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Abstract. Inductive Logic Programming considers almost exclusively
universally quanti�ed theories. To add expressiveness, prenex conjunc-
tive normal forms (PCNF) with existential variables should also be con-
sidered. ILP mostly uses learning with re�nement operators. To extend
re�nement operators to PCNF, we should �rst do so with substitutions.
However, applying a classic substitution to a PCNF with existential vari-
ables, one often obtains a generalization rather than a specialization. In
this article we de�ne substitutions that specialize a given PCNF and
a weakly complete downward re�nement operator. Moreover, we ana-
lyze the complexities of this operator in di�erent types of languages and
search spaces. In this way we lay a foundation for learning systems on
PCNF. Based on this operator, we have implemented a simple learning
system PCL on some type of PCNF.

Essential di�erences between this version and [NLRR99]: (1) We
add proofs to almost all the results. (2) Section 6 about the complexities
is new. (3) The section about Learning PCNF in Practice is extended
with more explanations and some complexity analysis. (4) More motiva-
tions are given.

1 Introduction

Inductive Logic Programming learns a correct logic formula with respect to ex-
amples. The de�nition of correctness depends often on how the examples are
presented. If the examples are ground atoms, a de�nite program which implies
all the positive examples but none of the negative ones is expected. If a number
of interpretations are given as positive examples, then a formula with these in-
terpretations as models should be found. In both cases a downward re�nement
operator � can be used to search a correct formula in a learning system. For a
given formula  , �( ) contains a �nite set of formulas implied by  . If a search-
ing process begins with empty clause > = 2, it should be replaced by the set
of its re�nements in �(>) because > implies all the negative examples in the
�rst case and it has no model in the second case. A re�nement � 2 �(>) may
have to be replaced by its re�nements again because � is false or some given
interpretations are not its model. This process can go on until we �nd a correct
theory w.r.t. the examples.



Re�nement operators for subsumption have often been used ([S81, RD97]) to
learn a correct universally quanti�ed theory incrementally. If clause C subsumes
clause D, then a re�nement chain exists from C to D using elementary sub-

stitutions and adding literals. Let C = p(x; y) and D = p(x; x) _ :q(f(x)).
Then a chain may be p(x; y); p(x; y) _ :q(z); p(x; y) _ :q(f(u)), p(x; x) _
:q(f(u)); p(x; x)_:q(f(x)). If a correct universally quanti�ed theory does exist,
then a re�nement chain from 2 to every clause in this theory exists because 2
subsumes every clause. We say in this situation that � is weakly complete.

Until now we have only considered formulas which are conjunctions of a �-
nite number of universally quanti�ed clauses, especially de�nite program clauses.
However, we may want to learn a concept expressed by a formula � with existen-
tial variables. To solve such problems, one can consider the universally quanti�ed
Skolem standard form  of �. It is well known that  j= � but often � 6j=  .
For instance, let the 3-ary predicate p be interpreted in the set of real numbers
R as p(x; y; z) is true i� xy = z. The concept that for an arbitrary z 2 R,
there are x; y such that xy = z can be expressed by � = 8z9x9y p(x; y; z).
A standard form of the formula � is  = 8z p(f(z); g(z); z) for new function
symbols f; g. A model of � is also a model of  only when f and g are inter-
preted in certain ways, e.g. f(z) = 2z and g(z) = z=2, but we would like to
check the truth value of � directly. Moreover, most learning systems in ILP use
function-free languages with constants. The extra function symblos do not suit
the syntax of such a system. In a database we may have an integrity constraint
8x8y9z:sell(x; y) _ supply(x; y; z): if a shop x sells an item y, there must be
a company z which supplies x with y. Of course we can de�ne one particular
supplier as f(x; y) but we have to change f when we consider another supplier.
Actually an existential variable z expresses that as long as there is a supplier, it
does not really matter which one it is. It seems now we emphasize something less
important, namely a special supplier which is de�ned as f(x; y). That means the
standard forms are sometimes unnatural. In description logic (DL) existential
quanti�ers apper very often in formulas. For example, let us consider a con-
straint of concepts in DL: 9Friend:Dutch v 9Friend:European: people who
have Dutch friend(s) is a subset of people who have European friend(s). Let E,
D and F stand for European;Dutch and Friend, respectively. This constraint
is equivalent to the following �rst order formulas:

8x(9yF (x; y) ^D(y)! 9zF (x; z) ^E(z))

, 8x((:9yF (x; y) ^D(y)) _ (9zF (x; z) ^E(z)))

, 8x8y9z(:F (x; y) _ :D(y) _ F (x; z)) ^(:F (x; y) _ :D(y) _ E(z)).
This example shows to handle existential variables is important if we want to
apply ILP techniques for learning in description logic. To add expressiveness we
should consider learning PCNF with existential variables in ILP.

To assure a re�nement operator being complete, we need to take small steps
for re�nements such that re�nement chains will not skip the correct solutions.
Let us �rst consider a search space of universal quanti�ed theories. Since every
substitution is a composition of some elementary substitutions so we choose el-
ementary substitutions to de�ne re�nements[S81, NW97]. This idea motivates

2



us to use (elementary) substitutions to re�ne a PCNF. However, the usual sub-
stitutions often generalize a formula instead of specializing it because of the
existential variables. Let � = 8x9yp(x; y) and  = 8xp(x; x). Then  j= �
but � 6j=  . Therefore we will de�ne a new type of substitutions to specialize a
PCNF. Based on our substitutions and adding literals, we can de�ne a downward
re�nement operator � which is weakly complete: For every � there is a re�nement
chain from > to �, i.e., there is an n such that � 2 �n(>).

Generalizing and specializing a formula with existential quanti�ers have also
been considered in [GF96]. A formula there involves only one clause. The vari-
ables in the head of a clause are universally quanti�ed. The variables not in the
head are quanti�ed separately in the body by existential and universal quanti-
�ers. Some rules are given to manipulate the variables only in the body. It seems
that the rules are motivated by the following principle: If the body is generalized,
then the formula is specialized and vice versa. [GF96] adopts neither PCNF in
general nor an uniform approach with substitutions.

