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Industrial experiments often involve factors that are hard to change or costly to manipulate and thus
make it undesirable to use a complete randomization. In such cases, the split-plot design structure is a
cost-efficient alternative that reduces the number of independent settings of the hard-to-change factors. In
general, model estimation for split-plot designs requires the use of generalized least squares (GLS). However,
for some split-plot designs {including not only classical agricultural split-plot designs, but also some second-
order split-plot response surface designs), ordinary least squares (OLS) estimates are equivalent to GLS
estimates. These designs are called equivalent-estimation designs and offer the advantage that estimation
of the factor effects does not require estimation of the variance components in the split-plot model. As an
alternative to these equivalent-estimation designs, one can use D-optimal designs that guarantee efficient
estimation of the fixed effects of the statistical model that is appropriate given the split-plot structure. We
explore the relationship between equivalent-estimation and D-optimal split-plot designs for a second-order
response surface model and propose an algorithm for generating D-efficient equivalent-estimation split-plot
designs. This approach allows for a flexible choice of the number of hard-to-change factors, the number of
easy-to-change factors, the number of whole plots, and the total sample size.

Key Words: Coordinate-Exchange Algorithm; D-Optimality; Equivalent Estimation; Generalized Least
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Introduction

NDUSTRIAL experiments often involve factors that
:[[ are hard to change, expensive or time-consuming
to manipulate. These factors make complete random-
ization undesirable. In such cases, the split-plot de-
sign is an alternative that reduces the number of in-
dependent settings of the hard-to-change factors and
therefore the experimental cost. The remaining fac-
tors in the experiment, which are relatively less costly
to manipulate, are referred to as easy-to-change fac-
tors.

Split-plot designs first gained popularity in agri-
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cultural experiments where large tracts of land were
subdivided in relatively large portions known as
whole plots. Each of the possible levels of the whole-
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plot factors was then assigned to these plots. Whole
plots were further divided into smaller portions
known as subplots or split-plots, where subplot fac-
tors were applied. Thus, whole-plot factors vary from
whole plot to whole plot while subplot factors vary
from subplot to subplot. In the context of industrial
experiments, hard-to-change factors act as whole-
plot factors, whereas the easy-to-change factors act
as subplot factors.

The design and analysis of split-plot industrial
experiments has received considerable attention in
the literature in recent years. Letsinger et al. (1996)
discussed response surface methods for split-plot. de-
signs focusing on the analysis of these designs. They
recommended the use of generalized least squares
(GLS) and restricted maximumn likelihood (REML)
for estimating split-plot response surface models.

Huang et al. (1998), Binghamn and Sitter (1999),
and Binghamn et al. (2004) described the construction
of two-level fractional factorial split-plot designs us-
ing the aberration criterion. Multistratum response
surface designs, of which split-plot designs are special
cases, are discussed in Trinca and Gilimour (2001).
They present a sequential method for constructing
these designs, from stratum to stratum and start-
ing in the highest stratum. Kulahci and Bisgaard
(2005) illustrated how split-plot designs can be con-
structed from Plackett-Burman designs. Goos and
Vandebroek (2001, 2003, 2004) and Jones and Goos
(2007) propose exchange algorithms for construct-
ing D-optimal split-plot designs. Follow-up split-plot
designs are discussed by Alinimi ct al. (2008) and
MecLeod and Brewster (2008). A review of the recent
developments on the design of split-plot experiments
can be found in Jones and Nachtsheiin (2009).

In much of the recent split-plot design literature,
the equivalence of ordinary least squares (OLS) and
GLS has received substantial attention. This is be-
cause split-plot designs for which OLS and GLS pro-
duce the same factor-effect estimates offer the advan-
tage that the estimates of the effects do not depend
on the estimates of the variance components in the
split-plot model. Letsinger et al. (1996) provided a
proof of the equivalence of OLS and GLS estimators
of the model parameters for crossed split-plot de-
sigus. Goos (2002) proved that, for saturated designs
(a design for which the number of observations is
equal to the number of model parameters), OLS and
GLS are equivalent. Vining et al. (2005) discussed the
modification of central composite and Box Behnken
desigus to accommodate a split-plot structure for a
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sccond-order response surface model. They also dis-
cussed some special cases of these designs where OLS
and GLS estimators of the model parameters are
cquivalent and outlined some general conditions for
this property to be fulfilled when central compos-
ite or Box-Behnken designs are used. These types
of designs are nowadays called equivalent-estimation
split-plot designs. More recent work described strate-
gies for constructing equivalent-cstimation split-plot
designs while at the same time giving the general
equivalence condition of OLS and GLS for the split-
plot design model. Parker et al. (2006, 2007a) dis-
cussed two systematic design coustruction strate-
gies to build balanced equivalent-cstimation split-
plot designs from modified Box Behnken and cen-
tral composite designs, while Parker et al. (2007h)
extended these techniques to accommodate unbal-
anced equivalent-estimation split-plot designs based
on central-composite and Box—Behnken designs.

Goos (2006) compared the efficiency of D-optimal
split-plot designs with that of equivalent-estimnation
designs and reported various instances where the
equivalent-estimation designs proposed in the litera-
ture were highly imeflicient. At the same time, he dis-
covered various D-optimal designs for which OLS and
GLS arc equivalent. Also, Parker et al. (2007a) report
a few instances involving one whole-plot factor where
the D-optimal design is an equivalent-estimation de-
sign.

