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Abstract: In this paper  we consider a generalization of the Fixed Job Scheduling Problem (FSP) which 
appears  in a natural way in the aircraft maintenance process at an airport. A number  of jobs has to be 
carried out, where the main attributes of a job are: a fixed start time, a fixed finish time and a value 
representing the priority of the job. For carrying out these jobs a number  of machines is available. These 
machines are available in specific time intervals (shifts) only. A job can be carried out by a machine only 
if the interval between the start time and the finish time of the job is a subinterval of the shift of the 
machine. Furthermore,  the jobs must be carried out in a non-preemptive way and each machine can be 
carrying out at most one job at the same time. 

Within this setting one can ask for a feasible schedule for all jobs or, if such a schedule does not exist, 
for a feasible schedule for a subset of jobs of maximum total value. In this paper  a classification of the 
computational complexity of two classes of combinatorial problems related to these questions is 
presented. 
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1. Introduction 

Between the time of arrival and the time of 
departure of an aircraft at the main airport in the 
Netherlands the aircraft must be inspected before 
being allowed to take off again. Such an inspec- 
tion can be seen as a job with a fixed start time, a 
fixed finish time and a value representing the 
priority of the inspection. The start time and the 
finish time of an inspection might coincide with 
the time of arrival and the time of departure of 
the aircraft, but this is not necessary: a list of 
maintenance norms is available which can be 

used for calculating the start time and the finish 
time of each inspection. 

The inspections have to be carried out by a 
number  of ground engineers. These ground engi- 
neers are available at the airport in specific time 
intervals (shifts) only. In principle an inspection 
can be carried out by a ground engineer only if 
the interval between the start time and the finish 
time of the inspection is a subinterval of the shift 
of the engineer. 

In the practical situation at the airport still 
other restrictions should be satisfied. For exam- 
ple, an engineer is allowed to carry out a specific 
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inspection only if he has a license for the corre- 
sponding aircraft type. The problems that are 
introduced by the licenses of the engineers have 
been studied by Kolen and Kroon [12]. In this 
paper we will therefore neglect the restrictions 
that are imposed by the licenses by assuming that 
all engineers have licenses for all aircraft types. 

Suppose that a reliable estimate of the work- 
load in the near future has been made. Then 
both tactical and operational questions should be 
answered in order to realize a sufficiently high 
service level. Examples of such questions are the 
following: 

- How many shifts are required and how to 
choose the begin and the end times of the shifts 
appropriately? 

- How many engineers should be available in 
each shift? 

- How many engineers are required in total 
and how to assign these engineers to the shifts? 

- How to assign the inspections to the avail- 
able engineers if both the begin and the end 
times of the shifts and the assignments of the 
engineers to the shifts have been determined? 

In this paper we fill focus on the latter (oper- 
ational) job scheduling problem. The remainder 
of this paper is organized as follows: In Section 2 
we give a formal definition of a class of feasibility 
problems and a class of optimization problems 
related to this operational job scheduling prob- 
lem. In Section 3 some preliminary remarks with 
respect to the computational complexity of the 
problems in these classes are made. In Section 4 
a detailed analysis of the computational complex- 
ity of the class of optimization problems is pre- 
sented and in Section 5 the same is done for the 
class of feasibility problems. We finish with some 
concluding remarks in Section 6. In order to 
follow the standard literature on job scheduling, 
in the remainder of this paper the inspection will 
be addressed as 'jobs' and the engineers will be 
addressed as 'machines'. 

2 .  P r o b l e m  d e f i n i t i o n  

Suppose that J jobs have to be carried out, 
where the main attributes of job j are a fixed 
(rational) start time sj, a fixed (rational) finish 
time fj and a value vj representing the priority of 
the job. The jobs have to be carried out in a 

non-preemptive way by a number of parallel ma- 
chines. The total number of machines is denoted 
by M. These machines are available in specific 
time intervals (shifts) only. The number of shifts 
is denoted by Z and shift z has a fixed (rational) 
begin time b z and a fixed (rational) end time e~. 

The number of machines available in shift z is 
denoted by M z. Note that, if M z > J ,  then 
scheduling the jobs in shift z is easy, because in 
this case each job in shift z can get its own 
machine. Hence throughout this paper it is as- 
sumed that M z <~ J for z = 1, 2 . . . . .  Z. The shift 
in which machine m is available is denoted by 
z ( m ) .  Job j can be carried out by machine m if 
and only if the interval (sj, f j)  is a subinterval of 
the shift of machine m which is denoted by 

(bz(m), ez(m)). 
After this description of the relevant notation, 

the problems Shift Class Scheduling (SCS) and 
Maximum Shift Class Scheduling (MSCS) can be 
defined. SCS is a feasibility problem asking 
whether or not a feasible schedule exists for all 
jobs. MSCS is an optimization problem asking for 
a subset of jobs of maximum total value for which 
a feasible schedule exists. SCS can be defined 
more formally as follows. 

I n s t a n c e  o f  S C S .  

- J jobs (sj, f j )  to be carried out. 
- Z  triples (bz, ez, Mz), for z = 1, 2 . . . . .  Z 

representing shift z and satisfying M~ ~< J. 

Q u e s t i o n .  Does a feasible non-preemptive sched- 
ule for all jobs exist? 

SCS is studied by Kolen, I_~nstra and Pa- 
padimitriou [13], who call this problem Interval 
Scheduling. This problem is proved to be NP- 
complete by a straightforward reduction from 
Circular Arc Colouring (see Garey and Johnson 
[8]). However, in [13] it is also shown that SCS 
can be solved in polynomial time if preemption of 
the jobs (only at the end of the shift intervals) is 
allowed. 

If a feasible schedule for al l  jobs in an in- 
stance of SCS does not exist, then it is interesting 
to find a subset of jobs of maximum total value 
for which a feasible schedule does exist. This 
problem is called MSCS and is defined more 
formally as follows. 
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Instance of  MSCS. 
- J jobs (s i, fj, vj) to be carried out. 
- Z  triples (bz, e~, Mz), for z = 1, 2 . . . . .  Z 

representing shift z and satisfying M z ~< J. 

Question. What is the maximum total value of a 
subset of jobs for which a feasible non-preemp- 
tive schedule exists? 

S be a set containing Z shift intervals. That is, S 
is a set {(bz, ez)[ z = 1, 2 . . . . .  Z}. Then the prob- 
lems Shift Class Scheduling with respect to S, or 
SCS(S) for short, and Maximum Shift Class 
Scheduling with respect to S, abbreviated to 
MSCS(S), can be defined. For example, for the 
given set of shifts S the problem SCS(S) is de- 
fined as follows. 

