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Abstract 

In this paper we consider a number of variants of the Two Machine Flow Shop Problem. In these variants the 
makespan is given and the problem is to find a schedule that meets this makespan, thereby minimizing the 
infeasibilities of the jobs in a prescribed sense: In the max-variant the maximum infeasibility of the jobs is to be 
minimized, whereas in the sum-variant the objective is to minimize the sum of the infeasibilities of the jobs. For both 
variants observations about the structure of the optimal schedules are presented. In particular, it is proved that every 
instance of these problems has an optimal permutation schedule. It is also shown that the max-variant can be solved 
by Johnson's Rule. For the sum-variant this is not the case: For solving this problem to optimality something quite 
different is necessary. Both variants are connected with factorization problems for certain rational matrix functions. 
The factorizations involved are optimal in some sense and generalize the notion of complete factorization. In this 
way a connection is established between job scheduling theory on one hand, and mathematical systems theory on the 
other. 

I. Introduction 

In this int roduct ion we give a description of  
the s tandard  Two Machine  Flow Shop Problem 
(2MFSP)  and the variants of  this problem that  
are studied in this paper .  For  more  details on 
2MFSP  we refer  to Baker  [1]. 

In 2MFSP  there  are two machines  available 
for processing n jobs. Every job consists o f  two 
operat ions.  However ,  one  of  the opera t ions  of  a 
job may have zero  processing time. The  first and 
second opera t ion  of  job j are called O] and 0 2. 
The  opera t ions  O] and 0 2 must  be processed on 

* Corresponding author. 

the first and the second machine,  respectively. 
Both machines  can be processing at most  one 
opera t ion  at the same time. Fur thermore ,  pro- 
cessing 0 2 can not  start before  processing Ojl 
has been  completed.  

The  processing times of  all opera t ions  are given 
and fixed. The  processing times of  O) and 0 2 
are denoted  by s i and tj. Hence  an instance J of  
2MFSP consists of  n tuples (sj, tj) specifying the 
processing times of  the operations.  Th roughou t  
this paper,  all processing times are assumed to be 
integers. This is not  a serious restriction. Wha t  it 
amounts  to is that  all processing times are ratio- 
nals and that  the time unit  is chosen appropri-  
ately. 

0377-2217/96/$15,00 © 1996 Elsevier Science B.V. All rights reserved 
SSD1 0377-2217(94)00340-8 



H. Bart, L.G. Kroon / European Journal of Operational Research 91 (1996) 144-159 145 

If J is an instance of 2MFSP and or is a 
feasible schedule for J, then the length of the 
time interval required for carrying out all jobs is 
called the makespan or the maximum completion 
time of tr and is denoted by Cmax(J , o-). In 2MFSP 
the objective is to find a feasible schedule with 
minimum makespan. The minimum makespan is 
represented by C ~ ( J ) .  Note that Bart and 
Kroon [4] use the notations /z(J, tr) and /~*(J) 
for the makespan and the minimum makespan of 
an instance of 2MFSP. In Section 2 we describe 
some properties of the optimal schedule for an 
instance of 2MFSP, together with Johnson's Rule 
that can be used to determine an optimal permu- 
tation schedule. 

Whereas in standard 2MFSP the objective is to 
find a feasible schedule with minimum makespan, 
in the variants of 2MFSP that are studied in this 
paper a deadline is given and the objective is to 
find a schedule that meets this deadline, thereby 
minimizing the infeasibilities of the jobs. Indeed, 
suppose we have an instance J of 2MFSP with n 
jobs (sj, tj). Furthermore,  let the deadline D be 
an integer satisfying 

m a x { ~ s j ,  ~. t j}<~D. (1) 
j = l  j = l  

In the remainder of this paper we use the nota- 
tion S = ZT=~sj and T =  ET=~tj. In the variants of 
2MFSP to be studied it is required that all jobs 
are completed in D time units. Obviously, if 
D < Cmax(J), then this can be achieved only by 
relaxation of the predecessor constraints. That  is, 
it is allowed that processing O~ already starts 
before processing O] has been completed. How- 
ever, the infeasibilities introduced in this way 
should be minimized in some sense. This can be 
made more precise in the following way. 

Suppose o- is a schedule for J such that all 
jobs are completed in D time units. Let S(O) 
and F(O) denote the start and finish time of 
operation O, if the processing time of operation 
O is positive. Furthermore,  if sj = 0 then S(O)) 
= F(Q')  = 0, and if tj = 0 then S(O 2) = r ( o  2) = 
D. Now the infeasibility of job j, denoted by Ij, is 
defined by 

I,=max{O, F ( O ) ) -  S (02)} .  (2) 

Note that Ij = 0, if j is a job with sj = 0 or tj = O. 
Now we consider the following variants of 2MFSP 
which differ from each other by their objectives. 

2MFSP-M: Minimizing the maximum infeasibility 
of the jobs. 

2MFSP-T: Minimizing the sum of the infeasibili- 
ties of the jobs. 

If tr is a schedule for an instance J of 2MFSP- 
M, then the maximum infeasibility of the jobs is 
denoted by y(J ,  tr) and the minimum value for 
3'(J, or) is represented by y *(J). Similarly, if g is 
a schedule for an instance J of 2MFSP-T, then 
the sum of the infeasibilities of the jobs is de- 
noted by ~,(J, or) and the minimum value for 
v(J, or) is written as u*(J) .  

Note that an operation on the first machine 
can be pushed backward in time and that an 
operation on the second machine can be pushed 
forward in time without increasing the infeasibil- 
ity of the corresponding job. Therefore  we will 
not consider schedules where the first machine 
contains operations outside the time interval 
(0, S) or the second machine contains operations 
outside the time interval (D - T, D): 

Rule 1. In all considered schedules for an instance 
of 2MFSP-M or 2MFSP-T the first machine is 
occupied during the time interval (0, S) and the 
second machine is occupied during the time interval 
(D - T, D). 

The variants 2MFSP-M and 2MFSP-T of 
2MFSP are studied in Sections 3 and 4 of this 
paper. There  it is demonstrated that both prob- 
lems always have an optimal permutation sched- 
ule. Along the way we also deal with some other 
variants of 2MFSP. 

All these variants of 2MFSP bear some anal- 
ogy to the variant that is studied by Mitten [9]. 
However, in the latter variant a maximum infeasi- 
bility of each job is prescribed and the objective is 
to find a schedule that minimizes the makespan. 
On the other hand, in our variants of 2MFSP a 
deadline is given and the objective is to minimize 
the infeasibilities of the jobs, thereby taking into 
account the given deadline. Mitten shows that his 
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variant can be solved by an extension of Johnson's 
Rule. 

Bart and Kroon [4] show that the mentioned 
variants of 2MFSP are related to the issue of 
minimal factorization of rational matrix functions 
from mathematical systems theory. Roughly 
speaking, a flow shop problem corresponds to a 
rational matrix function of a specific type. The 
correspondence is such that there exists an inti- 
mate relationship between the combinatorial as- 
pects of the flow shop problem on one hand and 
the factorization properties of the rational matrix 
function on the other. For a brief sketch of the 
state of affairs and an example, we refer to Sec- 
tion 5 of the present paper. 

