
138 European Journal of Operational Research 64 (1993) 138-151
North-Holland

Theory and Methodology

On the computational complexity of
(Maximum) Shift Class Scheduling.

Antoon W.J. Kolen
University of Limburg, P.O. Box 616, 6200 MD Maastricht, Netherlands

Leo G. Kroon
Erasmus University, P.O. Box 1738, 3000 DR Rotterdam, Netherlands

Received September 1989; revised December 1990

Abstract: In this paper we consider a generalization of the Fixed Job Scheduling Problem (FSP) which
appears in a natural way in the aircraft maintenance process at an airport. A number of jobs has to be
carried out, where the main attributes of a job are: a fixed start time, a fixed finish time and a value
representing the priority of the job. For carrying out these jobs a number of machines is available. These
machines are available in specific time intervals (shifts) only. A job can be carried out by a machine only
if the interval between the start time and the finish time of the job is a subinterval of the shift of the
machine. Furthermore, the jobs must be carried out in a non-preemptive way and each machine can be
carrying out at most one job at the same time.

Within this setting one can ask for a feasible schedule for all jobs or, if such a schedule does not exist,
for a feasible schedule for a subset of jobs of maximum total value. In this paper a classification of the
computational complexity of two classes of combinatorial problems related to these questions is
presented.

Keywords: Air transportation; Computational complexity; Fixed job scheduling

1. Introduction

Between the time of arrival and the time of
departure of an aircraft at the main airport in the
Netherlands the aircraft must be inspected before
being allowed to take off again. Such an inspec-
tion can be seen as a job with a fixed start time, a
fixed finish time and a value representing the
priority of the inspection. The start time and the
finish time of an inspection might coincide with
the time of arrival and the time of departure of
the aircraft, but this is not necessary: a list of
maintenance norms is available which can be

used for calculating the start time and the finish
time of each inspection.

The inspections have to be carried out by a
number of ground engineers. These ground engi-
neers are available at the airport in specific time
intervals (shifts) only. In principle an inspection
can be carried out by a ground engineer only if
the interval between the start time and the finish
time of the inspection is a subinterval of the shift
of the engineer.

In the practical situation at the airport still
other restrictions should be satisfied. For exam-
ple, an engineer is allowed to carry out a specific

0377-2217/93/$06.00 © 1993 - Elsevier Science Publishers B.V. All rights reserved

A.W.J. Kolen, L.G. Kroon / On the computational complexity of shift class scheduling 139

inspection only if he has a license for the corre-
sponding aircraft type. The problems that are
introduced by the licenses of the engineers have
been studied by Kolen and Kroon [12]. In this
paper we will therefore neglect the restrictions
that are imposed by the licenses by assuming that
all engineers have licenses for all aircraft types.

Suppose that a reliable estimate of the work-
load in the near future has been made. Then
both tactical and operational questions should be
answered in order to realize a sufficiently high
service level. Examples of such questions are the
following:

- How many shifts are required and how to
choose the begin and the end times of the shifts
appropriately?

- How many engineers should be available in
each shift?

- How many engineers are required in total
and how to assign these engineers to the shifts?

- How to assign the inspections to the avail-
able engineers if both the begin and the end
times of the shifts and the assignments of the
engineers to the shifts have been determined?

In this paper we fill focus on the latter (oper-
ational) job scheduling problem. The remainder
of this paper is organized as follows: In Section 2
we give a formal definition of a class of feasibility
problems and a class of optimization problems
related to this operational job scheduling prob-
lem. In Section 3 some preliminary remarks with
respect to the computational complexity of the
problems in these classes are made. In Section 4
a detailed analysis of the computational complex-
ity of the class of optimization problems is pre-
sented and in Section 5 the same is done for the
class of feasibility problems. We finish with some
concluding remarks in Section 6. In order to
follow the standard literature on job scheduling,
in the remainder of this paper the inspection will
be addressed as 'jobs' and the engineers will be
addressed as 'machines'.

2 . P r o b l e m d e f i n i t i o n

Suppose that J jobs have to be carried out,
where the main attributes of job j are a fixed
(rational) start time sj, a fixed (rational) finish
time fj and a value vj representing the priority of
the job. The jobs have to be carried out in a

non-preemptive way by a number of parallel ma-
chines. The total number of machines is denoted
by M. These machines are available in specific
time intervals (shifts) only. The number of shifts
is denoted by Z and shift z has a fixed (rational)
begin time b z and a fixed (rational) end time e~.

The number of machines available in shift z is
denoted by M z. Note that, if M z > J , then
scheduling the jobs in shift z is easy, because in
this case each job in shift z can get its own
machine. Hence throughout this paper it is as-
sumed that M z <~ J for z = 1, 2 Z. The shift
in which machine m is available is denoted by
z (m) . Job j can be carried out by machine m if
and only if the interval (sj, f j) is a subinterval of
the shift of machine m which is denoted by

(bz(m), ez(m)).
After this description of the relevant notation,

the problems Shift Class Scheduling (SCS) and
Maximum Shift Class Scheduling (MSCS) can be
defined. SCS is a feasibility problem asking
whether or not a feasible schedule exists for all
jobs. MSCS is an optimization problem asking for
a subset of jobs of maximum total value for which
a feasible schedule exists. SCS can be defined
more formally as follows.

I n s t a n c e o f S C S .

- J jobs (sj, f j) to be carried out.
- Z triples (bz, ez, Mz), for z = 1, 2 Z

representing shift z and satisfying M~ ~< J.

Q u e s t i o n . Does a feasible non-preemptive sched-
ule for all jobs exist?

SCS is studied by Kolen, I_~nstra and Pa-
padimitriou [13], who call this problem Interval
Scheduling. This problem is proved to be NP-
complete by a straightforward reduction from
Circular Arc Colouring (see Garey and Johnson
[8]). However, in [13] it is also shown that SCS
can be solved in polynomial time if preemption of
the jobs (only at the end of the shift intervals) is
allowed.

If a feasible schedule for al l jobs in an in-
stance of SCS does not exist, then it is interesting
to find a subset of jobs of maximum total value
for which a feasible schedule does exist. This
problem is called MSCS and is defined more
formally as follows.

140 A.W.J. Kolen, L.G. Kroon / On the computational complexity of shift class scheduling

Instance of MSCS.
- J jobs (s i, fj, vj) to be carried out.
- Z triples (bz, e~, Mz), for z = 1, 2 Z

representing shift z and satisfying M z ~< J.