MSCS is NP-hard, as it is evident that MSCS is 
a generalization of SCS. A further generalization 
of SCS and MSCS is studied by Arkin and Silver- 
berg [1]. In [1] the assumption is that all jobs have 
a fixed start time and a fixed finish time. How- 
ever, the assumption in [1] with respect to the 
feasibility of the assignment of a specific job to a 
specific machine is different from ours. In [1] for 
each job j a subset of machines Wj is given and it 
is assumed that job j can be carried out by the 
machines in W i only. The objective is to find a 
feasible schedule for all jobs. In [1] it is shown 
that this problem is NP-complete. Furthermore, a 
Dynamic Programming formulation is presented 
that can be used for solving in O(J  M÷I) time the 
more general problem of finding a subset of jobs 
of maximum total value for which a feasible 
schedule exists. This implies that, if the number 
of machines is fixed beforehand, then this opti- 
mization problem can be solved in polynomial 
time. Note that in our context for job j the set Wj 
can be defined by 

W 1 = {m I bz(m) <~ s t and f j  <<, ez(m) }. 

Hence SCS and MSCS can be seen as special 
cases of the problem in [1]. Therefore  the 
O(jM+ 1) time algorithm in [1] can be applied for 
solving SCS and MSCS also. However, it should 
be noted that this result in only interesting from a 
theoretical point of view, due to the size of the 
state space in the Dynamic Programming formu- 
lation. 

Note that in the definitions of SCS and MSCS 
the set of shifts belongs to the instances of the 
problems. This leaves open the complexity of the 
scheduling problems when the number of shifts 
and the begin and end time of each shift are 
known in advance, as is the case at the opera- 
tional level in the aircraft maintenance process at 
the airport. In order to study these problems, let 

Instance of SCS(S). 
- J jobs (s i, f j )  to he carried out. 
- Z integers Mz, for z -- 1, 2 . . . . .  Z represent- 

ing the number of machines in shift z and satisfy- 
ing Mz ~<J. 

Question. Does a feasible non-preemptive sched- 
ule for all jobs exist? 

Now the set of shifts does not belong to the 
instances of SCS(S) but to the type of the prob- 
lem. Therefore  we have defined a whole class of 
job scheduling problems, indexed by the sets of 
shifts S. Note that, if the integers M z represent- 
ing the numbers of machines in each of the Z 
shifts are also taken away from the instances of 
SCS(S), then the results of Arkin and Silverberg 
[1] show that the obtained problem can be solved 
in polynomial time. MSCS(S) can be defined in a 
similar way as SCS(S). 

It is evident that the computational complexi- 
ties of the problems SCS(S) and MSCS(S) de- 
pend on the size and the structure of the set of 
shifts S. In Section 4 a complete classification of 
the computational complexity of the problems 
MSCS(S) is presented and in Section 5 a classifi- 
cation of the computational complexity of a large 
subset of the problems SCS(S) is presented. It 
turns out that it is not difficult to create a set of 
shifts S such that SCS(S) is NP-complete or such 
that MSCS(S) is NP-hard, but polynomially solv- 
able cases occur frequently as well. 

SCS(S) and MSCS(S) are closely related to 
the job scheduling problems that are introduced 
by taking into account the licenses of the engi- 
neers. These problems have been studied exten- 
sively by Kolen and Kroon [12]. Special cases of 
these problems were considered by Carter and 
Tovey [2], by Dondeti  and Emmons [4], [5], and 
by Kolen, Lenstra and Papadimitriou [13]. 
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3. P r e l i m i n a r y  r e m a r k s  

All problems that were mentioned in Section 2 
are generalizations of the well known Fixed Job 
Scheduling Problem (FSP) which has been stud- 
ied by many authors such as Dantzig and Fulker- 
son [3], Gertsbakh and Stern [9] and Gupta, Lee 
and Leung [10]. 

In FSP the jobs have a fixed start time and a 
fixed finish time and the machines are continu- 
ously available. Therefore  FSP is equivalent to 
SCS(S) if the set of shifts S contains only one 
shift. The following result gives a necessary and 
sufficient condition for the existence of a feasible 
schedule for an instance of FSP. 

L e m m a  1. For an instance of FSP a feasible 
schedule for all jobs exists * the maximum job 
overlap is less than or equal to the number of 
available machines. 

Here for a given set of jobs the job overlap at 
instant t, denoted by D t, and the maximum job 
overlap, denoted by D, are defined as follows: 

- O t =  l { j l s j  < t  < f j } [ ,  
- D = m a x { D  t l - o 0 < t < • } .  
As calculating the maximum job overlap is 

easy, FSP can be solved in polynomial time. More 
specific, it is well known that FSP can be solved 
in O(J  log(J)) time on a sequential processor. 
This is optimal, as follows from a result of Fred- 
man and Weide [6]. However, FSP can be solved 
in O(log(J)) time by O(J )  parallel processors 
(Kindervater [!1]). 

The Maximum Fixed Job Scheduling Problem 
MFSP is the optimization version of FSP. That  is, 
in MFSP all machines are continuously available 
and the problem is to find a feasible schedule for 
a subset of jobs of maximum total value. As is 
shown by Arkin and Silverberg [1], by Kolen, 
Lenstra and Papadimitriou [13] and by Kroon 
[14], MFSP can be solved by finding a Minimum 
Cost Flow of M units of flow in a directed 
network with O(J )  nodes and O(J )  arcs. Conse- 
quently, MFSP can be solved in polynomial time. 

For a given set of shifts S the shift overlap at 
instant t, denoted by At, and the maximum shift 
overlap, denoted by A, are defined in the same 
way as the (maximum)job overlap. That  is: 

- A t =  [{zlbz < t  <ez}l 
- A = max{Atl - ~  < t < ~} 

G(S1 )=G(S.2 )= 

G(S3 )=G(S4 )= ~ _ ~ ,  

G(S5 )=G(Se )= ~ ~ ' ~  

Figure 1. Example of sets of shifts S and graphs G(S) 

S I = {(0, 6), (1, 5)} 
S 2 = {(0, 6), (1, 7)} 
S 3 ={(0, 12), (1, 11), (2, 7)} 
S4 = {(0, 12), (1, 13), (2, 14)} 
S 5 = {(0, 5), (0, 8), (1, 2), (4, 8), (6, 7)} 
S 6 = I{0, 2}. (0, 4), (1, 4), (1, 5), (3, 5)} 

Furthermore,  the undirected graph G(S),  
which will play an important role in the remain- 
der of this paper, is defined as follows: 
- G(S) contains one node for every shift. 
- Two nodes in G(S) are connected 

• the corresponding shifts are overlapping and 
the corresponding shifts have different begin 
times and different end times. 

