
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

ERIM REPORT SERIES RESEARCH IN MANAGEMENT 
ERIM Report Series reference number ERS-2005-033-F&A 

Publication  May 2005 

Number of pages 25 

Persistent paper URL  

Email address corresponding author gtpost@few.eur.nl 

Address Erasmus Research Institute of Management (ERIM) 
RSM Erasmus University / Erasmus School of Economics  
 Erasmus Universiteit Rotterdam 
 P.O.Box 1738  
 3000 DR Rotterdam, The Netherlands 
Phone:  + 31 10 408 1182   
Fax: + 31 10 408 9640 
Email:  info@erim.eur.nl 
Internet:  www.erim.eur.nl 

 
Bibliographic data and classifications of all the ERIM reports are also available on the ERIM website:  

www.erim.eur.nl 

Testing for Stochastic Dominance Efficiency 
 

Thierry Post, Oliver Linton and Yoon-Jae Whang 
 
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18520654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ERASMUS  RESEARCH  INSTITUTE  OF  MANAGEMENT 

 

REPORT SERIES 

RESEARCH IN MANAGEMENT 
 

 

 

ABSTRACT AND KEYWORDS 
Abstract We propose a new test of the stochastic dominance efficiency of a given portfolio over a class 

of portfolios. We establish its null and alternative asymptotic properties, and define a method 

for consistently estimating critical values. We present some numerical evidence that our tests 

work well in moderate sized samples. 

Free Keywords Stochastic Dominance, Portfolio Diversification, Asset Pricing,  Portfolio Analysis 

Availability The ERIM Report Series is distributed through the following platforms:  

Academic Repository at Erasmus University (DEAR), DEAR ERIM Series Portal 

Social Science Research Network (SSRN), SSRN ERIM Series Webpage 

Research Papers in Economics (REPEC), REPEC ERIM Series Webpage 

Classifications The electronic versions of the papers in the ERIM report Series contain bibliographic metadata 
by the following classification systems: 

Library of Congress Classification, (LCC) LCC Webpage 

Journal of Economic Literature, (JEL), JEL Webpage 

ACM Computing Classification System CCS Webpage 

Inspec Classification scheme (ICS), ICS Webpage 

 
 



Testing for Stochastic Dominance E¢ ciency

Oliver Linton�

London School of Economics
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Yoon-Jae Whangz

Korea University

PRELIMINARY AND INCOMPLETE
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Abstract

We propose a new test of the stochastic dominance e¢ ciency of a given portfolio over a class

of portfolios. We establish its null and alternative asymptotic properties, and de�ne a method

for consistently estimating critical values. We present some numerical evidence that our tests

work well in moderate sized samples.

1 Introduction

We propose a test of whether a given portfolio is e¢ cient with respect to the stochastic dominance

criterion in comparison with a set of portfolios formed from a given �nite set of assets. The stochas-

tic dominance criteria represent economically meaningful restrictions, but avoid further restrictions

like those imposed in mean variance analysis. Post (2003) and Post and Versijp (2004) have recently

proposed tests of the same hypothesis and provide a method of inference based on a duality represen-

tation of the investor�s expected utility maximization problem. Their approach uses a conservative

bounding distribution, which may compromise statistical power or the ability to detect ine¢ cient

portfolios in small samples. We propose a more standard approach the inference problem.
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We propose a more standard statistical approach to the problem. Speci�cally we suggest to use a

modi�cation of the Kolmogorov-Smirnov test statistic of McFadden (1989) and Klecan, McFadden,

and McFadden (1991). Recently, Linton, Maasoumi, and Whang (2004) (hereafter LMW) have

provided a comprehensive theory of inference for this class of test statistics for the standard pairwise

comparison of prospects. We extend their work to the portfolio case. This entails a nontrivial

computational issue, which we propose to solve using a nested linear programming algorithm. We

provide the limiting distribution under the null hypothesis of SD e¢ ciency, and some results on

asymptotic power. We propose to use either the subsampling method or a recentered bootstrap

method for obtaining the critical values. We evaluate the performance of our method on simulated

data.

We focus on the stochastic dominance criteria of order two and higher. For various reasons,

we do not cover the �rst-order criterion, which allows for risk seeking behaviour: (1) risk aversion

is a standard assumption in �nancial economics and FSD seems less relevant than SSD for testing

portfolio e¢ ciency, (2) the de�nition of FSD e¢ ciency in a portfolio context is ambiguous, (3) our

computational strategy breaks down for local risk seekers, (4) the FSD criterion is very general and

presumably lacks statistical power for the typical sample size.

2 Null Hypothesis

Let Xt = (X1t; : : : ; XKt)
>
for t = 1; : : : ; T be observations on a set of K assets, and let Yt be some

benchmark asset; Yt could be a portfolio of Xt. We consider other portfolios with return X
>
t �; where

� = (�1; : : : ; �K)
>
; � = f� 2 RK : e>� = 1g; and e = (1; : : : ; 1)> : The approach applies also for a

portfolio possibilities set with the shape of a general polytope, allowing for general linear constraints,

such as short selling constraints, position limits and restrictions on risk factor loadings. Let �0 be

some subset of � re�ecting whatever additional restrictions if any are imposed on �: Let U1 denote
the class of all von Neumann-Morgenstern type utility functions, u, such that u0 � 0, (increasing).

Also, let U2 denote the class of all utility functions in U1 for which u00 � 0 (strict concavity).
Definition 1. (SSD E¢ ciency) The asset Yt is SSD e¢ cient if and only if some u 2 U2;

E[u(Yt)] � E[u(X
>
t �)] for all � 2 �0:

Likewise one can de�ne third order e¢ ciency. Let F�(�) and FY (�) be the c.d.f.�s of X
>
t � and Yt;

respectively. For a given integer s � 1; de�ne the s -th order integrated c.d.f. of X>
t � to be

G
(s)
� (x) =

Z x

�1
G
(s�1)
� (y)dy;

where G(0)� (�) = F�(�); and likewise for G
(s)
Y (x). A portfolio X

>
t � s-order dominates Yt if and only if

G
(s)
� (x) � G

(s)
Y (x) � 0 for all x with strict inequality for at least one x in the support X : For s � 2
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this de�nition is equivalent to de�nition 1, but not so for s = 1; see Post (2005) for discussion. Thus

our results are only meaningful for s � 2; although we retain the general de�nition. For notational
simplicity, we sometimes let the dependence on s of the quantities introduced below be implicit , i.e.,

we write G(s)� as G� and so on. We wish to test the null hypothesis that Yt is s-th order SD e¢ cient

in the sense that there does not exist any portfolio in fX>
t � : � 2 �0g that dominates it, where

�0 is a compact subset of �: This hypothesis has previously been tested by Post (2003) and Post

and Versijp (2004) among others. In order to test this hypothesis we must provide a scalar valued

population functional that divides the null from alternative.

