in the context of monotone binary decision trees. It also

addresses the problem of pruning the generated tree so that the monotonicity property is

preserved. A number of approaches for that are presented.

2 Monotone decision trees

A classi�er class is called monotone if each pair of data points (x,y) satis�es the constraint:

x � y ) class(x) � class(y). The traditional decision tree algorithms such as C4.5

cannot guarantee the generation of a monotone classi�er even when they are given a

fully-monotone data set. An extension for dealing with ordinal data was proposed in [9]

for 2-class problems. A more general approach applicable to k-class problems is proposed

in [4, 10]. However, in this approach a fully monotone data set is required so that noise

with respect to ordinality cannot be handled . In this paper we extend the method for

dealing with noise.

The decision tree algorithms are characterized by three main rules: a splitting rule, a

stopping rule and a labeling rule. The splitting rule de�nes how to split the current set

of data points in two disjoint subsets - for this often the entropy criterion is used. The

stopping rule de�nes when a subset cannot be split anymore and, whenever it �res, the

labeling rule is checked which de�nes how to label the new leaf.

split(node T ):

update(T );

if T is homogeneous

label T ;

else

split T into disjoint TL and TR;

split(TL);

split(TR);

update (node T ):

if a =2 D

�(a) = �max(a);

add a to D;

if b =2 D

�(b) = �min(b);

add b to D;

Figure 1: The monotone decision tree algorithm

The monotone decision tree (MDT) algorithm uses one more rule, the update rule,

in order to preserve the monotonicity. It is executed for every node that we consider

for splitting. As a stopping rule, the homogeneity of the node is checked. The whole
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algorithm can be represented by a procedure given in �gure 1. Here D denotes the data

set and T denotes the current node.

The update rule adds at most two new data points to D - the minimal and the

maximal possible points in T , also called corners, labeled with respectively the maximal

and minimal value allowed given D. More precisely, if X is the input space and T is

de�ned as T = fx 2 X : a(T ) � x � b(T )g then a(T ) and b(T ) are considered for adding

to the data set D � X . If they are not present, then their labels are chosen to be the

corresponding values of �min and �max which are de�ned in the following.

Let �(x) be the label of a data point x 2 D, and cmin respectively cmax the minimal

and the maximal possible label in D. The downset and the upset generated by x are

de�ned as:

# x = fy 2 X : y � xg; " x = fy 2 X : y � xg

and the downset and the upset generated by D are de�ned as:

# D =
S
x2D

# x; " D =
S
x2D

" x

Then �min and �max are de�ned as follows:

�min(x) =

�
maxf�(y) : y 2 D \ # xg if x 2 " D

cmin otherwise
(1)

�max(x) =

�
minf�(y) : y 2 D \ " xg if x 2 # D

cmax otherwise .
(2)

As a running example we use the monotone data set, given in table 1, which consists

of 15 data points described by 6 condition attributes (a1 to a6) and one decision/class

attribute (�). Figure 2 shows the monotone decision tree generated by the algorithm from

this data set.

Note, that a simple criterion for checking the monotonicity of a tree (see [4, 10]) can

be de�ned as follows. Let L be the set of leaves of a tree T and N be the set of nodes of

T . We de�ne a relation on N - for T; T 0 2 N :

T � T
0 , a(T ) � b(T 0):

Let T; T 0 2 L with labels �(T ), �(T 0) where T = fx 2 X : a(T ) � x � b(T )g and

T
0 = fx 2 X : a(T 0) � x � b(T 0)g Then the tree is monotone if for any choice of T and

T
0:
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T � T
0 ) �(T ) � �(T 0):

x a1 a2 a3 a4 a5 a6 �

1 0 0 1 1 0 1 0

2 1 1 2 1 3 1 0

3 0 1 1 0 0 1 0

4 2 3 1 3 3 1 1

5 1 0 2 2 3 1 1

6 0 0 0 3 2 2 1

7 2 2 1 1 1 2 1

8 2 4 2 2 2 3 2

9 1 1 2 1 3 2 2

10 3 2 1 0 0 1 2

11 3 2 2 1 2 2 3

12 3 3 4 1 2 2 3

13 4 2 3 3 3 3 3

14 3 3 3 4 1 3 3

15 4 4 2 3 0 1 3

Table 1: The example data set
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Figure 2: The MDT generated for the example data set