A gystematic study of the relationship between
D-optimality and the equivalent-estimation property
is an important void in the split-plot design litera-
ture. The purpose of this paper is to fill this void
and to explore in detail when it is possible to find
D-optimal designs for which OLS and GLS produce
the saime results. We focus on balanced split-plot de-
signs, which have an equal munber of subplots within
every whole plot and which are the most practically
relevant split-plot designs, and develop an algorithm
that seeks the most efficient cquivalent-estimation
designs. First, however, we introduce the split-plot
model, specify the condition for the equivalence of
OLS and GLS. and define the D-optimality criterion.
Next, we discuss several interesting designs produced
by the algorithmm and provide a catalog of all the
scenarios in which we found D-efficient equivalent-
estimation designs.

The Split-Plot Design Model

In this section, we introduce the linear model for
split-plot designs. The general form of the split-plot
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design model for an experiment with N runs, b whole
plots, and n = N/b runs or subplots per whole plot
is given by

y = X8+ Zv + €, (1)

where y is an N x 1 vector of responses, X is an N X p
design matrix containing the settings of the whole-
plot factors, the subplot factors and their model ex-
pansions, B is a p-dimensional vector containing p
fixed effects in the model, and Z is an N x b ma-
trix of zeros and ones assigning the N runs to the
b whole plots (i.e., the (i,7)th element of Z is 1 if
the ¢th run belongs to the jth whole plot and 0 oth-
erwise). The vector ~ is b-dimensional and contains
the random effects of the b whole plots. Finally, € is
the N-dimensional vector of the random errors. It is
assumed that v and e are uncorrelated, have mean
zero, and variancecovariance matrix 0'31{, and UfI N,
respectively, where I, and Iy are identity matrices
of size b and N. As a result, the assumed variance-
covariance matrix of the model is given by

V =021y + 0227 = 21y + 02D, (2)

where
1,1, 0, e 0y
0, gl ... 05
D= Y ) . )
0, 0, ee Al

Here 1,, is an n-dimensional vector of ones and 0,
is an n x n zero matrix. The covariance matrix V is
block diagonal, just like D, which implies that obser-
vations in the same whole plot are correlated while
those from different whole plots are not.

The GLS estimator of the factor effects is
Bars = (X'VIX)"IX'V-ly,
This estimator has the covariance matrix
Var(8gLs) = (X'V71X)™L.

Though normally not recommended for this model
given that it is, in general, less efficient than the GLS
estimator, the OLS estimator is given by

Bos = XX Xy,
which has a covariance matrix
Var(BoLs) = (X'X) 1 X'VX(X'X)™!

if the split-plot model is valid. For equivalent-
estimation split-plot designs, by definition, the OLS
and GLS estimators given above are the same, i.e.,

BoLs = BaLs,
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in which case
Var(Bors) = Var(BaLs).

The equivalence of OLS and GLS is appealing be-
cause it implies that the V matrix and hence the
variances o2 and a? need not be estimated in order
to estimate the factor effects. This is especially im-
portant for researchers who do not have access to
software that allows REML estimation of variance
components. However, it is worth noting that knowl-
edge or estimation of the variance componcnts re-
mains essential for statistical infercnce of the esti-
mated model. The analysis of data from split-plot
designs in general is discussed in detail in Goos ot
al. (2006) and Gilmour and Goos (2009). Exact in-
ference procedures for data from a specific class of
equivalent-estimation designs is discussed in Vining
and Kowalski (2008), whereas a check for split-plot
model adequacy is proposed by Almimi et al. (2009).

Split-Plot Design
Construction Strategies

As described by Goos (2006) and Jones and
Nachitsheim (2009), there are several approaches for
setting up split-plot, response surface designs which
have gained popularity in the literature. In this sec-
tion, we explore two of them: equivalent-estimation
and optimal split-plot designs. First, we stuunmarize
the work that has been done on the construction of
equivalent-estimation designs and point out what we
believe is the major weakness of these desigus. Next,
we outline the optimal split-plot design approach.

Equivalent-Estimation Designs

Equivalent-estimation split-plot designs have re-
ceived considerable attention in the literature re-
cently. They possess the property that the OLS es-
timator of the fixed cffects in the split-plot model is
equivalent to the GLS estimator. This property en-
ables estimation of the fixed effects without estimat-
ing the variance components of the model. However,
as reported by Goos (2006), many of the equivalent-
estimation designs reported in the literature are lack-
ing in terms of efficiency because they have a large
number of replicated center points.

The necessary and sufficient condition for equiva-
lence of OLS and GLS estimates as given by McElroy

(1967) is the existence of a p x p nonsingular matrix,
F, such that

XF = VX. (3)

Vol. 42, No. 4, October 2010

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner.

D-OPTIMAL AND D-EFFICIENT EQUIVALENT-ESTIMATION SECOND-ORDER SPLIT-PLOT DESIGNS 361

Parker et al. (2007a) give a general form of the equiv-
alence condition tailored to split-plot designs. By
substituting Equation (2) in Equation (3) and pre-
multiplying by (X/X) !X/, they find that

F=01+02K, (4)

where K = (X’X) !'X'DX. Combining Equations
(3) and (4) and simplifying then leads to the follow-
ing condition for the equivalence of OLS and GLS:

XK = DX. (5)

It is this expression that we use in our modified
coordinate-exchange algorithm to numerically check
the equivalence of OLS and GLS when constructing
D-efficient equivalent-estimation designs.