An example of sets of shifts that will be ana- 
lyzed in the remainder of this paper and the 
corresponding graphs G(S) is represented in Fig- 
ure 1. 

The aim of this paper is to provide an analysis 
of the computational complexity of the problems 
SCS(S) and MSCS(S). In this paper we make the 
assumption that P 4: NP. This assumption is justi- 
fied by the fact that it simplifies the notation in 
several places and by the fact that it is in accor- 
dance with the general opinion on the relation of 
P and NP. Important tools in the analysis of the 
computational complexity of the problems SCS(S) 
and MSCS(S) are Lemmas 2 and 3 which relate 
the complexities of two problems to each other. 
As these lemmas can be proved by elementary 
reductions, the proofs are omitted. 

L e m m a  2. Let S x and Sy be two sets of  shifts. I f  
S x is a subset of  Sy, then the following statements 
hoM: 

- SCS(S x) at SCS(Sy). 
- MSCS(S x) ~ MSCS(Sy). 

Here  the notation X et Y means that a polyno- 
mial reduction exists from problem X to problem 
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Y. We refer to Garey and Johnson [8] for a 
definition of this concept. It turns out that the 
complexity of the problems SCS(S) and MSCS(S) 
is completely determined by the overlap structure 
of the shifts and that the absolute begin times 
and the absolute end times of the shifts are of 
minor importance. This is expressed in Lemma 3 
which uses the following definition. If f : R  ~ R 
is a strictly increasing bijection and S is a set of  
shifts, then S f denotes another set of shifts which 
is defined as follows: 

s f : =  {( f (b~) ,  f ( e ~ ) ) l z  = 1, 2 , . . . ,  Z}. 

Now it is evident that the following relation on 
the pairs of sets of  shifts is an equivalence rela- 
tion. 

S x ~ S r ,=, 3 f :  R -o R ,  f is a strictly increasing 

bijection and Sy = S f .  

Lemma 3 shows that for all sets of shifts S in 
one equivalence class of this relation the compu- 
tational complexity of the problem SCS(S) is the 
same and that an analogous result also holds for 
MSCS(S). 

Lemma 3. Let  S be a set o f  shifts and let f :  R ~ R 
be a strictly increasing bijection. Then the following 
statements hold: 

- SCS(S) at SCS(SS). 
- MSCS(S) ~ MSCS(Sf).  

Note that, if f is a strictly increasing bijection, 
then the same holds for f - 1  It follows that we 
can restrict ourselves to the representatives of the 
equivalence classes of the equivalence relation. 
Furthermore,  the following lemma will be used 
several times in the Sections 4 and 5, where the 
computational complexity of  the job scheduling 
problems is analyzed. 

Lemma 4. Le t  S be a set o f  shifts containing a pair 
o f  shifts x and  y with ex = by. Then a set o f  shifts S '  
exists with the following properties: 

- SCS(S) ~ SCS(S'). 
t - e~ ~ by for  all shifts x and y in S ' .  

- The graphs G ( S )  and  G ( S ' )  are isomorphic. 

Proof. Let  us first suppose that S is such that 
exactly one time instant t exists such that t = e x 

= by for some pair of shifts x and y in S. Then 
the set of shifts S '  is defined as follows: 

b z if b z < t 
b ' =  b ~ + l  i f b z > / t  

, [ ez if e z <<. t 

ez = t ez + 1  i f e  z > t 

for z =  1 ,2  . . . . .  Z.  

for z = 1, 2 , . . . , Z .  

As it was assumed that t is the only time 
instant such that t = e x =by for some pair of 
shifts x and y in S, it follows that e" =~ b~ for all 
shifts x and y in S'. Furthermore,  overlap of 
shifts and equality of begin times of shifts and 
equality of end times of shifts are preserved by 
the transformation. Therefore the graphs G ( S )  
and G ( S ' )  are isomorphic. Moreover, if I is an 
instance of SCS(S) containing J jobs (sj, f i )  and 
Z integers M z, then an instance I '  of SCS(S')  is 
constructed as follows: 

s i if sj < t 
s j =  s i + l  i fs i>~ t f o r j = l ,  2 . . . . .  J.  

f / =  I f ,  if f~ < t f o r j =  1, 2 . . . . .  J.  
+ 1  if f1 > t 

M ' = M ,  for z =  1 ,2  . . . . .  Z.  

It is not difficult to see that I is a yes-instance 
of SCS(S) if and only if I '  is a yes-instance of 
SCS(S'). This proves Lemma 4 in the case that 
exactly one time instant t exists such that t = e x 
= by for some pair of shifts x and y in S, The 
general case can be proved by repeating the above 
argument as often as necessary. [] 

It is evident that an analogous result also holds 
with respect to the problems MSCS(S). The Lem- 
mas 7 and 12 in the following sections are estab- 
lished by a reduction from an adapted version of  
Numerical Three  Dimensional Matching or 
N3DM for short. This problem is defined as 
follows: 

Instance of N3Dbl. 
- A positive integer t and 3t rational numbers 

ai, b i and c i for i = I, 2 . . . . .  t satisfying 0 < a i, b i, 
c i < 1 and 

t 

E ( a i + b i + c i )  = t .  
i=1 
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Question. Is it possible to find permutations p 
and o" of{l ,  2 . . . . .  t} such that: a i + bp(i) + ca(i) = 1 
f o r i = l ,  2 , . . . , t ?  

and MSCS(S 2) are NP-hard, it follows that 
MSCS(S) is NP-hard by applying the Lemmas 2 
and 3. 

It is well known that N3DM is NP-complete 
(see Garey and Johnson [8]). Therefore  any prob- 
lem in NP that is more general than N3DM is 
NP-complete also. The proofs of the Lemmas 7 
and 12 are illustrated by the following instance of 
N3DM with t = 3: 

( a l ,  a2  ' a3 ) = ( 1 ,  i 3 ~ ,  ~ ) ,  

(b l ,  b2 ' b3 ) = (~, 1 

and 

(c1, c : , c3 )=(1  , 

Note that this instance is a yes-instance of N3DM, 
as  

al + b l  + c  3 = a 2 + b  3 + c  1 

= a 3 + b : + c 2  = 1. 