3 Monotone decision trees from noisy data

When monotonicity noise occurs in the data it appears as pairs of data points that are

inconsistent with respect to monotonicity. For the MDT algorithm this results in tree
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nodes for which the lower left corner is assigned a higher label than the upper right

corner. More precisely, let T = fx 2 X : a(T ) � x � b(T )g be the set (node) considered

for splitting and let �(a) and �(b) be the labels of a(T ) and b(T ) respectively. Then it

might occur that �(a) > �(b).

In order to solve the problem we propose a simple extension of the update rule that

not only grows the data set but also tries to repair the inconsistencies. The new update

rule is given in �gure 3. The procedure always relabels the corners with the consistent

labels that are calculated from the rest of the data. This algorithm always generates a

monotone tree.

update D for T :

l1 = �max(a); l2 = �min(b);

if a 2 D

relabel a: �(a) = l1;

else

label a: �(a) = l1;

add a to D;

if b 2 D

relabel b: �(b) = l2;

else

label b: �(b) = l2;

add b to D;

Figure 3: The new update rule

Theorem 1 The MDT algorithm of �gure 1 with the update rule of �gure 3 always gen-

erates a monotone tree.

Proof. Let us assume that the generated tree is not monotone:

9T; T 0 2 L : T � T
0 and �(T ) > �(T 0):

By assumption T and T
0 are homogeneous. Therefore �(T ) = �(a(T )) = �(b(T )) and

�(T 0) = �(a(T 0)) = �(b(T 0)): This implies

�(a(T )) > �(b(T 0):) (3)
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Figure 4: MDT on the non-monotone data set

The labels of the leaves are assigned as follows:

at a moment t we assign �(a(T )) = �max(a)

at a moment t0 we assign �(b(T 0)) = �min(b):

Let t < t
0. Since T � T

0 then a(T ) 2# b(T 0) \D 6= ;

) �min(b(T
0)) � �(a(T ))

) �(a(T )) � �(b(T 0));

which is a contradiction with condition (3). The case t0 < t is analogous. �

An interesting observation is that after a leaf is created all the points belonging to

the leaf except the corners can be deleted from the data set since they will not be used

further in the tree generation. This remains true also for the algorithms presented in the

rest of the paper.

To illustrate the algorithm we introduce monotone inconsistency in the example data

set of table 1 - we change the label of data point x3 from 0 to 1. Thus we introduce an
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inconsistent pair of data points (x2,x3). The output of the algorithm on the new data set

is given in �gure 4.

In our implementation we use depth-�rst strategy for generating the tree. The same

strategy is used in the algorithms presented in section 4.

4 Pruning a monotone tree

As it was noted before, the update rule of the MDT algorithm tries to add new points to

the data set. Thus the number of points to be split grows and that in general causes the

generation of bigger trees. When noise is present in the data set this creates diÆculties

for the classi�cation algorithms, i.e. by creating areas in the data that are diÆcult to

describe, and thus also causes (sometimes substantial) increase in the size of the generated

tree. The same e�ect is present for the special case of monotonicity noise. This can be

illustrated by the following example. We introduce inconsistency in the data set from

table 1 by changing the label of x8 from 2 to 0 and that results in one pair of inconsistent

points (x7,x8). The monotone tree generated by the algorithm has 148 leaves and 288

data points in the updated data set.

Therefore we need methods for pruning the monotone tree in such a way that we keep

the monotonicity property of the tree and do not increase the misclassi�cation rate more

than a prede�ned threshold. While the area of decision tree pruning attracts a lot of

attention and a number of methods are developed (see [6] for an extensive survey), these

methods do not take into account the monotonicity property and cannot guarantee that

the pruned tree will still be monotone.

