
EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

E L S E V I E R European Journal of Operational Research 91 (1996) 144-159

Theory and Methodology

Variants of the Two Machine Flow Shop Problem connected with
factorization of matrix functions

H. Bart, L.G. K r o o n *

Erasmus University, P.O. Box 1738, 3000 DR Rotterdam, Netherlands

Received November 1993; revised November 1994

Abstract

In this paper we consider a number of variants of the Two Machine Flow Shop Problem. In these variants the
makespan is given and the problem is to find a schedule that meets this makespan, thereby minimizing the
infeasibilities of the jobs in a prescribed sense: In the max-variant the maximum infeasibility of the jobs is to be
minimized, whereas in the sum-variant the objective is to minimize the sum of the infeasibilities of the jobs. For both
variants observations about the structure of the optimal schedules are presented. In particular, it is proved that every
instance of these problems has an optimal permutation schedule. It is also shown that the max-variant can be solved
by Johnson's Rule. For the sum-variant this is not the case: For solving this problem to optimality something quite
different is necessary. Both variants are connected with factorization problems for certain rational matrix functions.
The factorizations involved are optimal in some sense and generalize the notion of complete factorization. In this
way a connection is established between job scheduling theory on one hand, and mathematical systems theory on the
other.

I. Introduction

In this int roduct ion we give a description of
the s tandard Two Machine Flow Shop Problem
(2MFSP) and the variants of this problem that
are studied in this paper . For more details on
2MFSP we refer to Baker [1].

In 2MFSP there are two machines available
for processing n jobs. Every job consists o f two
operat ions. However , one of the opera t ions of a
job may have zero processing time. The first and
second opera t ion of job j are called O] and 0 2.
The opera t ions O] and 0 2 must be processed on

* Corresponding author.

the first and the second machine, respectively.
Both machines can be processing at most one
opera t ion at the same time. Fur thermore , pro-
cessing 0 2 can not start before processing Ojl
has been completed.

The processing times of all opera t ions are given
and fixed. The processing times of O) and 0 2
are denoted by s i and tj. Hence an instance J of
2MFSP consists of n tuples (sj, tj) specifying the
processing times of the operations. Th roughou t
this paper, all processing times are assumed to be
integers. This is not a serious restriction. Wha t it
amounts to is that all processing times are ratio-
nals and that the time unit is chosen appropri-
ately.

0377-2217/96/$15,00 © 1996 Elsevier Science B.V. All rights reserved
SSD1 0377-2217(94)00340-8

H. Bart, L.G. Kroon / European Journal of Operational Research 91 (1996) 144-159 145

If J is an instance of 2MFSP and or is a
feasible schedule for J, then the length of the
time interval required for carrying out all jobs is
called the makespan or the maximum completion
time of tr and is denoted by Cmax(J , o-). In 2MFSP
the objective is to find a feasible schedule with
minimum makespan. The minimum makespan is
represented by C ~ (J) . Note that Bart and
Kroon [4] use the notations /z(J, tr) and /~*(J)
for the makespan and the minimum makespan of
an instance of 2MFSP. In Section 2 we describe
some properties of the optimal schedule for an
instance of 2MFSP, together with Johnson's Rule
that can be used to determine an optimal permu-
tation schedule.

Whereas in standard 2MFSP the objective is to
find a feasible schedule with minimum makespan,
in the variants of 2MFSP that are studied in this
paper a deadline is given and the objective is to
find a schedule that meets this deadline, thereby
minimizing the infeasibilities of the jobs. Indeed,
suppose we have an instance J of 2MFSP with n
jobs (sj, tj). Furthermore, let the deadline D be
an integer satisfying

m a x { ~ s j , ~. t j}<~D. (1)
j = l j = l

In the remainder of this paper we use the nota-
tion S = ZT=~sj and T = ET=~tj. In the variants of
2MFSP to be studied it is required that all jobs
are completed in D time units. Obviously, if
D < Cmax(J), then this can be achieved only by
relaxation of the predecessor constraints. That is,
it is allowed that processing O~ already starts
before processing O] has been completed. How-
ever, the infeasibilities introduced in this way
should be minimized in some sense. This can be
made more precise in the following way.

Suppose o- is a schedule for J such that all
jobs are completed in D time units. Let S(O)
and F(O) denote the start and finish time of
operation O, if the processing time of operation
O is positive. Furthermore, if sj = 0 then S(O))
= F(Q') = 0, and if tj = 0 then S(O 2) = r (o 2) =
D. Now the infeasibility of job j, denoted by Ij, is
defined by

I,=max{O, F (O)) - S (02)} . (2)

Note that Ij = 0, if j is a job with sj = 0 or tj = O.
Now we consider the following variants of 2MFSP
which differ from each other by their objectives.

2MFSP-M: Minimizing the maximum infeasibility
of the jobs.

2MFSP-T: Minimizing the sum of the infeasibili-
ties of the jobs.

If tr is a schedule for an instance J of 2MFSP-
M, then the maximum infeasibility of the jobs is
denoted by y(J , tr) and the minimum value for
3'(J, or) is represented by y *(J). Similarly, if g is
a schedule for an instance J of 2MFSP-T, then
the sum of the infeasibilities of the jobs is de-
noted by ~,(J, or) and the minimum value for
v(J, or) is written as u*(J) .

Note that an operation on the first machine
can be pushed backward in time and that an
operation on the second machine can be pushed
forward in time without increasing the infeasibil-
ity of the corresponding job. Therefore we will
not consider schedules where the first machine
contains operations outside the time interval
(0, S) or the second machine contains operations
outside the time interval (D - T, D):

Rule 1. In all considered schedules for an instance
of 2MFSP-M or 2MFSP-T the first machine is
occupied during the time interval (0, S) and the
second machine is occupied during the time interval
(D - T, D).

The variants 2MFSP-M and 2MFSP-T of
2MFSP are studied in Sections 3 and 4 of this
paper. There it is demonstrated that both prob-
lems always have an optimal permutation sched-
ule. Along the way we also deal with some other
variants of 2MFSP.

All these variants of 2MFSP bear some anal-
ogy to the variant that is studied by Mitten [9].
However, in the latter variant a maximum infeasi-
bility of each job is prescribed and the objective is
to find a schedule that minimizes the makespan.
On the other hand, in our variants of 2MFSP a
deadline is given and the objective is to minimize
the infeasibilities of the jobs, thereby taking into
account the given deadline. Mitten shows that his

146 H. Bart, L.G. Kroon / European Journal of Operational Research 91 (1996) 144-159

variant can be solved by an extension of Johnson's
Rule.

