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Valuation Biases, Error Measures, and the
Conglomerate Discount

Abstract

We document the importance of the choice of error measure (percentage vs. logarithmic

errors) for the comparison of alternative valuation procedures. We demonstrate for several

multiple valuation methods (averaging with the arithmetic mean, harmonic mean, median,

geometric mean) that the ranking of valuation methods is largely a function of the error

measure chosen. Percentage errors give a higher weight to relative overestimates than to

underestimates, and all established multiple valuation methods exhibit a positive bias ac-

cording to this measure. Percentage errors lead to consequences that are not intuitive: E.g.

setting company values equal to their book values often becomes the best valuation method.

Logarithmic errors give equal weight to relative overestimates and underestimates and avoid

unwanted consequences. With logarithmic errors, median and geometric mean are unbiased

while the arithmetic mean is biased upward as much as the harmonic mean is biased down-

ward. Measuring the diversification discount with the arithmetic mean generates a discount

about twice as large as with the geometric mean or the median, whereas the harmonic mean

leads to a diversification premium.

JEL Classification: G10, G34

Keywords: Valuation, Conglomerate Discount, Financial Ratios



1 Introduction

This paper analyzes a methodological question that turns out to be of primary importance

for valuation research: which error measure should be used when comparing alternative

valuation methods. Of the 14 papers on horse races of multiples and other valuation methods

(see the survey in Table A in the appendix), nine measure valuation accuracy based on the

percentage difference between estimated values and market values, whereas another five use

log errors, defined as the logarithm of the ratio of the estimated value to the market value.

Only two of the articles that use percentage errors motivate their choice, and no paper

explicitly recognizes the choice of error measure as a critical decision in the research design.1

Also, no paper reports results for both error measures. In this paper we show that the

researcher’s choice of error measure is critical. This choice determines whether a valuation

method produces a bias or not and therefore predisposes the conclusion in favor of certain

types of valuation methods.

We demonstrate our point by investigating a question that is of independent interest.

We compare four methods for averaging multiples: the arithmetic mean, median, harmonic

mean, and the geometric mean. The use of averaging procedures in academic research does

not reveal a consensus: median, arithmetic mean, and harmonic mean are used by different

researchers, and some papers use several averaging procedures simultaneously without pro-

viding the reader with explicit guidance as to which one is preferable.2 Several researchers

have recently argued in favor of the harmonic mean as the best choice as it corrects for the

apparent upward bias of the arithmetic mean.3 This paper analyzes how the preference for

one averaging method over another is predicated on the use of different error measures. In

particular, we show that the harmonic mean is just as biased as the arithmetic mean if we

1Alford (1992) argues that absolute percentage errors put equal weight on positive and negative errors.
Beatty, Riffe, and Thompson (1999) also provide an explicit justification.

2Beatty, Riffe, and Thompson (1999) use three error measures, reporting means and medians alongside
each other is more standard. Only Herrmann and Richter (2003) use the geometric mean.

3Baker and Ruback (1999) argue that the harmonic mean is an ML-estimator in a model where valuation
errors are normally distributed. Liu, Nissim and Thomas (2002a, 2002b) provide a derivation that supports
the use of the harmonic mean as a viable and unbiased estimator. Beatty, Riffe, and Thompson (1999),
Bhojraj and Lee (2002), and Herrmann and Richter (2003) also use the harmonic mean.
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use log errors and that it owes its popularity only to the use of percentage errors.4

While we advocate the use of log errors in this paper, many researchers find percentage

errors more intuitive. Error measures ultimately depend on the loss function of the researcher

or analyst who needs to choose a valuation procedure. As such, error measures are subjective

and not debatable. We still argue that log errors are more desirable than percentage errors

by demonstrating that the usage of percentage errors produces some results that are not

intuitive. In particular, we show that an ad hoc method that ignores all comparable infor-

mation and sets the predicted market value equal to the firm’s book value turns out to be

just as good or even better than any of the four comparable procedures if percentage errors

are used. Moreover, ignoring all information and setting the predicted firm value equal to

$1 leads to comparatively low percentage errors and — with some parameter constellations —

turns out to be the best valuation method when judged by percentage errors.

Our explanation for these results is simple. Percentage errors penalize overvaluations

more than undervaluations. While undervaluations larger than 100% are impossible by

virtue of limited liability, overvaluations are not limited and often much more extreme than

100%. An overvaluation by a factor of 3 produces a percentage error of 200%, whereas an

undervaluation by the same factor produces a percentage error of —67%, a number three

times smaller in absolute value. As a consequence, judging valuation methods on the basis

of percentage errors creates a preference for methods that avoid large overvaluations. Setting

market values equal to book values severely undervalues companies on average as the market-

to-book ratio is 1.9 for the typical company in our sample, but this ad hoc procedure avoids

large overvaluations. The same is true for the more extreme — and in our view quite absurd

— approach of setting company values equal to $1. Effectively, this sets all percentage errors

equal to —100% by fiat. However, all averaging methods produce percentage errors in excess

of +100% between one fifth and one third of the time, and errors exceeding 200% or more are

not uncommon. Setting company values equal to $1 conveniently avoids percentage errors

4Note from Table A in the appendix that all researchers who use or favor the harmonic mean also base
their error statistics on percentage errors.
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of this magnitude.5

Logarithmic errors avoid these pitfalls. The log error of an overvaluation by a factor of

3 is exactly equal in magnitude to an undervaluation by this factor, and undervaluations of

100% produced by setting values equal to $1 appropriately create extremely large negative

error measures. Statistically, logarithmic error distributions are more symmetric and closer

to satisfying the normality assumptions often made for statistical inference.6

We base our analysis on a sample of 52,112 firm-year observations from 1994 to 2003

for U.S. companies and show that the distributions of standard financial ratios (market-

to-book, value-to-sales, price-earnings) are heavily skewed and much better modelled by a

lognormal distribution than by a normal distribution, even though both distributions are

rejected in formal tests. We then develop a two-pronged approach. We first develop an

analytic argument based on the lognormal distribution. We establish those results that

cannot be derived analytically through Monte Carlo simulations calibrated to the moments

of the empirical distribution of market-to-book ratios. We show that for log errors the

arithmetic mean has a positive bias and the harmonic mean has a negative bias, and that

both biases are equal in absolute value. Only the geometric mean is unbiased in all cases,

which is not surprising once we recognize that the geometric mean can be obtained by

first calculating the arithmetic mean of the logarithms of the relevant financial ratios and

then transforming back from logarithms: this transformation is precisely what is required to

neutralize the skewness of the lognormal distribution and it is somewhat surprising that the

geometric mean is the only averaging procedure that did not find many followers so far.7

Our second approach is empirical. As empirical distributions of multiples are not exactly

lognormal, we compare the two error measures using our sample of historical data. We

5Some researchers report median percentage errors or other percentiles of the error distribution. We
comment on this practice in more detail in Sections 3 and 4 below.

6To the best of our knowledge, only Baker and Ruback (1999) have explicitly tested if the normality
assumption applies to their sample and they could not reject it. However, note from Table A that their
sample of 225 observations is rather small by the standards of the valuation literature. Kaplan and Ruback
(1995), Lie and Lie (2002), and Hermann and Richter (2003) explicitly motivate the use of log errors with
the skewness of percentage errors or the distributions of the underlying fundamental variables.

7An exception is the little known study by Herrmann and Richter (2003) who do not call it the geometric
mean but the “retransformed logarithmic mean,” appealing to the same argument as presented in the text.
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find that the qualitative conclusions from the theory and the simulations continue to hold.

In particular, the geometric mean and the median are unbiased with log errors, while all

methods have a positive bias and the harmonic mean is least biased with percentage errors.

Finally, we apply our insights to the measurement of the diversification discount. The

literature on the diversification discount relies exclusively on multipliers (asset and sales

multipliers, and Tobin’s q) to measure the fundamental value of the segments of diversified

firms. As such, this literature constitutes the academic showpiece for the use of multiples

and a good testing ground for multiples research.8 We show that large estimates of the

diversification discount are obtained simply from biased benchmarks generated by averaging

multiples with the arithmetic mean. The median or geometric mean give more consistent

and much smaller estimates of about 20%. In contrast, the harmonic mean leads to a small

diversification premium of up to 3%.

The following Section 2 discusses our sample and analyzes different distributional mod-

els for multiples. Section 3 presents our conceptual analysis based on analytic proofs and

simulations. Section 4 conducts the empirical analysis based on tests similar to those in

Section 3. Section 5 applies our insights to the measurement of the diversification discount

and Section 6 concludes. Technical material is deferred to the appendix.

2 Data and the distribution of multiples

In this section, we present our dataset and demonstrate that the frequency distribution of

conventional financial ratios resembles a lognormal distribution much more than a normal

distribution. We will use the assumption that financial ratios are lognormally distributed in

the next section when we derive our theoretical results.

Our analysis is based on annual data from Compustat between 1994 and 2003. We select

all companies domiciled in the United States whose sales and total assets both exceed $1

million. We also require that the market value of equity four months after the fiscal year end

8The diversification discount literature and the valuation literature have largely proceeded independently
of each other. The literature on the diversification discount begins with Lang and Stulz (1994) and Berger
and Ofek (1995). We discuss this literature in further detail in Section 5 below.

4



is available. The four months lag ensures that the company’s financial statements have been

publicly available to investors and are therefore reflected in the market value. We exclude

those companies where the SIC code is either not available or equals 9999 (not classifiable).9

Finally, we delete all firms in industries (as defined by the two-digit SIC code) with less than

5 firms. We are left with a final dataset with 52,112 firm-year observations.

We focus on three multipliers:

• market-to-book ratio, defined as the market value of equity divided by the book value

of equity.

• value-to-sales ratio, defined as the ratio of enterprise value to sales, where enterprise

value is the market value of equity plus total debt.

• price-earnings ratio, defined as market value of equity divided by net income.

A multiple that is negative according to these definitions is set to a missing value. We

also set the market-to-book ratio equal to a missing value if shareholders’ equity is smaller

than $1 million. We can compute the market-to-book ratio for 47,614 firm-year observations,

the value-to-sales ratio for 51,899 observations, and the price-earnings ratio for 33,753 ob-

servations. Finally, we winsorize the data separately for each multiple and each year at 2.5%

and 97.5%. We report descriptive statistics for all three ratios and their natural logarithms

in Table 1.