This paper proposes a number of methods for pruning within two main approaches

- pre-pruning and post-pruning. Pre-pruning is a general approach for pruning while

generating the tree by not growing branches which fail to satisfy a prede�ned criterion

and turning them to leaves. Therefore pre-pruning modi�es the stopping and the labeling

rule of the algorithm. Post-pruning on the other hand �rst grows the full tree and then

tries to cut branches from it while a prede�ned criterion is satis�ed. It is therefore a

post-processing step which requires two separate rules - for choosing a branch to cut and

for labeling the new leaves.

Post-pruning requires the full tree to be generated which if the tree is very large takes

a lot of resources for generating and storing the tree as well as the updated data set. Pre-

pruning stops the generation of the tree prematurely and therefore takes less resources

since the tree and the updated data set remain smaller. It is however more diÆcult

in general to decide when to stop and what label to assign to the leaf since not much
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information about the tree is available yet.

4.1 Pre-pruning

One criterion often used in traditional pruning techniques for prematurely stopping the

generation of a branch is a prede�ned threshold for the minimal number of points in a

leaf. Splitting is not allowed if the number of points in any of the new leaves drops below

the threshold, the current node is turned to a leaf and assigned an appropriate label.

Di�erent methods are used to choose a good label for the new leaf - one method that

often works well in practice is to assign the label of the majority class among the points

in the leaf. The traditional methods however do not guarantee the monotonicity property

of the resulting tree.

As mentioned before, we use the depth-�rst strategy for the tree generation. First we

note an observation that holds for this strategy.

Lemma 1 Let T; T
0 2 L in the monotone tree T generated with the depth-�rst strategy.

Let T � T
0
. Then leaf T is generated before leaf T

0
.

Proof. Let N be a node in T such that N is the least common ancestor of T and T
0.

Therefore 9i such that exactly one of the following is true:

8x 2 T; 8y 2 T
0 : x(i) � y(i) (4)

8x 2 T; 8y 2 T
0 : x(i) > y(i) (5)

Condition 5 contradicts the requirement T � T
0. Therefore condition (4) is true and

T belongs to the left branch of N while T 0 belongs to the right branch of N . Therefore

using the depth-�rst strategy T will be generated before T 0. �

Using this result, we propose, in the case of the depth �rst strategy the labeling rule

given in �gure 5 for a newly generated leaf. The resulting tree remains monotone.

Theorem 2 Let T be a tree generated with the depth �rst strategy using the update rule

from �gure 3 and the labeling rule of �gure 5 with a threshold of at least m points in a

leaf, m > 1. Then T is monotone.
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label leaf T :

�(T ) = �(b(T ));

�(a(T )) = �(b(T ));

Figure 5: The new labeling rule

Proof. Let 9T; T 0 2 L such that T � T
0 and �(T ) > �(T 0). According to lemma (1), T

should be generated before T 0.

The update rule guarantees that �(b(T 0)) � �(a(T )): The labeling rule guarantees

that �(T ) = �(b(T )) = �(a(T ))

) �(T 0) = �(b(T 0)) � �(T )

which is a contradiction with the assumption. �

To illustrate the algorithm we use the example from table 1 with the change described

in section 4. Figure 6 shows the tree generated using pre-pruning with a threshold of at

least 4 points in a leaf. The tree misclassi�es 2 points from the original data set. The

new algorithm is an extension of the algorithm proposed in [4, 10] in the sense that it

generates the same tree if the data set is fully monotone data set. Moreover, the pruning

algorithm can also be used with the traditional MDT algorithm in order to reduce the

size of the generated tree.

In some cases both children-leaves of a node might be assigned the same label. In that

case the node can be pruned without further increase in the misclassi�cation rate.

a1 > 2k

a5 > 0k

0#
# cc

a3 > 1k

a4 > 0k

0
,, ll

1

!!
!! aaaa a6 > 1k

1
,, ll

2

��
��

�� XXXXXX a3 > 1k

2,
, ll 3

Figure 6: MDT generated with pre-pruning
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4.2 Post-pruning

The general approach of post-pruning the already generated tree de�nes two additional

rules - for choosing a branch to prune and for choosing a label for the new leaf. First we

address the second problem taking into account the monotonicity property of the tree.