4. Complexity results for MSCS(S) 

The classification of the computational com- 
plexity of the problems MSCS(S) is a complete 
classification, whereas the classification of the 
computational complexity of the problems SCS(S) 
is only a classification of a (large) subset of the 
problems SCS(S). Therefore  we will first present 
the classification of the computational complexity 
of the problems MSCS(S). This classification is 
expressed in Theorem 5 which reads as follows: 

Theorem 5. MSCS(S) can be solved in polynomial  
time ,~, the graph G ( S )  consists o f  isolated nodes 
only. 

Theorem 5 is proved in several steps. First we 
will prove in Lemma 6 that MSCS(S) can be 
solved in polynomial time if G ( S )  consists of 
isolated nodes only. Conversely, if G ( S )  contains 
at least one edge, then S contains a subset of two 
overlapping shifts with different begin times and 
different end times and belonging to the same 
equivalence class as S 1 or S 2. Here  the sets of 
shifts S 1 and S 2 are the same as in Section 3. As 
it will be shown in Lemmas 7 and 8 that MSCS(S 1) 

Lemma 6. I f  the graph G ( S )  consists o f  isolated 
nodes only, then MSCS(S) can be solved in poly- 
nomial time. 

Proof. This lemma is proved by establishing the 
following reduction: MSCS(S) ct MFSP. As MFSP 
can be solved in polynomial time, the result fol- 
lows. Let the set of shifts S be such that the 
graph G ( S )  consists of isolated nodes only. Note 
that, according to I_~mma 4, it may be assumed 
that 

e x 4: by for all shifts x and y in S. ( * ) 

Let I x be an instance of MSCS(S) containing 
J jobs (sj, fj, v )  to be carried out and Z integers 
M z, for z = 1, 2 . . . . .  Z representing the number 
of machines in shift z and satisfying M z ~< J. Now 
an instance 12 of MFSP is constructed as follows: 
The number of machines is equal to M z = 52z= 1Mz. 
Furthermore,  let 

B = min{bz, sjl z = 1, 2 . . . . .  Z 

and j =  1, 2 , . . . , J }  - 1, 

and let 

E = max{ez ,  f j l z  = 1, 2 . . . . .  Z 

and j =  1, 2 , . . . , J }  + 1. 

Finally, let V be a big number with V > E~= lvj. 
Note that an appropriate value for V can be 
calculated in polynomial time. Then the following 
jobs have to be carried out: 

- J jobs (sj, fj, v )  from the instance I 1. 
- M  z times the dummy job (B, bz, V) for 

z = l ,  2 . . . . .  Z. 
- M  z times the dummy job (e z, E, V) for 

z =  1, 2 . . . . .  Z. 
As M z <~J for z = 1, 2 . . . . .  Z and Z is fixed, 

the size of 12 is polynomial in the size of I I. Let 
V 1 denote the maximum value of a feasible 
schedule in 11 and let V z denote the maximum 
value of a feasible schedule in 12. We will show 
that V 2 = V  1 + 2  V M .  It is easy to see that 
V 2 > V 1 + 2 V M, because an optimal solution for 
11 can be transformed into a solution for I z by 
addition of all dummy jobs. 
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Now we will show that V 1 > /V2-  2 V M by 
showing that in any optimal solution for 12 each 
machine is carrying out two dummy jobs (B, b x, 
V) and (ey, E, V)  which are such that the inter- 
val (b x, ey) corresponds to some shift interval. 
Therefore we obtain a solution for I~ by deletion 
of all dummy jobs. 

From the definition of the number V it follows 
that in any optimal solution for 12 all dummy jobs 
are scheduled. Therefore each machine is carry- 
ing out exactly one dummy job (B, bx, V)  and 
exactly one dummy job (ey, E, V). The dummy 
jobs (B, b x, V )  and (ey, E, V)  are said to be 
wrongly coupled if they are carried out by the 
same machine and if the interval (b x, ey) does not 
correspond to any shift interval. Note that wrongly 
coupled jobs always come in pairs. Now suppose 
that dummy jobs exist which are wrongly coupled. 
Then the number b* is defined as follows: 

b* = min{b z lone of the jobs (B,  bz, V) is 

wrongly coupled}. 

As one of the dummy jobs (B, b*, V) is wrongly 
coupled, it follows that a shift y exists with by = 
b* for which one of the dummy jobs (ey, E, V)  is 
wrongly coupled also. Let this wrongly coupled 
job be coupled with a dummy job (B, b x, V)  
corresponding to shift x. Then the assumption 
( * ) implies that we can not have bx = ey and thus 
b x < ey. 

Furthermore,  the fact that the jobs (B, b,, V) 
and (ey, E, V )  are wrongly coupled implies b x --# 
by and e x --/:ey. As  the graph G(S)  does not 
contain any edge, it follows that the shifts x and 
y are not overlapping. The fact that the shifts x 
and y are not overlapping implies that we have 

b x <e~ < b *  =by <ey. 

However, these inequalities contradict the def- 
inition of b*, as the dummy job (B, bx, V) is 
wrongly coupled. Therefore dummy jobs which 
are wrongly coupled do not exist. [] 

Lemma 7. MSCS(S 1)/s NP-hard. 

Proof. This. lemma is proved by a reduction from 
N3DM. Hence let I~ be an instance of N3DM 
containing the integer t and the rational numbers 
ai, b~ and c i for i =  1, 2 . . . . .  t. 

Now an instance 12 of MSCS(S 1) is con- 

structed as follows: in shift (0, 6) we have t 
machines and in the shift (1, 5) we have t 2 -  t 
machines. Furthermore,  let for i, j = 1, 2 . . . . .  t 
the rational numbers A i, Bj and Xij be chosen 
in such a way that all these numbers are different 
and that for i, j =  1, 2 . . . .  , t  we have 1 < A  i <Bj 
< 2 < X i j < 3 .  Then the jobs that have to be 
carried out in 12 are the following: 

- (O, A i) for i = l, 2 . . . . .  t. 
- t - l t i m e s ( 1 ,  Bj) f o r j = l ,  2 . . . .  , t .  
-- ( A i ,  Xij) for i, j - -  1, 2 . . . . .  t. 
- (Bi, Xij) for i, j --- 1, 2 , . . . ,  t. 
- (Xi~, 3 + a i + b  j) for i, j =  1, 2 . . . . .  t. 
- ( 3 + a i + b  j, 5) for i, j =  1, 2 . . . . .  t. 
- ( 4 - c  k, 6) for k = 1, 2 . . . .  ,t. 
The value of each job is equal to the length of 

the job. That is, vj = f ~ -  s t. An example of an 
instance 12 constructed from the instance I~ of 
N3DM that was defined in Section 3 is presented 
in Figure 2. Note that in this example a schedule 
exists which is such that all machines are uninter- 
ruptedly busy. Now we will prove the following 
statement for the general case: I 1 is a yes-in- 
stance if and only if in 12 the maximum value of a 
subset of jobs for which a feasible schedule exists 
is equal to 6 t + 4 ( t  2 - t ) = 4 t  2 + 2 t ,  which is 
equal to the total available processing time of the 
machines. 