In this article we begin with establishing some properties of PCNF. We then
de�ne (elementary) substitutions and prove that they specialize a formula. Based
on these substitutions we can de�ne a re�nement operator �. We prove that
� is weakly complete. To establish the foundation of learning PCNF with �,
we will end with an analysis of the complexities of this re�nement operator
applied in di�erent search spaces. At last we explain brie
y our �rst step in
implementation. If I1; I2; : : : ; In is a set of interpretations, the system PCL �nds
a PCNF � such that every Ij is a model of �. Hence we have generalized the
Claudien system[RD97] which only deals with the standard forms.

2 Prenex Conjunctive Normal Forms

In the �rst subsection we give some well known de�nitions and results in logic
(see [CL73, NW97]). In the second subsection we establish two important lemmas
for later use. In the last subsection we consider the e�ects of adding literals to
a clause in a PCNF.

2.1 Preliminaries

In this article we consider a �rst order logical language L with a �nite number
of function and predicate symbols.

De�nition 1. An interpretation I with domain D of a logic language L consists
of the following: (a) Each n-ary function symbol f in L is assigned a mapping
If from Dn to D. (b) Each n-ary predicate symbol p in L is assigned a mapping
Ip from Dn to ftrue; falseg. For simplicity, we use f instead of If and p instead
of Ip.

De�nition 2. Let I be an interpretation of the language L with domain D. Let
V be a set of variables, then a mapping � : V ! D is called a variable assignment

from V . Given a variable assignment � from the set of variables of formula �,
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we can check if � is true or false under I and �. If � is a closed formula, then
the truth value of � is independent of the variable assignment we choose. I is a
model of the closed formula � if � is true under I . Formula  logically implies

formula �, denoted by  j= �, if every model of  is also a model of �. Formulas
 and � are said logically equivalent, denoted by  , �, if they have the same
models.

De�nition 3. A clause is a disjunction of a �nite number of literals. A prenex

conjunctive normal form (PCNF)  is a closed formula q1x1q2x2 : : : qnxn(C1 ^
C2 ^ : : : ^ Cm) where every qi is a quanti�er (9 or 8) and every Cj is a clause.
q1x1q2x2 : : : qnxn is the prenex of  and C1^C2^ : : :^Cm is the matrix of  . We
denote  often by q1x1q2x2 : : : qnxnM(x1; : : : ; xn) orQ(x1; : : : ; xn)M(x1; : : : ; xn)
or Q(x)M(x) or Q( )M( ) or QM . We call a variable in Q( ) universal or ex-
istential; depending on how it is bound; the sets of existential and universal
variables are denoted by eVar( ) and uVar( ), respectively. We have Var( ) =
uVar( ) [ eVar( ).

Note that if fy1; : : : ; ymg � fx1; : : : ; xng, then Q(y)M(x), Q(x)M(x).

Theorem4. If � is a closed formula, then there exists a PCNF  such that �
and  are logically equivalent.

2.2 Some properties of PCNF

We often need to check if some interpretation I is a model of a PCNF  . Lemma
5 in this subsection gives a necessary and su�cient condition for I to be a model
of  . Lemma 6 tells that the truth value of a formula has often to do with the
positions of variables in the prenex. We �rst give an example to motivate these
two lemmas. Given a variable assignment � de�ned on a subset of variables in
 , we often talk about  � (replacing variables by values given by �) as if � is a
usual substitution from variables to terms (which are de�ned using the language
itself instead of the domain of interpretation).

Example 1. Let  = 9x8yp(x; f(y)) and � = 8y9xp(x; f(y)). Then  j= �: Let I
be an interpretation with domain D. Then  is true under I , there is d 2 D
such that for every e 2 D, p(d; f(e)) is true. The choice of d does not depend
on e. On the other hand, � is true under I , for every e0 2 D, 9xp(x; f(e0)) is
true , for every e0 2 D, there is d0 2 D such that p(d0; f(e0)) is true. Usually
the choice of d0 may depend on e0 but here we can use the same d as  .

Lemma5. Let  = q1x1 : : : qnxnM(x1; : : : ; xn). An interpretation I with do-

main D is a model of  i� for every assignment � : uVar( ) ! D, there is an

assignment 
 : eVar( )! D such that the following two conditions are satis�ed:

(a) M(� [ 
) is true under I. (b) the de�nition of 
 on xi 2 eVar( ) depends

only on how � and 
 are de�ned on fx1; x2; : : : ; xi�1g, i.e., an element in D can

be assigned to xi after the assignment of all xj ; j < i has been done.

Proof Let I be an interpretation with domain D. Let eVar( ) = fxi1 ; : : : ; xikg
where i1 < : : : < ik. Let Var1 = fxij i < i1g, Varj = fxij ij�1 < i < ijg for
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1 < j � k and Vark+1 = fxij i > ikg.
): Let � : uVar( ) ! D be a variable assignment. We want to �nd 
 :
eVar( ) ! D such that M(� [ 
) true under I . Let �1 = �jVar1, i.e. � re-
stricted to variables in Var1. Then there is a d1 2 D such that  (�1 [ fxi1=d1g)
is true. This implies for variable assignment �2 = �jVar2 there is d2 2 D such
that M(�1 [ fxi1=d1g [ �2 [ fxi2=d2g) =M(�1 [ �2 [ fxi1=d1; xi2=d2g) is true
under I . We can go on this way and say that for every � = �1 [ �2 [ : : :[ �k+1,
there is a variable assignment of eVar( ) to D: 
 = fxi1=d1; : : : ; xik=dkg such
that M(� [ 
) is true. Note that xij=dj in 
 may depend on how xk; k < ij are
assigned by � and 
.
( : To prove I is a model of  we have to prove the following: For every vari-
able assignment �1 of Var1, there is a d01 2 D (yet to be found) such that
 (�1 [ fxi1=d

0
1g) is true under I . This means for every �2 of Var2, there is a

d02 2 D (yet to be found) such that  (�1[fxi1=d
0
1g[�2[fxi2=d

0
2g) is true under I .

We can go on this way and let the collection of �i be � = �1[�2[: : :[�k+1. By the
given condition, for the variable assignment � there is a 
 = fxi1=d1; : : : ; xik=dkg
such that M(� [ 
) is true under I . The de�nition of 
 on xij depends on how
� and 
 are de�ned on the variables before xij . That means we can choose
d01 = d1; d

0
2 = d2; : : :. Thus we have proved the su�ciency of the condition.

Lemma6. Let

 = q1x1 : : : 9xi : : :8xj : : : qnxnM , � = q1x1 : : :8xj : : : 9xi : : : qnxnM
and there is no other existential variable between xi and xj in the prenexes of

these two formulas. Then  j= �.