2.1 First Functional

Suppose we consider the functional

sup
�2�0

inf
x2X

[GY (x)�G�(x)] (1)

that is essentially a modi�cation of the functional used in LMW to test for stochastic dominance

between �xed alternatives. This functional satis�es (1)� 0 under the null hypothesis. Unfortunately,
there are some elements of the alternative for which (1)= 0: In fact, the null hypothesis is quite

complex, and to characterize it we introduce some further notation. For each � de�ne the three

subsets

A�� = fx 2 X : GY (x)�G�(x) < 0g

A=� = fx 2 X : GY (x)�G�(x) = 0g

A+� = fx 2 X : GY (x)�G�(x) > 0g :

If X>
t � dominates Yt; then A

�
� = ?; and A+� is nonempty. However, it can be that both A=�

and A+� are nonempty in which case infx2X (GY (x)�G�(x)) = 0: The supremum over the entire

support fails to distinguish between weak and strict inequality. This is perhaps less of an issue

in testing dominance of one outcome over another, since the reverse comparison will identify that

infx2X (G�(x)�GY (x)) < 0: However, it does matter here. Speci�cally, suppose that A=� and A
+
�

are non-empty and A�� = ? for some ��s: For these ��s; we have infx2X (GY (x)�G�(x)) = 0 even
though X>

t � dominates Yt: If the other ��s are such that we have only A
=
� and A

�
� non-empty so that

infx2X (GY (x)�G�(x)) < 0 for those values, then we obtain that (1)= 0: The following example in
Figure 1 shows that X strictly dominates Y but infx2X [GY (x)�GX(x)] = 0.
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Figure 1. Shows the c.d.f of Y (solid line) and X (dashed line)

We next suggest some modi�cations of (1) that properly characterize the null hypothesis.

2.2 Our Functional

For each � > 0; de�ne the �-enlargement of the set A=� ;

(A=� )
� = fx+ � 2 X : x 2 A=� and j�j < �g ;

and let

B�� =

(
Xn(A=� )� if A=� 6= X
X A=� = X :

(2)

Then let

d�(�) = sup
�2�0

inf
x2B"�

[GY (x)�G�(x)] : (3)

Under the null hypothesis, d�(�) � 0 for each � � 0; while under the alternative hypothesis we have
d�(�) > 0 for some � > 0: The idea is that you prevent the inner in�mum ever being zero through

equality on some part of X . This functional divides the null from alternative.

For later discussion, we shall also need the following partition of �0 :

�0 = �1 [ �2; where �1 \ �2 = ?; �1 = ��0 [ �=0 ; �2 = �+0 [ �'0 (4)
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�=0 = f� 2 �0 : GY (x) = G�(x) 8x 2 Xg (5)

��0 =

�
� 2 �0 : inf

x2X
[GY (x)�G�(x)] < 0

�
(6)

�+0 =

�
� 2 �0 : inf

x2X
[GY (x)�G�(x)] > 0

�
(7)

�'0 =

�
� 2 �0 : inf

x2X
[GY (x)�G�(x)] = 0; inf

x2B"�
[GY (x)�G�(x)] > 0 for some � > 0

�
: (8)

Under the null hypothesis; �2 = ? and hence �0 = �1: Under the alternative hypothesis, �1 = ? and
�0 = �2.

3 Test Statistics

The general approach is to de�ne empirical analogues of (3) as our test statistics. Let kT = c0 �
(log T=T )1=2 and let �T denote a sequence of positive constants satisfying Assumption 2 below, where

c0 is a positive constant. De�ne

bA=� =
n
x 2 X :

��� bGY (x)� bG�(x)��� � kTo ; (9)� bA=� ��T =
n
x+ � 2 X : x 2 bA=� ; j�j < �To ; (10)

bB�T� =

(
Xn( bA=� )�T if bA=� 6= X

X if bA=� = X : (11)

Then, de�ne

WT = sup
�2�0

inf
x2 bB"T� QT (�; x); (12)

where

QT (�; x) =
p
T
h bGY (x)� bG�(x)i ; (13)

bGT�(x) =

Z x

�1
bG(s�1)T� (y)dy; bFT�(x) = 1

T

TX
t=1

1(X
>

t � � x);

and likewise for bGY (x): This is our proposed test statistic; rejection is for large positive values.
Notice that to compute (12) requires potentially high dimensional optimization of a discontinuous

non-convex/concave objective function. In the next section we discuss how to compute the various

in�mums and supremums in (12).
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4 Computational Strategy

The supremum over the scalar x is computed by a grid search. The objective function QT (�; x) can

be written as

QT (�; x) =
1

(s� 1)!
p
T

TX
t=1

�
(x� Yt)s�11 (Yt � x)� (x�X>

t �)
s�11

�
X>
t � � x

�	
;

see Davidson and Duclos (2000). When s = 1; QT (�; x) is neither continuous in x nor in �: When

s = 2; this function is not di¤erentiable or convex in � 2 RK ; but it is continuous in x:When s = 3;

the objective function is di¤erentiable in x but not in �: Therefore, one cannot use standard derivative-

based algorithms like Newton-Raphson to �nd the optima. One could replace the empirical c.d.f.�s

by smoothed empirical c.d.f. estimates in order to impose additional regularity on the optimization

problem so that derivative based iterative algorithms could be used. There is a well-established

literature in econometrics concerning this class of non-smooth optimization estimators, see Pakes

and Pollard (1989). Nevertheless, it is a di¢ cult problem computationally to achieve the maximum

over � with high accuracy when K is large in the non-smooth case. In the next subsection, we

show how to write the optimization problem (in the second order dominance case s = 2) as a

one-dimensional grid search with embedded linear programming.