2. The  two mach ine  flow shop problem 

It is well known that every instance of 2MFSP 
has an optimal non-preemptive schedule (cf. Baker 
[1]). That  is, once a machine has started process- 
ing an operation, it does not start processing 
another operation until the first operation has 
been completed. It is also well known that every 
instance of 2MFSP has an optimal permutation 
schedule. A schedule is a permutation schedule if 
it is non-preemptive and for all jobs i #:j with 
S i > 0, t i > 0, s />  0 and t />  0 the operation O/ is 
processed before the operation O) on the first 
machine if and only if the operation 0 2 is pro- 
cessed before the operation Of  on the second 
machine. Thus the order of the operations on the 
first machine is the same as the order of the 
operations on the second machine. 

These properties of 2MFSP can be proved in a 
straightforward way by applying exchange argu- 
ments and by using the fact that, given a feasible 
schedule, an operation on the first machine can 

be pushed backward in time without violating the 
predecessor constraints. Similarly, an operation 
on the second machine can be pushed forward in 
time without violating the predecessor con- 
straints. 

An optimal permutation schedule for an in- 
stance of 2MFSP can be obtained by applying 
Johnson's Rule (cf. Johnson [8]). In Johnson's 
Rule the list ( P l , . - . ,  Pzn) contains the processing 
times of al operations in non-decreasing order. 
This list is called the P(rocessing times)-list. Next, 
an optimal permutation schedule is created as 
follows. 

- Start with two empty lists. The first list is called 
the F(irst)-list and the second list is called the 
L(ast)-list. 
- DO W H ILE the P-list is non-empty: 

• IF the first number in the P-list equals to sj 
for some job j, T H E N  put job j at the rear 
of the F-list, ELSE put job j at the front of 
the L-list. 

• Delete sj and tj from the P-list. 
- Combine the F-list ( J l , . . . , Jp )  and the L-list 
(jp+~ . . . . .  in) into the optimal permutation sched- 
ule (Jl . . . .  ,Jp,  Jp+l . . . . .  Jn )" 

Initially sorting the processing times of the 
operations can be done in ~ ( n  log n) time. The 
remaining part of the algorithm takes G(n)  time. 
As a consequence, the running time of Johnson's 
Rule is C(n  log n). Therefore  2MFSP belongs to 
the class of easy problems that can be solved in 
polynomial time (cf. Garey and Johnson [7]). 

Example 1. This example considers the instance J 
of 2MFSP with jobs (3, 4), (4, 6) and (3, 0). Fig. 1 
shows the optimal permutation schedule (1, 2, 3) 
for J. This schedule was obtained by Johnson's 
Rule. Note that C~ax(J)= 13. 

I1 Iz  I~ I 

I1 Iz  I 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

Fig. 1. The optimal permutat ion schedule (1, 2, 3) for the instance J with jobs (3, 4), (4, 6) and (3, 0). 
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3. Analysis of the max-variant (2MFSP-M) 

In this section we study 2MFSP-M. It is shown 
that this problem is closely related to 2MFSP. In 
particular, we will prove Theorem 1, which im- 
plies that 2MFSP-M can be solved by Johnson's  
Rule. 

Theorem 1. If J is an instance of  2MFSP-M, then 

y * ( J )  = max{Cmax(J ) - D,  0}. 

Proof. Obviously, y* (J )=  0 if and only if D ~> 
Cmax(J). Hence in this case we are ready. 

Next, we consider the case D < Cmax(J). Sup- 
pose we have an optimal schedule for 2MFSP-M 
with objective value y*(J). Then a feasible 
schedule for 2MFSP is obtained by pushing all 
operations on the second machine y * ( J )  t ime 
units forward in time. Thus 

Cmax(J ) < D  + y * ( J ) ,  

or  

T * ( J )  ~ Cmax(g)  - D .  

Conversely, suppose we have an optimal 
schedule for 2MFSP with makespan Cmax(J). It 
may be assumed that the first machine is occu- 
pied during the time interval (0, S) and that the 
second machine is occupied during the time in- 
terval ( C m , x ( J ) - T ,  Cmax(J)). Thus a feasible 
schedule for 2MFSP-M with objective value not 
exceeding Cmax(J) - D is obtained by pushing all 
operations on the second machine C m a x ( J ) - D  
time units backward in time. As a consequence, 
y*(J)  <~ Cmax(J)- D. [] 

From the proof  of Theorem 1 it is obvious that 
an optimal schedule for 2MFSP-M corresponds 
to an optimal schedule for 2MFSP and vice versa. 
Thus every instance of 2MFSP-M has an optimal 
permutat ion schedule that can be obtained by 
Johnsons's  Rule. 

I1 Iz 13 I 

I1 Iz I 

0 1 2 3 4 5 6 7 8 9 10 

Fig. 2. The optimal permutation schedule (l, 2, 3) for the 
instance J with jobs (3, 4), (4, 6) and (3, 0). and with D = 10. 

permutat ion schedule or 1 = (1, 2, 3) for J. This 
schedule was obtained by Johnson's  Rule. Note 
that 11 = 3, 12 = 3 and 13 = 0, which gives y * ( J )  
= 3 .  

Corollary 2. Every instance of 2MFSP-M has an 
optimal permutation schedule with the property 
S(O 1) < S(O 2) and F(O}) <~ F(O 2) for all jobs j. 

Proof. As was noted already, there exists an opti- 
mal permutat ion schedule or * that can be ob- 
tained by Johnson's  Rule. Now let j be a job with 
s t < t r Then, according to Johnson's  Rule, all 
jobs i preceding job j in tr* have s i < t i. Let Jr 
denote the set of jobs preceding job j in or*. 
Then Rule 1 implies 

s(o ) = E s,< E 
i~Jj iEJy 

< o - r +  E t i : S ( O f f ) ,  
i~yj 

F ( O ) ) =  E s i d - s j <  E t i + t j  

< D - T +  E t i + t ~ = F ( 0 2 ) .  
iEJ, 

A similar argument  holds if s t > t r Finally, if 
s t = t j, then one of these arguments is valid, de- 
pending on whether  job j was put at the rear of 
the F-list or at the front of the L-list in the 
application of Johnson's  Rule. [] 

Example 2. This example considers the instance J 
of 2MFSP-M with jobs (3, 4), (4, 6) and (3, 0), 
and with D = 10. This instance was also consid- 
ered in Example 1. Fig. 2 shows the optimal 

4. Analysis of the sum-variant (2MFSP-T) 

In this section we study 2MFSP-T. Unfortu-  
nately, a similar result as for 2MFSP-M stating 
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12 I1 la I 

12 I* I 

0 1 2 3 4 5 6 7 8 9 10 

Fig. 3. The optimal permutat ion schedule (2, 1, 3) for the 
instance J with jobs (3, 4), (4, 6) and (3, 0), and with D = 10. 

that an optimal schedule can be found by John- 
son's Rule does not hold here. 