Bart and Kroon [4] show that the mentioned
variants of 2MFSP are related to the issue of
minimal factorization of rational matrix functions
from mathematical systems theory. Roughly
speaking, a flow shop problem corresponds to a
rational matrix function of a specific type. The
correspondence is such that there exists an inti-
mate relationship between the combinatorial as-
pects of the flow shop problem on one hand and
the factorization properties of the rational matrix
function on the other. For a brief sketch of the
state of affairs and an example, we refer to Sec-
tion 5 of the present paper.

2. The two mach ine flow shop problem

It is well known that every instance of 2MFSP
has an optimal non-preemptive schedule (cf. Baker
[1]). That is, once a machine has started process-
ing an operation, it does not start processing
another operation until the first operation has
been completed. It is also well known that every
instance of 2MFSP has an optimal permutation
schedule. A schedule is a permutation schedule if
it is non-preemptive and for all jobs i #:j with
S i > 0, t i > 0, s /> 0 and t /> 0 the operation O/ is
processed before the operation O) on the first
machine if and only if the operation 0 2 is pro-
cessed before the operation Of on the second
machine. Thus the order of the operations on the
first machine is the same as the order of the
operations on the second machine.

These properties of 2MFSP can be proved in a
straightforward way by applying exchange argu-
ments and by using the fact that, given a feasible
schedule, an operation on the first machine can

be pushed backward in time without violating the
predecessor constraints. Similarly, an operation
on the second machine can be pushed forward in
time without violating the predecessor con-
straints.

An optimal permutation schedule for an in-
stance of 2MFSP can be obtained by applying
Johnson's Rule (cf. Johnson [8]). In Johnson's
Rule the list (P l , . - . , Pzn) contains the processing
times of al operations in non-decreasing order.
This list is called the P(rocessing times)-list. Next,
an optimal permutation schedule is created as
follows.

- Start with two empty lists. The first list is called
the F(irst)-list and the second list is called the
L(ast)-list.
- DO W H ILE the P-list is non-empty:

• IF the first number in the P-list equals to sj
for some job j, T H E N put job j at the rear
of the F-list, ELSE put job j at the front of
the L-list.

• Delete sj and tj from the P-list.
- Combine the F-list (J l , . . . , Jp) and the L-list
(jp+~ in) into the optimal permutation sched-
ule (Jl ,Jp, Jp+l Jn)"

Initially sorting the processing times of the
operations can be done in ~ (n log n) time. The
remaining part of the algorithm takes G(n) time.
As a consequence, the running time of Johnson's
Rule is C(n log n). Therefore 2MFSP belongs to
the class of easy problems that can be solved in
polynomial time (cf. Garey and Johnson [7]).

Example 1. This example considers the instance J
of 2MFSP with jobs (3, 4), (4, 6) and (3, 0). Fig. 1
shows the optimal permutation schedule (1, 2, 3)
for J. This schedule was obtained by Johnson's
Rule. Note that C~ax(J)= 13.

I1 Iz I~ I

I1 Iz I

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 1. The optimal permutat ion schedule (1, 2, 3) for the instance J with jobs (3, 4), (4, 6) and (3, 0).

H. Bart, L.G. Kroon /European Journal of Operational Research 91 (1996) 144-159 147

3. Analysis of the max-variant (2MFSP-M)

In this section we study 2MFSP-M. It is shown
that this problem is closely related to 2MFSP. In
particular, we will prove Theorem 1, which im-
plies that 2MFSP-M can be solved by Johnson's
Rule.

Theorem 1. If J is an instance of 2MFSP-M, then

y * (J) = max{Cmax(J) - D, 0}.

Proof. Obviously, y* (J)= 0 if and only if D ~>
Cmax(J). Hence in this case we are ready.

Next, we consider the case D < Cmax(J). Sup-
pose we have an optimal schedule for 2MFSP-M
with objective value y*(J). Then a feasible
schedule for 2MFSP is obtained by pushing all
operations on the second machine y * (J) t ime
units forward in time. Thus

Cmax(J) < D + y * (J) ,

or

T * (J) ~ Cmax(g) - D .

Conversely, suppose we have an optimal
schedule for 2MFSP with makespan Cmax(J). It
may be assumed that the first machine is occu-
pied during the time interval (0, S) and that the
second machine is occupied during the time in-
terval (C m , x (J) - T , Cmax(J)). Thus a feasible
schedule for 2MFSP-M with objective value not
exceeding Cmax(J) - D is obtained by pushing all
operations on the second machine C m a x (J) - D
time units backward in time. As a consequence,
y*(J) <~ Cmax(J)- D. []

From the proof of Theorem 1 it is obvious that
an optimal schedule for 2MFSP-M corresponds
to an optimal schedule for 2MFSP and vice versa.
Thus every instance of 2MFSP-M has an optimal
permutat ion schedule that can be obtained by
Johnsons's Rule.

I1 Iz 13 I

I1 Iz I

0 1 2 3 4 5 6 7 8 9 10

Fig. 2. The optimal permutation schedule (l, 2, 3) for the
instance J with jobs (3, 4), (4, 6) and (3, 0). and with D = 10.

permutat ion schedule or 1 = (1, 2, 3) for J. This
schedule was obtained by Johnson's Rule. Note
that 11 = 3, 12 = 3 and 13 = 0, which gives y * (J)
= 3 .

Corollary 2. Every instance of 2MFSP-M has an
optimal permutation schedule with the property
S(O 1) < S(O 2) and F(O}) <~ F(O 2) for all jobs j.

Proof. As was noted already, there exists an opti-
mal permutat ion schedule or * that can be ob-
tained by Johnson's Rule. Now let j be a job with
s t < t r Then, according to Johnson's Rule, all
jobs i preceding job j in tr* have s i < t i. Let Jr
denote the set of jobs preceding job j in or*.
Then Rule 1 implies

s(o) = E s,< E
i~Jj iEJy

< o - r + E t i : S (O f f) ,
i~yj

F (O)) = E s i d - s j < E t i + t j

< D - T + E t i + t ~ = F (0 2) .
iEJ,

A similar argument holds if s t > t r Finally, if
s t = t j, then one of these arguments is valid, de-
pending on whether job j was put at the rear of
the F-list or at the front of the L-list in the
application of Johnson's Rule. []

Example 2. This example considers the instance J
of 2MFSP-M with jobs (3, 4), (4, 6) and (3, 0),
and with D = 10. This instance was also consid-
ered in Example 1. Fig. 2 shows the optimal

4. Analysis of the sum-variant (2MFSP-T)

In this section we study 2MFSP-T. Unfortu-
nately, a similar result as for 2MFSP-M stating

148 H. Bart, L. G. Kroon / European Journal of Operational Research 91 (1996) 144-159

12 I1 la I

12 I* I

0 1 2 3 4 5 6 7 8 9 10

Fig. 3. The optimal permutat ion schedule (2, 1, 3) for the
instance J with jobs (3, 4), (4, 6) and (3, 0), and with D = 10.

that an optimal schedule can be found by John-
son's Rule does not hold here.