In a way. equivalent-estimation split-plot designs
are similar to orthogonally blocked designs, for which
the OLS estimator of 8 is equivalent to the GLS esti-
mator and to the intrablock estimator (see, e.g. Khuri
(1992)). Blocked designs are typically used whenever
not all the experimental runs can be conducted un-
der homogeneous circutnstances. Designs are orthog-
onally blocked if the blocking is organized so that the
average levels of the regressors in the model of inter-
est. e.g.. the columns of X corresponding to main
effects, interaction eflects, and quadratic effects, in
cach block arc equal. In that case, the factor effects
in the model can be estimated independently from
the block effects. An interesting feature of orthogo-
nally blocked designs for a given model is that they
are also orthogonally blocked for any model that can
be obtained by dropping one or more terms from the
original one. Thus, model simplification does not de-
stroy the equivalent-estimation property of orthog-
onally blocked designs. As we discuss in the final
section of this paper, equivalent-cstimation split-plot
designs in general do not share this attractive prop-
erty.

Optimal Split-Plot Designs

D-optimality is the most commonly used crite-
rion for selecting experimental designs. This criterion
seeks to minimize the generalized variance of the pa-
rameter estimates, which is done by minimizing the
determinant of the variance—covariance matrix of the
factor effects’ estimates or, equivalently, by maximiz-
ing the determinant of the information matrix about
3. For a split-plot design, the information matrix is
given by

M=XV~X (6)

when the GLS estimator is used.
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The efficiency of a design is obtained by comparing
the determinant of its information matrix with that
of the corresponding D-optimal design. As shown in

Goos (2002), D-optimal designs depend on the rela-

2
. ’Y . . . »;

lute magnitude. Letting M be the information ma-

trix of the D-optimal design with design matrix X
and M be the information matrix of a design with
design matrix A for the same design problem, the
relative D-efficiency of the design corresponding to
A is defined as

tive magnitude of o2 and o2, but not on their abso-

1/p 1/p
Ml " [javla]

=t ()

Des =
M X'V-IX]

where p is the number of parameters in the model.
This relative efficiency provides the percentage
amount of information contained in a design com-
pared with the D-optimal design.

Goos and  Vandebroek (2001, 2003, 2004) de-
veloped point-exchange algorithms for constructing
split-plot designs that require specification of a can-
didate set containing all the possible allowable com-
binations of the factor levels (i.e., all possible design
points). The point-exchange algorithing start from
an initial design that is partly generated at random
and completed hy repeatedly adding the point that
gives the largest inercase in the D-criterion value.
They then proceed by exchanging design points from
the initial design with points from the candidate
set until the D-optimality criterion, i.e., the deter-
minant of the information matrix, cannot be im-
proved any more. The construction of a candidate
set can be problematic when the number of experi-
mental factors is large and/or the experimental space
is highly constrained. To avoid this problem, Jones
and Goos (2007) described a flexible candidate-set-
free coordinate-excliange algorithm for constructing
D-optimal split-plot. designs. The algorithm starts
from an initial design generated randomly and then
tries to improve this design coordinate by coordinate
wntil there are no more coordinate exchanges that
lead to an increase in the D-optimality criterion.

Constructing D-Efficient
Equivalent-Estimation Designs

[n this section. we outline an iterative algorithm to
coustruct balanced D-efficient equivalent-estimation
designs. The algorithm is a modification of the
candidate-set-free coordinate-exchange algoritlun of
Jones and Goos (2007). The modified algorithm con-
sists of two parts. First, a starting design is gener-
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ALGORITHM 1. D-Efficient Equivalent-Estimation Design Construction Algorithm

Set Dopt = Dopteq = 05
for't=1 to T do
1. Generate starting design;
for i = 1 to b do

for k =1 to My, do

| Randomly generate whole-plot factor level wy;;
end
for j =1 to n do
for k=1 to Mz do

end

end
end
Compute D = [X/V_1X|;
2. Improve starting design;
Set c.= 1
while ¢ = 1 do
Set ¢ = 0;
Set Deg = 0
for : =1 to b do

for k=1 to M,, do
for f = —~1 to 1 do

ii. Compute D, = \X,V71X|.;
if D. > D then

i. Set ¢ = 1;

ii. Set D = Dg;

end

‘ i. Set Deq = Doc;

end
end
end

for j = 1 to n do
for k = 1 to Mg do
for f = —1 to 1 do

ii. Compute D, = |X/V_’X|:
if D. > D then

i. Set c = 1;

ii. Set D = Dg;

end

‘ i. Set Deq = Dc;

end
end

end
end

end

end

if D > Dypt then
‘ Set Dopt = D;

end
if Degq > Dopteq then
‘ Set Dopteq = Degq;

end

end

l Randomly generate subplot factor level sy, ;;

a. Improve whole-plot factor levels in whole plot i;

i. Replace whole-plot factor level wy; with f in rows n(i — 1) 4+ 1 to ni of the current design;

iii. Replace whole-plot factor level wy; with f in rows n(i — 1) 4+ 1 to ni of the current best design;

if Equivalence condition (5) is satisfied and D. > De¢q then

ii. Save current design as the current most D-efficient equivalent-estimation design;

b. Improve subplot factor levels for all n runs in whole plot i;

i. Replace subplot factor level sp;; with f in row n(i — 1) + j of the current design;

iii. Replace subplot factor level sy;; with f in row n(i — 1) + j of the current best design;

if Equivalence condition (5) is satisfied and D¢ > Deq then

ii. Save current design as the current most D-efficient equivalent-estimation design;

Save the design corresponding to Dopt as the D-optimal design;

Save the design corresponding to Dopteq as the most D-efficient equivalent-estimation design;

ated randomly. Next, the algorithin proceeds with a
coordinate-by-coordinate nuprovement of the start-
ing design. As local scarch optimization methods,
such as coordinate-exchange algorithins, are prone
to getting stuck in a local optimum, we run our
coordinate-exchange algorithm T times, cach time
starting from a different nitial random design. This
is common practice in optimal experimental design.

