
AMIR HOSSEIN GHAREHGOZLI

Developing New Methods
for Efficient Container
Stacking Operations

A
M

IR
 H

O
S

S
E

IN
 G

H
A

R
E

H
G

O
Z

LI
- D

e
v

e
lo

p
in

g
 N

e
w

 M
e

th
o

d
s fo

r
E

fficie
n

t C
o

n
ta

in
e

r S
ta

ck
in

g
 O

p
e

ra
tio

n
s

ERIM PhD Series
Research in Management

E
ra

sm
u

s
R

e
se

a
rc

h
 I

n
st

it
u

te
 o

f
M

a
n

a
g

e
m

e
n

t
-

269

E
R

IM

D
e

si
g

n
 &

 l
a

yo
u

t:
 B

&
T

 O
n

tw
e

rp
 e

n
 a

d
vi

e
s

 (
w

w
w

.b
-e

n
-t

.n
l)

P
ri

n
t:

 H
a

ve
k

a

 (
w

w
w

.h
a

ve
k

a
.n

l)DEVELOPING NEW METHODS FOR EFFICIENT CONTAINER STACKING OPERATIONS

Containerized transportation has become an essential part of the intermodal freight
transport. Millions of containers pass through container terminals on an annual basis.
Handling a large number of containers arriving and leaving terminals by different
modalities including the new mega-size ships significantly affects the performance of
terminals. Container terminal operators are always looking for new technologies and
smart solutions to maintain efficiency. They need to know how different operations at the
terminal interact and affect the performance of the terminal as a whole. Among all
operations, the stacking area is of special importance since almost every container must be
stacked in this area for a period of time. If the stacking operations of the terminal are not
well managed, then the response time of the terminal significantly increases and
consequently the performance decreases. In this dissertation, we propose, develop, and
test optimization methods to support the decisions of container terminal operators in the
stacking area. First, we study how to sequence storage and retrieval containers to be
carried out by a single or two automated stacking cranes in a block of containers. The
objective is to minimize the makespan of the cranes. Finally, we study how to minimize the
expected number of reshuffles when incoming containers have to be stacked in a block of
containers. A reshuffle is the removal of a container stacked on top of a desired container.
Reshuffling containers is one of the daily operations at a container terminal which is time
consuming and increases a ship's berthing time.

The Erasmus Research Institute of Management (ERIM) is the Research School (Onder -
zoek school) in the field of management of the Erasmus University Rotterdam. The founding
participants of ERIM are the Rotterdam School of Management (RSM), and the Erasmus
School of Econo mics (ESE). ERIM was founded in 1999 and is officially accre dited by the
Royal Netherlands Academy of Arts and Sciences (KNAW). The research under taken by
ERIM is focused on the management of the firm in its environment, its intra- and interfirm
relations, and its busi ness processes in their interdependent connections.

The objective of ERIM is to carry out first rate research in manage ment, and to offer an
ad vanced doctoral pro gramme in Research in Management. Within ERIM, over three
hundred senior researchers and PhD candidates are active in the different research pro -
grammes. From a variety of acade mic backgrounds and expertises, the ERIM commu nity is
united in striving for excellence and working at the fore front of creating new business
knowledge.

Erasmus Research Institute of Management -
Rotterdam School of Management (RSM)
Erasmus School of Economics (ESE)
Erasmus University Rotterdam (EUR)
P.O. Box 1738, 3000 DR Rotterdam,
The Netherlands

Tel. +31 10 408 11 82
Fax +31 10 408 96 40
E-mail info@erim.eur.nl
Internet www.erim.eur.nl

Tue Oct 02 2012 - B&T12609_ERIM_Omslag_Gharehgozli_2okt12.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18520255?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Developing New Methods for Efficient Container

Stacking Operations

Developing New Methods for Efficient Container Stacking

Operations

Ontwikkelen van nieuwe methoden voor efficiënt container in- en uitslaan operaties

Thesis

to obtain the degree of doctor from

Erasmus University Rotterdam

by the command of

rector magnificus

Prof.dr. H.G. Schmidt

and in accordance with the decision of the Doctoral Board

The public defense shall be held on

Tuesday 27 November 2012 at 13:30 hours

by

Amir Hossein Gharehgozli

born in Tehran, Iran

Doctoral Committee

Promotor: Prof.dr.ir. M.B.M de Koster

Other members: Prof.dr.ir. R. Dekker

Prof.dr. G. Laporte

Prof.dr. I.F.A. Vis

Copromotor: Dr. Y. Yu

Erasmus Research Institute of Management – ERIM

The joint research institute of the Rotterdam School of Management (RSM)

and the Erasmus School of Economics (ESE) at the Erasmus University Rotterdam

Internet: http://www.erim.eur.nl

ERIM Electronic Series Portal: http://hdl.handle.net/1765/1

ERIM PhD Series in Research in Management, 269

ERIM reference number: EPS-2012-269-LIS

ISBN 978-90-5892-315-8

�2012, Amir Hossein Gharehgozli

Design: B&T Ontwerp en advies www.b-en-t.nl

This publication (cover and interior) is printed by haveka.nl on recycled paper, Revive�.

The ink used is produced from renewable resources and alcohol free fountain solution.

Certifications for the paper and the printing production process: Recycle, EU Flower, FSC, ISO14001.

More info: http://www.haveka.nl/greening

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by

any means, electronic or mechanical, including photocopying, recording, or by any information storage

and retrieval system, without permission in writing from the author.

To my parents and sister

Acknowledgement

Many people were helping, supporting and encouraging me so that you can see this dissertation as what it is

right now. I would like to take this opportunity to express my special debt of gratitude to them.

First of all I would like to thank my promoter René de koster. René is one of the (few) people who are

truly committed and enthusiastic in everything he does, no matter if it is interacting with students, carrying

out a research, teaching or even running at seven o’clock in the morning. He is hardworking, knowledgeable,

and dedicated. His great practical knowledge and mature experience helped me a lot to make my dissertation

close to the real world. He has not only supervised my PhD trajectory but also taught me the ethics and

necessary requirements for survival in an academic environment. I am also grateful to my co-promoter Yugang

Yu. I could have not finished this dissertation without his help. Every meeting, from the very first ones when

we were both newbies in the world of container yard operations to the last more friendly ones, was full of

inspiration, new ideas, and loads of new tasks for the next meeting. His meticulousness and writing style have

helped me a lot in different parts of this dissertation. He hosted me for three wonderful months at University

of Science and Technology of China in Hefei. This gave me the chance to meet some well-know Chinese

scholars and get to know the modern living style in cultural, historical, sceneful, and of course industrial

China.

I thank Jan Tijmen Udding, one of my co-authors and a member of my PhD defense committee, who was

really helpful in the beginning of my PhD trajectory and made me familiar with the world of container yard

operations. He has a deep knowledge of maritime logistics due to a long history of close collaboration with

container terminals. He played an important role in refining the second and fifth chapters of this dissertation.

I also owe special thanks to Gilbert Laporte who kindly hosted me for four months at CIRRELT in Montreal.

The fourth chapter of this dissertation is the result of my collaboration with him. He was also kind enough

to accept to be a member of my PhD defense committee. Moreover, I would like to thank the other members

of the committee: Rommert Dekker, Iris Vis, Rob Zuidwijk, and Bart Kuipers, who spent time and effort to

review my dissertation.

I would like to thank my colleagues at Rotterdam School of Management, Smart Port Forum, Material

Handling Forum, TRAIL, and especially, the Department of Management of Technology and Innovation. I

am extremely grateful to Carmen who has been always there to handle my all kinds of issues and devote a

part of her busy schedule to our friendly chats. Furthermore, I have to specifically thank Rob Zuidwijk and

i

ii Acknowledgement

Albert Veenstra who included my as one of the researchers in the Ultimate Project. This helped me a lot

in order to develop a deep insight of container yard operations by attending multiple meetings and visiting

many container terminals.

I am also so grateful to my friends. My special thanks go to José for being such a wonderful friend, to

Sandra for all the coffee breaks and friendly chats, to Anne, Adnan, Andreas, Basak, Baris, Colin, Daniel,

Dirk, Evgenia, Evsen, Ezgi, Inga, Ioannis, Irene, Ivana, Jaco, Jelmer, Jorien, Judith, Lameez, Manuel,

Mark, Mathijn, Merlijn, Mashiho, Melek, Nathan, Pano, Pitòsh, Pooyan, Oguz, Ruben, Sebastian, Shiko,

Stefanie, Susan, Teng, Teodor, Thomas, Twan, Willem, Yinyi, Zeynep and many others at Erasmus University

Rotterdam. I would like to specially thank Morteza, Nima, and Farzad, the member of our small Iranian

group. They have been such great friends and have not let me down by sharing their moments, joys and

laughters. The size of our group has been in fluctuation along the way when many great friends joined and

left us including Mahdi Mahdavi, Mahdi Sharif, Pouria, Reza, Sahar, sholeh, Sepideh, and Zahra. I would

like to extend my thanks to Marlou, Max, Myrthe, Peyman, Rutger, Sander, my South American friends,

and many other ones outside the university.

My great thanks goes to my lovely girlfriend, Azita, who has been accompanying me through ups and

downs. Our get togethers in the city of love, Paris, under the Eiffel Tower, up on the Sacreé Couer hill, in

the Champs Élysées street were all a source of peace necessary for the busy weeks ahead.

Finally, I owe special thanks to my family: Mahmoud, Iran and Orkideh. They have been always

supporting me from the beginning of my life. During the past years, I have been constantly missing them.

Without my sweet childhood memories, their kind words during our phone calls, and my occasional visits,

coming to the point where I stand now would not be possible.

Amir Hossein Gharehgozli

Rotterdam, Summer 2012

Contents

Acknowledgement i

Contents iii

List of Tables vii

List of Figures ix

1 Introduction 1

1.1 Container terminal operations . 4

1.2 Focus of the dissertation . 8

1.3 Literature review . 9

1.3.1 Yard crane scheduling . 10

1.3.2 Minimizing container reshuffling . 11

1.4 Outline of the dissertation . 13

2 Scheduling a Single Yard Crane with Given Storage Locations 15

2.1 Problem description and model . 18

2.1.1 Problem description . 19

2.1.2 Mathematical model . 21

2.2 Solution method . 23

2.2.1 Merging algorithm . 23

2.2.2 Branch-and-bound algorithm . 28

2.3 Computational expriments . 32

2.4 Conclusion . 36

Appendix 2.A Proof of Theorem 2.1 . 38

Appendix 2.B Proof of Theorem 2.2 . 38

Appendix 2.C Proof of Theorem 2.3 . 38

iii

iv Contents

3 Scheduling a Single Yard Crane with Flexible Storage Locations 41

3.1 Problem description and model . 44

3.2 Solution method . 48

3.2.1 Simplifying the problem to an ATSP . 49

3.2.2 Optimal GATSP solution in two special cases . 52

3.2.3 Optimal GATSP solution in the other cases . 53

3.2.4 Near-optimal heuristic for large-scale problems . 54

3.3 Computational experiments . 54

3.3.1 Evaluating the performance of the three-phase solution method 55

3.3.2 Evaluating the performance of the heuristic algorithm 57

3.4 Conclusion . 59

Appendix 3.A Proof of Theorem 3.1 . 61

4 Scheduling Two Non-Passing Yard Cranes 63

4.1 Problem description and model . 64

4.1.1 Problem description . 65

4.1.2 Mathematical Model . 67

4.2 Adaptive large neighborhood search heuristic . 70

4.2.1 Removal operators . 71

4.2.2 Insertion operators . 72

4.2.3 Choosing a removal operator or a insertion operator 73

4.2.4 Acceptance of the new solution and stop criterion . 73

4.3 Computational experiments . 74

4.3.1 Tuning and initial solution . 74

4.3.2 Computational results . 75

4.4 Conclusion . 79

5 Minimizing the Expected Number of Reshuffles 81

5.1 Problem description and model . 83

5.1.1 Problem description and notations . 83

5.1.2 Dynamic programming (DP) model . 84

5.2 Decision-tree heuristic . 86

5.2.1 Step 1. Representing the optimal results of the DP by basic decision trees 88

5.2.2 Step 2. Building generalized decision trees . 90

5.2.3 Step 3. Improving the generalized decision trees . 92

5.3 Numerical experiments . 94

5.3.1 Algorithm performance evaluation . 94

Contents v

5.3.2 Case study . 98

5.4 Conclusion and future research . 99

Appendix 5.A Proof of Theorem 5.1 . 101

6 Conclusions and Further Research 103

6.1 Conclusions . 103

6.2 Future research . 106

Bibliography 109

About the author 121

Summary 123

Samenvatting (Summary in Dutch) 125

ERIM Ph.D. Series Research in Management 127

List of Tables

1.1 Container specifications . 2

1.2 Container and TEU traffics in the Port of Rotterdam . 4

2.1 Computation of pairwise travel times (tij) . 21

2.2 Inputs of the simulation study . 33

2.3 The results of the solution method . 34

2.4 Comparing the FCFS and NN heuristics with the optimal solution 35

2.5 Comparing the two-phase solution method and truncated CPLEX 36

3.1 Calculation of pairwise travel times of the travel time matrix, T 47

3.2 Calculation of pairwise travel times of the redefined travel time matrix, T ′ 50

3.3 The results of the three-phase solution method . 56

3.4 The effect of the set intersections on the performance of the algorithm 56

3.5 Comparing the three-phase solution method and truncated CPLEX 57

3.6 Performance of our heuristic algorithm for large-scale problems 58

3.7 Comparing our heuristic with the FCFS and NN heuristics 59

4.1 Computation of pairwise travel times for ASCs . 66

4.2 Results of the ALNS and CPLEX for Experiments 1, 2, and 3 76

4.3 Results of the ALNS and CPLEX for Experiments 4, 5, and 6 77

4.4 Results of the ALNS and CPLEX for Experiments 7, 8, and 9 77

4.5 Solution gaps between the ALNS and exact solution values for the mAGTSP and AGTSP . . 78

4.6 Effect of removing removal and insertion operators on the performance of the ALNS 78

4.7 Comparing the ALNS with the LNS . 79

4.8 Solution gaps between the ALNS and heuristic solution values for several constructive heuristics 80

5.1 A schematic illustration of a state of a block . 84

5.2 Optimal objective values of some states of the DP model . 86

5.3 A comparison of different generalized trees and Bc7, c ∈ {1, 2, 3} 95

vii

viii List of Tables

5.4 A comparison of Gc
6, B

c
6, c ∈ {1, 2, 3} and decision trees proposed by Kim et al. (2000) 96

5.5 Decisions made by the DP model and GcV , V = 2, . . . , 7, c ∈ {1, 2, 3} in different states of the

block . 97

List of Figures

1.1 An ocean freight container . 1

1.2 Different modalities participating in intermodal freight transport 2

1.3 The intermodal freight transport supply chain . 3

1.4 A top view of a container terminal and material handling equipment 5

1.5 Loading and unloading processes of containers at a typical container terminal 6

1.6 Schematic representation of a container terminal layout . 6

2.1 A top view of a block with storage and retrieval locations . 20

2.2 (a) An optimal AP solution consisting of subtours 1, 2 and 3, (b) Carrying and non-carrying

moves of subtours 1 and 2, (c) Merging subtours 1 and 2 using the swappable arcs x41 and x02 24

2.3 (a) Subtour 1+2 and subtour 3, (b) Carrying and non-carrying moves of arcs x50′ and x67

with replaceable visiting I/O points in subtours 1+2 and 3, (c) Merging subtours 1+2 and 3

by replacing x50′ = x67 = 1 with x57 = x60′ = 1 . 26

2.4 The basic B&B algorithm . 30

2.5 (a) The child nodes of node 1 generated by the basic B&B algorithm, (b) Fathoming node 1

by the modified B&B algorithm . 32

3.1 Schematic representation of a container yard layout . 42

3.2 A top view of a block with storage, retrieval and I/O locations 46

3.3 (a) A top view of a block of containers with four exemplary arcs, (b) The carrying and non-

carrying moves, (c) An infeasible solution of the GATSP. 51

4.1 Bird’s eye view of a block of containers with storage and retrieval locations 69

5.1 A part of B12 . 89

5.2 A part of (a) simplified tree B12, and (b) generalized tree G12 91

5.3 A part of (a) generalized tree G12, (b) basic tree B13, and (c) improved generalized tree G13 . 93

ix

x List of Figures

5.4 (a) Percentage difference in expected number of reshuffles between the optimal and heuristic

DT solution based on V piles for a seven-pile problem, (b) Computation time of the DP and

DT heuristic solution based on V piles (in seconds) . 98

5.5 Comparing the DS and SS policies . 99

5.6 The comparison of the performance of the DT and vertical stacking heuristics 100

Chapter 1

Introduction

Figure 1.1. An ocean freight container
(Source: Boxxes, 2012)

An ocean freight container also called container, shown in

Figure 1.1, is a reusable steel box used for transporting

products (Levinson, 2008). Intermodal freight transport

involves the transportation of freight in containers, using

multiple modes of transportation such as a ship, truck,

train, or barge (see Figure 1.2), without any handling of

the freight itself when changing modes (Crainic and Kim,

2007). Bundling the freight in containers reduces cargo

handling, and thereby improves security, may reduce dam-

ages and loss, and may allow freight to be transported

faster (Agerschou et al., 1983). The dimensions of con-

tainers have been standardized so that different modali-

ties can transport them all around the globe. The term

twenty-feet-equivalent-unit (TEU) is used to refer to one container with a length of twenty feet. A container

of 40 feet is expressed by two TEU. Table 1.1 shows the dimensions and other specifications of twenty- and

forty-feet-equivalent-units. Based on the international convention for safe containers, every container has a

container safety convention (CSC) plate containing all specifications of the container (International Maritme

Organization (IMO), 1977, Admiralty and Maritime Law Guide, 1972). Furthermore, every container has

an international identification code, the so-called bureau international des containers (BIC) code, which is

a unique code in all international transport and customs declaration documents (Bureau International des

Containers et du Transport Intermodal (BIC), 2012).

Containerized transportation has become an essential part of intermodal freight transport (Kim and

Kim, 1999a, Steenken et al., 2004). More than 90% of all cargo is now transported by ships (Taggart,

1999, Henwood et al., 2006). Most of this cargo is broken down into standard units that can be handled by

1

2 Chapter 1. Introduction

(a) Ship (b) Barge

(c) Train (d) Truck

Figure 1.2. Different modalities participating in inter-
modal freight transport (Source: Europe Container Terminals
(ECT), 2012)

Table 1.1. Container specifications (Source: Barrington
Freight, 2012)

20-feet-equivalent-unit 40-feet-equivalent-unit
imperial metric imperial metric

External dimensions
Length 20′00′′ 6.096 m 40′00′′ 12.192 m
Width 8′00′′ 2.438 m 8′00′′ 2.438 m
Height 8′6′′ 2.591 m 8′6′′ 2.591 m

Interior dimensions
Length 18′10 5

16

′′
5.758 m 39′545

64

′′
12.032 m

Width 7′819
32

′′
2.352 m 7′819

32

′′
2.352 m

Height 7′957
64

′′
2.385 m 7′957

64

′′
2.385 m

Door aperture
Width 7′81

8

′′
2.343 m 7′81

8

′′
2.343 m

Height 7′53
4

′′
2.280 m 7′53

4

′′
2.280 m

Volume 1.169 ft3 33.1 m3 2.385 ft3 67.5 m3

Maximum gross mass 66,139 lb 30,400 kg 66,139 lb 30,400 kg
Empty weight 4,850 lb 2,200 kg 8,380 lb 3,800 kg
Net load 61,289 lb 28,200 kg 57,759 lb 26,600 kg

containers. Between 1990 and 2015, the total number of full containers shipped internationally is expected

to grow from 28.7 million TEU to 177.6 million TEU (United Nations: ESCAP, 2007). A simple calculation

shows that enough containers exist on the planet to build more than two 8-foot-high wall around the equator

3

(Taggart, 1999). This trend necessitates all firms involved in the intermodal freight transport supply chain to

contribute to a better performance. As Figure 1.3 shows, in intermodal freight transport, different firms such

as terminal operators, freight forwarders, information service providers, infrastructure managers, shippers,

and receivers play a role. In the chain of international transport, container terminals are of special importance

since all containers should pass through at least one of them during their drayage. Container terminals are

the nodes where all different sorts of modalities meet to transport containers. They are involved in linking

sea terminals with inland terminals, or linking terminals with end points in the chain, such as warehouses.

A large terminal handles millions of containers on an annual basis (Drewry, 2011). Table 1.2 shows that

the terminals of the Port of Rotterdam handled more than 11 million TEU in 2010 (Port of Rotterdam

Authority, 2012). As a result of stacking millions of containers, the land needed for the related supply chain

activities has become short. Lack of space has driven container terminal operators to have higher container

stacks, saving much footprint. The other trend is that the size of the ships has also grown during the past

decades. The largest Post-Panamax ships are able to carry about 15,000 TEU whereas the first-generation

ships had a capacity of about 400 TEU. Consequently, large ships experience relative long in-port times

compared to smaller ships. For instance, 24% of overall voyage time for a 8,000 TEU ship is in-port time,

compared to 17% for a 4,000 TEU Panamax ship (Midoro et al., 2005). Handling a large number of containers

entering and leaving terminals by different modalities including the new mega-size ships significantly affects

the performance of terminals and makes them a bottleneck, if their container handling operations are not

well managed.

Figure 1.3. The intermodal freight transport supply chain
(source: Veenstra et al., 2012)

Container terminal operators are always looking for new technologies and smart solutions to maintain

efficiency. Several instances will be discussed later in this dissertation. An example is a recent innovation

started in the Netherlands is to integrate supply chain and transportation through extending the sea terminal

gate into the hinterland as the gateway to the European hinterland (Veenstra et al., 2012). It enables them

to better connect with shippers and receivers in the network. The main purpose of all these new methods

such as the extended gate project is to somewhat leverage the effect of the increasing flow of containers on

4 Chapter 1. Introduction

Table 1.2. Container and TEU traffics in the Port of Rot-
terdam (Source: Port of Rotterdam Authority, 2012)

Year Number of containers Number of TEU Net weight of load (kg)
2005 5,636,570 9,288,399 70,998,184
2006 5,846,433 9,653,232 73,820,345
2007 6,488,646 10,790,829 81,770,729
2008 6,485,464 10,783,825 83,012,059
2009 5,900,114 9,743,290 77,803,233
2010 6,745,760 11,145,804 85,929,163

terminal operations. In this dissertation, we study different operations at a container terminal and focus

on container stacking operations as one of the prime activities of marine container terminals. We develop

optimization and heuristic methods that help for better managing the stacking operations. The remaining

of this chapter is organized as follows. In Section 1.1, we briefly explain the main logistic operations of a

container terminal. Section 1.2 introduces the focus of the dissertation. Then, in Section 1.3, we present a

literature review of the main operations of a container terminal. Finally, in Section 1.4, an outline of the

dissertation is given.

1.1 Container terminal operations

Figure 1.4a depicts a top view of a container terminal and different container handling systems. Material

handling equipment includes quay cranes (QCs), yard cranes (YCs), Automated Guided Vehicles (AGVs),

and Straddle carriers (SCs). These systems are shown in Figures 1.4b–e respectively, and are used to transship

containers from ships to barges, trucks and trains, and vice versa. The containers can be transshipped directly

from one mode of transportation to another. Alternatively, containers can be stored for a certain period in a

stack, before they are transferred to another mode. Material handling equipment used at a terminal is very

expensive, regardless of whether they are automated or manned. The investment in a large modern container

terminal can easily amount to e1–5 billion and the payback period varies between 15–30 years (Wiegmans

et al., 2002, De Koster et al., 2009, Roy and De Koster, 2012). Extensive overviews of various processes

and decision making at terminals are given by Vis and De Koster (2003), Stahlbock and Voß (2008a), and

Steenken et al. (2004).

Sea container terminals are divided into a seaside, landside, and stacking area (see Figure 1.5). At a

typical automated container terminal, QCs load and unload containers from ships berthed along the quay

at the seaside. AGVs transport containers from the seaside to the stacking area where YCs take them over.

Finally, SCs transport containers between the YCs and trucks and trains at the landside. In general, three

different groups of containers can be distinguished in container terminals: import, export, and transshipment

containers (Kim and Park, 2003). Import containers are carried to the terminal by ships, stay for a while

1.1. Container terminal operations 5

(a) Container terminal

(b) QC (c) YC (d) AGV (e) SC

Figure 1.4. A top view of a container terminal and mate-
rial handling equipment (Source: Europe Container Termi-
nals (ECT), 2012)

and are transferred outside by trains, trucks or barges. Export containers are delivered to the terminal by

trains, trucks or barges, stay for a short time, and are then loaded onto ships for other ports. Typically, these

containers start arriving as early as seven days in advance; containers scheduled for earlier ships are likely

to arrive sooner than the ones belonging to the later ships (Lee and Chao, 2009). Transshipment containers

arrive and leave the terminal by ship.

At a container terminal, containers are stacked in container blocks. Figure 1.6a depicts a typical container

terminal layout with several blocks of containers in the stack area; other terminal layouts are studied by Wiese

et al. (2010). Each block consists of multiple rows, tiers, and bays as shown in Figure 1.6b. Containers arrive

or leave the terminal from the seaside and landside and spend a period of time in these blocks. Input/output

(I/O) points are located at each end of a block and a single YC is used to stack and retrieve containers in

that block. The YC can simultaneously move along the rows and bays of the block. When a container is to

be retrieved, the YC picks it up from its location in the block and drops it at an I/O point at the container’s

destination side of the block. At the seaside, an AGV is available at the I/O point on which the YC drops

6 Chapter 1. Introduction

Figure 1.5. Loading and unloading processes of contain-
ers at a typical container terminal (adopted from Brinkmann
(2010))

off the container to be transported to a QC. At the landside, depending on the type of container terminal, a

truck, a chassis, or an SC takes away the container from the I/O point. In case of a storage request, the YC

picks up a container from an AGV, SC, chassis, or truck at an I/O point and stores it in a given location

in the block. Recently, container terminals have started using two or even three YCs to retrieve and stack

containers in every block of containers (Dorndorf and Schneider, 2010, Li et al., 2009, Vis and Carlo, 2010).

Depending on the design of the blocks and YCs, the YCs can or cannot pass each other. In all cases during

stacking operations, for security reasons, the distance between the two YCs cannot be less than a minimum

safety limit.

(a) Top view of a container terminal (b) Block of containers

Figure 1.6. Schematic representation of a container terminal
layout

1.1. Container terminal operations 7

YCs can be classified into two types: rail-mounted gantry (RMG) cranes and rubber-tired gantry (RTG)

cranes. The former are automated, but their movements are limited to a block or to a few adjacent blocks

of a row. In contrast, RTG cranes are more manual and can move freely from one block to another. RMG

cranes can be automated or manual, where automated RMG cranes are sometime called Automated stacking

cranes (ASCs), according to Stahlbock and Voß (2008b). A survey by Wiese et al. (2010) using the data

of 114 container terminals world wide shows that YCs are the most common equipment for stacking, as in

63.2% of the terminals use them. This percentage is as high as 75.5% in Asia.

Containers are mainly stacked in container blocks according to their loading sequence onto the ships. The

sequence depends on their ships, ports of destination, and weights. Kang et al. (2006) define two containers

to be of the same type if they belong to the same ship, port of destination and weight group. Obviously,

containers have to be retrieved from the block in the sequence of the departure of their corresponding ships.

Furthermore, containers of the destinations that will be visited by the ship later have to be loaded onto the

ship earlier. Finally, containers have to be loaded according to their weight which is mainly divided into three

groups: Heavy (H), Medium (M) and Light (L). In order to ensure a ship’s stability, heavier containers should

be loaded before lighter ones. In other words, containers should be loaded in a sequence of H, M and L.

Therefore, they have to be stacked in a reverse sequence in a block. Otherwise, reshuffling occurs. A reshuffle

is an unwanted movement of a container stacked on top of the one which should be retrieved (Kim et al.,

2000, De Castillo and Daganzo, 1993, Caserta and Voß, 2009). Note that in a container terminal, multiple

ships simultaneously berth at the quay and five or six QCs usually load and unload containers to and from a

large ship. The QCs load and unload the ship bay by bay, and the unloading operations precede the loading

operations with a small overlap. Therefore, the retrieval sequence is more flexible than explained above. As

an example, a heavy container which should be loaded to the ship by a specific QC can be retrieved from the

block earlier than a heavy container that should be loaded onto the ship by another QC. Even in the case

of a single QC, the sequence can be more flexible. For example, while loading containers of a bay, the QC

can load a light container of a pile earlier than a heavy container of another pile. However, in general the

sequence explained above results in the minimum number of reshuffles.

Nowadays, large ships visit about five destinations in every trip. Thus, the area of a ship along its deck is

divided into five subareas with several bays corresponding to each destination. Furthermore, particular areas

of the ship may be assigned to special containers such as refrigerated containers. A refrigerated container is

equipped with an integral refrigeration unit which controls the temperature of the container. This integral

refrigeration unit has to be connected to the on-board power supply system after the container has been

loaded onto the ship.

8 Chapter 1. Introduction

1.2 Focus of the dissertation

Operators of automated container terminal are confronted with many strategic, tactical, and operational

decisions. At the strategic level, decisions include deciding the berthing capacity, layout of the terminal, type

of equipment for handling containers at the seaside and landside, and type of vehicles to used for container

transport between seaside and the landside. At the tactical and operational levels, decisions include berth

allocation, number of ASCs and transport vehicles, and container stacking policies. Murty et al. (2005)

describe a variety of inter-related decisions made during daily operations at a container terminal.

Container terminal managers need to know how different operations at the terminal interact and affect

the performance of the terminal as a whole. Many authors have tried to evaluate the performance of different

operations and their effects on the overall performance of the terminal, using different methods such as data

envelop analysis (De Koster et al., 2009, Cullinane et al., 2005, 2006, Wang and Cullinane, 2006). The results

show that one of the key performance indicators is the berthing times of ships (Linn and Zhang, 2003, Böse,

2011). The shorter the berthing times are, the better the performance is. The cost of holding a 2000 TEU

ship idle is �20000-�25000 per day (Agarwal and Ergun, 2008). In order to minimize the berthing time of

a ship, QCs loading and unloading containers from the ship should not fall idle. Closely related to the ship

turnaround time, another important measure is the average QC rate, which is the quay cranes throughput

measure during a period, given by (Murty et al., 2005):

QC rate =
no. of containers unloaded, loaded

total no. of QC hours of all QCs that worked
(1)

Over the years, the speed of QCs has improved substantially. Currently, a modern QC can handle 35

containers per hour. We now see QCs with double hoists able to handle two TEU simultaneously, or even up

to four TEU. This means that in order to keep up with the speed of QCs, response times of ASCs should be

as short as possible. Typically, the throughput of an ASC, calculated as the number of handled containers

per hour, is approximately one-third of a modern QC (Murty, 2007). As a result, in order to fully utilize

QCs, (1) containers to be loaded by each QC must be distributed over several blocks (at least three blocks),

and (2) operations of each ASC must be properly scheduled to minimize the cycle time so as to prevent QCs

becoming idle. Otherwise, the ASCs become a bottleneck and the efficiency of the QCs drop. Dekker et al.

(2007) show that while retrieving containers of a jumbo ship, the percentage of time that the workload of

the ASC is more than 100% can be around 10%. In other words, the terminal seaside performance heavily

depends on the performance of the stacking operations at the stacking area (Zhang et al., 2002, Kim and

Kim, 1999a). An efficient block stacking operation can significantly affect the overall performance of the

container terminal (Zhang et al., 2002, Kim and Kim, 1999a). The stacking operation decisions include not

only the scheduling of the ASC but also allocating containers in the block based on the retrieval sequence

in order to avoid reshuffling which is time-consuming and can significantly increase the response time of the

1.3. Literature review 9

ASC.

The importance of stacking operation decisions becomes more clear considering the fact that while re-

trieving containers for a ship, each ASC also should retrieve containers leaving the terminal by truck and train

at the landside. In addition, it should stack containers arriving at the I/O points of the block by AGVs from

the seaside or by trucks and trains from the landside. Stacking operations of the ASC should be optimized to

prevent it from becoming a bottleneck. Otherwise, not only the berthing time of the ship may significantly

increase but also the waiting times of trucks, and trains. It is therefore important to minimize the makespan

of all requests to be performed by the ASC by optimally sequencing them. In practice, usually simple ASC

scheduling rules are deployed, such as nearest neighbor (NN) or first-come-first-served (FCFS). In the NN

heuristic, the ASC carries out the nearest container, and in the FCFS heuristic, it carries out the containers

based on their arrival sequence. A more proper schedule might considerably reduce the total travel time of

the ASC, which consequently reduces the makespan of ships and waiting times of trucks, barges, and trains.

In case of a container terminal with multiple rows and a straddle carrier to store and retrieve containers, Vis

and Roodbergen (2009) show that the time difference between the optimal and FCFS sequence is at least

30%. Although an ASC operates differently from a straddle carrier, substantial travel time reduction may

be gained for the ASC as well.

This dissertation focuses on the operations at the stacking area of a container terminal. More specifically,

we consider the problem of scheduling ASCs to stack and retrieve containers. We also study where storage

containers have to be stacked not only from the viewpoint of reducing the ASC travel time but also to

minimize the number of reshuffles. In the next section, we review the previous theoretical papers on these

topics, and then in Section 1.4, the outline of the dissertation is explained.

1.3 Literature review

The literature on tactical and operational decision problems at container terminals is dense (see, for example,

Günther and Kim, 2005, Steenken et al., 2004, Stahlbock and Voß, 2008a). In some research papers, the

interaction between different systems at a container terminal is discussed, whereas in the other papers the

focus is on improving the performance of an individual operation. Simulation is the prime tool to analyze the

integration and interaction of different systems (Petering and Murty, 2009, Petering et al., 2009, Petering,

2011a, 2010, Liu et al., 2002, 2004, Roy and De Koster, 2012). More than 40 papers on simulation models

can be found in the literature which range from strategic to operational decision making (Petering et al.,

2009).

Exact and heuristic methods are more common when it comes to analyzing the individual processes at

a container terminal. For example, routing and dispatching AGVs are studied by Kim and Bae (2004), Vis

et al. (2001), Evers and Koppers (1996), Vis et al. (2005), Briskorn et al. (2006), Lehmann et al. (2006),

and Meersmans (2002). Scheduling SCs is studied by Vis and Roodbergen (2009), Kim and Kim (1999c,b),

10 Chapter 1. Introduction

Kozan and Preston (1999), and Kozan (2000). Scheduling QCs can be found in Daganzo (1989), Kang et al.

(2008), Goodchild and Daganzo (2006), Choo et al. (2010), and Zhen et al. (2011). Some papers focus on the

berth allocation problem. The problem involves the allocation of ships to berth places in time in order to

optimize a certain objective function. In most of the reported studies, the objective is to minimize each ship’s

turnaround time (Hendriks et al., 2010, Kim and Moon, 2003, Guan and Cheung, 2004, Cordeau et al., 2005,

Imai et al., 2005, Monaco and Sammarra, 2007, Moorthy and Teo, 2006). A limited number of studies consider

a multi-objective problem, where besides the turnaround times, the weighted deviations from predetermined

berth positions are minimized (Wang and Lim, 2007, Hansen et al., 2008). Last but not least, scheduling

and routing ships are studied by Agarwal and Ergun (2008), Christiansen et al. (2004), Sherali et al. (1999),

Brown et al. (1987), Appelgren (1969, 1971), Ronen (1983) and Ronen (1993).

Since this dissertation focuses on the ASC scheduling and the container reshuffling problem, we particulary

pay attention to these two sections of the literature in the following subsections. Surprisingly, in spite of the

importance of these issues for daily terminal operations, relatively little research attention has been given to

these topics.

1.3.1 Yard crane scheduling

ASC, or yard crane (YC) scheduling, has not been studied well. Most of the relevant papers do not specify

any special type of YC (i.e. manual or automated RMG or RTG crane) and as such the models and solution

methods developed are applicable to all sorts of YC. However, the assumptions considered often show that

the models are more suitable for a special type of crane and must be tweaked in different ways in order to

be used to schedule another type of crane. All in all, since most papers do not specifically mention the type

of crane, we use the general term “yard crane (YC)” to review the literature.

Kim and Kim (1999a) schedule a YC to retrieve containers from several blocks in the stacking area of a

terminal. They propose a discrete time network model in which the objective is to minimize the total travel

time of the crane to carry out all retrieval requests. Narasimhan and Palekar (2002) also study a model in

which a single YC retrieves containers from a single block. Containers are classified into several types and

while retrieving a container of a specific type, the ASC selects one of the containers of that type available in

different locations of the block. They prove that the problem is NP-hard and develop a branch-and-bound

algorithm. For large size instances, they propose a heuristic with a worst-case performance ratio of 1.5. Ng

(2005) schedules several YCs to carry out a set of retrieval requests with different ready times in a yard zone,

defined as multiple blocks located behind each other in a row. The YCs cannot pass each other and cannot

exit the zone. They propose a discrete time mixed integer model and solve it by means of a heuristic based

on dynamic programming. The objective function is to minimize the total completion time. Ng and Mak

(2005) have later proposed an exact branch-and-bound algorithm for the same problem, but with a single

crane. The objective function is to minimize the total waiting time of all requests.

In more recent papers, retrieval and storage requests are considered simultaneously. Zhang et al. (2002)

1.3. Literature review 11

propose a discrete time mixed integer linear model for a problem in which several YCs carry out a given

workload in multiple blocks. Based on their definition, a workload can consist of storage and retrieval requests.

The objective is to minimize the total unfinished workload at the end of each time period. They propose

a Lagrangian relaxation model and a heuristic method to solve the problem. Cheung et al. (2002) study a

similar problem and prove that it is NP-hard in the strong sense. In order to solve the problem, they propose

a Lagrangian relaxation exact algorithm, as well as an approximation method which formulates the problem

as a network flow model with a piecewise-linear objective function.

Since the use of twin cranes limited to a block of containers is a new technology, scheduling models for such

configurations can only be found in more recent papers. Li et al. (2009) introduce a discrete time model to

schedule two ASCs carrying out the storage and retrieval requests in a single block with an I/O point located

at one side of the block along the bays. The ASCs cannot pass each other and must be separated by a safety

distance. The requests have different due times and the objective is to minimize a weighted combination of

earliness and lateness of all requests, compared to their due times. They introduce a rolling horizon algorithm

in which a horizon of a specific length is defined, and all requests falling within this horizon are considered

and optimized by CPLEX. The horizon is updated whenever all its requests have been scheduled. Vis and

Carlo (2010) also consider a similar setting. However, in their problem the ASCs can pass each other but

cannot work on the same bay simultaneously. In their problem, requests do not have any due time and can

be scheduled in any sequence. They formulate the problem as a continuous time model and minimize the

makespan of the ASCs. They solve it by a simulated annealing algorithm and use the single-row method

proposed by Vis (2006) to compute a lower bound.

Note that some papers focus on scheduling SCs (Vis and Roodbergen, 2009, Hartmann, 2004, Steenken

et al., 1993, Kim and Kim, 1999c,b). An SC can only operate on a single row of containers, where containers

of that row pass a landside or seaside I/O point located at the end of it depending on the side of destination.

Since traveling from one row to another one is time-consuming, the SC completes all requests associated

with a given row consecutively. Based on this property of the problem, Vis and Roodbergen (2009) first

use dynamic programming to route the SC among the rows of containers and then use a single-row-method

proposed by Vis (2006) to optimally route the SC in each row in a polynomial time.

Finally, in order to increase the performance of a container terminal, YCs and QCs not only must be

scheduled optimally but also must be synchronized with AGVs. In this regard, some authors deal with

optimizing the number of AGVs or synchronizing them with other material handling equipment at the

terminal (Vis et al., 2001, 2005, Bish et al., 2005, Kim and Bae, 2004, Li and Vairaktarakis, 2004, Roy and

De Koster, 2012).

1.3.2 Minimizing container reshuffling

Papers dealing with container reshuffling study three main subjects: (1) estimating the number of reshuffles,

(2) pre-marshalling, and (3) stacking methods to reduce the number of reshuffles. As it will be discussed

12 Chapter 1. Introduction

later in this section, due to the complexity of the models concerning these issues, many focus on only a single

bay with few piles for stacking or pre-marshalling containers (Froyland et al., 2008). In order to solve a

single-bay problem, some authors try to increase the quality and speed of their algorithms by local search

methods (Caserta and Voß, 2009, Lee and Chao, 2009). As a result, the need for studying a holistic problem

which considers a whole block of containers exists.

In order to estimate the expected number of reshuffles which results from a given number of storage

handlings, Kang et al. (2006) use simulated annealing assuming that containers belong to a single ship. Based

on this, they introduce a probabilistic formula to estimate the total expected number of reshuffles. Kim (1997)

proposes a method based on dynamic programming in combination with two heuristic algorithms to estimate

the total number of reshuffles. In a recent paper, Lee and Kim (2010) employ this estimation in a model to

optimize the block size taking into consideration the required throughput of YCs. De Castillo and Daganzo

(1993) also develop general expressions to calculate the expected number of reshuffles to retrieve a container

under segregation and non-segregation stacking strategies. Under the segregation strategy, containers are

separated based on their duration of stay. They assume no new container will be stacked.

Some researchers focus on how to reduce the number of reshuffles by pre-marshaling containers in a way

that fits the ships’ stowage plans. Pre-marshaling is the repositioning of containers of the block prior to the

ship arrival so that no or few reshuffles are needed when containers are loaded onto the ships. Lee and Hsu

(2007) propose an integer programming model for a container pre-marshaling problem preventing reshuffling.

They develop a multi-commodity network flow model for obtaining a plan on how to pre-marshal containers

stacked in some piles of containers. They also propose a simple heuristic for large-scale problems. Lee and

Chao (2009) develop a neighborhood-based heuristic model to pre-marshal containers of a single bay in order

to find a desirable final bay plan. Caserta and Voß (2009) also study a similar container pre-marshaling

problem. They propose a dynamic programming model to pre-marshal containers of a single bay. In order to

quickly find the solution, they propose a corridor method. In this local search method, when a container is

being pre-marshaled it can only be stacked in a corridor which consist of the next few predecessor or successor

piles of the bay with a specific limit on the number of empty locations.

Some papers focus on how to avoid reshuffling by proposing methods to properly locate incoming con-

tainers in a container block. Dekker et al. (2007) investigate different stacking policies, using simulation

based on real data. They allocate the containers to the block based on the containers’ expected duration

of stay. Kim and Park (2003) also propose a heuristic algorithm based on the containers’ duration of stay

to locate containers. Kim et al. (2000) propose a stochastic dynamic programming model for determining

storage positions of export containers in a single bay of a block. To avoid solving a time-consuming dynamic

programming model for each incoming container, they build decision trees, using the optimal solutions of

the dynamic programming model. The trees tell where to store an incoming container. The validity of the

recursive function of the dynamic programming model is proven by Zhang et al. (2010).

1.4. Outline of the dissertation 13

1.4 Outline of the dissertation

Motivated by the discussions in section 1.2 and the literature in section 1.3, this dissertation proposes,

develops, and tests optimization methods to support the decisions of container terminal operators in the

stacking area of a terminal. We focus on operational stacking problems, which are treated in four chapters.