Example 3. This example considers the instance J
of 2MFSP-T with jobs (3, 4), (4, 6) and (3, 0), and
with D = 10. This instance was also considered in
Example 2. Fig. 3 shows the optimal permutation
schedule ~ 2 = (2 , 1 , 3) for J. Note that 11=1,
•2=4 and / 3 = 0 , which gives u * (J) = 5 . Note
further that the schedule tr I = (1, 2, 3) shown in
Fig. 2 has v(J, ¢r l) = 6.

In spite of the fact that Johnson's Rule does
not always produce an optimal schedule for an
instance of 2MFSP-T, some information on the
structure of an optimal schedule for such an
instance can be derived. For example, it will be
shown that every instance of 2MFSP-T has an
optimal permutation schedule.

This result is obtained by studying two further
variants of 2MFSP, which are described now. Let
J be an instance of 2MFSP-T, and let o- be a
schedule for J. Then an integer time instant
t ~ {0 D} is said to be skipped by job j if

S (0 2) < t < F (O)) . (3)

Furthermore, the integer time instant t
{0 D} is said to be skipped if it is skipped by
at least one job. Note that the time instants 0 and

D are not skipped. The total number of skipped
time instants is denoted by vs(J, or). In the first
further variant of 2MFSP, which is called
2MFSP-S, the objective is to minimize vs(J, ~r).
The minimum value for vs(J, o') is denoted by
Vs*(J).

The second further (set of) variant(s) of 2MFSP
is called 2MFSP-T(m). This set is indexed by the
positive integers m. In 2MFSP-T(m) an infeasi-
bility of a job of 1/m time units is not counted.
That is, the m-reduced infeasibility of job j, which
is denoted by I~ m), is given by

I~ '~)= max{I t - i / m , 0}

=max{F(O1) - S(O2) - l / m , O}. (4)

The sum of the m-reduced infeasibilities of the
jobs is denoted by U(m)(J, tr). In 2MFSP-T(m)
the objective is to minimize v(m)(J, tr). The mini-
mum value is denoted by V(m)(J).

The variants 2MFSP-S and 2MFSP-T(m) are
introduced because they are crucial in the proof
that every instance of 2MFSP-T has an optimal
permutation schedule. For example, Lemma 4 in
the next section is an important auxiliary result in
deriving this final result. This lemma holds for
2MFSP-S and 2MFSP-T(m). Unfortunately, it
does not hold for 2MFSP-T.

Without loss of generality, Rule 1 is applied to
2MFSP-S and to 2MFSP-T(m). Furthermore, for
2MFSP-S, 2MFSP-5(m) and 2MFSP-T we have
the following result.

Lemma 3. Every instance of 2MFSP-S. 2MFSP-
T(m) or 2MFSP-T has an optimal non-preemptive
schedule.

I P ~ I I p2 I

IJ

[. [P ' I Pz I

[J [
Fig. 4. The transformation from o- I to o-2-

H. Bart, L.G. Kroon /European Journal of Operational Research 91 (1996) 144-159 149

Proof. Suppose we have an optimal preemptive
schedule oq where operat ion O) is split into two
parts Px and P2. Then a new schedule 0.2 is
obtained if the parts pl and P2 are combined by
pushing Pl forward in time and by pushing all
operations between Pl and P2 backward in time.
The transformation from 0-1 to 0- 2 is illustrated in
Fig. 4.

Obviously, the result of this transformation is
that the number of preemptions on the first ma-
chine decreases, while neither the number of
skipped time instants, nor the (reduced) infeasi-
bility of any job increases. A similar transforma-
tion decreases the number of preemptions on the
second machine. By repeating such transforma-
tions as often as necessary, one finally obtains an
optimal non-preemptive schedule. []

If ~r is a non-preemptive schedule, then Rule
1, together with the fact that all processing times
and the deadline D are integers, imply that S(O)
and F(O) are integers for all operations O. This
implies that for each job j the number of integer
time instants t that are skipped by job j equals
I~ 1). As a consequence,

Us(J, o') <~ ~ #1) = u,,)(J, o').
j-1

Note that strict inequality can occur if a t ime
instant is skipped by two or more jobs.

4.1. Analysis of the skip-variant (2MFSP-S)

In this subsection it is demonstra ted that every
instance of 2MFSP-S has an optimal permutat ion

schedule. This result is used in subsequent sec-
tions to prove a similar result for 2MFSP-T(m)
and 2MFSP-T.

Lemma 4. Every optimal schedule for an instance
of 2MFSP-S has the property S(O)) <~ S(O~) and
F(O)) <~ F(Of) for all jobs j.

Proof. Suppose we have an optimal schedule or.
Let j be a job with S(Of) < S(O)) in ~. If Oj I or
O / has been split into several parts, then the
method described in Lemma 3 can be used to
transform or into another optimal schedule ¢r l
with Us(J , Or 1) ~< Us(J, tr) where job j is processed
in a non-preemptive way. Note that S(O 2) <
S(O)) in tr I as well. All integer time instants t
with S(O f) < t < F(O)) are skipped by job j. Fur-
ther, let the integer time instants % and ~'1 be
defined by:

% = m a x (t It <~s(of) , t is integer

and not skipped) ,

~l=min{tlt>>.F(O)),t is integer

and not skipped) .

The time instants T 0 and ~'1 are well-defined,
since 0 and D are not skipped. Furthermore, %
and z 1 are not skipped, but all integer time
instants t with z 0 < t < 7~ are. Note that

'To~S(O?) < S (O)) < f (O)) ~ T 1 •

However, it may happen that ~'t < F(Of). Thus
let qj be the processing time of the part of Oj 2

. I i I

I I
% %+s j %

JJ I I 1

I J I ***** I J I

F i g . 5. T h e t r a n s f o r m a t i o n f r o m o- t t o o- 2.

150 H. Bart, L.G. Kroon / European Journal of Operational Research 91 (1996) 144-159

between z o and z I (i.e. qj = min{tj, '7"1 - - 5 (O 2) }) -

The cases sj ~< qj and sj > qj are considered sepa-
rately.

Case 1. sj <~ qi" Since % < TO + Sj < Zl, the time
instant T 0 + Sj is skipped in 0-1. Now 0-1 is trans-
formed into a new schedule 0-2 by pushing O1.1
and the part of Of between ~'0 and ~-~ backward
in time, such that 01 and 02 start at %. At the
same time, all parts of operat ions of other jobs
between ~'0 and z I are pushed forward in t ime as
far as is necessary to accomplish this. This trans-
formation is illustrated in Fig. 5.