Suppose that in 12 the maximum value of a 
subset of jobs for which a feasible schedule exists 
is equal to 4t 2 + 2t. As the value of each job is 
equal to its length and 4 t 2 +  2t is equal to the 
total available processing time of the machines, it 
follows that all machines must be uninterrupted 
busy. 

The jobs (0, A i) are the only jobs starting at 
the instant 0. Therefore all these jobs are carried 
out by the machines in the shift (0, 6). An analo- 
gous argument shows that the jobs (1, B~) are 
carried out by the machines in the shift (1, 5) and 
that the jobs ( 4 - c ~ ,  6) are carried out by the 
machines in the shift (0, 6). For i = 1, 2 . . . . .  t the 
job (0, A i) is followed directly by one of the jobs 
( A i ,  Xij ). For j = 1, 2 , . . . ,  t the t - 1 jobs (1, Bj) 
are followed directly by one of the jobs (Bj, Xij). 

As all machines must be uninterruptedly busy 
and the jobs (Xij, 3 + a i + bj) are the only jobs 
overlapping the instant 3, all these jobs must be 
carried out. Therefore,  we get schedules of the 
form 

(0, A i ) (  Ai ,  X~7)( Xij , 3 + a i + bj) 
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on machines in the shift (0, 6), where each i 
occurs exactly once and we get schedules of the 
form 

(1, B~)( Bi, X u ) (  Xi j ,  3 + a i + b~) 

on machines in the shift (1, 5), where each j 
occurs exactly t - 1 times. Hence among the jobs 
( X  u, 3 + a i + bj) that are carried out by the ma- 
chines in the shift (0, 6) each i and each j occurs 
exactly once. 

Furthermore,  on a machine in the shift (0, 6) a 
job (Xi j ,  3 + a i + by) is followed by a job (4 - Ck, 
6) in such a way that 3 + ag + by = 4 -  c k, which 
means that a i + by + c k = 1. So if we define p(i)  
= j  and tr(i) = k, whenever job (Xi j ,  3 + a i + bj) 
is combined with job ( 4 -  ck, 6), then p and tr 
are the required permutations for Ix. 

Conversely, given a feasible solution for 11, the 
construction can be reversed to find a subset of 
jobs of 12 of total value 4 t 2 + 2 t  for which a 
feasible schedule exists, which is clearly optimal. 
Note that the jobs (3 + a~ + by, 5) can be used to 
fill the gap on the machines in the shift (1, 5). As 
N3DM is NP-complete, it follows that MSCS(S 1) 
is NP-hard. [] 

MSCS(S l) containing J jobs (sj, fj, %) to be 
carried out and 2 integers M 1 and M 2 represent- 
ing the numbers of machines in the shifts (0, 6) 
and (1, 5) respectively and satisfying M 1 ~< J and 
M 2 ~< J. Furthermore,  let V denote a big number 
satisfying V >  E]=tvj. Then an instance 12 of 
MSCS(S 2) is constructed as follows: The numbers 
of machines in the shifts (0, 6) and (1, 7) are 
equal to M 1 and M 2 respectively and the follow- 
ing jobs have to be carried out: 

- J jobs (%, fj, %) from the i n s t a n c e / r  
- M 2 times the dummy job (5, 7, V). 

As M 2 ~< J, the size of 12 is polynomial in the size 
of 11. From the definition of V it follows that in 
any optimal solution for 12 all jobs (5, 7, V) are 
carried out. Hence if V 1 and V 2 represent the 
values of the optimal solutions for I~ and 12 
respectively, then it is evident that V e = V~ + V 
M 2 and that a close connection exists between 
the optimal solutions for 11 and 12. As MSCS(S1) 
is NP-hard, it follows that MSCS(S 2) is NP-hard 
also. [] 

5. Complexity results for SCS(S) 

Figure 2 gives an example of an instance 12 
constructed from the instance I 1 of N3DM that 
was defined in Section 3. The schedule in Figure 
2 is an optimal schedule, as all machines are 
uninterruptedly busy. 

I~mma 8. MSCS(S 2) is NP-hard. 

Proof. This lemma is proved by a reduction from 
MSCS(S1). Hence let 11 be an instance of 

In this section a classification of the computa- 
tional complexity of the problems SCS(S) is pre- 
sented. The classification is complete for the sub- 
set of problems in which the begin times of all 
shifts are different and the end times of all shifts 
are different. 

We will start with a sufficient condition on the 
set of shifts S guaranteeing that SCS(S) can be 
solved in polynomial time. In the proof of this 
condition we use the following result of Dondeti  

t engneers 0:: ........ : ...... X ~ I : :  . . . . . .  3 ~ a ~ : ~ : C  : : ' :  . . . .. : : : 6  ,.2,. 3 7 t . :  .~ .... . . . . .  

Shift 2 
t(t- l ) engineers 

5] 

Figure  2. O p t i m a l  solution for  an ins tance of  MSCS(S  l) 
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and Emmons  [5] and Kolen, Lenstra and Pa- 
padimitriou [13]: Suppose that J jobs have to be 
carried out, where each job has a fixed start and 
finish time and where each job belongs to one of 
two job classes. Suppose that M machines are 
continuously available, where each machine be- 
longs to one of two machine classes. Further- 
more, the jobs in job class 2 can be carried out by 
all machines, but the jobs in job class 1 can be 
carried out by the machines in machine class 1 
only. The problem whether or not a feasible 
schedule for all jobs exists is called Class Schedul- 
ing, or CS for short. In [5] and [13] it is shown 
that a feasible schedule for an instance of CS 
corresponds to a compatible flow of M units in a 
directed network with O ( J )  nodes and O ( J )  arcs. 
As a consequence, CS can be solved in polyno- 
mial time. 

1.emma 9. I f  G(S)  is a bipartite graph, then SCS(S) 
can be solved in polynomial time. 