Journal of Quality Technology

Later, we describe the input and the output of
the algorithm, and sketch its two main parts. A step-
by-step description of the algorithm is given in Al-
gorithm 1. In the step-by-step description, the D-
criterion value of the current design is denoted by
D.. The current best D-criterion value found for a
given random start is denoted by D, while the best D-
criterion value found over all random starts of the al-
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gorithm is denoted by Dgpe. The D-criterion value for
the current best equivalent-estimation design for a
given random start is denoted by De, while the over-
all hest D-criterion value for an equivalent-estimation
design is denoted by Dqpeq-

Input to the Algorithm
The algorithm requires the following inputs:

e the sample size, N;

o the number of whole plots, b;

e the number of whole-plot factors, M,y,;
e the number of subplot factors, Al,;

e the ratio of the whole-plot, error variance to the
subplot error variance, 1 = o~ /0

When these input parameters are known, the D
matrix, required to check the OLS-GLS equivalence
using Equation (5), can be constructed. The whole-
plot size n can also be obtained from N and b, as
n = N/b. The algorithm we developed assumes that
the fitted model is a second-order response surface
model involving an intercept, M,, + M main effects,
M, + M, quadratic effects, and (M,, + M;)(M,, +
M, — 1)/2 two-factor interaction effects. The algo-
rithm therefore generates three-level designs. For the
full second-order model, the jth observation in whole
plot 7 is given by

M,
P yTt] ) 2
yij = Bo + Z(/ﬁf Wi + Bk W)
k=1
M,
98 s =2
* Z(ﬂkﬁkij + BirSkis)
k=1
M.y, My,
—+ Z Z /)7“ Wr; Wy + Z Z /&[ SkijSlij
k=1l=k+1 k=11=k+1
M, M
+ DD Bt wisuy + % + ey
k=1 I=1

where wy; represents the level of the kth whole-plot
factor in whole plot 4, sj;; represents the level of the
kth subplot factor at the jth run in whole plot 7, v;
is the random effect of whole plot i, and ¢;; is the
random error for the jth run in whole plot i.

As mentioned carlier, the construction of equiva-
lent-estimation designs does not require knowledge
of the variance components. However, the construc-
tion of D-optimal designs and D-cfficient equivalent-
estimation designs depends on the whole-plot error
variance and the subplot error variance through .
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As recommended by Goos (2002), who pointed out
that D-optimal designs and relative D-efficiencies are
relatively insensitive to 1), we have used an 7 valuc
of 1 in owr computations. This is certainly a realis-
tic value, as various published analyses of split-plot
data show. For instance, Letsinger et al. (1996) ob-
tain an estimate for 9 of 1.04 for a split-plot response-
surface experiment. Littell et al. (1996) (sce pp. 332-
336) obtain an estimate of 0.72 for an experiment in-
volving the grinding of corn. Goos (2002) (see pp.
84-87) obtains an estimate of 0.82 for the vinyl-
thickness experiment in Kowalski et al. (2002). Some-
times, smaller or larger estimates have been obtained
for 7;. For example. the wrapper-machine example in
Webb et al. (2004) yiclds an estimate of 6.91 and the
ceramic-pipe example in Vining et al. (2005) gives
an estimate of 5.65, while Gilmour and Goos (2009)
describe an experiment in the freeze-dried coffee in-
dustry where the estimate for 7 is zero. These ex-
amples show that | is a typical average value for 1),
which, together with the insensitivity of the results
with respect to y, is why the relative D-efliciencies
we report later were all computed assuming 7 = 1.

Output of the Algorithm

Usually the algorithin generates two outputs. The
first output is the D-optimal design with its cor-
responding D-criterion value. The second output
is the most D-cfficient equivalent-estimation design
and its D-criterion value. This allows us to see the
cost, in terms of D-efficiency, of using an equivalent-
estimation design. As we shall see later, in some
cases, the two designs produced by the algorithmm
are identical. Generally, however, the most D-efficient
cquivalent-estimation design is slightly less efficient
than the D-optimal design. In some cases, the algo-
rithm did not find any equivalent-estimation design.
In that case, the algorithm's output only contains
the D-optimal design.

Generating a Starting Design

The starting design is randomly generated coluinn
by column. All the required factor levels of the start-
ing design arce generated from the uniforn distribu-
tion over the interval [—1.1]. The layout of the de-
sign is in such a way that the whole-plot. factors are
listed in the leftmost columns while the subplot fac-
tors are in the rightmost columns. Therefore, for each
of the b whole plots, a random level is generated first
for each of the M,, whole-plot factors followed by
a random level for cach of the A, subplot factors.
The construction is in such a way that the initial de-
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sign obeys the desired split-plot structure where the
whole-plot factor levels vary from whole plot to whole
plot. while the subplot factor levels vary from subplot
to subplot. Obviously, it is unlikely to find a random
starting design for which the OLS and GLS estima-
tors are equal. Hence, only the D-criterion value of
this design is computed at this stage of the algorithm.

Improving the Starting Design

For each random start of the algorithm, the start-
ing design is improved iteratively from whole plot to
whole plot and from one run to the other. To this
end, cach factor level in the initial design, i.c., cach
coordinate of the N design points, is exchanged with
—1, 0, or 1. An exchange of whole-plot. factor levels
is different [rom that of subplot factor levels because
a change to the level of a whole-plot factor in a given
whole plot induces a similar change to the other lev-
els of that factor in the same whole plot. At cach ex-
change, the D-criterion value of the resulting design
is computed. If a level results in a higher value of the
D-criterion value. it is retained in the current design.
Otherwisce, no changes are made to the design. At the
same time, on every exchange. the cquivalence con-
dition given by Equation (5) is also cvaluated. If the
design satisfies this condition, its D-criterion value
is compared with that of the hest previously found
equivalent-estimation design. If the D-criterion value
of the newly found equivalent-estimation design is
the better of the two, it 1s saved. The coordinate ex-
changes continue until no further improvements can
be made to the design in terms of the D-criterion
value.