Example 3. This example considers the instance J 
of 2MFSP-T with jobs (3, 4), (4, 6) and (3, 0), and 
with D = 10. This instance was also considered in 
Example 2. Fig. 3 shows the optimal permutation 
schedule ~ 2 = ( 2 , 1 , 3 )  for J. Note that 11=1,  
•2=4 and / 3 = 0 ,  which gives u * ( J ) = 5 .  Note 
further that the schedule tr I = (1, 2, 3) shown in 
Fig. 2 has v(J, ¢r l) = 6. 

In spite of the fact that Johnson's Rule does 
not always produce an optimal schedule for an 
instance of 2MFSP-T, some information on the 
structure of an optimal schedule for such an 
instance can be derived. For example, it will be 
shown that every instance of 2MFSP-T has an 
optimal permutation schedule. 

This result is obtained by studying two further 
variants of 2MFSP, which are described now. Let  
J be an instance of 2MFSP-T, and let o- be a 
schedule for J. Then an integer time instant 
t ~ {0 . . . . .  D} is said to be skipped by job j if 

S ( 0 2 ) < t < F ( O ) ) .  (3) 

Furthermore,  the integer time instant t 
{0 . . . . .  D} is said to be skipped if it is skipped by 
at least one job. Note that the time instants 0 and 

D are not skipped. The total number of skipped 
time instants is denoted by vs(J, or). In the first 
further variant of 2MFSP, which is called 
2MFSP-S, the objective is to minimize vs(J, ~r). 
The minimum value for vs(J, o') is denoted by 
Vs*(J). 

The second further (set of) variant(s) of 2MFSP 
is called 2MFSP-T(m). This set is indexed by the 
positive integers m. In 2MFSP-T(m) an infeasi- 
bility of a job of 1/m time units is not counted. 
That  is, the m-reduced infeasibility of job j, which 
is denoted by I~ m), is given by 

I~ '~)= max{I t - i / m ,  0} 

=max{F(O1)  - S(O2) - l / m ,  O}. (4) 

The sum of the m-reduced infeasibilities of the 
jobs is denoted by U(m)(J, tr). In 2MFSP-T(m) 
the objective is to minimize v(m)(J, tr). The mini- 
mum value is denoted by V(m)(J). 

The variants 2MFSP-S and 2MFSP-T(m) are 
introduced because they are crucial in the proof 
that every instance of 2MFSP-T has an optimal 
permutation schedule. For example, Lemma 4 in 
the next section is an important auxiliary result in 
deriving this final result. This lemma holds for 
2MFSP-S and 2MFSP-T(m). Unfortunately, it 
does not hold for 2MFSP-T. 

Without loss of generality, Rule 1 is applied to 
2MFSP-S and to 2MFSP-T(m). Furthermore,  for 
2MFSP-S, 2MFSP-5(m) and 2MFSP-T we have 
the following result. 

Lemma 3. Every instance of  2MFSP-S. 2MFSP- 
T(m) or 2MFSP-T has an optimal non-preemptive 
schedule. 

I P ~  I . . . . . . . . . .  I p2 I 

IJ 

[ . . . . . . . . . .  [ P '  I Pz I 

[J [ 
Fig. 4. The transformation from o- I to o-2- 
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Proof. Suppose we have an optimal preemptive 
schedule oq where operat ion O) is split into two 
parts Px and P2. Then a new schedule 0.2 is 
obtained if the parts pl  and P2 are combined by 
pushing Pl forward in time and by pushing all 
operations between Pl and P2 backward in time. 
The transformation from 0-1 to 0- 2 is illustrated in 
Fig. 4. 

Obviously, the result of this transformation is 
that the number  of preemptions on the first ma- 
chine decreases, while neither the number  of 
skipped time instants, nor the (reduced) infeasi- 
bility of any job increases. A similar transforma- 
tion decreases the number  of preemptions on the 
second machine. By repeating such transforma- 
tions as often as necessary, one finally obtains an 
optimal non-preemptive schedule. [] 

If ~r is a non-preemptive schedule, then Rule 
1, together with the fact that all processing times 
and the deadline D are integers, imply that S(O) 
and F(O) are integers for all operations O. This 
implies that for each job j the number  of integer 
time instants t that are skipped by job j equals 
I~ 1). As a consequence, 

Us(J, o') <~ ~ #1) = u,,)(J, o'). 
j-1 

Note that strict inequality can occur if a t ime 
instant is skipped by two or more jobs. 

4.1. Analysis of the skip-variant (2MFSP-S) 

In this subsection it is demonstra ted that every 
instance of 2MFSP-S has an optimal permutat ion 

schedule. This result is used in subsequent sec- 
tions to prove a similar result for 2MFSP-T(m) 
and 2MFSP-T. 

Lemma 4. Every optimal schedule for an instance 
of 2MFSP-S has the property S(O)) <~ S(O~) and 
F(O)) <~ F(Of) for all jobs j. 

Proof. Suppose we have an optimal schedule or. 
Let j be a job with S(Of) < S(O)) in ~. If  Oj I or 
O / has been split into several parts, then the 
method described in Lemma 3 can be used to 
transform or into another  optimal schedule ¢r l 
with Us(J , Or 1) ~< Us(J, tr) where job j is processed 
in a non-preemptive way. Note that S(O 2) < 
S(O)) in tr I as well. All integer time instants t 
with S(O f )  < t < F(O)) are skipped by job j. Fur- 
ther, let the integer time instants % and ~'1 be 
defined by: 

% = m a x ( t  It <~s(of) , t  is integer 

and not skipped) ,  

~l=min{tlt>>.F(O)),t is integer 

and not skipped) .  

The time instants T 0 and ~'1 are well-defined, 
since 0 and D are not skipped. Furthermore,  % 
and z 1 are not skipped, but all integer time 
instants t with z 0 < t < 7~ are. Note that 

'To~S(O?) < S ( O ) )  < f ( O ) ) ~  T 1 • 

However, it may happen that ~'t < F(Of). Thus 
let qj be the processing time of the part  of Oj 2 

. . . . . .  I i  I ...... 

I I 
% %+s j  % 

JJ I . . . . . . .  I ...... 1 

I J  I ***** I J  I 

F i g .  5.  T h e  t r a n s f o r m a t i o n  f r o m  o- t t o  o- 2. 
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between z o and z I (i.e. qj = min{tj, '7"1 - -  5 ( O 2 ) } ) -  

The cases sj ~< qj and sj > qj are considered sepa- 
rately. 

Case 1. sj <~ qi" Since % < TO + Sj < Zl, the time 
instant T 0 + Sj is skipped in 0-1. Now 0-1 is trans- 
formed into a new schedule 0-2 by pushing O1.1 
and the part  of Of  between ~'0 and ~-~ backward 
in time, such that 01 and 02  start at %. At the 
same time, all parts of operat ions of other jobs 
between ~'0 and z I are pushed forward in t ime as 
far as is necessary to accomplish this. This trans- 
formation is illustrated in Fig. 5. 