Now sj ~< qj implies that the time instant z 0 + sj
is not skipped in 0- 2. Indeed, suppose job i is such
that

S(O if) < r 0 +sj < F (O 1)

in 0- 2. Then, obviously, i =~ j, which implies

S(Oi ~) < ~0 < ~0 + s, < F (O~)

in 0-2. However, o" 2 differs from 0-1 only between
r 0 and rl . Thus

S(02) < TO < F (O / l)

in 0-1, which is a contradiction, because the time
instant T 0 is not skipped in o- 1. It can be con-
cluded that the time instant TO + Sj is not skipped
in 0-2.

Case 2. Sy > qj. Note that in this case qj = tj
and F(O 2) < Zr Since Zo < ~'1 - tj < ~'1, the t ime
instant ~ '1 - ty is skipped in 0-r Now 0-~ is trans-
formed into a new schedule 0-2 by pushing O 1
and 02 forward in time, such that 01 and GI 2
finish at T1- At the same time, all parts of opera-
tions of other jobs between z 0 and ~-~ are pushed

backward in time as far as is necessary to accom-
plish this. Now it can be shown in a similar way as
in Case 1 that the time instant z ~ - t j is not
skipped in 0-2.

Hence both in Case 1 and in Case 2 the
schedule 0-2 contains an integer time instant t
with 70 < t < ~-~ that is not skipped. Since in 0-~
all integer time instants t with ~'0 < t < ~t are
skipped, and 0-1 and 0-2 differ from each other
only between T O and ~'1, it follows that Vs(J, 0-2)
< vs(J, 0-1). Thus an optimal schedule does not
contain any job j with S(O 2) < S(01). In a simi-
lar way it can be shown that an optimal schedule
also does not contain any job j with F(O/)<
F(O)). This completes the proof of Lemma 4.
[]

As we noted already, Lemma 4 is crucial in the
proof that every instance of 2MFSP-T has an
optimal permutat ion schedule. Unfortunately, the
result of Lemma 4 does not hold for 2MFSP-T
directly. The latter is illustrated by the instance
of 2MFSP-T with jobs (1, 1) and (1, 1), and with
D = 2. For this instance all non-preemptive
schedules are optimal, but only the permutat ion
schedules satisfy the conclusion of Lemma 4.

Lemma 5. Every instance of 2MFSP-S has an
optimal permutation schedule.

Proof. Suppose 0-1 is an optimal schedule. It may
be assumed that 0-1 is non-preemptive. Further-
more, 0-1 has the property S(O 1) <~ S(O 2) and
F(O)) <~ F(O 2) for all jobs j.

It IJ I

I J I I t I

I~ IJ I

I i I J I

Fig. 6. The transformation from 0 1 to cr 2.

H. Bart, L. G. Kroon / European Journal of Operational Research 91 (1996) 144-159 151

Now let jobs i and j be such that O] is
followed directly by O) on the first machine,
while O f is followed by O/2 on the second ma-
chine, possibly with some operations between
them. Note that

F(Oi l) = S(Oy') <...S(02) < S (O ?) .

Thus the number of time instants skipped by job i
equals zero. Next, a new schedule ¢r 2 is created
by moving operat ion 02 to the position of 02,
while at the same time operat ion O~, together
with all possible operations between 02 and 0/2
are pushed t i t ime units forward in time. The
transformation from ¢r~ to or 2 is illustrated in Fig.
6.

In this way the number of time instants skipped
by job i remains zero and, obviously, us(J, o" 2) ~<
us(J , ¢rl). Now the order of the operations O]
and O) on the fist machine is the same as the
order of the operations 0/2 and 02 on the second
machine. By applying similar steps as often as
necessary, one obtains an optimal permutat ion
schedule. []

4.2. Analysis of the reduced-sum-variant (2MFSP-
T(m))

In this subsection it is shown that every in-
stance of 2MFSP-T(m) has an optimal permuta-
tion schedule. This result is used in a subsequent
subsection to prove a similar result for 2MFSP-T.
It is derived by first establishing a connection
between 2MFSP-S and 2MFSP-T(1). Indeed, if a
non-preemptive schedule o- has the property
S(O))<~S(O 2) or F(O))<~F(O 2) for all jobs j,
then every skipped time instant t is skipped by
exactly one job, as can be seen easily. This result
implies us(J, or) = uo)(J , ~) for such schedules o-.

Lemma 6. A schedule ~r * is an optimal schedule
for 2MFSP-S if and only if it is an optimal schedule
for 2MFSP-T(1).

Proof. Suppose tr * is an optimal schedule for
2MFSP-S. Then S(O 1) < S(O f) and F(O)) <
F(O f) for all jobs j. Thus us*(J)=us(J, t r *) =
u(1)(J, tr *), as was noted above. Furthermore, for

all schedules ~r we have the following (in)equali-
ties:

= -< -<

(5)

As a consequence, or * is optimal for 2 MFSP-T(1)
as well.

Conversely, suppose ~ * is an optimal sched-
ule for 2MFSP-T(1). Let o-j" be an optimal
schedule for 2MFSP-S. Then o-1" is optimal for
2MFSP-T(1), according to the first part of this
proof. Furthermore, ~rl* has the property S(O])
<~S(O 2) and F(O])<~F(O~) for all jobs j. Thus
we have the following (in)equalities:

Vs(J , o ' *) < l~(l)(J , o r *) = b'(l)(J, (7"1 *) = /) s (J , o ']*)

(6)

It follows that tr * is optimal for 2MFSP-S as
well. []

Corollary 7. Every instance of 2MFSP-T(1) has
an optimal permutation schedule. Furthermore, ev-
ery optimal schedule has the property

S (0))<~S(02) and F(OI)<~F(02)

for all jobs j.
By using a different time unit t' = rot, a similar

result can be deduced for 2MFSP-T(m). Thus
every instance of 2MFSP-T(m) has an optimal
permutat ion schedule. Also, every optimal sched-
ule has the property S(O)) < S(O 2) and F(O)) <~
F(O 2) for all jobs j.

4.3. Final analysis of the sum-variant (2MFSP-T)

In this paragraph it is demonstrated that every
instance of 2MFSP-T has an optimal permutat ion
schedule. This is achieved by considering 2MFSP-
T as the limit of 2MFSP-T(m) in some sense. In
particular, we will prove the following lemma.

Lemma 8. Let J be an instance of 2MFSP-T(m)
and 2MFSP-T with n jobs where m > n. Then the
following holds: I f or * is an optimal schedule for
2MFSP-T(m), then or * is an optimal schedule for
2MFSP-T as well.