The first three chapters focus on sequencing a given set of container storage and retrieval requests in a single

block. All three problems are complex and modeled as continuous time integer programming models. The

objective is to minimize the makespan to carry out all requests. As discussed in section 1.2, we can improve

the performance of the terminal by minimizing the makespan. We try to optimally solve the problems as long

as the complexity allows it. Otherwise, heuristic algorithms are developed to obtain near-optimal solutions.

The last chapter links indirectly to the first three and will be discussed later. Although some theoretical

studies have already addressed parts of the problems considered in this dissertation, our specific models

incorporating the constraints that are faced in practice have, to the best of our knowledge, not yet been

addressed in literature.

In Chapter 2, we minimize the travel time of a single ASC to carry out all requests. The ASC must move

retrieval containers from the block to the I/O points, and must move storage containers from the I/O points

to the block. Locations as well as destination sides of retrieval containers and I/O points of storage containers

are known. The problem is formulated as an asymmetric traveling salesman problem (ATSP). The objective

is to minimize the total travel time of the ASC to perform all requests. Different than the literature discussed

above, we optimally solve the ATSP model for instances of all sizes. In most of the previous research papers,

discrete time models are proposed and mainly heuristics are used to solve the models.

In Chapter 3, we consider a similar problem with the difference that storage locations are not given. In

other words, in case of a storage request, the ASC picks up a container from an I/O point, and drops it

off in a location selected from a set of open locations suitable for stacking the container. Since container

terminal operators often separate containers based on several criteria such as destination and weight, a set

of open suitable locations is in many cases available to stack the container. We formulate the problem as a

generalized asymmetric traveling salesman problem (GATSP). Similar to the previous problem, we minimize

the total travel time of the ASC to perform all requests. In this problem, a single location may be suitable

for stacking different containers, and thus sets of open locations may overlap. Locations in the intersection

of multiple sets make the problem complex. Extra constraints are necessary to stack at most one container

in such a location. In the literature, no continuous time model for such problem is proposed. We formulate

the problem and solve it for small and medium instances. For large instances, we use a heuristic algorithm

to obtain near-optimal solutions.

Chapter 4 considers a problem in which two ASCs carry out the requests. The ASCs can never pass each

other and must operate sufficiently far from each other. Furthermore, the storage locations are not given and,

in addition, containers can have different priorities in order to be stacked or retrieved. The most important

reasons for this are as follows:

14 Chapter 1. Introduction

� The performance of a container terminal is often evaluated based on the berthing times of ships (Böse,

2011). Therefore, seaside containers usually have a higher priority than landside containers.

� To ensure the stability of ships, heavy containers must be loaded before light containers, in lower tiers

on the ship and must therefore be retrieved earlier (see, for example, Gharehgozli et al., 2012c, Kim

et al., 2000, Sammarra et al., 2007, Dekker et al., 2007).

� Trucks, trains and ships arrive at a container terminal to deliver or pick up containers at different

points in time (see, for example, Froyland et al., 2008, Petering, 2011b, Newman and Yano, 2000),

which induces precedence constraints on the stacking and retrieving of containers.

Preventing reshuffling also imposes additional precedence constraints on the operations. A precedence

constraint can prohibit a container to be stacked in a pile before retrieving a container located in the same

pile, or it can force containers stacked on top of a specific container to be retrieved earlier.

We formulate this multi-crane problem as a multiple asymmetric generalized traveling salesman problem

with precedence constraints (mAGTSP-PC), which generalizes the single version of the problem without such

constraints (see, for example, Laporte et al., 1987, Noon and Bean, 1991). The objective is to minimize the

makespan of the two ASCs. The model also contains additional constraints regarding the interactions of

the ASCs and the selection of open storage locations which lie in the intersection of multiple sets. Stacking

problems with two ASCs have hardly researched. The combination with precedence constraints, and multiple

open locations for storage containers is new. The new extra constraints make the problem so complex that

we develop an adaptive large neighborhood search heuristic to solve the problem.

In these chapters, the storage locations can be selected from sets of open locations. However, it is assumed

that these locations are still determined beforehand at a higher level in the decision making hierarchy. Chapter

5 is an attempt to find proper locations among all available empty locations when containers arrive at the

container terminal. The objective function is to minimize the expected number of reshuffles.

Chapter 2

Scheduling a Single Yard Crane with

Given Storage Locations∗

Container terminals play a vital role in the organization of efficient global trade (Taggart, 1999, Henwood

et al., 2006). A large terminal handles millions of containers annually, which are transported by deep-sea

vessels of increasingly larger sizes (Drewry, 2011). Containers arriving at a terminal are stored in a very large

yard until they can be loaded onto proper outbound transport modes, like other deep-sea ships, barges, trains

or trucks. At a terminal, containers are stacked in container blocks, each operated by a single automated

stacking crane (ASC) (see Chapter 1). The stack decouples flows between different transport modes, like

deepsea and shortsea vessels, barges, trains, and trucks, in time. Particulary for large vessels, it is known some

time in advance which containers have to be unloaded and loaded, to and from which position in the stack.

Modes with smaller drop sizes, such as barges and trucks have to be scheduled in between the large-scale

operations of deep-sea vessels. Minimizing the makespan of deep-sea vessels is a prime overall objective at a

container terminal. However, the ASc has to handle requests for other modes as well within the given time

frame. Since the ASC is often a heavily utilized resource at a container terminal, it is necessary to schedule

the stacking operations over a given horizon with throughput time minimization as a prime objective (Böse,

2011). In practice, storage and retrieval requests are often executed in a first-come-first-served (FCFS) order

or by the nearest neighbor (NN) search, as provided by commercial software companies (for example, Cosmos

NV and Modality Software solutions b.v.). A more proper schedule can considerably reduce the total travel

time of the ASC, which consequently reduces the makespan of ships and waiting times of trucks, barges, and

trains.

We consider the problem of sequencing a given set of requests to be stacked or retrieved by an ASC in a

single block. The objective is to minimize the travel time of the ASC to carry out the requests. We formulate

∗This chapter is based on Gharehgozli et al. (2012d).

15

16 Chapter 2. Scheduling a Single Yard Crane with Given Storage Locations

this problem with multiple I/O points as a special kind of an asymmetric traveling salesman problem (ATSP),

in which to travel between two request locations in the block, the ASC, in most cases, must visit an I/O

point. We show that due to the existence of multiple I/O points and the special movements of the ASC,

the problem is so complex and in a special case is NP-hard. For quickly solving the problem, we propose a

two-phase solution method. In the first phase of the solution, we develop a new merging algorithm to patch

subtours of an optimal solution of the assignment problem (AP) relaxation of the problem without adding

extra travel time. In this phase, we first search for two arcs from every two different subtours visiting a

common I/O point, and swap the destinations of them to merge the subtours. Next, based on the fact that in

some arcs, the ASC has multiple I/O point options with the same travel time to visit, we can create further

opportunities to merge more subtours. We show that the first phase runs in a polynomial time, and often

finds an optimal solution. Otherwise, a branch-and-bound (B&B) algorithm is used in the second phase to

find an optimal solution of the problem. In this phase, the merging algorithm is again used in each node of

the B&B tree to save computation time.

The numerical results show the two-phase solution method is quite efficient. For instances up to 200

requests, an optimal solution can be obtained in less than a second. Furthermore, we show that the travel

time reduction between the optimal and FCFS sequence is around 30%, on average. The reduction is around

14%, in case the NN heuristic is used to find the sequence. Finally, in order to evaluate the complexity of

the problem and the performance of our algorithm, we compare our results with CPLEX results. The results

show that the two-phase solution method can obtain significantly better results than CPLEX truncated after

five hours. For instances with 100 requests, CPLEX cannot obtain a feasible solution after five hours.

In general, scheduling a yard crane to carry out storage and retrieval requests can be modeled as an

ATSP or one of its special cases such as the rural postman problem, or Chinese postman problem, depending

on the properties of the problem (Vis and Roodbergen, 2009). Simply stated, the ATSP is a combinatorial

problem in which from a given list of locations with given pairwise travel times, a tour must be determined

passing every location exactly once in such a way that the total travel time is minimized (Lawler et al.,

1985). In general, ATSP is proved to be NP-hard (see, for example, Srour and Van de Velde, 2011). Several

algorithms have been proposed to solve the ATSP. Among the most efficient ones is the B&B algorithm

based on the subtour elimination approach proposed by Carpaneto and Toth (1980) and later improved by

Carpaneto et al. (1995) and Miller and Pekny (1991). The core idea of the B&B algorithm in all three studies

is the AP relaxation. In each node of the B&B tree, an AP with some extra constraints is solved. Constraints

exclude a number of arcs and require some others to appear in the AP solution so that some subtours can be

avoided. Carpaneto et al. (1995) and Miller and Pekny (1991) also propose two merging algorithms. In these

algorithms, the reduced costs of the arcs are used to merge subtours, and they are thus time consuming.

Therefore, Carpaneto et al. (1995) for example use the merging algorithm in every node if the number of

zero-reduced cost arcs is more than a threshold. In addition, the objective value may increase after merging

subtours. These issues make their algorithms different than the one developed in this chapter, in a sense that

17

our algorithm uses swappable arcs with common visiting I/O points to quickly patch subtours without extra

travel time.

Reviewing the papers on scheduling a single crane to carry out storage and retrieval requests of containers

at a container terminal (Vis and Roodbergen, 2009) or of unit loads in a warehouse (Ratliff and Rosenthal,

1983, De Koster and Van der Poort, 1998, Van den Berg and Gademann, 1999) reveals that specific properties

of each individual problem, modeled as a form of ATSP, determine whether a polynomial solution method

can be developed. These properties are: (1) the number of I/O points, and (2) the number of rows in which

containers are stored or retrieved. The literature can therefore be categorized based on these properties as

follows.

In case of a single I/O points, polynomial solution methods can be developed (see Burkard et al. (1998)

for solvable TSP cases). In this case, all subtours of an optimal solution of an AP relaxation to the ATSP

can be merged as a complete Hamiltonian tour, since the crane returns to the same I/O point for every

request. Having returned to the I/O point, the crane can select any storage request. It can also select a

retrieval request in case in the optimal AP solution that retrieval request is sequenced after another retrieval

request. Therefore, all subtours can be merged without adding extra travel time. Nevertheless, by increasing

the number of I/O points, the problem becomes more complex. In fact, we show that the general problem

with multiple I/O points is NP-hard.
Van den Berg and Gademann (1999) discuss a problem with both an output point and an input point,

which is a special case of a problem with a single I/O point. As a result, although locations are spread in

multiple rows, an optimal solution can efficiently be found. They formulate the problem as a transportation

problem using a bipartite graph and prove that each feasible solution of the transportation problem corre-

sponds to a retrieval and storage sequence of the main problem. Note that they assume storage requests are

executed in a FCFS order. The problem is to find which retrieval requests must be interleaved after each

storage.

Vis and Roodbergen (2009) consider a problem with a single block where the block corresponds to

multiple rows separated by aisles. Each row has one I/O point at each end which serve that row. A single

straddle carrier stores or retrieves all containers in the rows, where each container passes an appropriate I/O

point of its row. The straddle carrier must exit the current row at the end in order to travel from one row to

the other one, which is time-consuming. Therefore, it usually finishes all requests in that row before traveling

to another. Based on this specific characteristic of straddle carriers, they can decompose the problem with

multiple rows into several problems with one row and two I/O points and solve them separately. They

propose a solution method based on dynamic programming to determine the shortest path for the straddle

carrier crossing multiple rows. The dynamic programming allows multiple visits of a single row. It uses an

optimal storage and retrieval request sequence in each row. Using an optimal AP solution to sequence the

requests in a row with two I/O points results in maximum two subtours. They prove that these subtours

can be optimally merged by enumerating and exchanging arcs in O(N) time because in case of a single row

18 Chapter 2. Scheduling a Single Yard Crane with Given Storage Locations

and two I/O points, because the travel time matrix has the properties of a Monge matrix (see Gilmore and

Gomory, 1964). Vis and Carlo (2010) also use the same method to find a lower bound for their container

sequencing problem with a single block and two ASCs. To obtain the lower bound, they collapse all rows of

the block together as a single row and assume that a single ASC carries out all requests. Considering two

ASCs to carry out the requests makes the problem complex that they resort to a metaheuristic to solve the

problem.

Vis and Roodbergen (2009) extend the models proposed by Ratliff and Rosenthal (1983) and De Koster

and Van der Poort (1998) for routing an orderpicker in a warehouse. Ratliff and Rosenthal (1983) consider

a warehouse with parallel aisles (comparable to a container terminal with parallel rows), a central I/O point

and no storage request, whereas De Koster and Van der Poort (1998) consider the same situation but the

warehouse can have an I/O point at the end of each aisle. Dynamic programming is used in both studies to

decompose and solve the problems.

Different from the previous line of research, in this paper, a continuous time integer programming model

is proposed to stack and retrieve containers in a block with multiple I/O points and rows densely located

together. Since the ASC can simultaneously move across the rows and does not return to the row ends

to switch rows, the problem is more complex. Compared to the current ASC position, many locations in

neighbor rows have identical travel times. In order to obtain the optimal solution, all rows and I/O points

must be considered at the same time in the solution method. Decomposing the block into multiple single-row

blocks for adopting the methods proposed by Vis and Roodbergen (2009), De Koster and Van der Poort

(1998), Ratliff and Rosenthal (1983) is not possible, since returning to an I/O point located at either end

of each row is essential in the proposed network models and solution methods. Extra arcs are necessary

in the network to model switching rows without returning to the I/O points. Even if the block is divided

into multiple single-row blocks, the optimal solution of each row cannot be obtained using the enumerative

method. The reason is that containers are not dropped off or picked up at dedicated I/O points at the end of

the row. Some requests are connected to other I/O points, which means that by solving an AP, the number

of subtours is not necessarily two and can be more.

The rest of this chapter is organized as follows. In Section 2.1, we describe the technical aspects of the

problem and present the mathematical model. In Section 2.2, the solution method is developed. Section 2.3

presents numerical results and Section 2.4 contains the conclusions.

2.1 Problem description and model

This section describes the research problem, introduces notations, and then formulates the problem.

2.1. Problem description and model 19

2.1.1 Problem description

We study how to sequence N container storage and retrieval requests in a single block of containers consisting

of X rows, Y bays, Z tiers, and M I/O points. Let I/Om, m = 1, . . . ,Ms, be the location of the mth I/O

point at the seaside whereas I/Om, m = Ms+1, . . . ,M , be the location of the mth I/O point at the landside.

A single ASC moves n storage containers from the I/O points to given locations in the block and moves

N − n retrieval containers from the block to the I/O points. The objective is to minimize the total travel

time of the ASC. From a given starting point, the ASC can carry out the requests in any sequence in order

to minimize total travel time. We denote by 0 and 0′, respectively, the starting and ending locations of the

ASC. These locations can be anywhere in the block. The ASC can only carry a single container at a time

and containers must not be dropped off at temporary locations. Storage and retrieval containers can be of

different sizes (i.e. 20 or 40 feet) and leave or arrive at the container terminal by truck, train or ship.

We denote by V = {1, . . . , N, 0, 0′} the set of all storage and retrieval locations including the ASC starting

and ending locations. Note that every request corresponds to a unique location in the block and a unique

container. Thus, for ease of notation, we use their notations interchangeably as follows. Container i of

storage request i is currently located at an I/O point and is waiting to be stored in location i in the block,

i = 1, . . . , n. Container j of retrieval request j is already stacked in location j in the block, j = n+1, . . . , N ,

and is waiting to be delivered to an I/O point either at the seaside or landside, depending on whether they

should be transported by truck/train, or by ship, respectively. Due to the abundance of internal transport

vehicles (like AGVs and chassis) to pick up containers at the seaside and landside, retrieved containers can

be delivered to any I/O point at the landside or the seaside.

Locations as well as destination sides of retrieval containers and I/O points of storage containers are

known; in practice, they are determined at a higher hierarchical planning level. This level focuses on min-

imizing the number of reshufflings (De Castillo and Daganzo, 1993, Kim et al., 2000) and speeding up the

loading and unloading process of a ship (Kim and Kim, 1999a, Vis and Roodbergen, 2009). Due to the

abundance of internal transport vehicles (like AGVs and chassis) to pick up containers at the seaside and

landside, retrieved containers can be delivered to any I/O point at each side. Because of the same reason,

retrieval containers can be quickly moved away from all I/O points, and they can therefore be delivered to

the same I/O point that a storage container has to be picked up. The other issue is that storage and retrieval

locations do not coincide. This is a reasonable assumption as N is usually much smaller than the block size,

the block utilization is often fairly low, and container terminal operators usually separate containers based on

destination and type. Finally, we assume that containers do not have explicit precedence constraints. This

assumption can be explained based on the fact that all containers are categorized into several precedence

groups (for example, based on their latest departure times) and we can consider the sequencing problem

group by group. In Chapter 4, we present an extension of the problem in which precedence constraints are

considered.

Figure 2.1 shows a top view of a small block (X = 7, Y = 10, and Z = 4) of containers with three

20 Chapter 2. Scheduling a Single Yard Crane with Given Storage Locations

storages and four retrievals. Locations of storages, retrievals and I/O points are highlighted with different

colors. The first storage container must be picked up at I/O1, the second at I/O1, and the third at I/O7. On

the other hand, retrieval container 4 must be moved to one of the I/O points at the seaside and containers

5, 6 and 7 must be moved to one of the I/O points at the landside.

Figure 2.1. A top view of a block with storage and retrieval
locations

In order to mathematically formulate the problem and calculate the total travel time of the ASC, the

pairwise travel times between the storage and retrieval locations in the block must be calculated. If the

ASC travels directly from location i, (xi, yi, zi), to location j, (xj , yj , zj), the travel time of the ASC can be

calculated as follows:

tij = max{|xi − xj |, |yi − yj |}+ |zi|+ |zj |, (1)

where, (xi, yi, zi) and (xj , yj , zj) are the Cartesian coordinations of locations i and j, with 0 ≤ xi, xj ≤ Tx,

0 ≤ yi, yj ≤ Ty, and 0 ≤ zi, zj ≤ Tz. Here, Tx, Ty, and Tz, are the furthest travel times of locations in

the block in X, Y , and Z directions, respectively. The first term of the right-hand side of Equation (1)

emphasizes that the ASC can move in the X and Y directions simultaneously.

In order to calculate the travel times between storage and retrieval locations, we additionally must

consider that the ASC needs to travel through I/O points to pick up or deliver containers. For example,

to move from storage location i to storage location j, the ASC needs to travel first to the I/O point where

container j is located and then move container j to location j. Table 2.1 summarizes how to calculate the

travel times between different locations. The travel time of the ASC satisfies the triangle inequality.

2.1. Problem description and model 21

Table 2.1. Computation of pairwise travel times (tij)

Arc (i,j)1 Computation of tij
2 I/O

(storage location i, retrieval location j) tij None
(storage location i, storage location j) ti,I/Ok

+ tI/Ok,j I/Ok
3

(storage location i, 0′)4 0 None

(retrieval location i, retrieval location j) min
m=1,...,Ms

(or m=Ms+1,...,M)

{ti,I/Om+tI/Om,j}, if container imust be delivered to the seaside

(or landside).

P 5

(retrieval location i, storage location j) (1) ti,I/Ok
+ tI/Ok,j, if container i must be delivered to the same side where

container j is already located.
I/Ok

(2) min
m=1,...,Ms

(or m=Ms+1,...,M)

{ti,I/Om + tI/Om,I/Ok
+ tI/Ok,j}, if container i must be de-

livered to the seaside (or landside) and container j is already located at the
opposite side.

P and
I/Ok

6

(retrieval location i, 0′)7 min
m=1,...,Ms

(or m=Ms+1,...,M)

{ti,I/Om}, if container i must be delivered to the seaside (or

landside).

P

(0, retrieval location j) t0,j None
(0, storage location j) t0,I/Ok

+ tI/Ok,j I/Ok

Other cases ∞ None

1 In arc (i,j), the YC moves from location i to location j.
2 tii = ∞.
3 Let I/Ok be the I/O point where storage container j, j = 1, . . . , n, is located.
4 The YC stops at location i, if storage request i is the last request.
5 Let P be the set of I/O points that the YC can deliver retrieval container i to either one and travel to another location with
the minimum travel time.
6 In this case, two I/O points must be visited: I/Ok and an I/O point in P .
7 The YC delivers the container i to an I/O point and stops there, if retrieval request i is the last request.

The mathematical formulation of the problem requires a unique travel time between every two locations.

However, in an arc in which the ASC travels from a retrieval location to another location, the ASC is allowed

to deliver the retrieval container to any of the multiple I/O point options. Each possible I/O point results in

a different travel time. Due to the following theorem, the ASC selects the I/O point which gives the minimum

travel time between the retrieval location and the immediate next storage or retrieval location.

Theorem 2.1 In order to minimize the travel time, the ASC selects the I/O point which gives the minimum

pairwise travel time to deliver a retrieval container and travel to the next storage or retrieval location.

The proof is straightforward and is given in the Appendix. Note that multiple I/O points can result in

the minimum travel time, but for now, we randomly select one of them. Later in the solution method section,

we explain how multiple I/O point options can help to solve the problem.

2.1.2 Mathematical model

The problem of sequencing storage and retrieval requests is mathematically stated as the following integer

programming model. xij is the binary decision variable which equals 1 if and only if location j is visited

immediately after location i, i, j ∈ V, i �= j.

22 Chapter 2. Scheduling a Single Yard Crane with Given Storage Locations

The objective function is to minimize the total travel time of the ASC:

minimize Z =
∑

i∈V \{j,0′}

∑
j∈V \{0}

tijxij . (2)

The model has the following constraints.

Visiting all locations and carrying out all requests : Each location must be entered and exited exactly

once. Of course, the starting point has no ingoing arc and the ending point has no outgoing arc:

∑
i∈V \{j}

xij = 1, ∀j ∈ V \{0}. (3)

∑
j∈V \{i}

xij = 1, ∀i ∈ V \{0′}. (4)

Subtour elimination constraints: The ASC must avoid traveling subtours. Therefore, for any subset of

locations O ⊆ V \{0, 0′}, O �= ∅ where |O| is the size of O, we have the following constraint:

∑
i,j∈O

xij ≤ |O| − 1. (5)

All the variables are binary:

xij ∈ {0, 1}, ∀i, j ∈ V. (6)

The problem is defined as an ATSP (tij �= tji), consisting of assignment constraints plus subtour elimina-

tion constraints. In this problem, containers are dispatched on a plane (the block), are picked up or dropped

off at different I/O points located at two ends of the plane, and the crane carrying out the containers can

simultaneously move along the X and Y directions of the plane. Therefore, the travel times are defined based

on the Chebyshev distance (see equation (1)) and the properties of Monge matrix do not hold. As a result,

even in the case of a limited number of I/O points, the enumerative methods which merge subtours by ex-

haustively exchanging arcs among subtours and find the one with the minimum amount of extra travel time

are not applicable. In fact, the complexity of the problem increases in the number of I/O points and requests.

A special case of the problem, where the number of I/O points is not limited (N = M), is NP-hard. This can
be easily proved by polynomial time reduction of the stacker crane problem with uninterrupted movements

on a general graph which has been proven to be NP-hard (Frederickson et al., 1978).

2.2. Solution method 23

2.2 Solution method

A relaxation of the problem is an AP that can be efficiently solved in O(N3) steps where N is the number

of requests (Kuhn, 1955). An optimal AP solution often contains subtours since the subtour elimination

constraint (Equation (5)) may not be satisfied. In order to merge subtours to obtain an optimal solution of

our problem, we first develop some unique properties of the problem. Using these properties, an algorithm

is developed in subsection 2.2.1 to merge subtours. If all subtours have been merged into a single tour,

an optimal solution is found. Otherwise, some subtours have not been merged, and a B&B algorithm is

developed in subsection 2.2.2 to merge all remaining subtours to obtain an optimal solution of our problem.

2.2.1 Merging algorithm

In this phase, we first in subsection 2.2.1 explain how to patch subtours of an optimal AP solution two by

two by swapping arcs visiting a common I/O point. Then, in subsection 2.2.1, we introduce arcs in which

the ASC can has multiple I/O point options to travel from the origins to the destinations of the arcs. These

arcs can be used to create more opportunities to merge subtours. Finally, in subsection 2.2.1, we present the

merging algorithm. We show that the objective value does not change after this merging.

Merging subtours based on an optimal AP solution

In this section, we find some properties of the problem to merge subtours of the AP solution without adding

extra travel time.

Definition 1 The visiting I/O point of an arc is the I/O point that the ASC needs to travel through either

to pick up or to deliver a container in order to travel the arc connecting two requests.

In order to visualize the visiting I/O point of an arc, we need to distinguish carrying and non-carrying

moves. In case of a retrieval request, the ASC starts with a non-carrying move from a storage location (or

an I/O point) to the retrieval location, and then continues with a carrying move from the retrieval location

to an I/O point. In case of a storage request, the ASC starts with a carrying move from an I/O point to the

storage location, and then continues with a non-carrying move from the storage location to an I/O point or

retrieval location. This property is implicitly considered in travel time of different arcs connecting requests,

based on the calculations summarized in Table 2.1.

Figure 2.2b shows carrying and non-carrying moves of the arcs of an optimal AP solution presented in

Figure 2.2a. For clarity, in Figure 2.2b, only the first and second subtours are considered. For example,

storage request 1 is connected to I/O1 by a carrying move and to retrieval request 4 by a non-carrying move.

Furthermore, retrieval request 4 is connected to I/O1 by a carrying move and to storage request 1 by a

non-carrying move. As a result, I/O1 is the visiting I/O point of arc 4
x41=1−−−−→ 1.

Arcs in two different subtours that have a common visiting I/O point can be swapped between those

subtours resulting in a merged subtour without extra travel time. These so-called swappable arcs have the

24 Chapter 2. Scheduling a Single Yard Crane with Given Storage Locations

An optimal AP solution: subtour 1: 0
x02=1−−−−→ 2

x25=1−−−−→ 5
x50′=1−−−−−→ 0′; subtour 2: 1

x14=1−−−−→ 4
x41=1−−−−→ 1; subtour 3: 3

x36=1−−−−→
6

x67=1−−−−→ 7
x73=1−−−−→ 3.

Figure 2.2. (a) An optimal AP solution consisting of sub-
tours 1, 2 and 3, (b) Carrying and non-carrying moves of
subtours 1 and 2, (c) Merging subtours 1 and 2 using the
swappable arcs x41 and x02

following characteristics.

Definition 2 Swappable arcs are a pair of arcs in two different subtours that have a common visiting I/O

point.

Theorem 2.2 If two subtours contain a pair of swappable arcs, they can be merged without adding extra

travel time.

The proof can be found in the Appendix.

Corollary 2.1 If xij = xkl = 1 are two arcs of two subtours, the two subtours can be merged by setting

xij = xkl = 0 and xil = xkj = 1. If arcs are swappable, the total travel time remains the same, otherwise it

may increase.

The proof is straightforward and follows similar arguments as the proof of Theorem 2.2.

2.2. Solution method 25

In the optimal AP solution presented in Figure 2.2a, x41 and x02 define a pair of swappable arcs because

both arcs visit I/O1 (follow the carrying moves in Figure 2.2b). Therefore, based on Theorem 2.2, replacing

them with x42 and x01 results in merging subtours 1 and 2 without adding extra travel time. Merged subtour

1+2 is shown in Figure 2.2c: 0
x01=1−−−−→ 1

x14=1−−−−→ 4
x42=1−−−−→ 2

x25=1−−−−→ 5
x50′=1−−−−→ 0′.

Merging subtours using replaceable I/O points

In the previous section, we used the following type of swappable arcs in Theorem 2.2 to patch subtours of an

optimal AP solution.

Definition 3 An arc with a single irreplaceable visiting I/O point is an arc in which the ASC has a unique

visiting I/O point option with the minimum travel time to visit and travel from the origin to the destination

of the arc.

The assumption that all arcs have a single irreplaceable visiting I/O point results in missing some merging

opportunitis. As the last column of Table 2.1 shows, in some arcs, the ASC may be able to visit one of multiple

I/O points with the same travel time. Arcs without any I/O point such as moving from a storage location

to a retrieval location are not a matter of attention here because swappable arcs need to have a common

visiting I/O points. Therefore, we can introduce the following type of arcs.

Definition 4 An arc with replaceable visiting I/O points is an arc in which the ASC has multiple visiting

I/O point options with the minimum travel time to visit and travel from the origin to the destination of the

arc.

Based on the last column of Table 2.1, an arc with replaceable visiting I/O points can be realized if the

request corresponding to the location at the origin of an arc is a retrieval request. The retrieved container

must be delivered to an I/O point which results in the minimum travel time for the ASC in order to travel

from the origin to the destination of the arc (Theorem 2.1). In some cases, multiple I/O points may give

the same minimum travel time one of which can be chosen. Arcs with replaceable visiting I/O points create

extra opportunities to merge subtours.

During the merging algorithm, we check each arc to find out the number of visiting I/O points. However,

in order to speed up the algorithm, we introduce the following theorem which can be used to identify the

types of arcs that always have a single irreplaceable visiting I/O point. The other arcs may have replaceable

or irreplaceable I/O points.

Theorem 2.3 Arc i
xij=1−−−−→ j has a single irreplaceable visiting I/O point if:

1. i and j are both storage requests, or

2. i is a retrieval request, j is a storage request and retrieval container i must be delivered to the same

side where storage container j must be picked up.

The proof is given in the Appendix.

26 Chapter 2. Scheduling a Single Yard Crane with Given Storage Locations

In Theorem 2.3, the single irreplaceable visiting I/O point is the I/O point where storage container j is

located. As an example, Arc x41 in Figure 2.2-a shows an arc with a single irreplaceable visiting I/O point,

as I/O1 is the only I/O point that can be visited (see Figure 2.2-b). In Figure 2.3-a where subtours 1+2 and

3 are shown, arc x50′ is an arc with four replaceable visiting I/O points, I/Om, m = 5, 6, 7, 8, that give the

same minimum travel time, t50′ . Arc x67 is also an arc with replaceable visiting I/O points, I/Om,m = 6, 7.

In Figure 2.3-b, carrying and non-carrying moves of x50′ and x67 are shown in black and gray, respectively.

Figure 2.3. (a) Subtour 1+2 and subtour 3, (b) Carrying
and non-carrying moves of arcs x50′ and x67 with replace-
able visiting I/O points in subtours 1+2 and 3, (c) Merg-
ing subtours 1+2 and 3 by replacing x50′ = x67 = 1 with
x57 = x60′ = 1

The following corollaries derived from Theorem 2.2 explain which I/O point must be selected for merging

subtours when swappable arcs with replaceable visiting I/O points are used for this purpose.

Corollary 2.2 If two subtours contain a pair of swappable arcs of which at least one has an irreplaceable

visiting I/O point, the subtours can be merged without extra travel time by using that single common visiting

I/O point.

The proof follows similar arguments as Theorem 2.2.

2.2. Solution method 27

Corollary 2.3 discusses a more general case of this theorem when both swappable arcs have replaceable

visiting I/O points.

Corollary 2.3 If two subtours contain a pair of swappable arcs, both with replaceable visiting I/O points,

using any of the common visiting I/O points, the subtours can be merged without extra travel time.

The proof follows similar arguments as Theorem 2.2.

Corollaries 2.2 and 2.3 state that arcs replacing the swappable arcs should visit one of the common

visiting I/O points. Visiting other I/O points will increase the total travel time, thus these I/O points must

be omitted. An example of Corollary 2.2 is merging subtours 1 and 2 using swappable arcs x41 and x02 where

the single common visiting I/O point is I/O1 (see Figure 2.2). An example of Corollary 2.3 is presented in

Figure 2.3. Swappable arcs of subtours 1+2 and 3 shown in Figure 2.3a are x67 and x50′ . The carrying,

non-carrying moves and replaceable visiting I/O points of these arcs are shown with different colors in Figure

2.3b. Based on Corollary 2.3, common visiting I/O points, I/Om, m = 6, 7, can be used to merge subtours

1+2 and 3. A complete tour is shown in Figure 2.3c. In this solution, I/O6 is for example selected to deliver

the retrieved container 6.

Merging algorithm steps

Having considered different properties of the problem, the merging algorithm can be presented. In the

algorithm, merging subtours will be carried out by using the following arcs consecutively: (1) swappable arcs

with a single irreplaceable visiting I/O point, (2) swappable arcs with replaceable visiting I/O points, and

(3) swappable arcs of which one has a single irreplaceable visiting I/O point and the other has replaceable

visiting I/O points. The reason behind this sequence is as follows:

In case both swappable arcs have a single irreplaceable visiting I/O point, merging two subtours results

in a merged subtour in which the same common visiting I/O point will be visited by the new arcs replacing

the swappable arcs (based on corollary 2.2). This is the ideal case because the subtours are merged without

omitting any I/O point. In the other two cases, the number of common I/O points that will be kept in

the merged subtours determines the sequences. In case swappable arcs have replaceable I/O points, the two

related subtours can be merged using one of the common I/O points (based on corollary 2.3). On the other

hand, in the third case, arcs replacing the swappable arcs visit only a single irreplaceable common visiting

I/O point (based on corollary 2.2). In other words, in the third case only a single common visiting I/O point

can be used to join the merged subtour to the other subtours whereas in the second case at least one common

visiting I/O point exist. Therefore, the second case has priority in subtour merging over the third case.

In the Algorithm (1), Um and U ′
m are the sets of all arcs in an optimal AP solution with irreplaceable

and replaceable visiting I/O points respectively, which visit I/Om, m = 1, . . . ,M .

The merging algorithm complexity is O(MN), where N is the total number of requests and M is the

number of I/O points. The complexity of the algorithm comes from identifying each type of arc. We need to

28 Chapter 2. Scheduling a Single Yard Crane with Given Storage Locations

Algorithm 1 Merging algorithm

Require: An optimal AP solution;
Ensure: An optimal solution of the problem with the same optimal AP objective value

and a complete Hamiltonian tour, or an optimal AP solution with the same optimal AP
objective value and a few subtours;

1: procedure MERGE
2: classify and assign arcs of the AP optimal solution to the sets of arcs with irreplaceable

and replaceable visiting I/O points, Um and U ′
m, m = 1, . . . ,M using Definitions 3 and

4;
3: for m = 1, . . . ,M do
4: if |Um| > 1 then
5: based on Corollary 2.2, the subtours can be merged using the common I/O

point, I/Om. Merge subtours two by two using Corollary 2.1;
6: update Um and U ′

m, m = 1, . . . ,M ;
7: end if
8: end for
9: repeat steps 3–8 for U ′

m. If |U ′
m| > 1, m = 1, . . . ,M , based on Corollary 2.3, subtours

can be merged using the common I/O point, I/Om;
10: repeat step 3–8 for Um ∪ U ′

m. If |Um ∪ U ′
m| > 1, m = 1, . . . ,M , based on Corollary

2.2, subtours can be merged using the common I/O point, I/Om;
11: if the number of subtours is 1 then
12: an optimal solution of the problem is obtained; output the solution;
13: else
14: an optimal solution is not found because it does not satisfy Equation (5). The

B&B algorithm presented in subsection 2.2.2 will be called to find an optimal solution;
15: end if
16: end procedure

go through all the arcs and decide whether they have replaceable or irreplaceable I/O points.

2.2.2 Branch-and-bound algorithm

If, upon completion of the merging algorithm, the solution still contains at least two subtours, a further step is

needed. This section introduces a modified B&B algorithm to merge all subtours as a complete Hamiltonian

tour.

Basic branch-and-bound algorithm

Step 1. Initialization

The output of the merging algorithm is an optimal AP solution with |W | subtours, where W is the set

of subtours. The output serves as the input of the B&B algorithm in node 0. In addition, determine the

best solution found so far X∗, with the objective value Z∗ (which serves as an upper bound for the B&B

algorithm) by using a heuristic algorithm such as the FCFS or NN algorithm.

Step 2. First branching

The B&B algorithm continues by selecting a subtour w ∈ W containing the minimum number of arcs

to branch node 0 (Carpaneto and Toth, 1980). The branches divide the solution space into complementary

2.2. Solution method 29

solution subspaces such that w can be removed. This is carried out by sequentially excluding a next arc of

the (now broken) subtour w and including (keeping) the preceding arcs. The excluding arcs must disappear

in the next solution and including arcs must appear. Assume subtour w can in general be represented as

[1]
x[1][2]=1−−−−−→ [2] → · · · → [K]

x[K][1]=1−−−−−−→ [1], where [i] is the ith location, i = 1, . . . ,K, that will be visited by

the ASC in this subtour. Subtour w results in K child nodes, each with the following corresponding sets of

excluded and included arcs. Arcs can be excluded and included by assigning 0 and 1 to their corresponding

variables, respectively.

Ej = {[j]
x[j][j+1]=0−−−−−−−→ [j + 1]}, j = 1, . . . ,K, (7)

Ij = {[1]
x[1][2]=1−−−−−→ [2], . . . , [j − 2]

x[j−2][j−1]=1−−−−−−−−→ [j − 1]}, j = 2, . . . ,K, (8)

where, I1 = ∅, and [K + 1] = 1 in Equation (7).

Figure 2.4 shows the steps of the B&B algorithm. Note that using the merging algorithm, we can merge

all subtours of the AP relaxation of the problem presented in Figure 2.1 as a single tour in Figure 2.3-c.

However, assume that the problem has two more requests: retrieval request 9 and storage request 8. These

requests cause an extra subtour which cannot be merged with the other ones because it does not have any

common visiting I/O point with the other subtours. Therefore, the outcome of the merging algorithm would

be the solution presented at node 0. The B&B algorithm chooses subtour 4 for branching because it has only

2 arcs whereas the other one has 8 arcs.

Step 3. Fathoming and bounding

At each child node, l = 1, . . . ,K, we solve a modified AP, introduced by considering constraints forced

by Equations (7) and (8) as well as other general constraints of the AP (Equations (2)–(4) and (6)).

Assume Zl
AP, and X l, l = 1, . . . ,K, are the optimal AP objective value and an optimal AP solution at

node l. If Zl
AP ≥ Z∗, fathom the node. If Zl

AP < Z∗ and the optimal solution to the modified AP at node l

is a complete Hamiltonian tour, update Z∗ = Zl
AP, X

∗ = X l and fathom the node. Otherwise, if Zl
AP < Z∗

and the optimal solution is not a complete tour, add l to the set of live nodes, L (L = ∅ at node 0). The set

of live nodes is the set of nodes that are not fathomed yet and must be considered.

Figure 2.4 shows that solving the modified APs at child nodes 1 and 2 results in solutions each consisting

of 2 subtours, namely subtours 6 and 7 for l = 1, and subtours 8 and 9 for l = 2. However, Z2
AP = 281.46 ≥

280.02 = Z∗ = ZNN, so node 2 must be fathomed. Note that X∗ and Z∗ are obtained by the NN heuristic.

On the other hand, Z1
AP = 277.96 < 280.02 = Z∗ = ZNN. Therefore, node 1 will be added to the set of live

nodes.

Step 4. Further branching

Choose one of the live nodes from L to be evaluated next. In our implementation, this is carried out by

30 Chapter 2. Scheduling a Single Yard Crane with Given Storage Locations

Figure 2.4. The basic B&B algorithm

using the depth-first-search (DFS) as the overall strategy and the best-first-search (BeFS) when a choice is

to be made between nodes at the same level of the tree (see Clausen, 2003). This search strategy is denoted

by DFS-BeFS. In case several nodes can be chosen, choose one randomly. Furthermore, if L is empty, X∗ is

an optimal solution and Z∗ is the optimal value.

Assume node l̂ ∈ L is selected. If Z l̂
AP ≥ Z∗, omit this node from the set and choose another one;

otherwise, find out which subtour must be split. We follow Carpaneto and Toth (1980), who propose to

select the subtour with the minimum number of not-included arcs to be split. A not-included arc of a

subtour is an arc that is not forced by Il̂ to appear in the optimal AP solution of node l̂. The subtour

2.2. Solution method 31

with the minimum number of not-included arcs generates the minimum number of child nodes from node l̂.

Assume l̂, has Q subtours where Gq is the set of arcs in the qth subtour. As a result, subtour q̄ will be chosen

to be split if M = |Gq̄| − |Gq̄ ∩ Il̂| = min
q=1,...Q

{|Gq| − |Gq ∩ Il̂|}, where |Gq ∩ Il̂| is the number of arcs showing

up both in the qth subtour and in the set of included arcs of node l̂.

In order to break subtour q̄, we use the same branching rule explained in Equations (8) and (7).

However, instead of considering all arcs in subtour q̄, we only consider the not-included arcs because

we cannot include or exclude a previously-included arc. Consider that subtour q̄ can be represented as

[1]
x[1][2]=1−−−−−→ [2] → · · · → [K]

x[K][1]=1−−−−−−→ [1] of which the set of not-included in total contains C arcs,

{[1o] x[1o][1d]=1−−−−−−−→ [1d], . . . , [Co]
x[Co][Cd]=1−−−−−−−→ [Cd]}, where [io] and [id] are the origin and destination of the

ith not-included arc, i = 1, . . . , C, respectively. The sequence of arcs in the set of not-included arcs can be

determined randomly. Node l̂ results in C child nodes, each with the corresponding sets of excluded and

included arcs as follows:

EB+j = El̂ ∪ {[jo]
x[jo][jd]=0−−−−−−→ [jd]}, j = 1, . . . , C, (9)

IB+j = Il̂ ∪ {[1o]
x[1o][1d]=1−−−−−−−→ [1d], . . . , [j − 1, o]

x[j−1,o][j−1,d]=1−−−−−−−−−−→ [j − 1, d]}, j = 2, . . . , C, (10)

where, IB+1 = Il̂ ∪ ∅ and B is the total number of nodes in the B&B tree before generating the new child

nodes.

The same fathoming and bounding strategy discussed in step 3 for the child nodes of node 0 applies

here. In each child node, an optimal solution of the modified AP and the best solution found so far determine

whether (1) the child node must be fathomed because the optimal AP solution is worse than the best solution

found, or (2) the child node must be fathomed because a better solution is found, or (3) the child node must

be added to L. Next, based on the DFS-BeFS, another node will be chosen and the algorithm will repeat

until the set of live nodes is empty, L = ∅.

Modified branch-and-bound algorithm

In Step 4, after selecting the next live node, if Z l̂
AP < Z∗, l̂ ∈ L, the B&B algorithm chooses a subtour

to be split and generates the branches. However, in this section, before choosing a subtour and branching,

we introduce an extra step (denoted by Step 4∗) which tries to patch the subtours by using the merging

algorithm. The smaller the number of subtours is, the fewer nodes will be produced afterwards in the B&B

tree. Furthermore, we may also obtain a complete tour which fathoms the node and makes further branching

unnecessary. As a result, the number of nodes of the B&B tree decreases significantly.

Step 4∗. Merging algorithm. Merge subtours of the optimal AP solution in the selected live node using the

32 Chapter 2. Scheduling a Single Yard Crane with Given Storage Locations

merging algorithm. If the output of the merging algorithm is a complete Hamiltonian tour update Z∗ = Z l̂
AP,

X∗ = Xl̂, fathom the node and select another live node. Otherwise, choose a subtour and branch the node.