Now sj ~< qj implies that the time instant z 0 + sj 
is not skipped in 0- 2. Indeed, suppose job i is such 
that 

S(O if) < r 0 +sj < F ( O  1) 

in 0- 2. Then,  obviously, i =~ j, which implies 

S(Oi ~) < ~0 < ~0 + s, < F (O~)  

in 0-2. However,  o" 2 differs from 0-1 only between 
r 0 and rl .  Thus 

S(02)  < TO < F ( O / l )  

in 0-1, which is a contradiction, because the time 
instant T 0 is not skipped in o- 1. It can be con- 
cluded that the time instant TO + Sj is not skipped 
in 0-2. 

Case 2. Sy > qj. Note that in this case qj = tj 
and F(O 2) < Zr Since Zo < ~'1 - tj < ~'1, the t ime 
instant ~ '1 - ty  is skipped in 0-r Now 0-~ is trans- 
formed into a new schedule 0-2 by pushing O 1 
and 02  forward in time, such that 01 and GI 2 
finish at T1- At the same time, all parts of opera-  
tions of other jobs between z 0 and ~-~ are pushed 

backward in time as far as is necessary to accom- 
plish this. Now it can be shown in a similar way as 
in Case 1 that the time instant z ~ - t j  is not 
skipped in 0-2. 

Hence both in Case 1 and in Case 2 the 
schedule 0-2 contains an integer time instant t 
with 70 < t < ~-~ that is not skipped. Since in 0-~ 
all integer time instants t with ~'0 < t < ~t are 
skipped, and 0-1 and 0-2 differ from each other 
only between T O and ~'1, it follows that Vs(J, 0-2) 
< vs(J, 0-1). Thus an optimal schedule does not 
contain any job j with S(O 2) < S(01). In a simi- 
lar way it can be shown that an optimal schedule 
also does not contain any job j with F(O/)< 
F(O)). This completes the proof  of Lemma 4. 
[] 

As we noted already, Lemma 4 is crucial in the 
proof  that every instance of 2MFSP-T has an 
optimal permutat ion schedule. Unfortunately, the 
result of Lemma 4 does not hold for 2MFSP-T 
directly. The latter is illustrated by the instance 
of 2MFSP-T with jobs (1, 1) and (1, 1), and with 
D = 2. For this instance all non-preemptive 
schedules are optimal, but only the permutat ion 
schedules satisfy the conclusion of Lemma 4. 

Lemma 5. Every instance of 2MFSP-S has an 
optimal permutation schedule. 

Proof. Suppose 0-1 is an optimal schedule. It may 
be assumed that 0-1 is non-preemptive.  Further- 
more,  0-1 has the property S(O 1) <~ S(O 2) and 
F(O)) <~ F(O 2) for all jobs j. 

It IJ I 

I J  I .......... I t I 

I~ IJ I 

I i I J  I . . . . . . . . . .  

Fig. 6. The transformation from 0 1 to cr 2. 



H. Bart, L. G. Kroon / European Journal of Operational Research 91 (1996) 144-159 151 

Now let jobs i and j be such that O ] is 
followed directly by O) on the first machine, 
while O f is followed by O/2 on the second ma- 
chine, possibly with some operations between 
them. Note that 

F(Oi  l) = S(Oy') <...S(02) < S ( O ? ) .  

Thus the number  of time instants skipped by job i 
equals zero. Next, a new schedule ¢r 2 is created 
by moving operat ion 02  to the position of 02,  
while at the same time operat ion O~, together 
with all possible operations between 02  and 0/2 
are pushed t i t ime units forward in time. The 
transformation from ¢r~ to or 2 is illustrated in Fig. 
6. 

In this way the number  of time instants skipped 
by job i remains zero and, obviously, us(J, o" 2) ~< 
us(J , ¢rl). Now the order of the operations O] 
and O) on the fist machine is the same as the 
order  of the operations 0/2 and 02  on the second 
machine. By applying similar steps as often as 
necessary, one obtains an optimal permutat ion 
schedule. [] 

4.2. Analysis of the reduced-sum-variant (2MFSP- 
T(m)) 

In this subsection it is shown that every in- 
stance of 2MFSP-T(m)  has an optimal permuta-  
tion schedule. This result is used in a subsequent 
subsection to prove a similar result for 2MFSP-T. 
It is derived by first establishing a connection 
between 2MFSP-S and 2MFSP-T(1). Indeed, if a 
non-preemptive schedule o- has the property 
S(O))<~S(O 2) or F(O))<~F(O 2) for all jobs j, 
then every skipped time instant t is skipped by 
exactly one job, as can be seen easily. This result 
implies us(J, or) = uo)(J , ~) for such schedules o-. 

Lemma 6. A schedule ~r * is an optimal schedule 
for 2MFSP-S if and only if it is an optimal schedule 
for 2MFSP-T(1). 

Proof. Suppose tr * is an optimal schedule for 
2MFSP-S. Then S(O 1) < S(O f )  and F(O)) < 
F(O f )  for all jobs j. Thus us*(J)=us(J, t r * ) =  
u(1)(J, tr * ), as was noted above. Furthermore,  for 

all schedules ~r we have the following (in)equali- 
ties: 

= -< -< 

(5) 

As a consequence, or * is optimal for 2 MFSP-T(1) 
as well. 

Conversely, suppose ~ * is an optimal sched- 
ule for 2MFSP-T(1). Let o-j" be an optimal 
schedule for 2MFSP-S. Then o-1" is optimal for 
2MFSP-T(1), according to the first part  of this 
proof. Furthermore,  ~rl* has the property S(O]) 
<~S(O 2) and F(O])<~F(O~) for all jobs j. Thus 
we have the following (in)equalities: 

Vs(J , o ' * )  < l~(l)(J , o r * )  = b'( l )(J,  (7"1 * ) = / ) s ( J ,  o ' ]* )  

( 6 )  

It follows that tr * is optimal for 2MFSP-S as 
well. [] 

Corollary 7. Every instance of 2MFSP-T(1) has 
an optimal permutation schedule. Furthermore, ev- 
ery optimal schedule has the property 

S (0 ) )<~S(02)  and F(OI)<~F(02)  

for all jobs j. 
By using a different time unit t' = rot, a similar 

result can be deduced for 2MFSP-T(m).  Thus 
every instance of 2MFSP-T(m) has an optimal 
permutat ion schedule. Also, every optimal sched- 
ule has the property S(O)) < S(O 2) and F(O)) <~ 
F(O 2) for all jobs j. 

4.3. Final analysis of the sum-variant (2MFSP-T) 

In this paragraph it is demonstrated that every 
instance of 2MFSP-T has an optimal permutat ion 
schedule. This is achieved by considering 2MFSP- 
T as the limit of 2MFSP-T(m) in some sense. In 
particular, we will prove the following lemma. 