Question. What is the maximum total value of a
subset of jobs for which a feasible non-preemp-
tive schedule exists?

S be a set containing Z shift intervals. That is, S
is a set {(bz, ez)[z = 1, 2 Z}. Then the prob-
lems Shift Class Scheduling with respect to S, or
SCS(S) for short, and Maximum Shift Class
Scheduling with respect to S, abbreviated to
MSCS(S), can be defined. For example, for the
given set of shifts S the problem SCS(S) is de-
fined as follows.

MSCS is NP-hard, as it is evident that MSCS is
a generalization of SCS. A further generalization
of SCS and MSCS is studied by Arkin and Silver-
berg [1]. In [1] the assumption is that all jobs have
a fixed start time and a fixed finish time. How-
ever, the assumption in [1] with respect to the
feasibility of the assignment of a specific job to a
specific machine is different from ours. In [1] for
each job j a subset of machines Wj is given and it
is assumed that job j can be carried out by the
machines in W i only. The objective is to find a
feasible schedule for all jobs. In [1] it is shown
that this problem is NP-complete. Furthermore, a
Dynamic Programming formulation is presented
that can be used for solving in O(J M÷I) time the
more general problem of finding a subset of jobs
of maximum total value for which a feasible
schedule exists. This implies that, if the number
of machines is fixed beforehand, then this opti-
mization problem can be solved in polynomial
time. Note that in our context for job j the set Wj
can be defined by

W 1 = {m I bz(m) <~ s t and f j <<, ez(m) }.

Hence SCS and MSCS can be seen as special
cases of the problem in [1]. Therefore the
O(jM+ 1) time algorithm in [1] can be applied for
solving SCS and MSCS also. However, it should
be noted that this result in only interesting from a
theoretical point of view, due to the size of the
state space in the Dynamic Programming formu-
lation.

Note that in the definitions of SCS and MSCS
the set of shifts belongs to the instances of the
problems. This leaves open the complexity of the
scheduling problems when the number of shifts
and the begin and end time of each shift are
known in advance, as is the case at the opera-
tional level in the aircraft maintenance process at
the airport. In order to study these problems, let

Instance of SCS(S).
- J jobs (s i, f j) to he carried out.
- Z integers Mz, for z -- 1, 2 Z represent-

ing the number of machines in shift z and satisfy-
ing Mz ~<J.

Question. Does a feasible non-preemptive sched-
ule for all jobs exist?

Now the set of shifts does not belong to the
instances of SCS(S) but to the type of the prob-
lem. Therefore we have defined a whole class of
job scheduling problems, indexed by the sets of
shifts S. Note that, if the integers M z represent-
ing the numbers of machines in each of the Z
shifts are also taken away from the instances of
SCS(S), then the results of Arkin and Silverberg
[1] show that the obtained problem can be solved
in polynomial time. MSCS(S) can be defined in a
similar way as SCS(S).

It is evident that the computational complexi-
ties of the problems SCS(S) and MSCS(S) de-
pend on the size and the structure of the set of
shifts S. In Section 4 a complete classification of
the computational complexity of the problems
MSCS(S) is presented and in Section 5 a classifi-
cation of the computational complexity of a large
subset of the problems SCS(S) is presented. It
turns out that it is not difficult to create a set of
shifts S such that SCS(S) is NP-complete or such
that MSCS(S) is NP-hard, but polynomially solv-
able cases occur frequently as well.

SCS(S) and MSCS(S) are closely related to
the job scheduling problems that are introduced
by taking into account the licenses of the engi-
neers. These problems have been studied exten-
sively by Kolen and Kroon [12]. Special cases of
these problems were considered by Carter and
Tovey [2], by Dondeti and Emmons [4], [5], and
by Kolen, Lenstra and Papadimitriou [13].

A.W.J. Kolen, L.G. Kroon / On the computational complexity of shift class scheduling 141

3. P r e l i m i n a r y r e m a r k s

All problems that were mentioned in Section 2
are generalizations of the well known Fixed Job
Scheduling Problem (FSP) which has been stud-
ied by many authors such as Dantzig and Fulker-
son [3], Gertsbakh and Stern [9] and Gupta, Lee
and Leung [10].

In FSP the jobs have a fixed start time and a
fixed finish time and the machines are continu-
ously available. Therefore FSP is equivalent to
SCS(S) if the set of shifts S contains only one
shift. The following result gives a necessary and
sufficient condition for the existence of a feasible
schedule for an instance of FSP.

L e m m a 1. For an instance of FSP a feasible
schedule for all jobs exists * the maximum job
overlap is less than or equal to the number of
available machines.

Here for a given set of jobs the job overlap at
instant t, denoted by D t, and the maximum job
overlap, denoted by D, are defined as follows:

- O t = l { j l s j < t < f j } [,
- D = m a x { D t l - o 0 < t < • } .
As calculating the maximum job overlap is

easy, FSP can be solved in polynomial time. More
specific, it is well known that FSP can be solved
in O(J log(J)) time on a sequential processor.
This is optimal, as follows from a result of Fred-
man and Weide [6]. However, FSP can be solved
in O(log(J)) time by O(J) parallel processors
(Kindervater [!1]).

The Maximum Fixed Job Scheduling Problem
MFSP is the optimization version of FSP. That is,
in MFSP all machines are continuously available
and the problem is to find a feasible schedule for
a subset of jobs of maximum total value. As is
shown by Arkin and Silverberg [1], by Kolen,
Lenstra and Papadimitriou [13] and by Kroon
[14], MFSP can be solved by finding a Minimum
Cost Flow of M units of flow in a directed
network with O(J) nodes and O(J) arcs. Conse-
quently, MFSP can be solved in polynomial time.

For a given set of shifts S the shift overlap at
instant t, denoted by At, and the maximum shift
overlap, denoted by A, are defined in the same
way as the (maximum)job overlap. That is:

- A t = [{zlbz < t <ez}l
- A = max{Atl - ~ < t < ~}

G(S1)=G(S.2)=

G(S3)=G(S4)= ~ _ ~ ,

G(S5)=G(Se)= ~ ~ ' ~

Figure 1. Example of sets of shifts S and graphs G(S)

S I = {(0, 6), (1, 5)}
S 2 = {(0, 6), (1, 7)}
S 3 ={(0, 12), (1, 11), (2, 7)}
S4 = {(0, 12), (1, 13), (2, 14)}
S 5 = {(0, 5), (0, 8), (1, 2), (4, 8), (6, 7)}
S 6 = I{0, 2}. (0, 4), (1, 4), (1, 5), (3, 5)}

Furthermore, the undirected graph G(S),
which will play an important role in the remain-
der of this paper, is defined as follows:
- G(S) contains one node for every shift.
- Two nodes in G(S) are connected

• the corresponding shifts are overlapping and
the corresponding shifts have different begin
times and different end times.