Proof. This lemma is proved by establishing the 
following reduction: SCS(S)at  CS. As CS can be 
solved in polynomial time, the result follows. Let 
the set S be such that the graph G(S) is bipar- 
tite. Note that, according to Lemma 4, it may be 
assumed that 

ex ~ by for all shifts x and y in S. ( * * ) 

Let 11 be an instance of SCS(S) containing J 
jobs (sj, f )  that have to be carried out and Z 
integers Mz, for z = 1, 2 , . . . ,  Z representing the 
number  of machines in shift z and satisfying 
M 2 <~ J. As the graph G(S) is bipartite, the set of 
shifts in I 1 can be split into two sets Z 1 and Z 2 
such that all edges in G(S) connect a node corre- 
sponding to a shift in Z 1 with a node correspond- 
ing to a shift in Z 2. Furthermore,  let B denote 
the number  min{bz, sj I z = 1, 2 . . . . .  Z and j = 1, 
2 , . . . ,  J} - 1 and let E denote the number  max{ez, 
fj  Iz  = 1, 2 . . . . .  Z and j =  1, 2 . . . .  , J } +  1. 

Now an instance 12 of CS is constructed as 
follows. The number  of machines in machine 
class 1 is equal to Y'.z ~ zlMz and the number  of 
machines in machine class 2 is equal to Y:~ ~ z2Mz. 
All machines are continuously available. Further- 
more, the following jobs have to be carried out in 

the instance I2: 
Jobs in job class 1. 

- M z times the dummy job (B, b z) for all z in 
Z 1 . 

- M Z times the dummy job (e z, E)  for all z in 
Z 1 . 
Jobs in job class 2. 

- M z times the dummy job (B, b z) for all z in 
Z 2 . 

- M z times the dummy job (ez, E )  for all z in 
Z 2 • 

- J jobs (s i, f j)  from the instance 11. 
As M z~<J for z = l ,  2 . . . .  , Z  and Z is fixed, 

the size of 12 is polynomial in the size of 11 . Now 
we will prove the following statement: 11 is a 
yes-instance if and only if 12 is a yes-instance. 
The 'only if' part  of this statement is evident, 
because any feasible schedule for I a can be trans- 
formed into a feasible schedule for 12 by addition 
of all dummy jobs in an obvious way. 

In order to prove the ' if '  part  of the statement 
it is sufficient to prove that in any feasible sched- 
ule for 12 the dummy jobs (B, b x) and (ey, E)  are 
carried out by the same machine if and only if the 
interval (bx, ey) corresponds to some shift inter- 
val. A feasible solution for I 1 can be obtained 
then by deletion of all dummy jobs. The argu- 
ment  that we use here is similar to the argument 
that was used in the proof  of Lemma 6. 

Suppose a feasible schedule exists for 12. Then 
it is evident that each machine is carrying out 
exactly one dummy job (B, b x) and exactly one 
dummy job (ey, E). The dummy jobs (B, b x) and 
(ey, E)  are said to be wrongly coupled if they are 
carried out by the same machine and if the inter- 
val (bx, ey) does not correspond to any shift 
interval. 

The dummy jobs (B, b x) and (ey, E) in job 
class 1 can be scheduled only on the machines in 
machine class 1. This implies that the machines in 
machine class 1 are occupied during the intervals 
(B, B + 1) and ( E  - 1, E). As a consequence, the 
dummy jobs (B, b x) and (ey, E)  in job class 2 are 
scheduled on machines in machine class 2. This 
implies that a dummy job (B, b x) in job class 1 
and a dummy job (ey, E)  in job class 2 can not be 
carried out by the same machine. The same holds 
for a dummy job (B, b x) in job class 2 and a 
dummy job (ey, E )  in job class 1. Now suppose 
that dummy jobs in job class 1 exist, which are 
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wrongly coupled. Then the number b* is defined 
as follows: 

b* = min{b z lone of the jobs (B,  bz) in job 

class 1 is wrongly coupled}. 

As one of the dummy jobs (B, b*) in job class 1 
is wrongly coupled, it follows that a shift y in Z 1 
with by = b* exists for which one of the dummy 
jobs (ey, E)  in job class 1 is wrongly coupled also. 
Let this wrongly coupled job be coupled with a 
dummy job (B, b x) in job class 1 corresponding to 
shift x in Z 1. Then the assumption (* *) implies 
that we can not have b x = ey and thus b x <ey.  
Furthermore, the fact that the jobs (B, b x) and 
(ey, E)  in job class 1 are wrongly coupled implies 
bx ~ by and e x ~ ey. As the graph G(S) does not 
contain any edge between any pair of shifts in Z1, 
it follows that the shifts x and y are not overlap- 
ping. In the same way as in the proof of Lemma 6 
we can conclude that: 

b~ <e~ < b *  = by < e y .  

However, these inequalities contradict the defini- 
tion of b*, as the dummy job (B, b x) in job class 
1 is wrongly coupled. Therefore dummy jobs in 
job class 1 which are wrongly coupled do not 
exist. The same argument can be used to show 
that wrongly coupled dummy jobs in job class 2 
do not exist either. [] 

Lemmas 6 and 9 are special cases of the re- 
sults of Kroon [14], who relates the complexities 
of the problems MSCS(S) and SCS(S) to the 
node colouring number of the graph G(S). 

It is well known that Interval Graphs are trian- 
gulated, which means that in an Interval Graph 
any cycle of length greater than 3 has a chord 
(see Golumbic [7]). This property implies that the 
graph G(S) does not contain any cycle if the 
maximum shift overlap of the shifts in S is less 
than or equal to 2. Hence we have the following 
corollary: 

Corollary 10. If  the maximum shift overlap of  the 
shifts in S is less than or equal to 2, then SCS(S) 
can be solved in polynomial time. 

Unfortunately the condition of Lemma 9 is a 
sufficient condition but it is not a necessary con- 
dition for SCS(S) to be solvable in polynomial 

ss= ', 

Figure 3. Cutt ing the t ime axis at the instant t = 3 

S~ = {(0, 3), (0, 3), (1, 2)} 
S~' = {(3, 5), (3, 8), (4, 8), (6, 7)} 

time. This is illustrated by the set of shifts S 5 
which was defined in Section 3. The graph G(S 5) 
is a cycle of length 5, which is clearly not bipar- 
tite. However, SCS(S 5) can be solved in polyno- 
mial time by cutting the time axis at the instant 
t = 3. The resulting sets of shifts are S~ and S~'. 
The construction of the sets of shifts S~ and S~' is 
illustrated by Figure 3. 