152 H. Bart, L.G. Kroon / European Journal of Operational Research 91 (1996) 144-159

Proof. Suppose 0- * is an optimal schedule for
2MFSP-T(m), but not an optimal schedule for
2MFSP-T. Let ~rl* be an optimal schedule for
2MFSP-T. Then v(J, 0"1") ~< v(J, 0" *) - 1, be-
cause v(J, 0-1") and v(J, or*) are integers. This
implies the following inequalities:

I"(m)(J, 0-1") .~< l . , (J , 0-1") ~</~(J, o v*) - 1

(l)(m)(J , 0-*) "Jv n / m) - 1

< 1,'(m)(J , 0-*) . (7)

However, these inequalities imply that o-* is not
optimal for 2MFSP-T(m). This contradiction
shows that 0- * is optimal for 2MFSP-T as well.
[]

Corollary 9. Every instance of 2MFSP-T has an
optimal permutation schedule with the property

S(O])<~S(O 2) and F(OI)<<.F(Of)

for all jobs j.

Note the subtle difference between the Corol-
laries 7 and 9. Indeed, the earlier mentioned
instance of 2MFSP-T with jobs (1, 1) and (1, 1),
and with D = 2 has an optimal schedule that
does not have the property S(O))<~ S(O 2) and
F(O]) <~ F(O 2) for all jobs j.

The foregoing reveals a close connection be-
tween 2MFSP-T and 2MFSP-T(m). In fact, if J is
an instance of 2MFSP-T(m) where m > n, then
there exists a single permutation schedule 0" with
v(J, 0") = v *(J) and V~,n)(J, 0") = v~*~)(J). How-
ever, if m ~< n, then such a permutation schedule
need not exist, as is illustrated in Example 4.

Example 4. This example considers the instance J
of 2MFSP-T(1) and 2MFSP-T with jobs (2, 3),
(2, 3) and (4, 6), and with D = 12. Note that two
jobs are identical. As a consequence, only three
essentially different permutation schedules exist,
namely 0-1= (1, 2, 3), 0, 2 = (1 , 3 , 2) , and 0, 3=
(3, 1, 2). It is easy to see that v(J, ~rl)=5,
v(J, 0-2)= 5, and v(J, 0-3)= 4. Furthermore,
V(l)(J, 0-1) = 2, v(1)(J , 0"2) = 3, and vO)(J, 0"3) = 3.

Thus, v * (J) = 4 and v~])(J)= 2. However, a sin-
gle permutation schedule ~r with v(J, 0-) = 4 and
vo)(J , or)= 2 does not exist. This example will
also play a role in the Remark after Lemma 10.

4.4. Finding optimal schedules

Because of the connection of 2MFSP-S,
2MFSP-T(m) and 2MFSP-T with the problem of
finding minimal factorizations of certain rational
matrix functions (cf. Section 5 and Bart and Kroon
[4]), we are interested in optimal instead of ap-
proximate schedules for instances of 2MFSP-S,
2MFSP-T(m) and 2MFSP-T. Although the latter
problems differ from 2MFSP-M only by their
objectives, we have not yet been able to develop
polynomial exact algorithms for them. However,
it is not difficult to see that one algorithm will be
sufficient, because an exact algorithm for any of
these problems can be used for all other prob-
lems as well. This is expressed in Lemma 10.

Lemma 10. An exact algorithm for any of the
problems 2MFSP-S, 2MFSP-T(m) or 2MFSP-T
can be used for all other problems as well.

Lemma 10 implies that 2MFSP-S, 2MFSP-
T(m) and 2MFSP-T have the same computa-
tional complexity (cf. Garey and Johnson [7]).

Proof. Lemma 6 shows that an exact algorithm A
for 2MFSP-S is also exact for 2MFSP-T(1) and
vice versa. Furthermore, by choosing a different
time unit t '=mt , an exact algorithm A for
2MFSP-T(1) can be used for 2MFSP-T(m) as
well.

Next, let A be an exact algorithm for 2MFSP-
T(m) and let J be an instance of 2MFSP-T with
n jobs. Select a positive integer k such that
km > n. By choosing a different time unit t' = kt,
the algorithm A can be used to find an optimal
schedule o- for 2MFSP-T(km). Now Lemma 8
implies that o- is optimal for 2MFSP-T as well.

Finally, let A be an exact algorithm for
2MFSP-T and let J be an instance of 2MFSP-T(1)

14. Bart, L.G. Kroon /European Journal of Operational Research 91 (1996) 144-159 153

with deadline D. Then an optimal schedule for
2MFSP-T(1) can be found by applying the algo-
rithm A to the instance J ' of 2MFSP-T, where
J ' = J u { (0 , 1),(1, 0)} with deadline D + 1. In-
deed, without loss of generality, the additional
jobs (0, 1) and (1, 0) of J ' are the first and the
last jobs in the resulting permutation schedule.
[]

Remark. We shall now present an explanation
why an exact algorithm for 2MFSP-S, 2MFSP-
T(m) or 2MFSP-T should be essentially different
from Johnson's Rule. First note that Johnson's
Rule can be made unambiguous by ordering the
processing times of the jobs in the P-list in non-
decreasing order, taking into account the follow-
ing rules:

• If s i = tj, then s i precedes tj in the P-list.
• If s i = sj, then s i precedes s t in the P-list if

and only if i < j.
• If t i = ti, then t i precedes tj in the P-list if

and only if i <j .
Hence Johnson's Rule uses information on the

ordering of the processing times of the jobs only.
Thus if J and J' are instances of 2MFSP with
'isomorphic' P-lists, then there exists a single
permutation schedule o- such that Cmax(J, o r)=
Cmax(J) and Cmax(J' , o') = Cmax(J'). In particular,
the optimal permutation schedule is addition in-
variant and multiplication invariant That is, the
optimal permutation schedule does not change if
all processing times are increased with a fixed
number of time units or if all processing times are
multiplied by a fixed factor.

This is in contrast with 2MFSP-S, 2MFSP-T(m)
and 2MFSP-T. Indeed, although an optimal per-
mutation schedule for an instance of 2MFSP-T is
multiplication invariant, it need not be addition
invariant. The latter is illustrated by the instance
J of 2MFSP-T with jobs (1, 3) and (2, 5), and with
D = 8. For J, the unique optimal permutation
schedule is o-l = (1, 2) with u(J, o-l) = u *(J) = 1.
The permuta t ion schedule o-2 = (2, 1) has
v(J, o-z) = 2. However, if all processing times are
increased with 5 time units, then one obtains the
instance J ' with jobs (6, 8) and (7, 10) and with
D = 18. For J ' , the optimal permutation schedule

is o-z = (2, 1) with u(J' , o-2) = u * (J ') = 10. The
permutation schedule o- 1 = (1, 2) has u(J' , or l) =
11. Similarly, an optimal permutation schedule
for an instance of 2MFSP-S or 2MFSP-T(m) need
not be addition invariant.