An example of sets of shifts that will be ana-
lyzed in the remainder of this paper and the
corresponding graphs G(S) is represented in Fig-
ure 1.

The aim of this paper is to provide an analysis
of the computational complexity of the problems
SCS(S) and MSCS(S). In this paper we make the
assumption that P 4: NP. This assumption is justi-
fied by the fact that it simplifies the notation in
several places and by the fact that it is in accor-
dance with the general opinion on the relation of
P and NP. Important tools in the analysis of the
computational complexity of the problems SCS(S)
and MSCS(S) are Lemmas 2 and 3 which relate
the complexities of two problems to each other.
As these lemmas can be proved by elementary
reductions, the proofs are omitted.

L e m m a 2. Let S x and Sy be two sets of shifts. I f
S x is a subset of Sy, then the following statements
hoM:

- SCS(S x) at SCS(Sy).
- MSCS(S x) ~ MSCS(Sy).

Here the notation X et Y means that a polyno-
mial reduction exists from problem X to problem

142 A.W.J. Kolen, L.G. Kroon / On the computational complexity of shift class scheduling

Y. We refer to Garey and Johnson [8] for a
definition of this concept. It turns out that the
complexity of the problems SCS(S) and MSCS(S)
is completely determined by the overlap structure
of the shifts and that the absolute begin times
and the absolute end times of the shifts are of
minor importance. This is expressed in Lemma 3
which uses the following definition. If f : R ~ R
is a strictly increasing bijection and S is a set of
shifts, then S f denotes another set of shifts which
is defined as follows:

s f : = {(f (b~) , f (e ~)) l z = 1, 2 , . . . , Z}.

Now it is evident that the following relation on
the pairs of sets of shifts is an equivalence rela-
tion.

S x ~ S r ,=, 3 f : R -o R , f is a strictly increasing

bijection and Sy = S f .

Lemma 3 shows that for all sets of shifts S in
one equivalence class of this relation the compu-
tational complexity of the problem SCS(S) is the
same and that an analogous result also holds for
MSCS(S).

Lemma 3. Let S be a set o f shifts and let f : R ~ R
be a strictly increasing bijection. Then the following
statements hold:

- SCS(S) at SCS(SS).
- MSCS(S) ~ MSCS(Sf).

Note that, if f is a strictly increasing bijection,
then the same holds for f - 1 It follows that we
can restrict ourselves to the representatives of the
equivalence classes of the equivalence relation.
Furthermore, the following lemma will be used
several times in the Sections 4 and 5, where the
computational complexity of the job scheduling
problems is analyzed.

Lemma 4. Le t S be a set o f shifts containing a pair
o f shifts x and y with ex = by. Then a set o f shifts S '
exists with the following properties:

- SCS(S) ~ SCS(S').
t - e~ ~ by for all shifts x and y in S ' .

- The graphs G (S) and G (S ') are isomorphic.

Proof. Let us first suppose that S is such that
exactly one time instant t exists such that t = e x

= by for some pair of shifts x and y in S. Then
the set of shifts S ' is defined as follows:

b z if b z < t
b ' = b ~ + l i f b z > / t

, [ez if e z <<. t

ez = t ez + 1 i f e z > t

for z = 1 ,2 Z.

for z = 1, 2 , . . . , Z .

As it was assumed that t is the only time
instant such that t = e x =by for some pair of
shifts x and y in S, it follows that e" =~ b~ for all
shifts x and y in S'. Furthermore, overlap of
shifts and equality of begin times of shifts and
equality of end times of shifts are preserved by
the transformation. Therefore the graphs G (S)
and G (S ') are isomorphic. Moreover, if I is an
instance of SCS(S) containing J jobs (sj, f i) and
Z integers M z, then an instance I ' of SCS(S') is
constructed as follows:

s i if sj < t
s j = s i + l i fs i>~ t f o r j = l , 2 J.

f / = I f , if f~ < t f o r j = 1, 2 J.
+ 1 if f1 > t

M ' = M , for z = 1 ,2 Z.

It is not difficult to see that I is a yes-instance
of SCS(S) if and only if I ' is a yes-instance of
SCS(S'). This proves Lemma 4 in the case that
exactly one time instant t exists such that t = e x
= by for some pair of shifts x and y in S, The
general case can be proved by repeating the above
argument as often as necessary. []

It is evident that an analogous result also holds
with respect to the problems MSCS(S). The Lem-
mas 7 and 12 in the following sections are estab-
lished by a reduction from an adapted version of
Numerical Three Dimensional Matching or
N3DM for short. This problem is defined as
follows:

Instance of N3Dbl.
- A positive integer t and 3t rational numbers

ai, b i and c i for i = I, 2 t satisfying 0 < a i, b i,
c i < 1 and

t

E (a i + b i + c i) = t .
i=1

A.W.J. Kolen, L.G. Kroon / On the computational complexity of shift class scheduling 143

Question. Is it possible to find permutations p
and o" of{l , 2 t} such that: a i + bp(i) + ca(i) = 1
f o r i = l , 2 , . . . , t ?

and MSCS(S 2) are NP-hard, it follows that
MSCS(S) is NP-hard by applying the Lemmas 2
and 3.

It is well known that N3DM is NP-complete
(see Garey and Johnson [8]). Therefore any prob-
lem in NP that is more general than N3DM is
NP-complete also. The proofs of the Lemmas 7
and 12 are illustrated by the following instance of
N3DM with t = 3:

(a l , a2 ' a3) = (1 , i 3 ~ , ~) ,

(b l , b2 ' b3) = (~, 1

and

(c1, c : , c3)=(1 ,

Note that this instance is a yes-instance of N3DM,
as

al + b l + c 3 = a 2 + b 3 + c 1

= a 3 + b : + c 2 = 1.

4. Complexity results for MSCS(S)

The classification of the computational com-
plexity of the problems MSCS(S) is a complete
classification, whereas the classification of the
computational complexity of the problems SCS(S)
is only a classification of a (large) subset of the
problems SCS(S). Therefore we will first present
the classification of the computational complexity
of the problems MSCS(S). This classification is
expressed in Theorem 5 which reads as follows:

Theorem 5. MSCS(S) can be solved in polynomial
time ,~, the graph G (S) consists o f isolated nodes
only.