Proof Suppose I is a model of  . We want to prove that I is also a model
of �. Let � : uVar(�) ! D. By Lemma 5, there is a variable assignment 
 of
eVar( ) such thatM( )(�[
) is true under I . The assignment on xk 2 eVar( )
may depend on the de�nition of � and 
 on variables before xk in Q( ). Since
uVar( ) = uVar(�) and M( ) = M(�), we have M(�)(� [ 
) true under I .
By Lemma 5, we can say I is a model of � if 
 in xk 2 eVar(�) depends on
the assignment of variables before xk in Q(�). Note that Q(�) interchanges only
the order of 9xi and 8xj in Q( ). The assignment of xi in 
 depends only on
the assignment of �; 
 on x1; : : : ; xi�1 which appear before 9xi in Q(�) too. If
xk 2 eVar(�) is another existential variable, then it is not between xi and xj so
x1; : : : ; xk�1 are still before xk in Q(�). That means I is a model of �.

2.3 Adding literals

A classic re�nement step for a universal quanti�ed PCNF extends a clause in
the matrix with an extra literal containing new variables. This will also be done
for our re�nement operator for PCNF. For this we need the the following results
which are based on the fact that the disjunctions of two formulas is true if at
least one of them is true.

Lemma7. Let  = q1x1 : : : qnxnC1 ^ C2 : : : ^ Cm where every Ci is a clause.

Let L be a literal which contains only new variables y1; : : : ; yk w.r.t.  . If �j =
q1x1 : : : qnxn8y1 : : :8yk C1 ^ : : : ^ (Cj _ L) : : : ^ Cm, then  j= �j .
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We call the action in Lemma 7 adding a u-literal. Similarly we can prove the
following lemma which adds an e-literal to a formula. Notice that these lemmas
are true even L contains some old variables. (Of course we should then only
quantify the new variables.) However, we would like to have as few re�nements
as possible so we will later choose only �j using new variables in L as re�ne-
ments of  . In fact, the truth value of the new formula does not depend on the
locations of the quanti�cation of these new variables in the prenex. We choose
to place the new existential variables at leftmost and the new universal variables
at rightmost of the prenex because this does not contradict our feeling that
the existential variables before the universal variables are stronger formulas (see
Lemma 6). Moreover, this way will make the proof of the weak completeness of
the re�nement operator � more straightforward.

Lemma8. Let  = q1x1 : : : qnxnC1 ^ C2 : : : ^ Cm where every Ci is a clause.

Let L be a literal which contains only new variables y1; : : : ; yk w.r.t.  . If �j =
9y1 : : :9ykq1x1 : : : qnxn C1 ^ : : : ^ (Cj _ L) : : : ^ Cm, then  j= �j .

3 Substitutions and Specializations

Usually, a substitution � replaces some variables by terms. For a universally
quanti�ed clause C we have C j= C�. This is not valid for PCNF as the following
examples show. Thus we are motivated to de�ne a new type of substitutions
which specialize PCNF.

Example 2. Consider the following implications.
8p(x) j= p(a) and p(a) 6j= 8p(x)
p(a) j= 9x p(x) and 9xp(x) 6j= p(a)
9xp(x; x) j= 9x9y p(x; y) and 9x9y p(x; y) 6j= 9xp(x; x)

Moreover, a uni�cation of two universally quanti�ed variables does not always
specialize a PCNF. Let

 = 8x9y8zp(x; y; z), � = 8x9yp(x; y; x), �0 = 9y8zp(z; y; z),
and I = fp(t; f(t); t0)j t; t0 groundg. Then I is a model of  and � but not a
model of �0. For �0 true under I , we need an s such that p(t; s; t) is true for
every t.

3.1 Elementary substitutions for PCNF

A matrix in a PCNF can be pictured as a tree, with the root on top. At each
node, number downgoing branches 1, 2, 3, etc. from left to right. Each node and
the tree hanging from it is given by the path that leads to it from the top. For
example, let M = p(x; y) ^ (p(x; x) _ :q(f(x))). The second clause has position
h2i. :q(f(x)) has position h2; 2i, and f(x) has position h2; 2; 1i, etc.

De�nition 9. An substitution for a matrixM has the form � = f(t1=s1; p1); : : : ;
(tn=sn; pn)g. M� is a matrix formed by using M and �: for every i, the term
at position pi in M is ti and ti should be replaced by si. For example, if M =
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p(x; y)^(p(x; x)_:q(f(x))) and � = f(x=f(z); h1; 1i); (f(x)=g(z); h2; 2; 1i)g, then
M� = p(f(z); y)^ (p(x; x)_:q(g(z))). It is easy to see that the old de�nition of
a substitution is a special case of the new kind of substitutions. In such a case
we use the old notation where the positions are not needed.

Using the substitutions for the matrix of a PCNF, we can de�ne the substi-
tutions for the PCNF itself.

De�nition 10. Let  = q1x1 : : : qnxnC1 ^ : : : ^ Cm = Q( )M( ) be a PCNF.
There are the following 5 types of elementary substitutions for  .

The �rst two types have to do with universal variables. Notice that the old
de�nitions of elementary substitutions[NW97] for a universally quanti�ed clause
are special cases for these two types.

{ Let xi; xj 2 uVar( ) and i < j. An elementary u-uni�cation � = fxj=xig for
 can be applied to  such that  � = q1x1 : : : qnxn(M( )�). For example
let  = 8x8yp(f(x); y) and � = fy=xg. Then  � = 8x8yp(f(x); x) which is
equivalent to 8xp(f(x); x).

{ Let xi 2 uVar( ). If t = f(y1; : : : ; yk), where y1; : : : ; yk are new distinct
variables w.r.t.  , then � = fxi=tg is called an elementary u-substitution.
The new formula  � is constructed as follows. All xi-occurrences in the
matrix of  are replaced by t simultaneously, i.e.M( �) =M( )�. Moreover,
the 8xi in the prenex of  is replaced by 8y18y2 : : :8yk. For example, let
 = 8x9yp(x; y) and � = fx=f(u; v)g. Then  � = 8u8v9yp(f(u; v); y).