Figure 2.5. (a) The child nodes of node 1 generated by the
basic B&B algorithm, (b) Fathoming node 1 by the modified
B&B algorithm

Figure 2.5 is used to explain Step 4∗ of the algorithm. Figure 2.5a shows the rest of the B&B tree, if the

basic B&B algorithm is used. The basic B&B algorithm must evaluate 4 more nodes (7 nodes in total), nodes

3, 4, 5, and 6 which are the child nodes of node 1, to find an optimal solution. On the other hand, Figure

2.5b shows that no extra branching is necessary if the modified B&B algorithm is used (3 nodes in total). As

a result, computation time is reduced. This is due to the fact that, in Step 4∗, using the merging algorithm,

all subtours of node 1 are merged and therefore, it must be fathomed. Furthermore, in this specific case, X1

is also an optimal solution with the optimal value Z∗ = 277.96.

2.3 Computational expriments

Multiple numerical experiments have been performed to investigate the effectiveness of the two-phase solution

method consisting of the merging algorithm and the modified B&B algorithm. In the basic scenario, we

2.3. Computational expriments 33

consider a single block of containers with 30 bays, 10 rows, four tiers, and 10 I/O points. Furthermore, 100

requests are considered of which the percentage of retrieval requests, P, is 50%. At large container terminals,

the inbound and outbound flows of a container block are usually reasonably balanced. The ASC starts its

operation from the location of the first I/O point and it either ends at the storage position of a storage

request if it is the last request in the sequence or at an I/O point if a retrieval request is the last request

in the sequence. Other input data can be found in Table 2.2. The two-phase solution method is used to

optimally sequence all the requests.

Table 2.2. Inputs of the simulation study

Variable value
Gantry speed of the ASC1 240 m/min
Trolley speed of the ASC 60 m/min
Hoisting speed of the ASC 72 m/min
Container length2,3 5.89 m
Container width 2.33 m
Container hight 2.38 m
1 No acceleration or deceleration time is considered.
2 All containers are 20 feet long.
3 No separating space between containers is considered.

In each scenario of the simulation study, 100 realizations of N requests with their storage and retrieval

locations and corresponding I/O points are randomly generated by Monte Carlo simulation. The study

is performed on a Notebook with 2.40 GHz Intel� CoreTM i5 processor, with 4.00 GB of RAM and the

programming language is MATLAB� 2010a.

In Table 2.3, the results of the two-phase solution method are presented. In Table 2.4, our solution

method is compared with the FCFS and NN heuristics. The comparisons are carried out in the same way by

generating 100 realizations for each scenario and use the two-phase solution method as well as the heuristics

to find the total travel time. The number of realizations satisfies Nrealz. ≥ σ2
(

(1+ε)Z1−α/2

εμ

)2

with a 90%

confidence level (α = 10%), where σ2 and μ are respectively the variance and mean of the objective values,

Z1−α/2 is the 1 − α/2 percentile of the normal distribution, and ε = 5% is for determining the confidence

interval (Law and Kelton, 1999). Based on the results presented in Tables 2.3 and 2.4, the following insights

can be obtained:

� The results in Table 2.3 show that the two-phase solution method can find the optimal solution of the

problem in less than a second in all scenarios.

� The merging algorithm is quite efficient. This can be seen in the column presenting ρ, which is the

percentage of the problems solved in the first phase of the solution method. When ρ = 100%, the

problem is completely solved in phase 1 and we do not need to enter phase 2. The same conclusion can

34 Chapter 2. Scheduling a Single Yard Crane with Given Storage Locations

Table 2.3. The results of the solution method

X Y N P (%) M
Computation time (sec.) Number of nodes Z∗

AP
Z∗

Z∗
ρ (%)

Ave Max Min Ave Max Min (Sec.)
10 30 20 50 10 0.0177 0.1353 0.0049 3.88 39 1 0.999923 976.4222 0.73
10 30 50 50 10 0.0397 0.171 0.0256 1.32 9 1 0.999995 2325.709 0.93
10 30 100 50 10 0.1321 0.3936 0.1072 1.04 5 1 1 4650.213 0.99
10 30 150 50 10 0.2973 0.3377 0.2397 1 1 1 1 6965.121 1
10 30 200 50 10 0.5462 0.7231 0.4062 1 1 1 1 9190.737 1
5 30 100 50 10 0.1295 0.1554 0.1038 1 1 1 1 4595.805 1
6 30 100 50 10 0.1315 0.4104 0.0999 1.04 5 1 1 4605.67 0.99
7 30 100 50 10 0.1419 0.6872 0.1034 1.16 9 1 1 4551.678 0.97
8 30 100 50 10 0.1353 0.413 0.1086 1.08 5 1 1 4609.479 0.98
9 30 100 50 10 0.1312 0.3934 0.0968 1.04 5 1 1 4612.963 0.99
10 20 100 50 10 0.112 0.165 0.0851 1 1 1 1 3788.589 1
10 40 100 50 10 0.1215 0.3179 0.094 1.04 5 1 1 5410.98 0.99
10 50 100 50 10 0.1272 0.4288 0.0931 1.08 5 1 1 6360.285 0.98
10 30 100 50 2 0.1237 0.1593 0.0878 1 1 1 1 4760.263 1
10 30 100 50 8 0.1301 0.1524 0.1123 1 1 1 1 4633.471 1
10 30 100 50 14 0.1415 0.4124 0.0923 1.2 5 1 1 4592.33 0.95
10 30 100 50 20 0.139 0.4238 0.1054 1.2 5 1 0.999998 4645.63 0.95
10 30 100 0 10 0.1147 0.3789 0.0978 1 1 1 1 6130.303 1
10 30 100 20 10 0.1401 0.248 0.1113 1 1 1 1 5330.784 1
10 30 100 40 10 0.1324 0.2342 0.1116 1 1 1 1 4672.246 1
10 30 100 60 10 0.1068 0.8279 0.0822 1.12 13 1 1 4800.1 0.99
10 30 100 80 10 0.0952 0.137 0.0809 1 1 1 1 5436.168 1
10 30 100 100 10 0.0942 0.1807 0.0781 1 1 1 1 6197.658 1
10 30 100 50 50 0.1976 1.1485 0.093 2.44 17 1 1 4595.972 0.75
10 30 100 50 100 0.2034 1.3404 0.0865 2.62 21 1 1 4624.975 0.79
10 30 100 50 150 0.3221 4.5623 0.084 4.88 83 1 1 4633.177 0.68
10 30 100 50 200 0.4459 3.8641 0.0761 7.02 75 1 0.999999 4620.406 0.57

NOTE. We denote by Ave, Max, and Min the average, maximum and minimum computation time and number of nodes of the
two-phase solution method. The table also presents the ratio of the objective value of the optimal AP solution (obtained from
the original travel time matrix) to the objective value of the optimal solution (Z∗

AP
/Z∗), the total travel time of the ASC (Z∗),

and the percentage of the realizations optimally solved in the first phase of the solution method (ρ). The other notations are
explained in the text.

be obtained from the columns showing the average, maximum and minimum number of nodes needed

in each scenario. In most of the scenarios, the average number of nodes of the B&B tree is close to 1.

The merging algorithm also performs well for large instances. The reason is that as the number

of requests N increases, the number of arcs visiting each I/O point increases, and consequently the

number of swappable arcs increases. Therefore, most of the subtours can be merged in the first phase

and the second phase becomes unnecessary.

� From Table 2.3 it is clear that for a fixed number of requests, the computation time and number of

nodes of the two-phase solution method are quite insensitive to changes in problem inputs such as:

number of bays, rows, requests and percentage of retrieval requests in different scenarios. The reason

is that the performance of the solution method depends on the performance of the merging algorithm

which mainly depends on the ratio of the number of requests to the number of I/O points. When the

number of requests is 100 and the number of I/O points is less than 10, the ratio of the requests to

I/O points is high enough (even in case of 10 I/O points, on average 10 containers are picked up or

delivered at each I/O point) for the merging algorithm in order to be able to patch all subtours in the

first phase of the algorithm. The computation time of the first phase of the solution method is about

2.3. Computational expriments 35

Table 2.4. Comparing the FCFS and NN heuristics with the
optimal solution

X Y N P (%) M Z∗ ZFCFS
1 ZNN

2 GFCFS (%)3 GNN (%)4

10 30 20 50 10 976.42 1367.03 1113.1 28.57 12.28
10 30 50 50 10 2325.7 3416.29 2730.6 31.92 14.83
10 30 100 50 10 4650.2 6841.4 5406.32 32.03 13.99
10 30 150 50 10 6965.1 10269.3 8006.24 32.18 13.00
10 30 200 50 10 9190.7 13727 10692.1 33.05 14.04
5 30 100 50 10 4595.8 6750.53 5238.2 31.92 12.26
6 30 100 50 10 4605.7 6762.95 5288.25 31.90 12.91
7 30 100 50 10 4551.7 6765.15 5294.51 32.72 14.03
8 30 100 50 10 4609.5 6802.99 5264.34 32.24 12.44
9 30 100 50 10 4613 6836.42 5338.95 32.52 13.60
10 20 100 50 10 3788.6 5524 4423.2 31.42 14.35
10 40 100 50 10 5411 8763.42 6336.47 38.25 14.61
10 50 100 50 10 6360.3 9691.24 7421.24 34.37 14.30
10 30 100 50 2 4760.3 7081.74 5561.32 32.78 14.40
10 30 100 50 8 4633.5 6916.51 5386.99 33.01 13.99
10 30 100 50 14 4592.3 6867.52 5404.58 33.13 15.03
10 30 100 50 20 4645.6 6852.88 5394.12 32.21 13.88
10 30 100 0 10 6130.3 7308.65 6312.60 16.12 2.89
10 30 100 20 10 5330.8 7056.59 5850.07 24.46 8.88
10 30 100 40 10 4672.2 6899.69 5368.84 32.28 12.97
10 30 100 60 10 4800.1 6864.83 5485.70 30.08 12.50
10 30 100 80 10 5436.2 6916.22 5754.48 21.40 5.53
10 30 100 100 10 6197.7 7154.74 6219.10 13.38 0.34
10 30 100 50 50 4596 7168.31 5428.3 35.88 15.33
10 30 100 50 100 4625 6857.15 5363.7 32.55 13.77
10 30 100 50 150 4633.2 6868.57 5415 32.55 14.44
10 30 100 50 200 4620.4 6846.41 5380.8 32.51 14.13

1 ZFCFS is the average objective value obtained by the FCFS heuristic over 100 runs.
2 ZNN is the average objective value obtained by the NN heuristic over 100 runs.
3 GFCFS(%) = (ZFCFS − Z∗)/(ZFCFS)× 100.
4 GNN(%) = (ZNN − Z∗)/(ZNN)× 100.

the same for all scenarios with a fixed number of requests.

� The last four rows of Table 2.3 investigate theoretical cases with 50 or more I/O points, in order to

find out the effect of the number of I/O points on the computation time complexity. By increasing the

number of I/O points the probability of merging subtours in the first phase decreases. As a result, ρ,

the computation time and the number of nodes increases. However, in this problem, when the number

of I/O points is 50, each I/O point is on average shared by 4 requests (N = 100). Therefore, it is

still probable that the subtours can be merged in the first phase using swappable arcs with common

visiting I/O points.

� Based on the results presented in Table 2.4, when there is a balance between the number of storage

and retrieval requests (P = 50%), the average objective value gap is more than 30% in case of the

FCFS heuristic, and 14% in case of the NN heuristic. On the other hand, in case of an imbalance

between the number of storage and retrieval requests (moving toward P = 0 or 100%), both FCFS

and NN heuristics perform better. The reason is that in the optimal solution, more pure storage and

retrieval requests must be individually executed by the ASC, and there is less opportunity to sequence

retrieval requests after storage requests for minimizing the empty travel time of the ASC.

36 Chapter 2. Scheduling a Single Yard Crane with Given Storage Locations

We also compare the results of four different instances obtained by the two-phase solution method with

those results obtained by CPLEX 12.2 coded in C++ using the Concert Technology framework and executed

by a g++ compiler on a 2.40 GHz AMD OpteronTM Processor 250, with 8.00 GB of RAM under the Linux

operating system. The results presented in Table 2.5 confirm the complexity of the problem, as CPLEX

cannot solve the problems in a reasonable time. The computation in CPLEX was truncated after 18000

seconds. Table 2.5 shows that there is a large gap between the feasible objective value obtained by CPLEX

in 18000 seconds and the optimal objective value (obtained in less than a second). By increasing the number

of requests, the gap between the two values increases.

Table 2.5. Comparing the two-phase solution method and
truncated CPLEX

Inst. X Y N P (%) M
CPLEX Our method

GCPLEX(%)CPU Z CPU Z∗
1 10 40 10 50 10 4019 699.10 0.00 699.10 0
2 10 40 20 50 10 18000 1100.10 0.01 1100.10 0
3 10 40 50 50 10 18000 2994.09 0.03 2751.34 8.11
4 10 40 100 50 10 18000 NA 0.13 5122.75 NA

Notes. Let Z and Z∗ be the objective value obtained by truncated CPLEX and the optimal objective
value obtained by the two-phase solution method, respectively. Column CPU is the computation time
in seconds. If the computation time of CPLEX is less than 18000 seconds, the optimal value is obtained.
The gap is calculated as: GCPLEX(%) = ((Z − Z∗)/Z)× 100.

2.4 Conclusion

We model and solve a difficult operational problem in which a set of container storage and retrieval requests

must be sequenced. We minimize the total travel time of a single ASC carrying out the requests in a single

block of containers. An efficient ASC scheduling operation can significantly affect the overall performance

of the container terminal. We formulate the problem as an integer model, and show that it is NP-hard in

a special case. We benefit from properties of the problem to develop a two-phase solution method which

can efficiently solve this problem. The merging algorithm proposed in the first phase to patch subtours

of an optimal AP solution works efficiently specially for large-scale problems. As the number of requests

increases, the average number of requests per I/O point increases and therefore, the merging algorithm has

more opportunity to patch subtours. As a result, in most of the realizations of the scenarios an optimal

solution can be obtained in the first phase by optimally solving the AP and using the merging algorithm.

If an optimal solution cannot be obtained in the first phase, a B&B algorithm in the second phase rapidly

finds an optimal solution. The computation time of the solution method is low, i.e. it is less than a second

when the number of requests is 200. The gaps between the optimal value and the objective values of the

FCFS and NN heuristics are on average more than 30% and 14%, respectively. Furthermore, the two-phase

solution method significantly outperforms CPLEX for small-size instances. For instances with 100 requests,

2.4. Conclusion 37

CPLEX cannot obtain a feasible solution after five hours.

The model developed in this paper can be extended in several directions. We assume that containers

do not have any precedence constraints. However, in reality, many issues such as the priority of seaside

operations to landside operations, the arrival time of different modes of transport, and ensuring the stability

of the ship impose precedence constraints to the model. Furthermore, we consider that all storage containers

are available at the I/O points and a retrieval container can be dropped off at the same I/O point from where

another container has to be stacked in the block. But safety regulations and space availability cause some

limitations. Extra constraints are required to model reality. Finally, one may study an online version of the

model where the list of requests is updated in some time periods. Some of these issues are tackled in the

next chapters.

38 Chapter 2. Scheduling a Single Yard Crane with Given Storage Locations

Appendix

2.A Proof of Theorem 2.1

Choosing the I/O point which minimizes the travel time doesn’t affect the optimal sequence of requests.

Let tij be the travel time between locations i and j in an optimal solution. If tij , is larger than t′ij , then

the optimal solution can be improved by replacing tij with t′ij . As a result, in order to have the minimum

objective value, the minimum travel time must be always selected for every arc. �

2.B Proof of Theorem 2.2

Consider two subtours resulting from an optimal AP solution with the swappable arcs xkl = 1 and xrs = 1

and the common visiting I/O point, I/Om. By setting arcs xkl = xrs = 0 and xks = xrl = 1, we can show

that subtours are merged without extra travel time.

The objective function of the problem can be shown as follows:

minZ =
∑

i∈V \{j,0′,r,k}

∑
j∈V \{0,l,s}

tijxij + tklxkl + trsxrs + tksxks + trlxrl, (11)

Before merging, xkl = xrs = 1 and xks = xrl = 0, so ZBefore =
∑

i∈V \{j,0′,r,k}
∑

j∈V \{0,l,s} tijxij + tkl +

trs. On the other hand, from Table 2.1, tkl = tk,I/Om
+ tI/Om,l and trs = tr,I/Om

+ tI/Om,s. Consequently,

ZBefore =
∑

i∈V \{j,0′,r,k}
∑

j∈V \{0,l,s} tijxij + tkl + trs =
∑

i∈V \{j,0′,r,k}
∑

j∈V \{0,l,s} tijxij +

tk,I/Om
+ tI/Om,l + tr,I/Om

+ tI/Om,s.

After merging, xkl = xrs = 0 and xks = xrl = 1, so ZAfter =
∑

i∈V \{j,0′,r,k}
∑

j∈V \{0,l,s} tijxij +

tks + trl. From Table 2.1, we have tks = tk,I/Om
+ tI/Om,s and trl = tr,I/Om

+ tI/Om,l, therefore ZAfter =∑
i∈V \{j,0′,r,k}

∑
j∈V \{0,l,s} tijxij + tk,I/Om

+ tI/Om,s + tr,I/Om
+ tI/Om,l = ZBefore. �

2.C Proof of Theorem 2.3

The proof follows from the calculations of Table 2.1. Each case will be proven separately. Note that this

theorem is not bi-conditional, which means that if an arc has a single visiting I/O point, it is not necessarily

the following types of arcs.

Case 1: consider storage request j is immediately after storage request i. Furthermore, I/Ol is the I/O

point where container j must be picked up. Obviously, traveling to an I/O point, I/Ol′ , doesn’t give the

minimum travel time because the ASC must travel to I/Ol, and tI/Ol,I/Ol′ will be added to the total travel

time of the ASC.

2.C. Proof of Theorem 2.3 39

Case 2: consider storage request j is immediately after retrieval request i. Furthermore I/Ol is the I/O

point where container j must be picked up and I/Ol′ is the I/O point where container i will be delivered.

If container i must be delivered into the same side that the storage container is currently located in an I/O

point, the travel time of the ASC is minimum, if I/Ol = I/Ol′ . In words, the container must be delivered to

the same I/O point where the other container must be picked up. If I/Ol �= I/Ol′ , then we add tI/Ol,I/Ol′

to the total travel time of the ASC. �

Chapter 3

Scheduling a Single Yard Crane with

Flexible Storage Locations∗

In Chapter 2, we studied the problem of scheduling an automated stacking crane (ASC) to carry out a set

of storage and retrieval requests in a single block of containers. We considered that in the case of a retrieval

request, the ASC picks up a container from a location in the block and drops it off in an input/output (I/O)

point, whereas in the case of a storage request, the ASC picks up a container from an I/O point and drops

it off at a given location. In this chapter, we study an extension where multiple open locations are available

to stack the storage container. Since container yard operators often physically separate containers based on

criteria such as destination and weight, a set of suitable open locations are available to stack the container.

Obviously, a single location may be suitable for stacking different containers, and thus sets of open locations

may overlap. Figure 3.1b is a top view of a block of containers with multiple storage and retrieval locations.

The sets of open locations available for different storage containers are highlighted by the contours.

We study where to stack storage containers while sequencing a given number of requests in a single

block of containers. The objective is to minimize the travel time of the ASC carrying out the requests. We

formulate the problem as a generalized asymmetric traveling salesman problem (GATSP). In this formulation,

locations in the overlap of multiple sets make the problem more complex. For such open locations, we need

extra constraints to avoid selecting one of them for stacking more than a single storage container. The

GATSP is NP-hard, and the extra constraints increase the complexity even more. We propose a three-phase

solution method to optimally solve the problem. The main idea of the algorithm is to simplify the problem

to an ATSP and use its optimal solution to obtain an optimal GATSP solution. An optimal ATSP solution

can be quickly obtained by the solution method proposed in Chapter 2, which uses the particular structure

of the problem, namely the I/O points to obtain a complete tour. In the first phase of our algorithm, we

∗This chapter is based on Gharehgozli et al. (2012b)

41

42 Chapter 3. Scheduling a Single Yard Crane with Flexible Storage Locations

Figure 3.1. Schematic representation of a container yard
layout

Note. Locations highlighted by each contour are suitable to stack a given container.

generate an ATSP model by pre-selecting the locations resulting in the minimum pairwise travel times. This

can be realized by redefining the original travel time matrix. We show that an optimal solution of the ATSP

model generated in this way is identical to an optimal solution of the GATSP in which the extra constraints

related to the open locations in the overlap of multiple sets are relaxed. In the second phase, we check for

two special cases in which an optimal ATSP solution directly provides an optimal GATSP solution. In the

third phase, we develop a branch and bound (B&B) algorithm which guarantees that every open location

belonging to multiple sets can be occupied by at most a single container. In every node of the B&B tree,

we allocate an open location in the interval of two or more sets selected for stacking multiple containers to a

single set. Then, we generate a new ATSP model of which the solution bounds the node.

The three-phase solution method is efficient for small and medium-scale instances. We propose a heuristic

algorithm, for large-scale instances. The heuristic method first finds an optimal solution of the ATSP which is

generated by pre-selection of locations. In case the solution is not a feasible GATSP solution, an assignment

problem (AP) formulation is used to replace all open locations which store multiple storage containers by

other locations, with a minimum increase in the ATSP optimal value. The numerical results show the

objective value gap between our heuristic algorithm and the lower bound is less than 1%, on average. Note

that an optimal ATSP solution provides a lower bound for the GATSP. Furthermore, the heuristic algorithm

outperforms the nearest neighbor (NN) and first-come-first-served (FCFS) heuristics by up to 20% and 37%,

respectively. We also compare the results obtained by our solution method and CPLEX. The results show

that our solution method can obtain significantly better results than CPLEX truncated after five hours.

43

Scheduling an ASC to carry out storage and retrieval requests can generally be modeled as an ATSP

or one of its special cases such as the rural postman problem, or Chinese postman problem, depending

on the properties of the problem (see Chapter 2). These papers merely focus on sequencing storage and

retrieval requests and assume that storage locations are already selected by other models (for example, see

Kim et al., 2000, Dekker et al., 2007). However, the decisions made in one problem substantially affect the

decisions in the other problem. Intuitively, given different storage locations may result in different sequences

of performing requests, and vice versa. Scheduling an ASC to carry out storage and retrieval requests in a

block with multiple open locations incorporating the storage location problem can be modeled as a GATSP.

Contrary to the dense literature of the ATSP and symmetric TSP (see for example Applegate et al. (2007)

and Laporte (1992) for an overview on the TSP or Burkard et al. (1998) for an overview on solvable cases),

the GATSP problem has been only considered in a few papers (Fischetti et al., 1997, Laporte et al., 1987,

Noon and Bean, 1991). In the GATSP, multiple sets of locations exist and the problem calls for a tour

passing at least one location of each set in such a way that the total travel time is minimized. If the tour

is forced to pass exactly a single location of each set, the resulting problem is sometimes called E-GATSP,

where E stands for equality. Note that in this chapter, sets of open locations can overlap. In previous more

theoretical papers, sets of open locations either do not overlap, or if they do, all of the overlapping sets are

visited simultaneously by selecting one of the locations in the overlap of some sets. However, in our problem,

a separate location of each set has to appear in a feasible solution.

Laporte et al. (1987) are among the pioneers to study the GATSP. They propose a B&B algorithm to

solve the problem. The core idea of the B&B algorithm is solving the AP relaxation of the problem and

removing the infeasibility. An optimal AP solution may generate an infeasible GATSP solution because (1)

some sets are not visited, and/or (2) multiple subtours exist in the solution. Laporte et al. (1987) force the

tour to visit a not-visited set by requiring a location of that set in the solution. A subtour is avoided by

forbidding one of its arcs and requiring the others to appear in the solution. As a result, in each node of the

B&B algorithm, an AP requiring and forbidding some nodes and arcs is solved. The algorithm is designed

to first include all sets and then remove subtours. In fact, the B&B algorithm is an extension of the B&B

algorithm previously proposed by Carpaneto and Toth (1980) to solve the ATSP by removing the subtours

of the AP relaxation. The latter algorithm was later improved by Miller and Pekny (1991) and Carpaneto

et al. (1995) who propose two merging algorithms to patch subtours in each node and decrease the number

of branches. Noon and Bean (1991) also propose a similar B&B algorithm to solve the GATSP. To enhance

the performance of the B&B algorithm, they first use Lagrangian relaxation to improve the ATSP and AP

bounds. Second, in order to reduce the density of the distance matrix, some of the locations and arcs are

eliminated using the reduced costs. Furthermore, they develop a heuristic algorithm to obtain an upper

bound to fathom some of the nodes.

Fischetti et al. (1995) study the facial structure of the GTSP and E-GTSP polytopes where sets of

locations do not overlap and pairwise travel times are symmetric. Using the theoretical foundation of the

44 Chapter 3. Scheduling a Single Yard Crane with Flexible Storage Locations

paper, they then develop a branch-and-cut algorithm to solve the GTSP (Fischetti et al., 1997). The solution

method uses a B&B scheme. In each node, an LP relaxation of the problem is solved while adding some valid

inequalities. Valid inequalities tighten the solution space of the problem in order to obtain a feasible integer

solution.

The main contribution of this chapter is twofold. We model and solve the simultaneous request scheduling

and storage location selection problem, which is relevant in practice to use the highly utilized ASC efficiently.

The algorithm proposed to solve the problem is new. In the first phase of the algorithm, we use the I/O

points to simplify the problem to an ATSP model by preselecting open locations, which differs from previous

methods (for example, see Dimitrijević and Šarić, 1997, Lien et al., 1993). Furthermore, the specific structure

of the problem, which requires a distinct open location for each storage container, allows us to define a new

B&B algorithm in the third phase of the solution method. In our B&B algorithm, branching is carried

out in order to assign a location in the overlap of multiple sets selected for storing multiple containers to a

single set, so that a separate location of each set can be selected. The method is fast for different sizes of

the problem if sets of open locations do not overlap. An accurate heuristic algorithm is proposed to solve

large-scale problems. The methods are sufficiently general to be applied to other GATSP problems with a

similar structure.

The rest of this chapter is organized as follows. In Section 3.1, we describe the technical aspects of the

problem and present the mathematical model. In Section 3.2, the solution method is developed. Section 3.3

presents numerical results. Finally, in Section 3.4, we conclude the chapter.

3.1 Problem description and model

We seek to determine the sequence to carry out n storage requests and N − n retrieval requests in a single

block of containers consisting of X rows, Y bays, Z tiers and M I/O points. I/Om is the location of the mth

I/O point at the seaside, m = 1, . . . ,Ms, or at the landside, m = Ms + 1, . . . ,M . Let R be the set of all

storage and retrieval requests. The objective is to minimize the total travel time of a single ASC performing

these requests. The ASC can only carry a single container at a time. From a given starting point, the ASC

can perform the requests in any sequence in order to minimize total travel time. We denote by 0 and 0′,

respectively, the starting and ending locations of the ASC which can be anywhere in the block. Containers

can be of different sizes (i.e. 20 or 40 feet) and leave or arrive at the container terminal by truck, train or

ship. In addition, containers should not be dropped off in temporary locations within the block.

Every storage or retrieval request r ∈ R = {1, . . . , N} corresponds to a unique container. For storage

request r, a ASC moves a container from the I/O point where it is initially located to a location i in the block

selected from a given set Lr of available open locations. For retrieval request r, a ASC moves a container

from location j in the block to an I/O point at its destination side. For ease of notation, we write that

location j of retrieval request r belongs to Lr. Thus, the set V of all locations can be defined as:

3.1. Problem description and model 45

V = {1, . . . , |L1|︸ ︷︷ ︸
L1

, |L1|+ 1, . . . , |L1|+ |L2|︸ ︷︷ ︸
L2

, . . . ,
n−1∑
i=1

|Li|+ 1, . . . ,
n∑

i=1

|Li|︸ ︷︷ ︸
Ln

,

n∑
i=1

|Li|+ 1

︸ ︷︷ ︸
Ln+1

, . . . ,

n∑
i=1

|Li|+N − n

︸ ︷︷ ︸
LN

,

0︸︷︷︸
L0

, 0′︸︷︷︸
L0′

}.

in which Lr consists of |Lr| ≥ 1 locations for r = 1, . . . , n, but only one location for r = n+1, . . . , N . For each

storage location in V lying in the overlap of multiple sets, a copy is created for each set to which it belongs.

The copy locations will be used in the next section to model the constraints associated with locations in the

overlap areas.

Storage and retrieval locations as well as destination sides of retrieval containers and I/O points of

storage containers are known; in practice, they are determined at a higher hierarchical planning level. This

level focuses on minimizing the number of reshufflings (De Castillo and Daganzo, 1993, Kim et al., 2000)

and speeding up the loading and unloading process of a ship (Kim and Kim, 1999a, Vis and Roodbergen,

2009). Due to the abundance of internal transport vehicles (like AGVs and chassis) to pick up containers at

the seaside and landside, retrieved containers can be delivered to any I/O point at each side. Because of the

same reason, retrieval containers can be quickly moved away from all I/O points, and they can therefore be

delivered to the same I/O point that a storage container has to be picked up. The other issue is that storage

and retrieval locations do not coincide. This is reasonable since N is usually much smaller than the block size,

the block utilization is often fairly low, and container terminal operators usually separate containers based

on destination and type. Finally, we assume that containers do not have explicit precedence constraints.

This assumption is based on the fact that all containers are categorized into several precedence groups (for

example, based on their latest departure times) and we can consider the sequencing problem group by group.

In Chapter 4, we present an extension of the problem in which precedence constraints are considered.

We use figure 3.2 to explain some of the notations. This figure shows a top view of a block (X = 7,

Y = 10, and Z = 4) with 3 storages, and 2 retrievals. For storage requests 1, 2, and 3, the sets of open

storage locations are L1 = {1, 2}, L2 = {3, 4, 5, 6}, and L3 = {7, 8, 9}, respectively. Location 7 is a copy of

location 4 and location 8 is a copy of location 6. For retrieval requests 4 and 5, L4 = {10}, and L5 = {11},
respectively.

In order to mathematically formulate the problem and calculate the total travel time of the ASC, we

must first calculate the pairwise travel times between the storage and retrieval locations in the block. If the

ASC travels directly from location i, (xi, yi, zi), to location j, (xj , yj , zj), the travel time of the ASC can be

calculated as follows:

tij = max{|xi − xj |, |yi − yj |}+ |zi|+ |zj |, (1)

where, (xi, yi, zi) and (xj , yj , zj) are the Cartesian coordinates of locations i and j, with 0 ≤ xi, xj ≤ Tx,

0 ≤ yi, yj ≤ Ty, and 0 ≤ zi, zj ≤ Tz. Here, Tx, Ty, and Tz, are the farthest travel times of the ASC in

the block in X, Y , and Z directions, respectively. The maximum in the first term of the right-hand side

46 Chapter 3. Scheduling a Single Yard Crane with Flexible Storage Locations

Figure 3.2. A top view of a block with storage, retrieval
and I/O locations

of Equation (1) emphasizes that the ASC can move in X and Y directions simultaneously in Chebyshev

distance. Term |zi| + |zj | shows the time needed for the hoist to roll up or down to pick up or drop off a

container. The necessary hoisting actions are also included in these terms.

In order to calculate the travel time between storage and retrieval locations, we should also consider that

the ASC needs to travel through I/O points to pick up or deliver containers. For example, to move from

storage location i to storage location j, the ASC first needs to travel from storage location i to an I/O point

where the container that should be stacked in storage location j is initially located, and then move that

container to storage location j. Table 3.1 summarizes how to calculate pair-wise travel times. The travel

time of the ASC satisfies the triangle inequality.

The problem of sequencing storage and retrieval requests, incorporating the problem of finding storage

locations of storage containers, can now be stated mathematically as the following integer programming

model. Let xij be the binary decision variable which equals 1 if and only if location j ∈ V\{0} is visited

immediately after location i ∈ V\{0′}.
Objective function : The objective function below minimizes the total travel time of the ASC.

minimize Z =
∑

i∈V\{0′}

∑
j∈V\{0}

j �=i

tijxij . (2)

3.1. Problem description and model 47

Table 3.1. Calculation of pairwise travel times of the travel
time matrix, T

Case1 tij I/Os
(storage location i, storage location j) max{|xi − xr|, |yi − yr|}+ |zi|+ |zr|+max{|xr − xj|, |yr − yj|}+ |zr|+ |zj| I/Or

2

(storage location i, retrieval location j) max{|xi − xj|, |yi − yj|}+ |zi|+ |zj| None
(storage location i, 0′)3 0 None

(retrieval location i, storage location j)
(1) max{|xi− xr|, |yi− yr|}+ |zi|+ |zr|+max{|xr − xj|, |yr − yj|}+ |zr|+ |zj|,
if the retrieved container from location i must be delivered to the same side
where I/Or is located.

I/Or

(2) min
m=1,...,Ms

(or m=Ms+1,...,M)

{max{|xi−xm|, |yi−ym|}+|zi|+|zm|+max{|xm−xr|, |ym−

yr|}+|zm|+|zr|+max{|xr−xj|, |yr−yj|}+|zr|+|zj|} 4, if the retrieved container
from location i must be delivered to the seaside (or landside) and I/Or is at
the opposite side.

P 5 and
I/Or

6

(retrieval location i, retrieval location j)
min

m=1,...,Ms

(or m=Ms+1,...,M)

{max{|xi − xm|, |yi − ym|}+ |zi|+ |zm|+max{|xm − xj|, |ym −

yj|}+ |zm|+ |zj|}, if the retrieved container from location i must be delivered
to the seaside (or landside).

P

(retrieval location i, 0′) 7 min
m=1,...,Ms

(or m=Ms+1,...,M)

{max{|xi−xm|, |yi−ym|}+|zi|+|zm|}, if the retrieved container

from location i must be delivered to the seaside (or landside).

P

(0, storage location j) max{|x0 − xr|, |y0 − yr|}+ |z0|+ |zr|+max{|xr − xj|, |yr − yj|}+ |zr|+ |zj| I/Or

(0, retrieval location j) max{|x0 − xj|, |y0 − yj|}+ |z0|+ |zj| None
The other cases ∞ None

1 tii = ∞.
2 Let I/Or be the I/O point where container of storage request r that must be stacked in storage location j ∈ Lr is located.
The Cartesian coordinates of I/Or are (xr, yr, zr).
3 The ASC stops at storage location i if the associated storage request is the last request.
4 The Cartesian coordinates of I/Om are (xm, ym, zm), m = 1, . . . ,M .
5 When the ASC travels from a retrieval location to another location, it obviously selects the I/O point which gives the minimum
pairwise travel time to deliver the retrieval container. Note that multiple I/O points may result in the same minimum travel
time. Any of these I/O points can be selected to deliver the retrieved container. Let P be the set of I/O points where the ASC
can deliver the retrieved container with the minimum travel time.
6 In this case, two I/O points must be visited: I/Or and an I/O point in P.
7 The ASC delivers the container from location i to an I/O point and stops if the associated retrieval request is the last request.

Carrying out all requests: Constraints (3)-(4) below guarantee that each set must be entered and exited

exactly once. The ASC cannot enter 0 from any other location and exit 0′ to any other location. In these

constraints, L̄r =
⋃

q∈R∪{0,0′}
q �=r

Lq, ∀r ∈ R ∪ {0, 0′}; in other words, L̄r is the set of all locations which do not

specifically belong to Lr.

∑
i∈L̄r

∑
j∈Lr
j �=i

xij = 1, ∀r ∈ R ∪ {0′}, (3)

∑
i∈Lr

∑
j∈L̄r
j �=i

xij = 1, ∀r ∈ R ∪ {0}. (4)

Network flow conservation : Constraints (5) are the network flow conservation constraints. Constraints

(5)–(6) ensure that in an optimal solution, each location can receive at most one container, and each container

is stacked somewhere. In constraint (6), I is the set of storage locations in the overlap of multiple sets, and

48 Chapter 3. Scheduling a Single Yard Crane with Flexible Storage Locations

Qi is the set of all copies of storage location i ∈ I. These constraints are of special importance when locations

in the overlap of multiple sets are considered. Without these, multiple containers may be stacked in a single

location in the overlap of these sets:

∑
i∈V\{0′}

i�=j

xij =
∑

k∈V\{0}
k �=j

xjk ≤ 1, ∀j ∈ n∪
r=1
Lr, (5)

∑
i∈V\{0′}

∑
j∈Qk
j �=i

xij ≤ 1, ∀k ∈ I. (6)

Subtour elimination constraints: Constraints (7) forces the ASC to avoid traveling subtours. In this

constraint, O, 2 ≤ |O| ≤ N − 1, is any subset of R (see Noon and Bean, 1991 for a complete discussion):

∑
r∈O

∑
i∈Lr

∑
q/∈O

∑
j∈Lq

xij ≥ 1, ∀O. (7)

Finally, constraints (8) are the integrality constraints:

xij ∈ {0, 1}, ∀i, j ∈ V. (8)

Constraints (5) and (6) are the extra constraints specific to this problem. These constraints increase the

complexity of the problem even more than the original GATSP.

3.2 Solution method

Decreasing the number of open locations in each set of open locations to a single location simplifies the problem

to an ATSP. In Section 3.2.1, for this purpose, we first develop some properties of the problem to redefine

the travel time matrix. The redefined travel time matrix allows us to choose one open location for every

storage container and identify the ATSP. We show that an optimal solution of the ATSP is identical to an

optimal solution of the GATSP where constraints (6) are relaxed. In other words, an optimal ATSP solution

may not provide an optimal solution of the original GATSP model and sometimes results in an infeasible

GATSP solution. The reason is that a single location in the overlap of multiple sets may be selected for

stacking containers of more than one of the sets. However, the infeasible solution can be modified later to

obtain an optimal GATSP solution. Section 3.2.2 presents two special cases in which the optimal ATSP

solution directly provides an optimal GATSP solution. Section 3.2.3 explains how to use a B&B algorithm to

modify the optimal ATSP solution to obtain an optimal GATSP solution. Section 3.2.4 introduces a heuristic

algorithm to obtain a near-optimal solution for large-scale instances.

3.2. Solution method 49

3.2.1 Simplifying the problem to an ATSP

In this section, we identify the ATSP, and solve it. The optimal ATSP solution provides a lower bound for

the GATSP, since it may violate constraints (6). In order to find the ATSP, we develop some properties of

the problem that enable us to redefine T and to select a single open location to stack the associated container

of every storage request.

Redefining the travel time matrix and identifying the ATSP : In order to redefine the travel time

matrix, we calculate the travel times from or until the I/O points instead of location to location. The

redefined travel time matrix allows us to select a single location for every storage container and generate the

ATSP. We use carrying and non-carrying arcs to redefine T , presented in Table 3.1, as T ′, given in Table

3.2. Performing each storage or retrieval request requires a non-carrying and a carrying move. A carrying

(non-carrying) move is a move of the ASC while it carries (does not carry) a container. Figure 3.3b shows

carrying and non-carrying moves of four sample arcs presented in Figure 3.3a.

Based on Table 3.2, the main difference between T and T ′ occurs in the calculation of travel times between

storage locations and other locations. In T , the travel time of the ASC from the location of a request to a

storage location includes the travel time to that storage location. In other words, the carrying move of the

storage request (from the I/O point of the storage request until the storage location in the block) is included

in that travel time. However, in T ′, the travel time of the ASC is only calculated until the I/O point of the

storage container. Hence, the carrying move of the storage request is excluded from the travel time, but will

be included in the travel time of the ASC from the storage location to another location in the block. Note

that the same carrying and non-carrying moves are used to calculate the travel times in T and T ′, but they

may be used in the calculation of travel times of different arcs.

We can now use T ′ to pre-select a single location i ∈ Lr, resulting in the minimum travel time, for

every storage request r, r = 1, . . . , n, and identify the ATSP. In general, the ASC can carry out four types

of movements between requests: storage request → retrieval request, storage request → storage request,

retrieval request → storage request, and retrieval request → retrieval request. Based on the calculations in

Table 3.2, moving from retrieval request r to retrieval request q results in a unique travel time, because Lr

and Lq, each contain only a single location and no selection is necessary. Moving from retrieval request r

to storage request q also results in a unique travel time which includes the travel to the I/O point where

the container of request q is located. Now, consider that the ASC moves from storage request r to retrieval

request q. In T ′, several travel times exist which are calculated by traveling from the I/O point of storage

request r to storage location i ∈ Lr and then to the retrieval location. In order to generate the ATSP, we

select a location that gives the minimum travel time because it provides a lower bound. Similarly, when the

ASC travels from storage request r to storage request q, a location that gives the minimum travel time can

be chosen to locate the container of storage request r. Note that this pairwise travel time is calculated until

the I/O point of storage request q. So, our selection does not affect the travel times from storage request q

to other requests.

50 Chapter 3. Scheduling a Single Yard Crane with Flexible Storage Locations

Table 3.2. Calculation of pairwise travel times of the rede-
fined travel time matrix, T ′

Case tij I/Os
(storage location i, storage location j) max{|xq − xi|, |yq − yi|}+ |zq|+ |zi|+max{|xi − xr|, |yi − yr|}+ |zi|+ |zr| I/Oq, I/Or

(storage location i, retrieval location j) max{|xq − xi|, |yq − yi|}+ |zq|+ |zi|+max{|xi − xj|, |yi − yj|}+ |zi|+ |zj| I/Oq
1

(storage location i, 0′) max{|xq − xi|, |yq − yi|}+ |zq|+ |zi| I/Oq

(retrieval location i, storage location j)
(1) max{|xi−xr|, |yi−yr|}+ |zi|+ |zr|, if the retrieved container from retrieval
location i must be delivered to the same side where I/Or is located.

I/Or

(2) min
m=1,...,Ms

(or m=Ms+1,...,M)

{max{|xi−xm|, |yi−ym|}+|zi|+|zm|+max{|xm−xr|, |ym−

yr|}+ |zm|+ |zr|}, if the retrieved container from retrieval location i must be
delivered to the seaside (or landside) and I/Or is located at the opposite side.

P and
I/Or

(retrieval location i, retrieval location j)
min

m=1,...,Ms

(or m=Ms+1,...,M)

{max{|xi − xm|, |yi − ym|}+ |zi|+ |zm|+max{|xm − xj|, |ym −

yj|}+ |zm|+ |zj|}, if the retrieved container from retrieval location i must be
delivered to the seaside (or landside).

P4

(retrieval location i, 0′) min
m=1,...,Ms

(or m=Ms+1,...,M)

{max{|xi−xm|, |yi−ym|}+|zi|+|zm|},if the retrieved container

from retrieval location i must be delivered to the seaside (or landside).

P

(0, storage location j) max{|x0 − xr|, |y0 − yr|}+ |z0|+ |zr| I/Or

(0, retrieval location j) max{|x0 − xj|, |y0 − yj|}+ |z0|+ |zj| None
The other cases ∞ None

1 I/Or is the I/O point where container of storage request r that must be stacked in storage location j ∈ Lr is located, whereas
I/Oq is the I/O point where container of storage request q that must be stacked in storage location i ∈ Lq is located.