[Insert Table 1 about here]

The table shows that the median market-to-book ratio in our sample is 1.87. The median

value-to-sales ratio is 1.63, and the median price-earnings ratio is 17.1.10 As usual, all
9We use the historical SIC code (SICH) when available. If the historical SIC code is not recorded in

Compustat, we use the current SIC code (SIC).
10Bhojraj and Lee (2002) report a similar median market-to-book ratio of 1.84. Their mean (2.26) is

substantially lower than our mean, because they delete extreme values while we winsorize them; also their
sample ranges from 1982 to 1998 and excludes the high valuation years 1999 and 2000 included in our sample.
Of the other comparable studies, Beatty, Riffe, and Thompson (1999) and Liu, Nissim, and Thomas (2002a)
report all variables scaled by price, which is the inverse of our ratio and has different statistical properties.
Alford (1992) and Cheng and McNamara (2000) work with much older samples. Lie and Lie (2002) work
with different definitions (enterprise value to total assets instead of market-to-book) and only with 1998
data.
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distributions are highly skewed and means substantially exceed medians. Table 1 also reports

considerable positive excess kurtosis for all three distributions, i.e. all distributions have

fatter tails than the normal distribution. In contrast, the distributions of the logarithms of

all ratios are more symmetric and show less excess kurtosis than the original distributions,

although some skewness still remains.

Figure 1 graphs the standardized distributions of the three multiples and their log trans-

formations. We standardize each observation by deducting the industry-year mean and

dividing by the industry-year standard deviation. Hence, we allow for different means and

variances across industries and years. In the left column of Figure 1, we always compare

the empirical distribution of the untransformed data (solid line) with the best fits obtained

for the normal distribution (dotted line). In the right column we compare the distribution

of the logarithmic transformations of the original data with the normal distribution (dotted

line).

Clearly, the lognormal distribution appears to be a better model than the normal distri-

bution for all three financial ratios. From a visual inspection of the graph, the lognormal

distribution appears to be a reasonable model for the market-to-book ratio and the value-to-

sales ratio, but a somewhat less convincing model for the price-earnings ratio. However, even

for the market-to-book ratio and the value-to-sales ratio, the lognormal distribution does not

describe the empirical distribution perfectly. For all ratios, the empirical distributions are

more skewed and exhibit fatter tails than the lognormal distribution. We test the fit of the

distributions to the data more formally by applying three standard tests for normality to

the ratios and their log transformations.11 These are reported in Table 2.

[Insert Table 2 about here]

All three tests reject the normal distribution as the correct model for the distributions

11All three tests compare the empirical distribution function with the normal distribution function where
the mean and the variance are estimated from the sample. The Kolmogorov-Smirnov test is based on the
maximum absolute distance between the two distributions. In contrast, the Cramer-von Mises test and the
Anderson-Darling test are based on the expected sum of squared distances under the normal distribution
function. While the Cramer-von Mises test gives equal weight to all observations, the Anderson-Darling test
gives higher weight to the tails of the distribution. See D’Agnostino and Stephens (1986), p.100.
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Figure 1: The figure shows the empirical distributions of the financial ratios (left column) and
their logarithmic transformations (right column), calculated with 100 histogram intervals. In
each plot, the solid line shows the actual distribution of the data and the dotted line shows
the density function of a normal distribution with mean and variance fitted to the data. All
observations have been standardized by deducting the industry-year mean and then dividing
by the industry-year standard deviation, where the industry is given by the two-digit SIC
code. The data have been truncated to generate meaningful plots.
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of all three ratios as well as for their logarithmic transformations. Hence, we also reject

the lognormal distribution as the correct distributional model. This is unsurprising given

that we have a very large dataset, so that the tests have high power. However, a closer

look at the test statistics supports the same conclusion already suggested by Figure 1: the

lognormal distribution is a much better model for all three financial ratios than the normal

distribution, given that the data are highly skewed. The Kolmogorov-Smirnov test statistic

falls by between 70% (price-earnings) and 90% (value-to-sales), the Cramér-von Mises and

Anderson Darling test statistics even fall by up to 99% for the value-to-sales ratio. In all

cases the relative improvement is largest for the value-to-sales ratio and smallest for the price-

earnings ratio, which is consistent with our visual inspection of these distributions in Figure

1. We therefore conclude that the lognormal distribution works best for the value-to-sales

ratio and worst for the price-earnings ratio.12

There is also a theoretical reason why some financial ratios are better approximated by

the lognormal distribution than others. Variables like market value, book value, sales, total

assets, or the number of employees can only be positive and are measures of firm size. If

these variables are lognormally distributed (which is a common assumption in statistical

applications), then the ratio of two of these variables is also lognormally distributed. This

argument does not hold for performance measures, like net income or EBIT. These variables

can become zero or negative, and it is not clear whether the truncated distribution obtained

by discarding negative values can be approximated well by a lognormal distribution.

In the next section, we will work with the assumption that financial ratios are lognormally

distributed. This assumption allows us to generate strong theoretical results and to perform

easily parameterized simulations. The evidence presented so far justifies this assumption

but also makes clear that it constitutes a rather strong simplification of reality. We will

therefore check all our theoretical results with the true empirical distribution in Section 4.

Alternatively, we could search for a better statistical model than the lognormal distribution

and base our conceptual analysis on such a model. We do not pursue this and argue below

12We also repeated these tests for the book-to-market ratio (i.e. the inverse of the market-to-book ratio)
and obtained similar results which we therefore do not report in the tables.
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that this would probably have little impact on our results.

3 Conceptual Analysis

In this chapter we use theoretical arguments and Monte Carlo simulations to investigate

the relationship between error measures (percentage error or logarithmic error) on the one

hand and multiple valuation methods (median, arithmetic mean, harmonic mean, geometric

mean) on the other. In particular, we demonstrate that the optimal choice of averaging

method crucially depends on the error measure chosen by the researcher.

3.1 Theoretical Analysis

We wish to value some company j on the basis of some financial ratio denoted by x. We

use subscripts to refer to individual companies, so xj is the value of x for company j. We

will refer to company j also as the target firm. The multiple x is the ratio of the market

value of the company, denoted by MV , to some base B, where the base may be the book

value of the assets, sales revenues, or a measure of firms’ profitability like EBIT, EBITDA,

or earnings, so that xj = MVj/Bj. The literature has used different definitions of market

value and a variety of different bases that do not concern us in this section beyond their

statistical properties.

The financial ratio x can be measured for a set of companies that are deemed comparable

to company j by the researcher or analyst. We denote this set by Ij = {1, ..., n}, where

j /∈ Ij. We assume throughout this subsection that the {xi|i ∈ Ij} and xj have been drawn

independently from an identical distribution.13 Then we compute an average financial ratio

x̄j across all comparable firms i ∈ Ij and multiply it by firm j’s base Bj in order to obtain

an estimate of firm j’s market value:

dMV j := x̄j ×Bj . (1)
13In addition, we assume that the set Ij contains at least 2 elements that differ from one another. We

maintain the independence assumption only for expositional convenience. All our results can also be derived
under weaker assumptions that allow for dependence between the xj .
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We consider four different averaging methods:

Arithmetic Mean: x̄Aj =
1

n

nX
i=1

xi (2)

Harmonic Mean: x̄Hj =
1

1
n

Xn

i=1

1
xi

(3)

Geometric Mean: x̄Gj =
Yn

i=1
x
1/n
i = exp

½
1

n

Xn

i=1
ln (xi)

¾
(4)

Median: x̄Mj =Median (xi, i ∈ Ij) (5)

The second expression in (4) shows that the geometric mean can be interpreted as a retrans-

formed arithmetic mean of the logs of the multiples xi.

Proposition 1 collects some basic results about the relative size of these four averages.

We give a short proof in the appendix but do not credit ourselves with first establishing

these results. They follow directly from Jensen’s inequality and the law of large numbers.

Proposition 1 (Means): (i) The arithmetic mean always results in a higher market value

estimate than the geometric mean or the harmonic mean, and the harmonic mean always

results in a lower market value estimate than the geometric mean:

x̄Hj < x̄Gj < x̄Aj .

The relative position of the median, x̄Mj , depends on the distribution of the ratios.

(ii) If the ratios have been drawn from a symmetric distribution, the median is close to the

arithmetic mean in sufficiently large samples. More formally:
¡
x̄Mj − x̄Aj

¢
→ 0 as n→∞.

(iii) If the ratios have been drawn from a lognormal distribution, the median is close to the

geometric mean in sufficiently large samples. More formally:
¡
x̄Mj − x̄Gj

¢
→ 0 as n→∞.

Hence, an analyst who uses the harmonic mean will always arrive at lower value estimates

than her colleague who works with the geometric mean, given that they use the same set

of comparable companies. Both will obtain lower estimates than a third analyst using the

arithmetic mean. The differences between these three measures and the median are larger

10



if the variation in the sample is large. So for a set of comparables with little variation,

the four methods arrive at similar results. Note also that part (i) of Proposition 1 makes

no assumption on the distributions of the xj, and we need the assumption of a lognormal

distribution only for part (iii).

In order to compare the precision of the four averaging methods, we need an error measure

that defines what we mean by ‘relative precision.’ Two error measures are commonly used

in the literature on company valuation:

Percentage Error: epct (j) =
dMV j −MVj

MVj
=

x̄j ×Bj − xj ×Bj

xj ×Bj
=

x̄j
xj
− 1 , (6)

Log Error: elog (j) = ln

ÃdMV j

MVj

!
= ln (1 + epct(j)) = ln

µ
x̄j
xj

¶
. (7)

>From now on we will suppress the reference to firm j for errors for ease of exposition. Note

that the second transformation in (6) and (7) shows that the errors and their statistical

properties are independent of the multiple base Bj of the target firm.

In order to select optimal valuation procedures we investigate statistics of these error

measures. Specifically, we are interested in the bias E (ej) and the mean squared error

E
¡
e2j
¢
or the Root Mean Squared Error (RMSE). Some of the literature following Alford

(1992) has also looked at the mean or median absolute error and we will therefore also look

at E (|epct|). While it is true that the two error functions do not differ significantly for

small errors as we have epct = elog+O
¡
(elog)

2¢ from a first order Taylor expansion, valuation
errors with multiples are often large and then the two error functions generate some surprising

differences. Proposition 2 summarizes our theoretical results about the biases of the different

valuation methods with the two error measures:

Proposition 2 (Errors): Assume that all comparable ratios xi and xj are distributed log-

normal with parametersμ and σ2 > 0.