Let T be a monotone decision tree. For a node T = fx 2 X : a(T ) � x � b(T )g we

de�ne a consistency interval L(T ) where:

L(T ) = [lmin(T ); lmax(T )]

lmin(T ) = maxf�(T 0) : T 0 2 L; T 0 � Tg

lmax(T ) = minf�(T 0) : T 0 2 L; T 0 � Tg:

If L(T ) 6= ; then any value in L(T ) is a possible consistent label for T preserving the

monotonicity property of the tree.

Theorem 3 Given a monotone tree T and an arbitrary node T of T . Suppose that the

children of T are pruned and that T is turned to a leaf. Let L(T ) 6= ;. Then for any

l 2 L(T ), l can be assigned as a label of T and the resulting tree remains monotone.

Proof. Let us assume that the new tree is not monotone. Then there exists T 0 2 L such

that one of the following occurs:

T
0 � T and �(T 0) > �(T ) or (6)

T � T
0 and �(T ) > �(T 0) (7)

.

Let condition (6) be the case.

Since T 0 � T we have �(T 0) � lmin(T ). But �(T ) = l � lmin(T ). Therefore:

�(T 0) � lmin � �(T ) < �(T 0)

which is a contradiction.

The case of condition (7) is analogous. �
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When the consistency interval contains only one point l = lmin = lmax, then there is

only one possibility for a consistent label of the pruned node. However, if lmin < lmax,

then a choice has to be made which point from the interval to assign. This choice is often

domain dependent and re
ects i.e. how optimistic or pessimistic the prediction is required

to be.

The second open question with monotone pruning is the choice of a node to prune.

It includes the order of visiting the nodes and the criterion for approval or rejection of

the current node for pruning. We consider two search strategies for visiting the nodes

which are shown in �gures 7 and 8. The �rst follows the depth-�rst order of visiting the

nodes and tries to prune the current node if both its children are leaves. The second

strategy iteratively tries to prune the frontier of the tree in depth-�rst order. On each

iteration it tries to prune all nodes whose both children are leaves none of which has just

be pruned. The loop terminates when the tree is traversed without pruning any node.

Our experiments point out that the second strategy produces more balanced trees while

the size of the trees is comparable to the size of the trees produced by the �rst strategy.

search-tree(Tree-root);

||

search-tree(node T ):

if (leaf(T .left-child) && leaf(T .right-child))

if (good-for-pruning(T ))

prune(T );

else

if (! leaf(T .left-child)

search-tree(T .left-child);

search-tree(T .right-child);

Figure 7: Depth-�rst strategy for choosing candidates for pruning

Once a candidate for pruning is reached it has to be decided whether to prune it or

not. One logical criterion is the misclassi�cation rate. The algorithm computes the new

label and then checks whether the misclassi�cation rate of the tree with the new leaf is

below a prede�ned threshold for the percentage of misclassi�ed data points. It is a general

approach to use a separate pruning set for checking the accuracy of the tree.

To illustrate the post-pruning algorithm we use the same example. The full tree

contains 148 leaves. Figure 9 shows the pruned tree at misclassi�cation threshold 25%

and assigning label lmax. For simplicity we don't use a separate pruning set but check the

11



search-tree():

do:

pruned=0;

pruning-iter(Tree-root);

while(pruned);

||

pruning-iter(node T ):

if (! leaf(T .left-child)

pruning-iter(T .left-child);

if (! leaf(T .right-child))

pruning-iter(T .right-child);

if ((both-children-leaves(T )) &&(! child-just-pruned(T )))

if (good-for-pruning(T ))

prune(T );

pruned++;

Figure 8: Frontier strategy for for choosing candidates for pruning

misclassi�cation on the original data set. The pruned tree misclassi�es 3 points from the

original data set. Figure 10 shows the tree pruned at threshold 30% and 4 misclassi�ed

points.