4.1 Pro�ling on the SD E¢ cient Set

Every SSD e¢ cient portfolio is optimal for some increasing and concave utility function. Russell

and Seo (1989) show that each increasing and concave utility function can be represented by an

elementary, two-piece linear utility functions characterized by a single scalar threshold parameter,

say �:

u�(x) = minfx� �; 0g:

Thus every e¢ cient portfolio is the solution to the following problem

max
�2�

1

T

TX
t=1

minfX>
t �� �; 0g

for some value of �. It is straightforward to show that this problem is equivalent to the following

linear programming problem:

max
�2RT ;�2RK

1

T

TX
t=1

�t (14)

�t �
KX
j=1

�jXjt � �; t = 1; : : : ; T (15)
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�t � 0; t = 1; : : : ; T (16)

KX
j=1

�j = 1 (17)

�j � 0; j = 1; : : : ; K; (18)

where � = (�1; : : : ; �T ) and � = (�1; : : : ; �K):

Let b�(�);b�(�) be the solution to (14)-(18) for each �. In this problem, �t captures the discon-
tinuous term minfX>

t �� �; 0g. Speci�cally, due to the maximization orientation in (14), constraint
(15) and/or (16) will be binding and hence b�t = minfX>

t
b� � �; 0g at the optimum. In brief, the

SSD e¢ cient set reduces to a one-dimensional manifold and the elements can be identi�ed by solving

the LP problem (14)-(18) for di¤erent values of the single threshold parameter �. We then com-

pute every � from b�(�) for � 2 M , where M is some set of values for � (under no short-selling we

can take M = [�min; �max]; where �min; �max are the minimum and maximum expected returns of

the individual assets respectively). The in�mum and supremum in (12) can be computed by a grid

search.

We can do with the LP approach, also for higher-order criteria, because the e¢ cient set then is

a subset of the SSD e¢ cient set. Explain that we need to search only over the set of SSD e¢ cient

portfolios. This is obviously true for the SSD criterion (s = 2), but also for the higher-order criteria

(s > 2), as the e¢ cient set in these cases is a subset of the SSD e¢ cient set.

4.2 Starting Values on the Mean Variance Frontier

An alternative approach is to use a standard Nelder Mead algorithm. This may work in greater

generality for higher order and other kinds of dominance criteria. For this algorithm to work well in

high dimensional cases one needs good starting values. We propose to obtain these by grid searching

over the mean variance (MV) e¢ cient frontier. The MV e¢ cient set is a natural starting point,

because for the normal distribution the SD e¢ cient sets reduce to the MV e¢ cient set. The set

of mean variance e¢ cient portfolios can be computed in terms of the unconditional mean � and

the covariance matrix � of the vector Xt: For given �p there exists a unique portfolio �(�p) that

minimizes the variance �2p of the portfolios that achieve return �p: The set of mean variance e¢ cient

portfolio weights are indexed by the target portfolio return �p; speci�cally

�p = g + h�p; (19)

where the vectors g(�;�); h(�;�) satisfy

g =
1

D

�
B��1i� A��1�

�
and h =

1

D

�
C��1�� A��1i

�
;

7



with the scalars A = i
>
��1�; B = �

>
��1�; C = i

>
��1i; and D = BC � A2; see Campbell, Lo,

and McKinlay (1997, p185). Therefore, one takes a grid of values of �p and obtains �p for this grid

and then compute the test statistic. To impose that there is no short selling it su¢ ces to search in

the range M = [�min; �max]. The optimal value of �p can be used as a starting value in some more

general optimization algorithm.

5 Discussion

We focus on stochastic dominance criteria of order two and higher, meaning that risk aversion is

assumed throughout this study. For various reasons, we do not cover the �rst-order criterion, which

allows for risk seeking behaviour.

First, risk aversion is a standard assumption in �nancial economics, being consistent with common

observations such as risk premiums for risky assets, portfolio diversi�cation and the popularity of

insurance contracts. There are indications for local risk seeking behaviour at the individual level,

witness for example the popularity of lotteries. However, the bulk of the literature on asset pricing and

portfolio selection assumes that investors are globally risk averse when forming investment portfolios.

Apart from this, a FSD test for portfolio e¢ ciency adds relatively little value to a SSD test, for

the simple reason that risk seekers generally will hold ill-diversi�ed portfolios. Not surprisingly,

Kuosmanen (2004) �nds that the FSD and SSD criteria yield exactly the same results for testing

market portfolio e¢ ciency.

Second, as is shown in Post (2005), the de�nition of FSD e¢ ciency in a portfolio context is

ambiguous. The stochastic dominance rules of order two and higher assume a concave utility function

and hence expected utility is a quasiconcave function of the portfolios weights. In this case, we can

invoke Sion�s (1958) Minimax Theorem to show the equivalence between two de�nitions of e¢ ciency:

(1) a portfolio is e¢ cient if and only if no other portfolio dominates it and (2) a portfolio is e¢ cient if

and only if it is the optimal solution for some investor in the class admitted by the relevant SD rule;

see Post (2003; Theorem 1). The �rst-order criterion allows for risk seeking and expected utility

generally is not quasiconcave in this case. Therefore, the two de�nitions generally diverge, with

de�nition (1) being less restrictive than de�nition (2); a portfolio may be nondominated but still be

nonoptimal for all investors. Until the ambiguity surrounding the de�nition of FSD e¢ ciency in a

portfolio context is resolved, it seems premature to develop procedures for statistical inference for

this e¢ ciency criterion.

Third, our computational strategy breaks down for local risk seekers. As discussed in Section

4, for the second-order criterion, the e¢ cient set reduces to a one-dimensional manifold and the

e¢ cient portfolios can be identi�ed by solving a simple LP problem. In case of higher-order criteria,

8



the e¢ cient set is a subset of SSD e¢ cient set and the same approach can be used. However, the

same approach does not apply for FSD. In this case, the elementary Russell-Seo utility functions take

the form of discontinuous step functions. Portfolio optimization for these utility functions requires

mixed integer programming techniques and generally involves multiple optimal solutions. For this

reason, our computational strategy seems inappropriate for the FSD criterion.