(i) For percentage errors, the geometric mean and the arithmetic mean are both biased

11



upward. The bias of the arithmetic mean is stronger than that of the geometric mean.

0 < E
¡
eGpct
¢
< E

¡
eApct
¢
.

The expected error of the harmonic mean is smaller than that of the geometric mean: E
¡
eHpct
¢
<

E
¡
eGpct
¢
, and the median is also biased upward in large samples.

(ii) For log errors, the geometric mean is unbiased, the arithmetic mean is biased up-

ward, and the harmonic mean is biased downward.

E
¡
eHlog
¢
< E

¡
eGlog
¢
= 0 < E

¡
eAlog
¢
.

In absolute terms, the harmonic and the arithmetic mean are equally biased: E
¡
eHlog
¢
=

−E
¡
eAlog
¢
. The median is unbiased in large samples.

The arithmetic mean has a positive bias for both definitions of valuation errors. The

distribution of xi is skewed and the arithmetic mean gives equal weight to all observations,

including large outliers that necessarily occur with skewed distributions. The geometric

mean is unbiased for log errors for reasons that are intuitive from looking at the second

transformation in equation (4). The geometric mean is the retransformed arithmetic mean,

applied to the logarithms of the financial ratios xi, and ln(xi) is distributed normal. Hence,

this implicit logarithmic transformation removes the skewness of the original distribution and

the transformed distribution is symmetric, which is exactly what is required for generating

unbiased logarithmic errors. However, unbiased logarithmic errors are not equivalent to

unbiased percentage errors. From (7) observe that epct = exp(elog) − 1 and this convex

transformation gives positive errors a larger weight than negative errors, creating an upward

bias. By comparison the harmonic mean is biased downward for logarithmic errors. The

skewness of the lognormal distribution implies that large outliers are balanced by a larger

number of very small observations, which then create very large numbers 1/xi from the

definition of the harmonic mean. This inflates the denominator of x̄Hj and biases the valuation

errors downward. Interestingly, the harmonic mean is biased downward just as much as the

12



arithmetic mean is biased upward.

There are two questions that we cannot settle by way of analytic proofs. Firstly, we

cannot infer if E
¡
eHpct
¢
is positive or negative, or, indeed, if E

¡
eHpct
¢
is larger or smaller

in absolute value than E
¡
eGpct
¢
and E

¡
eApct
¢
. Secondly, we cannot derive the properties of

the median in small samples or determine analytically what a large sample is. We will

address these questions by way of a Monte Carlo simulation. The simulation also allows us

to quantify how severe the different biases are.

3.2 Monte Carlo simulations

Simulation methodology. In our theoretical analysis we only describe the four averaging

methods (median, arithmetic mean, harmonic mean, and geometric mean) in terms of their

biases. A good valuation method should have no or only a small bias, but it should also have

a low dispersion. In this section, we compare the four different averaging methods and the

two error measures using simulated data. The Monte Carlo approach allows us to obtain the

full error distribution and to calculate more statistics than we can derive theoretically. On

the other hand, simulations allow us to abstract from many complicated features of observed

data, that are caused e.g. by sampling errors or accounting conventions.

In addition to the four averaging methods, we also consider two benchmark valuation

procedures. These procedures make no use of comparable information and we would expect

that any valuation procedure that incorporates more information should also generate lower

errors. In particular:

1. We set the value of the target company arbitrarily equal to its book value, which

amounts to setting the market-to-book value of the target company equal to one. We

therefore call this strategy in the tables below “MTB = 1.” This is clearly a very

rough and imprecise valuation method that is based on only one piece of accounting

information. Note that this method is biased downward as the median and mean

market-to-book ratio are substantially larger than one in our sample. We would not

wish to use a procedure that does as poorly or possibly worse than this.
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2. We set the value of the company arbitrarily equal to a very small value close to zero.

For this we choose $1. We refer to this procedure as “Value = $1” in the tables. This

procedure is even worse than the first as it relies on no company information at all and

any reasonable procedure should find it easy to beat this benchmark.

Both dummy-procedures lead on average to undervaluations and large biases. However,

they generate very little dispersion and avoid overvaluations. The Value=$1 procedure also

avoids errors of more than 100% in absolute value.

In practice, analysts use a set of comparable firms - rather than all available firms - in

order to predict the market value of another, similar firm. Following much of the literature,

we choose the same industry as determined by the 2-digit SIC code as the appropriate peer

group.14 In our sample, we have 608 industry-years with 5 or more firms each, i.e. on average

61 industries per year. The average industry contains 78 firms, and the median industry 38

firms. We therefore simulate industries with 40 firms. Later we will also consider industries

with 5 or 200 firms.

The basic case. We perform 100,000 runs. For each run, we draw 40 market-to-book

ratios from a lognormal distribution with μ = 0.597 and σ2 = 0.801. These parameters

are the average industry mean and the average within-industry standard deviation of the

log market-to-book ratio across the 608 industries in our sample. The standard deviation is

somewhat lower than the overall standard deviation in our sample (0.882, see Table 1), so

choosing firms from the same industry reduces the dispersion as it removes between-industry

variation. The mean is also different because we average first within each industry and then

across industries, which gives firms in smaller industries a larger weight. Likewise, we draw

40 book-values from a lognormal distribution with μ = 18.312 and σ2 = 1.828. Again these

parameters have been estimated from our dataset. The firm’s market value is then given

by the product of market-to-book ratio and book value. In the next step, we estimate the

market value of each of the 40 firms with each of the six methods considered. For the four
14See Alford (1992), Cheng and McNamara (2000), and Bhojraj and Lee (2002) for an analysis of more

sophisticated methods to choose comparables.
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averaging methods, we use (2) - (5). For MTB = 1 or Value = $1, we set the estimated

firm value equal to the book value or equal to $1, respectively.15 Finally, we calculate the

resulting percentage errors and the resulting log errors. For each valuation procedure and

each error type we thereby obtain 40 × 100, 000 = 4, 000, 000 errors. Table 3 reports some

statistics for the error distributions, Panel A for log errors, Panel B for percentage errors,

and Panel C for absolute percentage errors.

[Insert Table 3 about here]

The table corroborates our theoretical results from Proposition 1: The bias for percentage

errors is highest for the arithmetic mean (0.899), is lowest and almost zero for the harmonic

mean (0.023), with the geometric mean and the median about halfway in between (0.389 and

0.395, respectively). We therefore reproduce the result stated in the previous literature that

the harmonic mean dominates all other valuation methods in terms of percentage errors. In

terms of log errors, the geometric mean and the median are unbiased, and, with a bias of

0.308, the arithmetic mean is biased upward just as much as the harmonic mean is biased

downward (see Proposition 2(ii)). Interestingly, while the pattern of mean errors (i.e. bias)

differs significantly between percentage errors and log errors, the median errors generate the

same message for percentage errors and log errors: they are zero for the median and the

geometric mean, positive for the arithmetic mean, and negative for the harmonic mean.

However, we are not only interested in the bias of valuation procedures but also in the

dispersion of valuation errors. Wemeasure these by the standard deviation and the root mean

squared error (RMSE). The RMSE combines bias and standard deviation in a convenient way

and can be rationalized from minimizing a quadratic loss function. The squared RMSE is

equal to the variance plus the squared bias. For many applications in practice (e.g., assessing

the purchase prices of unlisted companies, IPO pricing), the bias may be more important

than is reflected in RMSEs. For example, for a successful acquisition strategy it may be more

important to avoid consistently overpaying for acquisition targets. We therefore also report
15The book value is relevant only for the ”Value=$1” method. For all other methods, the book value

appears in the numerator and the denominator of the two error measures and therefore cancels. See (6) and
(7) and note that for MTB=1 we have xj = 1.

15



biases and standard deviations throughout, as different applications may warrant different

weights for the bias and dispersion of valuation methods.

For percentage errors the RMSE generates a remarkable result: Estimating the target

firm’s market value by its book value (MTB=1) clearly outperforms all other valuation

methods. Even the more extreme ad hoc procedure of setting the target firm’s market value

to $1 (Value=$1) turns out to be practically as good as using the harmonic mean. The reason

is that percentage errors are bounded from below at -100% but not bounded from above. If

errors on the unlimited upside are severe, methods that undervalue firms on average (or even

set the error equal to the lower bound as Value=$1 does) appear to be preferable. The last

column of Table 3 shows that, for a third of the firms, the percentage error of the arithmetic

mean exceeds 100%, while the median and the geometric mean lead to percentage errors in

excess of 100% for one fifth of all firms. These high overvaluations are largely avoided by

MTB=1 and completely eliminated by Value=$1.

Log errors, on the other hand, have an unlimited downside and penalize undervaluations

as much as overvaluations. Table 3A shows that the standard deviations of these log errors

are virtually identical for all four averaging procedures, so that the differences in the RMSEs

are generated entirely by the differences in bias. The Value=$1 procedure is heavily and

appropriately penalized for the extreme undervaluations it generates. TheMTB=1 procedure

generates the lowest dispersion but still has a higher RMSE than all comparables-based

procedures because of its large downward bias, which is assessed at 60% in terms of log

errors, but only 24% in terms of percentage errors.

The fact that over- and undervaluations are treated asymmetrically by percentage errors

is also reflected in the skewness of valuation errors. Errors obtained with percentage errors

are highly skewed while errors obtained with log errors are virtually symmetric. We suspect

that the skewness of percentage errors caused by the limited downside and unlimited upside

is the reason why many researchers who work with percentage errors or absolute percentage

errors report medians (and sometimes other percentiles) rather than means of the error

distribution. This approach ignores the large incidence of extreme overvaluations, however.

16



Absolute errors were used by some researchers (e.g. Alford, 1992) and behave broadly

similarly to percentage errors, but are somewhat more extreme as Panel C of Table 3 shows.