Theorem 5 is proved in several steps. First we
will prove in Lemma 6 that MSCS(S) can be
solved in polynomial time if G (S) consists of
isolated nodes only. Conversely, if G (S) contains
at least one edge, then S contains a subset of two
overlapping shifts with different begin times and
different end times and belonging to the same
equivalence class as S 1 or S 2. Here the sets of
shifts S 1 and S 2 are the same as in Section 3. As
it will be shown in Lemmas 7 and 8 that MSCS(S 1)

Lemma 6. I f the graph G (S) consists o f isolated
nodes only, then MSCS(S) can be solved in poly-
nomial time.

Proof. This lemma is proved by establishing the
following reduction: MSCS(S) ct MFSP. As MFSP
can be solved in polynomial time, the result fol-
lows. Let the set of shifts S be such that the
graph G (S) consists of isolated nodes only. Note
that, according to I_~mma 4, it may be assumed
that

e x 4: by for all shifts x and y in S. (*)

Let I x be an instance of MSCS(S) containing
J jobs (sj, fj, v) to be carried out and Z integers
M z, for z = 1, 2 Z representing the number
of machines in shift z and satisfying M z ~< J. Now
an instance 12 of MFSP is constructed as follows:
The number of machines is equal to M z = 52z= 1Mz.
Furthermore, let

B = min{bz, sjl z = 1, 2 Z

and j = 1, 2 , . . . , J } - 1,

and let

E = max{ez , f j l z = 1, 2 Z

and j = 1, 2 , . . . , J } + 1.

Finally, let V be a big number with V > E~= lvj.
Note that an appropriate value for V can be
calculated in polynomial time. Then the following
jobs have to be carried out:

- J jobs (sj, fj, v) from the instance I 1.
- M z times the dummy job (B, bz, V) for

z = l , 2 Z.
- M z times the dummy job (e z, E, V) for

z = 1, 2 Z.
As M z <~J for z = 1, 2 Z and Z is fixed,

the size of 12 is polynomial in the size of I I. Let
V 1 denote the maximum value of a feasible
schedule in 11 and let V z denote the maximum
value of a feasible schedule in 12. We will show
that V 2 = V 1 + 2 V M . It is easy to see that
V 2 > V 1 + 2 V M, because an optimal solution for
11 can be transformed into a solution for I z by
addition of all dummy jobs.

144 A.W.J. Kolen, L.G. Kroon / On the computational complexity of shift class scheduling

Now we will show that V 1 > /V2- 2 V M by
showing that in any optimal solution for 12 each
machine is carrying out two dummy jobs (B, b x,
V) and (ey, E, V) which are such that the inter-
val (b x, ey) corresponds to some shift interval.
Therefore we obtain a solution for I~ by deletion
of all dummy jobs.

From the definition of the number V it follows
that in any optimal solution for 12 all dummy jobs
are scheduled. Therefore each machine is carry-
ing out exactly one dummy job (B, bx, V) and
exactly one dummy job (ey, E, V). The dummy
jobs (B, b x, V) and (ey, E, V) are said to be
wrongly coupled if they are carried out by the
same machine and if the interval (b x, ey) does not
correspond to any shift interval. Note that wrongly
coupled jobs always come in pairs. Now suppose
that dummy jobs exist which are wrongly coupled.
Then the number b* is defined as follows:

b* = min{b z lone of the jobs (B, bz, V) is

wrongly coupled}.

As one of the dummy jobs (B, b*, V) is wrongly
coupled, it follows that a shift y exists with by =
b* for which one of the dummy jobs (ey, E, V) is
wrongly coupled also. Let this wrongly coupled
job be coupled with a dummy job (B, b x, V)
corresponding to shift x. Then the assumption
(*) implies that we can not have bx = ey and thus
b x < ey.

Furthermore, the fact that the jobs (B, b,, V)
and (ey, E, V) are wrongly coupled implies b x --#
by and e x --/:ey. As the graph G(S) does not
contain any edge, it follows that the shifts x and
y are not overlapping. The fact that the shifts x
and y are not overlapping implies that we have

b x <e~ < b * =by <ey.

However, these inequalities contradict the def-
inition of b*, as the dummy job (B, bx, V) is
wrongly coupled. Therefore dummy jobs which
are wrongly coupled do not exist. []

Lemma 7. MSCS(S 1)/s NP-hard.

Proof. This. lemma is proved by a reduction from
N3DM. Hence let I~ be an instance of N3DM
containing the integer t and the rational numbers
ai, b~ and c i for i = 1, 2 t.

Now an instance 12 of MSCS(S 1) is con-

structed as follows: in shift (0, 6) we have t
machines and in the shift (1, 5) we have t 2 - t
machines. Furthermore, let for i, j = 1, 2 t
the rational numbers A i, Bj and Xij be chosen
in such a way that all these numbers are different
and that for i, j = 1, 2 , t we have 1 < A i <Bj
< 2 < X i j < 3 . Then the jobs that have to be
carried out in 12 are the following:

- (O, A i) for i = l, 2 t.
- t - l t i m e s (1 , Bj) f o r j = l , 2 , t .
-- (A i , Xij) for i, j - - 1, 2 t.
- (Bi, Xij) for i, j --- 1, 2 , . . . , t.
- (Xi~, 3 + a i + b j) for i, j = 1, 2 t.
- (3 + a i + b j, 5) for i, j = 1, 2 t.
- (4 - c k, 6) for k = 1, 2 ,t.
The value of each job is equal to the length of

the job. That is, vj = f ~ - s t. An example of an
instance 12 constructed from the instance I~ of
N3DM that was defined in Section 3 is presented
in Figure 2. Note that in this example a schedule
exists which is such that all machines are uninter-
ruptedly busy. Now we will prove the following
statement for the general case: I 1 is a yes-in-
stance if and only if in 12 the maximum value of a
subset of jobs for which a feasible schedule exists
is equal to 6 t + 4 (t 2 - t) = 4 t 2 + 2 t , which is
equal to the total available processing time of the
machines.

Suppose that in 12 the maximum value of a
subset of jobs for which a feasible schedule exists
is equal to 4t 2 + 2t. As the value of each job is
equal to its length and 4 t 2 + 2t is equal to the
total available processing time of the machines, it
follows that all machines must be uninterrupted
busy.