Fourth, the FSD criterion is very general and allows for �exotic�preference structures, for

example utility functions with in�ection points and discontinuous jumps. Thus, an empirical test

for FSD e¢ ciency will have considerable freedom to �t a utility function to the data. Presumably,

this will considerably slow down the rate of convergence of an empirical test. For the sample size in

typical applications, an empirical test will lack statistical power to allow for a meaningful application.

6 Asymptotic Properties

6.1 Null Distribution

To discuss the asymptotic null distribution of our test statistic, we need the following assumptions:

Assumption 1. (i) f(X>
t ; Yt)

> : t = 1; : : : ; Tg is a strictly stationary and �- mixing sequence
with �(m) = O(m�A) for some A > (q � 1)(1 + q=2); where Xt = (X1t; : : : ; XKt)

> and q is an even

integer that satis�es q > 2(K +1): (ii) The supports of Xkt and Yt are compact 8k = 1; : : : ; K: (iii)
The distributions of Xt and Yt are absolutely continuous with respect to Lebesgue measure and have

bounded densities.

Assumption 2. (i) f�T : T � 1g is a sequence of positive constants such that limT!1 �T = 0 and

�T > kT 8T � 1: (ii) For each x 2 X ; constant C1 > 0 and � 2 �0 such that A=� 6= ?; we have:

jGY (x)�G�(x)j � C1min
�
inf
x02A=�

jx� x0j ; �T
�

for T su¢ ciently large:

Assumption 2 requires that the function GY (�)�G�(�) is monotonic on a �T - neighborhood of the
boundary @A=� of A

=
� : It is satis�ed when GY (x) and G�(x) have derivatives that are not equal on

the local neighborhood of @A=� because by Taylor expansion GY (x)�G�(x) ' [gY (x0)�g�(x0)][x0�x]
for x close to x0; hence we can bound jGY (x)�G�(x)j from below for x close to A=� ; while for x far

from A=� the minimum is eventually dominated by �T which can be made arbitrarily small.

De�ne the empirical process in � and x to be

�T (�; x) =
p
T
h bGY (x)� bG�(x)�GY (x) +G�(x)i : (20)

9



Let e�(�; �) be a mean zero Gaussian process on �0 �X with covariance function given by

C((�1; x1); (�2; x2)) = lim
T!1

E�T (�1; x1)�T (�2; x2): (21)

Then, the limiting null distribution of our test statistic is given in the following theorem.

Theorem 1. Suppose Assumptions 1 and 2 hold. Then, under the null hypothesis; we have

WT ) � =

(
sup�2�=0 infx2X [e�(�; x)] if �=0 6= ?
�1 if �=0 = ?

;

where �=0 is de�ned in (5).

Theorem 1 shows that the asymptotic null distribution of WT is non-degenerate when �=0 6= ?
and depends on the joint distribution function of (X>

t ; Yt)
>. The latter implies that the asymptotic

critical values for WT can not be tabulated once and for all. However, we de�ne below various

simulation procedures to estimate them from the data.

6.2 Critical Values

6.2.1 Subsampling

We can use a subsampling method to obtain consistent critical values. The subsampling method has

been proposed by Politis and Romano (1994) and works in many cases under very general settings,

see, e.g., Politis, Romano, and Wolf (1999). The subsampling is useful in our context because

our null hypothesis consists of complicated system of inequalities which is hard to mimic using the

standard bootstrap. Furthermore, the subsampling-based test described below has an advantage of

being asymptotically similar on the boundary of the null hypothesis, see below and LMW(2004) for

details.

The subsampling procedure is based on the following steps:

(i) Calculate the test statistic WT using the original full sample WT = fZt = (X>
t ; Yt)

> : t =

1; : : : ; Tg:

(ii) Generate subsamples WT;b;t = fZt; : : : ; Zt+b�1g of size b for t = 1; : : : ; T � b+ 1.

(iii) Compute test statistics WT;b;t using the subsamples WT;b;t for t = 1; : : : ; T � b+ 1:

(iv) Approximate the sampling distribution of WT by

bST;b(w) = 1

T � b+ 1

T�b+1X
t=1

1 (WT;b;t � w) :

10



(v) Get the �-th sample quantile of bST;b(�); i.e.,
sT;b(�) = inffw : bST;b(w) � �g:

(vi) Reject the null hypothesis at the signi�cance level � if WT > sT;b(�):

The above subsampling procedure can be justi�ed in the following sense: Let b = bbT be a data-
dependent sequence satisfying

Assumption 3. P [lT � bbT � uT ] ! 1 where lT and uT are integers satisfying 1 � lT � uT �
T; lT !1 and uT=T ! 0 as T !1:
Then, the following theorem shows that our test based on the subsample critical value has as-

ymptotically correct size.

Theorem 2. Suppose Assumptions 1-3 hold. Then, under the null hypothesis; we have

(a) sT;bbT (�) p!
(
s(�) if �=0 6= ?
�1 if �=0 = ?

(b) P [WT > sT;bbT (�)]!
(
� if �=0 6= ?
0 if �=0 = ?

as T !1; where s(�) denotes the �-th quantile of the asymptotic null distribution sup�2�=0 infx2X [e�(�; x)]
of WT given in Theorem 1.

6.2.2 Bootstrap

We next de�ne an alternative to our subsampling procedure based on full-sample bootstrap applied

to a recentered test statistic.

(i) Calculate the test statistic WT using the original full sample WT = fZt = (X>
t ; Yt)

> : t =

1; : : : ; Tg:

(ii) Generate the bootstrap sample W�
T = fZ�t : t = 1; : : : ; Tg M -times, where M is the number

of the bootstrap samples, see below for various possible ways to draw the bootstrap samples.

(iii) Compute the recentred test statistic W �
T using the bootstrap sample W�

T : i.e.,

W �
T = sup

�2�0
inf
x2X

Q�T (�; x);

where

Q�T (�; x) =
p
T
h bG�Y (x)� bG��(x)� E� � bG�Y (x)� bG��(x)�i ; (22)

bG��(x) =

Z x

�1
bG�(s�1)� (y)dy; bF �� (x) = 1

T

TX
t=1

1(X�>
t � � x);

11



and likewise for bG�Y (x) and E�(�) denotes the expectation relative to the distribution of the
bootstrap sample W�

T conditional on the original sample WT ; see below for details.