This procedure is repeated for each of the 7" ran-
dom starts of the algorithin, and the overall best de-
sign in terms of the D-optimality criterion and the
best equivalent-estimation design in terms of the D-
optimality criterion are provided as the output.

The main difference between owr algorithm and
the candidate-set-free algorithim of Jones and Goos
(2007) is that, for every intermediate design pro-
duced, owr algorithm checks whether it is an
cquivalent-estimation design. If so, its D-criterion
value is compared with that of the best current
cquivalent-estimation design.

Tllustrations

In this section, we discuss in detail some of the
results that we obtained from our algorvithm. The
cases we selected to discuss here range from expected
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to cowpletely surprising and from problems involving
as fow as two experimental factors up to problems
involving as many as six factors.

Two Small Examples

Table 1 shows two designs with one whole-plot
factor w, one subplot factor s, and four whole plots
with two subplots cachi. The left panel shows the D-
optimal design while the vight panel shows the corre-
sponding most D-efficient equivalent-estimation de-
sign.

The D-cfficiency of the equivalent-estimation de-
sign relative to the D-optimal design is 93% and
therefore the loss of information when we use this
design instead of the D-optimal design is small. An
important feature of this design is that, in spite of
its small size, it allows for the estimation of all the
parameters associated with the hard-to-change vari-
able in a second-order model, including the whole-
plot error variance, rrf. This is because there are four
whole-plot degrees of freedom, which are used for es-
timating the intercept, the whole-plot main effect,
the whole-plot quadratic effect, and the whole-plot
Crror variauce.

While orthogonality is a desirable property in gen-
eral, onr first example shows that this is not a neces-
sary condition for the equivalence of OLS and GLS.
Indecd, the levels of the subplot factor s in the

TABLE 1. A D-Optimal and a Most D-Efficient
Equivalent-Estimation Design with One Whole-Plot
Factor w, One Subplot Factor s, Four Whole Plots,

and Eight Runs

D-optimal Eqv-estim

Whole plot w S w s
1 =1 -1 -1 —
-1 1 —1
2 —1 1 0 -1
-1 0 0 0
3 0 —1 0 -1
0 0 0 0
4 1 — 1 —
1
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TABLE 2. D-Optimal Design with One Whole-Plot Factor
w, One Subplot Factor s, Five Whole Plots, and 15 Runs
for Which the OLS and GLS Estimators Are Equivalent

Whole plot w s
1 -1 —1
-1 0

—1 1

2 —1 —1
—1 0

-1 1

3 0 =1
0 0

0 1

4 1 —1
1 0

10 |

5 1 =l
1 0

1 1

coivalemt-estimation design i Table 1 are not even
balanced across the complete design, let alone within
whole plots. This makes the equivalent-estimation
design in Table 1 completely different from the de-
signs in Parker et al. (2006, 2007a, 2007h), which are
level-balanced by construction and have a subplot
design that is orthogonal to the whole plots.

While owr modified coordinate exchange algo-
rithm does not hmpose orthogonality, it occasion-
ally returns a D-optinal design in which the design
for the subplot factors is orthogonal to the whole
plots. In the D-optimal 15-run design with five whole
plots for one whole-plot factor and one subplot factor
shown in Table 2, the subplot main effect and whole-
plot to subplot factor interaction sum to zero in ev-
ery whole plot, indicating orthogonality. Because the
same levels of the subplot factors are used in every
whole plot. the design in Table 2 is crossed. Letsinger
et al. (1996) showed that crossed split-plot designs
are equivalent-estimation designs. This is one of the
cases we found where the most D-efficient equivalent-
estimation design is actually the D-optimal design,
i.c., the D-efficiency of the final equivalent-estimation
design was 100%..

Vol. 42, No. 4, October 2010

TABLE 3. A D-Optimal and a Most D-Efficient
Equivalent-Estimation Design with One Whole-Plot
Factor w, Two Subplot Factors s; and sy,

Five Whole Plots, and 15 Runs

D-optimal Eqv-estim

Whole plot w S1 So w S1 So
1 -1 -1 0 -1 -1
-1 0 1 -1 0
—1 1 -1 —1 1
2 —1 -1 il -1 -1
-1 -1 -1 -1 0 -1
= 1 0 -1 1 0
3 0o -1 1 0o -1 -1
0 0 0 0 0 0
0 1 1 0 1 —1
| 1 —1 -1 1 -1 -1
1 0 1 1 0 1
1 1 -1 1 1 0
5 1 -1 1 1 -1 0
1 0 -1 1 0 —1
1 1 1 1 1 1

Examples With More Than Two Factors

One extension to the design in Table 2 would be to
add more subplot factors. Even adding only one extra
subplot factor results in the loss of orthogonality and
OLS-GLS equivalence for the D-optimal design. This
can be seen it Table 3, where we show the D-optimal
design and the most D-eflicient equivalent-estimation
design with one whole-plot factor w, two subplot fac-
tors s, and sz, and five whole plots of three rmuns
cach. The most D-cfficient equivalent-estimation de-
sign has a D-cfficiency of 92%.