Furthermore, an optimal permutation sched-
ule for an instance of 2MFSP-T(m) need not be
multiplication invariant. Indeed, let J be an in-
stance of 2MFSP-T(m) with n jobs. If an optimal
permutation schedule for J would be multiplica-
tion invariant, then this would imply the existence
of a single permutation schedule o- such that
p(m)(J, o-)= p(~)(J) for all integers m. Further-
more, Lemma 8 would imply that, in particular,
u(J, o-) = u *(J) as well. However, in Example 4
it was shown that for the instance J with jobs
(2, 3), (2, 3) and (4, 6), and with D = 12, a single
permutation schedule o- with u(i)(J, or)= u~])(J)
and u(J, o-)= u * (J) does not exist. It follows
that an optimal permutation schedule for an in-
stance of 2MFSP-T(m) need not be multiplica-
tion invariant. Similar remarks are valid for
2MFSP-S as well (cf. Lemma 6).

It can be concluded that an exact algorithm for
2MFSP-S, 2MFSP-T(m) or 2MFSP-T uses more
information than just the ordering of the process-
ing times of the jobs, and hence in this sense it
has to be essentially different from Johnson's
Rule. []

Lemma 11 expresses one more property of
2MFSP-S, 2MFSP-T(m) and 2MFSP-T. This
property allows one to decompose an instance
into instances of smaller size.

Lemma 11. Every instance o f 2MFSP-S , 2MFSP-
T (m) or 2 M F S P - T has an optimal permutation
schedule with the following property: The list
(Jl Jn) representing the optimal permutation
schedule consists o f three sublists, namely.

• (Jl Jn,) containing jobs with sj < tj,
• (J,,~+l jn2) containing jobs with s j = t j ,

and
• (J,2+ 1 j ,) containing jobs with s i > tj.

The jobs with s t = tj can be arranged in any order.

154 H. Bart, L.G. Kroon /European Journal of Operational Research 91 (1996) 144-159

Proof. Suppose tr * is an optimal permutation
schedule for an instance of 2MFSP-S, 2MFSP-
T(m) or 2MFSP-T. Let jobs i and j be consecu-
tive jobs in tr* with s i>l t i and sj~<t i. If one
interchanges the order of i and j, then Of is
pushed backward in time, but OJ is pushed back-
ward in time at least as much, since s i >~ ti. Thus
neither the number of time instants skipped by
job j nor the (reduced) infeasibility of job j
increases. A similar conclusion holds for job i.
Furthermore, the other jobs are unaffected by
interchanging the jobs i and j. By applying simi-
lar interchanges as often as necessary, one ob-
tains an optimal permutation schedule with the
desired property. []

According to Lemma 11, jobs j with sj --- t i do
not influence the structure of the optimal sched-
ule. As a consequence, the problem of finding an
optimal schedule can be decomposed into two
subproblems: an instance J1 corresponding to the
jobs with sj < t i and an instance J2 corresponding
to the jobs with sj > tj. The deadline D~ to be
used in Jx equals

D - Y'. t i
{jlsi>~t j}

and the deadline D 2 to be used in J2 equals

D - E s j
{j I st ~ t/)

Without loss o f generality, s~ < tj for all jobs j in
the remaining part o f this paper.

In Lemma 12 we show that some instances of
2MFSP-T can be solved by sorting the jobs ac-
cording to non-increasing values of tj - sj (cf. the
Remark after Lemma 10).

L e m m a 12. I f J is an instance o f 2 M F S P - T with
sj < t i for all jobs j , D = T, and

(t j - sy)~< min s~,
j = l j = l n

then an optimal permutat ion schedule is obtained
by sorting the jobs according to non-increasing
values o f tj - s 1.

Analogous results hold for 2MFSP-S and
2MFSP-T(m) as well. Note that the condition

(t / - s j) ~ < min s/
j = l j = l n

means that the differences in the processing times
are small in comparison with the processing times
themselves.

P r o o f . If or is a permutation schedule for J, then
D = T, sj < t/ for all jobs j, and the inequality
~ = i (t j - s/) <~ min/= 1 , s i imply S (O 2) <~ F (O))
for all jobs j. Indeed if Jj denotes the set of jobs
preceding job j, then

F (O /) - S (O 2)

(E Si-FSj) - Eti~---Sj - E (t i - - S i)
\ i~Jj i~J iEJy

>/Sj-- ~ (t i - - S i) >~0.
i-1

As a consequence, lj = F(Oj ~) - S (O f) for all jobs
j. Now we consider two consecutive jobs i and j
where job i precedes job j. We set A l = S(Oi 1)
and A 2 = S (0 2) . Then we find

I i q- lj = (A 1 q- s i - A 2)

+ (A ~ + si + s s - A 2 - t i)

= 2 (A 1 - A z) + (s i+sy) - (t i - si).

Note that the terms 2 (A ~ - A 2) and s~+sj are
independent of the order of the jobs i and j.
Hence if (t i - s i) > (t j - ss), then job i precedes
job j in an optimal schedule. If (t i - s~) = (t i - sj),
then jobs i and j can be arranged in any order.
[]

Some preliminary numerical experiments have
revealed that, also in the general case, sorting the
jobs according to non-increasing values of t / - s i
produces schedules that are nearly optimal. This
topic is a subject for further research.

As long as we have not been able to find a
polynomial algorithm for solving all instances of

14. Bart, L. G. Kroon / European Journal of Operational Research 91 (1996) 144-159 155

2MFSP-S, 2MFSP-T(m) and 2MFSP-T to opti-
mality, we have to be satisfied with an integer
program describing these problems. This integer
program can be solved by the application of stan-
dard branch and bound techniques. Here we will
describe the integer program that can be used for
solving 2MFSP-T. It bears some similarity to the
integer program described by Wagner [10]. The
integer program contains the decision variables
X,, (j = l n; p = l n) and Ip (p =
1 n) which are defined as follows:
X~R = 1 if job j is carried out at the p-th position

of the permutation schedule; 0 otherwise,
Ip = The infeasibility of the job at the p-th

position of the permutation schedule.
Note that the decision variables reflect the fact

that we can restrict ourselves to permutation
schedules. Now the objective and the constraints
of the integer program are described as follows.

min ~ 11, (8)
p - 1

subject to

~ Xjp= 1, j = l n, (9)
p I

~ x, , = 1, p = l n, (10)
j - I

LSj ~ Xjq- (O - ~ lj ~ gjq) >~Ip,
j = l q ~ l j = l q=p
p = l n, (11)

lp>~O, p = l n, (12)

Xjp~{O, 1}, j = l ,n , p = l n .

(13/

The objective (8) specifies that one is inter-
ested in minimizing the total infeasibility of the
schedule. The assignment constraints (9) and (101
guarantee that every job occupies exactly one
position in the schedule and that every position in
the schedule is occupied by exactly one job. In
the constraints (11) the expression Y~'= 1sj]~_~P= iXjq
represents the completion time of the first opera-
tion of the job at the p-th position of the sched-
ule. The expression D - ~.n t ~" Xjq repre- ~'j= 1 j~"q=p

sents the start time of the second operation of
the job at the p-th position of the schedule. Thus
the constraints (11), together with the non-nega-
tivity constraints (12), correctly determine the
value of the variables Ip.