The third and fourth types have to do with the existential variables:

{ Let xi 2 eVar( ) and let f(xi; p1); : : : ; (xi; pk)g be a proper subset of the
xi-occurrences in M( ). If z is a new variable, then � = f(xi=z; p1); : : : ;
(xi=z; pk)g is called an elementary e-antiuni�cation and  � is the PCNF
q1x1 : : : 9xi9zqi+1xi+1 : : : qnxn(M�). For example, let  = 9xp(x; x) and � =
fx=z; h2ig. Then  � = 9x9zp(x; z).

{ Let t = f(xi1 ; : : : ; xim) which contains only distinct existential variables. Let
ij = maxfi1; : : : ; img. Let f(t; p1); : : : ; (t; pk)g be occurrences inM( ). If z is
a new variable, then � = f(t=z; p1); : : : ; (t=z; pk)g is called an elementary e-

substitution for  . We de�ne  � = q1x1 : : : qijxij9zqij+1xij+1 : : : qnxn(M�).
For example, let  = 8x9y9u9vp(x; u) ^(p(x; y) _ :q(f(u; v))). If � =
f(f(u; v)=z; h2; 2; 1i)g, then  � = 8x9y9u9v9z p(x; u) ^ (p(x; x) _ :q(z)).

The last type is related to interchanging the positions of an existential variable
and an universal variable in Q( ):

{ Suppose xi 2 eVar( ), xj 2 uVar( ) and i < j. If there is no other existential
variable between xi and xj in Q( ), then f(xi; xj)g denotes an elementary

eu-substitution. It interchanges the positions of xi and xj in the prenex Q( ).
For example, let � = f(x; y)g. Then (9x8yp(x; y))� = 8y9xp(x; y).

7



3.2 Specializations from substitutions

For every elementary substitutions � for  we can prove that  j=  �.

Lemma11. For a PCNF  = q1x1 : : : qnxnM( ), let xi; xj 2 uVar( ); i < j
and let � = fxj=xig be an elementary u-uni�cation. Then  j=  �.

Proof Let � =  � and I be a model of  with domain D. We want to use
Lemma 5 to prove that I is also a model of �. Let � be a variable assignment of
uVar(�). Then � induces a variable assignment �0 of uVar( ) because we can let
�0(xj) = �(xi). By Lemma 5, for �0 we can �nd a 
 de�ned on eVar( ) = eVar(�)
such that  (�0 [ 
) true under I . It is clear that M( )(�0 [ 
) =M(�)(� [ 
).
That means M(�)(� [ 
) is true under I . If x 2 eVar( ) = eVar(�), then the
de�nition of 
 on x depends only on the assignment of �0 and 
 on variables
before x in Q( ). These variables are before x too in Q(�). By applying the
su�cient condition of Lemma 5 again we have I is a model of �.

Lemma12. Let x 2 uV ar( ) and � = fx=tg be an elementary u-substitution.

Then  j=  �.

Proof Let I be a model of  with domain D. Let uVar( ) = fx; y1; : : : ; ykg
and eVar( ) = fz1; : : : ; zmg. Let fu1; : : : ; ulg be the set of (new) variables in t.
To apply Lemma 5, we need to prove �rst that for every variable assignment
� = fy1=d1; : : : ; yk=dkg [ fu1=dk+1; : : : ; ul=dk+lg from uVar( �) to D, there is
a variable assignment 
 of z1; : : : ; zm such that (M( )�)(� [ 
) is true under I .
Let � = fu1=dk+1; : : : ; ul=dk+lg. Let �

0 = fy1=d1; : : : ; yk=dkg [ fx=(t�)g. Then
(M( )�)� =M( )�0. Since I is a model of  so there is a variable assignment 

of z1; : : : ; zm such thatM(�0[
) is true by Lemma 5. That means (M( )�)(�[
)
is true under I . Moreover, 
 on zi depends only on the variables before it inQ( ).
If x is before some zi in Q( ), then all uj are before zi in Q( �). The assignment
of these uj determines the assignment of x. Since the other variables before a zi
stays before zi in  � so we can say that zi depends on all the variables (including
uj) in P ( �) before zi. We can apply the su�ciency in Lemma 5 to say that I
is a model of  �.

Lemma13. Let  = Q( )M( ) be a PCNF. Let � = f(t=z; p1); : : : ; (t=z; pm)g
be an elementary e-substitution. Then  j=  �.

Proof Let I be a model of  . Let t contain only the existential variables
xi1 ; : : : ; xik where i1 < i2 : : : < ik. Then  � = q1x1 : : : qikxik9zqik+1xik+1
: : : qnxnM�. M( ) di�ers from M( �) only at p1; : : : ; pk. Clearly, uVar( �) =
uVar( ) and eVar( �) = eVar( ) [ fzg. We want to prove for every variable
assignment � of uVar( �) to D, there is a variable assignment 
 of eVar( �)
to D such that M( )�(� [ 
) is true under I . Since I is a model of  , and the
assignment � is also an assignment of uVar( ), by Lemma 5 there is a variable
assignment 
 of eVar( ) to D such thatM( )(�[
) is true under I . Moreover, if
xi 2 eVar( ), then 
(xi) depends only on how � and 
 behave on variables before
xi in Q( ). Notice that at every position pj in M( )(� [ 
) we have in fact t
.
We consider the subsitution 
0 = 
[fz=t
g. ThenM( )(�[
) =M( )�(�[
0).
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Notice z is behind all variables x1; : : : ; xik in Q( �). Thus z depends also only
on how � and 
0 de�ned on the variables before it. By applying Lemma 5, we
have I is a model of  �.

In a similar way we can prove  j=  � for an elementary e-antiuni�cation �.
By the lemmas in this subsection and Lemma 6, we have the following de�nition
and theorem.

De�nition 14. Let  be a PCNF. Suppose �1 is an elementary substitution
w.r.t.  and �i is elementary w.r.t. (: : : ( �1)�2 : : :)�i�1 for every i = 2; : : : ; n.
Let � = �1 : : : �n be the composition of these �i, i.e.  � = (: : : ( �1)�2) : : :)�n.
Then � is called a substitution w.r.t.  .

Theorem15. For a PCNF  and a substitution � de�ned as above,  j=  �.

4 A Re�nement Operator

Let the search space S be the set of all PCNF of a �rst order logical language L
with a �nite number of predicates and function symbols. Let the top > 2 S be
the conjunction of a positive number of empty clauses, i.e. > = 2 ^ 2 : : : ^ 2.
A re�nement operator on S is a function � : S ! 2S (the set of all subsetes of
S). A re�nement operator � is downward if for every  and � 2 �( ), we have
 j= �. A re�nement chain from  to � is a sequence  0;  1; : : : ;  k in S such
that  0 ,  ,  k , � and  i 2 �( i�1).