The four sample arcs and their carrying and non-carrying moves shown in Figures 3.3a and 3.3b can be

used as an example of how pre-selection can be performed. In order to move from request 4 to request 1

(retrieval request → storage request), based on the calculations in Table 3.2, t10,1 = t10,2 = t10,I/O2
. As a

result, stacking the container of storage request 1 in location 1 or 2 does not have any effect on the travel

time between requests 1 and 4, and either open location can be selected to stack the container. On the other

hand, moving from request 1 to request 4 (storage location→ retrieval location) results in two different travel

times: t1,10 = tI/O2,1 + t1,10, and t2,10 = tI/O2,2 + t2,10. In this case, the location that gives the minimum

travel time is selected to stack the container without any effect on the travel times to request 1 or from

request 4.

Obtaining an optimal ATSP solution : The ATSP model obtained above can be solved by the two-phase

solution method proposed in Chapter 2. In the first phase, the subtour elimination constraint of the ATSP

model is removed to form an AP model. The AP model can be efficiently solved in O(N3) steps where N is

the number of requests (Kuhn, 1955). The AP solution often contains subtours since the subtour elimination

constraint is not satisfied. To obtain an optimal ATSP solution, an algorithm is developed to merge all

subtours by exchanging arcs that have a common I/O point. In the second phase, the authors use a B&B

algorithm to merge all the remaining subtours to obtain an optimal solution to the ATSP. The next theorem

states that the ATSP solution is a good starting point for the GATSP solution.

Theorem 3.1 An optimal solution of the ATSP generated by preselecting a single location from each set of

open locations provides an optimal GATSP solution to our problem where constraints (6) are relaxed.

Proof. See the proof in Appendix 3.A.

3.2. Solution method 51

Note. Storage container 1 is at I/O2 and retrieval container 4 has a seaside destination.

Figure 3.3. (a) A top view of a block of containers with four
exemplary arcs, (b) The carrying and non-carrying moves, (c)
An infeasible solution of the GATSP.

Corollary 3.1 An optimal solution of the ATSP generated by preselecting a single location from each set of

open locations provides a lower bound for the GATSP.

The proof is intuitive and follows from the fact that an ATSP solution is not constrained by constraints

(6). Violation of constraints (6) results in an infeasible GATSP solution due to “multi-selected” locations:

Definition 1 A multi-selected location is an open storage location contained in the overlap of multiple sets

of open storage locations, which is selected in an infeasible GATSP solution to stack multiple containers.

Figure 3.3c presents an optimal ATSP solution, which is infeasible for the GATSP. In this solution,

container 2 is stacked in location 4 and container 3 is stacked in location 7 which is a copy of location 4. This

location gives the minimum travel time to travel from storage requests 3 and 2 to retrieval requests 5 and 4,

respectively. Therefore, location 4 is the multi-selected location.

In the next section, we will discuss two special cases in which the optimal ATSP solution provides a

feasible GATSP solution. Since an optimal ATSP solution provides a lower bound for the GATSP, it gives

an optimal GATSP solution if it is feasible for the GATSP. If it is not feasible, we remove the infeasibility

through a B&B algorithm (Section 3.2.3).

52 Chapter 3. Scheduling a Single Yard Crane with Flexible Storage Locations

3.2.2 Optimal GATSP solution in two special cases

In the following two cases, the optimal ATSP solution provides an optimal GATSP solution.

Case 1: no overlap among every two sets of open locations: Assume sets of open locations do

not overlap. In this case, the optimal ATSP solution cannot contain multi-selected locations, since a multi-

selected location only appears in the overlap of two or more sets. The following theorem states that in this

case an optimal ATSP solution directly provides an optimal GATSP solution:

Theorem 3.2 If sets of open locations of storage requests do not overlap, an optimal ATSP solution is an

optimal GATSP solution.

The proof is intuitive. When sets of open locations do not overlap, no multi-selected location can appear

in the solution. In other words, the optimal ATSP solution satisfies constraints (6), and is thus a feasible

GATSP solution. According to Corollary (3.1), the optimal ATSP solution is an optimal GATSP solution.

Case 2: multi-selected locations can all be replaced by alternative open locations: If sets of open

locations overlap, an optimal ATSP solution may consist of multi-selected locations. In this case, we may still

be able to fix the optimal ATSP solution to obtain an optimal GATSP solution by replacing all multi-selected

locations with other open locations. Because of simultaneous movements of the ASC over the bays and rows

of the block as well as properties of Chebyshev distance, the travel time of the ASC in the horizontal direction

calculated in equation (1) is the maximum travel time in the X and Y directions. As a result, when the ASC

moves from a storage request to another request, multiple open locations may result in the minimum travel

time. We call these locations “alternative open” locations and define them as follows:

Definition 2 Alternative open locations are two or more open locations within a set of open locations which

result in the minimum ASC travel time when used for stacking the storage container followed by traveling to

a next location.

In order to use alternative open locations and remove multi-selected locations, we develop an AP model.

The AP assures that every storage container will be located in a different alternative open location. In this

way, we avoid generating new multi-selected locations while we remove the other ones. The cost matrix of

the AP model is established by using the travel times of the alternative open locations. If a location is an

alternative open location for a storage request, then the cost equals the travel time, otherwise infinity. Note

that the cost matrix includes all storage requests with sets of open locations that overlap with other sets.

These storage requests are either already involved in a multi-selected locations or may result in a multi-

selected location if not included in the AP model. Obviously, storage requests with sets of open locations

which do not overlap with other sets do not cause multi-selected locations. Therefore, they do not need to

be included in the model.

If the AP has an optimal solution less than infinity, a separate alternative open location can be found for

each storage container. Therefore, we can remove all multi-selected locations and obtain an optimal GATSP

solution. Otherwise, the number of alternative open locations is smaller than the number of storage requests,

3.2. Solution method 53

and thus an optimal solution of the GATSP cannot be obtained using the optimal ATSP solution. We then

use the B&B algorithm discussed in Section 3.2.3 to remove the multi-selected locations.

3.2.3 Optimal GATSP solution in the other cases

The input of this section is the optimal ATSP solution which is not a feasible GATSP solution even after using

the alternative open locations algorithm. We develop a B&B algorithm to remove multi-selected locations

and to find a complete tour. The B&B algorithm forbids a single multi-selected location to appear in the

solution, one at a time. This is carried out by keeping and removing locations from sets of open locations in

different nodes. Next, we first explain the main steps of the B&B algorithm, and then present the algorithm.

Branching : We design a branching rule to remove one multi-selected location at a time. The branches divide

the solution space into complementary solution subspaces such that the multi-selected location cannot appear

in any of them. The branching works by keeping the multi-selected location, selected to stack containers of

several sets in the previous solution, in a single set at a time and removing that location from the other ones.

We select the multi-selected location that is in the overlap of more numbers of sets to perform the branching.

Suppose that in a node, the multi-selected location i is in the overlap of U sets of which some have caused

the multi-selected location. The branching rule produces U child nodes. In each child node u ∈ {1, . . . , U},
location i appears in only one set and all its copies belonging to Qi are removed from all the other sets. Sets

of open locations that do not contain this specific location remain the same as the parent node.

Bounding and selection of a live node : In section 3.2.2, we solved an ATSP which provides a lower

bound for the GATSP and serves as the input for the B&B algorithm in node 0, if it contains multi-selected

locations. In all the other nodes of the B&B tree, the travel time matrix of the parent node must be

modified first considering the changes in sets of open locations forced by the branching rule, and then an

AP is solved. If an optimal AP objective value is more than the incumbent objective value, the node is

fathomed. Otherwise, alternative open locations and the two-phase solution method proposed in Chapter 2

are consecutively used to remove multi-selected locations and subtours. This method results in a complete

tour but may increase the objective function. Using alternative open locations does not increase the objective

function, but multi-selected locations may still exist in the solution (see Section 3.2.2). As a result, we need to

check for the objective value and multi-selected locations. If the objective value is more than the incumbent

objective value, the node is fathomed; if not, presence of multi-selected locations must be checked. If no

multi-selected location exists, a new incumbent solution is obtained, and the node must be fathomed. If at

least one multi-selected location exists, the node is added to the set of live nodes, E.

Selecting a live node, e, from E is carried out by using the depth-first-search (DFS) as the overall strategy

and the best-first-search (BeFS) when choice is to be made between nodes at the same level of the tree. We

mention this strategy as DFS-BeFS. Clausen (2003) mentions that in the DFS strategy, we select the live

node with the highest level. The level of a specific node in the B&B tree is defined as the number of nodes

between that node and the root node. In the BeFS strategy, the next node to be evaluated is the one with

54 Chapter 3. Scheduling a Single Yard Crane with Flexible Storage Locations

the lowest bound among all the live nodes.

3.2.4 Near-optimal heuristic for large-scale problems

The three-phase solution method can find an optimal GATSP solution. However, the computation time can

be long if the number of requests is large (N ≥ 100). Therefore, instead of solving the problem to optimality,

we use the following heuristic algorithm to quickly find a near-optimal solution. This solution can also serve

as an upper bound for the B&B algorithm.

The heuristic algorithm uses the optimal ATSP solution obtained in Section 3.2.1 and tries to find a

feasible GATSP solution by stacking containers in locations other than the multi-selected locations. Note

that in Section 3.2.2, we have already tried to find alternative open locations and to remove multi-selected

ones. In this algorithm, locations that are chosen are not necessarily alternative open locations, and may

increase the total travel time.

The heuristic algorithm performs very much like the alternative open locations algorithm presented in

Section 3.2.2. It tries to remove multi-selected locations using an AP model. However, in order to establish

the cost matrix of the AP model, instead of the travel times of the alternative open locations, all open

locations of the sets are included. An AP solution results in removing multi-selected locations and obtaining

a feasible GATSP solution with the minimum increase in the total travel time of the ATSP solution. Note

that we always have enough locations to stack all containers; otherwise, the GATSP model does not have a

feasible solution. The gap between the new feasible GATSP solution and the optimal ATSP solution which

is a lower bound to the problem provides a good indicator to evaluate the performance of the heuristic.

3.3 Computational experiments

We conducted multiple numerical experiments to evaluate the performance of the three-phase solution method

and the heuristic algorithm. In each scenario, we consider a single block of containers with 40 or 50 bays,

10 or 20 rows, four tiers, and two, 10, or 20 I/O points. Other inputs regarding the size of containers

and the speed of the ASC can be found in Table 2.2 in Chapter 2. The general data is provided by one

of the largest container terminals in the Port of Rotterdam. The number of storage and retrieval requests

are N = 20, 50, 100, 150 and 200. Their locations and corresponding I/O points are randomly generated by

Monte Carlo simulation. Storage requests have multiple open locations, but the number of potential open

locations per storage request in each scenario is equal and is set to one, four, seven, or 10. All locations are

uniformly distributed over the block, and an equal number of requests have to be picked up or delivered to

the landside and the seaside. The ASC starts its operation from the location of I/O1, and it either ends

at the storage location of a storage request if it is the last request in the sequence, or at an I/O point if a

retrieval request is the last request in the sequence.

3.3. Computational experiments 55

The study is performed on a Notebook with 2.40 GHz Intel� CoreTM i5 processor, with 4.00 GB of

RAM and the programming language is MATLAB� 2010a.

3.3.1 Evaluating the performance of the three-phase solution method

In this section, we evaluate the performance of the three-phase solution method. Table 3.3 shows the results

of the three-phase solution method. The results are categorized into small-scale (20 requests), medium-scale

(50 requests), and large-scale (100 requests) problems. For small-scale and medium-scale problems, 100

realizations are randomly generated for each scenario. Due to the long computation time for large-scale

problems, we randomly generate 20 realizations for each scenario and terminate the computation after 500

seconds. As explained in chapter 2, the number of realizations satisfies Nrealz. ≥ σ2
(

(1+ε)Z1−α/2

εμ

)2

with a

90% confidence level (α = 10%), where σ2 and μ are respectively the variance and mean of the objective

values, Z1−α/2 is the 1 − α/2 percentile of the normal distribution, and ε = 5% is for determining the

confidence interval (Law and Kelton, 1999).

The results in Table 3.3 show that the three-phase solution method can quickly obtain the optimal

solution to small-scale (N ≤ 20) and medium-scale (N ≤ 50) problems. Average computation time is less

than 10.45 seconds. Still, by increasing the number of requests, the computation time becomes longer. The

solution to large-scale problems with more than 100 requests cannot be found in a reasonable time. If sets of

open locations have a single member (|Lr| = 1, ∀r ∈ R), we have an ATSP instead of a GATSP. Therefore, the

problem can be solved in less than a second by obtaining an optimal ATSP solution. The first four scenarios

of each problem size in Table 3.3. In addiction, column 11 shows that the minimum number of nodes of the

B&B tree in some realizations is 1. These are the special cases where sets of open locations do not overlap

(case 1 in Section 3.2.2), or alternative open locations can be found (case 2 in Section 3.2.2). The solution

can be obtained rapidly because an optimal ATSP solution directly provides an optimal GATSP solution.

Table 3.4 is used to evaluate how the locations in the set intersections affect the complexity of the problem

and the total travel time of the ASC. We consider an instance with 20 requests in which the number of storage

and retrieval requests is in balance. The number of open locations is also set to 20. Let I be the percentage

of locations that are in the intersection of all sets. The other locations do not belong to any intersection

and are randomly dispatched among all sets. Thus, |Lr| ≥ 20 × I, r = {1, . . . , n}. The results show that

by increasing the number of locations in the set intersections, the computation time significantly grow. On

the other hand, by increasing I, the ASC has more flexibility to stack every container which can be used to

decrease the total travel time.

We also compare the results of 17 randomly selected instances obtained by the three-phase solution

method with those results obtained by CPLEX 12.2. Due to the long computation time of CPLEX to find an

optimal solution of the problem, we truncated the computation after 18000 seconds. The results presented

in Table 3.5 show a large gap between the feasible objective value obtained by CPLEX in 18000 seconds and

the optimal objective value (obtained in less than a second). By increasing the number of requests, the gap

56 Chapter 3. Scheduling a Single Yard Crane with Flexible Storage Locations

Table 3.3. The results of the three-phase solution method

X Y N |Lr| 1 M
CPU Number of nodes

Z∗
Ave Max Min Ave Max Min

10 40 20

1 2 0.01 0.02 0.01 1 1 1 1303.44
1 10 0.01 0.08 0.01 1 1 1 1285.89
1 20 0.01 0.08 0.01 1 1 1 1255.18
4 2 0.01 0.08 0.01 1.3 7 1 1248.87
4 10 0.02 0.14 0.01 1.44 7 1 1214.37
4 20 0.02 0.10 0.01 1.29 8 1 1237.48
7 2 0.02 0.16 0.01 1.42 9 1 1207.81
7 10 0.03 0.13 0.01 1.45 6 1 1180.38
7 20 0.03 0.10 0.01 1.35 4 1 1186.74
10 2 0.03 0.13 0.01 1.45 6 1 1180.38
10 10 0.03 0.21 0.01 1.52 7 1 1174.13
10 20 0.04 0.32 0.01 1.61 8 1 1156.86

10 40 50

1 2 0.03 0.06 0.02 1 1 1 3231.64
1 10 0.04 0.12 0.02 1 1 1 3126.32
1 20 0.04 0.63 0.02 1 1 1 3179.74
4 2 0.30 2.26 0.03 4.79 41 1 3024.50
4 10 0.35 3.42 0.03 5.56 37 1 2920.33
4 20 0.41 10.28 0.03 6.01 139 1 2971.37
7 2 1.84 64.96 0.03 8.46 195 1 2978.87
7 10 2.42 87.44 0.03 8.62 239 1 2948.98
7 20 2.97 117.80 0.03 10.8 334 1 2930.63
10 2 10.45 198.26 0.03 20.9 293 1 2920.68
10 10 3.10 48.34 0.03 6.58 50 1 2875.11
10 20 5.54 55.94 0.04 9.37 79 1 2859.76

10 40 100

1 2 0.13 0.18 0.09 1 1 1 6526.89
1 10 0.12 0.17 0.08 1 1 1 6313.35
1 20 0.15 0.30 0.09 1 1 1 6266.78
4 2 >108.60 500.00 0.11 >133 803 1 6271.07
4 10 >97.59 500.00 0.11 >127 740 1 5736.32
4 20 >209.69 500.00 0.12 >243 621 1 6114.36
7 2 >186.41 500.00 0.12 >96.4 307 1 5971.92
7 10 >169.14 500.00 0.11 >82.4 320 1 5790.94
7 20 >126.58 500.00 0.13 >71 228 1 6007.79
10 2 >157.83 500.00 0.13 >62.5 204 1 6088.78
10 10 >241.55 500.00 0.19 >87.6 330 1 5522.12
10 20 >223.97 500.00 0.19 >73.7 204 1 6120.98

NOTE. We denote by Ave, Max, and Min the average, maximum and minimum computation (CPU) time and number of nodes
of the solution method over 100 realizations. Computation time is calculated in seconds. Furthermore, let |Lr| be the size of
each set of open locations, r = 1, 2, . . . , n. Column Z∗ shows the average optimal value for the instances with 20 and 50 requests
and it shows the average feasible value for the instances with 100 requests.

Table 3.4. The effect of the set intersections on the perfor-
mance of the algorithm

X Y N M I
CPU Number of nodes

Z∗
Ave Max Min Ave Max Min

10 40 20 10

0 0.02 0.25 0.01 1 1 1 1045.15
25 4.89 114.70 0.01 758 16563 1 980.70
50 6.85 272.05 0.01 691 24833 1 945.9345
75 26.38 500.00 0.07 1969 33474 4 944.7448
100 151.65 500.00 0.20 6762 24413 5 924.63

Notes. Column CPU is the computation time in seconds. The computation is truncated after 500 seconds. Each
instance has the same number of retrieval and storage requests. For the last two scenarios, column Z∗ shows the
average feasible value for the instances with 100 requests since the computation is truncated after 500 seconds.
Each instance has the same number of retrieval and storage requests.

between the two values increases. Note that in the first and second instances where the computation time of

CPLEX is less than 18000 seconds the optimal value is obtained. We also try to improve the performance

of CPLEX by using set the solution of our heuristic algorithm and the CPLEX feasible solution obtained

3.3. Computational experiments 57

in the first 18000 seconds as start points for solving the model. The results show that CPLEX is not still

efficient. Furthermore, although our heuristic algorithm provides the optimal solution in some cases, it takes

a considerable amount of time to prove the optimality.

Table 3.5. Comparing the three-phase solution method and
truncated CPLEX

Inst. X Y N M |Lr| CPLEX Our method
GZ∗

ZCPU Z CPU Z∗
1

10 40 10 10

1
4036.14 617.97 0.00 617.97 0

2 3680.59 455.60 0.00 455.6 0
3

4
18000 556.24 0.02 555.47 0.14

4 18000 517.57 0.03 517.57 0
5

7
18000 582.10 0.01 576.43 0.97

6 18000 610.77 0.01 603.63 1.17
7

10 40 20 10

1
18000 1233.75 0.02 1169.92 5.17

8 18000 981.83 0.01 981.83 0
9

4
18000 1048.88 0.01 1012.42 3.48

10 18000 1098.79 0.04 991.58 9.76
11

7
18000 1251.04 0.02 1057.12 15.50

12 18000 1263.27 0.02 1097.54 13.12
13

10 40 50 10

1
18000 3688.04 0.04 2669.07 27.63

14 18000 3004.97 0.05 2593.2 13.70
15

4
18000 2611.34 0.14 2459.02 5.83

16 18000 3426.06 0.09 2472.02 27.85
17

7
18000 2840.63 0.06 2496.02 12.13

18 18000 2831.90 0.19 2430.94 14.16
Notes. Let Z and Z∗ be the objective value obtained by truncated CPLEX and the optimal objective value
obtained by the three-phase solution method, respectively. The gap is calculated as: GZ∗

Z = ((Z − Z∗)/Z) × 100.
Column CPU is the computation time in seconds. Each instance has the same number of retrieval and storage
requests.

3.3.2 Evaluating the performance of the heuristic algorithm

We use our heuristic algorithm to quickly find the solution to large-scale problems. Table 3.6 shows the

results. We randomly generated 100 realizations for each scenario. Furthermore, we considered a larger

block with 50 bays, 20 rows, and four tiers to be able to randomly generate separate locations for large-scale

problems. The average objective value provided by the heuristic algorithm is compared with the lower bound

which is obtained by optimally solving the ATSP based on Corollary 3.1. The results in Table 3.6 show that

the gap between the lower bound and the heuristic algorithm is less than 1%, on average. The results show

that the computation time of our heuristic becomes longer by increasing the number of requests and number

of open locations in each set of open locations. The computation time of our heuristic is mainly determined

by selecting a location which gives the minimum travel time and simplifying the problem to an ATSP. The

scenarios with a single location for each storage request show that the optimal ATSP solution can be obtained

in less than a second. Using the AP model to remove multi-selected locations can also be performed in less

than a second.

Finally, we compare our heuristic with the NN and FCFS ASC-scheduling heuristics, commonly used at

container terminals, as provided by commercial software companies (for example, Cosmos NV and Modality

Software solutions b.v.). The results are presented in Table 3.7. Apparently, when the number of storage and

58 Chapter 3. Scheduling a Single Yard Crane with Flexible Storage Locations

Table 3.6. Performance of our heuristic algorithm for large-
scale problems

X Y N |Lr| M ZLB Zhe GLB
he CPU

20 50 100

1 2 8067.88 8067.88 0.00 0.12
1 10 7126.70 7126.70 0.00 0.12
1 20 7357.73 7357.73 0.00 0.13
4 2 7521.19 7528.91 0.10 0.46
4 10 6969.84 6978.14 0.12 0.52
4 20 6867.85 6876.85 0.13 0.47
7 2 7544.59 7552.01 0.10 1.16
7 10 6761.50 6767.23 0.08 0.96
7 20 6934.53 6941.27 0.10 1.07
10 2 7506.82 7513.7 0.09 2.17
10 10 6833.78 6841.45 0.11 2.49
10 20 6836.95 6842.83 0.09 2.13

20 50 150

1 2 11944.07 11944.07 0.00 0.28
1 10 10916.10 10916.10 0.00 0.28
1 20 10731.47 10731.47 0.00 0.27
4 2 11379.60 11397.40 0.16 1.80
4 10 10409.75 10430.39 0.20 1.87
4 20 10557.51 10576.15 0.18 1.68
7 2 11225.87 11242.31 0.15 3.38
7 10 10167.16 10184.39 0.17 4.52
7 20 10423.00 10439.80 0.16 4.26
10 2 11152.43 11168.22 0.14 6.94
10 10 10439.52 10454.83 0.15 8.09
10 20 10219.01 10238.87 0.19 7.95

20 50 200

1 2 15995.47 15995.47 0.00 0.48
1 10 14347.18 14347.18 0.00 0.46
1 20 14191.38 14191.38 0.00 0.46
4 2 15227.22 15255.70 0.19 4.08
4 10 13707.66 13742.79 0.26 4.83
4 20 13950.1 13984.4 0.25 4.79
7 2 14804.83 14835.89 0.21 10.32
7 10 13626.49 13657.35 0.23 11.11
7 20 13612.46 13644.67 0.24 11.60
10 2 15059.98 15094.22 0.23 20.10
10 10 13671.52 13705.30 0.25 23.04
10 20 13375.98 13407.71 0.24 21.56

Notes. Let ZLB be the lower bound, and Zhe be the average objective value of our heuristic algorithm
over 100 realizations. The gap is calculated as: GLB

he (%) = ((he−LB)/he)×100. Column CPU shows
the average computation time in seconds.

retrieval requests are balanced (P = 50%), the average objective value gap is up to 37% for the FCFS heuristic,

and 20% for the NN heuristic. On the other hand, when the number of storage and retrieval requests are not

balanced (moving toward P = 0 or 100%), the gaps with both FCFS and NN heuristics become smaller. The

reason is that in the solution, more pure storage and retrieval requests must be individually executed by the

ASC, and there is less opportunity to sequence retrieval requests after storage requests for minimizing the

ASC’s empty travel time.

The large performance gaps between our heuristic and NN can be understood by studying the extreme

cases P = 100% or 0%, with relatively small gaps. When P = 100%, all requests are retrieval requests. In

this case, we solve an ATSP and do not have any multi-selected location. The solution is relatively similar to

the solution obtained by the NN heuristic. In fact, in case of a single I/O point, the solutions of our heuristic

and NN are identical. However, when P = 0%, all requests are storage requests. In this case, due to the

pre-selection of empty locations, the ATSP provides a good lower bound for the problem. As a result, the

3.4. Conclusion 59

heuristic solution obtained by using the AP model for replacing the multi-selected locations with the nearest

empty locations is near optimal and far better than the NN solution.

Table 3.7. Comparing our heuristic with the FCFS and NN
heuristics

X Y N |Lr| M P Zhe ZNN ZFCFS Ghe
NN Ghe

FCFS
20 50 100 1 10 50 6371.02 7548.02 9915.28 15.59 35.75
20 50 100 4 10 50 6145.97 7519.09 9621.08 18.26 36.12
20 50 100 7 10 50 5980.09 7420.03 9463.83 19.41 36.81
20 50 100 10 10 50 6027.92 7526.66 9493.05 19.91 36.50
20 50 100 7 10 0 7673.75 8432.70 9783.38 9.00 21.56
20 50 100 7 10 20 6769.90 7979.79 9541.50 15.16 29.05
20 50 100 7 10 40 6050.70 7489.51 9528.86 19.21 36.50
20 50 100 7 10 60 6335.97 7603.10 9498.38 16.67 33.29
20 50 100 7 10 80 7322.12 8059.38 9744.66 9.15 24.86
20 50 100 7 10 100 8452.75 8471.89 10104.69 0.23 16.35
Notes. Let ZNN and ZFCFS be the average objective values of the NN and FCFS heuristics. The objective values
are averaged over 100 realizations. Furthermore, P indicates the percentage of retrievals. The gaps are calculated
as: Gb

a(%) = ((a− b)/a)× 100.

3.4 Conclusion

This chapter studies an operational problem of sequencing container storage and retrieval requests in a single

block of containers with multiple open locations for each storage container. The objective is to minimize the

travel time of a ASC carrying out the requests. We show that the problem can be modeled as a GATSP which

is NP-hard. The model also includes some extra constraints regarding the single selection of locations in the

overlap of multiple sets. We use the I/O points to redefine the travel time matrix and simplify the problem to

an ATSP. If sets of open locations for storage containers do not overlap, an optimal ATSP solution results in

an optimal solution of the GATSP. However, if they overlap, an optimal ATSP solution may contain multi-

selected locations which is an infeasible GATSP solution. In this case, if multi-selected locations cannot

be removed using alternative open locations, the optimal ATSP solution should be embedded in a B&B

algorithm to find an optimal GATSP solution. The numerical experiments show that if sets of open locations

do not overlap or alternative open locations for multi-selected locations exist, an optimal solution can be

obtained in less than a second. In general, the optimal solution of small and medium-scale instances can be

quickly obtained. In addition, we can obtain significantly better results than CPLEX truncated after five

hours. For large-scale instances with sets of open locations that overlap, we develop a heuristic to quickly find

a near-optimal solution. The results show that the gap between the solution of our heuristic and the lower

bound of the problem is less than 1%, on average. Performance gaps with heuristics applied in practice, such

as NN and FCFS, are up to 20% and 37%, respectively. In real container terminals, the benefits might be

smaller though, due to terminal-specific constraints. The methods proposed in this chapter can be applied

to any GATSP problem with a similar structure to obtain high quality solutions. The Model can also be

extended to include scheduling priorities, online requests, container rehandling, and synchronization with

60 Chapter 3. Scheduling a Single Yard Crane with Flexible Storage Locations

other material handling equipment at the terminal.

3.A. Proof of Theorem 3.1 61

Appendix

3.A Proof of Theorem 3.1

Suppose that in an optimal GATSP solution, an open location is chosen that does not give the minimum

time in order to travel from the associated storage request to a next following request. Then, the total travel

time between these two requests can be reduced by replacing this open location with another open location

which gives a shorter travel time. However, replacing all such travel times in the optimal GATSP solution

with minimum travel times results in an optimal solution to the ATSP model in which open locations that

result in the minimum travel time are pre-selected. Of course, this may not be a feasible GATSP solution,

since constraints (6) may be violated and a location in the overlap of multiple sets may be chosen to locate

multiple containers. �

Chapter 4

Scheduling Two Non-Passing Yard

Cranes∗

In this chapter, we study an extension of chapter 2 and 3 where we minimize the makespan of the two

non-passing automated stacking cranes (ASCs) carrying out a set of storage and retrieval requests in a block

of containers. In addition to determining the order in which to carry out the requests, we determine a

location for each storage request under the following operational constraints. When a container is to be

retrieved to the seaside, the seaside ASC picks it up from its location in the block and drops it at the seaside

input/output (I/O) point. When a storage request is to be stacked from the seaside, the seaside ASC picks

it up and stores it in a location in the block, selected from a set of available open locations specified for that

request. Each open storage location can be occupied by at most one container. Landside operations can be

carried out similarly. The ASCs can carry out single cycle or double cycle movements to carry out requests.

In a single cycle movement, the ASC carries out a single storage or retrieval request and returns to the I/O

point to carry out another request, whereas in a double cycle, the ASC combines a storage request with a

retrieval request in order to reduce the empty travel time (Goodchild and Daganzo, 2006, 2007). The ASCs

can never pass each other and must operate sufficiently far from each other. Since the ASCs cannot pass

each other, seaside requests are carried out by the seaside ASC and landside requests are carried out by the

landside ASC. Containers should not be dropped off in any location other than their final locations since this

requires additional ASC movements which are time-consuming. We consider different priorities in stacking

or retrieving containers. The most important reasons for this are as follows:

� The performance of a container terminal is often evaluated based on the berthing times of ships (Böse,

2011). Therefore, seaside containers usually have a higher priority than landside containers.

� To ensure the stability of ships, heavy containers must be loaded before light containers, in lower tiers

∗This chapter is based on Gharehgozli et al. (2012a).

63

64 Chapter 4. Scheduling Two Non-Passing Yard Cranes

on the ship and must therefore be retrieved earlier (see, for example, Chapter 5, Kim et al., 2000,

Sammarra et al., 2007, Dekker et al., 2007).

� Trucks, trains and ships arrive at a container yard to deliver or pick up containers in different time

windows (see, for example, Froyland et al., 2008, Petering, 2011b, Newman and Yano, 2000), which

induces precedence constraints on the stacking and retrieving of containers.

Preventing reshuffles also imposes additional precedence constraints on the operations. A reshuffle is an

unwanted movement of a container stacked on top of another one that has to be retrieved (Kim et al., 2000,

De Castillo and Daganzo, 1993, Caserta and Voß, 2009). For example, a precedence constraint can prohibit

a container to be stacked in a pile before retrieving a container located in the same pile, or it can force

containers stacked on top of a specific container to be retrieved earlier.

We formulate this multi-crane problem as a multiple asymmetric generalized traveling salesman problem

with precedence constraints (mAGTSP-PC), which generalizes the single version of the problem without such

constraints (see, for example, Laporte et al., 1987, Noon and Bean, 1991). The model also contains additional

constraints regarding the interactions of the ASCs and the selection of open storage locations which lie in

the intersection of multiple sets. We will elaborate on these constraints in the problem description section.

We develop an adaptive large neighborhood search heuristic for this problem.

Our scientific contribution is to develop and solve a continuous time model to schedule two interacting

ASCs working in a single block of containers. Our model incorporates precedence constraints, ASC interac-

tion constraints, and constraints that assign each container to a storage location selected from a given set.

Considering these constraints is valuable not only from a theoretical standpoint but also from a practical

point of view. In practice, containers have different priorities, and a set of suitable open locations is available

for each container that has to be stacked. The mAGTSP and its variants have been shown to be NP-hard
(see, for example, Cheung et al., 2002, Narasimhan and Palekar, 2002) and the new features introduced in

this study make the problem even more difficult to solve.

The remainder of this chapter is organized as follows. In Section 4.1, we describe the technical aspects of

the problem and present our mathematical model. Section 4.2 describes the heuristic. Section 4.3 presents

numerical results, and Section 4.4 contains the conclusions.

4.1 Problem description and model

This section describes the research problem, introduces notations, and then formulates the problem as an

mAGTSP-PC.

4.1. Problem description and model 65

4.1.1 Problem description

We seek to determine the sequence to stack containers of n storage requests and retrieve containers of N −n

retrieval requests in a single block of containers consisting of X rows, Y bays, Z tiers and two I/O points,

one at each end of the block. We denote by S and L the seaside and landside I/O points, respectively. Let

R be the set of all requests, whereas Rs and Rl be the sets of requests that must be picked up or dropped

off at S and L, respectively.

The objective is to minimize the makespan of the two ASCs carrying out these requests. We denote

by ASCs the seaside ASC assigned to Rs, and by ASCl the landside ASC assigned to Rl. Each ASC can

carry only one container at a time. From a given starting point, each ASC can execute its requests in any

sequence in order to minimize its total travel time. We denote by 0s and 0′s, respectively, the starting and

ending locations of ASCs, whereas 0l and 0′l are the corresponding locations for ASCl. These locations can

be anywhere in the block. The ASCs cannot pass each other and have to be be separated by a distance

taking τ time units to travel. The storage and retrieval containers can be of different sizes (20 or 40 feet)

and leave or arrive at the container terminal by truck, train or ship. Containers should not be dropped off

at temporary locations. Finally, the speed of an empty or full ASC is the same.

Every storage or retrieval request r ∈ R = {1, . . . , N} corresponds to a unique container. For storage

request r, an ASC moves a container from the I/O point where it is located to a location i in the block

selected from a given set Lr of available open locations. For retrieval request r, an ASC moves a container

from location j in the block to a specified I/O point. For ease of notation, we write that the location j of

retrieval request r belongs to Lr. Thus, the set V of all locations can be defined as:

V = {1, 2, . . . , |L1|︸ ︷︷ ︸
L1

, |L1|+ 1, |L1|+ 2, . . . , |L1|+ |L2|︸ ︷︷ ︸
L2

, . . . ,
n−1∑
i=1

|Li|+ 1,
n−1∑
i=1

|Li|+ 2, . . . ,
n∑

i=1

|Li|︸ ︷︷ ︸
Ln

,

n∑
i=1

|Li|+ 1

︸ ︷︷ ︸
Ln+1

, . . . ,

n∑
i=1

|Li|+N − n

︸ ︷︷ ︸
LN

, 0s︸︷︷︸
L0s

, 0l︸︷︷︸
L0l

, 0′s︸︷︷︸
L0′s

, 0′l︸︷︷︸
L0′

l

}.

For each storage location in V lying in the intersection of multiple sets, a copy is created for each set

to which it belongs. The copy locations will be used in the model to avoid stacking multiple containers in

the same location. The same as the previous two chapters, we assume that storage and retrieval locations as

well as destination sides of retrieval containers and I/O points of storage containers are known; in practice,

they are determined at a higher hierarchical planning level. This level focuses on minimizing the number of

reshufflings (De Castillo and Daganzo, 1993, Kim et al., 2000) and speeding up the loading and unloading

process of a ship (Kim and Kim, 1999a, Vis and Roodbergen, 2009). Furthermore, due to the abundance of

internal transport vehicles (like AGVs and chassis) to pick up containers at the seaside and landside, retrieved

containers can be delivered to any I/O point at each side. Because of the same reason, retrieval containers

can be quickly moved away from all I/O points, and they can therefore be delivered to the same I/O point

that a storage container has to be picked up. The other issue is that storage and retrieval locations do not

66 Chapter 4. Scheduling Two Non-Passing Yard Cranes

coincide. This is reasonable since N is usually much smaller than the block size, the block utilization is

often fairly low, and container terminal operators usually separate containers based on destination and type.

Finally, we do not consider the collaboration between the ASCs. In other words, if a container comes from

the seaside and has to be stacked at the landside, the seaside ASC stacks it at its location, while the landside

ASC has moved sufficiently far away in order to satisfy the safety distance requirements.

In order to present the model, we also have to define the pairwise travel times between the storage and

retrieval locations of requests in the block. If the ASC travels directly from location i to location j in the

block, the travel time of the ASC can be calculated as follows:

tij = max{|xi − xj |, |yi − yj |}+ |zi|+ |zj |, (1)

where, (xi, yi, zi) and (xj , yj , zj) are the Cartesian coordinations of locations i and j, with 0 ≤ xi, xj ≤ Tx,

0 ≤ yi, yj ≤ Ty, and 0 ≤ zi, zj ≤ Tz. Here, Tx, Ty, and Tz, are the furthest travel times of locations in the

block in X, Y , and Z directions, respectively. The first term of the right-hand side of Equation (1) emphasizes

that the ASC can move in the X and Y directions simultaneously. If the ASC travels from location i to

an I/O point to pick up or deliver a container and then travels to location j to stack or retrieve another

container, then the travel time to and from the I/O point must be considered. Table 4.1 summarizes how

to calculate pairwise travel times of ASCs. Travel times of ASCl can be calculated similarly. These times

satisfy the triangle inequality.

Table 4.1. Computation of pairwise travel times for ASCs

Case1 Computation of tij
(storage location i, retrieval location j) max{|xi − xj|, |yi − yj|}+ |zi|+ |zj|2
(storage location i, storage location j) max{|xi − xs|, |yi − ys|}+ |zi|+ |zs|+max{|xs − xj|, |ys − yj|}+ |zs|+ |zj|3
(storage location i, 0′s)

4 0
(storage location i, 0s) ∞
(retrieval location i, retrieval location j) max{|xi − xs|, |yi − ys|}+ |zi|+ |zs|+max{|xs − xj|, |ys − yj|}+ |zs|+ |zj|
(retrieval location i, storage location j) max{|xi − xs|, |yi − ys|}+ |zi|+ |zs|+max{|xs − xj|, |ys − yj|}+ |zs|+ |zj|
(retrieval location i, 0′s)

5 max{|xi − xs|, |yi − ys|}+ |zi|+ |zs|
(retrieval location i, 0s) ∞
(0′s, retrieval location j) ∞
(0′s, storage location j) ∞
(0′s, 0

′
s) ∞

(0′s, 0s) ∞
(0s, retrieval location j) max{|x0s − xj|, |y0s − yj|}+ |z0s |+ |zj|
(0s, storage location j) max{|x0s − xs|, |y0s − ys|}+ |z0s |+ |zs|+max{|xs − xj|, |ys − yj|}+ |zs|+ |zj|
(0s, 0

′
s) ∞

(0s, 0s) ∞

1 tij = ∞ if i = j.
2 Pick up and drop off times are included in times necessary for vertical movements.
3 (xs, ys, zs) are the Cartesian coordinates of S, with 0 ≤ xs ≤ Tx, 0 ≤ ys ≤ Ty , and 0 ≤ zs ≤ Tz .
4 ASCs stops at location i, if the associated storage request is the last request.
5 ASCs delivers the container from location i to S and stops there, if the associated retrieval request is the last request.

4.1. Problem description and model 67

4.1.2 Mathematical Model

The problem of sequencing storage and retrieval requests to be carried out by two ASCs, incorporating the

storage location decision problem, can now be stated mathematically as the following integer linear program.

Let xk
ij be a binary decision variable equal to 1 if and only if ASCk, k ∈ K = {l, s} visits location j ∈ V

immediately after location i ∈ V. We already know that the requests that have to be picked up or dropped off

at S or L have to be carried out by the associated ASC. Denote by Vk the set of locations of requests in Rk,

which includes the starting and ending locations of ASCk. As a result, we simplify xk
ij as the binary decision

variable xij which equals 1 if and only if location j ∈ Vk is visited immediately after location i ∈ Vk, ∀k ∈ K.

Objective function : The objective function minimizes C, the makespan of the two ASCs:

minimize C (2)

The model has the following constraints.

Carrying out all requests : Constraints (3)–(4) below mean that each set must be entered and exited

exactly once. Of course, the starting point has no ingoing arc and the ending point has no outgoing arc. In

these constraints, L′
r =

⋃
e∈Rk
e�=r

Le, ∀r ∈ Rk, ∀k ∈ K; in other words, L′
r is the set of all locations which do not

specifically belong to Lr:

∑
i∈L′

r

∑
j∈Lr
j �=i

xij = 1, ∀r ∈ Rk\{0k}, ∀k ∈ K, (3)

∑
i∈Lr

∑
j∈L′

r
j �=i

xij = 1, ∀r ∈ Rk\{0′k}, ∀k ∈ K. (4)

Network flow conservation : Constraints (5) are the network flow conservation constraints. Constraints

(5)–(6) ensure that in an optimal solution, each location can receive at most one container, and each container

is stacked somewhere. In constraint (6), I is the set of storage locations in the intersection of multiple sets,

and Qi is the set of all copies of storage location i ∈ I. These constraints are of special importance when

locations in the intersection of multiple sets are considered. Without these, multiple containers may be

stacked in a single location in the intersection of these sets:

∑
i∈Vk
i�=j

xij =
∑
l∈Vk
l �=j

xjl ≤ 1, ∀j ∈ Vk, ∀k ∈ K, (5)

68 Chapter 4. Scheduling Two Non-Passing Yard Cranes

∑
l∈V\{0′}

∑
j∈Qi
j �=l

xlj ≤ 1, ∀i ∈ I. (6)

Makespan : Constraints (7) define Ci, the arrival time of an ASC at location i, ∀i ∈ V. In these constraints,

M is a large constant. Constraints (8) are used to define the makespans of the ASCs based on their arrival

times at their finishing points, 0′s, 0
′
l:

Ci + tij − Cj ≤M(1− xij), ∀i, j ∈ Vk, ∀k ∈ K, (7)

C ≥ Cj , ∀j ∈ {0′s, 0′l}. (8)

Precedence constraints: Let P−
i be the set of storage or retrieval locations that have to be visited before

location i ∈ V if they appear in a feasible solution. The precedence sets of storage or retrieval locations

are defined on the basis of the precedence sets of requests corresponding to these locations. Constraints

(9) ensure that location i is visited after all locations j, ∀j ∈ P−
i . There exists a feasible solution if the

precedence constraints do not induce any subtours:

Ci ≥ Cj ∀i ∈ V, ∀j ∈ P−
i . (9)

Interaction of the ASCs: ASCs should not pass each other and should be separated by at least τ time

units. Let Bi be the set of all locations behind location i that cannot be visited by the other crane because

of the no-passing constraint. Furthermore, Ai is the set of all locations in front of location i that can only be

visited by the other crane at least τ time units after the moment that location i has been visited. Note that

I/O points help to distinguish the front and behind sides of locations. The I/O point where the corresponding

container of a location must be picked up or dropped off shows the behind side of that location. Figure 4.1

depicts a top view of a block of containers with multiple storage and retrieval locations. The sets of open

locations available for different storage containers are highlighted by the contours. For example, in Figure 4.1,

ASCl must retrieve the container in location 10 to L, thus A10 = {4, 5, 11} and B10 = {1, 2, 3, 8, 9}. Having
defined Ai and Bi, then the interaction between the ASCs can be modeled by constraints (10)–(12). In these

constraints zij indicates whether location i ∈ Vk, ∀k ∈ K has to be visited before location j ∈ Vk′ , ∀k′ ∈ K.
These variables are different from xij . Indeed, the latter variables indicate whether location i is visited

immediately before location j, whereas the former only indicate that i is visited before j. Note that in these

constraints, we do not keep track of the positions of the ASCs, but the time that each ASC arrives at the

location of every corresponding request. We delay the arrival time of an ASC to a location if the safety

4.1. Problem description and model 69

distance is violated. In other words, the constraints guarantee that at the moment that an ASC arrives

at the location of each request that has to be carried out by that ASC, the other one has enough time to

move to a position where the safety distance requirements can be satisfied. These constraints including with

constraints (7)–(8) determine the arrival time of the corresponding ASC at each location.