It is not difficult to modify the above integer
program in such a way that it can be used for
finding optimal schedules for instances of
2MFSP-S or 2MFSP-T(m). Completing the de-
tails is left to the reader.

5. Connection with mathematical systems theory

In this section we provide some background
material from mathematical systems theory and
we explain briefly how the flow shop problems
studied in this paper are related to the issue of
minimal factorization of rational matrix func-
tions. For a detailed discussion of this topic we
refer to Bart and Kroon [3,4]. For information
about the general problem of finding minimal
factorizations of rational matrix functions we re-
fer to Bart et al. [2].

Suppose we consider a system S that describes
the relation between a k-dimensional input vec-
tor u(t) and a k-dimensional output vector y(t)
(see Fig. 7). In many cases such an input-output
relation can be described by the following system
of linear equations:

~f(t) = A x (t) +Bu(t) ,

y (t) =Cx(t) + u (t) , (141

x (o) = o.

Here x(t) is an m-dimensional state vector, A is
an m × m matrix, B is an m × k matrix and C is
a k × m matrix. By considering the Laplace
transform of the system (14), one obtains the
relation

; (~) =w(~)~ (x)

Fig. 7. A linear system S with input u(t) and output y(t).

156 H. Bart, L.G. Kroon / European Journal of Operational Research 91 (1996) 144-159

where

W(A) = I~ + C (A I m - A) - ' B . (15)

The function W is called the transfer function of
the linear system S. Obviously, W is a rational
k x k matrix function with W(oo) = I~, the k-di-
mensional unit matrix. As a consequence, W can
also be written as

W (I~) = [qiJ(•) //PiJ(h)]i = l , . . . , k '

w h e r e pij(A) and qij(h) are complex polynomials
with deg Pig = deg q;i, and deg Pij > deg qij for
i ~ j (i , j = l k).

Conversely, if W is a rational k x k matrix
function with W(o0) = Ik, then it is possible to find
matrices A, B and C of appropriate sizes such
that (15) is a realization of W (ef. Bart et al. [2]).
The smallest possible m for which a given func-
tion W admits a realization (15) is called the
McMillan degree of W and is denoted by 8(W).
The realization (15) is called minimal if m =
6(W). If S is a linear system with transfer func-
tion W, then the McMillan degree 6(W) is a
measure of the complexity of the system S.

Minimal realizations are essentially unique: If
(15) is a minimal realization of W, then all mini-
mal realizations of W can be obtained by replac-
ing A, B and C by M A M -~, MB and CM -~
respectively, where M is an invertible m × m
matrix. This result is known as the state space
isomorphism theorem (cf. Bart et al. [2]).

Two linear systems S~ and S 2 are coupled in
series if the output of system S 1 is used as input
to system $2. (see Fig. 8). If S l and S 2 are
coupled in series and have transfer functions W l
and I4II, respectively, then W = W2W l where W is
the transfer function of the system S which is the
combination of the linear systems S 1 and S 2.

Conversely, if S is a linear system with transfer
function W, and W = W2W 1 is a factorization of
W, then the original system S can be split up into

u , (t) ~ S I F y , (t) = u 2 (t) ~ S 2 ~ y z (t)

Fig. 8. L i n e a r sys tems S I and S 2 tha t have been coup led in
series.

two linear subsystems S 1 and S 2 which are cou-
pled in series.

In general, one is interested in finding linear
subsystems with complexities satisfying a certain
minimality condition. The latter can be accom-
plished by looking for linear subsystems whose
interaction does not feature redundancies. This
corresponds to a so called minimal factorization.
Hence minimal factorization is an important issue
in mathematical systems theory.

We shall now make these things more precise.
The McMillan degree 6(W) has a sublogarithmic
property. That is, if W = W~ • • • W r is a factoriza-
tion of a rational matrix function W into r fac-
tors, then

~ (W) <<.~(W1) + . . . +6(Wr) . (16)

A minimal factorization is a factorization with
equality in (16). In a minimal factorization pole-
zero cancellation does not occur (cf. Bart et al.
[2]). There exist non-trivial rational matrix func-
tions that do not allow for any non-trivial minimal
factorization. A complete factorization of a ratio-
nal matrix function W is a minimal factorization
of W into 6(W) factors, each with McMillan
degree one.

Next, we will explain how the flow shop prob-
lems studied in this paper are related to the issue
of minimal factorization. To that end, we recall
the concept of the companion based matrix func-
tion (cf. Bart and Kroon [3,4]). A companion
based matrix function is a rational k x k matrix
functions admitting a minimal realization (15)
where the matrices A and A × = A - B C are first
companion matrices. Here an m x m matrix M is
a first companion matrix if it has the form i0 o] 0 0 0

M = .

0 0 1
- a o --a 1 --a 2 am_ !

Bart and Kroon [4] introduced the property of
being 'associated' for companion based matrix
functions and flow shop problems. Essentially,
this property means that a companion based ma-

tl. Bart, L.G. Kroon /European Journal of Operational Research 91 (1996) 144-159 157

trix function W is related in a simple way to an
instance J of 2MFSP, 2MFSP-M or 2MFSP-T(1),
and vice versa. The point here is that, if W and J
are associated, then the factorization properties
of W and the combinatorial aspects of J are
intimately connected.

Example 5. Let the 2 × 2 rational matrix function
W be defined by

[1 1 /p (A)] (17)
W (A) = 0 q (A) / p (A) "

where p and q arc monic polynomials with the
same positive degree. Then it can be verified that
W is a companion based matrix function (cf. Bart
and Kroon [3]). It should be noted that there also
exist companion based matrix functions with a
structure different from (17). Now the polynomi-
als p and q can be written as

p(,~) = (a - / 3 ,) " . . - (,~ - / 3 ,) ' ° ,

q (A) = (A - / 3 ,) ~' - . . (A - f l , ,) ~',

where /3~ /3,, are n different complex num-
bers and Ejsj =)2/i. In this case

a(W) = E s j = E t i.
J J

The concept of association is such that W is
associated with the instance J of 2MFSP with the
n jobs (sj, ti). Furthermore, W is associated with
the instance J of 2MFSP-M or 2MFSP-T(1) with
this same set of jobs, and with

D = iS(W) = E s j = E t j .
J J

As was stated already, if W and J are associ-
ated, then the factorization properties of W and
the combinatorial aspects of J are connected.
Details are given in the following three theorems
which have been established in [4].

Theorem 13. Let W be a companion based matrix
function, let J be an instance o f 2MFSP, and
assume W and J are associated. Then W admits
complete factorization i f and only i f

Cm,,x(J) ~< ¢~(W) + 1.