(iv) Approximate the sampling distribution of WT by

bHT (w) = 1

M

MX
m=1

1
�
W �
T;m � w

�
;

where W �
T;m denotes the value of W �

T computed from the m -th bootstrap sample for m =

1; : : : ;M:

(v) Get the �-th sample quantile of bHT (�); i.e.,
hT (�) = inffw : bHT (w) � �g:

(vi) Reject the null hypothesis at the signi�cance level � if WT > hT (�):

When the data are independent over time, the bootstrap sample can be generated by drawing the

vector Z�t = (X
�
1t; : : : ; X

�
Kt; Y

�
t )
> randomly with replacement from the empirical joint distribution of

the vectors fZt : t = 1; : : : ; Tg: Drawing Z�t as a vector will enable the bootstrap sample to preserve
the general mutual dependence among K + 1 assets that may exist in the original sample. In step

(iii) above, the recentering in Q�T (�; x) can be done with

E�
� bG�Y (x)� bG��(x)� = bGY (x)� bG�(x)

This recentering crucial and is used to impose the least favorable case of the null restriction, i.e.,

GY (x) = G�(x) 8x 2 X ; 8� 2 �0: (23)

The idea of recentering has also been suggested in other contexts by Hall and Horowitz (1996),

Chernozhukov (2002) and LMW (2004), among others.

In the time series case, the bootstrap procedure should be modi�ed to account for the temporal

dependence. We brie�y describe the non-overlapping (viz., Carlstein (1986)) and overlapping (viz.,

Künsch (1989)) block bootstrap procedures. The observations to be bootstrapped are the vectors

fZt : t = 1; : : : ; Tg as before. Let L denote the length of the blocks satisfying L _ T 
 for some

0 < 
 < 1. With non-overlapping blocks, block 1 is observations fZj : j = 1; : : : ; Lg; block 2
is observations fZL+j : j = 1; : : : ; Lg; and so forth. There are B di¤erent blocks, where BL =

T: With overlapping blocks, block 1 is observations fZj : j = 1; : : : ; Lg; block 2 is observations
fZ1+j : j = 1; : : : ; Lg; and so forth. There are T � L + 1 di¤erent blocks. The bootstrap sample
fZ�t : t = 1; : : : ; Tg are obtained by sampling B blocks randomly with replacement from either the

12



B non-overlapping blocks or the T � L + 1 overlapping blocks and laying them end-to-end in the

order sampled. In the case of non-overlapping bootstrap, the recentering (22) may be done with

E�
� bG�Y (x)� bG��(x)� = bGY (x) � bG�(x) as in the independent sampling case. However, when the

overlapping block bootstrap is used, we need to recenter the statistic with

E�
� bG�Y (x)� bG��(x)� = bGY;OB(x)� bG�;OB(x); where

bG�;OB(x) =

Z x

�1
bG(s�1)�;OB (y)dy;

bF�;OB(x) = 1

T

TX
t=1

!(t; L; T )1(X>
t � � x) ;

!(t; L; T ) =

8>><>>:
t=L

1

(T � t+ 1)=L

if t 2 [1; L� 1]
if t 2 [L; T � L+ 1]
if t 2 [T � L+ 2; T ] :

;

and likewise for bGY;OB(x):
We now compare the subsampling and bootstrap procedures. Under suitable regularity conditions,

it is not di¢ cult to show that the asymptotic size of the test based on bootstrap critical value hT (�)

is � if the least favorable case (23) is true. Therefore, in this case, we might prefer bootstrap to

subsampling since the former uses the full sample information and hence may be more e¢ cient in

�nite samples. However, as we have argued in other context (see LMW (2004, Section 6.1)), the least

favorable case (23) is only a special case of the boundary, i.e., �=0 6= ?; of the null hypothesis H0;

whereas the test statistic WT has a non-degenerate limit distribution everywhere on the boundary.

This implies that the bootstrap-based test is not asymptotically similar on the boundary, which in

turn implies that the test is biased. On the other hand, the subsample-based test is unbiased and

asymptotically similar on the boundary and may be preferred in this sense. In practice, one might

wish to employ both approaches to see if the results obtained are robust to the choice of resampling

schemes, as we did in our empirical applications below.

6.3 Asymptotic Power

In this section, we discuss consistency and local power properties of our test.

If the alternative hypothesis is true, �0 = �+0 [ �'0 : When �+0 is empty, we need the following
assumption for consistency of our test:

Assumption 4. When �0 = �'0 ; limT!1 (T=uT )
1=2��(�T ) > 0 for some � 2 �0; where ��(�) =

infx2B�� (GY (x)�G�(x)) and uT is de�ned in Assumption 3.
For each � 2 �'0 ;��(�) is a non-decreasing in �; ��(�) > 0 8� > 0 and ��(0) = 0: Therefore,

from a Taylor expansion (T=uT )
1=2��(�T ) ' (T=uT )

1=2 �T (@��(0)=@�), Assumption 4 holds if �T

13



goes to zero at a rate not too fast and and the derivative of ��(�) is strictly positive at � = 0 for

some � 2 �'0 .
Then, we have:

Theorem 3. Suppose that Assumptions 1-4 hold. Then, under the alternative hypothesis; we

have

P [WT > sT;bbT (�)]! 1 as T !1:

Next, we determine the power of the test WT against a sequence of contiguous alternatives

converging to the boundary �=0 6= ? of the null hypothesis at the rate 1=
p
T : That is, consider the

set of portfolio weights

�0T =
n
�+ c=

p
T : � 2 �=0 ; c 2 RK

o
:

Let F�T (�) = G
(0)
�T
(x) be the c.d.f.�s of X

>
t �T for �T 2 �0T . Also, for s � 1; de�ne

G
(s)
�T
(x) =

Z x

�1
G
(s�1)
T�T

(y)dy:

As before, we abbreviate the superscript s for notational simplicity. Then, we assume that the

functionals G�T (x) and GY (x) satisfy the following local alternative hypothesis:

Ha : GY (x)�G�T (x) =
�Y �(x)p
T

for �T 2 �0T and � 2 �=0 ; (24)

where �Y �(�) is a real function such that infx2X [�Y �(x)] > 0:
The asymptotic distribution of WT under the local alternatives is given in the following theorem:

Theorem 4. Suppose Assumptions 1 and 2 (with �0 replaced by �0T ) hold. Then, under the

sequence of local alternatives Ha, we have

WT ) sup
�2�=0

inf
x2X

[e�(�; x) + �Y �(x)] ;
where e�(�; x) is de�ned as in Theorem 1.