In practice, one is often faced with more than
one factor for which levels cannot be changed easily.
Our modified coordinate-exchange algorithi is able
to find cquivalent-estimation designs for these cases
as well. Table 4 shows a D-optimal design and the
most D-efficient equivalent-estimation design with
two whole-plot factors w; and w,. one subplot fac-
tor s, and seven whole plots with two subplots caclw.
With such values as 14 runs. seven whole plots, and
two runs per whole plot, it is thus possible to get

WWWw.asq.org
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TABLE 4. A D-Optimal and a Most D-Efficient
Equivalent-Estimation Design with Two Whole-Plot
Factors w; and wy, One Subplot Factor s,
Seven Whole Plots, and 14 Runs

D-optimal Eqv-estim

Whole plot w1 Wo s w1 Wa s
1 -1 -1 -1 -1 -1 -1
-1 -1 1 -1 —1
2 -1 1 -1 -1 1 -1
—1 1 1 —1 1
3 0 —1 0o -1 0 0
0 -1 1 -1 0 1
4 0 0 -1 0 1 -1
0 0 0 0 1 0
5 1 -1 -1 1 -1 -
1 -1 1 1 -1
6 1 0 0 1 -1 -
1 0 1 ]| -1
i 1 1 - 1 1 -
1 1 1 1

an cfficient, equivalent-estimation design. We find it
remarkable that it is possible to find a three-level
design with two runs per whole plot for which the
OLS and GLS estimators are equivalent. The rea-
son that we find this a remarkable result is that it is
impossible to find an orthogonally blocked response
surface design. i.c., an equivalent-estimation block
design, with two runs per block. Yet an cquivalent-
estimation split-plot design, which, when compared
with a blocked design, has the additional complex-
ity that some factors have constant levels within a
whole plot, does exist when there are two runs per
whole plot. It turns out that the D-efficiency of the
equivalent-cstimation design in Table 4 is 94%.

Two Examples With Multiple Whole-Plot and
Subplot Factors

An ceven more complex equivalent-estimation de-
sign is given in Table 5, along with the correspond-
ing D-optimal design. The design has three whole-
plot factors . wsy, and ws; three subplot factors s,
52, and s3; 12 whole plots; and four runs per whole

Journal of Quality Technology

plot. It is thus possible to generate good and complex
equivalent-estimation designs for larger numbers of
factors. In this case, the most D-cfficient equivalent-
estimation design has a D-efficiency of 93%.

While the design given in Table 2 is D-optimal,
equivalent-estimation as well as orthogonal at the
subplot level, it is worth noting that orthogonality
at the subplot level is not necessary. This is clearly
illustrated by the design shown in Table 6. This de-
sign with three whole-plot factors wy, wy and ws; two
subplot factors s; and s»; and 10 whole plots with
three rns each is both D-optimal and equivalent-
estimation. However, the subplot factor levels in cach
whole plot do not sum to zero and, hence, the sub-
plot design is not orthogonal. An interesting aspect
of this example is that it demonstrates that the si-
multancous appearance of the features ‘D-optimality’
and *OLS GLS equivalence’ is not restricted to small
designs that accommodate only a few factors.

A Catalog of Equivalent-Estimation Designs

We have rmn our modified coordinate-exchange
algorithm with 1000 tries for a broad range of in-
put settings. We attempted to generate efficient
equivalent-estimation designs with up to three whole-
plot factors and up to three subplot factors, and stud-
ied whole-plot sizes between two and six. A summary
ol our results is given in Table 7. The table shows
that it is possible to find highly efficient equivalent-
estimation designs in many cases. The worst D-
cfficiency we obtained for an equivalent-estimation
design is 87.9%. Files containing the designs reported
in Table 7 are available from the authors.

Discussion

Split-plot designs arve very cffective in reducing
the cost of an experiment in the presence of hard-
to-change factors. In gencral, the structure of a
split-plot. design requires the use of generalized least
squares (GLS) to estimate the model. This estima-
tion approach is not very straightforward and may
not be implemented in the statistical software avail-
able to a practitioner. This has led to the devel-
opment of various methods for constructing split-
plot designs for which the OLS and GLS estima-
tors produce the same point estimates. Often, these
designs provided statistically inefficient estimates of
the factor effects. In this paper, we have outlined
an algorithm for identifying D-efficient cquivalent-
estimation split-plot designs. We have shown that
it is possible to obtain highly D-efficient. equivalent-
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TABLE 5. A D-Optimal and a Most D-Efficient Equivalent-Estimation Design with Three Whole-Plot
Factors wy, wy, and w3, Three Subplot Factors s1, sp, and s3, 12 Whole Plots, and 48 Runs