They are more skewed, and means and medians are both larger compared to percentage

errors, whereas the RMSE and the proportion of errors exceeding 100% is identical by con-

struction. Statistics of absolute errors therefore generate very similar results to those of

percentage errors, and we therefore do not report results for simulated absolute percentage

errors in the following tables.

Simulations for small industries. So far we have analyzed the relative performance of

the four averaging methods when applied to a group of 40 comparable companies, because

the median industry size in our sample is 38. We now want to check whether our results are

robust with respect to the number of comparables used. Table 4 reports simulation results

for small industries with only 5 firms, so that each firm is valued by 4 comparable companies.

This accords with the common practice of requiring a minimum number of 4-5 comparable

firms in an industry. Even some of the two-digit SIC industries in our sample are small (10%

of the 608 industry-years in our sample contain between 5 and 10 firms), so analyzing the

impact of industry size is important.

[Insert Table 4 about here]

The results of Table 4 are broadly similar to those of Table 3 and all remarks about

rankings in terms of bias and RMSE still hold with two notable exceptions. Firstly, for

percentage errors we now report a significant overvaluation of 21% even for the harmonic

mean. As a result, the harmonic mean generates almost twice the RMSE as MTB=1,

and Value=$1 now clearly dominates all averaging methods according to the RMSE. The

reason is that all valuations become less precise: all standard deviations are markedly higher

in Table 4 than in Table 3. Also the frequency of outliers is generally higher in smaller

industries. Secondly, the median is not unbiased anymore for log errors and is now biased

upward by 4.6% (for 100,000 runs this is statistically significant at all conventional levels).

We observe that Proposition 1 only states that the median is unbiased in large samples, so
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our simulations suggest that 40 firms is large enough for the law of large numbers to apply,

while 5 firms is not. We investigate this further by plotting the bias of the geometric mean

and the median against industry size in Figure 2.
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Figure 2: The figure shows simulation results for the bias of the median and the geometric
mean in percent as a function of industry size (in terms of number of firms). The simulation
parameters other than the number of firms are those stated in the text.

Figure 2 shows that the bias of the median is a feature of small industries and that

it declines to biases below 1% for industries with more than 10 firms. Observe from the

figure that the median is unbiased for odd numbers of comparables, i.e. for even numbers

of firms in an industry, as the industry also contains the target firm. If the number of

comparables is even, however, the median is determined by arithmetic averaging of the two

central observations, so that the bias of the arithmetic mean carries over to the computation

of the median. In the extreme case of only two comparables, arithmetic mean and median are

identical. For moderately large industries these effects are not important anymore and the

median is as unbiased as the geometric mean for log errors (respectively, median percentage

errors).16

16The median would be approximately unbiased also for small even numbers of comparables, if the two
central observations would be averaged with the geometric mean instead of the arithmetic mean. This is
non-standard however.
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We also performed similar simulations for large industries with 200 firms, because ap-

proximately 10% of our 608 industry-years contain 200 firms or more. It turns out that the

impact of larger industry size is, somewhat predictably, the opposite of smaller industry size

and differs only little from our base case with 40 firms reported in Table 3. We therefore do

not report these results.

[Insert Table 5 about here]

Simulations for heterogeneous industries. A key variable in our analysis is the dis-

persion of the market-to-book ratio within industries. A good valuation procedure should

be able to cope with industries that exhibit large dispersions of market-to-book ratios. We

therefore also perform a comparative static analysis by increasing the standard deviation of

the industry market-to-book ratio by 50% from 0.80 to 1.20. We choose a rather extreme

increase in the standard deviation (only 2% of the 608 industry-years in our sample have a

standard deviation that exceeds 1.2) in order to better demonstrate the effects of increased

dispersion. Table 5 reports the results. In many ways, an increase in standard deviation

magnifies the effects we have discussed previously. The bias, the standard deviation and the

proportion of errors exceeding 100% increase dramatically for all valuation methods and all

definitions of valuation errors. A notable exception is the geometric mean and the median

with log errors which remain unbiased. Interestingly, even the MTB=1 procedure now over-

values the target firm with percentage errors (on average by 11.5%), confirming our result

above that overvaluation is a feature of the percentage error and not informative about the

valuation procedures themselves. Note that MTB=1 still heavily underestimates company

values according to log errors. Moreover, with percentage errors Value=$1 now dominates

the arithmetic mean, the median, and the geometric mean in terms of bias and RMSE.

We can now summarize our results from the theoretical analysis as follows. Percentage

errors may seem more intuitive than log errors at first glance, but they lead to a number

of counterintuitive results. The reason is that percentage errors penalize overvaluations

more than undervaluations because the percentage error of undervaluations is limited by

19



-100% whereas errors for overvaluations are unlimited. As a consequence, all reasonable

valuation procedures - including the harmonic mean and MTB=1 - have a positive bias with

percentage errors if the variance of the relevant financial ratio is sufficiently high. Therefore,

percentage errors favor valuation methods that consistently lead to low market values: Even

setting the value of the firm to $1 appears to be a sensible valuation method if dispersion is

high. By comparison, log errors are symmetric with respect to equal relative deviations and

therefore avoid these distortions. Based on log errors, averaging multiples using harmonic

means biases valuations downward, averaging with arithmetic means biases them upward,

whereas medians and geometric means lead to unbiased valuations. There is little to choose

between medians and geometric means, except for small industries with few firms, where the

geometric mean dominates. Altogether, we interpret this as a strong argument against the

widespread usage of percentage errors to compare valuation methods, as this seems to tilt

the playing field in favor of valuation methods that tend to undervalue companies.

4 Empirical analysis

The conceptual argument of the previous section is based on the model of a lognormal dis-

tribution. The analysis in Section 2 above shows that the lognormal distribution is superior

to the normal distribution, but is still rejected by the statistical tests reported in Table 2.

We therefore compare the six valuation methods (four averaging methods and two ad hoc

methods) on our dataset (see Section 2). This allows us to check whether our simulation

results continue to hold for real world data.

For all firms in the dataset we select a set of at least five comparables from the same

industry. Following Alford (1992), we use a slightly more complicated, but also more realistic

method to select comparables based on SIC levels than we did in theMonte Carlo simulations:

We start at the 4-digit SIC level. If we cannot find at least five comparable firms, we proceed

to the 3-digit SIC level and, likewise, to the 2-digit and 1-digit SIC level, where we can match

all remaining firms. We repeat this for every year from 1994 to 2003 and compute errors and
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statistics for the pooled sample as before. Table 6 reports the results for the market-to-book

ratio.17

[Insert Table 6 about here]

Table 6 largely corroborates our results from the previous section. The arithmetic mean

generates large positive biases for all definitions of valuation errors; the bias in terms of

percentage errors is positive for all methods based on comparables; and the harmonic mean

creates a downward bias when evaluated on the basis of either mean or median log errors

or median percentage errors. Consistent with the previous literature, the harmonic mean is

favored by mean percentage errors. For log errors, the geometric mean is unbiased and the

median exhibits a small but statistically highly significant negative bias. Finally, the upward

bias of the arithmetic mean is almost equal to the downward bias for the harmonic mean as

predicted by Proposition 1.

Figure 3 contains eight graphs that show the error distributions: each of the four rows

corresponds to one of the four averaging methods (arithmetic mean, median, geometric mean,

and harmonic mean). The left graphs give the distributions of percentage errors, whereas the

right graphs show the distributions of log errors. Clearly, all distributions of percentage errors

are highly skewed. Also, all distributions exhibit a significant proportion of percentage errors

that exceed 100%. The graphs confirm our intuition that errors based on log transformations

are much closer to the model of a normal distribution than percentage errors. Apparently,

the log transformation is successful in generating a symmetric distribution centered around

zero for the median and the geometric mean, whereas the distributions of log errors for the

arithmetic mean and the harmonic mean are not symmetric. The distribution of log errors

for the arithmetic mean has an extremely fat right tail, and its mode is clearly positive.

The harmonic mean, on the other hand, exhibits a fat left tail and a negative mode. Hence,

17In Tables 6, 7, and 8, we exclude observations with valuation errors larger than 1000 (i.e. 100,000%)
under percentage errors before calculating the statistics shown in the Table. Accordingly we exclude one
observation for Table 6 (market-to-book), one observation for Table 7 (enterprise-value-to-sales), and 13
observations for Table 8 (price-earnings). These obvious outliers heavily influence standard deviations and
RMSEs under percentage errors. On the other hand, they have only little effect on the numbers reported
under log errors.
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Figure 3: The figure shows the empirical error distributions based on the market-to-book
ratio, calculated with 100 histogram intervals from 47,614 firm-year observations from 1994-
2003. The left column shows the percentage errors, whereas the right column shows log
errors. The rows correspond to one averaging method each. The data have been truncated
to generate meaningful plots.
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the harmonic mean generates more undervaluations, whereas the arithmetic mean generates

more overvaluations.

The dispersion measures (RMSE and standard deviation) are much larger for the em-

pirical distribution than suggested by the simulations of the previous section, evidently a

consequence of the much fatter tails of the empirical distribution of market-to-book ratios.

In terms of the RMSEs and standard deviations of percentage errors, we also obtain the same

ranking of valuation methods as before, with the ad hoc methods dominating all comparable

methods and the harmonic mean as the best comparable method. However as discussed on

page 16, we are sceptical that the RMSE provides a useful weighting of dispersion and bias.

Still, even in terms of bias the MTB=1 method dominates the median, geometric mean, and

the arithmetic mean in terms of percentage errors (Panel B) and the bias for MTB=1 is very

similar in absolute value to that of the harmonic mean. However, MTB=1 is worse than all

comparable methods in terms of mean, standard deviation, and RMSE for log errors (Panel

A). A very similar picture obtains for absolute percentage errors.