Since not all rational matrix functions admit
complete factorization, one may be interested in
minimal factorizations that are optimal in a more
general sense. For example, one may be inter-
ested in finding a minimal factorization

W = W , . . . W r, (18)

where max{cS(Wi)] i = 1 r} is minimum. This
problem is called the Max.Degree Problem. Note
that the number of factors r is not pre-specified.
The optimal value of the Max.Degree Problem is
noted by ~(W).

Theorem 14. Let W be a companion based matrix
function, let J be an instance of 2MFSP-M, and
assume W and J are associated. Then

~ (W) = m a x { y * (J) , 1}

= max{Cm~x(J) - iS(W), 1}.

It follows that ~(W) can be determined by the
application of Johnson's Rule. Note that Theo-
rem 14 is a generalization of Theorem 13. In-
deed, according to Theorem 14, 3~(W)= 1 if and
only if C m , x (J) - 6(W)~< 1.

Otherwise one may be interested in finding a
minimal factorization (18)with a maximum num-
ber of (non-trivial) factors. This problem is called
the Number Problem. The optimal value of the
Number Problem is denoted by ~(W).

Theorem 15. Let W be a companion based matrix
function, let J be an instance of 2MFSP-T(1), and
assume W and J are associated. Then

~,(W) + v¢~)(J) = 6(W).

Thus a minimal factorization of W with a
maximum number of factors corresponds to a
schedule for J with minimum total reduced infea-
sibility. In particular, ~(W) = 6(W) if and only if
v~])(J) = 0. Hence one moment of reflection shows
that Theorem 15 provides another generalization
of Theorem 13.

Example 6. We finish with an example illustrating
the Theorems 13, 14 and 15. This example also

158 H. Bart, L. G. Kroon / European Journal of Operational Research 91 (1996) 144-159

appears in [4]. Consider the rational matrix func-
tion W given by

[0] W(A) = (A + 1)4(A - 1) 6

A3 •

(a + l) (a - 1) 2

Example 5 demonstrates that W is a companion
based matrix function, since W has the form (17)
with

p (A) = (A + 1)4(A - 1)6A °,

q (h) = (A + 1)3(A - 1)4A 3.

Thus W is associated with the instance of J of
2MFSP with the jobs (3, 4), (4, 6) and (3, 0). This
instance is also considered in the Examples 1, 2
and 3 of this paper. By applying Johnson's Rule,
we obtain the optimal permutat ion schedule
(1, 2, 3) which is shown in Fig. 1. Since Cm~x(J) =
13 and 6 (W) = 10, Theorem 13 implies that W
does not admit complete factorization.

I f J is considered as an instance of 2MFSP-M
with D = 10, then y * (J) = 3. The optimal per-
mutation schedule for J is shown in Fig. 2. Theo-
rem 14 implies that 9 (W) = 3. Indeed, W admits
the minimal factorization

[rl(A)] I 1 c2 1 r 3 (h)

1 (A + 1)3 A + 1 (A - 1)3
a - 1

0 1 0 a + l 0 1 [4c c61 1 A - 1 1 A - 1 1 A - 1
x A A A '

0 h - 1 0 h - 1 0 a---~- 1

where r l (h) = - ~2(29A 2 + 68A + 41), c 2 =
4, r3(h) = ~2(29A 2 - 68A + 41), c 4 = - 4 , c 5 = 1
and c 6 = - 1 . Here the McMillan degree of the
first and the third factor equals 3, and the other
factors have McMillan degree 1. This minimal
factorization is optimal for the Max.Degree Prob-
lem.

Further, if J is considered as an instance of
2MFSP-T(1) with D = 10, then p(*~)(J) = 3. The

optimal permutat ion schedule for J is shown in
Fig. 3. Theorem 15 implies that k(W) = 10 - 3 =
7. Indeed, W admits the minimal factorization
with 7 factors

(a - l) 4

1

c3
1 A + I

X

0 1

c5
1 A + I

× A

0 A + I

C I

h - 1
A + I

A - 1 [" 1 A + I

A

0 A + I [c6
1 A + I

A

0 A + I

i c2 a - 1
A + I

A - 1

where r(A) = ~(99A 3 - 345A 2 + 411A - 169), c 1 =
699 381 1
-~", C 2 = - - ~ , C 3 = - - ~ - , C' 4 = 12 , c 5 = 3 a n d c 6

= 1. This minimal factorization is optimal for the
Number Problem.

In Examples 5 and 6 we started with a com-
panion based matrix function and we constructed
an instance of 2MFSP, 2MFSP-M or 2MFSP-T(1)
associated with it. From this construction it is
clear that it is also possible to go in the reverse
direction. In fact, it is clear how, given an in-
stance J with jobs (sj, t i) satisfying ~is~ =]Cjtj,
one can produce a companion based matrix func-
tion W associated with J. The requirement]~js~
= Y'vtj is not a serious restriction, since it can
always be met by the addition of a dummy job.
The conclusion is that the flow shop problems
considered in this paper and the corresponding
factorization problems are equivalent to a certain
extent.

References

[1] Baker, K.R., Introduction to Sequencing and Scheduling,
Wiley, New York, 1975.

[2] Bart, H., Gohberg, I., and Kaashoek, M.A., "Minimal
factorization of matrix and operator functions", in: Oper-

H. Bart, L. G. Kroon / European Journal of Operational Research 91 (1996) 144-159 159

ator Theory: Adt~ances and Applications, Vol 1.,
Birkh~iuser, Basel, 1979.

[3] Bart, H., and Kroon, L.G., "Companion based matrix
functions: Description and minimal factorization", Man-
agement Report Series 133, Rotterdam School of Man-
agement, Erasmus University Rotterdam, 1993. Forth-
coming in Linear Algebra and its Applications.

[4] Bart, H., and Kroon, L.G., "Factorization and job
scheduling: A connection via companion based matrix
functions", Management Report Series 178, Rotterdam
School of Management, Erasmus University Rotterdam,
1994. Forthcoming in Linear Algebra and its Applications.

[5] Conway, R.W., Maxwell, W.L., and Miller, L.W., Theory
of Scheduling, Addison-Wesley, Boston, MA, 1967.

[6] Dudek, R.A., Panwalkar, S.S., and Smith, M.L., "The
lessons of flowshop scheduling research", Operations Re-
search 40 (1992) 7-13.

[7] Garey, M.R., and Johnson, D.S., Computers and In-
tractability: A Guide to the Theory of NP-Completeness,
Freeman, San Francisco, CA, 1979.

[8] Johnson, S.M., "Optimal two- and three stage production
schedules with setup times included", Nacal Research
Logistics Quarterly 1/1 (1954).

[9] Mitten, L.G~, "Sequencing n jobs on two machines with
arbitrary time lags", Management Science 5/3 (1959).

[I0] Wagner, H.M., "An integer programming model for ma-
chine scheduling", Nm,al Research l.ogistics Quarterly 6
(1959) 131-140.