D-optimal Eqv-estim
Whole plot w1 wWa w3 S1 So S3 w1 wWo w3 81 So S3
1 -1 -1 -1 -1 0 -1 -1 -1 -1 0 -1
-1 -1 -1 0 -1 -1 -1 -1 —1 0 -1 1
-1 -1 -1 1 0 1 -1 -1 -1 1 -1 -1
-1 -1 -1 1 1 -1 -1 -1 -1 il 1 1
2 -1 -1 1 -1 -1 1 -1 -1 | -1 -1 -1
-1 -1 1 -1 I} -1 -1 -1 il -1 1
-1 -1 1 1 -1 -1 -1 -1 1 1 -1 1
-1 -1 1 1 1 1 -1 -1 1 1 1 -1
3 -1 1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1
-1 1 -1 -1 1 1 -1 1 -1 -1 1 1
-1 1 -1 1 -1 1 -1 | -1 1 -1
-1 1 -1 1 1 -1 -1 1| -1 1 1 -1
4 -1 0 0 -1 -1 0 -1 1 -1 -1 -1
-1 0 0 0 1 1 -1 1 -1 -1 1 -1
-1 0 0 1 -1 1 -1 1 -1 1 -1 -1
-1 0 0 1 0 -1 -1 1 -1 1 1
5 -1 1 1 1 -1 -1 -1 0 0 0 0 0
-1 1 1 -1 -1 -1 0 0 -1 -1 1
-1 1 1 i| 1 1 -1 0 0 -1 i -1
-1 1 1 -1 -1 1 -1 0 0 I -1 -1
6 0 -1 0 -1 - 0 -1 0 -1 -1 1
0 -1 0 -1 i} 1 0 -1 0 0 1 0
0 -1 0 0 -1 | 0 -1 0 1 -1 -1
0 -1 0 ]| 0 0 -1 0 1 0 1
7 0 0 -1 -1 —1 -1 0 0 ! -1 -1 -1
0 0 -1 -1 0 1 0 0 1 -1 1
0 0 -1 0 1 -1 0 0 1 0 0
0 0 -1 1 —1 0 0 0 1 1 1 -1
8 i} -1 -1 -1 -1 | -1 -1 -1 -1 -1
1 -1 -1 -1 1 — 1 -1 -1 -1 1
1 -1 -1 1 -1 -1 1 -1 -1 1 -1
1 -1 -1 1 1 / 1 -1 -1 1 1 -1
9 il -1 il -1 -1 -1 1 -1 1 -1 -1 1
1 -1 1 -1 i} 1 -1 1 -1 1| -1
1 —1 1 1 -1 1 -1 li 1 -1 0
1 -1 1 1 1 -1 1 -1 1 1 1 1
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TABLE 5. Continued

D-optimal

Eqv-estim

Whole plot wy wo w3 s1 So S3 w1 wWo w3 $1 So S3
10 1 1 -1 —1 —1 1 1 1 1 —1 0
1 1 —1 —1 1 0 1 1 1 0 —1 —1
1 1 —1 1 0 -1 1 1 1 1 —1
| | -1 1 1 1 1 1 7} 1 1 0
11 1 1 0 -1 1 —1 1 1 —1 —1 -1
1 1 0 0 0 0 1 1 -1 —1 1 —
1 1 0 il —1 —1 1 1 —1 1 -1 —1
| | 0 1 1 1 1 1 -1 | 1 1
12 1 1 1 —1 -1 —1 | | il —1 —1 0
1 1 1 -1 1 1 I 1 1 0 1 1
1 1 il 1 -1 1 1 1 1 1 -1 1
1 1 1 1 1 -1 1 1 1 1 0 —1

estimation split-plot designs such that the loss of pre-
cision in parameter estimates is negligible if OLS is
the preferred estimation technicue.

An interesting fact is that whether or not a de-
sign is an equivalent-estimation design depends on
the model actually fitted, just like the D-optimality
of a design depends on the specified model. The
cquivalent-estimation designs that we listed in this
article all possess the property that the OLS and
GLS estimators are equivalent if the full second-order
response surface model is estimated. Morcover, drop-
ping subplot quadratic effects as well as the interac-
tions associated with the subplot factors does not
destroy the equivalence property. However. dropping
any of the terms associated with the whole-plot. fac-
tors destroys the OLS GLS equivalence. Thus, re-

ducing the model complexity may lead to the loss of

the OLS GLS equivalence property. This is counter-
intuitive, as desirable theoretical properties are usu-
ally casier to achieve for simple models. In any case,
the fact that the OLS GLS property is model de-
pendent implies that equivalent-estimation designs
should be used with care bhecause the QLS estimator

may 1o longer be as eflicient as the GLS estimator if

the model is simplified. As already indicated earlier,
this is different from orthogonally blocked designs.
which also possess the property that the OLS esti-
mator is equivalent to the GLS estimator: if a design
is orthogonally blocked for a given model, it is also
orthogonally blocked for any model that can be ob-

Journal of Quality Technology

tained by dropping terns from the original one. As
a result, the OLS GLS equivalence is not destroyed
by model simplification for orthogonally blocked de-

S1enS.

We have provided a broad range of new equivalent-
estimation split-plot designs, cach of which is highly
efficient. This antonatically leads to the ¢uestion
“What design should be used: the D-optimal de-
sign or the equivalent-estimation design that (usu-
ally) performs a bit less well in terms of the D-
optimality criterion?” The answer to this question
is not an casy one and depends on the available soft-
ware, the predictive performance of the two design
options, the exact difference in D-efficiency between
the two designs, the nunber of whole plots, the like-
lihood of missiug observations, and whether or not
model siimplification will be done. I the number of
whole plots is large and, as a result, the estimate
of the whole-plot error variance frf, is reliable, then
the dependence of the GLS estimates on the vari-
ance components is not a problem and it is perfectly
safe to use the D-optimal design (even if it does
not possess the OLS GLS equivalence property). If
it is very likely that there will he missing observa-
tions and that the model will be simplified if cer-
tain parameter estimates are not significantly differ-
ent from 0, then it is very likely that the OLS GLS
equivalenice will not hold for the data ultimately ob-
tained and the model ultimately estimated. In such
cases, the GLS estimator is the most efficient one
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TABLE 6. A D-Optimal Design with Three Whole-Plot
Factors wq, wy, and w3, Two Subplot Factors s; and sy,
Ten Whole Plots, and 30 Runs for Which the OLS and

GLS Estimators Are Equivalent

TABLE 7. A Summary of the Cases for Which
We Tried to Find Equivalent-Estimation Designs,
Along with the D-Efficiency of the Most D-Efficient