[Insert Tables 7 and 8 about here]

Tables 7 and 8 display the results for, respectively, the value-to-sales ratio and the price-

earnings ratio. Instead of MTB=1 we use, respectively, Value=Sales and P/E=10 as ad

hoc valuation methods. We do not continue to use MTB=1, because setting the market

value of the firm equal to the book value would not mean using less information than the

averaging methods in the table but using different information. Tables 7 and 8 show that

all results for the market-to-book ratio continue to hold for the other two ratios. Note that

the statistics in Tables 6 to 8 are not comparable across tables, because they refer to slightly

different sets of firms. For instance, firms with negative earnings are included in the samples

analyzed in Tables 6 and 7 while they have been excluded for the calculations shown in

Table 8. Overall, the empirical analysis clearly corroborates our theoretical analysis and the

simulations based on the lognormal distribution. This supports our strategy of using the

lognormal model instead of more complicated distributional models that might fit the data

better than the lognormal distribution.
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5 The diversification discount: an application

In this section we apply our insights about alternative averaging procedures for multiples and

the implications of choosing different error measures for the analysis of the diversification

discount. The diversification discount is defined as the difference between the value of a

diversified (multi-segment) firm and an imputed break-up value estimated as the sum of

the values of each of its segments, where imputed segment values are calculated using a

comparables approach, typically based on the value-to-sales ratio, the value-to-assets ratio,

or Tobin’s Q. We add this discussion because the large literature testifies to the continued

interest in the correct measurement of the diversification discount. It is arguably the most

prominent academic application of multiples, and it allows us to show that the methodological

points raised in this paper are relevant for practitioners and researchers alike. Note that our

concern here is only the correct measurement of the diversification discount, and we do not

delve into what causes it or how it varies across countries or industries.18

The literature on the conglomerate discount estimates the imputed firm value dMV either

with the arithmetic mean or with the median of comparable firms’ financial ratios.19 The

harmonic mean or the geometric mean are never used. The literature has also not con-

verged on the question how the conglomerate discount should be reported. Lang and Stulz

(1994) and Servaes (1996) report the difference between the imputed ratio dMV /B and the

conglomerate’s ratio MV/B, where MV is the observed enterprise value, B is the multiple

base (i.e. assets or sales), and dMV is the estimated break-up value obtained by adding the

comparables-based valuations of all segments of the firm. This measure of the conglomerate

discount corresponds to our percentage valuation errors above when the difference dMV −MV

is scaled by B instead ofMV . By contrast, Berger and Ofek (1995), Lins and Servaes (1999),

and Schoar (2002) measure the excess value by ln(dMV /MV ), which corresponds to our de-

finition of log valuation errors above. Villalonga (2004) uses both measures. Note that

18The survey by Martin and Sayrak (2003) provides a comprehensive review of the literature on diversifi-
cation as well as a discussion of what causes the diversification discount.
19Lang and Stulz (1994) and Villalonga (2004) use the arithmetic mean. Berger and Ofek (1995), and Lins

and Servaes (1999) use the median, and Servaes (1996) reports results for both methods.
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with a procedure that overvalues the break-up value dMV more, we obtain a larger value for

both measures and for the conglomerate discount. Conversely, a valuation procedure that

undervalues dMV sufficiently strongly would lead us to report a diversification premium.

For our analysis of the conglomerate discount, we use Worldscope data, which provide

us with a longer time-period for our analysis compared to our version of Compustat.20 We

proceed in the standard way described in the literature by identifying all multiple-segment

firms on Worldscope domiciled in the United States.21 We only consider companies with

complete data for the first segment (SIC-code, sales, total assets), with company-wide sales

and total assets both larger than $1 million, with fiscal-year end in December, and with

non-missing enterprise value, where enterprise value is defined as the market value of equity

plus the book value of debt.22 We exclude companies with a financial segment (SIC codes

6000 to 6999) and companies whose company-wide sales are not within 1% of the sum of

the sales for all segments combined.23 We obtain a sample with 4,756 firm-years for the

period 1991-2003 and report results for the combined sample as well as for 2003 separately

(438 firms). We match each segment to the members of its narrowest SIC-industry where we

can identify at least 5 comparable single-segment companies. Our sample contains 16,397

single-segment firms (1,702 in 2003).

We report results for the asset multiplier and the sales multiplier in Table 9. Given

the close relationship between asset multipliers and Tobin’s Q we do not report results for

Tobin’s Q, which are very similar. The statistics in Table 9 are calculated in the same way

as those in Tables 3 to 8. Following Berger and Ofek (1995), we delete all observations where

ln(dMV /MV ) is larger than 1.386 or smaller than -1.386 before we calculate the statistics

20We have access to segment data from Compustat only for 1998-2004. For these years we obtain very
similar results to those obtained with Worldscope.
21A firm is identified as a multi-segment firm if it has segments from at least two different 2-digit SIC

groups (where headquarters with SIC code ‘9999’ are disregarded).
22We follow the convention in this literature and use the market value of equity at the end of December.

Note that this is different from our procedure in the last section, where we used the market value four months
after fiscal-year end.
23When we check whether sales add up to total sales, we include headquarters segments with SIC code

‘9999.’ If segment reporting is complete in this sense, we delete ‘9999’ segments and rescale segment sales
and segment assets such that they add up to company-wide sales and total assets, respectively. We delete
all firms with negative sales or with negative assets in any of the remaining segments.
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shown in Table 9. This deletes all firms where the estimated value dMV is more than 4 times

(or less than 25% of) the market value MV .

In the previous tables, we interpreted a positive mean as a systematic overvaluation of

target firms by the respective valuation method. Now, a positive mean is interpreted as a

conglomerate discount: The sum of the individual segment values (calculated with a partic-

ular valuation method) is systematically higher than the market value of the conglomerate.

[Insert Table 9 about here]

Table 9 displays similar numbers to those reported in the literature: If we value segments

with the arithmetic mean of the comparable firms’ asset multipliers, we obtain an average

conglomerate discount of 38.7% for the period from 1991 to 2003 (see Panel B). Villalonga

(2004) reports a discount of 47% for this period. If we average comparable information with

the median, we obtain a conglomerate discount of 14.5% with the asset multiplier, where

Berger and Ofek (1995) obtain a discount of 12.2% for a sample that spans from 1986 to

1991. With the sales multiplier, our estimate (21.9%, see Panel A) is somewhat higher than

that of Berger and Ofek (1995), who obtain only 9.7%.

Note that the imputed values based on medians or the geometric mean are similar to

each other and much lower than estimates based on the arithmetic mean. This is consistent

with our previous discussion: the median and the geometric mean always generate a lower

estimate dMV of the imputed value of the firm and therefore also a lower estimate of the

diversification discount (see Proposition 1). According to our results in Sections 2 and 3, the

arithmetic mean is likely to overestimate the break-up value and therefore the conglomerate

discount, whereas the geometric mean and the median will provide correct estimates. By

comparison, the harmonic mean reports no diversification discount for the asset multiplier

and a diversification premium of 3% for the sales multiplier.24 The reason is that the har-

monic mean undervalues dMV and compares the actual value of a firm to a benchmark that

24All estimates of the conglomerate discount in Table 9 increase slightly when conglomerates with sales
less than $20m are excluded from the sample (not shown in the tables). The conglomerate premium found
with the sales multiplier and the harmonic mean is then only 2%.
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Figure 4: The left panel of this figure shows the conglomerate discount over time from 1991 to
2003. For each line in the figure the imputed (break-up) value of the firm is computed using
a different multiple valuation method. The discount is calculated with the log error. Higher
numbers are higher discounts, negative numbers correspond to a conglomerate premium.
The right panel shows the difference between the conglomerate discount calculated with the
arithmetic mean and the discount calculated with the harmonic mean (solid line, left scale)
together with the average standard deviation of the comparable multiples (broken line, right
scale). The correlation between the two series is 0.63.

is too low.25

It is instructive to see how the estimates of the diversification discount have changed

over time depending on the averaging procedure chosen. The left panel of Figure 4 plots

the results for our sample over time for the asset multiplier. The median and the geometric

mean show that the conglomerate discount decreased from 25-30% in 1991 to about 10%

in 1998 and the following years. The solid line in the right panel of Figure 4 shows the

spread between arithmetic mean and harmonic mean, which increased from 30% in the mid-

nineties to more than 50% in 2000. In that year, the conglomerate discount based on the

arithmetic mean increases to almost 38% in 2000, while the conglomerate premium based

on the harmonic mean rises to 15%. In fact, this illustrates the impact of rising standard

deviations on the bias. In order to see this, the right panel of Figure 4 also displays the

25Observe that this reason for a conglomerate premium is completely unrelated to the conglomerate pre-
mium found in Villalonga (2004). Using a Compustat dataset similar to ours and a similar methodology she
also finds a significant conglomerate discount.
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average standard deviation of the comparable multiples used in the valuations26 (broken

line). The correlation between spread and volatility is 0.63 and it is significant at the 5%

level. Due to the high dispersion of financial ratios during the "internet bubble" period, the

arithmetic mean gives the wrong impression of an increased conglomerate discount in 1999-

2001 that is not recorded by the median or the geometric mean. Conversely, the harmonic

mean gives rise to a spurious conglomerate premium.

Our results suggest that those papers that reported a diversification discount on the basis

of imputed values estimated with arithmetic means have greatly overstated the diversification

discount. Those papers that use medians come up with more accurate (and much less

spectacular) estimates for the discount. Moving to estimates based on the harmonic mean

seems unwarranted.

[Insert Table 10 about here]

In Table 10, we report the conglomerate discount calculated with percentage valuation

differences (dMV /MV −1) rather than log differences (ln(dMV /MV )). A closely related (but

not identical) method is used by Lang and Stulz (1994) and Servaes (1996), as argued at

the beginning of this subsection. In line with our results from previous sections, conglomer-

ate discount estimates from percentage differences are much larger than estimates from log

differences. With the arithmetic mean one would obtain a discount of up to nearly 100%,

i.e. the imputed value is nearly twice as large as the actual market value. This confirms our

strong reservations about percentage differences. We do not believe that these numbers are

good estimates of the conglomerate discount and report them for completeness only.

6 Discussion and conclusion

In this paper we investigate the bias and dispersion of different averaging procedures for

multiples. We point out that in any sample, the arithmetic mean always results in higher
26For this, we first calculate the standard deviation of the comparable multiples for each segment that is

valued. Then we compute the weighted average of these standard deviations across the segments of each
firm in order to arrive at one volatility estimate for each firm. Finally, we average these volatility estimates
across all firms in a given year.
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valuations than the geometric mean, which in turn always predicts higher values than the

harmonic mean. The differences between the valuations increase with the dispersion of

values in the sample of comparable companies. Investment bankers and practitioners who

use multiples to value acquisition targets or IPOs seem to have an intuitive grasp of the

necessity to reduce the variation among comparables. They typically inspect the distribution

and eliminate what appear to be outliers that are not representative of the industry and can

be attributed to circumstances inapplicable to the target firm. Clearly, this ex post pruning of

the sample is entirely ad hoc, but it reduces the variation in the set of comparable companies

and makes the prediction less sensitive to potential biases of the averaging method. We take

a different route here and analyze the bias and accuracy of valuation methods.