The result of Theorem 4 implies that asymptotic local power of our test based on the subsample

critical value is given by

lim
T!1

P [WT > sT;bbT (�)] = P [L0 > s(�)] ; (25)

where L0 denotes the limit distribution given in Theorem 4 and s(�) denotes the �-th quantile of

the asymptotic null distribution of WT given in Theorem 1. Also, our test is aymptotically local

unbiased because, by Anderson�s lemma (see Bickel et. al. (1993, p.466)), the right hand side of (25)

is less than �:
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7 Numerical Results

The existing SSD e¢ ciency test su¤ers from low power in typical empirical applications, as demon-

strated in the simulation experiment of Post (2003, Section IIIC) based on the returns of the well-

known 25 double-sorted Fama and French stock portfolios formed on market capitalization and

book-to-market-equity ratio. In part, the lack of power re�ects the di¢ culty of estimating a 25-

dimensional return distribution. It is likely that the power increases (at an increasing rate) as the

length of the cross-section is reduced to for example ten benchmark portfolios, which is a common

choice in asset pricing tests.

Instead of the 25 Fama and French portfolios, this study uses ten single-sorted portfolios formed

on market beta. We focus on these portfolios for two reasons. First, sorting stocks on beta maximizes

the spread in betas and hence minimizes the probability of erroneous rejection of the null of mean-

variance e¢ ciency (Type I error). Second, time-variation of the return distribution can severely bias

the results of unconditional asset pricing tests (see for instance Jagannathan and Wang (1996)).

Hence, the large sample properties of our tests apply only to benchmark portfolios for which long,

homogenous samples are available in practice. Unfortunately, the 25 Fama and French portfolios

seem severely a¤ected by time-variation. By contrast, beta portfolios by construction have a more

stable distribution, as a stock migrates to another benchmark portfolio if its beta changes signi�cantly

through time.

Panel A of Table I gives descriptive statistics for the monthly returns of the beta decile portfolios in

the sample from January 1933 to December 2002 (840 months). The skewness and kurtosis statistics

suggest that the returns do not obey a normal distribution. Nevertheless, in the simulations, we

use a normal distribution with joint population moments equal to the �rst two sample moments of

the portfolios. This means that we e¤ectively take away the rationale for using SD criteria rather

than the mean-variance criterion; for a normal distribution the SSD and TSD criteria reduce to the

mean-variance criterion. Thus, we analyze the statistical properties of our tests under relatively

unfavorable conditions where SD tests are necessarily inferior to mean-variance tests.

[Insert Table I about here]

We will �rst apply our procedures to two test portfolios in random samples drawn from the

multivariate normal population distribution. The equal weighted portfolio (EP) is known to be SSD,

TSD and mean-variance ine¢ cient relative to the normal population distribution (in this case with

normal distributions). Hence, we may analyze the statistical power of the competing test procedures

by their ability to correctly classify EP as ine¢ cient. By contrast, the ex ante tangency portfolio

(TP) is SSD e¢ cient and lies in the null hypothesis.

15



7.1 Preliminary Results

In the �rst part of our simulations, we draw random samples from the multivariate normal population

distribution with moments taken from the beta-sorted portfolios. For every random sample, we apply

our test procedures for second order and third order stochastic dominance to both test portfolios.

This experiment is performed for a sample size T 2 f50; 100; 200; 500; 1000; 2000g. Below we show
some preliminary results for the special case of two portfolios (numbers 2 and 9 in terms of �)

in which case we just perform a grid search over 100 linear combinations of these assets: We take

kT = 0:3
p
log(T )=T and �T = 2 � kT : These results are based on ns = 400 replications. We show

the median p-value across simulations against sample size. The p-values are computed by comparing

the test statistic with 200 recentered bootstrap resamples. Recall that the equally weighted portfolio

(EP) is ine¢ cient according to second order and third order dominance, while the tangency portfolio

(TP) is e¢ cient. The results are shown in Figures 2-5 below.

Figure 2. Alternative hypothesis
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Figure 3. Null hypothesis

Figure 4. Alternative hypothesis
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Figure 5. Null hypothesis

These results seem to be encouraging: under the null hypothesis median p-values tend to one and

under the alternative hypothesis median p-values tend to zero with sample size.

8 Appendix

Lemma 1. Suppose Assumption 1 holds, Then, we have

�T (�; �)) e�(�; �): (26)

Proof of Lemma 1. For lemma 1, we need to verify (i) �nite dimensional (�di) convergence and

(ii) the stochastic equicontinuity result: that is, for each " > 0 there exists � > 0 such that

lim
T!1






 sup
��((�1;x1);(�2;x2))<�

j�T (�1; x1)� �T (�2; x2)j






q

< "; (27)

where the pseudo-metric on �0 �X is given by

�� ((�1; x1) ; (�2; x2))

=
�
E
�
(x1 � Yt)s�11 (Yt � x1)� (x1 �X>

t �1)
s�11

�
X>
t �1 � x1

�
�(x2 � Yt)s�11 (Yt � x2) + (x2 �X>

t �2)
s�11

�
X>
t �2 � x2

��2o1=2
:

The �di convergence result holds by the Cramer-Wold device and a CLT for bounded random variables

(see Hall and Heyde (1980, Corollary 5.1)) since the underlying random sequence f(X>
t ; Yt)

> : t � 1g
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is strictly stationary and � - mixing with
P1

m=1 �(m) < 1 by Assumption 1. On the other hand,

the stochastic equicontinuity condition (27) holds by Theorem 2.2 of Andrews and Pollard (1994)

with Q = q and 
 = 2: To see this, note that their mixing condition is implied by Assumption 1(i).