Again as with pre-pruning it might happen that both children of a node are assigned

the same label - then again we can prune the node without increasing the misclassi�cation

rate.

Figure 11 illustrates the same algorithm with choosing lmin as the label of the new

leaf. The tree is pruned at misclassi�cation threshold 25% and 3 misclassi�ed points.

Figure 12 shows the tree at threshold 30% and 4 misclassi�ed points.

The post-pruning algorithm can be used separately from the rest of the algorithms

presented in the paper. It can be applied as a post-processing step on any monotone

tree generated with another algorithm as soon as the information about the leaf corners

is available. It can also be used on a monotone tree generated with the pre-pruning

algorithm for further simpli�cation of the tree.
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Figure 9: MDT generated with post-pruning

a1 > 2k

a5 > 0k

0"
" b

b
a3 > 1k

0"
" b

b
a6 > 1k

0"
" b

b
a5 > 2k

0�
� QQ 2

   
   

  ```````̀ a3 > 1k

2�
� QQ 3

Figure 10: MDT generated with post-pruning

5 Experiments

In order to compare and study the speci�cs of the algorithms presented in the paper,

experiments were conducted using three data sets - one arti�cial and two real-world data

sets. The original data for all of them is monotone. Further, some monotonicity noise

is introduced in the following way: among all pairs of comparable data points, one pair

is selected and, if the labels di�er, they are switched. This results in one or more non-

monotone(inconsistent) pairs. The same procedure can be performed on the new data

set. For each of the original data sets, 3 noisy sets are generated by switching the labels

of respectively 1, 2 and 3 pairs. The new data sets are used to build the full MDT, the

pre-pruned MDTs with varied threshold of 2 to 5 points in a node and the post-pruned

trees with varied misclassi�cation rate threshold of 5% to 20%. Tables 2 to 4 represent
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Figure 11: MDT generated with post-pruning

the results by the following indicators: number of points in the updated data set, number

of nodes in the tree, number of leaves, average depth the tree, maximal depth, number

of misclassi�ed points on the original (not updated) data, on the updated data (without

the newly added points) and on the separate test set.

The arti�cial data set is generated in the following way. First a monotone model

is assumed to be the underlying model. A set of random data points is generated and

the points are classi�ed according to the model. The resulting set is monotone with

15 comparable pairs of data points. The size of the data is 50 points described by 10

attributes taking values from 0 to 5 and a decision attribute taking values from 0 to 2.

Using the same procedure a separate test set of the same size is generated. The features

of the generated MDT are given in table 2, column 2. Further 3 noisy data sets are

generated by the above described procedure resulting in 2, 4 and 5 inconsistent pairs of

points. Their features are given in the rest of tables 2.

The second data set used in the experiments is discussed in [7, 11]. The sample consists

of 39 objects representing �rms that are described by 12 �nancial parameters. To each

company a decision value is assigned - the expert evaluation of its category of risk. The

condition attributes take integer values from 0 to 4 and the decision attribute is in the

range of 0 to 2 where: 0 means unacceptable, 1 means uncertainty and 2 means acceptable.

The problem is monotone - if one company outperforms another on all condition

attributes then it should not have a lower value of the decision attribute, nevertheless,