Figure 4.1. Bird’s eye view of a block of containers with
storage and retrieval locations

zij + zji = 1, ∀i, j ∈ V, i �= j, (10)

Ci + (τ − |yi − yj |) ≤M(1− zij) + Cj , ∀i ∈ V, ∀j ∈ Ai, (11)

Ci + (τ + |yi − yj |) ≤M(1− zij) + Cj , ∀i ∈ V, ∀j ∈ Bi. (12)

Finally, constraints (13)–(14) are the integrality and non-negativity constraints:

Ci ≥ 0 ∀i ∈ V\{0s, 0l}, Ci = 0 ∀i ∈ {0s, 0l}, (13)

70 Chapter 4. Scheduling Two Non-Passing Yard Cranes

xij , zij ∈ {0, 1}, ∀i, j ∈ V. (14)

4.2 Adaptive large neighborhood search heuristic

The complexity of the problem means that only relatively small instances can be solved to optimality within

a reasonable time. To solve real-size problems, we have developed an adaptive large neighborhood search

(ALNS) heuristic. This type of heuristic was initially proposed by Ropke and Pisinger (2006a), and is based

on the LNS search scheme previously developed by Shaw (1997) and Bent and Van Hentenryck (2004) for

different problems. The ALNS is a powerful heuristic framework applicable to the solution of combinatorial

problems. It has been applied by several authors in a variety of contexts including crew scheduling (Bartodziej

et al., 2009), fixed charge network flow routing (Hewitt et al., 2010), capacitated arc routing (Laporte et al.,

2010), and vehicle routing (i.e., Ropke and Pisinger, 2006a, Pisinger and Ropke, 2007, Ropke and Pisinger,

2006b, Pepin et al., 2009). To be effective, the implementation of this heuristic has to be tailored to the

problem at hand.

Algorithm 2 ALNS metaheuristic

Require: A feasible solution X, q ∈ N;
Ensure: A near-optimal feasible solution, Xbest;
1: procedure ALNS(X, q)
2: Xbest ← X;
3: while stop criterion is not met do
4: X ′ ← X;
5: apply one operator to remove q requests from X ′
6: apply one operator to reinsert removed requests into X ′;
7: if Z(X ′) < Z(Xbest) then
8: Xbest ← X ′;
9: end if
10: if X ′ is selected as the incumbent solution then
11: X ← X ′;
12: end if
13: end while
14: return Xbest;
15: end procedure

The basic outline of the ALNS metaheuristic is presented in Algorithm (2). The search starts from a

feasible solution generated by a simple construction heuristic (see Section 4.3.2). The ALNS attempts to

improve this solution by sequentially applying several elementary operators to remove a subset of requests

from the solution and reinsert them. The main difference between ALNS and LNS is that the ALNS applies

multiple removal and insertion operators with adaptive weights, whereas the LNS uses only one removal

operator and one insertion operator. We now explain the removal and insertion operators developed, and

4.2. Adaptive large neighborhood search heuristic 71

then in Section 4.2.3, we describe how to update and use the weights to select a removal and an insertion

operator in each iteration.

4.2.1 Removal operators

We have developed several removal operators, all of which are applied to a feasible solution. Note that in

this problem, one of the ASCs needs to visit a unique location for each request. In our operators, we refer to

corresponding requests of locations.

Relatedness removal (Shaw removal): The Shaw operator, initially introduced by Shaw (1997), is one

of the most widely used removal operators. It removes the requests which are somewhat related to each

other and can be inserted interchangeably in different positions of the solution. In our implementation, the

relatedness of requests r and e is defined as:

R(r, e) = ϕ|typer − typee|+ χ|sider − sidee|+ ψ||Pr| − |Pe||+ ω|vr − ve|, (15)

where, typer equals 1 if request r is a storage request, and 0 otherwise; sider equals 1 if request r has to be

picked up or dropped of at S, and 0 otherwise; Pr is the set of requests that must appear either before or after

request r; and vr is the location associated with request r. In order to apply equation (15), all variables are

scaled to take values between 0 and 1. The smaller R(r, e) is, the more related r and e are. The complexity

of this operator is O(N).

Random removal : In this type of removal, q requests are randomly removed from the solution. The

complexity of this operator is O(1) and it is repeated q times.

Worst removal : Assume that Δ(r,X) is the travel time of request r to its predecessor and successor

requests in the solution. The worst removal operator removes q requests with the largest Δ(r,X). Note that

we do not define Δ(r,X) as the effect of removing request r in the objective function. Indeed, because of

the interactions between the ASCs, and because of the precedence constraints, fully evaluating the objective

function for each partial solution is rather time consuming. Our simplified approach avoids this computation.

The complexity of this operator stems from the sorting process involved in the operator which is O(N2).

Precedence constraint removal : This operator sorts the requests of the solution in non-decreasing order

of |Pr|, and then selects the first q requests. The rationale is that since these requests have smaller number

of predecessors and successors, their reinsertion in the solution is likely to be easier. The complexity of this

operator is O(N2).

Group removal : In the group removal operator, either q storage requests or q retrieval requests are removed

from the solution. The idea is that storage or retrieval requests can be used to generate double cycles when

72 Chapter 4. Scheduling Two Non-Passing Yard Cranes

they are reinserted in the solution. In our implementation, we choose the first q storage or retrieval requests

in the solution. However, one may remove those with the largest Δ(r,X) or |Pr|. The complexity of this

operator is O(N) and it is repeated q times.

Single cycle removal : This operator removes q single cycles from the current solution. It is expected that

better double cycles than the current ones in terms of the objective function can be generated by reinserting

their requests in the solution. In this operator, as in the group removal operator, we remove the first q

single cycles, but one can alternatively remove those with the largest Δ(r,X) or |Pr|. If there is no single

cycle location, the random removal operator removes requests until a new single cycle can be found. The

complexity of this operator is O(N) and it is repeated q times.

Location removal : One of the features of our problem is the presence of sets of open locations to stack

storage containers. In the heuristic used to generate a feasible initial solution, the location for each storage

container is randomly selected from its set of available open locations. If no operator is applied to assign new

locations, the selected locations do not change, which results in lost opportunities to improve the solution. The

location removal operator, randomly selects max{n, q} storage requests and removes the locations assigned

to them. A location insertion operator then selects other locations for these requests (see the next section).

The complexity of this operator is O(N) and it is repeated max{n, q} times.

4.2.2 Insertion operators

We have developed four operators to reinsert the q requests that have been removed by one of the above

operators. The insertion operators regain solution feasibility, by sequencing all requests, while satisfying the

precedence and interaction constraints.

Greedy reinsertion : Let Δfr be the travel time of request r to its predecessor and successor request by

inserting it in its best position. The greedy operator inserts the request minimizing Δfr, over all removed

requests. After inserting a request, the operator updates the Δfr values and is reapplied. The complexity of

this operator is O(N) and it is repeated q times.

Random reinsertion : This operator randomly reinserts the requests into the partial solution. The com-

plexity of this operator is O(1) and it is repeated q times.

Interaction insertion : The main idea of this operator is to insert seaside and landside requests in the

partial solution so as to minimize the interaction of the corresponding ASCs. When a request is inserted in

a position, the operator counts the immediate requests after and before the request that have to be delivered

to the same side. It then inserts the request in a position yielding the largest number. The complexity of

this operator is O(N) and it is repeated q times.

4.2. Adaptive large neighborhood search heuristic 73

Location insertion : The location removal operator described in Section 4.2.1 can only be followed by the

location insertion operator. For each storage request with a removed location, this operator randomly selects

a new location from its set of available open locations. The complexity of this operator is O(1) and it is

repeated max{n, q} times.

4.2.3 Choosing a removal operator or a insertion operator

We run the ALNS algorithm for a preset number of iterations. At each iteration, the selection of a removal

or insertion operator is governed by a roulette-wheel mechanism which selects operator o from the set of

removal or insertion operators with probability wo/
∑O

o′=1 wo′ , where wo is the weight of operator o, and O

is the number of operators of the set.

In the ALNS, an initial weight is assigned to each operator and the weights are then updated after every

δ iterations of the algorithm. The updates are based on the score that each operator has gained during

the past δ iterations. At each iteration, the score of each operator is updated based on its performance:

the weight of each removal or insertion operator used in the current iteration is incremented by σ1 if their

application result in a new best solution; by σ2 if result in a better incumbent solution; and by σ3 if result

in a solution which is not better than the best solution found and incumbent solution but is accepted, where

σ1 ≥ σ2 ≥ σ3. Let πo and θo be the total score of operator o and the number of times it has been selected after

δ iterations, respectively. Furthermore, let ζo ≥ 1 be a normalization factor which reflects the computational

effort that operator o requires (see Ropke and Pisinger, 2006b). The weight of operator o is then updated

as wo ← wo(1 − ρ) + ρπo/ζoθo, where ρ ∈ [0, 1] is the reaction factor which controls how quickly the weight

adjustment reacts to changes in the operator performance. Note that wo does not change if θo = 0.

4.2.4 Acceptance of the new solution and stop criterion

In order to produce sufficient diversification in the search process, the ALNS metaheuristic is executed

within a simulated annealing (SA) framework (Kirkpatrick et al., 1983), which has proven to work well for

the solution of several combinatorial problems (e.g., Vis and Carlo, 2010, Bozer and Carlo, 2008, Wilhelm

and Ward, 1987). In the SA framework, if the solution found at the current iteration is better than the

current solution, it is accepted. Otherwise, it is accepted with probability e−(Z(S′)−Z(S∗))/T , where T is

the temperature, Z(S′) and Z(S∗) are the objective values of the solution at the current iteration and best

solution, respectively. The temperature starts at Tstart and is updated at each iteration as T ← Tφ, where

0 < φ < 1 is a cooling rate.

74 Chapter 4. Scheduling Two Non-Passing Yard Cranes

4.3 Computational experiments

Extensive numerical experiments were performed to assess the effectiveness of our ALNS metaheuristic. In

Section 4.3.1, we discuss how its parameters were tuned. Section 4.3.2 compares the results of the ALNS

with those results of the LNS, truncated CPLEX, and some other simple heuristics.

The ALNS and the other heuristics were coded in C++ using Microsoft Visual Studio 2008 and were

executed on a Notebook with 2.40 GHz Intel� CoreTM i5 processor, with 4.00 GB of RAM. Exact results

were obtained by CPLEX 12.2 coded in C++ using the Concert Technology framework and executed by

a g++ compiler on a 2.40 GHz AMD OpteronTM Processor 250, with 8.00 GB of RAM under the Linux

operating system.

4.3.1 Tuning and initial solution

In our experiments, we consider a single block of containers with 40 bays, 10 rows, and four tiers. The

number N of requests is set to 10, 25 and 45, which is approximately the workload of a single ASC without

any interaction in a common 40 to 180 minute planning horizon (Vis and Carlo, 2010). We assume an equal

number of open locations |Lr| for storage requests r = 1, . . . , n, and we set |Lr| equal to 1, 3, or 5. As a

result we perform nine basic experiments, numbered as one to nine, on five randomly generated instances in

each case. Each instance has the same number of retrieval and storage requests. All locations are uniformly

distributed over the block, and an equal number of requests have to be picked up or delivered to the landside

and the seaside. The landside ASC starts its operations from L and ends either at the storage position of a

storage request if this is the last request in the sequence, or at L if a retrieval request is the last request in

the sequence. Similarly, the seaside ASC starts from S and either finishes in a storage position or at S.

We assume that the containers are categorized in five priority levels of decreasing importance. In addition,

we consider a sixth priority level dedicated to containers that can be moved at any time. Since the seaside

process time of a terminal has a relatively higher importance, the seaside containers have to be moved before

the other ones, which gives them the priority levels 1, 2, and 3. Eighty percent of remaining containers are

categorized with the priority levels 4 to 6 and 20% with the priority levels 1 to 3. Other inputs regarding the

size of containers and the speed of the ASC can be found in Table 2.2 in Chapter 2.

We have used the first instance of Experiment 5 with 25 requests and three open locations for each storage

requests to tune the parameters of the ALNS. As Ropke and Pisinger (2006a) suggest, we have applied an

ad hoc trial and error strategy to set the parameters. To this end, we have fixed all parameters and changed

only one parameter at a time. The ALNS was applied five times and the parameter value resulting in the best

objective was selected. The parameters used for all scenarios are as follows: (ϕ, χ, ψ, ω, σ1, σ2, σ3, ρ, φ, δ) =

(4, 2, 3, 6, 33, 13, 9, 0.2, 0.94, 200). In our implementation, we have used ζo = 1 for all removal and insertion

operators except for the single cycle and worst removal where ζo = 5. We set the number of ALNS iterations to

25000. The insertion or removal operators have equal weights at the first iteration. The starting temperature

4.3. Computational experiments 75

of the SA was set in such a way that a solution 30% worse than the initial solution should be accepted

with probability 0.5. In the first third of all scenarios, the number of q requests to be removed and inserted

was randomly drawn from the interval [1, 0.5N], using a semi-triangular distributions with a negative slope.

The interval was narrowed down to [1, 0.25N] and [1, 0.1N] for the second and third tiers of the iterations,

respectively.

4.3.2 Computational results

The results obtained by the ALNS are now compared with those results obtained by truncated CPLEX and

with other heuristics.

Comparing ALNS and truncated CPLEX

Tables 4.2, 4.3, and 4.4 compare the makespan and computation time of the ALNS and truncated CPLEX

over different instances. For each instance, we apply the ALNS 20 times each with a different random

initial solution and calculate the minimum, average, and maximum makespan, in addition to the average

computation time. The CPLEX algorithm is applied to each instance only once in order to find a solution

for the mAGTSP-PC and mAGTSP which is a relaxed problem without the precedence constraints and the

ASC interaction constraints. The computation time of CPLEX for finding an optimal or even a feasible

solution for the mAGTSP-PC is very high and we therefore truncate the computation after 14400 seconds.

On the other hand, the mAGTSP can be quickly solved. The reason is that when |Lr| = 1, r = 1, . . . , n,

by relaxing the precedence and ASC constraints we can easily find an optimal solution of the mAGTSP

by solving an assignment problem (AP). Since there is only a single I/O point for each ASC, by using it

all subtours obtained by the AP can be easily merged. When |Lr| > 1, r = 1, . . . , n, the situation is more

complicated since we have to choose a location for each storage container. However, since the number of

requests is relatively small in our instances, we can quickly find the optimal solution with CPLEX. The

optimal mAGTSP solution value provides a lower bound for the original problem.

Table 4.2 compares the optimal results obtained by CPLEX with the ALNS results for small instances.

Column GZ
Ave shows that the ALNS objective values are on average within 0.34% of the optimal values. On

the other hand, as column GLB
Z shows, even on small-size instances, the gap between the lower bound and

the optimal mAGTSP-PC solution is large. The gap stems from the fact that the precedence constraints and

interaction constraints significantly affect the sequence of requests carried out by the ASCs and increase the

objective function. Omitting these constraints results in a relaxed problem whose optimal solution provides

a very poor lower bound for the original problem. This suggests that although the gap between the average

ALNS solution value and the lower bound may be large in some cases, this does not necessarily reflect on the

quality of the ALNS algorithm. Therefore, column GAve
LB which shows the gap between the lower bound and

average ALNS solution is omitted from the table. A fair assessment is to compare the average result of the

76 Chapter 4. Scheduling Two Non-Passing Yard Cranes

ALNS with the best known objective value, as Ropke and Pisinger (2006a) recommend. This is carried out

in column Gmin
Ave which shows that the average results are within 0.34% of the best know objective value.

Tables 4.3 and 4.4 compare the ALNS results for medium and large instances and those results of the

truncated CPLEX. In all instances, columns GZ
Ave and GZ

min correspondingly show that the gaps between

the average and minimum ALNS objective values and the truncated CPLEX objective values are on average

negative or very small. Furthermore, the gaps between the minimum and average ALNS results shown in

column Gmin
Ave are on average less than 2.85% which is quite promising.

Table 4.2. Results of the ALNS and CPLEX for Experi-
ments 1, 2, and 3

Inst.
CPLEX results ALNS results (20 runs for each instance)

LB CPU Z CPU GLB
Z Min Max Ave Gmin

Ave GZ
Min GZ

Ave CPU

Experiment 1 (N = 10, |Lr| = 1, r = 1, . . . , 5)
1 348.83 0.00 387.59 0.10 10.00 387.59 387.59 387.59 0.00 0.00 0.00 0.75
2 288.29 0.01 386.53 0.40 25.42 386.53 386.53 386.53 0.00 0.00 0.00 0.73
3 343.05 0.00 426.17 0.02 19.50 426.17 426.17 426.17 0.00 0.00 0.00 0.80
4 337.50 0.01 398.74 0.12 15.36 398.74 398.74 398.74 0.00 0.00 0.00 0.75
5 234.95 0.01 289.52 0.06 18.85 289.52 289.52 289.52 0.00 0.00 0.00 0.79

Ave 310.52 0.01 377.71 0.14 17.83 377.71 377.71 377.71 0.00 0.00 0.00 0.76

Experiment 2 (N = 10, |Lr| = 3, r = 1, . . . , 5)
1 288.29 0.01 356.32 3.54 19.09 356.32 356.32 356.32 0.00 0.00 0.00 0.81
2 319.38 0.01 419.15 2234.84 23.80 419.15 419.15 419.15 0.00 0.00 0.00 0.93
3 313.97 0.02 346.08 1699.35 9.28 346.08 350.05 346.88 0.23 0.00 0.23 0.89
4 275.06 0.02 291.56 13.80 5.66 291.56 291.56 291.56 0.00 0.00 0.00 0.84
5 336.81 0.01 392.46 6.55 14.18 392.46 419.05 397.53 1.27 0.00 1.27 0.86

Ave 306.70 0.01 361.11 791.62 14.40 361.11 367.23 362.29 0.30 0.00 0.30 0.87

Experiment 3 (N = 10, |Lr| = 5, r = 1, . . . , 5)
1 370.14 0.02 469.90 14317.17 21.23 469.90 489.23 475.63 1.21 0.00 1.21 1.03
2 282.59 0.02 355.49 462.38 20.51 355.49 355.49 355.49 0.00 0.00 0.00 1.04
3 425.48 0.02 459.36 94.06 7.38 459.36 459.36 459.36 0.00 0.00 0.00 1.00
4 311.74 0.02 322.69 18.73 3.39 322.69 322.69 322.69 0.00 0.00 0.00 0.93
5 300.00 0.03 367.29 1782.91 18.32 367.29 379.47 369.12 0.49 0.00 0.49 0.89

Ave 337.99 0.02 394.95 3335.05 14.17 394.95 401.25 396.46 0.34 0.00 0.34 0.98

Note. LB is the optimal solution of the AGTSP. Z is the feasible or optimal solution of mAGTSP-PC. Columns CPU show
the computation time in seconds. For CPLEX, when CPU < 14400 seconds, the optimum is attained. The computation time
of the ALNS is an average over 20 runs. The gaps are calculated as: Gb

a(%) = ((a− b)/a)× 100.

Although we have shown the superior performance of our heuristic by the gaps discussed in Tables 4.2–

4.4, readers may be still curious about the gaps between the optimal results and those results obtained by the

ALNS for large instances. We can do this by omitting the interaction and precedence constraints, and obtain

the exact and ALNS results for the mAGTP and the AGTP. The mAGTSP is a relaxation of our problem

without the precedence and interaction constraints. Its solution provides a lower bound for our problem,

as shown in Section 4.3.2. The AGTSP is the problem in which a single ASC carries out all the requests,

and no precedence or interaction constraints are imposed. Table 4.5 shows that the ALNS can quickly find

near-optimal results.

4.3. Computational experiments 77

Table 4.3. Results of the ALNS and CPLEX for Experi-
ments 4, 5, and 6

Inst.
CPLEX results ALNS results (20 runs for each instance)

LB CPU Z CPU GLB
Z Min Max Ave Gmin

Ave GZ
Min GZ

Ave CPU

Experiment 4 (N = 25, |Lr| = 1, r = 1, . . . , 13)
1 660.26 0.02 728.36 14400 9.35 728.36 756.00 739.19 1.47 0.00 0.11 3.50
2 608.06 0.02 747.62 11730.83 18.67 747.62 789.15 761.44 1.81 0.00 0.14 3.26
3 733.75 0.02 749.54 14400 2.11 749.54 776.57 758.57 1.19 0.00 0.09 3.35
4 675.55 0.01 805.03 14400 16.08 805.03 812.33 806.77 0.22 0.00 0.02 2.97
5 809.92 0.02 827.04 14400 2.07 826.78 854.89 834.26 0.90 -0.03 0.07 3.12

Ave 697.51 0.02 771.52 13866.17 9.66 771.47 797.79 780.05 1.12 -0.01 0.09 3.24

Experiment 5 (N = 25, |Lr| = 3, r = 1, . . . , 13)
1 653.96 0.07 952.04 14400 31.31 952.04 952.04 952.04 0.00 0.00 0.00 4.41
2 715.18 0.06 846.43 14400 15.51 842.57 849.37 845.80 0.38 -0.46 -0.01 4.42
3 624.06 0.06 869.14 14400 28.20 869.14 906.20 885.17 1.81 0.00 0.16 4.09
4 738.29 0.06 776.28 14400 4.89 767.41 824.80 809.12 5.15 -1.16 0.33 4.96
5 659.84 0.06 860.45 14400 23.31 860.45 870.99 863.61 0.37 0.00 0.03 4.66

Ave 678.27 0.06 860.87 14400 20.64 858.32 880.68 871.15 1.54 -0.32 0.10 4.51

Experiment 6 (N = 25, |Lr| = 5, r = 1, . . . , 13)
1 618.33 0.16 763.93 14400 19.06 713.34 773.40 733.86 2.80 -7.09 -0.30 5.06
2 641.96 0.15 1071.37 14400 40.08 1071.37 1071.37 1071.37 0.00 0.00 0.00 5.72
3 706.86 0.16 886.09 14400 20.23 886.09 920.08 893.48 0.83 0.00 0.07 6.19
4 688.31 0.16 715.19 14400 3.76 705.01 725.63 708.63 0.51 -1.44 -0.07 4.77
5 667.79 0.15 721.13 14400 7.40 693.15 722.71 703.08 1.41 -4.04 -0.18 5.10

Ave 664.65 0.16 831.54 14400 18.10 813.79 842.64 822.08 1.11 -2.51 -0.09 5.37

Table 4.4. Results of the ALNS and CPLEX for Experi-
ments 7, 8, and 9

Inst.
CPLEX results ALNS results (20 runs for each instance)

LB CPU Z CPU GLB
Z Min Max Ave Gmin

Ave GZ
Min GZ

Ave CPU

Experiment 7 (N = 45, |Lr| = 1, r = 1, . . . , 23)
1 1240.20 0.03 1326.44 14400 6.50 1321.95 1367.07 1339.21 1.29 -0.34 0.95 12.64
2 1341.59 0.03 NA 14400 NA 1406.13 1503.34 1456.24 3.44 NA NA 11.44
3 1451.60 0.03 1775.20 14400 18.23 1778.04 1832.83 1791.75 0.77 0.16 0.92 11.98
4 1187.91 0.03 1418.68 14400 16.27 1401.92 1447.53 1425.19 1.63 -1.20 0.46 13.22
5 1368.85 0.03 1461.50 14400 6.34 1422.84 1542.50 1469.79 3.19 -2.72 0.56 13.00

Ave 1318.03 0.03 1495.46 14400 11.83 1466.18 1538.65 1496.44 2.06 -1.02 0.72 12.46

Experiment 8 (N = 45, |Lr| = 3, r = 1, . . . , 23)
1 1313.27 0.31 1441.71 14400 8.91 1392.42 1477.36 1436.01 3.04 -3.54 -0.40 19.07
2 1250.54 0.31 NA 14400 NA 1516.23 1610.82 1556.11 2.56 NA NA 20.30
3 1260.58 0.30 1597.99 14400 21.11 1464.64 1583.35 1511.18 3.08 -9.10 -5.74 20.44
4 1132.84 0.30 1392.69 14400 18.66 1284.52 1401.77 1335.53 3.82 -8.42 -4.28 14.30
5 1178.74 0.30 1515.75 14400 22.23 1439.96 1513.48 1465.41 1.74 -5.26 -3.44 17.64

Ave 1227.19 0.30 1487.04 14400 17.73 1419.55 1517.36 1460.85 2.85 -6.58 -3.46 18.35

Experiment 9 (N = 45, |Lr| = 5, r = 1, . . . , 23)
1 1188.81 1.26 1468.33 14400 19.04 1350.82 1424.86 1395.43 3.20 -8.70 -5.22 27.31
2 1203.28 1.28 1486.10 14400 19.03 1414.11 1515.43 1444.65 2.11 -5.09 -2.87 28.56
3 1162.50 1.27 1519.36 14400 23.49 1406.12 1524.84 1443.78 2.61 -8.05 -5.23 27.08
4 1120.03 1.27 1433.51 14400 21.87 1262.19 1333.39 1285.71 1.83 -13.57 -11.50 22.30
5 1370.13 1.28 1788.55 14400 23.39 1612.51 1686.91 1640.71 1.72 -10.92 -9.01 28.37

Ave 1208.95 1.27 1539.17 14400 21.36 1409.15 1497.09 1442.06 2.29 -9.27 -6.77 26.72

Comparing the ALNS with the LNS and other heuristics

In this section, we investigate the effect of each removal or insertion operator on the quality of the ALNS

solution. We also perform several numerical experiments to identify the advantages of the adaptive strategy

78 Chapter 4. Scheduling Two Non-Passing Yard Cranes

Table 4.5. Solution gaps between the ALNS and exact so-
lution values for the mAGTSP and AGTSP

mAGTSP AGTSP
Inst. ALNS CPU Z GZ

ALNS ALNS CPU Z GZ
ALNS

Expr. 5 Inst. 1 656.44 1.63 653.96 0.38 1322.09 1.52 1307.68 1.09
Expr. 6 Inst. 1 622.24 1.31 618.33 0.63 1258.88 1.19 1239.41 1.55
Expr. 8 Inst. 1 1331.97 4.23 1313.27 1.40 2353.34 4.00 2286.96 2.82
Expr. 9 Inst. 1 1195.97 4.38 1188.81 0.60 2188.19 3.28 2122.98 2.98

Note. Gaps are averaged over 20 ALNS runs. columns Z show the exact results.

of the ALNS compared with different LNS heuristics in which only a single removal operator and a single

insertion operator are applied. Finally, we compare the results of the ALNS with those of some other

heuristics, and with the optimal solution values of two relaxed problems.

Table 4.6 shows the effect on the performance of the ALNS when one of the removal or insertion operators

is removed. Since we cannot insert new open locations for storage requests without removing them first, these

two operators have to be removed together. Our results show that all operators have a positive impact on

improving the objective value, especially for larger instances. In particular, location removal and insertion

operators have a major effect on the quality of the solution. Without these operators, the locations chosen

for stacking storage containers in the initial solution do not change during the algorithm. As a result, we lose

the opportunity to improve the solution by choosing the other locations for storage containers. Since most

of the operators are simple, the computation time does not change significantly by removing them.

Table 4.6. Effect of removing removal and insertion opera-
tors on the performance of the ALNS

Removal operators Insertion operators
Group removal Location removal

Inst. Shaw Random Worst Precedence Single cycle Retrievals Storages Random Greedy Interaction and insertion
Expr. 2 Inst. 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.90 0.00 0.00 3.58
Expr. 5 Inst. 1 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.19 0.00 0.00 2.76
Expr. 8 Inst. 1 4.46 4.98 4.51 5.12 4.54 5.26 5.29 7.64 5.43 5.15 8.06

Ave 1.49 1.66 1.50 1.71 1.51 1.76 1.76 3.91 1.81 1.72 4.80

Note. The numbers show the gaps which are the percentage of difference between the average objective value over 20 runs and
the best objective value found by the ALNS.

Table 4.7 shows the effect of different insertion and removal operators in an LNS setting. This experiment

was carried out on the first instance of Experiment 5 with N = 25 and |Lr| = 3, r = 1, . . . , 13. We report the

results of the LNS for 20 runs in each setting. The gap shows the difference between the average objective

value of the 20 runs and the best objective value found during the full experiment. For example, in the first

combination we use the Shaw removal and random insertion. The result shows that the average objective

value is 14.65% more than the best known value. Table 4.7 shows that the ALNS can find better results than

the LNS. We also test whether the poor performance of the LNS is due to the absence of the location removal

and insertion operators in this algorithm. In Table 4.6, the location operators are shown to have a positive

effect. The results of Table 4.7 show that although the performance of the LNS improves by including these

4.4. Conclusion 79

operators, it is not still as good as that of the ALNS.

Table 4.7. Comparing the ALNS with the LNS

Comb.
Removal operators Insertion operators

G
LNS +

group removal loc rem/ins
Shaw Random Worst Precedence Single cycle Retrievals Storages Location Random Greedy Interaction Location G

LNS

1 � � 14.65 9.97
2 � � 21.18 16.96
3 � � 18.86 14.49
4 � � 3.43 0.01
5 � � 8.09 2.95
6 � � 2.92 0.49
7 � � 6.13 4.63
8 � � 15.11 10.24
9 � � 11.32 9.19
10 � � 11.55 11.21
11 � � 23.29 22.58
12 � � 19.42 16.11
13 � � 4.21 1.56
14 � � 13.28 10.96
15 � � 8.72 5.95
16 � � 11.02 7.82
17 � � 18.85 16.48
18 � � 20.70 18.67
19 � � 7.99 6.24
20 � � 19.19 14.42
21 � � 14.63 13.38
22 � � 22.07

Ave 13.48 10.74
ALNS 23 � � � � � � � � � � � � 0.00

Note. The numbers in the last two columns show the gaps. The first gap is the percentage of difference between the average
LNS objective value over 20 runs and the best objective value found. For obtaining the second gap shown in column LNS + loc
rem/ins, we add the location removal and insertion operators to the pure LNS heuristic and obtain the average objective value
over 20 runs. The gap is the percentage of difference between this average objective value and the best objective value found.

Finally, we compare the ALNS with some simple constructive heuristics such as nearest neighbor (NN),

nearest neighbor in combination with double cycles (NNDC), farthest neighborhood (FN), and random

heuristics. In the NN heuristic, each ASC travels to the nearest request until all requests are carried out. Due

to the precedence constraints, sequencing the requests of each ASC regardless of the other one may result in

a poor solution. For example, a seaside request which should precede some landside requests may be carried

out last by the seaside ASC, which may delay the execution of some landside requests. As a result, we use

a modified NN in which we choose a seaside or landside ASC with 50% probability and travel to the nearest

requests of the previously carried out requests of that ASC. Obviously, we have to satisfy the interaction and

precedence constraints. The NNDC heuristic is similar to NN, with the difference that the ASC not only

travels to the nearest request but also tries to generate double cycles. The FN is the same as the NN with

the difference that we always move to the farthest request. Each of these heuristics can be used in the first

phase of the ALNS to generate an initial solution. In our implementation, we use the random heuristic to

generate the initial solution. Table 4.8 shows that the ALNS outperforms all these heuristics in terms of the

objective value. The average gap is more than 24% over all instances.

4.4 Conclusion

We have modeled and solved a difficult operational problem arising in a container terminal, consisting of

scheduling two ASCs to execute a set of storage and retrieval requests in a block of containers. Several

practical and theoretical constraints were considered: (1) the ASCs cannot pass each other and, for security

80 Chapter 4. Scheduling Two Non-Passing Yard Cranes

Table 4.8. Solution gaps between the ALNS and heuristic
solution values for several constructive heuristics

Inst. ALNS NN GALNS
NN NNDC GALNS

NNDC FN GALNS
FN rand GALNS

rand
Expr. 2 Inst. 1 356.32 473.25 24.71 478.21 25.49 532.68 33.11 490.70 27.39
Expr. 5 Inst. 1 952.04 1293.09 26.37 1339.93 28.95 1376.21 30.82 1348.89 29.42
Expr. 8 Inst. 1 1436.01 2337.18 38.56 2254.73 36.31 2459.81 41.62 2388.56 39.88

Note. CPU times are omitted here since they are all small. Gaps are averaged over 20 runs.

reasons, the ASCs must be separated by a safety distance; (2) each storage container must be stacked in a

location selected from a set of available open locations; and (3) because of waiting times and of the presence

of several container transport modes, containers have different storage and retrieval priorities. We have

formulated the problem as a multiple AGTSP with precedence constraints and ASC interaction constraints.

Due to the complexity of the problem, it can be only solved exactly for small size instances. We have therefore

developed an ALNS heuristic capable of solving instances of realistic sizes. Our experiments demonstrate the

impact of the new constraints and the efficiency of our heuristic. For small instances which can be optimally

solved by CPLEX, the gaps between the ALNS and optimal solution values are on average less than 0.34%.

For large instances, compared to CPLEX truncated after four hours, the ALNS can quickly obtain up to

6.77% better results, on average. It also yields results that are 24% better compared with alternative less

sophisticated heuristics. Furthermore, for two relaxed problems, the ALNS obtain results that are on average

within 3% of the optimal solution values. The Model can be extended to include collaboration of the ASCs

and online update of the list of requests.

Chapter 5

Minimizing the Expected Number of

Reshuffles ∗

As a result of the exponential container handling growth in the last decades, containers should be stacked

multi-high at container terminals, using handling equipment like straddle carriers, rubber-tired gantry (RTG)

cranes, or rail-mounted gantry (RMG) cranes. Stacking containers multi-high often leads to reshuffling. A

reshuffle is the removal of a container stacked on top of a desired container. Containers are commonly stacked

in sequence of their arrivals which can conflict with the retrieval sequence required by the ships’ stowage plans.

This results in a number of reshuffles. Containers of a ship are usually classified into different classes based

on their weights and ports of destination. In order to ensure the ship’s stability, heavier containers should be

stacked in lower tiers of a ship. In addition, containers of ports of destination that will be visited by the ship

later should be loaded onto the ship earlier. It is therefore beneficial if containers are stacked in a reverse

sequence in every pile of the block. Moreover, if containers of multiple ships and ports of destination are

mixed in a pile, a container leaving earlier should be stacked at a higher tier in order to avoid reshuffling.

It is rather difficult, or even impossible, to control the arrival sequence of containers at the terminal, as

many containers arrive one by one by individual trucks or by internal transport trucks from rail or barge

terminals. Therefore, they should be stacked onto piles as they arrive, which makes later reshuffling inevitable.

Since reshuffling is time consuming and increases berthing times of ships, reducing the number of reshuffles,

while retrieving containers, is a top concern for stacking containers (Kim, 1997, Zhao and Goodchild, 2010).

We study how to stack incoming containers in a container block with the objective of minimizing the

expected number of reshuffles. We develop a heuristic algorithm to quickly find near-optimal solutions for

large-scale problems with a realistic block size (expressed in number of piles). Our heuristic algorithm uses the

results of a stochastic dynamic programming (DP) model built on work of Kim et al. (2000). We show that

∗This chapter is based on Gharehgozli et al. (2012c).

81

82 Chapter 5. Minimizing the Expected Number of Reshuffles

the total number of states of the DP model increases exponentially in the dimensions of the block and types

of containers. It follows that optimal solution of only small-scale problems can be obtained in a reasonable

time. Therefore, we develop the heuristic algorithm in a way that the solution of large-scale problems can be

quickly obtained. The algorithm maps all the states of the DP model for small-scale problems onto decision

trees which help to recognize the correlation between the decisions made by the DP model for different states

of the block. We are then able to simplify and generalize the trees into generalized decision trees using these

similarities. The simplification and generalization significantly reduce the complexity of the trees compared

to the original ones. As a result, the generalized trees can quickly locate incoming containers in a block with

a real number of piles. We can always improve the decisions made by the generalized trees as long as DP

results of larger-scale problems are available. The numerical experiments show that the decisions can be made

in less than a second. The decisions are optimal for small-scale and near-optimal for large scale problems.

The results obtained by the proposed heuristic are significantly better than the results obtained by stacking

policies commonly used in practice. Using these trees, we also study the effect of a shared-stacking (SS)

policy on reducing the expected number of reshuffles. An SS policy allows containers of multiple ships to be

stacked on top of each other in a pile. This differs from a dedicated-stacking (DS) policy, where containers

of a single ship cannot be mixed in a pile. Finally, the decision trees can be used to determine the storage

locations in the models developed in the previous three chapters.

The decision tree (DT) heuristic is novel and differs from the one proposed by Kim et al. (2000) in

several aspects. (1) Our method uses the DP results differently as our method maps all the states of DP

solutions in the decision trees as nodes and branches and then simplifies and generalizes them, while Kim

et al. (2000) use “machine learning logic” which produces the branches of decision trees one by one based

on the amount of information each branch will provide for making decision on where to locate an incoming

container. (2) Our heuristic can optimally solve small-scale problems. Furthermore, it can quickly find the

solution of large-scale problems with a realistic number of piles that cannot be solved by the DP while Kim

et al. (2000) solve problems up to six piles only. The quality of their solution even in case of six piles depends

on the CV P . (3) Our decision trees are open for further improvements; when a larger problem is solved by

the DP, our decision trees can be extended to include the new information provided by the DP and more

accurately solve larger problems. Kim et al. (2000) need to rerun the algorithm to find new decision trees as

their trees are not open to extension.

The rest of this chapter is organized as follows. In Section 5.1, we formulate a stochastic DP model to

locate incoming containers. In Section 5.2, a heuristic solution algorithm is developed. Section 5.3 presents

numerical results. Finally, in Section 5.4, we conclude the chapter and present possible future research topics.

5.1. Problem description and model 83

5.1 Problem description and model

This section describes the research problem, introduces notations, and then formulates the problem as a

stochastic DP model.

5.1.1 Problem description and notations

We study how to stack containers in a single container block by minimizing the expected number of reshuffles.

We use the following notations and assumptions.

� Containers are of the same size (i.e. 20 feet) and are to be loaded onto S ships. Let Qs be the total

number of containers belonging to ship s = 1, 2, . . . , S, and Q =
∑S

s=1 Qs.

� In Section 1, we explained that to maintain the weight stability of a ship, heavier containers of that ship

should be loaded onto lower tiers of the ship. Furthermore, ports of destination of containers should

be taken into consideration when they are loaded onto the ship. Finally, we study a problem where

containers of multiple ships can be stacked on top of each other in each pile of the block. Obviously,

containers should be loaded onto the ships in the sequence of the departure of their corresponding

ships.

In order to satisfy the constraints mentioned above, we define C as the set of all types of incoming

containers. Containers of type c must be retrieved earlier than containers of type c + 1, ∀c ∈ C.

Containers of the same type can be retrieved in any order. The size of the set of all container types

depends on the number of ships, number of weight groups and the number of ports of destination.

Assume that ws and ds are the numbers of weight groups and ports of destination of ship s, s =

1, 2, . . . , S. Then, |C| = ∑S
s=1(ws × ds) is the cardinality of C.

� Containers arrive at the container block individually and randomly and they are stored in the block

based on a first-come-first-served (FCFS) sequence. The probability P(c) of receiving a container

of type c ∈ C is a function of its weight group, port of destination and the size of the corre-

sponding ship. We assume uniform probabilities of receiving a container of type c of ship s, or

P(c) = Qs∑S
j=1(wj×dj)×

∑S
i=1 Qi

. Obviously,
∑

c∈C P(c) = 1. The probabilities do not change by receiving

containers.

� Each pile can be shared by containers of different ships up to T tiers. We distinguish the type of a

pile, Pct, according to the type of its first-leaving container (not necessarily the topmost container),

and the number of open slots available above the upmost container, t, 1 ≤ t ≤ T − 1. Pile types with

t = 0 and T are denoted as PF (full pile) and PE (empty pile), respectively.

� The block has B bays, R rows and T tiers. The total number of piles, V = B × R. Let Vct,

VF and VE denote the numbers of pile types Pct, PF and PE , respectively. Then, we have V =∑
c∈C

∑T−1
t=1 Vct + VF + VE .

84 Chapter 5. Minimizing the Expected Number of Reshuffles

� Selecting the pile where an incoming container should be stacked is our decision variable. In order to

avoid reshuffling, an incoming container should be assigned to a pile type whose first-leaving container

will be retrieved later than the incoming container. This implies containers in each pile should be

stacked according to the categories in C.

5.1.2 Dynamic programming (DP) model

In this section, the basic concepts of the stochastic dynamic programming (DP) are explained. To ease the

understanding of different steps of the DP model in this section and the heuristic algorithm in Section 5.2,

we use an example (denoted as Example 1) throughout this chapter. Example 1 is defined by S = 2, V =

2, T = 4, Q1 = Q2 = 4, w1 = w2 = 3, d1 = d2 = 1, C = {1, 2, . . . , 6}, and P(c) = 1
6 , ∀c ∈ C.

Xn is the input state of the nth stage, n = 1, . . . , N . Let N be the total number of empty slots in the cur-

rent state of the block, where N = V ×T is the maximum number of stages. The state of the DP model can be

represented by a vector whose members show the number of different piles per pile type at stage n. Without

loss of generality, the elements are sequenced in an increasing order of the container types and the number of

empty slots, then VF and VE : (V11, V12, . . . , V1,T−1, V21, V22, . . . , V2,T−1, . . . , V|C|1, V|C|2, . . . , V|C|,T−1, VF , VE).

Table 5.1 illustrates state X3 for a given block state of Example 1 where N = 2 × 4 = 8. For simplicity, in

the rest of the chapter, we represent a state with its nonzero entries only.

Table 5.1. A schematic illustration of a state of a block

X3
Full representation:
(V11, V12, V13, V21, V22, V23, V31, V32, V33,
V41, V42, V43, V51, V52, V53, V61, V62, V63, VF , VE) =
(0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
Simplified representation:
X3 = (V12, V21) = (1, 1)
Note. The types of the topmost and the first leaving contain-
ers in P12 are c = 3 and c = 1, respectively.

Dn is the decision variable at stage n. It tells where (onto which type of pile) to stack an incoming

container, cn, at stage n. This pile can be any non-full pile in the studied block, Dn ∈ {Pct|Vct ≥ 1, c ∈
C, t = 1, . . . , T − 1} ∪ {PE |VE ≥ 1}. For example, in case of Table 5.1, D3 ∈ {P12, P21}.

Sn (Xn, Dn, cn) is the state transfer function. Starting from state Xn, an incoming container cn is

located in pile Dn leading to state Xn−1. In Table 5.1, assume c3 = 1, then S3 (X3, D3, 1) maps X3 to

X2 = (V11, V21) = (1, 1), or X2 = (V12, VF) = (1, 1) by locating container c3 = 1 in piles P12 or P21,

respectively.

gn (Xn, Dn, cn) is the marginal number of reshuffles added at stage n due to stacking incoming container

cn in pile Dn with block state Xn. gn (Xn, Dn, cn) is either 0 or 1. If stacking the incoming container in a

pile of the current state of the block causes reshuffling, gn (Xn, Dn, cn) = 1, otherwise gn (Xn, Dn, cn) = 0.