Also, let

F = fft(�; x) : (�; x) 2 �0 �Xg ;where

ft(�; x) = (x� Yt)s�11 (Yt � x)� (x�X>
t �)

s�11
�
X>
t � � x

�
::

Then, F is a class of uniformly bounded functions that satisfy the L2-continuity condition: that is,

for some constants C1; C2 <1;

E
�
sup [ft(�1; x1)� ft(�; x)]2

� C1
n
E

�
sup

�
(x1 � Yt)s�1 � (x� Yt)s�1

�2
+ E

�
sup [1 (Yt � x1)� 1 (Yt � x)]2

+E
�
sup

�
(x1 �X>

t �1)
s�1 � (x�X>

t �)
s�1�2 + E �

sup
�
1
�
X>
t �1 � x1

�
� 1

�
X>
t � � x

��2o
� C2 � r;

where sup� denotes the supremum taken over (�1; x1) 2 �0�X for which k�1 � �k � r1; jx1 � xj �
r2 and

p
r21 + r

2
2 � r; the �rst inequality holds by several applications of Cauchy-Schwarz inequality

and Assumption 1(ii) and the second inequality holds by Assumptions 1(iii). This implies that the

bracketing condition of Andrews and Pollard (1994, p.121) holds because the L2-continuity condition

implies that the bracketing number satis�es N(";F) � C3 � (1=")K+1 :This establishes Lemma 1.
Lemma 2. Suppose Assumptions 1 and 2 hold. Then, we have

P
�
B2�T� � bB�T� � B�T�

�
! 1 8� 2 �0

as T !1:
Proof of Lemma 2. It su¢ ces to show that for each � 2 �0;

P
�
(A=� )

�T �
� bA=� ��T� ! 1 (28)

P
�� bA=� ��T � (A=� )2�T� ! 1: (29)

Suppose A=� 6= X : (If A=� = X ; (29) trivially holds and (28) holds by the same argument as (30)
below.) We �rst establish (28). Consider � such that A=� 6= ?: (Otherwise, (28) holds trivially.) Let
x�0 2 (A=� )

�T : Then, x�0 = x0+ �0T for some x0 2 A=� and a �xed sequence j�0T j < �T : Now (28) holds
since

P
�
x�0 2

� bA=� ��T� � P (x0 2 bA=� )
= P

���� bG�(x0)� bGY (x0)�G�(x0) +GY (x0)��� � kT�
= P

�
jOp(1)j � (log T )1=2

�
! 1; (30)
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where the second equality holds by the �di convergence result of Lemma 1.

We next establish (29). Let x�1 2
� bA=� ��T ; i.e., x�1 = x1+�1T for some x1 2 bA=� and �xed sequence

j�1T j < �T : It su¢ ces to show that P (x1 2 (A=� )
�T ) ! 1: Let C1 > 1 be a constant. Then, we have:

wp! 1;

jGY (x1)�G�(x1)j

�
��� bGY (x1)�GY (x1)���+ ��� bG�(x1)�G�(x1)���+ ��� bGY (x1)� bG�(x1)���

� C1kT ;

where the �rst inequality holds by triangular inequality and the second inequality holds using the

�di convergence result as in (30) and the fact that x1 2 bA=� : Now, by Assumption 2, since �T > kT ;
we have:

inf
x02A=�

jx1 � x0j < �T wp! 1;

which implies that P (x1 2 (A=� )
�T )! 1; as required.

Proof of Theorem 1. Below, we shall establish

sup
�2�=0

inf
x2 bB"T� QT (�; x) ) � (31)

sup
�2��0

inf
x2B2"T�

�T (�; x)� sup
�2��0

inf
x2B0�

�T (�; x) = op(1): (32)

Then, Theorem 1 holds because of the following arguments: For any w 2 R, we have

lim
T!1

�����P (WT � w)� P
 
sup
�2�=0

inf
x2 bB"T� QT (�; x) � w

!�����
� lim

T!1
P

 
sup
�2��0

inf
x2 bB"T� QT (�; x) > w

!
(33)

� lim
T!1

P

 
sup
�2��0

inf
x2B2"T�

QT (�; x) > w

!
(34)

� lim
T!1

P

 
sup
�2��0

inf
x2B2"T�

�T (�; x) > w + T
1=4

!
(35)

= lim
T!1

P

 
sup
�2��0

inf
x2B0�

�T (�; x) > w + T
1=4

!
(36)

= 0; (37)

where (33) holds by the fact that �0 = ��0 [�=0 under the null hypothesis and the general inequality
jP (max(X; Y ) � x)� P (Y � x)j � P (X > x) for any rv�s X and Y; (34) holds by Lemma 2, (35)

follows from the result limT!1 sup�2��0 infx2B
2"T
�
T 1=4 (GY (x)�G�(x)) < �1; (36) holds by (32), and
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(37) holds since sup�2��0 infx2B0� �T (�; x) = Op(1) using Lemma 1 and continuous mapping theorem.

This result and (31) combine to yield Theorem 1.

We now establish (31) and (32). Let w 2 R: Then, by Lemma 2, we have�����P
 
sup
�2�=0

inf
x2 bB"T� QT (�; x) � w

!
� P

 
sup
�2�=0

inf
x2X

QT (�; x) � w
!�����

� P
� bB�T� 6= X for � 2 �=0

�
! 0:

Therefore, (31) holds by Lemma 1, continuous mapping theorem and the fact

sup
�2�=0

inf
x2X

QT (�; x) = sup
�2�=0

inf
x2X

[�T (�; x)] :

Next, consider (32). Let Z � R be a compact set containing zero. De�ne the stochastic process

lT (�; �; �) on ��0 �X �Z to be lT (�; x; z) = �T (�; x+ z): Then, by an argument similar to Lemma 1,
lT (�; �; �) is stochastic equicontinuous on ��0 �X �Z; which in turn implies that

sup
�2��0

inf
x2B2"T�

�T (�; x)� sup
�2��0

inf
x2B0�

�T (�; x)

= sup
�2��0

inf
x2B0�; jzj�2�T

lT (�; x; z)� sup
�2��0

inf
x2B0�

lT (�; x; 0)

= op(1); as required.

This now completes the proof of Theorem 1.