Our analysis shows that the answer to the question which averaging method leads to

the best predictions depends crucially on the error measure chosen. We compare percentage

errors with logarithmic errors. When percentage errors are used, the answer also depends

on the dispersion within the set of comparable firms. In contrast, rankings of valuation

methods obtained with log errors are robust to changes in dispersion. We reproduce the

well-known fact that the arithmetic mean is positively biased and the harmonic mean is the

least biased method with percentage errors. However, with log errors the harmonic mean

is biased downward just as much as the arithmetic mean is biased upward, whereas the

geometric mean is optimal in terms of bias and the bias of the median is negligible, though

statistically significant. It is therefore critical to analyze the two error measures further.

Error measures are eventually based on loss functions which are inherently subjective

and therefore beyond the scrutiny of normative analysis. So if the researcher or analyst who

applies valuation procedures believes that the percentage error is the relevant error measure,

then she will prefer the harmonic mean over all other averaging methods. However, this

error measure implies a number of counterintuitive consequences:

• Ignoring all comparable information and setting the target firm value equal to its book

value results in more precise and less biased forecasts than using the arithmetic mean

or the median and becomes optimal for sufficiently dispersed samples.
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• Ignoring all information altogether and setting the target firm value equal to $1 turns

out to be a reasonable valuation method when judged by percentage errors and becomes

optimal if the dispersion of the sample is sufficiently large.

• As the variation among comparable firms increases, the bias of all averaging methods

increases. Eventually, even the harmonic mean features a large positive bias.

The intuition for these results is that undervaluations measured with percentage errors

are capped by -100% from below by virtue of limited liability, whereas overvaluations can

and do become very large. Therefore, ad hoc methods that avoid extreme overvaluations

and methods that are biased downward (like the harmonic mean) appear favorable with

percentage errors. None of these counterintuitive results can be found for log errors, which

penalize relative over- and undervaluations symmetrically.

On the basis of our theoretical and empirical results, we argue strongly in favor of using

log errors as the appropriate error metric when comparing different valuation methods. As

a consequence, we also argue in favor of the median and the geometric mean, and against

the arithmetic as well as the harmonic mean. Given our results we find it therefore quite

surprising that the geometric mean is the only standard averaging method that has not been

widely adopted in the valuation literature. All distributions of multiples we investigate are

skewed. The geometric mean effectively applies the arithmetic mean to the logarithms of

multiples, thereby creating a symmetric distribution before averaging.

We apply our insights to the computation of the diversification discount as a prominent

example for the use of comparables in financial research. Consistent with our previous

argument we find that we overestimate the diversification discount if we average multiples

with the arithmetic mean. Conversely, adopting the harmonic mean would — in our view

erroneously — lead to estimates of the conglomerate discount around zero or even to a small

conglomerate premium.

While our analysis has been conducted entirely on a small selection of widely used mul-

tiples, we argue that our results apply to other valuation methods as well, including those

based on present value approaches. The asymmetric nature of percentage errors is inde-
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pendent of the valuation methodology, and therefore the implications of our analysis carry

over to any valuation method. Many researchers (see the table in Appendix A) have staged

“horse races” between multiples and present value-approaches, or between DCF and residual

income. We conclude that to the extent that they are based on percentage valuation errors,

these papers predispose their analysis to those valuation procedures that tend to undervalue

companies while unduly criticizing approaches that tend to overvalue companies. Redoing

these comparisons with logarithmic errors that properly take into account the asymmet-

ric distribution of valuation errors is clearly on the agenda for future research on company

valuation.

Ultimately, the error measure chosen must depend on the application in question. The

objective function for a bidder in an auction for a company may be different from that of a

security analyst who values a market traded company for investment purposes. Depending

on risk aversion, degree of diversification, asymmetric information, and other considerations,

practitioners will give different weights to small valuation errors versus large errors. Also,

they wish to equate either equal dollar mispricings (the case for percentage errors) or equal

relative mispricings (the case for log errors), or treat undervaluations and overvaluations

differently altogether. Rigorous answers to these questions can only be obtained based on an

axiomatic approach that relates decision rules to preferences and to the salient features of

the application. We are not aware that such an approach has ever been pursued and believe

that this will be a fertile area for future research.
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Appendix 

A Empirical Comparisons of Valuation Methods in the Literature 
The following table summarizes 14 papers which empirically compare the accuracy of different valuation methods. The table shows the 
country and the period for which the study has been done, the error measure used in the comparison, and the multiple methods that are 
considered. If the study also considers present value methods, then we list them in the last column. Here DCF stands for “discounted 
cash-flows,” DDM for “dividend discount model,” and RIM for “residual income model.” 
 

Paper Country Period(s) Error measure(s) Multiple methods Discounting methods
Alford (1992) USA 1978, 1982, 

1986 
Median of absolute 
percentage errors 

Median none 

Baker & Ruback (1999) USA 1995 Percentage errors Harmonic mean none 
Beatty, Riffe & Thompson (1999) USA 1980-1992 Percentage errors Median; arithmetic, harmonic, 

and industry mean 
none 

Bhojraj & Lee (2002) USA 1982-1998 Percentage errors, 
regression R2 

Harmonic mean none 

Cheng & McNamara (2000) USA 1973-1992 Percentage errors Median none 
Francis, Olsson & Oswald (2000) USA 1989-1993 Percentage errors none DCF, DDM, RIM 
Gilson, Hotchkiss & Ruback 
(2000) 

USA 1984-1993 Log errors Median DCF 

Herrmann & Richter (2003) USA and 
Europe 

1997-1999 Log errors Median; arithmetic, harmonic, 
and geometric mean 

none 

Kaplan & Ruback (1995) USA 1983-1989 Log errors Median DCF 
Kim & Ritter (1999) USA 1992-1993 Log errors Median none 
Lie & Lie (2002) USA 1998 Log errors Median none 
Liu, Nissim & Thomas (2002a) USA 1982-1999 Percentage errors Harmonic mean, regression 

measures 
none 

Liu, Nissim & Thomas (2002b) 10 countries 1976-2001 Percentage errors Harmonic mean none 
Penman & Sougiannis (1998) USA 1973-1992 Percentage errors none DCF, DDM, RIM 

 



B Proof of Propositions

B.1 Proof of Proposition 1

(i) From Jensen’s inequality we have:

ln
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¢
= ln
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!
>
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ln (xi) = ln
¡
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¢
. (8)

Similarly, we can apply Jensen’s inequality to the rewritten harmonic mean:

ln
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ln (1/xi) =
1

n

nX
i=1

ln (xi) = ln
¡
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As the logarithm is a monotonic transformation, we obtain x̄Hj < x̄Gj < x̄Aj .

(ii) Let M denote the median and μ the mean of the distribution of the ratios xi. As

the distribution is symmetric, we have M = μ. The law of large numbers implies

that sample moments converge to population moments, so x̄Mj − x̄Aj → M − μ = 0 as

n→∞.

(iii) Denote the parameters of the lognormal distribution fromwhich the xi have been drawn

by μ and σ2. Then, the median of the distribution is M = exp{μ} and E (ln (xi)) = μ,

so that x̄Mj − x̄Gj = x̄Mj − exp
n
1
n

Xn

i=1
ln (xi)

o
→ M − exp(μ) = 0 as n → ∞ by the

same argument as in (ii).

B.2 Proof of Proposition 2

We only need to show that E
¡
eGlog
¢
= 0, E

¡
eGpct
¢
> 0, and E

¡
eHlog
¢
= −E

¡
eAlog
¢
. The

remaining statements of the proposition then follow immediately from Proposition 1.

>From (4) we have:

ln
¡
x̄G
¢
=
1

n

nX
i=1

ln (xi) ,
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so ln
¡
x̄G
¢
is distributed normal with mean μ and variance σ2/n. Hence, eGlog = ln

¡
x̄G
¢
−

ln(xj) is distributed normal with mean zero and variance 1+nn σ2, so the geometric mean leads

to unbiased estimates in terms of logarithmic errors. As a consequence, 1 + eGpct = exp
¡
eGlog
¢

is distributed lognormal with parameters 0 and 1+n
n
σ2, so we obtain:

E
¡
eGpct
¢
= exp

µ
1 + n

2n
σ2
¶
− 1 > 0 ,

as long as σ2 > 0. This shows that the geometric mean leads to biased estimates in terms of

percentage errors.

Showing that E
¡
eHlog
¢
= −E

¡
eAlog
¢
requires a little more work: First note that
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, (9)

where ui = lnxi, which is distributed normal with expectation μ and variance σ2. We expand

this expression and perform the substitution vi = −ui + 2μ for all i = 1...n.
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The second line rewrites (9) more explicitly and the third line applies the transformation

ui = −vi + 2μ. Here, we use the fact that dvi
dui

= −1, which cancels with the factor −1

caused by the necessary transformation of the integration limits. The fourth line follows

upon rearranging, and the fifth line rewrites the same expression using the expectations
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operator. Observe that vi is also distributed normal with mean μ and variance σ2. Hence,

E
¡
ln
¡
x̄H
¢¢
− μ = −

£
E
¡
ln
¡
x̄A
¢¢
− μ

¤
. As E (ln(xi)) = μ, this implies E

¡
eHlog
¢
= −E

¡
eAlog
¢

from the definition of log errors (7).
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Table 1: Descriptive Statistics for Multiples 
This table displays descriptive statistics (number of observations, mean, median, standard deviation, 
skewness, excess kurtosis, and the 10% and 90% quantile) for the distributions of the market-to-book ratio, 
the value-to-sales ratio, and the price-earnings ratio for the pooled sample from 1994 to 2003. The lower 
part of the table shows the statistics for the natural logarithms of these ratios. For each multiple and each 
year, the multiples have been winzorized at the 2.5% and 97.5% quantile. 
 