De�nition 16. Let  = q1x1 : : : qnxnC1 ^ C2 : : : ^ Cm. Let � be a re�nement
operator on S de�ned by the following 7 items. The �rst three items have to
do with elementary substitutions w.r.t. universal variables and adding u-literals.
The next three items have to do with elementary substitutions w.r.t. existen-
tial variables and adding e-literals. The last item has to do with elementary
eu-substitutions. Note that there are only a �nite number of non-alphabetical
variants in �( ). Hence � is locally �nite (see [Laird 88, NW97]).

1. For an elementary u-uni�cation � = fy=xg, where x; y 2 uVar( ), let  � 2
�( ).

2. For x 2 uVar( ) and an elementary u-substitution � = fx=f(y1; : : : ; yk)g, let
 � 2 �( ).

3. Let L = p(y1; : : : ; yk) or :p(y1; : : : ; yk), where y1; : : : ; yk are new distinct
variables w.r.t.  . For an arbitrary j = 1; : : : ;m, let �j be de�ned by adding

a u-literal to  : �j = q1x1 : : : qnxn8y1 : : :8yk C1 ^ : : : ^ (Cj _L)^ : : :^ Cm.
Then �j 2 �( ).

4. Let x 2 eVar( ) and f(x; p1); : : : ; (x; pk)g be some (not all) x-occurrences
in M( ). For a new variable y and an elementary e-antiuni�cation � =
f(x=y; p1); : : : ; (x=y; pk)g, let  � 2 �( ).
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5. Let t = f(xi1 ; : : : ; xik ) where every xij 2 eVar( ). Suppose all xij are dis-
tinct and f(t; p1); : : : ; (t; pk)g is a set of t-occurrences inM( ). Then for the
elementary e-substitution � = f(t=y; p1); : : : ; (t=y; pk)g; let  � 2 �( ).

6. Let L = p(y; : : : ; y) or L = :p(y; : : : ; y) be a literal with new variable y.
Then for j = 1; : : : ;m, let �j 2 �( ) be de�ned by adding an e-literal:
�j = 9yq1x1 : : : qnxn C1 ^ : : : ^ (Cj _ L) ^ : : : ^ Cm.

7. Let x 2 eVar( ) y 2 uVar( ). Suppose x comes before y in Q( ) and there
is no other existential variable between x and y. Then for the elementary

eu-substitution � = f(x; y)g, let  � 2 �( ).

By Theorem 15, Lemma 7 and Lemma 8, we have the following theorem.

Theorem17. If � 2 �( ), then  j= �, i.e. � is a downward re�nement opera-

tor.

5 The Operator � is Weakly Complete

In this section we will show that the re�nement operator � is weakly complete

in S. That is to say, for every � in S, there is a �nite re�nement chain from >
to �. We show this by the following steps: >�!  �! �0�! �. Example 3 will
illustrate these steps more concretely.

1. Replace every existential variable in M(�) by a new constant not in � and
remove all the existential variables fromQ(�). Let the new PCNF be  . Then
the variables in  are universally quanti�ed. Let M( ) = C1 ^ C2 : : : ^ Cm.
Then 2 subsumes Ci (2 � Ci) for every i.

2. Similar to a result about the classic re�nement re�nement operator [S81,
Laird 88, LN94, NW97], we can prove that there is a chain from 2 to every
Ci. The combination of these chains will give a chain from > to  .

3. By using the elementary e-substitutions (item 4 of �) we can change the
constant occurrences in  back to existential variables. This establishes a
re�nement chain from  to �0 which looks almost like � but all existential
variables appear before the universal variables.

4. Using eu-substitutions (item 7 of �) we can move the existential variables to
the right and place them in good positions in the prenex. This means there
is a chain from �0 to �. Thus we have the weak completeness of �.

Example 3. We will give an example to show how a concrete �nite chain from >
to a given � = 8x9y((:p(x) _ q(f(x)) _ q(y)) ^ r(y; a)) looks like. Note that the
chain is not unique. Such a chain exists for a general � (Theorem 21) because of

the following lemmas. We use an arrow
n
�! to denote a re�nement step which

uses the n-th item of �.

2
3
�! 8x:p(x)

3;3;3
�!

8x8u8v8w8w0((:p(x) _ p(u) _ q(v)) ^ r(w;w0)
2
�!

8x8u18v8w8w
0(:p(x) _ p(f(u1) _ q(v)) ^ r(w;w

0))
1;1
�!

10



8x8v8w0((:p(x) _ p(f(x)) _ q(v)) ^ r(v; w0))
2;2
�!

 = 8x((:p(x) _ p(f(x)) _ q(b)) ^ r(b; a))
5
�!

�0 = 9y8x((:p(x) _ p(f(x)) _ q(y)) ^ r(y; a))
7
�!

� = 8x9y((:p(x) _ p(f(x)) _ q(y)) ^ r(y; a))

Lemma18. Let C be a universally quanti�ed clause. Then there is a �nite chain

of re�nements from 2 to C.

Proof See [LN94] and subsection 17.4, [NW97]

Every universally quanti�ed clause can be reached by a �-chain and hence a
universally quanti�ed PCNF can be reached by a �-chain.

Lemma19. Let  = Q( )M( ) be a universally quanti�ed PCNF. Then there

is a �nite �-chain from > to  .

Lemma20. Let � = 9y1 : : :9yn8x1 : : :8xmM(�) whose existential variables in

the prenex appear before the universal variables. Let b1; : : : ; bn be di�erent con-

stants which do not appear in �. Let the universally quanti�ed  be � after

replacing variable yi by bi. Then there is a �nite �-chain from  to �.

Proof Let the bi-occurrences in  be (bi; pi1); : : : ; (bi; pik). For every i = 1; : : : ; n,
let �i = f(bi=yi; pi1); : : : ; (bi=yi; pik)g which is an elementary e-substitution.
Then  �n : : : �1 = �. These substitutions �i; i = 1; : : : ; n correspond with item 5
of �.

Theorem21. Given a PCNF � = Q(�)M(�), there is a �nite �-chain from >
to �.