Proof of Theorem 2. The proof is similar to the proof of Theorem 2 of LMW(2004), see also

Politis et. al (1999, Theorem 3.5.1).

Proof of Theorem 3. Under the alternative hypothesis, �0 = �+0 [ �'0 : Let

bS0T;b(w) =
1

T � b+ 1

T�b+1X
t=1

1
�
b�1=2WT;b;t � w

�
S0b (w) = P

�
b�1=2WT;b;1 � w

�
:

Using the inequality of Bosq (1998, Theorem 1.3) and Assumption 3 (see also LMW (2004, proof of

Theorem 2)), we can establish the uniform convergence result:

sup
��� bS0T;b(w)� S0b (w)��� p! 0: (38)

Therefore, (38) and the pointwise convergence result b�1=2WT;b;1
p! d�(0) yield:

s0
T;bbT (�) = inffw : bS0T;b(w) � �g ! d�(0) � 0; (39)
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where d�(�) is de�ned in (3). Note that d�(0) is strictly positive if �+0 6= ?; while d�(0) = 0 if �+0 = ?:
Therefore,

P
�
WT > sT;bbT (�)

�
� P

 
sup

�2�+0 [�'0

inf
x2B"T�

�
�T (�; x) + T

1=2 (GY (x)�G�(x))
�
> bb1=2T s0

T;bbT (�)
!
+ o(1)

� P

 
sup

�2�+0 [�'0

inf
x2B"T�

�
�T (�; x) + T

1=2 (GY (x)�G�(x))
�
> u

1=2
T s0

T;bbT (�)
!
+ o(1)

� P

 
sup

�2�+0 [�'0

inf
x2B"T�

�
T

uT

�1=2 �
T�1=2�T (�; x) + (GY (x)�G�(x))

�
> d�(0)

!
+ o(1) (40)

where the �rst inequality holds by Lemma 2 and the second inequality holds by Assumption 3, and

the last inequality holds by (39). Now consider the right hand side of (40). Note that

T�1=2�T (�; x)
p! 0 (41)

by Lemma 1. Also,

limT!1 sup
�2�+0 [�'0

(T=uT )
1=2��(�T ) > d�(0) (42)

because, if �+0 6= ?; limT!1��(�T ) = d�(0) > 0 8� 2 �+0 and limT!1 (T=uT )
1=2 > 1 by Assumption

4 and, if �+0 = ?; limT!1 sup�2�'0 (T=uT )
1=2��(�T ) > 0 = d�(0) by Assumption 4. Therefore, (40),

(41), and (42) imply that

P
�
WT > sT;bbT (�)

�
! 1;

as required.

Proof of Theorem 4. De�ne the empirical process in (�; z; x) 2 �=0 �Z � X to be:

��T (�; z; x) =
p
T
h bGY (x)� bGT;�+z(x)�GY (x) +G�+z(x)i ;

where Z is a compact set containing zero and GY (x) � G�T (x) = GY (x) � G�+c=pT (x) satis�es the
local alternative hypothesis (24): Similarly to Lemma 1, we can show that the stochastic process

f��T (�; �; �) : T � 1g is stochastically equicontinuous on �=0 �Z � X . Therefore, since

QT (�T ; x) = �
�
T (�; c=

p
T ; x) + �Y �(x); (43)

we have,

sup
�T2�0T

inf
x2 bB"T� QT (�T ; x)� sup

�2�=0
inf
x2X

[��T (�; 0; x) + �Y �(x)]

= sup
�2�=0 ;c=

p
T2Z

inf
x2X

h
��T (�; c=

p
T ; x) + �Y �(x)

i
� sup
�2�=0

inf
x2X

[��T (�; 0; x) + �Y �(x)] (44)

= op(1); (45)

22



where (44) holds wp ! 1 since P
� bB�T� = X

�
! 1 for � 2 A=0 by Lemma 2 and (45) holds by the

stochastic equicontinuity of f��T (�; �; �) : T � 1g : Now, the result of Theorem 4 holds by the weak

convergence of ��T (�; 0; �) + �Y �(�) to e�(�; �) + �Y �(�) and continuous mapping theorem.
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9 Tables and Figures

Table I. Descriptive Statistics Benchmark Portfolios

The table shows descriptive statistics for the benchmark portfolios formed on market beta (Panel

A) and the monthly excess returns of the CRSP index, as well as the EP, TP and LP test port-

folios constructed for our simulations (Panel B). The reported kurtosis is the excess kurtosis. The

beta portfolios are constructed from the CRSP tapes. In December of each year, all stocks that

ful�ll our data requirements are placed in ten portfolios based on the previous 60-month betas. A

minimum of 12 months of return observations is needed for a stock to be included on formation

date. Each portfolio includes an equal number of stocks. The sample period runs from January

1933 to December 2002 (T=840). Excess returns are computed from the raw return observations by

subtracting the return on the one-month US Treasury bill from Ibbotson. We thank Pim van Vliet

for making the data available. All data described in Panel A can be found at his online datacenter:

http://www.few.eur.nl/few/people/wvanvliet/datacenter.

Panel A : The 10 benchmark portfolios

Mean Stdev. Skewness Kurtosis Min Max

1 0.670 3.822 -0.754 5.230 -24.577 15.718

2 0.698 4.015 -0.018 3.926 -20.573 24.222

3 0.756 4.631 0.648 10.175 -25.003 41.292

4 0.659 4.832 0.255 6.269 -25.943 34.332

5 0.918 5.669 1.041 13.370 -29.333 55.762

6 0.833 6.094 0.592 8.279 -28.615 48.932

7 0.809 6.538 0.574 8.773 -32.573 53.842

8 0.768 7.470 0.774 9.264 -30.395 61.832

9 0.833 8.306 0.689 7.941 -36.583 64.262

10 0.794 9.653 0.814 8.516 -37.133 83.692

Panel B : The CRSP market index and the test portfolios

Mean Stdev. Skew Kurtosis Min Max

Mkt 0.714 4.937 0.156 6.181 -23.673 38.172

EP 0.774 5.699 0.560 9.025 -28.020 47.953

TP 0.960 4.264 -0.022 4.571 -21.870 27.730

LP 0.960 5.721 1.361 9.156 -15.139 53.311
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