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full-m full pre2 pre3 pre4 pre5 po5 po6 po7 po8 po9 po10 po15 po20

updated 114 637 208 110 106 104 637 637 637 637 637 637 637 637

num-nodes 63 587 163 59 55 53 49 49 47 47 41 41 13 35

num-leaves 32 249 82 30 28 27 25 25 24 24 21 21 7 18

av-depth 6 25 12 9 8 8 6 6 6 6 6 6 3 6

max-depth 9 35 26 19 18 18 12 12 12 12 12 12 4 12

miscl-org 0 1 5 7 7 7 2 2 3 3 4 4 7 9

miscl-upd 0 0 0 7 7 7 1 1 2 2 3 3 6 8

miscl-test 10 12 15 17 17 17 12 12 14 14 16 16 18 21

updated 9644 209 113 109 1000 9644 9644 9644 9644 9644 9644 9644 9644

num-nodes 9597 167 63 59 49 9597 9597 47 47 47 47 37 21

num-leaves 4799 84 32 30 25 4799 4799 24 24 24 24 19 11

av-depth 22 11 9 8 7 22 22 6 6 6 6 6 4

max-depth 35 29 20 19 15 35 35 12 12 12 12 12 8

miscl-org 3 7 8 8 8 3 3 3 3 4 4 7 9

miscl-upd 0 0 7 7 8 0 0 2 2 3 3 6 8

miscl-test 15 12 11 11 12 15 15 16 16 17 17 16 14

updated 9680 245 148 113 104 9680 9680 9680 9680 9680 9680 9680 9680

num-nodes 9635 205 99 63 53 9635 9635 9635 9635 51 51 43 31

num-leaves 4818 103 50 32 27 4818 4818 4818 4818 26 26 22 16

av-depth 22 12 11 8 7 22 22 22 22 6 6 6 4

max-depth 35 29 22 19 15 35 35 35 35 12 12 12 8

miscl-org 4 8 9 9 9 4 4 4 4 4 4 7 9

miscl-upd 0 0 8 8 9 0 0 0 0 2 2 5 7

miscl-test 15 12 11 12 13 15 15 15 15 16 16 19 15

Table 2: Experimental results for the arti�cial data set
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Figure 12: MDT generated with post-pruning

one noisy/inconsistent pair is present. By deleting one of the inconsistent points we get a

monotone data set. The tree generated from it is described in table 3, column 2. The rest

of table 3 is based on the original sample having 1 inconsistent pair (out of 199 comparable

pairs) and 2 more data sets generated by adding noise with resp. 3 and 6 inconsistent

pairs of points.

Since the original data set is very small, no separate test data is used. The last data

set took too much time to generate the full tree because of exponential growing of the

updated data set. Therefore the data on the full and the post-pruned trees is not available.

However, the pre-pruning algorithm generates manageable trees (even for a threshold of

2 points) which are represented in the table.

The third data set was obtained from UCI Machine Learning Repository [5]. It rep-

resents applications for a nursery school which are classi�ed based on their situation in 5

groups ranging from not recommended to special priority. The problem is monotone since

the objective is to give more priority to children with worse situation on every indicator.

The size of the data set is 8 attributes taking between 2 and 5 ordered values, one decision

attribute and 12960 data points covering the whole input space.

For the experiments a random sample of 200 points was drawn and 3 noisy data sets

were constructed having respectively 2, 6, and 27 inconsistent pairs of points. The features

of the generated trees are presented in table 4. A separate random sample of the same

size is used as a test set. From the experimental results the following observations can be

deduced. The relation between the number of inconsistent pairs of data points and the

size of the tree is not straightforward - more important is the type of inconsistency that

can confuse the tree generation. When the noise disturbs severely the tree generation it

is possible for the data set and the tree size to grow exponentially. This is a known result
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full-m full pre2 pre3 pre4 pre5 po5 po6 po7 po8 po9 po10 po15 po20

updated 50 91 91 90 75 73 91 91 91 91 91 91 91 91

num-nodes 11 53 53 51 35 33 11 9 9 7 7 7 7 7

num-leaves 6 27 27 26 18 17 6 5 5 4 4 4 4 4

av-depth 2 13 13 12 8 8 2 2 2 2 2 2 2 2

max-depth 4 25 25 24 16 15 4 3 3 2 2 2 2 2