Proof Suppose uVar(�) = fx1; : : : ; xmg and eVar(�) = fy1; : : : ; yng. Let i1; i2;
: : : ; in where i1 < i2 : : : < in be the places of y1; y2 : : : ; yn in Q( ), respectively.
We divide the proof in three steps:

1. Let the universally quanti�ed  be constructed as follows. Suppose b1; : : : ; bn
are di�erent constants not in �. Q( ) is Q(�) by removing the existential
variables and M( ) is M(�) by replacing every yi by the constant bi. Then
there is a �nite re�nement chain from > to  by Lemma 19.

2. Let �0 = 9y1 : : :9yn8x1 : : :8xmM(�). Then there is a �nite re�nement chain
from  to �0 by Lemma 20.

3. Now �0 is almost the same as � except the order of the existential variables
and universal variables in the prenex. We can use elementary eu-substitution
(i.e. item 7 of �) to �nd a re�nement chain from �0 to � in the following way.
We move �rst 9yn to place in in the prenex by interchanging it and the uni-
versal variables 8x18x2, etc. stepwisely. We then move 9yn�1 to place in�1
by interchanging its place and its right neighbors in the prenex stepwisely.
These movements can be done without problem because in�1 < in. Eventu-
ally we move 9y1 to place i1 in the prenex. Now we have the formula � after
�nite re�ning steps.
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In [LN94, LN98, NW97] some properties of re�nement operators are investi-
gated, in particular ideal re�nement operators. A re�nement operator is ideal
if it is locally �nite, complete and proper. An ideal re�nement operator does
not exist in the search space of all universal quanti�ed theories ordered by im-
plication. We can consider our re�nement operator restricted to the universal
theories. It is surely not ideal because it contradicts the old results. We can
also directly see that using item 3 will give sometimes equivalent theories. For
example, 8x8yp(x; y) , 8x8y8u8vp(x; y)_ p(u; v). Therefore, � is not proper.

6 The Complexity of the Re�nement Operator

In this article we investigate some complexity problems related to �. These com-
plexities about the number of re�nements of a formula will be expressed by some
upper bounds. In fact, we can not have smaller complexities than these upper-
bounds because we can �nd examples which have indeed so many re�nements.
We will �rst consider function-free logical languages because ILP often uses this
kind of languages in implementations. We will call a function exponential w.r.t.
n if it can be majorized by n! 2 p(n) where p(n) is a polynomial of n.

6.1 L is function-free

Consider a function-free logical language L, i.e. the only functions are constants.

1. The following constants are used to specify a search space S of PCNF.
{ P = the number of predicate symbols in L.
{ F = the number of constants in L.
{ K = the maximal number of arguments of a predicate in L.
{ U = the maximal number of universal variables allowed for  2 S.
{ E = the maximal number of existential variables allowed for  2 S.
{ M = the maximal number of clauses allowed for  2 S.
{ L = the maximal number of literals allowed for a clause in  2 S.

Let N = maxfP; F; U;E;M;L;Kg.
2. Let  = Q( )M( ) be a PCNF. We use the following notations in the com-

putations of upper bounds: Q( ) can be divided into a sequence of blocks of
existential and universal variables: e1; u1; e2; u2 : : : ; ek; uk. That means:Q( )
begins with e1 existential quanti�ers and variables, followed by u1 universal
quanti�ers and variables, etc. Let juij or jeij be the number of variables in
the i-th block.

The number of elements in �( ) for function-free L: for i = 1; 2; : : : ; 7,
the i-th case below �nds an upper bound of the number of re�nements de�ned
by the i-th item in �.

1. The number of u-uni�cations is bounded by (U2 ) =
U(U�1)

2 � N2.
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2. The number of u-substitutions is bounded by U � F � N2.
3. For every clause in M( ) there are 2P ways to add u-literals. The total

number of ways for  is bounded by 2MP � 2N2.
4. A clause can contain at most LK occurrences of variables and the total

number of variable occurrences in M( ) is bounded by LKM . The number
of subsets of variable occurrences is bounded by 2LKM . Hence the total
number of elementary e-antiuni�cations is bounded 2LMK � 2N

3

.
5. The number of constant occurrences in a clause is at most LK and the total

number of constant occurrences inM( ) is bounded by LKM . The number
of subsets of constant occurrences is bounded by 2LKM . Hence the number
of elementary e-substitutions is bounded by 2LMK � 2N

3

. (In fact, we can

reason one upper bound for case 4 and case 5 together and say that 2N
3

is
their upper bound.)

6. The number of ways to add an e-literal is bounded by 2MP � 2N2.
7. For every i = 1; : : : ; k, only the last existential variable in block ei may

exchange its position with one of the variables in ui because we may move
an existential variable to the right only when it does not jump over other
existential variables. Hence there are only juij ways. In total there are ju1j+
ju2j+ : : :+ jukj � U � N ways to perform elementary eu-substitutions.

For an upper bound of j�( )j we can add these numbers given above.

j�( )j � N2 +N2 + 2N2 + 2N
3

+ 2N
3

+ 2N2 +N .

Theorem22. Consider a function-free logical language L. The number of re-

�nements of a PCNF in S is bounded by an exponential function of N .

6.2 L is not function-free

Let us now consider a logical language L which is not function-free. The com-
plexity of re�nements will increase enormously as we may expect. Now let F
be the number of function symbols in L. Let K be the maximum number of
arguments allowed for a predicate or a function symbol in L and let D be the
maximal number of nestings (depth of a term or the length of the path to a term
in the tree of the matrix of a PCNF) allowed in  2 S. The same de�nitions will
be used for P;E; U , etc. Moreover, let N be the maximum of all these constants.
We can use similar arguments to compute the upper bounds.

For types of 1, 2, 3, 6, 7 of �( ) the arguments are identical as in the function-
free situation. For type 4 we haveKD instead of K: A clause can contain at most
LKD occurrences of variables, in particular, existential variables. The number of

subsets of variable occurrence inM( ) is bounded by 2MLKD

. Hence the number

of elementary e-antiuni�cations is bounded by 2MLKD

� 2N
N+2

. Likewise, the

total number of e-substitutions de�ned by type 5 in �( ) is bounded by 2MLKD

�

2N
N+2

.

Theorem23. Consider a logical language L which is not function-free. The

number of re�nements of a PCNF in S has an upper bound which is double

exponential w.r.t. N .

13



This theorem tells us the number of re�nements can grow extremely fast
when the nestings of functions in formulas increase. This discourages one to
implement learning systems on PCNF which are not function-free.