Note that S~ contains only two different shifts 
in fact. Both SCS(S~) and SCS(S~') can be solved 
in polynomial time by applying Lemma 9. If I is 
an instance of SCS(S5), then it may be assumed 
that all jobs in I are contained in the interval (0, 
8), as otherwise I is a no-instance. Now I can be 
transformed into an instance I '  of SCS(S~) and 
an instance I"  of SCS(S~') by defining the num- 
bers of engineers in the shifts in I '  and I"  to be 
equal to the numbers of engineers in the corre- 
sponding shifts in I and by 'cutting' the jobs 
overlapping the instant t = 3. Thus we obtain the 
following sets of jobs: 

- The set of jobs in I ' =  

{(sj, f j ) t ( s j ,  f j)  e I  and 0 ~<sj < f j  ~< 3} 

U {(sj, 3)I(sj-, f ~ ) e I  and O<sj < 3  <f~ ~< 8}. 

- The set of jobs in I "=  

{(s t, f~) I (sj, f j )  e l  and 3 ~<s~ <f j  ~< 8} 

u{(3,  f j ) I ( s j ,  f j )  e I  and O<~sj < 3  <f j  ~< 8}. 

These definitions guarantee that any feasible 
schedule for I can be transformed into a feasible 
schedule for I '  and a feasible schedule for I". 
Conversely, the shifts (0, 5) and (0, 8) are the only 
shifts in S overlapping the instant t = 3. As these 
shifts have the same begin time, a feasible sched- 
ule for I '  and a feasible schedule for I" can be 
'pasted together' into a feasible schedule for I. 
Therefore I is a yes-instance if and only if both 
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I '  and I"  are yes-instances. As SCS(S~) and 
SCS(S~') can be solved in polynomial time, it 
follows that SCS(S 5) can be solved in polynomial 
time also. 

A decomposition as described can be applied 
if there exists an instant t ~ { b z ,  e z l z = l ,  
2 . . . . .  Z} which is such that all shifts overlapping 
t have either the same begin time or the same 
end time, there is at least one shift finishing 
before t and there is at least one shift starting 
after t. Unfortunately such an instant t does not 
exist for the set of shifts S 6 which was defined in 
Section 3. The graph G(S 6) is again a cycle of 
length 5. The computational complexity of 
SCS(S 6) is still an open problem. The complicat- 
ing factor in this example is the fact that many 
shifts exist with equal begin or end times. 

These considerations show that the definition 
of the graph G ( S )  may be not sufficiently sophis- 
ticated for expressing a complete classification of 
the computational complexity of the problems 
SCS(S), as the graph treats two non-overlapping 
shifts in the same way as two overlapping shifts 
with the same begin or end times. However, a 
useful alternative has not been found yet. There- 
fore in the remainder of this section we will 
assume that the begin times of all shifts are 
different and that the end times of all shifts are 
different. The aim of the remainder of this sec- 
tion is to provide a classification of the computa- 
tional complexity of the problems SCS(S) satisfy- 
ing this assumption. 

Theorem 11. I f  the set o f  shifts S is such that all 
shifts in S have different begin times and different 
end times, then the following statement holds: 
SCS(S) can be solved in polynomial time ,~ the 
max imum shift overlap is less than or equal to 2. 

Proof. The ' i f -par t  of this theorem follows di- 
rectly from Corollary 10. In order to prove the 
'only iF-part suppose that the set of shifts S 
contains three overlapping shifts x, y and z with 
different begin times and different end times. If 
the begin times of these shifts satisfy b x < by < b z, 
then the end times of these shifts satisfy one of 
the following inequalities. 

(i) ez < ey < e x, 
(ii) e~ < e x < ey, 

(iii) ey < ez < e x, 
(iv) ey < e x < e z, 
(v) e x < e  z <ey,  

(vi) e x < ey < e z. 

According to Lemma 3, in case (i) the set of 
shifts {x, y, z} is equivalent to the set of shifts 

S, = {(0, 12), (1, 11), (2, 7)}. 

In Lemma 12 it is shown that SCS(S 3) is NP-com- 
plete. Furthermore,  in case (vi) the set of shifts 
{x, y, z} is equivalent to the set of shifts 

S 4 = ((0,  12), (1, 13), (2, 14)}. 

In Lemma 13 it is shown that SCS(S 4) is NP-com- 
plete by a straightforward reduction from 
SCS(S3). Combining these results with the Lem- 
mas 2 and 3 it follows that SCS(S) is NP-com- 
plete in the cases (i) and (vi). A similar trick as in 
the proof of Lemma 13 can be applied to show 
that SCS(S) is NP-complete in the cases (ii) to (v) 
as well. [] 

L e m m a  12. SCS(S 3) is NP-complete. 

Proof. This lemma is proved by a reduction from 
N3DM. Hence let 1 l be an instance of N3DM 
containing the integer t and the rational numbers 
a i , b  i a n d c  i f o r i = l ,  2 . . . . .  t. 

Now an instance I 2 of SCS(S 3) is constructed 
as follows. In the shift (0, 12) we have t machines, 
in the shift (1, 11) we have t 2 - t machines and in 
the shift (2, 7) we have t 2 machines. Further- 
more, let for i, j = 1, 2 . . . .  , t the rational num- 
bers A i ,  Bj and Xij be chosen in such a way that 
all these numbers are different and that for i, 
j = l ,  2 . . . . .  t we have 3 < A i < B i < 4 < X i ~ < 7 .  
Then the jobs that have to be carried out in 12 
are the following: 

- (0, A i) for i = 1, 2 . . . . .  t. 
- t - l t i m e s ( 1 ,  B i) f o r j = l , 2  . . . . .  t. 
- t - 1 times (2, A i) for i = 1, 2 . . . . .  t. 
- (2, Bj) for j = 1, 2 . . . . .  t. 
- ( A i ,  Sly)  for i, j = 1, 2 . . . . .  t. 
- (Bj, Xij) for i, j =  1, 2 . . . .  , t .  
- (Xij, 7) for i, j = 1, 2 . . . . .  t. 
- (Xi~ , 9 + a i + b  j)  for i, j =  1, 2 . . . . .  t. 
- ( 1 0 - c  k,12) f o r k = l , 2  . . . . .  t. 
An example of an instance I 2 constructed from 

the instance 11 of N3DM that was defined in 
Section 3 is presented in Figure 4. Note that in 
this example a feasible schedule for all jobs exists. 
Now we will prove the following statement for 
the general case: 11 is a yes-instance if and only if 
I 2 is a yes-instance. 
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Suppose that 12 is a yes-instance. Then the 
jobs (0, Ag) are carried out by the machines in 
the shift (0, 12), the jobs (1, By) are carried out by 
the machines in the shift (1, 11) and the jobs (2, 
A i) and (2, B:) are carried out by the machines in 
the shift (2, 7). Furthermore, the jobs ( 1 0 -  c k, 
12) are carried out by the machines in the shift (0, 
12). As the jobs (X i / ,  9 + a i + bj) finish later than 
the instant 7, they are carried out by the ma- 
chines in the shifts (0, 12) and (1, 11). This 
implies that the jobs (X i j ,  7) are carried out by 
the machines in the shift (2, 7). 