Lemma 8. Let J be an instance of 2MFSP-T(m) 
and 2MFSP-T with n jobs where m > n. Then the 
following holds: I f  or * is an optimal schedule for 
2MFSP-T(m), then or * is an optimal schedule for 
2MFSP-T as well. 
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Proof. Suppose 0- * is an optimal schedule for 
2MFSP-T(m), but not an optimal schedule for 
2MFSP-T. Let ~rl* be an optimal schedule for 
2MFSP-T. Then v(J, 0"1" ) ~< v(J, 0" * ) - 1, be- 
cause v(J, 0-1") and v(J, or*) are integers. This 
implies the following inequalities: 

I"(m)(J, 0-1") .~< l . , (J ,  0-1") ~</~(J,  o v* ) - 1 

(l)(m)( J ,  0-* ) "Jv n / m )  - 1 

< 1,'(m)(J , 0-* ) .  (7 )  

However, these inequalities imply that o-* is not 
optimal for 2MFSP-T(m). This contradiction 
shows that 0- * is optimal for 2MFSP-T as well. 
[] 

Corollary 9. Every instance of 2MFSP-T has an 
optimal permutation schedule with the property 

S(O])<~S(O 2) and F(OI)<<.F(Of) 

for all jobs j. 

Note the subtle difference between the Corol- 
laries 7 and 9. Indeed, the earlier mentioned 
instance of 2MFSP-T with jobs (1, 1) and (1, 1), 
and with D = 2 has an optimal schedule that 
does not have the property S(O))<~ S(O 2) and 
F(O]) <~ F(O 2) for all jobs j. 

The foregoing reveals a close connection be- 
tween 2MFSP-T and 2MFSP-T(m). In fact, if J is 
an instance of 2MFSP-T(m) where m > n, then 
there exists a single permutation schedule 0" with 
v(J, 0") = v *(J) and V~,n)(J, 0") = v~*~)(J). How- 
ever, if m ~< n, then such a permutation schedule 
need not exist, as is illustrated in Example 4. 

Example 4. This example considers the instance J 
of 2MFSP-T(1) and 2MFSP-T with jobs (2, 3), 
(2, 3) and (4, 6), and with D = 12. Note that two 
jobs are identical. As a consequence, only three 
essentially different permutation schedules exist, 
namely 0-1= (1, 2, 3), 0, 2 = ( 1 , 3 , 2 ) ,  and 0, 3=  
(3, 1, 2). It is easy to see that v(J, ~rl)=5,  
v(J, 0-2)= 5, and v(J, 0-3)= 4. Furthermore,  
V(l)(J, 0-1) = 2, v(1)(J , 0"2)  = 3, and vO)(J, 0"3) = 3. 

Thus, v * ( J ) =  4 and v~])(J)= 2. However, a sin- 
gle permutation schedule ~r with v(J, 0-) = 4 and 
vo)(J , or)= 2 does not exist. This example will 
also play a role in the Remark after Lemma 10. 

4.4. Finding optimal schedules 

Because of the connection of 2MFSP-S, 
2MFSP-T(m) and 2MFSP-T with the problem of 
finding minimal factorizations of certain rational 
matrix functions (cf. Section 5 and Bart and Kroon 
[4]), we are interested in optimal instead of ap- 
proximate schedules for instances of 2MFSP-S, 
2MFSP-T(m) and 2MFSP-T. Although the latter 
problems differ from 2MFSP-M only by their 
objectives, we have not yet been able to develop 
polynomial exact algorithms for them. However, 
it is not difficult to see that one algorithm will be 
sufficient, because an exact algorithm for any of 
these problems can be used for all other prob- 
lems as well. This is expressed in Lemma 10. 

Lemma 10. An exact algorithm for any of the 
problems 2MFSP-S, 2MFSP-T(m) or 2MFSP-T 
can be used for all other problems as well. 

Lemma 10 implies that 2MFSP-S, 2MFSP- 
T(m) and 2MFSP-T have the same computa- 
tional complexity (cf. Garey and Johnson [7]). 

Proof. Lemma 6 shows that an exact algorithm A 
for 2MFSP-S is also exact for 2MFSP-T(1) and 
vice versa. Furthermore,  by choosing a different 
time unit t '=mt ,  an exact algorithm A for 
2MFSP-T(1) can be used for 2MFSP-T(m) as 
well. 

Next, let A be an exact algorithm for 2MFSP- 
T(m) and let J be an instance of 2MFSP-T with 
n jobs. Select a positive integer k such that 
km > n. By choosing a different time unit t' = kt, 
the algorithm A can be used to find an optimal 
schedule o- for 2MFSP-T(km). Now Lemma 8 
implies that o- is optimal for 2MFSP-T as well. 

Finally, let A be an exact algorithm for 
2MFSP-T and let J be an instance of 2MFSP-T(1) 
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with deadline D. Then an optimal schedule for 
2MFSP-T(1) can be found by applying the algo- 
rithm A to the instance J '  of 2MFSP-T, where 
J '  = J u { ( 0 ,  1),(1, 0)} with deadline D +  1. In- 
deed, without loss of generality, the additional 
jobs (0, 1) and (1, 0) of J '  are the first and the 
last jobs in the resulting permutation schedule. 
[] 

Remark. We shall now present an explanation 
why an exact algorithm for 2MFSP-S, 2MFSP- 
T(m) or 2MFSP-T should be essentially different 
from Johnson's Rule. First note that Johnson's 
Rule can be made unambiguous by ordering the 
processing times of the jobs in the P-list in non- 
decreasing order, taking into account the follow- 
ing rules: 

• If s i = tj, then s i precedes tj in the P-list. 
• If s i = sj, then s i precedes s t in the P-list if 

and only if i < j. 
• If t i = ti, then t i precedes tj in the P-list if 

and only if i <j .  
Hence Johnson's Rule uses information on the 

ordering of the processing times of the jobs only. 
Thus if J and J' are instances of 2MFSP with 
'isomorphic' P-lists, then there exists a single 
permutation schedule o- such that Cmax(J, o r )=  
Cmax(J) and Cmax(J' , o') = Cmax(J'). In particular, 
the optimal permutation schedule is addition in- 
variant and multiplication invariant That  is, the 
optimal permutation schedule does not change if 
all processing times are increased with a fixed 
number of time units or if all processing times are 
multiplied by a fixed factor. 

This is in contrast with 2MFSP-S, 2MFSP-T(m) 
and 2MFSP-T. Indeed, although an optimal per- 
mutation schedule for an instance of 2MFSP-T is 
multiplication invariant, it need not be addition 
invariant. The latter is illustrated by the instance 
J of 2MFSP-T with jobs (1, 3) and (2, 5), and with 
D = 8. For J, the unique optimal permutation 
schedule is o-l = (1, 2) with u(J,  o-l) = u *(J)  = 1. 
The permuta t ion  schedule o-2 = (2, 1) has 
v(J,  o-z) = 2. However, if all processing times are 
increased with 5 time units, then one obtains the 
instance J '  with jobs (6, 8) and (7, 10) and with 
D = 18. For J ' ,  the optimal permutation schedule 

is o-z = (2, 1) with u(J' ,  o-2) = u * ( J ' )  = 10. The 
permutation schedule o- 1 = (1, 2) has u(J' ,  or l) = 
11. Similarly, an optimal permutation schedule 
for an instance of 2MFSP-S or 2MFSP-T(m) need 
not be addition invariant. 