Equivalent-Estimation Designs Obtained

Whole plot wy Wo w3 S1 59
1 —1]. -1 -1 -1 0
-1 -1 -1 1 -1
-1 -1 -1 1 1
2 = -1 1 -1 —1
-1 -1 1 0 1
—1 —1 1 -1
3 —1 1 -1 —1 1
-1 1 -1 0 —1
-1 1 -1 1 1
4 —1 0 0 -1 —1
-1 0 0 -] 1
-1 0 0 1 0
5 0 0 1 -1 1
0 0 1 0 —1
0 0 1 1 0
6 0 1 0 -1 —1
0 1 0 0 1
0 1 0 1 0
T 1 -1 -1 -1 -1
1 —1 -1 -1 1
1 -1 -1 1 0

8 il -1 1 -1
1 -1 1 0 -

1 -1 I 1
9 1 1 -1 -1 -1
1 1 -1 0 1
1 1 -1 1 -1
10 1 1 1 -1 0
1 1 L 1 -1
1 I 1 1 1

in the end so that it is perhaps wise not to sacrifice
any D-efficiency to achieve OLS-GLS equivalence for
the initial full quadratic model. We would therefore
recommend the use of equivalent-estimation designs

Vol. 42, No. 4, October 2010

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

M, M, b n D-eff
1 1 3 2 1
3 1
4 1
5 1
6 1
4 2 0.933
3 1
4 0.994
5 1
6 1
5 2 0.934
3 1
4 0.989
5 1
6 0.998
6 2 0.971
3 1
4 0.991
5 0.999
6 0.999
2 3 2
3 -
4 1
5 1
6 1
4 2 =
3 0.964
4 0.983
5 1
6 0.996
5 2 1
3 0.921
4 0.958
5 0.997
6 0.990
6 2 0.964
3 o
4 0.934
5 0.996
6 0.890
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TABLE 7. Continued TABLE 7. Continued
M,, M, b n D-eff M, M, b n D-eft
- 5 B 9 9 0.920
3 B 3 0.997
4 o 4 0.935
5 0.995 5 1
6 0.979 6 0.997
3 = > — 10 3 0.929
T B 3 0.996
4 - 4 -
- i 5 0.998
B | 6 —
11 9 -
v - 3 0.996
4 o
4 0.929
5 0.988 2 0'2)8
6 0.986
: . 12 2 -
= 2 0.998
3 1 1 i
4 0.966 . ]
5 0.989 i -
6 .
9 6 2 1
6 2 = 3 1
3 0.889 4 1
4 - 5 1
5 6 1
6 )
7 g -
2 1 6 2 1 3 0.972
3 1 4 0.987
4 1 5 0.999
5 1 6 0.995
6 . 9 2 0.931
7 2 0.939 3 =
3 0.995 4 0.894
4 0.985 5 0.998
5 0.998 6 0.965
o il 10 2 0.931
8 9 0.924 3 =
3 0.999 4 =
4 0.996 5 0.994
5 1 6 —
6 0.995 11 2 0.994
3 —
4 e
5 .
6 -
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TABLE 7. Continued

M, M, b n D-eff
] 7 2
3 1
4 0.997
5 0.977
6 0.994
8 2 —
3 0.879
4 0.985
5 0.992
6 .
3 1 10 2 1
10 2 —
3 I
11 2 0.995
3 12 4 0.933

onlv when their efficiency is over 90%, the equivalent-
estimation property also holds for most of the sub-
models of the [ull quadratic model, if it is unlikely
that there will be missing observations, and if the
predictive performance of the equivalent-estimation
designs matches that of the D-optimal ones.

For some scenarios, we did not find any equivalent-
estimation designs. This is either because no
equivalent-estimation designs exist for these scenar-
ios or because our algorithm was unable to find
them. To obtain an idea of how difficult it is to find
equivalent-estimation designs, we have counted the
number of cquivalent-estiimation designs our algo-
rithm encountered during its search in the scenar-
jos corresponding to Tables 1 6. The results are re-
ported in Table 8. The table contains the total num-
ber of equivalent-estimation designs fouund by the al-
gorithm over 1000 random starts, the average numn-

ber of equivalent-estimation designs found using onc
random start, and the minimum and maximum num-
ber of such designs found during one random start.
For the scenario corresponding to the design in Ta-
ble 6, more than 88.6% of the designs evaluated by
our coordinate-exchange algorithin were equivalent-
estimation designs. That is an impressively large pro-
portion when compared with that obtained for the
scenario in Table 3. Iu that scenario, the success
rate for finding an equivalent-estimation design was
a mere three per million. This low success rate in-
dicates that 1000 random starts of our algorithm
s in some cases not enough to guarantee that an
equivalent-cstimation will be found, provided it ex-
ists. Therefore, for all scenarios in which we did not
find an cquivalent-cstimation design with 1000 ran-
dom starts, we carried out 10,000 additional runs of
the algorithm. However, this did not lead to any new
equivalent-estimation designs. A better approach,
which we leave for future rescarch, would perhaps be
to develop a new algorithm that directs the scarch
more explicitly toward the production of equivalent-
estimation designs.

Another interesting avenue for future research
would be to investigate the existence of equivalent-
estimation split-split-plot or strip-plot designs. While
Jones and Goos (2009) report an cquivalent-
estimation two-level split-split-plot design, the OLS
GLS equivalence has not yet. been studied systemat-
ically in this context. It would also bhe interesting
to study whether it is possible to find equivalent-
estimation split-plot designs that perform well in
terms of the integrated prediction variance, which
first reccived attention by Wesley et al. (2009) as a
design-selection criterion for split-plot designs.
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