Multiple # obs. Mean Std. dev. Skewness Kurtosis P10 Median P90 
market-to-book 47,614 3.031 3.513 3.295 14.717 0.682 1.867 6.601
value-to-sales 51,899 3.583 6.244 5.959 52.318 0.392 1.634 8.027
price-earnings 33,753 29.593 40.133 3.692 15.365 7.520 17.073 57.317
log(market-to-book) 47,614 0.691 0.882 0.280 0.097 -0.382 0.624 1.887
log(value-to-sales) 51,899 0.549 1.170 0.260 -0.291 -0.937 0.491 2.083
log(price-earnings) 33,753 2.945 0.852 0.653 0.980 2.018 2.837 4.049
 
 
 
 
 

Table 2: Tests for Normality 
This tables shows the test statistics of three tests for normality (Kolmogorov-Smirnov, Cramér-von Mises, 
and Anderson-Darling) applied to the pooled sample (1994-2003) of three different financial ratios and 
their logarithmic transformations. All observations have been standardized by deducting the industry-year 
mean and then dividing by the industry-year standard deviation, where the industry is given by the two-
digit SIC code. For the Kolmogorov-Smirnov test, the table displays the usual test statistic multiplied by the 
square root of the number of observations in order to make comparisons across samples meaningful. For 
the thus transformed Kolmogorov-Smirnov test statistic, the 1% critical value is 1.035. For the Cramér-von 
Mises and the Anderson-Darling test the 1% critical value are 0.179 and 1.035, respectively. Critial values 
have been obtained from D'Agnostino and Stephens (1986), p.123. 
 

Test statistics 
Multiple Kolmogorov-

Smirnov 
Cramer- 

von Mises 
Anderson-

Darling 
market-to-book 36.60 537.85 3,006.19 
value-to-sales 43.53 723.11 3,871.00 
price-earnings 43.70 708.97 3,720.94 
log(market-to-book) 3.76 4.84 32.52 
log(value-to-sales) 3.88 5.36 36.30 
log(price-earnings) 12.66 51.50 287.46 
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Table 3: Simulated error distributions for industries with  
40 companies 

This table displays descriptive statistics of the simulated valuation errors from six valuation methods based 
on the market-to-book ratio. It shows the mean, median, root mean squared error, the standard deviation, 
skewness, and the proportion of observations larger than or equal to +100%. In each of the 100,000 runs, 
we simulate an industry with 40 companies and value each of these companies using comparable 
information from the remaining 39 firms. For the methods 'arithmetic mean,’ 'median,’ 'geometric mean,’ 
and 'harmonic mean,’ the 39 market-to-book ratios are averaged with the respective method and the result 
is multiplied by the target firm's book value to arrive at a forecast of the target firm's market value. The 
method 'MTB=1' sets the target firm's market value equal to its book value, and the method 'Value=$1' sets 
the target firm's market value equal to $1. For the simulation we assume that market-to-book ratios are 
lognormally distributed with mean 0.597 and standard deviation 0.801, and that the book value is 
lognormally distributed with mean 18.312 and standard deviation 1.828. Panel A shows the results for log 
errors, Panel B for percentage errors, and panel C for absolute percentage errors. 
 

Panel A: Log errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop>=100%
Arithmetic mean 0.308 0.309 0.872 0.815 -0.001 0.198 
Median 0.000 0.000 0.817 0.817 -0.001 0.110 
Geometric mean 0.000 0.000 0.811 0.811 -0.002 0.109 
Harmonic mean -0.308 -0.309 0.872 0.815 -0.003 0.054 
MTB=1 -0.597 -0.596 0.999 0.801 -0.002 0.023 
Value=$1 -18.909 -18.910 19.014 1.995 0.000 0.000 

 
Panel B: Percentage errors 

 
Method Mean Median RMSE Std. dev. Skewness Prop>=100%

Arithmetic mean 0.899 0.363 2.048 1.840 3.728 0.319 
Median 0.395 0.000 1.412 1.355 3.741 0.198 
Geometric mean 0.389 0.000 1.392 1.337 3.691 0.196 
Harmonic mean 0.023 -0.266 0.989 0.989 3.715 0.109 
MTB=1 -0.241 -0.449 0.757 0.718 3.607 0.054 
Value=$1 -1.000 -1.000 1.000 0.000 87.845 0.000 

 
Panel C: Absolute percentage errors 

 
Method Mean Median RMSE Std. dev. Skewness Prop>=100%

Arithmetic mean 1.162 0.584 2.048 1.686 4.522 0.319 
Median 0.818 0.508 1.412 1.151 5.181 0.198 
Geometric mean 0.809 0.505 1.392 1.133 5.132 0.196 
Harmonic mean 0.640 0.508 0.989 0.755 5.925 0.109 
MTB=1 0.577 0.549 0.757 0.490 5.959 0.054 
Value=$1 1.000 1.000 1.000 0.000 -87.845 0.000 
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Table 4: Simulated error distributions for industries with  
5 companies 

This table displays descriptive statistics of the simulated valuation errors from six valuation methods based 
on the market-to-book ratio. It shows the mean, median, root mean squared error, the standard deviation, 
skewness, and the proportion of observations larger than or equal to +100%. In each of the 100,000 runs, 
we simulate an industry with 5 companies and value each of these companies using comparable 
information from the remaining 4 firms. For the methods 'arithmetic mean,’ 'median,’ 'geometric mean,’ 
and 'harmonic mean,’ the 4 market-to-book ratios are averaged with the respective method and the result is 
multiplied by the target firm's book value to arrive at a forecast of the target firm's market value. The 
method 'MTB=1' sets the target firm's market value equal to its book value, and the method 'Value=$1' sets 
the target firm's market value equal to $1. For the simulation we assume that market-to-book ratios are 
lognormally distributed with mean 0.597 and standard deviation 0.801, and that the book value is 
lognormally distributed with mean 18.312 and standard deviation 1.828. Panel A shows the results for log 
errors, and Panel B for percentage errors. 
 

Panel A: Log errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop>=100%
Arithmetic mean 0.223 0.222 0.939 0.912 0.007 0.197 
Median 0.046 0.046 0.916 0.915 -0.006 0.148 
Geometric mean 0.000 -0.001 0.895 0.895 -0.003 0.132 
Harmonic mean -0.223 -0.223 0.939 0.912 -0.011 0.090 
MTB=1 -0.595 -0.595 0.998 0.801 0.000 0.023 
Value=$1 -18.903 -18.905 19.008 1.995 0.005 0.000 

 
Panel B: Percentage errors 

 
Method Mean Median RMSE Std. dev. Skewness Prop>=100%

Arithmetic mean 0.897 0.249 2.340 2.162 4.672 0.302 
Median 0.589 0.048 1.902 1.809 4.655 0.239 
Geometric mean 0.492 -0.001 1.714 1.642 4.450 0.219 
Harmonic mean 0.211 -0.200 1.381 1.365 4.645 0.157 
MTB=1 -0.240 -0.448 0.757 0.718 3.554 0.054 
Value=$1 -1.000 -1.000 1.000 0.000 59.770 0.000 
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Table 5: The influence of an increase of dispersion  
on the simulated error distributions 

This table displays descriptive statistics of the simulated valuation errors from six valuation methods based 
on the market-to-book ratio. It shows the mean, median, root mean squared error, the standard deviation, 
skewness, and the proportion of observations larger than or equal to +100%. In each of the 100,000 runs, 
we simulate an industry with 40 companies and value each of these companies using comparable 
information from the remaining 39 firms. For the methods 'arithmetic mean,’ 'median,’ 'geometric mean,’ 
and 'harmonic mean,’ the 39 market-to-book ratios are averaged with the respective method and the result 
is multiplied by the target firm's book value to arrive at a forecast of the target firm's market value. The 
method 'MTB=1' sets the target firm's market value equal to its book value, and the method 'Value=$1' sets 
the target firm's market value equal to $1. For the simulation we assume that market-to-book ratios are 
lognormally distributed with mean 0.597 and standard deviation 1.202, and that the book value is 
lognormally distributed with mean 18.312 and standard deviation 1.828. Panel A shows the results for log 
errors, and Panel B for percentage errors. 
 

Panel A: Log errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop>=100%
Arithmetic mean 0.682 0.682 1.405 1.228 0.003 0.398 
Median 0.000 0.000 1.223 1.223 0.000 0.207 
Geometric mean 0.000 0.001 1.214 1.214 -0.001 0.205 
Harmonic mean -0.682 -0.682 1.405 1.228 -0.004 0.085 
MTB=1 -0.609 -0.609 1.345 1.199 0.000 0.090 
Value=$1 -18.766 -18.766 18.905 2.295 -0.001 0.000 

 
Panel B: Percentage errors 

 
Method Mean Median RMSE Std. dev. Skewness Prop>=100%

Arithmetic mean 3.209 0.978 8.529 7.903 11.483 0.496 
Median 1.110 0.000 4.064 3.909 11.080 0.285 
Geometric mean 1.089 0.001 3.973 3.821 10.863 0.284 
Harmonic mean 0.073 -0.494 2.001 2.000 11.352 0.131 
MTB=1 0.115 -0.456 1.999 1.995 10.720 0.139 
Value=$1 -1.000 -1.000 1.000 0.000 466.995 0.000 
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Table 6: Empirical error distributions for valuations  
based on the market-to-book ratio 

This table displays descriptive statistics of the valuation errors from six valuation methods based on the 
market-to-book ratio. It is calculated from 47,614 firm-year observations from 1994 to 2003, and shows the 
mean, median, root mean squared error, the standard deviation, skewness, the proportion of observations 
larger than or equal to +100%, and the t-statistic of the two sided t-test that the mean equals zero. For the 
methods 'arithmetic mean,’ 'median,’ 'geometric mean,’ and 'harmonic mean,’ the industry peer group 
market-to-book ratios are averaged with the respective method and the result is multiplied by the target 
firm's book value to arrive at a forecast of the target firm's market value. The method 'MTB=1' sets the 
target firm's market value of equity equal to its book value, and the method 'Value=$1' sets the target firm's 
market value of equity equal to $1. Panel A shows the results for log errors, Panel B for percentage errors, 
and Panel C for absolute percentage errors. 
 