Furthermore,  an optimal permutation sched- 
ule for an instance of 2MFSP-T(m) need not be 
multiplication invariant. Indeed, let J be an in- 
stance of 2MFSP-T(m) with n jobs. If an optimal 
permutation schedule for J would be multiplica- 
tion invariant, then this would imply the existence 
of a single permutation schedule o- such that 
p(m)(J, o-)= p(~)(J) for all integers m. Further- 
more, Lemma 8 would imply that, in particular, 
u(J, o-) = u *(J)  as well. However, in Example 4 
it was shown that for the instance J with jobs 
(2, 3), (2, 3) and (4, 6), and with D = 12, a single 
permutation schedule o- with u(i)(J, or)= u~])(J) 
and u(J, o-)= u * ( J )  does not exist. It follows 
that an optimal permutation schedule for an in- 
stance of 2MFSP-T(m) need not be multiplica- 
tion invariant. Similar remarks are valid for 
2MFSP-S as well (cf. Lemma 6). 

It can be concluded that an exact algorithm for 
2MFSP-S, 2MFSP-T(m) or 2MFSP-T uses more 
information than just the ordering of the process- 
ing times of the jobs, and hence in this sense it 
has to be essentially different from Johnson's 
Rule. [] 

Lemma 11 expresses one more property of 
2MFSP-S, 2MFSP-T(m) and 2MFSP-T. This 
property allows one to decompose an instance 
into instances of smaller size. 

Lemma 11. Every instance o f  2MFSP-S ,  2MFSP-  
T ( m )  or 2 M F S P - T  has an optimal permutation 
schedule with the following property: The list 
(Jl . . . . .  Jn) representing the optimal permutation 
schedule consists o f  three sublists, namely. 

• (Jl . . . . .  Jn,) containing jobs with sj < tj, 
• (J,,~+l . . . . .  jn2 ) containing jobs with s j = t j ,  

and 
• (J,2+ 1 . . . . .  j , )  containing jobs with s i > tj. 

The jobs with s t = tj can be arranged in any order. 
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Proof. Suppose tr * is an optimal permutation 
schedule for an instance of 2MFSP-S, 2MFSP- 
T(m) or 2MFSP-T. Let jobs i and j be consecu- 
tive jobs in tr* with s i>l t  i and sj~<t i. If one 
interchanges the order of i and j, then Of is 
pushed backward in time, but OJ is pushed back- 
ward in time at least as much, since s i >~ ti. Thus 
neither the number of time instants skipped by 
job j nor the (reduced) infeasibility of job j 
increases. A similar conclusion holds for job i. 
Furthermore, the other jobs are unaffected by 
interchanging the jobs i and j. By applying simi- 
lar interchanges as often as necessary, one ob- 
tains an optimal permutation schedule with the 
desired property. [] 

According to Lemma 11, jobs j with sj --- t i do 
not influence the structure of the optimal sched- 
ule. As a consequence, the problem of finding an 
optimal schedule can be decomposed into two 
subproblems: an instance J1 corresponding to the 
jobs with sj < t i and an instance J2 corresponding 
to the jobs with sj > tj. The deadline D~ to be 
used in Jx equals 

D -  Y'. t i 
{jlsi>~t j} 

and the deadline D 2 to be used in J2 equals 

D -  E s j  
{j I st ~ t/) 

Without loss o f  generality, s~ < tj for  all jobs j in 
the remaining part  o f  this paper.  

In Lemma 12 we show that some instances of 
2MFSP-T can be solved by sorting the jobs ac- 
cording to non-increasing values of tj - sj (cf. the 
Remark after Lemma 10). 

L e m m a  12. I f  J is an instance o f  2 M F S P - T  with 
sj < t i for  all jobs j ,  D = T, and 

( t j - sy)~< min s~, 
j = l  j = l  . . . . .  n 

then an optimal permutat ion schedule is obtained 
by sorting the jobs according to non-increasing 
values o f  tj - s 1. 

Analogous results hold for 2MFSP-S and 
2MFSP-T(m) as well. Note that the condition 

( t / - s j ) ~ <  min s/ 
j = l  j = l  . . . . .  n 

means that the differences in the processing times 
are small in comparison with the processing times 
themselves. 

P r o o f .  If or is a permutation schedule for J, then 
D = T, sj < t/ for all jobs j, and the inequality 
~ = i ( t j  - s/) <~ min/= 1 ..... , s  i imply S ( O  2)  <~ F ( O ) )  
for all jobs j. Indeed if Jj denotes the set of jobs 
preceding job j, then 

F ( O / ) - S ( O  2 )  

( E Si-FSj) - Eti~---Sj - E ( t i - - S i )  
\ i~Jj i~J iEJy 

>/Sj-- ~ ( t i - - S i )  >~0. 
i-1 

As a consequence, lj = F(Oj  ~) - S ( O f )  for all jobs 
j. Now we consider two consecutive jobs i and j 
where job i precedes job j. We set A l = S(Oi 1) 
and A 2 = S ( 0 2 ) .  Then we find 

I i q- lj = ( A  1 q- s i - A 2 )  

+ ( A ~  + si + s s - A 2  - t i )  

= 2 ( A  1 - A z )  + (s  i+sy )  - ( t  i -  si). 

Note that the terms 2 ( A ~ - A 2 )  and s~+sj  are 
independent of the order of the jobs i and j. 
Hence if (t i - s  i) > ( t j -  ss), then job i precedes 
job j in an optimal schedule. If (t i - s~) = (t  i - sj), 
then jobs i and j can be arranged in any order. 
[] 

Some preliminary numerical experiments have 
revealed that, also in the general case, sorting the 
jobs according to non-increasing values of t / - s  i 
produces schedules that are nearly optimal. This 
topic is a subject for further research. 

As long as we have not been able to find a 
polynomial algorithm for solving all instances of 



14. Bart, L. G. Kroon / European Journal of Operational Research 91 (1996) 144-159 155 

2MFSP-S, 2MFSP-T(m) and 2MFSP-T to opti- 
mality, we have to be satisfied with an integer 
program describing these problems. This integer 
program can be solved by the application of stan- 
dard branch and bound techniques. Here  we will 
describe the integer program that can be used for 
solving 2MFSP-T. It bears some similarity to the 
integer program described by Wagner [10]. The 
integer program contains the decision variables 
X,,  ( j =  l . . . . .  n; p =  l . . . . .  n) and Ip ( p =  
1 . . . . .  n) which are defined as follows: 
X~R = 1 if job j is carried out at the p-th position 

of the permutation schedule; 0 otherwise, 
Ip = The infeasibility of the job at the p-th 

position of the permutation schedule. 
Note that the decision variables reflect the fact 

that we can restrict ourselves to permutation 
schedules. Now the objective and the constraints 
of the integer program are described as follows. 

min ~ 11, (8) 
p - 1  

subject to 

~ Xjp= 1, j = l  . . . . .  n, (9) 
p I 

~ x, ,  = 1, p = l  .. . . .  n, (10) 
j - I  

LSj  ~ Xjq- ( O -  ~ lj ~ gjq) >~Ip, 
j = l  q ~ l  j = l  q=p 
p = l  . . . . .  n, (11) 

lp>~O, p = l  . . . . .  n, (12) 

Xjp~{O,  1}, j = l  . . . .  ,n ,  p = l  . . . . .  n .  