The jobs (0, A i) are the only jobs starting at
the instant 0. Therefore all these jobs are carried
out by the machines in the shift (0, 6). An analo-
gous argument shows that the jobs (1, B~) are
carried out by the machines in the shift (1, 5) and
that the jobs (4 - c ~ , 6) are carried out by the
machines in the shift (0, 6). For i = 1, 2 t the
job (0, A i) is followed directly by one of the jobs
(A i , Xij). For j = 1, 2 , . . . , t the t - 1 jobs (1, Bj)
are followed directly by one of the jobs (Bj, Xij).

As all machines must be uninterruptedly busy
and the jobs (Xij, 3 + a i + bj) are the only jobs
overlapping the instant 3, all these jobs must be
carried out. Therefore, we get schedules of the
form

(0, A i) (Ai , X~7)(Xij , 3 + a i + bj)

A.W.J. Kolen, L.G. Kroon / On the computational complexity of shift class scheduling 145

on machines in the shift (0, 6), where each i
occurs exactly once and we get schedules of the
form

(1, B~)(Bi, X u) (Xi j , 3 + a i + b~)

on machines in the shift (1, 5), where each j
occurs exactly t - 1 times. Hence among the jobs
(X u, 3 + a i + bj) that are carried out by the ma-
chines in the shift (0, 6) each i and each j occurs
exactly once.

Furthermore, on a machine in the shift (0, 6) a
job (Xi j , 3 + a i + by) is followed by a job (4 - Ck,
6) in such a way that 3 + ag + by = 4 - c k, which
means that a i + by + c k = 1. So if we define p(i)
= j and tr(i) = k, whenever job (Xi j , 3 + a i + bj)
is combined with job (4 - ck, 6), then p and tr
are the required permutations for Ix.

Conversely, given a feasible solution for 11, the
construction can be reversed to find a subset of
jobs of 12 of total value 4 t 2 + 2 t for which a
feasible schedule exists, which is clearly optimal.
Note that the jobs (3 + a~ + by, 5) can be used to
fill the gap on the machines in the shift (1, 5). As
N3DM is NP-complete, it follows that MSCS(S 1)
is NP-hard. []

MSCS(S l) containing J jobs (sj, fj, %) to be
carried out and 2 integers M 1 and M 2 represent-
ing the numbers of machines in the shifts (0, 6)
and (1, 5) respectively and satisfying M 1 ~< J and
M 2 ~< J. Furthermore, let V denote a big number
satisfying V > E]=tvj. Then an instance 12 of
MSCS(S 2) is constructed as follows: The numbers
of machines in the shifts (0, 6) and (1, 7) are
equal to M 1 and M 2 respectively and the follow-
ing jobs have to be carried out:

- J jobs (%, fj, %) from the i n s t a n c e / r
- M 2 times the dummy job (5, 7, V).

As M 2 ~< J, the size of 12 is polynomial in the size
of 11. From the definition of V it follows that in
any optimal solution for 12 all jobs (5, 7, V) are
carried out. Hence if V 1 and V 2 represent the
values of the optimal solutions for I~ and 12
respectively, then it is evident that V e = V~ + V
M 2 and that a close connection exists between
the optimal solutions for 11 and 12. As MSCS(S1)
is NP-hard, it follows that MSCS(S 2) is NP-hard
also. []

5. Complexity results for SCS(S)

Figure 2 gives an example of an instance 12
constructed from the instance I 1 of N3DM that
was defined in Section 3. The schedule in Figure
2 is an optimal schedule, as all machines are
uninterruptedly busy.

I~mma 8. MSCS(S 2) is NP-hard.

Proof. This lemma is proved by a reduction from
MSCS(S1). Hence let 11 be an instance of

In this section a classification of the computa-
tional complexity of the problems SCS(S) is pre-
sented. The classification is complete for the sub-
set of problems in which the begin times of all
shifts are different and the end times of all shifts
are different.

We will start with a sufficient condition on the
set of shifts S guaranteeing that SCS(S) can be
solved in polynomial time. In the proof of this
condition we use the following result of Dondeti

t engneers 0:: : X ~ I : : 3 ~ a ~ : ~ : C : : ' : : : : 6 ,.2,. 3 7 t . : .~

Shift 2
t(t- l) engineers

5]

Figure 2. O p t i m a l solution for an ins tance of MSCS(S l)

146 A.W.J. Kolen, L.G. Kroon / On the computational complexity of shift class scheduling

and Emmons [5] and Kolen, Lenstra and Pa-
padimitriou [13]: Suppose that J jobs have to be
carried out, where each job has a fixed start and
finish time and where each job belongs to one of
two job classes. Suppose that M machines are
continuously available, where each machine be-
longs to one of two machine classes. Further-
more, the jobs in job class 2 can be carried out by
all machines, but the jobs in job class 1 can be
carried out by the machines in machine class 1
only. The problem whether or not a feasible
schedule for all jobs exists is called Class Schedul-
ing, or CS for short. In [5] and [13] it is shown
that a feasible schedule for an instance of CS
corresponds to a compatible flow of M units in a
directed network with O (J) nodes and O (J) arcs.
As a consequence, CS can be solved in polyno-
mial time.

1.emma 9. I f G(S) is a bipartite graph, then SCS(S)
can be solved in polynomial time.

Proof. This lemma is proved by establishing the
following reduction: SCS(S)at CS. As CS can be
solved in polynomial time, the result follows. Let
the set S be such that the graph G(S) is bipar-
tite. Note that, according to Lemma 4, it may be
assumed that

ex ~ by for all shifts x and y in S. (* *)

Let 11 be an instance of SCS(S) containing J
jobs (sj, f) that have to be carried out and Z
integers Mz, for z = 1, 2 , . . . , Z representing the
number of machines in shift z and satisfying
M 2 <~ J. As the graph G(S) is bipartite, the set of
shifts in I 1 can be split into two sets Z 1 and Z 2
such that all edges in G(S) connect a node corre-
sponding to a shift in Z 1 with a node correspond-
ing to a shift in Z 2. Furthermore, let B denote
the number min{bz, sj I z = 1, 2 Z and j = 1,
2 , . . . , J} - 1 and let E denote the number max{ez,
fj Iz = 1, 2 Z and j = 1, 2 , J } + 1.

Now an instance 12 of CS is constructed as
follows. The number of machines in machine
class 1 is equal to Y'.z ~ zlMz and the number of
machines in machine class 2 is equal to Y:~ ~ z2Mz.
All machines are continuously available. Further-
more, the following jobs have to be carried out in

the instance I2:
Jobs in job class 1.

- M z times the dummy job (B, b z) for all z in
Z 1 .