Panel A: Log errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop>=100% T-test 
Arithmetic mean 0.281 0.248 0.940 0.897 -0.044 0.188 68.39 
Median -0.019 0.001 0.892 0.891 -0.224 0.106 -4.64 
Geometric mean -0.004 0.016 0.881 0.881 -0.235 0.108 -1.05 
Harmonic mean -0.274 -0.210 0.933 0.892 -0.407 0.058 -67.12 
MTB=1 -0.694 -0.624 1.183 0.958 -0.363 0.030 -158.05 
Value=$1 -18.790 -18.679 18.921 2.224 -0.248 0.000 -1843.42 
 

Panel B: Percentage errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop>=100% T-test 
Arithmetic mean 1.103 0.281 6.756 6.665 76.713 0.290 36.12
Median 0.529 0.001 5.334 5.308 94.706 0.180 21.74
Geometric mean 0.531 0.016 5.151 5.124 92.111 0.181 22.63
Harmonic mean 0.158 -0.189 4.052 4.049 100.889 0.109 8.54
MTB=1 -0.176 -0.464 3.867 3.863 107.490 0.055 -9.94
Value=$1 -1.000 -1.000 1.000 0.000 26.609 0.000 -9.7E+08
 

Panel C: Absolute percentage errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop>=100% T-test 
Arithmetic mean 1.371 0.536 6.756 6.615 78.343 0.290 45.22 
Median 0.940 0.461 5.334 5.250 97.607 0.180 39.09 
Geometric mean 0.933 0.462 5.151 5.066 95.059 0.181 40.18 
Harmonic mean 0.721 0.457 4.052 3.988 105.207 0.109 39.43 
MTB=1 0.692 0.555 3.867 3.805 111.825 0.055 39.67 
Value=$1 1.000 1.000 1.000 0.000 -26.609 0.000 9.7E+08 
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Table 7: Empirical error distributions for valuations  
based on the value-to-sales ratio 

This table displays descriptive statistics of the valuation errors from six valuation methods based on the 
value-to-sales ratio. It is calculated from 51,899 firm-year observations from 1994 to 2003, and shows the 
mean, median, root mean squared error, the standard deviation, skewness, the proportion of observations 
larger than or equal to +100%, and the t-statistic of the two sided t-test that the mean equals zero. For the 
methods 'arithmetic mean,’ 'median,’ 'geometric mean,’ and 'harmonic mean,’ the industry peer group 
market-to-book ratios are averaged with the respective method and the result is multiplied by the target 
firm's book value to arrive at a forecast of the target firm's market value. The method 'Value=Sales' sets the 
target firm's enterprise value equal to its sales, and the method 'Value=$1' sets the target firm's enterprise 
value equal to $1. Panel A shows the results for log errors, Panel B for percentage errors, and Panel C for 
absolute percentage errors. 
 

Panel A: Log errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop>=100% T-test 
Arithmetic mean 0.385 0.327 1.104 1.034 0.000 0.243 84.88
Median -0.024 0.004 0.996 0.996 -0.394 0.122 -5.56
Geometric mean 0.000 0.023 0.988 0.988 -0.396 0.129 0.03
Harmonic mean -0.343 -0.248 1.068 1.011 -0.710 0.064 -77.22
Value=Sales -0.554 -0.491 1.369 1.252 -0.380 0.089 -100.88
Value=$1 -19.009 -18.893 19.143 2.260 -0.268 0.000 -1916.42
 

Panel B: Percentage errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop>=100% T-test 
Arithmetic mean 1.711 0.386 7.073 6.863 26.575 0.345 56.79
Median 0.638 0.004 3.959 3.907 39.860 0.199 37.22
Geometric mean 0.659 0.023 3.828 3.771 36.241 0.205 39.80
Harmonic mean 0.148 -0.220 2.466 2.461 40.817 0.115 13.71
Value=Sales 0.211 -0.388 3.495 3.489 43.830 0.149 13.76
Value=$1 -1.000 -1.000 1.000 0.000 119.342 0.000 -7.4E+08
 

Panel C: Absolute percentage errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop>=100% T-test 
Arithmetic mean 1.974 0.626 7.073 6.792 27.310 0.345 66.22 
Median 1.068 0.492 3.959 3.812 42.585 0.199 63.81 
Geometric mean 1.076 0.497 3.828 3.674 38.864 0.205 66.70 
Harmonic mean 0.755 0.485 2.466 2.348 46.280 0.115 73.22 
Value=Sales 0.998 0.683 3.495 3.350 48.815 0.149 67.85 
Value=$1 1.000 1.000 1.000 0.000 -119.342 0.000 7.4E+08 
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Table 8: Empirical error distributions for valuations  
based on the price-earnings ratio 

This table displays descriptive statistics of the valuation errors from six valuation methods based on the 
price-earnings ratio. It is calculated from 33,753 firm-year observations from 1994 to 2003, and shows the 
mean, median, root mean squared error, the standard deviation, skewness, the proportion of observations 
larger than or equal to +100%, and the t-statistic of the two sided t-test that the mean equals zero. For the 
methods 'arithmetic mean,’ 'median,’ 'geometric mean,’ and 'harmonic mean,’ the industry peer group 
market-to-book ratios are averaged with the respective method and the result is multiplied by the target 
firm's book value to arrive at a forecast of the target firm's market value. The method 'P/E=10' sets the 
target firm's market value of equity equal to ten times its net income, and the method 'Value=$1' sets the 
target firm's market value of equity equal to $1. Panel A shows the results for log errors, Panel B for 
percentage errors, and Panel C for absolute percentage errors. 
 

Panel A: Log errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop>=100% T-test 
Arithmetic mean 0.307 0.305 1.041 0.995 -0.297 0.179 56.73 
Median -0.052 0.005 0.969 0.967 -0.496 0.081 -9.91 
Geometric mean -0.002 0.056 0.965 0.965 -0.519 0.088 -0.29 
Harmonic mean -0.256 -0.147 1.008 0.975 -0.713 0.052 -48.30 
P/E=10 -0.646 -0.535 1.197 1.008 -0.742 0.029 -117.74 
Value=$1 -19.200 -19.150 19.326 2.205 -0.142 0.000 -1599.11 
 

Panel B: Percentage errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop>=100% T-test 
Arithmetic mean 1.823 0.357 16.935 16.837 32.569 0.288 19.89
Median 0.883 0.005 11.627 11.594 38.973 0.137 13.99
Geometric mean 0.948 0.057 11.405 11.366 35.796 0.154 15.32
Harmonic mean 0.466 -0.137 8.429 8.416 38.928 0.089 10.17
P/E=10 0.039 -0.414 6.590 6.590 41.377 0.047 1.08
Value=$1 -1.000 -1.000 1.000 0.000 31.522 0.000 -6.8E+08
 

Panel C: Absolute percentage errors 
 

Method Mean Median RMSE Std. dev. Skewness Prop>=100% T-test 
Arithmetic mean 2.061 0.557 16.935 16.810 32.687 0.288 22.52 
Median 1.270 0.383 11.627 11.558 39.238 0.137 20.18 
Geometric mean 1.308 0.403 11.405 11.330 36.041 0.154 21.20 
Harmonic mean 0.979 0.385 8.429 8.372 39.365 0.089 21.48 
P/E=10 0.857 0.488 6.590 6.534 42.071 0.047 24.09 
Value=$1 1.000 1.000 1.000 0.000 -31.522 0.000 6.8E+08 
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Table 9:  
Estimates of the conglomerate discount with log errors 

This table displays estimates of the conglomerate discount in the USA obtained with log errors for two 
different multiple valuation methods. Higher numbers are higher discounts, negative numbers correspond to 
a conglomerate premium. Panel A show the estimates when segments are valued based on the sales 
multiple, while Panel B show estimates based on the asset multiple. The left part of the table shows the 
mean, median and the standard deviation of the discount estimates for 438 firms from 2003. The right part 
of the table shows these statistics for 4,756 firms from the pooled sample from 1991 to 2003. 
 

Panel A: Conglomerate discount measured with sales multiples 
 

2003 1991-2003 Method 
Mean Median Std. dev. Mean Median Std. dev. 

Arithmetic mean 0.532 0.622 0.593 0.483 0.542 0.564 
Median 0.254 0.236 0.565 0.219 0.240 0.583 
Geometric mean 0.309 0.311 0.563 0.249 0.283 0.575 
Harmonic mean -0.002 -0.010 0.589 -0.030 -0.029 0.591 

 
Panel B: Conglomerate discount measured with asset multiples 

 
2003 1991-2003 Method 

Mean Median Std. dev. Mean Median Std. dev. 
Arithmetic mean 0.451 0.489 0.517 0.387 0.407 0.505 
Median 0.177 0.206 0.491 0.145 0.155 0.503 
Geometric mean 0.232 0.266 0.499 0.186 0.199 0.499 
Harmonic mean 0.028 0.055 0.506 0.002 0.020 0.501 
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Table 10:  
Estimates of the conglomerate discount with percentage errors 

This table displays estimates of the conglomerate discount in the USA obtained with percentage errors for 
two different multiples valuation methods. Higher numbers are higher discounts, negative numbers 
correspond to a conglomerate premium. Panel A show the estimates when segments are valued based on 
the sales multiple, while Panel B show estimates based on the asset multiple. The left part of the table 
shows the mean, median and the standard deviation of the discount estimates for 438 firms from 2003. The 
right part of the table shows these statistics for 4,756 firms from the pooled sample from 1991 to 2003. 
 

Panel A: Conglomerate discount measured with sales multiples 
 

2003 1991-2003 Method 
Mean Median Std. dev. Mean Median Std. dev. 

Arithmetic mean 0.969 0.862 0.939 0.867 0.719 0.928 
Median 0.503 0.266 0.840 0.462 0.272 0.826 
Geometric mean 0.582 0.365 0.859 0.498 0.327 0.824 
Harmonic mean 0.188 -0.010 0.739 0.155 -0.029 0.717 

 
Panel B: Conglomerate discount measured with asset multiples 

 
2003 1991-2003 Method 

Mean Median Std. dev. Mean Median Std. dev. 
Arithmetic mean 0.769 0.630 0.826 0.659 0.503 0.790 
Median 0.336 0.229 0.630 0.305 0.167 0.656 
Geometric mean 0.414 0.304 0.663 0.357 0.220 0.667 
Harmonic mean 0.160 0.057 0.576 0.132 0.020 0.578 
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