(13/ 

The objective (8) specifies that one is inter- 
ested in minimizing the total infeasibility of the 
schedule. The assignment constraints (9) and (101 
guarantee that every job occupies exactly one 
position in the schedule and that every position in 
the schedule is occupied by exactly one job. In 
the constraints (11) the expression Y~'= 1sj ]~_~P= iXjq 
represents the completion time of the first opera- 
tion of the job at the p-th position of the sched- 
ule. The expression D - ~.n t ~" Xjq repre- ~'j= 1 j~"q=p 

sents the start time of the second operation of 
the job at the p-th position of the schedule. Thus 
the constraints (11), together with the non-nega- 
tivity constraints (12), correctly determine the 
value of the variables Ip. 

It is not difficult to modify the above integer 
program in such a way that it can be used for 
finding optimal schedules for instances of 
2MFSP-S or 2MFSP-T(m). Completing the de- 
tails is left to the reader. 

5. Connection with mathematical systems theory 

In this section we provide some background 
material from mathematical systems theory and 
we explain briefly how the flow shop problems 
studied in this paper are related to the issue of 
minimal factorization of rational matrix func- 
tions. For a detailed discussion of this topic we 
refer to Bart and Kroon [3,4]. For information 
about the general problem of finding minimal 
factorizations of rational matrix functions we re- 
fer to Bart et al. [2]. 

Suppose we consider a system S that describes 
the relation between a k-dimensional input vec- 
tor u(t) and a k-dimensional output vector y(t) 
(see Fig. 7). In many cases such an input-output  
relation can be described by the following system 
of linear equations: 

~f(t) = A x ( t )  +Bu( t ) ,  

y ( t )  =Cx( t )  + u ( t ) ,  (141 

x ( o )  = o. 

Here x(t) is an m-dimensional state vector, A is 
an m × m matrix, B is an m × k matrix and C is 
a k × m  matrix. By considering the Laplace 
transform of the system (14), one obtains the 
relation 

; (~)  =w(~)~ (x )  

Fig. 7. A linear system S with input u(t) and output  y(t).  
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where 

W(A)  = I~ + C ( A I  m - A ) - ' B .  (15) 

The function W is called the transfer function of 
the linear system S. Obviously, W is a rational 
k x k matrix function with W(oo) = I~, the k-di- 
mensional unit matrix. As a consequence, W can 
also be written as 

W (  I~ ) = [ qiJ( • ) //PiJ( h ) ]i = l , . . . , k '  

w h e r e  pij(A) and qij(h) are complex polynomials 
with deg Pig = deg q;i, and deg Pij > deg qij for 
i ~ j ( i , j = l  . . . . .  k). 

Conversely, if W is a rational k x k matrix 
function with W(o0) = Ik, then it is possible to find 
matrices A, B and C of appropriate  sizes such 
that (15) is a realization of W (ef. Bart et al. [2]). 
The smallest possible m for which a given func- 
tion W admits a realization (15) is called the 
McMillan degree of W and is denoted by 8(W). 
The realization (15) is called minimal if m = 
6(W).  If  S is a linear system with transfer func- 
tion W, then the McMillan degree 6(W)  is a 
measure of the complexity of the system S. 

Minimal realizations are essentially unique: If  
(15) is a minimal realization of W, then all mini- 
mal realizations of W can be obtained by replac- 
ing A, B and C by M A M  -~, MB and CM -~ 
respectively, where M is an invertible m × m 
matrix. This result is known as the state space 
isomorphism theorem (cf. Bart et al. [2]). 

Two linear systems S~ and S 2 are coupled in 
series if the output of system S 1 is used as input 
to system $2. (see Fig. 8). If  S l and S 2 are 
coupled in series and have transfer functions W l 
and I4II, respectively, then W = W2W l where W is 
the transfer function of the system S which is the 
combination of the linear systems S 1 and S 2. 

Conversely, if S is a linear system with transfer 
function W, and W =  W2W 1 is a factorization of 
W, then the original system S can be split up into 

u , ( t ) ~  S I F y , ( t ) = u 2 ( t ) ~  S 2 ~ y z ( t )  

Fig. 8. L i n e a r  sys tems S I and  S 2 tha t  have  been  coup led  in 
series.  

two linear subsystems S 1 and S 2 which are cou- 
pled in series. 

In general, one is interested in finding linear 
subsystems with complexities satisfying a certain 
minimality condition. The latter can be accom- 
plished by looking for linear subsystems whose 
interaction does not feature redundancies. This 
corresponds to a so called minimal factorization. 
Hence minimal factorization is an important issue 
in mathematical  systems theory. 

We shall now make these things more precise. 
The McMillan degree 6(W)  has a sublogarithmic 
property. That  is, if W = W~ • • • W r is a factoriza- 
tion of a rational matrix function W into r fac- 
tors, then 

~ ( W )  <<.~(W1) + . . .  +6(Wr) .  (16) 

A minimal factorization is a factorization with 
equality in (16). In a minimal factorization pole- 
zero cancellation does not occur (cf. Bart et al. 
[2]). There  exist non-trivial rational matrix func- 
tions that do not allow for any non-trivial minimal 
factorization. A complete factorization of a ratio- 
nal matrix function W is a minimal factorization 
of W into 6(W) factors, each with McMillan 
degree one. 

Next, we will explain how the flow shop prob- 
lems studied in this paper  are related to the issue 
of minimal factorization. To that end, we recall 
the concept of the companion based matrix func- 
tion (cf. Bart and Kroon [3,4]). A companion 
based matrix function is a rational k x k matrix 
functions admitting a minimal realization (15) 
where the matrices A and A × = A  - B C  are first 
companion matrices. Here  an m x m matrix M is 
a first companion matrix if it has the form i0 o] 0 0 0 

M = . 

0 0 1 
- a  o --a 1 --a 2 . . . .  am_ ! 

Bart and Kroon [4] introduced the property of 
being 'associated'  for companion based matrix 
functions and flow shop problems. Essentially, 
this property means that a companion based ma- 
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trix function W is related in a simple way to an 
instance J of 2MFSP, 2MFSP-M or 2MFSP-T(1), 
and vice versa. The point here is that, if W and J 
are associated, then the factorization properties 
of W and the combinatorial aspects of J are 
intimately connected. 