6.3 The complexity of � for universally quanti�ed PCNF

For comparison we investigate the complexities of re�nement operators in clas-
sical ILP systems, i.e. � restricted to a search space with universally quanti�ed
PCNF, (denoted by �L in [NW97].)

The number of elements in �( ): If  does not contain existential variables,
then cases 4, 5, 6 and 7 in � will not be used. That means the number j�( )j �
N2 +N2 + 2N2 = 4N2 which is a polynomial function of N .

The total number of �-steps needed to get to �d(>): We have seen that
for some �xed � 2 �d(>), the number of universal PCNF in �(�) is bounded by
a polynomial of N . We want also to know how many �-steps have to be used to
�nd �d(>) if we start from >. That means the complexity of �d�1

i=1 j�
i(>)j. For

example, let a be a constant and f be a 1-ary function symbol. Let p; q be a
2-ary and a 1-ary predicates, respectively. We will omit the universal quanti�ers
in the following computation so that the formulas look neater. Then

�(>) = fp(x; y); q(x);:p(x; y);:q(x)g;
�(p(x; y)) = fp(x; x); p(x; a); p(a; y); p(f(z); y); p(x; f(z));

p(x; y) _ q(z); p(x; y) _ :q(z)g,
�(q(x)) = fq(a); q(f(z)); q(x) _ p(u; v); q(x) _ :p(u; v)g; : : : ,

This means we need 1 �-step to �nd �(>), 5(= 1 + 4) �-steps to �nd �2(>),
and 27(= 5 + 22) �-steps to �nd �3(>), etc. To compute the number of �-steps
needed for �d(>) from>, we can consider a tree with d�1 layers and at most 4N2

outgoing branches for every node. If X = 4N2 then the total number of nodes is
bounded by 1+X+X2+X3+: : :+Xd�1 � (X�1)(1+X+: : :+Xd�1) = Xd�1.
If d � N , then we have an exponential function of N . This explains perhaps why
most learning systems use function-free languages even for universal PCNF.

Theorem24. Let S be restricted to universal PCNF. Let �1(>) = �(>) and

�d(>) =
S
f�(�)j� 2 �d�1(>)g. For some �xed � 2 �d(>), the number of uni-

versal PCNF in �(�) is bounded by a ploynomial of N . The total number of

�-steps needed to compute
S
d�N �

d(>) is bounded by an exponential function of

N .

7 Learning PCNF in Practice

Based on the re�nement operator given in the previous sections, we have ex-
tended a simple version of the Claudien system (see [RD97]) to a learning system
PCL (abbreviation of PCNF Claudien) and implemented it in Prolog. Just like
Claudien, learning by interpretations[RD97] is also used in PCL. Claudien learns
a universal clausal theory w.r.t. a set of positive examples (interpretations) such
that each example is a model of the theory. This clausal theory can be considered
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as a set of regularities or integrity constraints satis�ed by these examples. Of
course, the purpose of PCL is to learn more expressive PCNF with existential
variables.

Consider a �nite set of scenes (Bongard interpretations) as positive examples.
A scene contains several �gures: each �gure has properties like shape, size,... and
these �gures are related to each other indicated by in, above, left of,..... Claudien
is able to �nd clauses like:
8x8y(shape(y; circle) �gure(x); �gure(y); in(x; y));

i.e., for every �gure x and y in a scene, when x is inside y, then y must be a
circle. The following rule cannot be found by Claudien, but PCL can:
8x9y((in(x; y) shape(x; triangle))^ shape(y; circle)),

i.e., each triangle is in at least one circle.

To extend Claudien towards PCL, several issues have to be addressed. In the
following subsections we discuss the most important ones.

7.1 Testing interpretation in a search space

In Claudien, a clause head  body is true for an interpretation (positive ex-
ample) if the Prolog query ? � body; not(head) fails for that example. This
works only if the clauses are range restricted, meaning that all variables in
the head should also occur in the body. Indeed, consider a Herbrand interpre-
tation I = fp(a; b); q(a)g and � = 8x8y(p(x; y)  q(x)). � is false because
p(a; a) q(a) is false. On the other hand, we get No as the answer of the query
?- q(x); not(p(x; y)) because q(a); not(p(a; b)) is false. For PCL, we also consider
range restricted PCNFs. The following de�nition can be found in [N82]: a PCNF
� in S is range restricted i�

{ If x 2 uVar(�) and x is in a positive literal of a clause C (in head(C)) in
M(�), then x must also appear in a negative literal of C (in body(C)).

{ If x 2 eVar(�) and x is in a negative literal of a clause C (in body(C)) in
M(�), then there is a clause D inM(�) with only positive literals (no body)
such that x appears in every literal in D (in every atom of head(D)).

Intuitively, a range restricted formula is structured in such a way that for an
interpretation, the range of a variable is restricted to the elements de�ned by
some other relations in the same formula. For example, 8x9y(q(x) p(x; y)) is
not range restricted, but � = 8x9y(r(y) ^ (q(x)  p(x; y))) is range restricted.
Let us consider interpretation I = fq(a); r(a); p(b; a)g. To check if I is a model
of �, we need only to consider y where r(y) is true, i.e. fy=ag.

A search space S for PCL consists of range restricted and function free PC-
NFs. Moreover, there is an upper bound N for the number of clauses in a PCNF,
the number of literals in each clause, etc. The search space is further restricted
by some language bias, e.g., the types of the arguments of each predicate must
be declared, a declaration is also necessary for each type for which constants
must be generated. It is also allowed to specify some types where no constants
should be generated. (See Section 8 for some examples of the language bias.)
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We can show that the number of steps needed to verify if the given Herbrand
interpretation I is a model of some � is exponential w.r.t. N . We sketch the proof
here. Let L be the maximal number of literals in a clause of �, M the maximal
number of clauses, K the maximal number of arguments in a predicate, F the
maximal number of constants allowed in I , and G the maximal number of ground
literals which are true in I . Then we can say:

1. The range restriction means that only values occuring in I need to be tested
for a variable. There are at most F possibliities for a variable. For a literal
there are at most FK ground instances. There are at most LM literals in �.
The total number of possible ground literals in a clause is therefore bounded
by LMFK .

2. Every ground instance of a literal in � should be compared with the truth
values of literals in the interpretation I . There are at most G true ones in I .
Thus we should have at most GLMFK comparisons.