- M Z times the dummy job (e z, E) for all z in
Z 1 .
Jobs in job class 2.

- M z times the dummy job (B, b z) for all z in
Z 2 .

- M z times the dummy job (ez, E) for all z in
Z 2 •

- J jobs (s i, f j) from the instance 11.
As M z~<J for z = l , 2 , Z and Z is fixed,

the size of 12 is polynomial in the size of 11 . Now
we will prove the following statement: 11 is a
yes-instance if and only if 12 is a yes-instance.
The 'only if' part of this statement is evident,
because any feasible schedule for I a can be trans-
formed into a feasible schedule for 12 by addition
of all dummy jobs in an obvious way.

In order to prove the ' if ' part of the statement
it is sufficient to prove that in any feasible sched-
ule for 12 the dummy jobs (B, b x) and (ey, E) are
carried out by the same machine if and only if the
interval (bx, ey) corresponds to some shift inter-
val. A feasible solution for I 1 can be obtained
then by deletion of all dummy jobs. The argu-
ment that we use here is similar to the argument
that was used in the proof of Lemma 6.

Suppose a feasible schedule exists for 12. Then
it is evident that each machine is carrying out
exactly one dummy job (B, b x) and exactly one
dummy job (ey, E). The dummy jobs (B, b x) and
(ey, E) are said to be wrongly coupled if they are
carried out by the same machine and if the inter-
val (bx, ey) does not correspond to any shift
interval.

The dummy jobs (B, b x) and (ey, E) in job
class 1 can be scheduled only on the machines in
machine class 1. This implies that the machines in
machine class 1 are occupied during the intervals
(B, B + 1) and (E - 1, E). As a consequence, the
dummy jobs (B, b x) and (ey, E) in job class 2 are
scheduled on machines in machine class 2. This
implies that a dummy job (B, b x) in job class 1
and a dummy job (ey, E) in job class 2 can not be
carried out by the same machine. The same holds
for a dummy job (B, b x) in job class 2 and a
dummy job (ey, E) in job class 1. Now suppose
that dummy jobs in job class 1 exist, which are

A.W.J. Kolen, L.G. Kroon / On the computational complexity of shift class scheduling 147

wrongly coupled. Then the number b* is defined
as follows:

b* = min{b z lone of the jobs (B, bz) in job

class 1 is wrongly coupled}.

As one of the dummy jobs (B, b*) in job class 1
is wrongly coupled, it follows that a shift y in Z 1
with by = b* exists for which one of the dummy
jobs (ey, E) in job class 1 is wrongly coupled also.
Let this wrongly coupled job be coupled with a
dummy job (B, b x) in job class 1 corresponding to
shift x in Z 1. Then the assumption (* *) implies
that we can not have b x = ey and thus b x <ey.
Furthermore, the fact that the jobs (B, b x) and
(ey, E) in job class 1 are wrongly coupled implies
bx ~ by and e x ~ ey. As the graph G(S) does not
contain any edge between any pair of shifts in Z1,
it follows that the shifts x and y are not overlap-
ping. In the same way as in the proof of Lemma 6
we can conclude that:

b~ <e~ < b * = by < e y .

However, these inequalities contradict the defini-
tion of b*, as the dummy job (B, b x) in job class
1 is wrongly coupled. Therefore dummy jobs in
job class 1 which are wrongly coupled do not
exist. The same argument can be used to show
that wrongly coupled dummy jobs in job class 2
do not exist either. []

Lemmas 6 and 9 are special cases of the re-
sults of Kroon [14], who relates the complexities
of the problems MSCS(S) and SCS(S) to the
node colouring number of the graph G(S).

It is well known that Interval Graphs are trian-
gulated, which means that in an Interval Graph
any cycle of length greater than 3 has a chord
(see Golumbic [7]). This property implies that the
graph G(S) does not contain any cycle if the
maximum shift overlap of the shifts in S is less
than or equal to 2. Hence we have the following
corollary:

Corollary 10. If the maximum shift overlap of the
shifts in S is less than or equal to 2, then SCS(S)
can be solved in polynomial time.

Unfortunately the condition of Lemma 9 is a
sufficient condition but it is not a necessary con-
dition for SCS(S) to be solvable in polynomial

ss= ',

Figure 3. Cutt ing the t ime axis at the instant t = 3

S~ = {(0, 3), (0, 3), (1, 2)}
S~' = {(3, 5), (3, 8), (4, 8), (6, 7)}

time. This is illustrated by the set of shifts S 5
which was defined in Section 3. The graph G(S 5)
is a cycle of length 5, which is clearly not bipar-
tite. However, SCS(S 5) can be solved in polyno-
mial time by cutting the time axis at the instant
t = 3. The resulting sets of shifts are S~ and S~'.
The construction of the sets of shifts S~ and S~' is
illustrated by Figure 3.

Note that S~ contains only two different shifts
in fact. Both SCS(S~) and SCS(S~') can be solved
in polynomial time by applying Lemma 9. If I is
an instance of SCS(S5), then it may be assumed
that all jobs in I are contained in the interval (0,
8), as otherwise I is a no-instance. Now I can be
transformed into an instance I ' of SCS(S~) and
an instance I" of SCS(S~') by defining the num-
bers of engineers in the shifts in I ' and I" to be
equal to the numbers of engineers in the corre-
sponding shifts in I and by 'cutting' the jobs
overlapping the instant t = 3. Thus we obtain the
following sets of jobs:

- The set of jobs in I ' =

{(sj, f j) t (s j , f j) e I and 0 ~<sj < f j ~< 3}

U {(sj, 3)I(sj-, f ~) e I and O<sj < 3 <f~ ~< 8}.

- The set of jobs in I "=

{(s t, f~) I (sj, f j) e l and 3 ~<s~ <f j ~< 8}

u{(3, f j) I (s j , f j) e I and O<~sj < 3 <f j ~< 8}.

These definitions guarantee that any feasible
schedule for I can be transformed into a feasible
schedule for I ' and a feasible schedule for I".
Conversely, the shifts (0, 5) and (0, 8) are the only
shifts in S overlapping the instant t = 3. As these
shifts have the same begin time, a feasible sched-
ule for I ' and a feasible schedule for I" can be
'pasted together' into a feasible schedule for I.
Therefore I is a yes-instance if and only if both

148 A.W.J. Kolen, L.G. Kroon / On the computational complexity of shift class scheduling

I ' and I" are yes-instances. As SCS(S~) and
SCS(S~') can be solved in polynomial time, it
follows that SCS(S 5) can be solved in polynomial
time also.