Example 5. Let the 2 × 2 rational matrix function 
W be defined by 

[1 1 /p (A)  ] (17) 
W ( A ) =  0 q ( A ) / p ( A )  " 

where p and q arc monic polynomials with the 
same positive degree. Then it can be verified that 
W is a companion based matrix function (cf. Bart 
and Kroon [3]). It should be noted that there also 
exist companion based matrix functions with a 
structure different from (17). Now the polynomi- 
als p and q can be written as 

p(,~) = (a  - / 3 , ) "  . . -  (,~ - / 3 , ) ' ° ,  

q ( A ) = ( A - / 3 , )  ~' - . .  (A - f l , , )  ~', 

where /3~ . . . . .  /3,, are n different complex num- 
bers and Ejsj = )2/i. In this case 

a(W) = E s j =  E t  i. 
J J 

The concept of association is such that W is 
associated with the instance J of 2MFSP with the 
n jobs (sj, ti). Furthermore, W is associated with 
the instance J of 2MFSP-M or 2MFSP-T(1) with 
this same set of jobs, and with 

D = iS(W) = E s j =  E t j .  
J J 

As was stated already, if W and J are associ- 
ated, then the factorization properties of W and 
the combinatorial aspects of J are connected. 
Details are given in the following three theorems 
which have been established in [4]. 

Theorem 13. Let W be a companion based matrix 
function, let J be an instance o f  2MFSP, and 
assume W and J are associated. Then W admits 
complete factorization i f  and only i f  

Cm,,x(J ) ~< ¢~(W) + 1. 

Since not all rational matrix functions admit 
complete factorization, one may be interested in 
minimal factorizations that are optimal in a more 
general sense. For example, one may be inter- 
ested in finding a minimal factorization 

W = W ,  . . .  W r, (18) 

where max{cS(Wi)] i = 1 . . . . .  r} is minimum. This 
problem is called the Max.Degree Problem. Note 
that the number of factors r is not pre-specified. 
The optimal value of the Max.Degree Problem is 
noted by ~(W). 

Theorem 14. Let W be a companion based matrix 
function, let J be an instance of  2MFSP-M, and 
assume W and J are associated. Then 

~ ( W )  = m a x { y * ( J ) ,  1} 

= max{Cm~x(J ) - iS(W), 1}. 

It follows that ~(W) can be determined by the 
application of Johnson's Rule. Note that Theo- 
rem 14 is a generalization of Theorem 13. In- 
deed, according to Theorem 14, 3~(W)= 1 if and 
only if C m , x ( J ) -  6(W)~< 1. 

Otherwise one may be interested in finding a 
minimal factorization (18)with a maximum num- 
ber of (non-trivial) factors. This problem is called 
the Number Problem. The optimal value of the 
Number Problem is denoted by ~(W). 

Theorem 15. Let W be a companion based matrix 
function, let J be an instance of  2MFSP-T(1), and 
assume W and J are associated. Then 

~,( W ) + v¢~)( J ) = 6( W ). 

Thus a minimal factorization of W with a 
maximum number of factors corresponds to a 
schedule for J with minimum total reduced infea- 
sibility. In particular, ~(W) = 6(W) if and only if 
v~])(J) = 0. Hence one moment of reflection shows 
that Theorem 15 provides another generalization 
of Theorem 13. 

Example 6. We finish with an example illustrating 
the Theorems 13, 14 and 15. This example also 
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appears in [4]. Consider the rational matrix func- 
tion W given by 

[0 ] W(A) = (A + 1)4(A - 1) 6 

A3 • 

( a + l ) ( a - 1 )  2 

Example 5 demonstrates  that W is a companion 
based matrix function, since W has the form (17) 
with 

p ( A )  = (A + 1)4(A - 1)6A °, 

q ( h )  = (A + 1)3(A - 1)4A 3. 

Thus W is associated with the instance of J of 
2MFSP with the jobs (3, 4), (4, 6) and (3, 0). This 
instance is also considered in the Examples 1, 2 
and 3 of this paper.  By applying Johnson's  Rule, 
we obtain the optimal permutat ion schedule 
(1, 2, 3) which is shown in Fig. 1. Since Cm~x(J) = 
13 and 6 ( W ) =  10, Theorem 13 implies that W 
does not admit complete factorization. 

I f  J is considered as an instance of 2MFSP-M 
with D = 10, then y * ( J ) =  3. The optimal per- 
mutation schedule for J is shown in Fig. 2. Theo- 
rem 14 implies that 9 (W)  = 3. Indeed, W admits 
the minimal factorization 

[ rl(A) ] I  1 c2 1 r 3 ( h )  

1 (A + 1)3 A + 1 (A - 1)3 
a - 1  

0 1 0 a + l  0 1 [4c  c61 1 A - 1  1 A - 1  1 A - 1  
x A A A ' 

0 h - 1  0 h - 1  0 a---~- 1 

where  r l (h)  = - ~2(29A 2 + 68A + 41), c 2 = 
4, r3(h) = ~2(29A 2 - 68A + 41), c 4 = - 4 ,  c 5 = 1 
and c 6 = - 1 .  Here  the McMillan degree of the 
first and the third factor equals 3, and the other 
factors have McMillan degree 1. This minimal 
factorization is optimal for the Max.Degree Prob- 
lem. 

Further,  if J is considered as an instance of 
2MFSP-T(1) with D = 10, then p(*~)(J) = 3. The 

optimal permutat ion schedule for J is shown in 
Fig. 3. Theorem 15 implies that k(W) = 10 - 3 = 
7. Indeed, W admits the minimal factorization 
with 7 factors 

( a - l )  4 

1 

c3 
1 A + I  

X 

0 1 

c5 
1 A + I  

× A 

0 A + I  

C I 

h - 1  
A + I  

A - 1  [" 1 A + I  

A 

0 A + I  [ c6 
1 A + I  

A 

0 A + I  

i c2 a - 1  
A + I  

A - 1  

where r(A) = ~(99A 3 - 345A 2 + 411A - 169), c 1 = 
699 381 1 
-~", C 2 = - - ~ ,  C 3 = - - ~ - ,  C' 4 = 12 ,  c 5 = 3 a n d  c 6 

= 1. This minimal factorization is optimal for the 
Number  Problem. 

In Examples 5 and 6 we started with a com- 
panion based matrix function and we constructed 
an instance of 2MFSP, 2MFSP-M or 2MFSP-T(1) 
associated with it. From this construction it is 
clear that it is also possible to go in the reverse 
direction. In fact, it is clear how, given an in- 
stance J with jobs (sj, t i) satisfying ~is~ = ]Cjtj, 
one can produce a companion based matrix func- 
tion W associated with J. The requirement ]~js~ 
= Y'vtj is not a serious restriction, since it can 
always be met  by the addition of a dummy job. 
The conclusion is that the flow shop problems 
considered in this paper  and the corresponding 
factorization problems are equivalent to a certain 
extent. 
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