3. Suppose the maximum of all these constants K;G;M , etc. is N . We can say
now that PCL has an exponential time complexity w.r.t. N .

7.2 The downward re�nement operator

For the implementation of the re�nement operator �, several issues must be
addressed.

First, for e�ciency it is necessary to optimize the re�nement operator. We
should try to avoid deriving several equivalent PCNF (and then re�ne these
PCNF, doing the same work several times). One way to do this is to de�ne an
order in which literals have to occur in each clause and an order of the clauses.
This removes equivalencies obtained by applying assiociativity and commutativ-
ity rules. For Instance, we can obtain false p ^ q in two ways. We can start
from the empty clause false, �rst add p to obtain false p and then add q to
obtain false p^q. We can also �rst add q to obtain false q and then add p
to obtain false q^p. The latter is not allowed because p comes alphabetically
before q. Such orders are also considered in Claudien using the DLAB language
bias.

Second, we need to address the following problem. Let M be the maximal
number of clauses in a PCNF in the search space S. Then S can be divided
into M subsets S1; S2; : : : ; SM such that every PCNF in Si contains i clauses.
To search Si, we start from the conjunction of i empty clauses. Thus we have to
search M trees. The computational cost of searching in the i-th tree grows very
fast as i increases. We can solve this problem partially by reusing the formulas
we have found in Si�1 to speed up the search in Si. If q1x1:::qkxkC1 ^ :: ^
Ci�1 ^ Ci is a PCNF with i clauses which is true for the given examples, then
q1x1:::qkxkC1 ^ :: ^ Ci�1 must also be true in these examples. To �nd a good
PCNF with i clauses, we can start from good PCNF containg i� 1 clauses with
an extra empty clause added. The re�nement operator can be applied again and
again until good PCNFs are found for all Si.
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8 Experiments

In this section we present some experiments to illustrate that PCL can learn
rules which can not be learned by existing systems that only learn universal
quanti�ed clauses.

Experiment 1 We considered a set of undirected graphs as positive examples.
One of the examples contains the following true ground atoms:

r(a; b): r(b; a): r(a; c): r(c; a):
r(a; d): r(d; a): r(e; a): r(a; e):

Every graph has the property that each point is connected to at least one other
point in the same graph. PCL found this and also some other rules:
8x8y(r(x; y) r(y; x));
8x9y(r(x; y) point(x))

Note that the last PCNF is made range restricted by adding a predicate point.
PCL automaticallymakes PCNF formulas range restricted by using the language
bias and the de�nitions of the domain predicates. The following language bias
are used:

type(r(point type; point type)):
domain(point type; X; point(X)):

The �rst declaration means that r is a predicate with two arguments which are
of the type point type. The domain declaration says that if a variable X of type
point type is not range-restricted, it can be made range-restricted by adding a
literal point(X) in the formula.

Experiment 2 We also did an experiment on some bongard-like examples men-
tioned at the beginning of last section. These are scenes of �gures (in this case
triangles and circles) which are related to each another. One example is

�gure(a): �gure(b): �gure(c): �gure(d);
in(a; b): in(c; b);
shape(a; triangle): shape(c; triangle): shape(b; circle): shape(d; circle):

The search space is large and many correct formulas are found. Even more than
the case of Claudien, many trivial formulas are given by PCL which do not add
new knowledge:
9x(shape(x; triangle)), 9x9y(in(x; y)),
9y(�gure(y) ^ (false shape(y; triangle))).

After the search has continued for some time, more interesting results are given,
such as: 8x9y(shape(y; circle)^ (in(x; y) shape(x; triangle)):

Finally, we add a remark about the language bias. The following bias has been
used in this experiment. The two constant declarations mean that triangle and
circle are constants which should be tried for arguments of type shape type. In
fact, constants are only generated if such declarations are present. For example,
the literal shape(X; triangle) occurs in one of the clauses found, but PCL never
generates clauses containing a literal such as figure(a) since we did not specify
constants for the type name.

type(shape(name; shape type)).

17



type(in(name; name)):
domain(name; X; �gure(X)):
constant(shape type; triangle):
constant(shape type; circle).

9 Conclusion and Future Work

As we know, every formula is equivalent to a PCNF but not necessarily its Skolem
standard form. Until now we consider in ILP almost exclusively formulas which
are conjunctions of a �nite number of universally quanti�ed clauses, especially
Horn clauses. To add expressiveness we should consider PCNF in general.

If we want to extend re�nement operators to PCNF, we should �rst extend
substitutions to PCNF. In this article we have de�ned the substitutions which
specialize a given PCNF. Elementary substitutions and adding literals can be
used to de�ne a re�nement operator � which is weakly complete. In section
6 we have also analyse the complexities of � in function-free or more general
logical languages. Unfortunately the results are not encouraging. We have also
considered search spaces with universally quanti�ed PCNF. The total number
of elements in a �(�) for a �xed � is polynomial but the total number of �-steps
needed to �nd �d(>) starting from > is still exponential w.r.t. the depth d of
formulas.

This article lays a theoretical foundation for systems to learn PCNF. In fact, a
simple system PCL is already implemented by us. PCL deals with a �nite search
space of function free and range restricted PCNF. If a set of interpretations are
given as positive examples, then PCL �nds some PCNF such that these examples
are models of these formulas.

Notice that we have not used items 4 and 6 in � for the weak completeness. In
a set of formulas ordered by some kind of generalization, a re�nement operator
is complete if there is a re�nement chain from  to � whenever  is more general
than �. For example, item 4 is needed when we consider  = 9xp(x; x) and
� = 9x9yp(x; y). We would like to know more about the role of item 4 and 6
in completeness. Furthermore, in the set of PCNF there is no well known proof
procedure corresponding to resolutions in universal theories. It is also not clear
what is the counterpart of subsume for clauses with existential variables. These
are interesting research subjects.

We are not only interested in extending our implementation but also in more
theoretical applications. As we have mentioned in the introduction, existential
variables are used even in very simple constraints in declarative languages. If we
want to �nd more connections between description logic and �rst order logic,
it seems natural to investigate the connections between constraints and PCNF.
For example, T-box and A-box are the most elementary ideas in describing a
knowledge base using description logic. We can consider a subset of an A-box as
a set of positive examples and a T-box as some background knowledge. It may
be possible to extend the T-box to a new T-box such that the new T-box implies
the set of positive examples. We would like to do such kind of research.
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