5.1. Problem description and model 85

In the previous example, g3 (X3, P12, 1) = g3 (X3, P21, 1) = 0, whereas if c3 = 2, then g3 (X3, P12, 2) = 1 and

g3 (X3, P21, 2) = 0.

By repeating this calculation for every incoming container, we obtain the total (final cumulative) number

of reshuffles of the block. For example, in a problem with only a single pile with 3 tiers, if the pile is stacked in

a sequence of c3 = 1 at the bottom, c2 = 3 in the middle, and c1 = 3 on the top, the total number of containers

to be reshuffled is 2. Stacking the first container does not generate any reshuffling, g3(X3, PE , 1) = 0. The

arrival of the second container which is of type 3 generates one reshuffle and g2(X2, P12, 3) = 1. When the

last container which is the second container of type 3 arrives, because the first-leaving container is of type 1,

we have another reshuffle which means that g1(X1, P11, 3) = 1. In total, the number of reshuffles of the pile

becomes 2. Note that this is not the expected number of reshuffles, since the problem is deterministic in this

case.

fn (Xn) is the total expected number of reshuffles up to stage n. The total expected number of reshuffles

to completely fill up an empty block with the capacity of total number of N containers can be formulated as

follows:

fN (XN) =
∑

cN∈C

min
DN

· · ·
∑
c1∈C

min
D1

[
N∏

m=1

P (cm)
N∑

n=1

gn (Xn, Dn, cn)

]
, (1)

where, f∗
0 (X0) = 0. It can be concluded that in order to minimize the total expected number of reshuffles

up to stage n, starting from state Xn and filling up the entire block with incoming containers, the following

recursive function of the DP model can be obtained from Equation (1) (see Zhang et al., 2010).

f∗
n (Xn) =

∑
cn∈C

P (cn)min
Dn

[
gn (Xn, Dn, cn) + f∗

n−1 (Xn−1)
]
, (2)

where, Xn−1 = Sn(Xn, Dn, cn), f
∗
0 (X0) = 0, and the decision variable in stage n is Dn ∈ {Pct|Vct ≥ 1, c ∈

C, t = 1, . . . , T − 1} ∪ {PE |VE ≥ 1}. The DP model can be solved by successively solving f∗
1 (X1), f

∗
2 (X2),

. . . , f∗
N (XN). The optimal location, D∗

n can be obtained for each cn, n = 1, . . . , N . In case of a tie in a

state, the optimal location is randomly selected. f∗
N (XN) is the minimum expected number of reshuffles for

stacking N containers, which implicitly assumes N = Q. For Q ≤ N , we only need to solve a part of the

model until stage Q, f∗
1 (X1) , . . . , f

∗
Q (XQ).

Table 5.2 presents all the required states in stages n = 1 and 2 to show how the DP model calculates the

expected number of reshuffles in state X3 = (P12, P21) = (1, 1) of Example 1. Consider that the incoming

container is c3 = 1. Given X3, by locating c3 = 1 in P21, we obtain g3 (X3, P21, 1) = 0 and X2 = (V12, VF) =

(1, 1) which yields g3 (X3, P21, 1) + f∗
2 (X2) = 0 + 60

36 . However, by locating c3 = 1 in P12, we obtain

g3 (X3, P1,2, 1) = 0 and X2 = (V11, V21) = (1, 1) , which results in g3 (X3, P12, 1) + f∗
2 (X2) = 0 + 49

36 < 60
36 .

Therefore, P12 is selected to locate c3 = 1, because it results in a smaller expected number of reshuffles. The

86 Chapter 5. Minimizing the Expected Number of Reshuffles

optimal solution of the other states can be obtained by the DP model in a similar fashion.

Table 5.2. Optimal objective values of some states of the
DP model

State
Incoming container (cn) f∗

n(Xn)1 2 3 4 5 6

X1 = (P11, PF) = (1, 1)
0+0 1+0 1+0 1+0 1+0 1+0 5

6P11 P11 P11 P11 P11 P11

X1 = (P21, PF) = (1, 1)
0+0 0+0 1+0 1+0 1+0 1+0 4

6P21 P21 P21 P21 P21 P21

X2 = (P12, PF) = (1, 1)
0+5

6 1+5
6 1+5

6 1+5
6 1+5

6 1+5
6 60

36P12 P12 P12 P12 P12 P12

X2 = (P11, P21) = (1, 1)
0+4

6 0+5
6 1+4

6 1+4
6 1+4

6 1+4
6 49

36P11 P21 P11 P11 P11 P11

X3 = (P12, P21) = (1, 1)
0+49

36 0+60
36 1+49

36 1+49
36 1+49

36 1+49
36 449

216P12 P21 P12 P12 P12 P12
Notes. In each cell, the first line shows gn(Xn, D∗

n, cn) + f∗
n−1(Xn−1) and the second line shows D∗

n.

Theorem 5.1 The total number of states in the DP model is

(
J + V − 1

V

)
− 1, where V is the total

number of piles in the block, J = |C| × (T − 1) + 2 is the total number of pile types, C is the set of all types

of incoming containers and T is the number of tiers.

Proof. See the proof in 5.A.

Our DP model is adapted from the one proposed by Kim et al. (2000) for the case of the DS policy.

Intuitively, the SS policy outperforms the DS policy in terms of the expected number of reshuffles since

the SS policy is a strict relaxation of the DS model in which containers of different ships must be stacked

separately in different piles. Unfortunately, solving the DP model is very time consuming because the total

number of states grows exponentially with the size of the problem. Kim et al. (2000) have explained that

even in case of S = 1 ship (the DS policy), the DP model requires too long computation time. They therefore

develop a heuristic. Solving the DP model with multiple ships (S ≥ 2) is even more complex. Based on

Theorem (1),

(
11 + 4− 1

4

)
−1 = 1000 states must be enumerated for stacking containers of 1 ship, divided

into 3 types (i.e., heavy, medium, light) with a single port of destination, in a container block with only 4

piles, each 4 tiers, whereas in case the same block is shared between 2 or 3 ships, the number of states

increases to 8854 and 35959, respectively. Due to this significant increase of the number of states, we have

to resort to a heuristic algorithm, especially in case a real size block with more than 100 piles of which the

number of states grows to more than 25× 1021 states in case of 2 ships and 4-tier piles.

5.2 Decision-tree heuristic

In this section, we deploy the optimal solutions of the DP model obtained for problems with a small number

of piles to generate decision trees in a decision-tree (DT) heuristic which can be applied to solve large-scale

5.2. Decision-tree heuristic 87

problems with an a realistic number of piles. A tree classifies a database (i.e., the DP results) and helps to

make fast and comprehensible decisions (Quinlan, 1986). It consists of nodes where a logical decision must

be made and connecting branches that are chosen according to the result of this decision. The nodes and

branches that are followed constitute a sequential path through a decision tree that reaches a final decision

in the end.

The intuition for using the DT approach is as follows. Every state of a block can be represented by a

path, where the decision where to locate the next incoming container in that state is given by the last node

in that path. Collecting all these paths together constructs a decision tree. By increasing the size of the

problem in terms of the number of piles, the number of paths grows exponentially fast. The reason is that

we need to represent every state of the block with an individual path and according to Theorem (5.1), the

number of states in the DP model increases exponentially. So, it is difficult to find a specific path in the tree

to make a quick decision. We therefore simplify the tree by merging some of its paths. We then generalize

the merged paths so that they can represent the states of a larger scale problem. These trees however, might

lead to rather poor solutions as not all paths are represented, so we improve them with better paths, if the

optimal DP results are available. The three types of trees that result from this approach are called Basic,

Simplified and Generalized trees, and are more formally defined in the following three steps:

1. Step 1. Representing the optimal results of the DP as basic decision trees: In this phase, we represent

all states of the DP model for small-scale problems as basic decision trees. In these trees, each state and

its corresponding decision is illustrated by a path where nodes represent the pile types and weighted

links represent the number of piles per pile type in the current state. Decisions can be found in the

last node of each path. The basic decision trees are quite helpful for solving small-scale problems.

However, the number of paths of the trees grows exponentially and solving the problem becomes time

consuming as the size of the problem increases.

2. Step 2. Simplifying and generalizing the basic decision trees: This phase simplifies the basic decision

trees, generated in the previous step so that the solution can be obtained more quickly. Furthermore,

we generalize them to blocks with a larger number of piles. The simplification can be carried out by

clustering multiple paths of the decision trees with the same decision as a single path. Simplifying

the decision trees significantly decreases the number of paths. These trees can be used for quickly

solving small-scale problems which are already solved by the DP model. We need to generalize them

so that they can solve real-scale problems. Generalizing is realized by using the decisions of simplified

decision trees for problems with larger number of piles. The generalized decision trees can quickly

make decisions for large-scale problems since they have few paths, whereas the DP model needs to

evaluate an enormous number of states.

3. Step 3. Improving the generalized decision trees: If the DP results for larger size problems are available,

the generalized decision trees generated in step 2 can be improved to more precisely solve larger

88 Chapter 5. Minimizing the Expected Number of Reshuffles

size problems. This is realized by comparing the decisions made by the current generalized decision

trees and the DP model of a larger problem for a specific state of the block and removing possible

inconsistencies in the decisions. Removing an inconsistency from a generalized decision tree adds new

nodes and branches.

Steps 1, 2, and 3 of the algorithm are explained in detail in Sections 5.2.1, 5.2.2, and 5.2.3, respectively.

5.2.1 Step 1. Representing the optimal results of the DP by basic

decision trees

As long as the number of piles V is small, for every incoming container c, the DP can make an optimal

decision D∗
n according to the state of the block Xn. For a fixed number of piles V , we construct a basic

decision tree for every type of incoming container c ∈ C, denoted by BcV . Each state Xn is represented as a

path in this tree basically counting the number of piles of each type in Xn. A path consists of the root node,

inner nodes, weighted links, and defines the optimal decision D∗
n in a so-called leaf node. The elements of a

tree are defined as follows:

1. Paths. A path is a sequence of nodes and links from the root node to a decision node. In basic decision

trees, all nodes in a path together with the weighted links uniquely represent a single block state, Xn.

Note that each path represents the full representation of a state with all the zero entries (see Table

5.1).

2. Nodes. Every node in each path that has at least one child node represents a pile type of the corre-

sponding state (Pnt, n ∈ C, 1 ≤ t ≤ T − 1, PF or PE). Node B is a child node of node A if it is

located immediately below node A and linked to node A. We call the topmost node of a tree the root

node. It is the reference point to follow and find a path that represents a DP state.

3. Weighted links. A link corresponds to a condition to branch a node into child nodes. The weight of

the link from pile type Pnt (a parent node) to Pml (a child node) represents the number of piles of the

type of the parent node, Vnt, in the current state that the path represents. If no pile of type Pnt exist

in the path, in other words if Vnt = 0, then the weight of the link is 0. In basic decision trees, the

summation of the weights of all weighted links in a path always equals V .

4. Leaf or decision nodes. A node for which the sum of the weights in the path leading to it from the

root node equals V and which does not have any child node is called a leaf or decision node. In every

leaf node, a decision, Dn, is made to locate an incoming container c in one of the piles of state Xn.

Figure 5.1 shows a part of B12. In this figure, the path P13
0→ P12

1→ P11
0→ P23

0→ P22
0→ P21

1→ P12

highlighted by the gray dotted arcs represents state X3 = (V12, V21) = (1, 1) with the decision D∗
3 = P 12 to

stack c3 = 1. This is one of the states of Example 1 discussed in Table 5.1 of Section 5.1.2. Furthermore,

5.2. Decision-tree heuristic 89

Table 5.2 in Section 5.1.2 shows why D∗
3 = P 12 is the optimal location. Using the elements of a tree, basic

decision trees can be built in 4 sub-steps as follows:

Figure 5.1. A part of B12

Note. The gray dotted arcs represent the path P13
0→ P12

1→ P11
0→ P23

0→ P22
0→ P21

1→ P12, which corresponds to
X3 = (V12, V21) = (1, 1) with D∗

3 = P12. The paths in the contour specify the states in which V13 > 1. In all these sates, the
optimal decision is P13.

Step 1.1. Solve the DP model and obtain the optimal results for a problem with V piles.

Step 1.2. Choose the type of incoming container for which a basic decision trees will be built: a basic decision

tree BcV will be built for every type of incoming container c ∈ C.

Step 1.3. Map all the states of the DP model on BcV : in a basic decision tree, every state of the DP model

and the corresponding decision made is represented by an individual path from the root node to a leaf node.

In other words, the total number of paths of each basic decision tree equals the total number of states of the

DP model. In each path, the pile types, number of piles per type, and decision made for a state of a block

appear on the nodes, weighted links and leaf node, respectively.

Step 1.4. Order the weighted links and nodes on BcV : without a good representation of Xn, the decision trees

may become large. In order to speed up searching the trees to find a specific state, weighted links connected

to each node, are sorted from left to right in decreasing order of their weights. Furthermore, we sort the pile

types, which appear in the nodes of different levels of BcV , in decreasing order of the total number of times

that each pile type is chosen in every possible state of the block to locate the incoming container.

90 Chapter 5. Minimizing the Expected Number of Reshuffles

5.2.2 Step 2. Building generalized decision trees

The basic decision trees, BcV , ∀c ∈ C, contain optimal decisions for problems solved by the DP model for

V or smaller number of piles. In order to solve larger problems, we aim to generalize such trees to obtain

generalized decision trees, GcV , ∀c ∈ C. The generalized trees still give optimal decisions for the problems

solved by the DP model. In order to obtain the generalized trees, we first simplify BcV , ∀c ∈ C. A closer look

at a basic decision tree, for a given c ∈ C, reveals that the optimal decision to locate an incoming container

is the same in many paths. These paths yielding the same decision can be replaced by a single path. We

then generalize the decision made in each path to problems with real number of pules.

Followings, it is explained how to simplify and generalize Bc2 in order to obtain Gc2, ∀c ∈ C. Generalizing

basic decision trees of larger instances with V > 2 is more complicated, and also unnecessary since those

generalized decision trees can more easily be obtained by comparing Gc2 with basic decision trees of such

large instances and then improving Gc2, ∀c ∈ C. Improving generalized decision trees is explained in step 3

in Section 3.3.

Step 2.1. Simplifying basic decision trees

The basic decision trees have many nodes and branches. As a result, searching through them is slow implying

they can only be used to solve small-scale problems. We simplify the basic decision trees by clustering all

paths with a common decision as a single path. Clustering the paths of these basic decision trees results

in significantly decreasing the density of the trees. Therefore, they can quickly solve small-scale problems.

Furthermore, in the next step, the clusters and their corresponding decisions made are used to generalize the

trees so they can solve large-scale problems. The simplification is carried out as follows.

We start from the root node of Bc2. Let the pile type of the root node be Pqt. If for every path in which

Vqt > 0, the optimal decision is D∗
n = Pqt, we can simplify Bc2 by replacing all those paths connecting the

root node to a leaf D∗
n = Pqt by a single path. The path connects the root node to the leaf node with a link

whose weight is an integer contained in the interval 1 to 2 (Pqt
0<Vqt≤2−→ Pqt), indicating that if there is at least

one pile of type Pqt, then the decision is always to locate the incoming container c in that pile. One path

can therefore represent multiple states, but one state is only represented by one path. Now, suppose in one

of the paths with Vqt > 0, D∗
n = Pq′t′ �= Pqt. In this case, in order to represent all optimal decisions made in

different paths in Bc2 with the minimum number of paths in simplified Bc2, we then replace all paths with

2 paths: Pqt
0<Vqt≤2−→ Pq′t′

1≤Vq′t′−→ Pq′t′ and Pqt
0<Vqt≤2−→ Pq′t′

Vq′t′=0−→ Pqt. The second path indicates that if only a

single pile Pqt exists in the block and the second pile is not Pq′t′ , then the incoming container will be located

in Pqt regardless of the type of the second pile.

Having simplified all paths of Bc2 with Vqt > 0, we next select the child node of the root node connected

with the weighted link Vqt = 0. We look for all the paths from the child node for which at least 1 pile of that

type exists in the block. These paths are simplified in the same way as we did for the root node. Note that

only that part of the path connected to this child node will be simplified. This is repeated by moving to a

node connected to the child node with a link whose weight is zero until all paths in the basic decision tree

5.2. Decision-tree heuristic 91

are simplified.

The following property quantifies the complexity (in terms of the number of paths) of the simplified

decision trees compared to the basic decision trees. The simplified decision trees are generated based on

Bc2, ∀c ∈ C. The number of paths of Bc2 for a given c ∈ C can be calculated based on Theorem (5.1). On

the other hand, each simplified decision tree has in total J − 1, with J = |C| × (T − 1) + 2, paths if starting

from the root node all decisions are consistent and we do not need to create extra paths to remove some

conflicts as mentioned above. However, in some instances, a few more paths may be needed to cover all

decisions made by the basis decision trees. The new paths do not significantly increase the complexity of the

simplified decision trees. So, we have the following property:

Proposition 5.1 The percentage of reduction of paths in the simplified Bc2 compared with Bc2, for a given

c ∈ C, is less than or equal to

(
1− J−1⎛

⎜⎝
J + 2− 1

2

⎞
⎟⎠−1

)
% = J

J+2%.

In Example 1, 209 paths of B12 are replaced with the 19 paths of the simplified B12 which means that more

than 90% of the paths are omitted. Figure 5.2a shows a part of the simplified B12. The single path contained

in the contour represents all the paths contained in the contour in B12 shown in Figure 5.1. P13
0<Vqt≤2−→ P13

means that if at least 1 pile of type P13 exists, cn = 1 will be located in P13 regardless of the type of the

second pile. In B12 shown in Figure 5.1, it can be observed that the decision is independent of the type of

the second pile as long as V13 ≥ 1.

Figure 5.2. A part of (a) simplified tree B12, and (b) gen-
eralized tree G12

92 Chapter 5. Minimizing the Expected Number of Reshuffles

Step 2.2. Generalizing simplified basic decision trees

Simplified decision trees cannot be used to solve small-scale problems. The reason is that all weighted links

are limited to at most two piles and the summation of the weights of all weighted links in a path always

equals two piles. We aim to generalize decisions made by the simplified decision trees so that we can solve

a block with a large number of piles. As a result, one obvious solution to generalize the simplified decision

trees is to remove the upper bounds. The generalized decision trees generated in this way can be used to

solve larger problems with more than two piles. These trees still give optimal decisions for the problems with

two piles.

Figure 5.2b depicts G12 of Example 1. This trees is generated by removing the upper bounds from the

weighted links of B12. In this tree, to make decision for any state of the block with any number of piles, we

start from the root node. If V13 > 0 in the block, an incoming container of type 1 will be located in P13

regardless of the number of piles in the block (V > 2). Otherwise, we check P12, if V12 > 0, the incoming

container will be located there; otherwise, we will continue further down the tree until we find a pile type of

which at least one pile exists in the block.

The following property quantifies the complexity (in terms of the number of paths) of Gc2, compared

to BcV , for a given c ∈ C and a realistic number of piles. The number of paths of BcV , ∀c ∈ C, can be

calculated based on Theorem (5.1), since each of them includes all paths from the DP model. The number

of paths in Gc2, for a give c ∈ C, is in total J − 1, if the corresponding simplified Bc2 does not have extra

branches to cover all decisions of Bc2. Extra branches however do not significantly increase the complexity.

We can formulate this as follows.

Proposition 5.2 The percentage of reduction of paths in Gc2, generated based on the simplified Bc2, com-

pared with BcV , for a given c ∈ C, is less than or equal to

(
1− J−1⎛

⎜⎝
J + V − 1

V

⎞
⎟⎠−1

)
%.

In Example 1, G12 shown in Figure 5.2b has 19 paths, whereas B13 and B14 have 1539 and 8854 paths,

respectively. As a result, G12 can make decision for problems with three and four piles where the number of

paths in G12 is 98% and 99% less than B13 and B14, respectively. Similarly, the complexity of larger basic

decision trees can be compared with G12.

5.2.3 Step 3. Improving the generalized decision trees

A generalized decision tree, Gci, ∀c ∈ C, can be improved using a basic decision tree, BcV , ∀c ∈ C, with

V > 2. In general, Gci, i > 2, is generated by comparing Gc,i−1 and Bci, and removing all inconsistencies.

An inconsistency occurs when the decisions made by a generalized decision tree and the optimal decision

made by a basic tree differ for the same state. There is no theoretic limit on the number of piles used to

improve the generalized decision trees. The improvement can consider all the piles in the block. However, the

5.2. Decision-tree heuristic 93

number of piles included is limited by the computation time needed. Based on the numerical results reported

below, improving the generalized trees based on the basic trees of problems with only a small number of piles

suffices to obtain good solutions for much larger problems.

Step 3.1. Finding inconsistencies

An inconsistency can be found by comparing the decisions made by Gc,i−1 and Bci for the same state

of the block. Therefore, for every state of the block with V = i, we must find the paths in Gc,i−1 and Bci,

representing that state. If the decisions in the leaf nodes of the two paths are not the same, an inconsistency

is detected.

Figure 5.3 shows an example of an inconsistency. Figure 5.3a and Figure 5.3b depict parts of G12, and

B13, respectively. These trees are used to locate c = 1 in a block with 3 piles. In both trees the gray dotted

arcs depict state X5 = (V21, V22) = (1, 2). The decision nodes reveal that P21 is selected by G12 to locate

c5 = 1, whereas B13 shows that the optimal decision is P22. In other words, decisions are not consistent.

Figure 5.3. A part of (a) generalized tree G12, (b) basic tree
B13, and (c) improved generalized tree G13

Note. The gray dotted arcs show state X5 = (V21, V22) = (1, 2). The decisions made by the basic and generalized trees are
shown in the squares when c5 = 1.

Step 3.2. Removing inconsistencies

In order to remove an inconsistency from a path in Gc,i−1 representing state Xn, that path will be split

into multiple paths in Gci. This is carried out by adding a node for each pile type of which at least one

pile exists in Xn in Bci to the path representing Xn in Gc,i−1, in case that node does not exist in that path

94 Chapter 5. Minimizing the Expected Number of Reshuffles

in Gc,i−1. Each of these nodes presenting a pile type of Xn will have two links in Gci of which the weight

of one is larger than or equal to the number of piles of that type in Xn in Bci, and the other one has a

weight smaller than this number. Using only two weighted links allows us to remove the inconsistency with

a minimum increase in density of the generalized trees. Finally, to comply with the optimal decision made

by Bci, the decision in the leaf node of the path representing Xn will be the decision made by Bci and the

decision of others will be the decision made by Gc,i−1.

In order to remove the inconsistency from G12 shown in Figure 5.3a, we need to add a node for all the

pile types in X5 = (V21, V22) = (1, 2) to P13
0→ . . .

0→ P21
>0−→ P21, which represents X5 in G12. Therefore,

P22 must be added to the path since P21 already exists in the path. In G13, the node representing P21 has

two links with the weights ≥ 1 and 0 (< 1) because V21 = 1 in X5. Furthermore, the node representing

P22 has two links with the weights ≥ 2 and < 2, as V22 = 2 in X5. Finally, the decision in the path

P13
0→ . . .

0→ P21
≥1−→ P21

≥2−→ P22 changes to P22, since B13 has the optimal decision for X5. A part of G13

is shown in Figure 5.3c. In order to speed up the search to find a solution, we try to obtain simpler trees by

generating a smaller number of branches. Therefore, we only add and branch a node for the first and last

pile types in a state. Note that different pile types in all states are sequenced. For example, if other pile

types also exist between P21 and P22, only these two are again added and branched.

5.3 Numerical experiments

Multiple numerical experiments have been performed to evaluate the performance of the DT heuristic. In

Section 5.3.1, we compare the results of the DT heuristic with the results of the DP model. Then, through a

simulations study, we compare the SS and DS policies. In Section 5.3.2, through a case study, we show that

the DT heuristic outperforms heuristics commonly used at large container terminals in terms of the expected

number of reshuffles for real-scale problems.

The study is performed on a Notebook with 2.40 GHz Intel� CoreTM i5 processor, with 4.00 GB of

RAM and the programming language is MATLAB� 2010a.

5.3.1 Algorithm performance evaluation

In this section, we evaluate the performance of generalized decision trees by comparing them with optimal

results. We focus on a small-scale problem with seven piles and four tiers where containers of three types

should be stacked upon each other.

Table 5.3 presents the results of comparing GcV , V = 2, . . . , 7, with Bc7, c ∈ {1, 2, 3} which contains all

the states and optimal decisions for a seven pile problem. As explained in Section 5.2, Gc7 also contains all

the optimal decisions in Bc7, c ∈ {1, 2, 3} for every state. Table 5.3 shows that Gc7, c ∈ {1, 2, 3} leads to the

same decisions as Bc7, c ∈ {1, 2, 3} for stacking incoming containers in different states of the block. Using

5.3. Numerical experiments 95

GcV , c ∈ {1, 2, 3}, where V < 7 results in decisions that are not always in line with decisions made by Bc7,

c ∈ {1, 2, 3}. However, one can observe that the percentage of wrong decisions is low (less then 5.72%, on

average) even if Gc2, c ∈ {1, 2, 3} are used for stacking containers in a seven pile problem. The other point is

that the complexity of generalized decision trees is significantly lower compared with the basic decision trees.

For example, the largest generalized decision trees, Gc7, c ∈ {1, 2, 3}, on average have less than 547.7 paths,

whereas each Bc7, for every c ∈ {1, 2, 3} has 19477 paths. The average number of paths decreases to 10 for

Gc2, c ∈ {1, 2, 3}.
We also compare our generalized trees with decision trees generated by the heuristic proposed by Kim

et al. (2000). Table 5.4 show when we have the complete DP results of a problem with V = 6 piles, our

heuristic algorithm generates generalized trees which can make optimal decisions in every state of the block

whereas the decisions made by the trees generated by the heuristic proposed by Kim et al. (2000) depend on

CV P which is a value that specifies the amount of pruning of the trees.

Table 5.3. A comparison of different generalized trees and
Bc7, c ∈ {1, 2, 3}

c ∈ C = {1, 2, 3}
Average

1 2 3

Number of paths in Bc7 19477 19477 19477 19477

Number of paths in Gc7 336 711 596 547.7

Number of wrong decisions by Gc7 0 0 0 0

Percentage of wrong decisions 0 0 0 0

Number of paths in Bc6 8007 8007 8007 8007

Number of paths in Gc6 150 335 245 243.3

Number of wrong decisions by Gc6 123 327 297 249

Percentage of wrong decisions 0.63 1.68 1.52 1.28

Number of paths in Bc5 3002 3002 3002 3002

Number of paths in Gc5 78 148 88 104.7

Number of wrong decisions by Gc5 245 824 610 559.7

Percentage of wrong decisions 1.26 4.23 3.13 2.87

Number of paths in Bc4 1000 1000 1000 1000

Number of paths in Gc4 37 63 46 48.7

Number of wrong decisions by Gc4 411 1335 798 848

Percentage of wrong decisions 2.11 6.85 4.10 4.35

Number of paths in Bc3 285 285 285 285

Number of paths in Gc3 22 23 18 21

Number of wrong decisions by Gc3 467 1784 1154 1135

Percentage of wrong decisions 2.40 9.16 5.92 5.83

Number of paths in Bc2 65 65 65 65

Number of paths in Gc2 10 10 10 10

Number of wrong decisions by Gc2 512 1573 1258 1114.3

Percentage of wrong decisions 2.63 8.08 6.46 5.72

Table 5.5 compares the decisions made by GcV , V = 2, . . . , 7, c ∈ {1, 2, 3} and the optimal decisions made

by the DP model. The first column shows the decisions made by the DP model and the first row shows the

96 Chapter 5. Minimizing the Expected Number of Reshuffles

Table 5.4. A comparison of Gc
6, B

c
6, c ∈ {1, 2, 3} and decision

trees proposed by Kim et al. (2000)

C Average1 2 3
Number of paths in Bc

6 8007 8007 8007 8007
Number of paths in Gc

6 150 335 245 243.3
Number of wrong decisions by Bc

6 0 0 0 0
Percentage of wrong decisions 0 0 0 0
Decision trees proposed by Kim et al. (2000)
Number of paths (CV P = 0.05) 152 235 162 183
Number of wrong decisions 9 143 98 83.3
Percentage of wrong decisions 0.11 1.79 1.22 1.04
Number of branches (CV P = 0.4) 35 10 10 18.3
Number of wrong decisions 288 645 397 443.3
Percentage of wrong decisions 3.60 8.06 4.96 5.5

decisions made by Gc7, c ∈ {1, 2, 3}. In the first line of each entry, the three numbers in parentheses indicate

the number of times that the decisions made respectively by G17, G27, and G37 is the pile type shown in the

first row of the table, whereas the decision made by the DP model is the pile type shown in the first column

of the table, considering all states of the block. In each entry, the other lines correspond to the generalized

trees with V = 6, . . . , 2, respectively. Table 5.5 shows that decisions made by Gc7, c ∈ {1, 2, 3} are all in

line with decisions made by the DP model which is also supported by Table 5.3. The accuracy of decisions

decreases as V decreases.

Next, we carry out a simulation study to compare the results obtained by GcV , V = 2, . . . , 7, c ∈ {1, 2, 3}
and optimal results obtained by the DP model. Both methods are used to stack incoming containers of three

types in a bay with seven piles and four tiers. Note that Gc7, c ∈ {1, 2, 3} already provides optimal results

for this configuration. The results are presented in Figure 5.4a and 5.4b. In each scenario, a sample of M

sequences of N = 4×7 = 28 containers is randomly generated by Monte Carlo simulation to fill up an empty

block. The sample size must satisfy the following equation with a 90% confidence level (Law and Kelton,

1999):

M ≥ S2 (M)

(
(1 + ε)Z1−α/2

ε f (M)

)2

(3)

where, S2 (M) and f (M) are respectively the variance and mean of the number of reshuffles in a preliminary

run, Z1−α/2 is the 1− α/2 percentile of the normal distribution and α = 10% in case of the 90% confidence

level. ε = 5% is for determining the confidence interval. Depending on the scenario, M varies between 2000

and 6000 random container sequences.

Based on the results in Figure 5.4a and 5.4b, we can draw the following conclusions:

� The gap between the objective values of the DT heuristic and the optimal solution depends on the size

5.3. Numerical experiments 97

Table 5.5. Decisions made by the DP model and GcV , V =
2, . . . , 7, c ∈ {1, 2, 3} in different states of the block

Decision by Decision by GcV , V = 2, . . . , 7, c ∈ {1, 2, 3} Percentage of
Gc7, c ∈ {1, 2, 3} P13 P12 P11 P23 P22 P21 P31 P32 P33 PE correct decisions
P13 (2971, 7, 81) (100, 100, 100)

(2970, 7, 79) (0, 0, 1) (1, 0, 1) (99.97, 100, 97.53)
(2971, 7, 72) (0, 0, 4) (0, 0, 5) (100, 100, 88.89)
(2971, 7, 72) (0, 0, 4) (0, 0, 5) (100, 100, 88.89)
(2971, 7, 43) (0, 0, 14) (0, 0, 24) (100, 100, 53.09)
(2971, 7, 28) (0, 0, 29) (0, 0, 24) (100, 100, 34.57)

P12 (4991, 44, 368) (100, 100, 100)
(4991, 42, 358) (0, 0, 4) (0, 2, 6) (100, 95.45, 97.28)
(4991, 37, 351) (0, 0, 10) (0, 7, 7) (100, 84.09, 95.38)
(4991, 28, 318) (0, 0, 8) (0, 0, 19) (0, 16, 23) (100, 63.64, 86.41)
(4991, 28, 295) (0, 0, 50) (0, 16, 23) (100, 63.64, 80.16)
(4991, 28, 196) (0, 0, 149) (0, 16, 23) (100, 63.64, 53.26)

P11 (7999, 201, 1013) (100, 100, 100)
(7999, 172, 968) (0, 4, 0) (0, 2, 2) (0, 0, 8) (0, 7, 32) (0, 11, 3) (0, 4, 0) (0, 1, 0) (100, 85.57, 95.56)
(7999, 155, 931) (0, 4, 0) (0, 2, 0) (0, 0, 9) (0, 17, 70) (0, 18, 3) (0, 4, 0) (0, 1, 0) (100, 77.11, 91.91)
(7999, 125, 967) (0, 4, 0) (0, 2, 0) (0, 0, 1) (0, 35, 42) (0, 30, 3) (0, 4, 0) (0, 1, 0) (100, 62.19, 95.46)
(7999, 84, 775) (0, 4, 0) (0, 2, 0) (0, 0, 65) (0, 76, 170) (0, 30, 3) (0, 4, 0) (0, 1, 0) (100, 41.79, 76.51)
(7999, 84, 840) (0, 4, 0) (0, 2, 0) (0, 76, 170) (0, 30, 3) (0, 4, 0) (0, 1, 0) (100, 41.79, 82.92)

P23 (370, 2260, 7) (100, 100, 100)
(1, 0, 0) (368, 2204, 7) (0, 8, 0) (0, 17, 0) (1, 31, 0) (99.46, 97.52, 100)
(1, 0, 0) (366, 2117, 7) (0, 3, 0) (2, 51, 0) (1, 89, 0) (98.92, 93.67, 100)
(1, 0, 0) (369, 2082, 7) (0, 61, 0) (0, 117, 0) (99.73, 92.12, 100)
(1, 0, 0) (369, 1672, 7) (0, 100, 0) (0, 207, 0) (0, 281, 0) (99.73, 73.98, 100)
(1, 0, 0) (369, 2260, 7) (99.73, 100, 100)

P22 (858, 4586, 90) (100, 100, 100)
(4, 0, 0) (2, 0, 4) (0, 0, 1) (846, 4523, 77) (0, 10, 8) (1, 11, 0) (5, 42, 0) (98.6, 98.63, 85.56)
(4, 0, 0) (2, 0, 4) (0, 0, 4) (842, 4372, 71) (0, 48, 11) (6, 35, 0) (4, 131, 0) (98.14, 95.33, 78.89)
(4, 0, 0) (2, 0, 2) (0, 0, 6) (852, 4401, 78) (0, 4, 4) (0, 139, 0) (0, 42, 0) (99.3, 95.97, 86.67)
(4, 0, 0) (2, 0, 14) (0, 0, 6) (852, 4041, 55) (0, 55, 15) (0, 490, 0) (99.3, 88.12, 61.11)
(4, 0, 0) (2, 0, 14) (0, 0, 6) (852, 4531, 55) (0, 55, 15) (99.3, 98.8, 61.11)

P21 (1711, 7779, 356) (100, 100, 100)
(13, 0, 0) (12, 0, 8) (9, 0, 13) (0, 10, 0) (1668, 7742, 331) (0, 0, 4) (9, 27, 0) (97.49, 99.52, 92.98)
(27, 0, 0) (12, 0, 11) (9, 0, 34) (0, 4, 4) (1650, 7676, 303) (0, 0, 4) (13, 99, 0) (96.43, 98.68, 85.11)
(27, 0, 0) (12, 0, 10) (9, 0, 44) (0, 176, 9) (1663, 7371, 289) (0, 0, 4) (0, 232, 0) (97.19, 94.76, 81.18)
(27, 0, 0) (12, 0, 6) (9, 0, 17) (1663, 7779, 329) (0, 0, 4) (97.19, 100, 92.42)
(27, 0, 0) (12, 0, 0) (9, 0, 78) (1663, 7779, 274) (0, 0, 4) (97.19, 100, 76.97)

P31 (46, 118, 1519) (100, 100, 100)
(0, 0, 7) (0, 3, 30) (46, 115, 1482) (100, 97.46, 97.56)
(0, 0, 20) (0, 4, 54) (46, 114, 1445) (100, 96.61, 95.13)

(0, 3, 103) (46, 115, 1416) (100, 97.46, 93.22)
(46, 118, 1519) (100, 100, 100)
(46, 118, 1519) (100, 100, 100)

P32 (90, 463, 3204) (100, 100, 100)
(1, 2, 0) (5, 0, 0) (84, 458, 3182) (0, 0, 14) (0, 0, 8) (93.33, 98.92, 99.31)
(6, 9, 0) (11, 0, 0) (73, 451, 3109) (0, 0, 85) (0, 0, 10) (81.11, 97.41, 97.03)
(6, 16, 0) (21, 0, 0) (63, 447, 3141) (0, 0, 53) (0, 0, 10) (70, 96.54, 98.03)
(6, 5, 0) (38, 0, 0) (46, 458, 3000) (0, 0, 187) (0, 0, 17) (51.11, 98.92, 93.63)
(6, 31, 0) (60, 0, 0) (24, 432, 3000) (0, 0, 187) (0, 0, 17) (26.67, 93.3, 93.63)

P33 (166, 1182, 5357) (100, 100, 100)
(9, 16, 0) (5, 11, 0) (3, 0, 0) (6, 0, 19) (142, 1155, 5291) (1, 0, 47) (85.54, 97.72, 98.77)
(13, 40, 0) (4, 16, 0) (10, 0, 0) (22, 0, 11) (115, 1126, 5279) (2, 0, 67) (69.28, 95.26, 98.54)
(39, 71, 0) (18, 10, 0) (15, 0, 0) (42, 0, 24) (52, 1093, 5198) (0, 8, 135) (31.33, 92.47, 97.03)
(39, 50, 0) (18, 75, 0) (30, 0, 0) (48, 0, 0) (31, 1049, 4818) (0, 8, 539) (18.67, 88.75, 89.94)
(39, 184, 0) (18, 78, 0) (64, 0, 0) (32, 0, 0) (13, 920, 4818) (0, 0, 539) (7.83, 77.83, 89.94)

PE (245, 2807, 7452) (100, 100, 100)
(2, 34, 0) (5, 39, 0) (12, 32, 0) (1, 0, 0) (2, 0, 1) (13, 0, 76) (210, 2702, 7375) (85.71, 96.26, 98.97)
(13, 96, 0) (21, 83, 0) (17, 53, 0) (4, 0, 0) (13, 0, 0) (28, 7, 183) (149, 2568, 7269) (60.82, 91.49, 97.54)
(48, 147, 0) (54, 187, 0) (53, 30, 0) (8, 0, 0) (21, 0, 0) (31, 0, 289) (30, 2443, 7163) (12.24, 87.03, 96.12)
(48, 144, 0) (54, 62, 0) (53, 174, 0) (16, 0, 0) (30, 0, 0) (32, 0, 0) (12, 2427, 7452) (4.9, 86.46, 100)
(48, 524, 0) (54, 394, 0) (53, 174, 0) (40, 0, 0) (28, 0, 0) (15, 0, 0) (7, 1715, 7452) (2.86, 61.1, 100)

Note. In the first line of each entry, (a, b, c) presents the number of times that the decision made by (G17, G27, G37) is the pile
type shown in the first row of the table, whereas the decision made by the DP model is the pile type shown in the first column
of the table, considering all states of the block. The other lines correspond to the generalized decision trees with six, five, four,
three, and two piles, respectively. Empty entries show that all three numbers are zero.

of the problem whose optimal solutions obtained by the DP model are used to improve the generalized

decision trees.

� For the generalized trees improved based on the optimal solutions of a block with V piles, the DT

heuristic produces zero-gap solutions to any problem with no more than V piles. For larger size

problems, the gap is a decreasing convex function of the number of piles of problems whose optimal

solutions are used to build the generalized trees.

For example, Figure 5.4a shows that for a seven pile problems the relative gap between the optimal

and GcV -based solutions decreases to zero very fast, as the optimal solutions of more piles are used

to improve the generalized trees. Generalized decision trees modified based on a four pile problem

already generate near-optimal solutions for the seven pile problem.

A Larger number of piles causes a higher flexibility in stacking decisions which enables generalized

trees, modified based on a small number of piles, to provide good solutions for those problems. In

98 Chapter 5. Minimizing the Expected Number of Reshuffles

such problems, these trees can systematically differentiate different types of incoming containers, stack

them and avoid reshuffling up to a point when only few empty locations remain. At that point, the

problem transforms to a small-scale problem, which can efficiently be solved by generalized trees.

� The computation time of the DT heuristic is less than a second for our examples, and is much shorter

than that of the DP. Figure 5.4b shows that already for a block of seven piles, the DP requires 20

minutes for finding an optimal solution, but the DT heuristic only needs a second.

(a) (b)

Figure 5.4. (a) Percentage difference in expected number
of reshuffles between the optimal and heuristic DT solution
based on V piles for a seven-pile problem, (b) Computation
time of the DP and DT heuristic solution based on V piles
(in seconds)

Finally, We conduct another simulation study to compare the performance of the DS and SS policies. The

inputs of the study are S = 2, . . . , 5, T = 4, and an empty block with V = 20 piles will be completely filled

up by containers of S equally sized ships. We consider that containers of each ship belong to three weight

groups and the same port of destination. Therefore, we define C = {1, 2, . . . , 3S} of which the cardinality

depends on the number of ships. Figure 5.5 compares the SS and DS policies for different numbers of ships.

In the SS policy containers of S ships are piled upon each other, whereas in the DS policy containers of a

single ship can be stacked on top of each other in a pile. The results show that by increasing the number

of ships the improvement of the SS policy over the DS policy increases. This can be also directly concluded

from the DP model. Allowing containers of multiple ships to be stacked on top of each other in multiple piles

is a strict relaxation of the problem in which containers of each ship are forced to be stacked separately.

5.3.2 Case study

Several stacking policies are used by container terminal operators to stack incoming containers, including

random stacking and horizontal stacking. We compare the DT heuristic with vertical stacking. A major

container terminal in Antwerp uses vertical stacking which appears to outperform other stacking heuristics

5.4. Conclusion and future research 99

Figure 5.5. Comparing the DS and SS policies

Note. Improvement (%)= fDS−fSS
fDS

×100% where fDS and fSS are the expected number of reshuffles of DS and SS respectively

calculated by using the DT heuristic. The number of realizations satisfies Equation (3).

such as random stacking, nearest-neighborhood stacking, and horizontal stacking, according to the initial

simulation study we have carried out (which is omitted here). The vertical stacking policy works as follows:

Vertical stacking policy. For an incoming container, the policy assigns the container onto a pile type whose

first-leaving container has the same type as the incoming container or will be retrieved later. If such a pile

does not exist in the block, the policy assigns the container to an empty pile. Finally, if any empty pile

cannot be found, a non-full pile is randomly selected for stacking the incoming container.

Figure 5.6 shows the results of the vertical stacking policy and DT heuristic by varying the number of

piles. The results show that the DT heuristic outperforms the vertical stacking policy by more than 70%.

The reason is as follows. When the utilization of the block increases, the vertical stacking policy has more

difficulty to find a pile for stacking without adding a reshuffle. When a block is filled to 80%, the vertical

stacking policy starts performing similar to random stacking. In other words, the performance of the vertical

stacking policy is independent of the number of piles, but the DT heuristic performs better and better with

an increase in the number of piles. Therefore the performance gap between the DT heuristic and the vertical

stacking policy increases with an increase in the number of piles.