A decomposition as described can be applied
if there exists an instant t ~ { b z , e z l z = l ,
2 Z} which is such that all shifts overlapping
t have either the same begin time or the same
end time, there is at least one shift finishing
before t and there is at least one shift starting
after t. Unfortunately such an instant t does not
exist for the set of shifts S 6 which was defined in
Section 3. The graph G(S 6) is again a cycle of
length 5. The computational complexity of
SCS(S 6) is still an open problem. The complicat-
ing factor in this example is the fact that many
shifts exist with equal begin or end times.

These considerations show that the definition
of the graph G (S) may be not sufficiently sophis-
ticated for expressing a complete classification of
the computational complexity of the problems
SCS(S), as the graph treats two non-overlapping
shifts in the same way as two overlapping shifts
with the same begin or end times. However, a
useful alternative has not been found yet. There-
fore in the remainder of this section we will
assume that the begin times of all shifts are
different and that the end times of all shifts are
different. The aim of the remainder of this sec-
tion is to provide a classification of the computa-
tional complexity of the problems SCS(S) satisfy-
ing this assumption.

Theorem 11. I f the set o f shifts S is such that all
shifts in S have different begin times and different
end times, then the following statement holds:
SCS(S) can be solved in polynomial time ,~ the
max imum shift overlap is less than or equal to 2.

Proof. The ' i f -par t of this theorem follows di-
rectly from Corollary 10. In order to prove the
'only iF-part suppose that the set of shifts S
contains three overlapping shifts x, y and z with
different begin times and different end times. If
the begin times of these shifts satisfy b x < by < b z,
then the end times of these shifts satisfy one of
the following inequalities.

(i) ez < ey < e x,
(ii) e~ < e x < ey,

(iii) ey < ez < e x,
(iv) ey < e x < e z,
(v) e x < e z <ey,

(vi) e x < ey < e z.

According to Lemma 3, in case (i) the set of
shifts {x, y, z} is equivalent to the set of shifts

S, = {(0, 12), (1, 11), (2, 7)}.

In Lemma 12 it is shown that SCS(S 3) is NP-com-
plete. Furthermore, in case (vi) the set of shifts
{x, y, z} is equivalent to the set of shifts

S 4 = ((0, 12), (1, 13), (2, 14)}.

In Lemma 13 it is shown that SCS(S 4) is NP-com-
plete by a straightforward reduction from
SCS(S3). Combining these results with the Lem-
mas 2 and 3 it follows that SCS(S) is NP-com-
plete in the cases (i) and (vi). A similar trick as in
the proof of Lemma 13 can be applied to show
that SCS(S) is NP-complete in the cases (ii) to (v)
as well. []

L e m m a 12. SCS(S 3) is NP-complete.

Proof. This lemma is proved by a reduction from
N3DM. Hence let 1 l be an instance of N3DM
containing the integer t and the rational numbers
a i , b i a n d c i f o r i = l , 2 t.

Now an instance I 2 of SCS(S 3) is constructed
as follows. In the shift (0, 12) we have t machines,
in the shift (1, 11) we have t 2 - t machines and in
the shift (2, 7) we have t 2 machines. Further-
more, let for i, j = 1, 2 , t the rational num-
bers A i , Bj and Xij be chosen in such a way that
all these numbers are different and that for i,
j = l , 2 t we have 3 < A i < B i < 4 < X i ~ < 7 .
Then the jobs that have to be carried out in 12
are the following:

- (0, A i) for i = 1, 2 t.
- t - l t i m e s (1 , B i) f o r j = l , 2 t.
- t - 1 times (2, A i) for i = 1, 2 t.
- (2, Bj) for j = 1, 2 t.
- (A i , Sly) for i, j = 1, 2 t.
- (Bj, Xij) for i, j = 1, 2 , t .
- (Xij, 7) for i, j = 1, 2 t.
- (Xi~ , 9 + a i + b j) for i, j = 1, 2 t.
- (1 0 - c k,12) f o r k = l , 2 t.
An example of an instance I 2 constructed from

the instance 11 of N3DM that was defined in
Section 3 is presented in Figure 4. Note that in
this example a feasible schedule for all jobs exists.
Now we will prove the following statement for
the general case: 11 is a yes-instance if and only if
I 2 is a yes-instance.

A.W..J. Kolen, L.G. Kroon / On the computational complexity of shift class scheduling 149

Suppose that 12 is a yes-instance. Then the
jobs (0, Ag) are carried out by the machines in
the shift (0, 12), the jobs (1, By) are carried out by
the machines in the shift (1, 11) and the jobs (2,
A i) and (2, B:) are carried out by the machines in
the shift (2, 7). Furthermore, the jobs (1 0 - c k,
12) are carried out by the machines in the shift (0,
12). As the jobs (X i / , 9 + a i + bj) finish later than
the instant 7, they are carried out by the ma-
chines in the shifts (0, 12) and (1, 11). This
implies that the jobs (X i j , 7) are carried out by
the machines in the shift (2, 7).

It is not difficult to see that in the interval (0,
7) the total required processing time equals the
total available processing time(= l l t z + t). Hence
as far as a machine is available during the inter-
val (0, 7), it is uninterruptedly busy. This implies
that each job (0, A i) is combined with a job (A i,
X i) on one machine and that the same holds for
each job (2, Ai) . Each job (1, B) is combined
with a job (B~, Xi:) on one machine and the same
holds for each job (2, B) . The schedules on the
ma-
chines in the shift (0, 12) are of the form

(0, A i) (A i , X i j) (Xi j , 9 + a i + bj) ,

where each i occurs exactly once. The schedules
on the machines in the shift (1, 11) are of the
form

(1, Bj) (B~ , X i j) (X i : , 9 + a i + bj) ,

where each j occurs exactly t - 1 times. Hence
among the jobs (X~:, 9 + a i + bj) that are sched-
uled on the machines in the shift (0, 12) each i
and each j occurs exactly once.

From the fact that X;~=~(a~ + b i + c i) = t it fol-
lows that in the interval (9, 12) the total required
processing time on the machines in the shift (0,
12) equals the total available processing time on
the machines in the shift (0, 12)(= 3t). Hence the
machines in the shift (0, 12) are uninterruptedly
busy during the interval (9, 12). This implies that
on a machine in the shift (0, 12) a job (X~:,
9 + a i + bj) is combined with a job (10 - ck, 12) in
such a way that 9 + a~ + by = 10 - c k. This means
t h a t a i + by + c k = 1. So i f w e d e f i n e p(i) = j a n d

tr(i) = k whenever job (X i j , 9 + a i + by) is com-
bined with job (10 - Ck, 12), then p and or are the
required permutations for I~ and hence I~ is a
yes-instance.