miscl-org 0 1 1 1 1 2 1 2 2 3 3 3 3 3

miscl-upd 0 0 0 1 1 2 0 1 1 2 2 2 2 2

updated 123 123 121 104 83 123 123 123 123 123 123 123 123

num-nodes 87 87 83 65 43 87 45 45 21 21 21 17 17

num-leaves 44 44 42 33 22 44 23 23 11 11 11 9 9

av-depth 12 12 12 9 7 12 9 9 4 4 4 4 3

max-depth 25 25 24 17 15 25 19 19 7 7 7 7 6

miscl-org 2 2 2 2 3 2 2 2 3 3 3 5 7

miscl-upd 0 0 1 1 3 0 0 0 3 3 3 5 7

updated * 195 180 121 100 * * * * * * * *

num-nodes * 163 145 83 61 * * * * * * * *

num-leaves * 82 73 42 31 * * * * * * * *

av-depth * 14 14 9 8 * * * * * * * *

max-depth * 31 30 16 15 * * * * * * * *

miscl-org * 4 5 5 6 * * * * * * * *

miscl-upd * 0 4 4 6 * * * * * * * *

Table 3: Experimental data for the bankruptcy data set

full-m full pre2 pre3 pre4 pre5 po5 po6 po7 po8 po9 po10 po15 po20

updated 482 598 459 353 311 283 598 598 598 598 598 598 598 598

num-nodes 321 471 297 161 111 83 143 131 75 27 27 73 25 17

num-leaves 161 236 149 81 56 42 72 66 38 14 14 37 13 9

av-depth 10 10 10 8 7 7 9 9 7 4 4 7 4 4

max-depth 16 15 14 13 12 12 14 14 11 7 7 11 6 6

miscl-org 0 1 35 38 39 40 9 11 13 15 15 19 29 36

miscl-upd 0 0 0 30 38 39 8 10 12 14 14 18 28 36

miscl-test 17 16 41 44 45 44 24 26 27 30 30 31 36 47

updated 592 410 341 295 275 592 592 592 592 592 592 592 592

num-nodes 493 239 149 95 75 35 41 31 55 39 29 37 21

num-leaves 247 120 75 48 38 18 21 16 28 20 15 19 11

av-depth 11 9 8 7 6 5 5 5 6 5 5 5 5

max-depth 16 13 11 10 10 8 7 7 10 7 7 8 8

miscl-org 1 27 34 36 39 9 11 13 15 17 19 29 37

miscl-upd 0 0 27 35 38 8 10 12 14 16 18 28 37

miscl-test 26 38 43 43 44 24 28 34 32 32 38 46 48

updated 2795 576 440 377 328 2795 2795 2795 2795 2795 2795 2795 2795

num-nodes 3449 419 255 179 129 3449 3449 3449 3449 3449 3449 45 13

num-leaves 1725 210 128 90 65 1725 1725 1725 1725 1725 1725 23 7

av-depth 14 10 9 8 7 14 14 14 14 14 14 6 3

max-depth 18 16 15 13 13 18 18 18 18 18 18 10 5

miscl-org 24 16 28 41 47 24 24 24 24 24 24 28 37

miscl-upd 0 0 20 39 45 0 0 0 0 0 0 37 39

miscl-test 40 29 37 43 52 40 40 40 40 40 40 39 37

Table 4: Experimental data for the nursery data set
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for the original MDT algorithm for monotone data. The problem occurs more often with

noisy data since it is originally inconsistent and can more easily confuse the generation

process. However, using pre-pruning the problem can be easily overcome and manageable

trees can be generated from any noisy data set. It can also be used together with the

original algorithm on monotone data.

Pre-pruning generates smaller data sets and therefore consumes less resources than

growing the whole tree and pruning it afterwards. On the other hand, for some of the

data sets post-pruning seems to produce better results by pruning a large part of the

tree with no change in the misclassi�cation rate. As it was expected, for several data

sets the results generated with pre- or post-pruning using smaller thresholds improves the

accuracy of the tree by giving lower misclassi�cation rate than the full tree.

6 Conclusions and further research

This paper presents a method for generating MDTs from noisy data by modifying the

update rule. One possible direction for further research is to study the e�ect of noise on

the choice of a good attribute for splitting. That might result in a modi�cation of the

criterion to ignore the noisy points and base the splitting decision only on the monotone

data.

The paper also presents methods for controlling the size of the trees by means of pre-

and post-pruning while the tree is guaranteed to remain monotone. These methods can

be applied both with the original MDT algorithm and with the modi�ed algorithm for

generating MDTs from noisy data.
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