5.4 Conclusion and future research

In this chapter, we study how to stack incoming containers in a real-size container block. The objective is

to minimize the expected number of reshuffles. We use a stochastic dynamic programming (DP) model and

develop a decision-tree (DT) heuristic. The heuristic uses the results of the stochastic DP model for small-

scale problems with a small number of piles to generate generalized decision trees that can solve large-scale

problems. These generalized decision trees can be continuously improved as results of the DP for larger

scale problems with more piles become available. For small-scale problems with a small number of piles, we

compare the DT heuristic and the DP model results. Our generalized decision trees can obtain the same

optimal results but much faster. For large-size problems, we perform a simulation study to compare our

100 Chapter 5. Minimizing the Expected Number of Reshuffles

Figure 5.6. The comparison of the performance of the DT
and vertical stacking heuristics

Note. Improvement (%)= fV −fDT
fV

× 100%, where fDT and fV are the expected number of reshuffles produced by the DT

heuristic and the vertical stacking policy, respectively. The number of realizations satisfies Equation (3).

results with those results obtained by heuristics commonly used in practice. Our heuristics performs better

than common heuristic in practice. We also use the DT heuristic to show that the shared-stacking (SS) policy

significantly outperforms the dedicated-stacking (DS) policy.

Future research derived from this topic can go in different directions. First, although we study the SS

policy, we focus on a small number of ships, each with a single port of destination. This is due to the large

number of states involved in solving a problem by the DP model. In reality, container terminal operators may

deal with containers of a larger number of ships each with multiple ports of destination, leading to hundreds

of container types that need to be handled. The insights obtained from this chapter can be used to develop

a solution method dealing with more types of containers. Note that the solutions can still be provided to the

DT heuristic to make generalized decision trees. Second, in the sequence of loading a ship, it is implicitly

assumed that containers are loaded onto the ships with a single quay crane. Loading a ship with multiple

quay cranes allows us to deviate from the given sequence. It may be allowed that a light container leaves

the block earlier than a heavy container of the same ship which must be loaded by a different quay crane.

Considering multiple quay cranes to load ships, new stacking policies can be developed.

5.A. Proof of Theorem 5.1 101

Appendix

5.A Proof of Theorem 5.1

In our problem, we have V piles of containers and J = | {Pct|c ∈ C, t = 1, . . . , T − 1} ∪ {PE , PF } | = |C| ×
(T − 1) + 2 types of piles. In each state of the block, each pile of containers has a specific type. Obviously,

multiple piles may have the same type. The number of different states of the DP model can be calculated

using the following classic combinatorial problem where a combination of size V must be chosen from J

objects and repetition is allowed (Rosen et al., 2000). The total number of combinations is

(
J + V − 1

V

)
.

However, the total number of states of the DP model is one less. The reason is that repetition is allowed and

considering J as the total number of pile types means that in one of the states all the piles can be full which

is not feasible as no container can be located there. �

Chapter 6

Conclusions and Further Research

Container terminal operators have to make a large number of decisions every day. Among these, decisions

made regarding stacking operations at the stacking area of the terminal are studied in this dissertation. All

containers arriving from the seaside and landside must remain in this area for a period of time. Without

properly controling the stacking operations in this area, it may become a bottleneck and consequently reduce

the performance of the whole container terminal. With this motivation, in this dissertation four models have

been developed in order to make (near-) optimal decisions to deal with stacking operations.

6.1 Conclusions

In Chapter 2, we studied an automated stacking crane (ASC), stacking and retrieving containers from a

single block of containers. The block has multiple input/output (I/O) points at both seaside and landside.

The ASC moves storage containers from I/O points to the block, whereas it moves the retrieval containers

from the block to the I/O points. We formulate the problem as an asymmetrical traveling salesman problem

(ATSP) and propose a two-phase solution method to optimally solve it. In the first phase of the solution,

we develop a new merging algorithm to patch subtours of an optimal solution of the assignment problem

(AP) relaxation of the problem without adding extra travel time. In this phase, we first search for two arcs

from every two different subtours visiting a common I/O point, and swap the destinations of them to merge

the subtours. Next, based on the fact that in some arcs the ASC has multiple I/O point options with the

same travel time to visit, we can create further opportunities to merge more subtours. We show that the

first phase runs in a polynomial time, and often finds an optimal solution. Otherwise, a branch-and-bound

(B&B) algorithm is used in the second phase to find an optimal solution of the problem. In this phase, the

merging algorithm is again used in each node of the B&B tree to save computation time. The takeaways of

Chapter 2 are as follows:

� Not only the number of requests but also the number of I/O points affects the complexity of the

103

104 Chapter 6. Conclusions and Further Research

problem. The problem is NP-hard in the number of requests and I/O points.

� I/O pints can be used to develop a merging algorithm which results in efficiently solving the problem.

Since all containers have to be moved by the ASC to an I/O point or from an I/O point, the merging

algorithm can successfully solve many instances of the problem, especially larger instances. Given a

limited number of I/O points, by increasing the number of requests, the number of requests connected

to each I/O point will increase. Thus, the merging algorithm has more opportunities to patch subtours.

� The numerical experiments show that problems up to 200 requests can be optimally solved in less

than a second. Furthermore, the travel time reduction between the optimal and first-come-first-served

(FCFS) sequence is around 30%, on average. The reduction is around 14%, in case the nearest neighbor

(NN) heuristic is used to find the sequence.

In Chapter 3, we extend the problem by considering sets of open locations for storing containers. In the

case of a storage request, the ASC picks up the container from an I/O point, and drops it off in an open

storage location in the block. We formulate the problem as a generalized asymmetrical traveling salesman

problem (GATSP). However, locations in the intersection of multiple sets make the problem more complex.

Extra constraints are necessary to stack at most one container in such a location. The GATSP is NP-hard,
and the new constraints increase the complexity even more. We propose a three-phase solution method to

optimally solve the problem. The main idea of the algorithm is to simplify the problem to an ATSP and

use its optimal solution to obtain an optimal GATSP solution. An optimal ATSP solution can be quickly

obtained using the solution method studied in Chapter 2. In the first phase of the algorithm, we generate

a corresponding ATSP model by pre-selecting the locations resulting in the minimum pairwise travel times.

This can be realized by redefining the original travel time matrix. In the original travel time matrix, the

pairwise travel times between two locations are calculated from the first location until the other one, whereas

in the redefined travel time matrix, the pairwise travel times are calculated from or until I/O points in an

arc, if available. We show that an optimal result of the ATSP model generated in this way is identical to an

optimal solution of the GATSP in which the new extra constraints are relaxed. In other words, an optimal

ATSP solution provides a lower bound for the problem, since pre-selection may result in a solution that one

location in the intersection of multiple sets is selected to stack multiple containers. In the second phase, we

present two special cases in which an optimal ATSP solution directly provides an optimal GATSP solution.

In the first case, sets of open locations do not overlap. In the second case, locations in the intersection of

multiple sets selected to stack containers of more than one set can be replaced with alternative open locations.

Otherwise, in the third phase, we embed the optimal ATSP solution in a B&B algorithm which tries to avoid

stacking containers of more than one set in a location by assigning it to a single set in each node. The

takeaways of Chapter 3 are as follows:

� The larger the cardinality of sets of open locations is, the harder it is to solve the problem. In fact, if

the cardinality is one for every set of open locations, the GATSP simplifies to the ATSP discussed in

6.1. Conclusions 105

Chapter 2. The ATSP can be solved in less than a second.

� The other important factor for quickly solving problems is the locations in the intersections of sets.

If there is no overlap between any two pairs of sets, no matter what the sizes of the sets are, we can

simplify the problem to an ATSP. An optimal ATSP solution directly provides an optimal GATSP

solution. As a result, it is important not only to limit the number of locations in every set but also

the locations in the overlap of the sets.

� The proposed three-phase solution method is efficient for small and medium instances. For large

instances with more than 100 requests, we propose a heuristic algorithm. The heuristic method first

finds an optimal solution of the ATSP which is generated by pre-selection of locations. In case the

solution is not a feasible GATSP solution, an AP will be used to replace all locations which are selected

to store more than one storage container by other locations with the minimum increase in the ATSP

optimal value. The numerical results show the objective value gap between our heuristic algorithm

and the lower bound is less than 1%, on average. Note that an optimal ATSP solution provides a

lower bound for the GATSP.

� Compared to the NN and FCFS heuristics used in practice, travel time savings of up to 20% and 37%,

respectively can be achieved.

� The high quality of the heuristic method is due to the fact that the ASC moves over the bays and

rows simultaneously. When the ASC moves from a storage request to another request, multiple open

locations associated to the storage request result in the minimum travel time or different travel times

which are close to each other. Therefore, the ATSP model generated by pre-selecting the empty

locations provides a good lower bound for the problem. As a result, the heuristic solution obtained

by using the AP model for replacing the multi-selected locations with the nearest empty locations is

near optimal.

In Chapter 4, we extend the problem further. In the problem studied there, two ASCs carry out the

requests, which have different priorities. We model the problem as a multiple generalized asymmetrical travel-

ing salesman problem (mGATSP-PC) including the precedence constraints and some other extra constraints.

Several practical and theoretical constraints were considered: (1) the ASCs cannot pass each other and, for

safety reasons, the ASCs must be separated by a safety distance; (2) each storage container must be stacked

in a location selected from a set of available open locations; and (3) because of waiting times and of the

presence of several container transport modes, containers have different storage and retrieval priorities. Due

to the complexity of the problem, it can only be solved exactly for small size instances. We have therefore

developed an adaptive large neighborhood search (ALNS) heuristic capable of solving instances of realistic

sizes. The takeaways of Chapter 4 are as follows:

� The ALNS is a very powerful heuristic to solve combinatorial problems. Our experiments demonstrate

the impact of the new constraints and the efficiency of our heuristic. For small instances which

106 Chapter 6. Conclusions and Further Research

can be optimally solved by CPLEX (a high-performance mathematical programming solver for linear

programming, mixed integer programming, and quadratic programming), the gaps between the ALNS

and optimal solution values are on average less than 0.34%. For large instances, compared to CPLEX

truncated after four hours, the ALNS can quickly obtain up to 6.77% better results, on average. It also

yields results that are 24% better compared with alternative less sophisticated heuristics. Furthermore,

for two relaxed problems, the ALNS obtains results that are on average within 3% of the optimal

solution values.

� The precedence constraints substantially affect the objective value. There is a big gap between the

mGATSP-PC and the mGATSP where the precedence constraints are relaxed.

In Chapter 5, we study a different problem which is indirectly related to the previous ones. The problem

is how to stack incoming containers in a real-size container block shared by containers of multiple ships. The

objective is to minimize the expected number of reshuffles. We use a stochastic dynamic programming (DP)

model and develop a decision-tree (DT) heuristic. The heuristic uses the results of the stochastic DP model

for small-scale problems with a small number of piles to generate generalized decision trees that can solve

large-scale problems. These generalized decision trees can be continuously improved as results of the DP for

larger scale problems with more piles become available. The takeaways of Chapter 5 are as follows:

� For small-scale problems with a small number of piles, we show that the gap between the optimal and

DT heuristic solutions is a decreasing convex function of the number of piles of problems of which

optimal solutions are used to improve the generalized trees. For larger scale problems, these trees

also provide near-optimal solutions since a larger number of piles results in a higher flexibility to

stack containers and to avoid reshuffling. In addition, the DT heuristic is compared with the vertical

stacking policy which is one of the good heuristics commonly used in practice. We show that the DT

heuristic significantly outperforms vertical stacking.

� Furthermore, we also use the DT heuristic to show that the shared policy significantly outperforms

the dedicated policy in which containers of a single ship are stacked on top of each other. The

shared stacking policy allows to increase the utilization of the block, whereas in the dedicated policy,

containers of only one ship can be stacked in the block.

6.2 Future research

Container terminals have received an increasing attention from the academic community due to the oppor-

tunities and challenges they offer in research. In this dissertation, some of the operational problems in the

stacking area of a container terminal are studied. The results show that major improvements can be achieved,

using the exact and heuristic models developed in this dissertation. However, there is still enough room for

conducting further research. Container terminals have seen major developments over the last decades. These

6.2. Future research 107

developments impact container terminal operations and create new opportunities for research studies. Fol-

lowings, we discuss some new research directions that are interesting from both theoretical and practical

perspectives.

Role of container terminals in networks: handling millions of containers arriving at and leaving

from the deep-sea terminals introduces many challenges such as: congestion, delay, and pollution. This has

driven container terminals to transform their static supply chains into adaptive business networks to increase

their competitiveness and robustness (Vervest and Li, 2009, Heinrich and Betts, 2003). An example is a

recent project started in the Netherlands to integrate supply chain and transportation through extending

the sea terminal gate into the hinterland as the gateway to the European hinterland Veenstra et al. (2012).

These initiatives thus shift container terminals, in addition to all their container handling activities, from

being a stock point to a flow operator. The result is a better connection between the shippers and receivers

in the network. This change comes with serious and unexplored challenges, but it also provide a tremendous

opportunity to develop a sustainable competitive advantage. The seamless flow of goods from seaports

to locations far into the hinterland will be a major enabler to prevent negative external effects from the

transport, such as congestion in seaports, congestion on motorways due to too much trucking, and enhance

the competitiveness of multimodal inland nodes for warehousing and value added activities. On the other

hand, network configurations give rise to several strategic and operational problems such as the selection

of hinterland terminals to be included in the network, the number of modalities required for transporting

containers, the percentage of containers that have to be handseled by each modality, the path that each

modality has to travel, and the terminals that each modality has to visit in its path.

Sustainable container terminals: sustainability, next to efficiency, has caught the attention of aca-

demic and professional communities during the last decade. The world has become aware of the limited

resources of the earth and the necessity to preserve the environment. Therefore, many companies are look-

ing for new methods to manage their operations more sustainably considering the environmental, economic,

and social impacts of every decision. Although with a delay, container terminals have also started to move

toward more sustainable operations. Container terminal operators are currently involved in redesigning their

operations considering that while profitable, their operations should not harm the society and environment.

As a result, traditional models in the literature which consider only profitability and efficiency have to be

modified in order to include broader considerations of the terminal’s internal and external stakeholders and

environmental impacts. The result is many new operational problems in which it is tried to reduce the

internal and external energy use, make the operations eco-friendly, and design durable facilities and handling

systems.

New technologies and automation: nowadays, traditional manual container terminals are transform-

ing into modern automated terminals which are much faster and safer. For example, manual yard cranes are

replaced with single, double, or even triple automated yard cranes to stack and retrieve containers, straddle

carriers are automated and are able to lift two TEU at the same time, modern quay cranes and yard cranes

108 Chapter 6. Conclusions and Further Research

are capable of simultaneous lifting of four TEU, traditional truck appointment systems are replaced with gate

appointment system, and etc. However, in order to be efficient, the new modern technologies and method-

ologies need careful planning. New exact or heuristic models which consider all features and constraints

introduced by automation and new technologies have to be developed.

Security and safety: security and safety are among the most important and least studied topics in

container terminal operations. Many containers daily pass through a container terminal. Handling these

containers involve many sorts of security risks such as terroristic attack and smuggling. Although the proba-

bility of such incidents is low, but the cost is extremely high. As an example, Abt (2003) estimates that the

cost of the detonation of a nuclear device in a port is within �55–�220 billion. A promising solution to avoid

these risks is inspecting all containers arriving and leaving container terminals. However, the 100% screening

is costly and time consuming, and therefore other more efficient screening policies can be developed (Bakshi

et al., 2011). Other methods such as isolating some parts of the terminal which limits access only to certified

workers may also reduce the security risk. All in all, considering the cost involved in occupance of these

incidents requires the container terminal operators and scholars to consider security at container terminals

more thoroughly. Safety on the other hand requires other measures. Container terminal operators have al-

ready acquired different methods to increase the safety in their terminals. For example, terminals ask drivers

to exit their cabs and stand inside a booth before yard cranes can load their chassis. Furthermore, many

terminals feature remotely controlled cranes which minimize exposure to potential safety hazards. However,

in order to increase the safety at terminals, many other safety regulations can be still developed.

Bibliography

Abt, C. C. (2003). The economic impact of nuclear terrorist attacks on freight transport systems in

an age of seaport vulnerability . Abt Associates, Cambridge, MA.

Admiralty and Maritime Law Guide (1972). International convention for safe containers. Re-

trieved April 04, 2012, from Admiralty and Maritime Law Guide: http://www.admiraltylawguide.

com/conven/containers1972.html.

Agarwal, R., Ergun, Ö (2008). Ship scheduling and network design for cargo routing in liner

shipping . Transportation Science, 42(2):175–196.

Agerschou, H., Lundgren, H., Sörensen, T., Ernst, T., Korsgaard, J., Schmidt, L. R.,

Chi, W. K. (1983). Planning and Design of Ports and Marine Terminals . John Wiley and Sons,

Chichester.

Appelgren, L. H. (1969). A column generation algorithm for a ship scheduling problem. Transporta-

tion Science, 3(1):53–68.

——– (1971). Integer programming methods for a vessel scheduling problem. Transportation Science,

5(1):64–78.

Applegate, D. L., Bixby, R. E., Chvatal, V., Cook, W. J. (2007). The Traveling Salesman

Problem: A Computational Study (Princeton Series in Applied Mathematics). Princeton University

Press.

Bakshi, N., Flynn, S. E., Gans, N. (2011). Estimating the operational impact of container inspec-

tions at international ports. Management Science, 57(1):1–20.

Barrington Freight (2012). Retrieved April 04, 2012, from Barrington Freight: http://www.

shippingtoflorida.com/florida-container-sizes.php.

Bartodziej, P., Derigs, U., Malcherek, D., Vogel, U. (2009). Models and algorithms for

solving combined vehicle and crew scheduling problems with rest constraints : an application to road

feeder service planning in air cargo transportation. OR Spectrum, 31(2):405–429.

109

110 Bibliography

Bent, R., Van Hentenryck, P. (2004). A two-stage hybrid local search for the vehicle routing

problem with time windows. Transportation Science, 38(4):515–530.

Bish, E. K., Chen, F. Y., Leong, Y. T., Nelson, B. L., Ng, J. W. C., Simchi-Levi, D. (2005).

Dispatching vehicles in a mega container terminal . OR Spectrum, 27:491–506.

Böse, J. W. (2011). Handbook of Terminal Planning . Springer, New York.

Boxxes (2012). Retrieved April 04, 2012, from Barrington Freight: http://www.boxxes.nl/.

Bozer, Y. A., Carlo, H. J. (2008). Optimizing inbound and outbound door assignments in less-

than-truckload crossdocks. IIE Transactions, 40(11):1007–1018.

Brinkmann, B. (2010). Operations systems of container terminals: A compendious overview . vol-

ume 49 of Handbook of Terminal Planning , pages 25–39. Springer Berlin / Heidelberg.

Briskorn, D., Drexl, A., Hartmann, S (2006). Inventory-based dispatching of automated guided

vehicles on container terminals. OR Spectrum, 28:611–630.

Brown, Gerald G., Graves, Glenn W., Ronen, David (1987). Scheduling ocean transportation

of crude oil . Management Science, 33(3):335–346.

Bureau International des Containers et du Transport Intermodal (BIC) (2012). Presen-

tation of the bic codes. Retrieved April 04, 2012, from BIC: http://www.bic-code.org/.

Burkard, R. E., Deineko, V. G., Van Dal, R., Van der Veen, J. A. A., Woeginger,

G. J. (1998). Well-solvable special cases of the traveling salesman problem: A survey . SIAM Re-

view, 40(3):496–546.

Carpaneto, G., Dell’Amico, M., Toth, P. (1995). Exact solution of large-scale, asymmetric

traveling salesman problems. ACM Transaction on Mathematical Software, 21(4):394–409.

Carpaneto, G., Toth, P. (1980). Some new branching and bounding criteria for the asymmetric

travelling salesman problem. Management Science, 26(7):736–743.

Caserta, M., Voß, S. (2009). A corridor method-based algorithm for the pre-marshalling problem. In

Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G. A., Ekárt, A., Esparcia-Alcázar,

A., Farooq, M., Fink, A., Machado, P. (editors), Applications of Evolutionary Computing , volume

5484 of Lecture Notes in Computer Science, pages 788–797. Springer Berlin / Heidelberg.

Cheung, R. K., Li, C. L., Lin, W. (2002). Interblock crane deployment in container terminals.

Transportation Science, 36(1):79–93.

Choo, S., Klabjan, D., Simchi-Levi, D. (2010). Multiship crane sequencing with yard congestion

constraints. Transportation Science, 44(1):98–115.

Bibliography 111

Christiansen, M., Fagerholt, K., Ronen, D. (2004). Ship routing and scheduling: Status and

perspectives. Transportation Science, 38(1):1–18.

Clausen, J. (2003). Branch and bound algorithms - principles and examples. Department of Computer

Science, University of Copenhagen.

Cordeau, J. F., Laporte, G., Legato, P., Moccia, L. (2005). Models and tabu search heuristics

for the berth-allocation problem. Transportation Science, 39:526–538.

Cosmos NV (2012). http://www.cosmosworldwide.com/ .

Crainic, G. T., Kim, K. H. (2007). Chapter 8 intermodal transportation. In Barnhart, C., La-

porte, G. (editors), Transportation, volume 14 of Handbooks in Operations Research and Management

Science, pages 467–537. Elsevier.

Cullinane, K., Song, D. W., Wang, T. F. (2005). The application of mathematical program-

ming approaches to estimating container port production efficiency . Journal of Productivity Analysis,

24(1):73–92.

Cullinane, K., Wang, T. F., Song, D. W., Ji, P. (2006). The technical efficiency of container

ports: Comparing data envelopment analysis and stochastic frontier analysis. Transportation Research

Part A: Policy and Practice, 40(4):354–374.

Daganzo, C. F. (1989). The crane scheduling problem. Transportation Research Part B: Method-

ological, 23(3):159–175.

De Castillo, B., Daganzo, C. F. (1993). Handling strategies for import containers at marine

terminals . Transportation Research Part B: Methodological, 27(2):151–166.

De Koster, R., Balk, B. M., Van Nus, W. T. I. (2009). On using dea for benchmarking container

terminals . International Journal of Operations & Production Management, 29(11):1140–1155.

De Koster, R., Van der Poort, E. (1998). Routing orderpickers in a warehouse: a comparison

between optimal and heuristic solutions . IIE Transactions, 30:469–480.

Dekker, R., Voogd, P., Asperen, E. (2007). Advanced methods for container stacking . In Kim,

K. H., Günther, H. O. (editors), Container Terminals and Cargo Systems, pages 131–154. Springer

Berlin / Heidelberg.

Dimitrijević, V., Šarić, Z. (1997). An efficient transformation of the generalized traveling salesman

problem into the traveling salesman problem on digraphs . Information Sciences, 102(1-4):105–110.

Dorndorf, U., Schneider, F. (2010). Scheduling automated triple cross-over stacking cranes in a

container yard . OR Spectrum, 32(3):617–632.

Drewry (2011). Container Forecaster . Drewery Publications, London.

112 Bibliography

Europe Container Terminals (ECT) (2012). Retrieved April 04, 2012, from ECT: http://www.

ect.nl/imagegallery/pages/Gallery.aspx .

Evers, J. J. M., Koppers, S. A. J. (1996). Automated guided vehicle traffic control at a container

terminal . Transportation Research Part A: Policy and Practice, 30(1):21–34. ISSN 0965-8564.

Fischetti, M., Gonzalez, J. J. S., Toth, P. (1997). A branch-and-cut algorithm for the symmetric

generalized traveling salesman problem. Operations Research, 45(3):378–394.

Fischetti, M., Gonzlez, J. J. S., Toth, P. (1995). The symmetric generalized traveling salesman

polytope. Networks, 26(2):113–123.

Frederickson, G. N., Hecht, M. S., Kim, C. E. (1978). Approximation algorithms for some

routing problems . SIAM Journal on Computing, 7(2):178–193.

Froyland, G., Koch, T., Megow, N., Duane, E., Wren, H. (2008). Optimizing the landside

operation of a container terminal . OR Spectrum, 30(1):53–75.

Gharehgozli, A. H., Laporte, G., Yu, Y., De Koster, R. (2012a). Scheduling two yard cranes

handling requests with precedences in a container block with multiple open locations . Technical report,

Rotterdam.

Gharehgozli, A. H., Yu, Y., De Koster, R. (2012b). Sequencing storage and retrieval requests

in a container block with multiple open locations. Technical report, Rotterdam.

Gharehgozli, A. H., Yu, Y., De Koster, R., Udding, J. T. (2012c). A decision-tree stacking

heuristic minimizing the expected number of reshuffles at a container yard . Technical report, Rotter-

dam.

——– (2012d). Sequencing storage and retrieval requests at a container terminal . Technical report,

Rotterdam.

Gilmore, P. C., Gomory, R. E. (1964). Sequencing a One State-Variable Machine: A Solvable

Case of the Traveling Salesman Problem. Operations Research, 12(5):655–679.

Goodchild, A. V., Daganzo, C. F. (2006). Double-cycling strategies for container ships and their

effect on ship loading and unloading operations . Transportation Science, 40(4):473–483.

——– (2007). Crane double cycling in container ports: Planning methods and evaluation. Transporta-

tion Research Part B: Methodological, 41(8):875–891.

Guan, Yongpei, Cheung, RaymondK. (2004). The berth allocation problem: models and solution

methods. OR Spectrum, 26:75–92.

Günther, H. O., Kim, K. H. (2005). Container Terminals and Automated Transport Systems -

Logistics Control Issues and Quantitative Decision Support . Springer Berlin / Heidelberg.

Bibliography 113

Hansen, P., Oǧuz, C., Mladenović, N. (2008). Variable neighborhood search for minimum cost

berth allocation. European Journal of Operational Research, 191(3):636–649.

Hartmann, S. (2004). A general framework for scheduling equipment and manpower at container

terminals . OR Spectrum, 26:51–74.

Heinrich, C., Betts, B. (2003). Adapt or Die Transforming Your Supply Chain into an Adaptive

Business Network . John Wiley & Sons, New Jersey.

Hendriks, M., Laumanns, M., Lefeber, E., Udding, J. T. (2010). Robust cyclic berth planning

of container vessels . OR Spectrum, 32:501–517.

Henwood, R., Tan, T. H., Singapore Logistics Association (2006). The Practitioner’s Defini-

tive Guide: Seafreight Forwarding . SNP Reference for Institute of Policy Studies, Singapore.

Hewitt, M., Nemhauser, G. L., Savelsbergh, M. W. P. (2010). Combining exact and heuristic

approaches for the capacitated fixed-charge network flow problem. INFORMS Journal on Computing,

22(2):314–325.

Imai, A., Sun, X., Nishimura, E., Papadimitriou, S. (2005). Berth allocation in a container

port: using a continuous location space approach. Transportation Research Part B: Methodological,

39(3):199–221.

International Maritme Organization (IMO) (1977). International convention for safe con-

tainers (csc). Retrieved April 04, 2012, from IMO: http://www.imo.org/About/Conventions/

ListOfConventions/Pages/International-Convention-for-Safe-Containers-(CSC).aspx.

Kang, J., Ryu, K., Kim, K. H. (2006). Deriving stacking strategies for export containers with

uncertain weight information. Journal of Intelligent Manufacturing, 17:399–410.

Kang, S., Medina, J. C., Ouyang, Y. (2008). Optimal operations of transportation fleet for un-

loading activities at container ports. Transportation Research Part B: Methodological, 42(10):970–984.

Kim, K. H. (1997). Evaluation of the number of rehandles in container yards. Computers & Industrial

Engineering, 32(4):701–711.

Kim, K. H., Bae, J. W. (2004). A look-ahead dispatching method for automated guided vehicles in

automated port container terminals. Transportation Science, 38:224–234.

Kim, K. H., Kim, K. Y. (1999a). An optimal routing algorithm for a transfer crane in port container

terminals . Transportation Science, 33(1):17–33.

——– (1999b). Routing straddle carriers for the loading operation of containers using a beam search

algorithm. Computers & Industrial Engineering, 36(1):109–136.

114 Bibliography

Kim, K. H., Moon, K. C. (2003). Berth scheduling by simulated annealing . Transportation Research

Part B: Methodological, 37(6):541–560.

Kim, K. H., Park, K. T. (2003). A note on a dynamic space-allocation method for outbound con-

tainers . European Journal of Operational Research, 148(1):92–101.

Kim, K. H., Park, Y. M., Ryu, K. R. (2000). Deriving decision rules to locate export containers in

container yards . European Journal of Operational Research, 124(1):89–101.

Kim, K. Y., Kim, K. H. (1999c). A routing algorithm for a single straddle carrier to load export

containers onto a containership. International Journal of Production Economics, 59(1-3):425–433.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P. (1983). Optimization by simulated annealing .

Science, 220(4598):671–680.

Kozan, E. (2000). Optimising container transfers at multimodal terminals . Mathematical and Com-

puter Modelling, 31(10-12):235–43.

Kozan, E., Preston, P. (1999). Genetic algorithms to schedule container transfers at multimodal

terminals . International Transactions in Operational Research, 6(3):311–329.

Kuhn, H. W. (1955). The Hungarian method for the assignment problem. Naval Research Logistic

Quarterly, 2:83–97.

Laporte, G. (1992). The traveling salesman problem: An overview of exact and approximate algo-

rithms. European Journal of Operational Research, 59(2):231–247.

Laporte, G., Mercure, H., Nobert, Y. (1987). Generalized travelling salesman problem through

n sets of nodes: the asymmetrical case. Discrete Applied Mathematics, 18(2):185–197.

Laporte, G., Musmanno, R., Vocaturo, F. (2010). An adaptive large neighbourhood search

heuristic for the capacitated arc-routing problem with stochastic demands. Transportation Science,

44(1):125–135.

Law, A. M., Kelton, D. M. (1999). Simulation Modeling and Analysis . McGraw-Hill Higher

Education, Boston, Massachusetts, 3rd edition.

Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G., Shmoys, D. B. (1985). The Traveling

Salesman Problem, a Guided Tour of Combinatorial Optimization. John Wiley & Sons, Chichester,

UK.

Lee, B. K., Kim, K. H. (2010). Optimizing the block size in container yards . Transportation Research

Part E: Logistics and Transportation Review, 46(1):120–135.

Lee, Y., Chao, S. L. (2009). A neighborhood search heuristic for pre-marshalling export containers .

European Journal of Operational Research, 196(2):468–475.

Bibliography 115

Lee, Y., Hsu, N. Y. (2007). An optimization model for the container pre-marshalling problem.

Computers & Operations Research, 34(11):3295–3313.

Lehmann, M., Grunow, M., Günther, H. O. (2006). Deadlock handling for real-time control of

agvs at automated container terminals. OR Spectrum, 28:631–657.

Levinson, M. (2008). The Box: How the Shipping Container Made the World Smaller and the World

Economy Bigger . Princeton University Press, Princeton, NJ.

Li, C. L., Vairaktarakis, G. L. (2004). Loading and unloading operations in container terminals.

IIE Transactions, 36(4):287–297.

Li, W., Wu, Y., Petering, M. E. H., Goh, M., de Souza, R. (2009). Discrete time model and

algorithms for container yard crane scheduling . European Journal of Operational Research, 198(1):165–

172.

Lien, Y. N., Ma, E., Wah, B. W. S. (1993). Transformation of the generalized traveling-salesman

problem into the standard traveling-salesman problem. Information Sciences, 74(1-2):177–189.

Linn, R. J., Zhang, C. Q. (2003). A heuristic for dynamic yard crane deployment in a container

terminal . IIE Transactions, 35(2):161–174.

Liu, C. I., Jula, H., Ioannou, P. A. (2002). Design, simulation, and evaluation of automated

container terminals. IEEE Transactions on Intelligent Transportation Systems, 3(1):12–26.

Liu, C. I., Jula, H., Vukadinovic, K., Ioannou, P. (2004). Automated guided vehicle system for

two container yard layouts . Transportation Research Part C: Emerging Technologies, 12(5):349–368.

Meersmans, P. J. M. (2002). Optimization of container handling systems . Ph.D. thesis, Erasmus

Research Institute of Management (ERIM), Erasmus University Rotterdam (ERIM is the joint re-

searchinstitute of the Rotterdam School of Management, Erasmus University and the Erasmus School

of Economics (ESE) at Erasmus University Rotterdam).

Midoro, R., Musso, E., Parola, F. (2005). Maritime liner shipping and the stevedoring industry:

market structure and competition strategies . Maritime Policy & Management, 32(2):89–106.

Miller, D. L., Pekny, J. F. (1991). Exact solution of large asymmetric traveling salesman problems.

Science, 251(4995):754–761.

Modality Software solutions b.v. (2012). http://www.modality.nl/products.php?lang=en.

Monaco, M. F., Sammarra, M. (2007). The berth allocation problem: A strong formulation solved

by a lagrangean approach.. Transportation Science, 41(2):265–280.

Moorthy, R., Teo, C. P. (2006). Berth management in container terminal: the template design

problem. OR Spectrum, 28:495–518.

116 Bibliography

Murty, K. G. (2007). Yard crane pools and optimum layouts for storage yards of container terminals.

Journal of Industrial and Systems Engineering, 1:190–199.

Murty, K. G., Liu, J., Wan, Y. W., Linn, R. (2005). A decision support system for operations in

a container terminal . Decision Support Systems, 39(3):309–332.

Narasimhan, A., Palekar, U. S. (2002). Analysis and algorithms for the transtainer routing problem

in container port operations. Transportation Science, 36(1):63–78.

Newman, A. M., Yano, C. A. (2000). Scheduling direct and indirect trains and containers in an

intermodal setting . Transportation Science, 34(3):256–270.

Ng, W. C. (2005). Crane scheduling in container yards with inter-crane interference. European

Journal of Operational Research, 164(1):64–78.

Ng, W. C., Mak, K. L. (2005). Yard crane scheduling in port container terminals. Applied Mathe-

matical Modelling, 29(3):263–276.

Noon, C. E., Bean, J. C. (1991). A Lagrangian based approach for the asymmetric generalized

traveling salesman problem. Operations Research, 39(4):623–632.

Pepin, A. S., Desaulniers, G., Hertz, A., Huisman, D. (2009). A comparison of five heuristics

for the multiple depot vehicle scheduling problem. Journal of Scheduling, 12:17–30.

Petering, M. E. H. (2010). Development and simulation analysis of real-time, dual-load yard truck

control systems for seaport container transshipment terminals . OR Spectrum, 32:633–661. ISSN 0171-

6468.

——– (2011a). Decision support for yard capacity, fleet composition, truck substitutability, and scalabil-

ity issues at seaport container terminals. Transportation Research Part E: Logistics and Transportation

Review, 47(1):85–103.

——– (2011b). Decision support for yard capacity, fleet composition, truck substitutability, and scalabil-

ity issues at seaport container terminals. Transportation Research Part E: Logistics and Transportation

Review, 47(1):85–103.

Petering, M. E. H., Murty, K. G. (2009). Effect of block length and yard crane deployment sys-

tems on overall performance at a seaport container transshipment terminal . Computers & Operations

Research, 36(5):1711–1725.

Petering, M. E. H., Wu, Y., Li, W., Goh, M., de Souza, R. (2009). Development and simulation

analysis of real-time yard crane control systems for seaport container transshipment terminals . OR

Spectrum, 31:801–835. ISSN 0171-6468.

Pisinger, D., Ropke, S. (2007). A general heuristic for vehicle routing problems . Computers &

Operations Research, 34(8):2403–2435.

Bibliography 117

Port of Rotterdam Authority (editor) (2012). Port Statistics. Port of Rotterdam Authority,

Rotterdam.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1:81–106. ISSN 0885-6125.

Ratliff, H. D., Rosenthal, A. S. (1983). Order-Picking in a Rectangular Warehouse: A Solvable

Case of the Traveling Salesman Problem. Operations Research, 31(3):507–521.

Ronen, D. (1983). Cargo ships routing and scheduling: Survey of models and problems. European

Journal of Operational Research, 12(2):119–126.

——– (1993). Ship scheduling: The last decade. European Journal of Operational Research, 71(3):325–

333.

Ropke, S., Pisinger, D. (2006a). An adaptive large neighborhood search heuristic for the pickup and

delivery problem with time windows. Transportation Science, 40(4):455–472.

——– (2006b). A unified heuristic for a large class of vehicle routing problems with backhauls. European

Journal of Operational Research, 171(3):750–775.

Rosen, K. H., Michaels, J. G., Gross, J. L., Grossman, J. W., Shier, D. R. (editors) (2000).

Handbook of Discrete and Combinatorial Mathematics. CRC press LLC, Boca Raton, Florida.

Roy, D., De Koster, R. (2012). Modeling and design of container terminal operations. Technical

report, Rotterdam.

Sammarra, M., Cordeau, J.-F., Laporte, G., Monaco, M. F. (2007). A tabu search heuristic

for the quay crane scheduling problem. Journal of Scheduling, 10:327–336.

Shaw, P. (1997). A new local search algorithm providing high quality solutions to vehicle routing

problems. Technical report, Glasgow.

Sherali, H. D., Al-Yakoob, S. M., Hassan, M. M. (1999). Fleet management models and algo-

rithms for an oil-tanker routing and scheduling problem. IIE Transactions, 31:395–406.

Srour, F. Jordan, Van de Velde, S. (2011). Are stacker crane problems easy? a statistical study .

Computers & Operations Research, (0):–.

Stahlbock, R., Voß, S. (2008a). Operations research at container terminals: a literature update.

OR Spectrum, 30(1):1–52.

——– (2008b). Vehicle routing problems and container terminal operations an update of research. The

Vhicle Routing Problem: Latest Advances And New Challenges, 43(3):551–589.

Steenken, D., Henning, A., Freigang, S., Voß, S. (1993). Routing of straddle carriers at a

container terminal with the special aspect of internal moves. OR Spectrum, 15:167–172.

118 Bibliography

Steenken, D., Voß, S., Stahlbock, R. (2004). Container terminal operation and operations

research - a classification and literature review . OR Spectrum, (26):3–49.

Taggart, S. (1999). The 20-ton packet . Wired Magazine, 7(10):246.

United Nations: ESCAP (2007). Regional Shipping and Port Development: Container Traffic

Forecast 2007 Update. United Nations: Economic and Social Comission for Asia and the Pacific

(ESCAP), New York.

Van den Berg, J. P., Gademann, A. J. R. M. (1999). Optimal routing in an automated stor-

age/retrieval system with dedicated storage. IIE Transactions, 31(5):407.

Veenstra, A., Zuidwijk, R., Van Asperen, E. (2012). The extended gate concept for container

terminals: Expanding the notion of dry ports. Maritime Econ Logistics, 14:1479–2931.

Vervest, P., Li, Z. (2009). The Network Experience New Value From Smart Business Networks .

Springer, Berlin, Germany.

Vis, I. F. A. (2006). A comparative analysis of storage and retrieval equipment at a container terminal .

International Journal of Production Economics, 103(2):680–693.

Vis, I. F. A., Carlo, H. J. (2010). Sequencing two cooperating automated stacking cranes in a

container terminal . Transportation Science, 44(2):169–182.

Vis, I. F. A., De Koster, R. (2003). Transshipment of containers at a container terminal: An

overview . European Journal of Operational Research, 147(1):1–16.

Vis, I. F. A., De Koster, R., Peeters, L. W. P. (2001). Determination of the number of automated

guided vehicles required at a semi-automated container terminal . Journal of Operational Research

Society, 52:409–417.

Vis, I. F. A., De Koster, R., Savelsbergh, M. W. P. (2005). Minimum vehicle fleet size under

time-window constraints at a container terminal . Transportation Science, 39(2):249–260.

Vis, I. F. A., Roodbergen, K. J. (2009). Scheduling of container storage and retrieval . Operations

Research, 57(2):456–467.

Wang, F., Lim, A. (2007). A stochastic beam search for the berth allocation problem. Decision

Support Systems, 42:2186–2196.

Wang, T. F., Cullinane, K. (2006). The efficiency of european container terminals and implications

for supply chain management . Maritime Economics and Logistics, 8(1):82–99.

Wiegmans, B. W., Ubbels, B., Rietveld, P., Nijkamp, P. (2002). Investments in container

terminals: Public private partnerships in europe. International Journal of MAritime Econmics, 4:1–20.

Bibliography 119

Wiese, J., Suhl, L., Kliewer, N. (2010). Mathematical models and solution methods for optimal

container terminal yard layouts . OR Spectrum, 32(3):427–452.

Wilhelm, M. R., Ward, T. L. (1987). Solving quadratic assignment problems by simulated annealing .

IIE Transactions, 19(1):107–119.

Zhang, C., Chen, W., Shi, L., Zheng, L. (2010). A note on deriving decision rules to locate export

containers in container yards. European Journal of Operational Research, 205(2):483–485.

Zhang, C., Wan, Y. W., Liu, J., Linn, R. J. (2002). Dynamic crane deployment in container

storage yards . Transportation Research Part B: Methodological, 36(6):537–555.

Zhao, W., Goodchild, A. V. (2010). The impact of truck arrival information on container terminal

rehandling . Transportation Research Part E: Logistics and Transportation Review, 46(3):327–343.

Zhen, L., Chew, E. P., Lee, L. H. (2011). An integrated model for berth template and yard template

planning in transshipment hubs . Transportation Science, 45(4):483–504.

About the author

Amir Hossein Gharehgozli (1983) received his BSc in Industrial Engi-

neering from Sharif University of Technology in 2005 and his MSc in In-

dustrial Engineering from University of Tehran in 2008 both in Tehran,

Iran. In September 2008, he joined Rotterdam School of Management,

Erasmus University Rotterdam. His research interests include: con-

tainer yard operations, transportation, logistics and supply chain man-

agement. His research findings has been presented in many international

conferences including INFORMS Annual Meetings (2009, 2011), and Eu-

ropean Conference on Operational Research (2009). He is currently a

Postdoctoral fellow at Rotterdam School of Management, Erasmus Uni-

versity Rotterdam. He was a visiting scholar from June 2011 until September 2011 in the Department of

Information Management and Decision Science, University of Science and Technology of China, Hefei, Anhui,

China. Furthermore, he was a visiting scholar from September 2011 until December 2011 at Center Interuni-

versitaire de Recherche sur les Réseaux d’Entreprise, la Logistique et le Transport (CIRRELT), Montréal,

Québec, Canada, where he was working with Prof. Gilbert Laporte.

121

Summary

The first containers were introduced to the world in April 1956 when Malcolm McLean moved fifty-eight

35-foot containers from Newark to Houston by a refitted oil tanker, “SS Ideal X” (see the figure). Nowadays,

containerized transportation has become an essential part of intermodal freight transport. More than 90% of

all cargo is now transported by ships. Most of this cargo is handled in containers. A large terminal handles

millions of containers on an annual basis. For example, the terminals in the Port of Rotterdam has handled

more than 11 million containers in 2010. Container terminal managers attempt to efficiently manage the

logistic process of the terminals to keep up with the increasing number of containers to be handled. The

stacking area is particularly critical since most of the containers transiting through a container terminal must

be stored for a certain length of time, possibly in different blocks. Efficiently managing block operations can

significantly improve the overall performance of the container terminal.

(a) Malcolm McLean (b) SS Ideal X (c) First containers

First container transshipment, April 1956

In this dissertation, we first study how to minimize the makespan to stack and retrieve a set of containers

in a block of containers. In Chapters 2 and 3, a single automated stacking crane (ASC) handles the requests.

The block has multiple input/output (I/O) points. The ASC must move retrieval containers from the block

to the I/O points, and must move storage containers from the I/O points to the block. We formulate the

123

124 Summary

problems as continuous time integer programming models and propose exact and heuristic solution methods

to solve them. The numerical experiments reveal that the optimal makespan results are significantly shorter

than results obtained by heuristics commonly used in practice such as first-come-first-served and selecting

the nearest request. In Chapter 4, two ASCs carry out the requests. The ASCs can never pass each other and

must operate sufficiently far from each other. We formulate this problem as an integer programming model

and propose a metaheuristic algorithm to solve it. The results show that the proposed algorithm significantly

outperforms other heuristics and truncated CPLEX.