Conversely, given a feasible solution for I~ the
construction can be reversed to find a feasible

Shift I :::::::::::::::::::::: ::: :::Xii::l:i ::::::::::: ::: 9~ai~:~i:l: i:O'c~:: ::
t engineers

Shift 2
t(t-1) engineers

Shift 3
t e engineers

~:::::i:~:[::: :: ::: :: :::: ::::::: ~. : :::::~I

:::
::

6 i :~ 6 ~ ;o

Figure 4. Feasible schedule for an instance of SCS(S 3)

150 A.W.J. Kolen, L.G. Kroon / On the computational complexity of shift class scheduling

schedule for 12. As N3DM is NP-complete and it
is clear that SCS(S 3) is in NP, it follows that
SCS(S 3) is NP-complete also. []

Figure 4 gives an example of an instance 12
constructed from the instance 11 of N3DM that
was defined in Section 3. The schedule in Figure
4 is a feasible schedule for all jobs.

Lemma 13 SCS(S 4)/s NP-complete.

Proof. This lemma is proved by a reduction from
SCS(S3). Let 11 be an instance of SCS(S 3) con-
taining J jobs (s~., f j) that have to be carried out
and 3 integers M 1, M 2 and M 3 representing the
numbers of machines in the shifts (0, 12), (1, 11)
and (2, 7) respectively and satisfying M z ~<J for
z = 1, 2,3.

Then an instance 12 of SCS(S 4) is constructed
as follows. In the shifts (0, 12), (1, 13) and (2, 14)
we have M t, M 2 and M 3 machines available.
Furthermore, in 12 the following jobs have to be
carried out:

- J jobs 0 i, f /) from the instance I 1.
- M 2 times the dummy job (11, 13).
- M 3 times the dummy job (7, 14).
As M 2 < J and M 3 ~< J, the size of I 2 is poly-

nomial in the size of 11 . Moreover, it is evident
that I 1 is a yes-instance if and only if 12 is a
yes-instance. As SCS(S 3) is NP-complete and it is
clear that SCS(S4) is in NP, it follows that SCS(S4)
is NP-complete also. []

6. Concluding remarks

In this paper the problems SCS(S) and
MSCS(S), which appear in a natural way in the
aircraft maintenance process at an airport, were
described in a formal way. We have presented a
complete classification of the computational com-
plexity of the problems MSCS(S) and a classifica-
tion of the computational complexity of a large
subset of the problems SCS(S). At this moment
we are trying to extend the classification of the
problems SCS(S) into a complete classification.
Any suggestions that will lead us into this direc-
tion will be appreciated.

In this paper we did not look at optimization
methods for calculating optimal or satisfying solu-
tions. However, some preliminary experiments

have shown that Linear Programming can be
useful as a kernel for optimization algorithms or
heuristics. These aspects of the problems SCS(S)
and MSCS(S) will be a topic for further research.

Until now we have focused mainly on the
operational questions that should be answered in
the aircraft maintenance process. However, in
Section 1 we mentioned already that tactical
questions with respect to the required number of
engineers in each of the shifts should be an-
swered also. A subset of these tactical problems,
which we have called Shift Class Design with
respect to the set of shifts S or SCD(S) for short,
can be described more formally in terms of jobs
and machines as follows:
Instance of SCD(S).

- J jobs (sj, f /) that have to be carried out.
- Z integers c z representing the costs per

machine in each of the Z shifts.
Question. What are the minimum total costs for
hiring machines if all jobs have to be carried out
in a non-preemptive way?

It is clear that these problems can be seen as
generalizations of FSP also. In a forthcoming
publication we will present a classification of the
computat ional complexity of the problems
SCD(S), more or less analogous to the classifica-
tions that we have presented in this paper.

References

[1] Arkin, E.M., and Silverberg, E.L., "Scheduling jobs with
fixed start and end times", Discrete Applied Mathematics
18 (1987) 1-8.

[2] Carter, M.W., and Tovey, C.A., "When is classroom
assignment hard?" Working paper 89-02. University of
Toronto, Department of Industrial Engineering, Toronto,
1989. To appear in Operations Research.

[3] Dantzig, G.L., and Fulkerson, D.R., "Minimizing the
number of tankers to meet a fixed schedule", Naval
Research Logistics Quarterly 1 (1954) 217-222.

[4] Dondeti, V.R., and Emmons, H., "Resource require-
ments for scheduling with different processor sizes, Parts
I and II", Technical memoranda 579 and 589, Case
Western Reserve University, Department of Operations
Research, Cleveland, 1986.

[5] Dondeti, V.R., and Emmons, H., "Interval scheduling
with processors of two types", Case Western Reserve
University, Department of Operations Research, Cleve-
land (1989), to appear in Operations Research.

[6] Fredman, M.L., and Weide, L., "On the complexity of
computing the measure of U[ai, bi]", Communications of
the ACM 21 (1978) 540-544.

A.W.J. Kolen, L.G. Kroon / On the computational complexity of shift class scheduling 151

[7] Golumbic, M.C., Algorithmic Graph Theory and Perfect
Graphs, Academic Press, New York, 1980.

[8] Garey, M.R., and Johnson, D.S., Computers and In-
tractability: A guide to the Theory of NP-Completeness,
Freeman, San Fransisco, 1979.

[9] Gertsbakh, I., and Stern, H.I., "Minimal resources for
fixed and variable job schedules", Operations Research 18
(1978) 68-85.

[10] Gupta, U.L., Lee, D.T., and Leung, J.Y.-T., "An optimal
solution to the channel assignment problem", IEEE
Transactions on Computers 28 (1979) 807-810.

[11] Kindervater, G.A.P., "Excercises in parallel computing",

Ph.D. Thesis, Centre of Mathematics and Computer Sci-
ence, Amsterdam, 1989.

[12] Kolen, A.W.J., and Kroon, L.G., "On the computational
complexity of (maximum) class scheduling", European
Journal of Operational Research 54/1 (1991) 23-38.

[13] Kolen, A.W.J., Lenstra, J.K., and Papadimitriou, C.H.,
"Interval scheduling problems", unpublished manuscript,
1987.

[14] Kroon, L.G., "Job scheduling and capacity planning in
aircraft maintenance", Ph.D. Thesis, Erasmus University
Rotterdam, 1990.