It is not difficult to see that in the interval (0, 
7) the total required processing time equals the 
total available processing time( = l l t  z + t). Hence 
as far as a machine is available during the inter- 
val (0, 7), it is uninterruptedly busy. This implies 
that each job (0, A i) is combined with a job ( A  i, 
X i )  on one machine and that the same holds for 
each job (2, Ai ) .  Each job (1, B )  is combined 
with a job (B~, Xi:)  on one machine and the same 
holds for each job (2, B) .  The schedules on the 
ma- 
chines in the shift (0, 12) are of the form 

(0,  A i ) (  A i ,  X i j ) (  Xi j ,  9 + a i + bj) ,  

where each i occurs exactly once. The schedules 
on the machines in the shift (1, 11) are of the 
form 

(1, Bj) (B~ ,  X i j ) ( X i : ,  9 + a i + bj) ,  

where each j occurs exactly t -  1 times. Hence 
among the jobs (X~:, 9 + a i + bj) that are sched- 
uled on the machines in the shift (0, 12) each i 
and each j occurs exactly once. 

From the fact that X;~=~(a~ + b i + c i) = t it fol- 
lows that in the interval (9, 12) the total required 
processing time on the machines in the shift (0, 
12) equals the total available processing time on 
the machines in the shift (0, 12)(= 3t). Hence the 
machines in the shift (0, 12) are uninterruptedly 
busy during the interval (9, 12). This implies that 
on a machine in the shift (0, 12) a job (X~:, 
9 + a i + bj) is combined with a job (10 - ck, 12) in 
such a way that 9 + a~ + by = 10 - c k. This means 
t h a t  a i + by + c k = 1. So  i f  w e  d e f i n e  p(i)  = j  a n d  

tr(i) = k whenever job ( X i j  , 9 + a i + by) is com- 
bined with job (10 - Ck, 12), then p and or are the 
required permutations for I~ and hence I~ is a 
yes-instance. 

Conversely, given a feasible solution for I~ the 
construction can be reversed to find a feasible 

Shift I :::::::::::::::::::::: ::: :::Xii::l:i ::::::::::: ::: 9~ai~:~i:l: i:O'c~:: :: 
t engineers 

Shift 2 
t(t-1) engineers 

Shift 3 
t e engineers 

~:::::i:~:[::: :: ::: :: :::: ::::::: ~. : :::::~I 

::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
:::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

6 i :~ 6 ~ ;o 

Figure 4. Feasible schedule for an instance of SCS(S 3) 
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schedule for 12. As N3DM is NP-complete and it 
is clear that SCS(S 3) is in NP, it follows that 
SCS(S 3) is NP-complete also. [] 

Figure 4 gives an example of an instance 12 
constructed from the instance 11 of N3DM that 
was defined in Section 3. The schedule in Figure 
4 is a feasible schedule for all jobs. 

Lemma 13 SCS(S 4)/s  NP-complete. 

Proof. This lemma is proved by a reduction from 
SCS(S3). Let 11 be an instance of SCS(S 3) con- 
taining J jobs (s~., f j)  that have to be carried out 
and 3 integers M 1, M 2 and M 3 representing the 
numbers of machines in the shifts (0, 12), (1, 11) 
and (2, 7) respectively and satisfying M z ~<J for 
z =  1, 2,3.  

Then an instance 12 of SCS(S 4) is constructed 
as follows. In the shifts (0, 12), (1, 13) and (2, 14) 
we have M t, M 2 and M 3 machines available. 
Furthermore, in 12 the following jobs have to be 
carried out: 

- J jobs 0 i, f / )  from the instance I 1. 
- M 2 times the dummy job (11, 13). 
- M 3 times the dummy job (7, 14). 
As M 2 < J and M 3 ~< J, the size of I 2 is poly- 

nomial in the size of 11 . Moreover, it is evident 
that I 1 is a yes-instance if and only if 12 is a 
yes-instance. As SCS(S 3) is NP-complete and it is 
clear that SCS(S4) is in NP, it follows that SCS(S4) 
is NP-complete also. [] 

6. Concluding remarks 

In this paper the problems SCS(S) and 
MSCS(S), which appear in a natural way in the 
aircraft maintenance process at an airport, were 
described in a formal way. We have presented a 
complete classification of the computational com- 
plexity of the problems MSCS(S) and a classifica- 
tion of the computational complexity of a large 
subset of the problems SCS(S). At this moment 
we are trying to extend the classification of the 
problems SCS(S) into a complete classification. 
Any suggestions that will lead us into this direc- 
tion will be appreciated. 

In this paper we did not look at optimization 
methods for calculating optimal or satisfying solu- 
tions. However, some preliminary experiments 

have shown that Linear Programming can be 
useful as a kernel for optimization algorithms or 
heuristics. These aspects of the problems SCS(S) 
and MSCS(S) will be a topic for further research. 

Until now we have focused mainly on the 
operational questions that should be answered in 
the aircraft maintenance process. However, in 
Section 1 we mentioned already that tactical 
questions with respect to the required number of 
engineers in each of the shifts should be an- 
swered also. A subset of these tactical problems, 
which we have called Shift Class Design with 
respect to the set of shifts S or SCD(S) for short, 
can be described more formally in terms of jobs 
and machines as follows: 
Instance of SCD(S). 

- J jobs (sj, f /)  that have to be carried out. 
- Z  integers c z representing the costs per 

machine in each of the Z shifts. 
Question. What are the minimum total costs for 
hiring machines if all jobs have to be carried out 
in a non-preemptive way? 

It is clear that these problems can be seen as 
generalizations of FSP also. In a forthcoming 
publication we will present a classification of the 
computat ional  complexity of the problems 
SCD(S), more or less analogous to the classifica- 
tions that we have presented in this paper. 
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