In Chapters 2–4, we consider that locations as well as destination sides of retrieval containers and I/O

points of storage containers are known. Note that in Chapter 2, each storage location has a given storage

location in the block. In contrast, in Chapters 3 and 4, each storage container can be stacked in a location

selected from a set of open locations suitable for stacking that container. Storage locations can be determined

using the methodology discussed in Chapter 5, where we use a stochastic dynamic programming model to

decide where to stack each incoming container in a block. The objective is to minimize the expected number

of reshuffles. The number of states of the dynamic programming model is overwhelming. We propose a

decision-tree heuristic algorithm to solve real instances. The heuristic uses the results of the exact model

for small-scale problems to generate generalized decision trees. These trees can be used to solve problems

with a realistic number of piles. For small-scale problems, the trees can quickly make optimal decisions. For

large-scale problems, the decision-tree heuristic significantly outperforms stacking policies commonly used

in practice. Those policies perform well as long as the utilization of the block is low. However, since they

are myopic, as the utilization increases, they start performing similar to random stacking which results in

reshuffles. Using the decision trees, we can compare the performance of a shared-stacking policy, which

allows containers of multiple ships to be stacked on top of each other, with a dedicated-stacking policy.

Shared-stacking appears to outperform dedicated-stacking.

Finally, in chapter 6, we conclude the dissertation and summarize the contributions and findings. To-

gether, the exact and heuristic methods developed in this dissertation can be used by container terminal

operators to increase the performance at the stacking area, which consequently affects the whole terminal

performance.

Samenvatting (Summary in Dutch)

In april 1956 werden de eerste containers gëıntroduceerd door Malcolm McLean; hij vervoerde achtenvijftig

35-foot containers van Newark naar Houston met een nieuw uitgeruste olietanker, de “SS Ideal X” (zie de

figuur). Tegenwoordig maakt containertransport een essentieel deel uit van intermodaal vrachtgoedvervoer.

Meer dan 90% van alle vracht wordt nu getransporteerd met schepen. Het grootste deel van deze lading wordt

vervoerd in containers. Een grote terminal verwerkt miljoenen containers op jaarbasis. De terminals van de

haven van Rotterdam bijvoorbeeld hebben in 2010 meer dan 11 miljoen containers verwerkt, waarvan een

groot aantal opgeslagen of uitgeslagen moet worden. Managers van containerterminals proberen het logistieke

proces van de terminal zo efficiënt mogelijk uit te voeren om het groeiende aantal containers te verwerken. Het

gebied waar de containers opgestapeld worden is kritiek, omdat de meeste overgeslagen containers tijdelijk

opgeslagen moeten worden, mogelijk in verschillende blokken. Het efficiënt managen van de opslag en overslag

activiteiten in deze blokken kan de algehele prestaties van de containerterminal significant verbeteren.

(d) Malcolm McLean (e) SS Ideal X (f) First containers

Eerste container verscheping, April 1956

In dit proefschrift bestuderen we eerst hoe we de totale doorlooptijd kunnen minimaliseren van het

inslaan en uitslaan van een groep containers in een container blok. In hoofdstukken 2 en 3 verwerkt een

portaalkraan (automated stacking crane, ASC) een gegeven aantal opdrachten in een blok. Het blok heeft

125

126 Samenvatting (Summary in Dutch)

meerdere in- en output (I/O) punten. De ASC moet de uitslag containers verplaatsen van het blok naar

een I/O punt, en moet opslagcontainers verplaatsen van een I/O punt naar locaties binnen het blok. We

formuleren de problemen als continue tijd integer programmeringsmodellen en doen een voorstel voor exacte

en heuristische oplossingsmethoden om ze op te lossen. De numerieke experimenten tonen dat de optimale

doorlooptijd significant korter is dan de resultaten verkregen met in de praktijk gebruikelijke heuristieken zoals

“first-come-first-served” en het selecteren can de “nearest neighbor” container. In hoofdstuk 4 wordt het blok

bediend door twee ASC’s. De ASC’s kunnen elkaar niet passeren en moeten met voldoende afstand van elkaar

opereren. We formuleren dit probleem als een integer programmeringsmodel en stellen een meta-heuristisch

algoritme voor om dit op te lossen. Het resultaat laat zien dat het voorgestelde algoritme significant beter is

dan de andere heuristieken en CPLEX dat afgekapt wordt na een bepaalde rekentijd.

In hoofdstuk 2–4 beschouwen we locaties en bestemmingen van uitslag containers en I/O punten van

opslagcontainers als bekend. In hoofdstuk 2 had iedere opslagcontainer een gegeven opslag locatie in het

blok. In hoofdstuk 3 en 4 kan elke opslagcontainer gestapeld worden op een locatie geselecteerd uit een

aantal open locaties passend voor het opstapelen van die container. Opslaglocaties kunnen bepaald worden

met de methodologie besproken in hoofdstuk 5, waar we een stochastische dynamische programmeringsmodel

gebruiken om te bepalen waar elke inkomende container in een blok opgestapeld dient te worden. Het doel is

het minimaliseren van het verwachte aantal interne verplaatsingen (verkassingen). Het aantal toestanden van

het dynamische programmeringsmodel is overweldigend. Als oplossing introduceren we een beslissingsboom

met heuristisch algoritme om realistische cases op te lossen. De heuristiek gebruikt de resultaten van het

exacte model voor kleinschalige problemen om “generalized” beslissingsbomen te genereren. Deze bomen

kunnen gebruikt worden om problemen op te lossen met een realistisch aantal containerstapels. Voor klein-

schalige problemen kunnen deze bomen snel optimale beslissingen nemen. Voor grootschalige problemen is de

beslisboom-heuristiek significant beter dan de huidige stapelmethoden. De huidige methoden presteren goed

zolang de benutting van het blok laag is. Echter, door hun myopische werking gaan ze, zodra de blok benutting

toeneemt, steeds meer lijken op een willekeurige stapeling, wat resulteert in extra verkassingen. Gebruik mak-

end van beslisbomen, kunnen we de resultaten vergelijken van een “shared-stacking policy”, welke toestaat

dat containers van meerdere schepen op elkaar containerstapels kunnen vormen, en een “dedicated-stacking

policy”. Shared stapeling blijkt minder verkassingen te geven dan dedicated stapeling.

Tenslotte worden in hoofdstuk 6 conclusies getrokken met betrekking tot de bevindingen en bijdragen van

dit proefschrift. De exacte en heuristische methoden ontwikkeld in dit proefschrift kunnen gebruikt worden

door container terminal operators om de prestaties te verhogen in de container blok, waarmee de prestaties

van de hele terminal b̈ınvloed kunnen worden.

ERIM Ph.D. Series Research in

Management

ERASMUS RESEARCH INSTITUTE OF MANAGEMENT

The ERIM PhD Series contains PhD dissertations in the field of Research in Management defended at Erasmus

University Rotterdam and supervised by senior researchers affiliated to the Erasmus Research Institute of

Management (ERIM). All dissertations in the ERIM PhD Series are available in full text through the ERIM

Electronic Series Portal: http://hdl.handle.net/1765/1. ERIM is the joint research institute of the Rotterdam

School of Management (RSM) and the Erasmus School of Economics at the Erasmus University Rotterdam

(EUR).

Acciaro, M., Bundling Strategies in Global Supply Chains, Promoter(s): Prof.dr. H.E. Haralambides,

EPS-2010-197-LIS, http://hdl.handle.net/1765/19742

Agatz, N.A.H., Demand Management in E-Fulfillment, Promoter(s): Prof.dr.ir. J.A.E.E. van Nunen,

EPS-2009-163-LIS, http://hdl.handle.net/1765/15425

Alexiev, A., Exploratory Innovation: The Role of Organizational and Top Management Team Social

Capital, Promoter(s): Prof.dr. F.A.J. van den Bosch & Prof.dr. H.W. Volberda, EPS-2010-208-STR,

http://hdl.handle.net/1765/20632

Asperen, E. van, Essays on Port, Container, and Bulk Chemical Logistics Optimization, Promoter(s):

Prof.dr.ir. R. Dekker, EPS-2009-181-LIS, http://hdl.handle.net/1765/17626

Assem, M.J. van den, Deal or No Deal? Decision Making under Risk in a Large-Stake TV

Game Show and Related Experiments, Promoter(s): Prof.dr. J. Spronk, EPS-2008-138-F&A,

http://hdl.handle.net/1765/13566

127

128 ERIM Ph.D. Series Research in Management

Benning, T.M., A Consumer Perspective on Flexibility in Health Care: Priority Access Pric-

ing and Customized Care, Promoter(s): Prof.dr.ir. B.G.C. Dellaert, EPS-2011-241-MKT,

http://hdl.handle.net/1765/23670

Betancourt, N.E., Typical Atypicality: Formal and Informal Institutional Conformity, Deviance, and Dy-

namics, Promoter(s): Prof.dr. B. Krug, EPS-2012-262-ORG, http://hdl.handle.net/1765/32345

Bezemer, P.J., Diffusion of Corporate Governance Beliefs: Board Independence and the Emergence of a

Shareholder Value Orientation in the Netherlands, Promoter(s): Prof.dr.ing. F.A.J. van den Bosch &

Prof.dr. H.W. Volberda, EPS-2009-192-STR, http://hdl.handle.net/1765/18458

Binken, J.L.G., System Markets: Indirect Network Effects in Action, or Inaction, Promoter(s): Prof.dr. S.

Stremersch, EPS-2010-213-MKT, http://hdl.handle.net/1765/21186

Blitz, D.C., Benchmarking Benchmarks, Promoter(s): Prof.dr. A.G.Z. Kemna & Prof.dr. W.F.C. Ver-

schoor, EPS-2011-225-F&A, http://hdl.handle.net/1765/22624

Boer-Sorbán, K., Agent-Based Simulation of Financial Markets: A modular, Continuous-Time Approach,

Promoter(s): Prof.dr. A. de Bruin, EPS-2008-119-LIS, http://hdl.handle.net/1765/10870

Boon, C.T., HRM and Fit: Survival of the Fittest!?, Promoter(s): Prof.dr. J. Paauwe & Prof.dr. D.N. den

Hartog, EPS-2008-129-ORG, http://hdl.handle.net/1765/12606

Borst, W.A.M., Understanding Crowdsourcing: Effects of Motivation and Rewards on Participation and

Performance in Voluntary Online Activities, Promoter(s): Prof.dr.ir. J.C.M. van den Ende & Prof.dr.ir.

H.W.G.M. van Heck, EPS-2010-221-LIS, http://hdl.handle.net/1765/ 21914

Braun, E., City Marketing: Towards an Integrated Approach, Promoter(s): Prof.dr. L. van den Berg,

EPS-2008-142-MKT, http://hdl.handle.net/1765/13694

Brumme, W.-H., Manufacturing Capability Switching in the High-Tech Electronics Technology Life Cycle,

Promoter(s): Prof.dr.ir. J.A.E.E. van Nunen & Prof.dr.ir. L.N. Van Wassenhove, EPS-2008-126-LIS,

http://hdl.handle.net/1765/12103

Budiono, D.P., The Analysis of Mutual Fund Performance: Evidence from U.S. Equity Mutual Funds,

Promoter(s): Prof.dr. M.J.C.M. Verbeek, EPS-2010-185-F&A, http://hdl.handle.net/1765/18126

Burger, M.J., Structure and Cooptition in Urban Networks, Promoter(s): Prof.dr. G.A. van der Knaap &

Prof.dr. H.R. Commandeur, EPS-2011-243-ORG, http://hdl.handle.net/1765/26178

Burgers, J.H., Managing Corporate Venturing: Multilevel Studies on Project Autonomy, Integration,

Knowledge Relatedness, and Phases in the New Business Development Process, Promoter(s): Prof.dr.ir.

F.A.J. Van den Bosch & Prof.dr. H.W. Volberda, EPS-2008-136-STR, http://hdl.handle.net/1765/13484

ERIM Ph.D. Series Research in Management 129

Camacho, N.M., Health and Marketing; Essays on Physician and Patient Decision-making, Promoter(s):

Prof.dr. S. Stremersch, EPS-2011-237-MKT, http://hdl.handle.net/1765/23604

Carvalho de Mesquita Ferreira, L., Attention Mosaics: Studies of Organizational Attention, Pro-

moter(s): Prof.dr. P.M.A.R. Heugens & Prof.dr. J. van Oosterhout, EPS-2010-205-ORG,

http://hdl.handle.net/1765/19882

Chen, C.-M., Evaluation and Design of Supply Chain Operations Using DEA, Promoter(s): Prof.dr.

J.A.E.E. van Nunen, EPS-2009-172-LIS, http://hdl.handle.net/1765/16181

Chen, H., Individual Mobile Communication Services and Tariffs, Promoter(s): Prof.dr. L.F.J.M. Pau,

EPS-2008-123-LIS, http://hdl.handle.net/1765/11141

Defilippi Angeldonis, E.F., Access Regulation for Naturally Monopolistic Port Terminals: Lessons

from Regulated Network Industries, Promoter(s): Prof.dr. H.E. Haralambides, EPS-2010-204-LIS,

http://hdl.handle.net/1765/19881

Deichmann, D., Idea Management: Perspectives from Leadership, Learning, and Network Theory, Pro-

moter(s): Prof.dr.ir. J.C.M. van den Ende, EPS-2012-255-ORG, http://hdl.handle.net/1765/ 31174

Derwall, J.M.M., The Economic Virtues of SRI and CSR, Promoter(s): Prof.dr. C.G. Koedijk, EPS-2007-

101-F&A, http://hdl.handle.net/1765/8986

Desmet, P.T.M., In Money we Trust? Trust Repair and the Psychology of Financial Compen-

sations, Promoter(s): Prof.dr. D. De Cremer & Prof.dr. E. van Dijk, EPS-2011-232-ORG,

http://hdl.handle.net/1765/23268

Diepen, M. van, Dynamics and Competition in Charitable Giving, Promoter(s): Prof.dr. Ph.H.B.F.

Franses, EPS-2009-159-MKT, http://hdl.handle.net/1765/14526

Dietvorst, R.C., Neural Mechanisms Underlying Social Intelligence and Their Relationship with the

Performance of Sales Managers, Promoter(s): Prof.dr. W.J.M.I. Verbeke, EPS-2010-215-MKT,

http://hdl.handle.net/1765/21188

Dietz, H.M.S., Managing (Sales)People towards Perfomance: HR Strategy, Leadership & Teamwork, Pro-

moter(s): Prof.dr. G.W.J. Hendrikse, EPS-2009-168-ORG, http://hdl.handle.net/1765/16081

Doorn, S. van, Managing Entrepreneurial Orientation, Promoter(s): Prof.dr. J.J.P. Jansen, Prof.dr.ing.

F.A.J. van den Bosch & Prof.dr. H.W. Volberda, EPS-2012-258-STR, http://hdl.handle.net/1765/32166

Douwens-Zonneveld, M.G., Animal Spirits and Extreme Confidence: No Guts, No Glory, Promoter(s):

Prof.dr. W.F.C. Verschoor, EPS-2012-257-F&A, http://hdl.handle.net/1765/31914

Duca, E., The Impact of Investor Demand on Security Offerings, Promoter(s): Prof.dr. A. de Jong,

EPS-2011-240-F&A, http://hdl.handle.net/1765/26041

130 ERIM Ph.D. Series Research in Management

Eck, N.J. van, Methodological Advances in Bibliometric Mapping of Science, Promoter(s): Prof.dr.ir. R.

Dekker, EPS-2011-247-LIS, http://hdl.handle.net/1765/26509

Eijk, A.R. van der, Behind Networks: Knowledge Transfer, Favor Exchange and Performance,

Promoter(s): Prof.dr. S.L. van de Velde & Prof.dr.drs. W.A. Dolfsma, EPS-2009-161-LIS,

http://hdl.handle.net/1765/14613

Elstak, M.N., Flipping the Identity Coin: The Comparative Effect of Perceived, Projected and Desired Or-

ganizational Identity on Organizational Identification and Desired Behavior, Promoter(s): Prof.dr. C.B.M.

van Riel, EPS-2008-117-ORG, http://hdl.handle.net/1765/10723

Erken, H.P.G., Productivity, R&D and Entrepreneurship, Promoter(s): Prof.dr. A.R. Thurik, EPS-2008-

147-ORG, http://hdl.handle.net/1765/14004

Essen, M. van, An Institution-Based View of Ownership, Promoter(s): Prof.dr. J. van Oosterhout &

Prof.dr. G.M.H. Mertens, EPS-2011-226-ORG, http://hdl.handle.net/1765/22643

Feng, L., Motivation, Coordination and Cognition in Cooperatives, Promoter(s): Prof.dr. G.W.J. Hen-

drikse, EPS-2010-220-ORG, http://hdl.handle.net/1765/21680

Gertsen, H.F.M., Riding a Tiger without Being Eaten: How Companies and Analysts Tame Financial

Restatements and Influence Corporate Reputation, Promoter(s): Prof.dr. C.B.M. van Riel, EPS-2009-171-

ORG, http://hdl.handle.net/1765/16098

Gijsbers, G.W., Agricultural Innovation in Asia: Drivers, Paradigms and Performance, Promoter(s):

Prof.dr. R.J.M. van Tulder, EPS-2009-156-ORG, http://hdl.handle.net/1765/14524

Ginkel-Bieshaar, M.N.G. van, The Impact of Abstract versus Concrete Product Communications on

Consumer Decision-making Processes, Promoter(s): Prof.dr.ir. B.G.C. Dellaert, EPS-2012-256-MKT,

http://hdl.handle.net/1765/31913

Gong, Y., Stochastic Modelling and Analysis of Warehouse Operations, Promoter(s): Prof.dr. M.B.M. de

Koster & Prof.dr. S.L. van de Velde, EPS-2009-180-LIS, http://hdl.handle.net/1765/16724

Greeven, M.J., Innovation in an Uncertain Institutional Environment: Private Software Entrepreneurs in

Hangzhou, China, Promoter(s): Prof.dr. B. Krug, EPS-2009-164-ORG, http://hdl.handle.net/1765/15426

Guenster, N.K., Investment Strategies Based on Social Responsibility and Bubbles, Promoter(s): Prof.dr.

C.G. Koedijk, EPS-2008-175-F&A, http://hdl.handle.net/1765/16209

Hakimi, N.A, Leader Empowering Behavior: The Leader’s Perspective: Understanding the Motivation

behind Leader Empowering Behavior, Promoter(s): Prof.dr. D.L. van Knippenberg, EPS-2010-184-ORG,

http://hdl.handle.net/1765/17701

ERIM Ph.D. Series Research in Management 131

Halderen, M.D. van, Organizational Identity Expressiveness and Perception Management: Princi-

ples for Expressing the Organizational Identity in Order to Manage the Perceptions and Behavioral

Reactions of External Stakeholders, Promoter(s): Prof.dr. S.B.M. van Riel, EPS-2008-122-ORG,

http://hdl.handle.net/1765/10872

Hensmans, M., A Republican Settlement Theory of the Firm: Applied to Retail Banks in England and the

Netherlands (1830-2007), Promoter(s): Prof.dr. A. Jolink & Prof.dr. S.J. Magala, EPS-2010-193-ORG,

http://hdl.handle.net/1765/19494

Hernandez Mireles, C., Marketing Modeling for New Products, Promoter(s): Prof.dr. P.H. Franses, EPS-

2010-202-MKT, http://hdl.handle.net/1765/19878

Hessels, S.J.A., International Entrepreneurship: Value Creation Across National Borders, Promoter(s):

Prof.dr. A.R. Thurik, EPS-2008-144-ORG, http://hdl.handle.net/1765/13942

Heyden, M.L.M., Essays on Upper Echelons & Strategic Renewal: A Multilevel Contingency Ap-

proach, Promoter(s): Prof.dr. F.A.J. van den Bosch & Prof.dr. H.W. Volberda, EPS-2012-259-STR,

http://hdl.handle.net/1765/32167

Hoedemaekers, C.M.W., Performance, Pinned down: A Lacanian Analysis of Subjectivity at

Work, Promoter(s): Prof.dr. S. Magala & Prof.dr. D.H. den Hartog, EPS-2008-121-ORG,

http://hdl.handle.net/1765/10871

Hoogendoorn, B., Social Entrepreneurship in the Modern Economy: Warm Glow, Cold Feet, Promoter(s):

Prof.dr. H.P.G. Pennings & Prof.dr. A.R. Thurik, EPS-2011-246-STR, http://hdl.handle.net/1765/26447

Hoogervorst, N., On The Psychology of Displaying Ethical Leadership: A Behavioral Ethics Ap-

proach, Promoter(s): Prof.dr. D. De Cremer & Dr. M. van Dijke, EPS-2011-244-ORG,

http://hdl.handle.net/1765/26228

Huang, X., An Analysis of Occupational Pension Provision: From Evaluation to Redesigh,

Promoter(s): Prof.dr. M.J.C.M. Verbeek & Prof.dr. R.J. Mahieu, EPS-2010-196-F&A,

http://hdl.handle.net/1765/19674

Hytönen, K.A., Context Effects in Valuation, Judgment and Choice, Promoter(s): Prof.dr.ir. A. Smidts,

EPS-2011-252-MKT, http://hdl.handle.net/1765/30668

Jalil, M.N., Customer Information Driven After Sales Service Management: Lessons from Spare Parts

Logistics, Promoter(s): Prof.dr. L.G. Kroon, EPS-2011-222-LIS, http://hdl.handle.net/1765/22156

Jaspers, F.P.H., Organizing Systemic Innovation, Promoter(s): Prof.dr.ir. J.C.M. van den Ende, EPS-

2009-160-ORG, http://hdl.handle.net/1765/14974

132 ERIM Ph.D. Series Research in Management

Jennen, M.G.J., Empirical Essays on Office Market Dynamics, Promoter(s): Prof.dr. C.G. Koedijk &

Prof.dr. D. Brounen, EPS-2008-140-F&A, http://hdl.handle.net/1765/13692

Jiang, T., Capital Structure Determinants and Governance Structure Variety in Franchising, Promoter(s):

Prof.dr. G. Hendrikse & Prof.dr. A. de Jong, EPS-2009-158-F&A, http://hdl.handle.net/1765/14975

Jiao, T., Essays in Financial Accounting, Promoter(s): Prof.dr. G.M.H. Mertens, EPS-2009-176-F&A,

http://hdl.handle.net/1765/16097

Kaa, G. van, Standard Battles for Complex Systems: Empirical Research on the Home Network,

Promoter(s): Prof.dr.ir. J. van den Ende & Prof.dr.ir. H.W.G.M. van Heck, EPS-2009-166-ORG,

http://hdl.handle.net/1765/16011

Kagie, M., Advances in Online Shopping Interfaces: Product Catalog Maps and Recommender Systems,

Promoter(s): Prof.dr. P.J.F. Groenen, EPS-2010-195-MKT, http://hdl.handle.net/1765/19532

Kappe, E.R., The Effectiveness of Pharmaceutical Marketing, Promoter(s): Prof.dr. S. Stremersch, EPS-

2011-239-MKT, http://hdl.handle.net/1765/23610

Karreman, B., Financial Services and Emerging Markets, Promoter(s): Prof.dr. G.A. van der Knaap &

Prof.dr. H.P.G. Pennings, EPS-2011-223-ORG, http://hdl.handle.net/1765/ 22280

Klein, M.H., Poverty Alleviation through Sustainable Strategic Business Models: Essays on Poverty

Alleviation as a Business Strategy, Promoter(s): Prof.dr. H.R. Commandeur, EPS-2008-135-STR,

http://hdl.handle.net/1765/13482

Krauth, E.I., Real-Time Planning Support: A Task-Technology Fit Perspective, Promoter(s): Prof.dr. S.L.

van de Velde & Prof.dr. J. van Hillegersberg, EPS-2008-155-LIS, http://hdl.handle.net/1765/14521

Kwee, Z., Investigating Three Key Principles of Sustained Strategic Renewal: A Longitudinal Study of

Long-Lived Firms, Promoter(s): Prof.dr.ir. F.A.J. Van den Bosch & Prof.dr. H.W. Volberda, EPS-2009-

174-STR, http://hdl.handle.net/1765/16207

Lam, K.Y., Reliability and Rankings, Promoter(s): Prof.dr. P.H.B.F. Franses, EPS-2011-230-MKT,

http://hdl.handle.net/1765/22977

Lander, M.W., Profits or Professionalism? On Designing Professional Service Firms, Promoter(s): Prof.dr.

J. van Oosterhout & Prof.dr. P.P.M.A.R. Heugens, EPS-2012-253-ORG, http://hdl.handle.net/1765/30682

Langhe, B. de, Contingencies: Learning Numerical and Emotional Associations in an Uncertain

World, Promoter(s): Prof.dr.ir. B. Wierenga & Prof.dr. S.M.J. van Osselaer, EPS-2011-236-MKT,

http://hdl.handle.net/1765/23504

ERIM Ph.D. Series Research in Management 133

Larco Martinelli, J.A., Incorporating Worker-Specific Factors in Operations Management Mod-

els, Promoter(s): Prof.dr.ir. J. Dul & Prof.dr. M.B.M. de Koster, EPS-2010-217-LIS,

http://hdl.handle.net/1765/21527

Li, T., Informedness and Customer-Centric Revenue Management, Promoter(s): Prof.dr. P.H.M. Vervest

& Prof.dr.ir. H.W.G.M. van Heck, EPS-2009-146-LIS, http://hdl.handle.net/1765/14525

Liere, D.W. van, Network Horizon and the Dynamics of Network Positions: A Multi-Method Multi-Level

Longitudinal Study of Interfirm Networks, Promoter(s): Prof.dr. P.H.M. Vervest, EPS-2007-105-LIS,

http://hdl.handle.net/1765/10181

Lovric, M., Behavioral Finance and Agent-Based Artificial Markets, Promoter(s): Prof.dr. J. Spronk &

Prof.dr.ir. U. Kaymak, EPS-2011-229-F&A, http://hdl.handle.net/1765/ 22814

Maas, A.A., van der, Strategy Implementation in a Small Island Context: An Integrative Framework,

Promoter(s): Prof.dr. H.G. van Dissel, EPS-2008-127-LIS, http://hdl.handle.net/1765/12278

Maas, K.E.G., Corporate Social Performance: From Output Measurement to Impact Measurement, Pro-

moter(s): Prof.dr. H.R. Commandeur, EPS-2009-182-STR, http://hdl.handle.net/1765/17627

Markwat, T.D., Extreme Dependence in Asset Markets Around the Globe, Promoter(s): Prof.dr. D.J.C.

van Dijk, EPS-2011-227-F&A, http://hdl.handle.net/1765/22744

Meuer, J., Configurations of Inter-Firm Relations in Management Innovation: A Study in

China’s Biopharmaceutical Industry, Promoter(s): Prof.dr. B. Krug, EPS-2011-228-ORG,

http://hdl.handle.net/1765/22745

Mihalache, O.R., Stimulating Firm Innovativeness: Probing the Interrelations between Managerial and

Organizational Determinants, Promoter(s): Prof.dr. J.J.P. Jansen, Prof.dr.ing. F.A.J. van den Bosch &

Prof.dr. H.W. Volberda, EPS-2012-260-S&E, http://hdl.handle.net/1765/32343

Moitra, D., Globalization of R&D: Leveraging Offshoring for Innovative Capability and Organizational

Flexibility, Promoter(s): Prof.dr. K. Kumar, EPS-2008-150-LIS, http://hdl.handle.net/1765/14081

Moonen, J.M., Multi-Agent Systems for Transportation Planning and Coordination, Promoter(s): Prof.dr.

J. van Hillegersberg & Prof.dr. S.L. van de Velde, EPS-2009-177-LIS, http://hdl.handle.net/1765/16208

Nalbantov G.I., Essays on Some Recent Penalization Methods with Applications in Finance and Marketing,

Promoter(s): Prof. dr P.J.F. Groenen, EPS-2008-132-F&A, http://hdl.handle.net/1765/13319

Nederveen Pieterse, A., Goal Orientation in Teams: The Role of Diversity, Promoter(s): Prof.dr. D.L.

van Knippenberg, EPS-2009-162-ORG, http://hdl.handle.net/1765/15240

Nguyen, T.T., Capital Structure, Strategic Competition, and Governance, Promoter(s): Prof.dr. A. de

Jong, EPS-2008-148-F&A, http://hdl.handle.net/1765/14005

134 ERIM Ph.D. Series Research in Management

Nielsen, L.K., Rolling Stock Rescheduling in Passenger Railways: Applications in Short-term Plan-

ning and in Disruption Management, Promoter(s): Prof.dr. L.G. Kroon, EPS-2011-224-LIS,

http://hdl.handle.net/1765/22444

Niesten, E.M.M.I., Regulation, Governance and Adaptation: Governance Transformations in the Dutch and

French Liberalizing Electricity Industries, Promoter(s): Prof.dr. A. Jolink & Prof.dr. J.P.M. Groenewegen,

EPS-2009-170-ORG, http://hdl.handle.net/1765/16096

Nieuwenboer, N.A. den, Seeing the Shadow of the Self, Promoter(s): Prof.dr. S.P. Kaptein, EPS-2008-151-

ORG, http://hdl.handle.net/1765/14223

Nijdam, M.H., Leader Firms: The Value of Companies for the Competitiveness of the Rotterdam Seaport

Cluster, Promoter(s): Prof.dr. R.J.M. van Tulder, EPS-2010-216-ORG, http://hdl.handle.net/1765/21405

Noordegraaf-Eelens, L.H.J., Contested Communication: A Critical Analysis of Central Bank Speech, Pro-

moter(s): Prof.dr. Ph.H.B.F. Franses, EPS-2010-209-MKT, http://hdl.handle.net/1765/21061

Nuijten, I., Servant Leadership: Paradox or Diamond in the Rough? A Multidimensional Mea-

sure and Empirical Evidence, Promoter(s): Prof.dr. D.L. van Knippenberg, EPS-2009-183-ORG,

http://hdl.handle.net/1765/21405

Oosterhout, M., van, Business Agility and Information Technology in Service Organizations, Promoter(s):

Prof,dr.ir. H.W.G.M. van Heck, EPS-2010-198-LIS, http://hdl.handle.net/1765/19805

Oostrum, J.M., van, Applying Mathematical Models to Surgical Patient Planning, Promoter(s): Prof.dr.

A.P.M. Wagelmans, EPS-2009-179-LIS, http://hdl.handle.net/1765/16728

Osadchiy, S.E., The Dynamics of Formal Organization: Essays on Bureaucracy and Formal Rules, Pro-

moter(s): Prof.dr. P.P.M.A.R. Heugens, EPS-2011-231-ORG, http://hdl.handle.net/1765/23250

Otgaar, A.H.J., Industrial Tourism: Where the Public Meets the Private, Promoter(s): Prof.dr. L. van den

Berg, EPS-2010-219-ORG, http://hdl.handle.net/1765/21585

Ozdemir, M.N., Project-level Governance, Monetary Incentives and Performance in Strate-

gic R&D Alliances, Promoter(s): Prof.dr.ir. J.C.M. van den Ende, EPS-2011-235-LIS,

http://hdl.handle.net/1765/23550

Peers, Y., Econometric Advances in Diffusion Models, Promoter(s): Prof.dr. Ph.H.B.F. Franses, EPS-

2011-251-MKT, http://hdl.handle.net/1765/ 30586

Pince, C., Advances in Inventory Management: Dynamic Models, Promoter(s): Prof.dr.ir. R. Dekker,

EPS-2010-199-LIS, http://hdl.handle.net/1765/19867

Porras Prado, M., The Long and Short Side of Real Estate, Real Estate Stocks, and Equity, Promoter(s):

Prof.dr. M.J.C.M. Verbeek, EPS-2012-254-F&A, http://hdl.handle.net/1765/30848

ERIM Ph.D. Series Research in Management 135

Potthoff, D., Railway Crew Rescheduling: Novel Approaches and Extensions, Promoter(s): Prof.dr. A.P.M.

Wagelmans & Prof.dr. L.G. Kroon, EPS-2010-210-LIS, http://hdl.handle.net/1765/21084

Poruthiyil, P.V., Steering Through: How Organizations Negotiate Permanent Uncertainty and Unresolv-

able Choices, Promoter(s): Prof.dr. P.P.M.A.R. Heugens & Prof.dr. S. Magala, EPS-2011-245-ORG,

http://hdl.handle.net/1765/26392

Pourakbar, M., End-of-Life Inventory Decisions of Service Parts, Promoter(s): Prof.dr.ir. R. Dekker,

EPS-2011-249-LIS, http://hdl.handle.net/1765/30584

Prins, R., Modeling Consumer Adoption and Usage of Value-Added Mobile Services, Promoter(s): Prof.dr.

Ph.H.B.F. Franses & Prof.dr. P.C. Verhoef, EPS-2008-128-MKT, http://hdl.handle.net/1765/12461

Quak, H.J., Sustainability of Urban Freight Transport: Retail Distribution and Local Regulation in Cities,

Promoter(s): Prof.dr. M.B.M. de Koster, EPS-2008-124-LIS, http://hdl.handle.net/1765/11990

Quariguasi Frota Neto, J., Eco-efficient Supply Chains for Electrical and Electronic Products, Pro-

moter(s): Prof.dr.ir. J.A.E.E. van Nunen & Prof.dr.ir. H.W.G.M. van Heck, EPS-2008-152-LIS,

http://hdl.handle.net/1765/14785

Radkevitch, U.L, Online Reverse Auction for Procurement of Services, Promoter(s): Prof.dr.ir. H.W.G.M.

van Heck, EPS-2008-137-LIS, http://hdl.handle.net/1765/13497

Rijsenbilt, J.A., CEO Narcissism; Measurement and Impact, Promoter(s): Prof.dr. A.G.Z. Kemna &

Prof.dr. H.R. Commandeur, EPS-2011-238-STR, http://hdl.handle.net/1765/ 23554

Roelofsen, E.M., The Role of Analyst Conference Calls in Capital Markets, Promoter(s): Prof.dr. G.M.H.

Mertens & Prof.dr. L.G. van der Tas RA, EPS-2010-190-F&A, http://hdl.handle.net/1765/18013

Rook, L., Imitation in Creative Task Performance, Promoter(s): Prof.dr. D.L. van Knippenberg, EPS-

2008-125-ORG, http://hdl.handle.net/1765/11555

Rosmalen, J. van, Segmentation and Dimension Reduction: Exploratory and Model-Based Approaches,

Promoter(s): Prof.dr. P.J.F. Groenen, EPS-2009-165-MKT, http://hdl.handle.net/1765/15536

Roza, M.W., The Relationship between Offshoring Strategies and Firm Performance: Impact of Innovation,

Absorptive Capacity and Firm Size, Promoter(s): Prof.dr. H.W. Volberda & Prof.dr.ing. F.A.J. van den

Bosch, EPS-2011-214-STR, http://hdl.handle.net/1765/22155

Rus, D., The Dark Side of Leadership: Exploring the Psychology of Leader Self-serving Behavior, Pro-

moter(s): Prof.dr. D.L. van Knippenberg, EPS-2009-178-ORG, http://hdl.handle.net/1765/16726

Samii, R., Leveraging Logistics Partnerships: Lessons from Humanitarian Organizations, Pro-

moter(s): Prof.dr.ir. J.A.E.E. van Nunen & Prof.dr.ir. L.N. Van Wassenhove, EPS-2008-153-LIS,

http://hdl.handle.net/1765/14519

136 ERIM Ph.D. Series Research in Management

Schaik, D. van, M&A in Japan: An Analysis of Merger Waves and Hostile Takeovers, Promoter(s): Prof.dr.

J. Spronk & Prof.dr. J.P.M. Groenewegen, EPS-2008-141-F&A, http://hdl.handle.net/1765/13693

Schauten, M.B.J., Valuation, Capital Structure Decisions and the Cost of Capital, Promoter(s): Prof.dr.

J. Spronk & Prof.dr. D. van Dijk, EPS-2008-134-F&A, http://hdl.handle.net/1765/13480

Schellekens, G.A.C., Language Abstraction in Word of Mouth, Promoter(s): Prof.dr.ir. A. Smidts, EPS-

2010-218-MKT, ISBN: 978-90-5892-252-6, http://hdl.handle.net/1765/21580

Sotgiu, F., Not All Promotions are Made Equal: From the Effects of a Price War to Cross-chain Can-

nibalization, Promoter(s): Prof.dr. M.G. Dekimpe & Prof.dr.ir. B. Wierenga, EPS-2010-203-MKT,

http://hdl.handle.net/1765/19714

Srour, F.J., Dissecting Drayage: An Examination of Structure, Information, and Control in Drayage

Operations, Promoter(s): Prof.dr. S.L. van de Velde, EPS-2010-186-LIS, http://hdl.handle.net/1765/18231

Stam, D.A., Managing Dreams and Ambitions: A Psychological Analysis of Vision Communication, Pro-

moter(s): Prof.dr. D.L. van Knippenberg, EPS-2008-149-ORG, http://hdl.handle.net/1765/14080

Stienstra, M., Strategic Renewal in Regulatory Environments: How Inter- and Intra-organisational Institu-

tional Forces Influence European Energy Incumbent Firms, Promoter(s): Prof.dr.ir. F.A.J. Van den Bosch

& Prof.dr. H.W. Volberda, EPS-2008-145-STR, http://hdl.handle.net/1765/13943

Sweldens, S.T.L.R., Evaluative Conditioning 2.0: Direct versus Associative Transfer of Affect to Brands,

Promoter(s): Prof.dr. S.M.J. van Osselaer, EPS-2009-167-MKT, http://hdl.handle.net/1765/16012

Szkudlarek, B.A., Spinning the Web of Reentry: [Re]connecting reentry training theory and practice, Pro-

moter(s): Prof.dr. S.J. Magala, EPS-2008-143-ORG, http://hdl.handle.net/1765/13695

Tempelaar, M.P., Organizing for Ambidexterity: Studies on the Pursuit of Exploration and Exploitation

through Differentiation, Integration, Contextual and Individual Attributes, Promoter(s): Prof.dr.ing. F.A.J.

van den Bosch & Prof.dr. H.W. Volberda, EPS-2010-191-STR, http://hdl.handle.net/1765/18457

Tiwari, V., Transition Process and Performance in IT Outsourcing: Evidence from a Field Study and

Laboratory Experiments, Promoter(s): Prof.dr.ir. H.W.G.M. van Heck & Prof.dr. P.H.M. Vervest, EPS-

2010-201-LIS, http://hdl.handle.net/1765/19868

Tröster, C., Nationality Heterogeneity and Interpersonal Relationships at Work, Promoter(s): Prof.dr. D.L.

van Knippenberg, EPS-2011-233-ORG, http://hdl.handle.net/1765/23298

Tuk, M.A., Is Friendship Silent When Money Talks? How Consumers Respond to Word-of-Mouth

Marketing, Promoter(s): Prof.dr.ir. A. Smidts & Prof.dr. D.H.J. Wigboldus, EPS-2008-130-MKT,

http://hdl.handle.net/1765/12702

ERIM Ph.D. Series Research in Management 137

Tzioti, S., Let Me Give You a Piece of Advice: Empirical Papers about Advice Taking in Market-

ing, Promoter(s): Prof.dr. S.M.J. van Osselaer & Prof.dr.ir. B. Wierenga, EPS-2010-211-MKT,

hdl.handle.net/1765/21149

Vaccaro, I.G., Management Innovation: Studies on the Role of Internal Change Agents, Promoter(s):

Prof.dr. F.A.J. van den Bosch & Prof.dr. H.W. Volberda, EPS-2010-212-STR, hdl.handle.net/1765/21150

Verheijen, H.J.J., Vendor-Buyer Coordination in Supply Chains, Promoter(s): Prof.dr.ir. J.A.E.E. van

Nunen, EPS-2010-194-LIS, http://hdl.handle.net/1765/19594

Verwijmeren, P., Empirical Essays on Debt, Equity, and Convertible Securities, Promoter(s): Prof.dr. A.

de Jong & Prof.dr. M.J.C.M. Verbeek, EPS-2009-154-F&A, http://hdl.handle.net/1765/14312

Vlam, A.J., Customer First? The Relationship between Advisors and Consumers of Financial Products,

Promoter(s): Prof.dr. Ph.H.B.F. Franses, EPS-2011-250-MKT, http://hdl.handle.net/1765/30585

Waard, E.J. de, Engaging Environmental Turbulence: Organizational Determinants for Repetitive Quick

and Adequate Responses, Promoter(s): Prof.dr. H.W. Volberda & Prof.dr. J. Soeters, EPS-2010-189-STR,

http://hdl.handle.net/1765/18012

Wall, R.S., Netscape: Cities and Global Corporate Networks, Promoter(s): Prof.dr. G.A. van der Knaap,

EPS-2009-169-ORG, http://hdl.handle.net/1765/16013

Waltman, L., Computational and Game-Theoretic Approaches for Modeling Bounded Rational-

ity, Promoter(s): Prof.dr.ir. R. Dekker & Prof.dr.ir. U. Kaymak, EPS-2011-248-LIS,

http://hdl.handle.net/1765/26564

Wang, Y., Information Content of Mutual Fund Portfolio Disclosure, Promoter(s): Prof.dr. M.J.C.M.

Verbeek, EPS-2011-242-F&A, http://hdl.handle.net/1765/26066

Weerdt, N.P. van der, Organizational Flexibility for Hypercompetitive Markets: Empirical Evidence of

the Composition and Context Specificity of Dynamic Capabilities and Organization Design Parameters,

Promoter(s): Prof.dr. H.W. Volberda, EPS-2009-173-STR, http://hdl.handle.net/1765/16182

Wubben, M.J.J., Social Functions of Emotions in Social Dilemmas, Promoter(s): Prof.dr. D. De Cremer

& Prof.dr. E. van Dijk, EPS-2009-187-ORG, http://hdl.handle.net/1765/18228

Xu, Y., Empirical Essays on the Stock Returns, Risk Management, and Liquidity Creation of Banks,

Promoter(s): Prof.dr. M.J.C.M. Verbeek, EPS-2010-188-F&A, http://hdl.handle.net/1765/18125

Yang, J., Towards the Restructuring and Co-ordination Mechanisms for the Architecture of

Chinese Transport Logistics, Promoter(s): Prof.dr. H.E. Harlambides, EPS-2009-157-LIS,

http://hdl.handle.net/1765/14527

138 ERIM Ph.D. Series Research in Management

Yu, M., Enhancing Warehouse Perfromance by Efficient Order Picking, Promoter(s): Prof.dr. M.B.M. de

Koster, EPS-2008-139-LIS, http://hdl.handle.net/1765/13691

Zhang, D., Essays in Executive Compensation, Promoter(s): Prof.dr. I. Dittmann, EPS-2012-261-F&A,

http://hdl.handle.net/1765/32344

Zhang, X., Scheduling with Time Lags, Promoter(s): Prof.dr. S.L. van de Velde, EPS-2010-206-LIS,

http://hdl.handle.net/1765/19928

Zhou, H., Knowledge, Entrepreneurship and Performance: Evidence from Country-level and Firm-

level Studies, Promoter(s): Prof.dr. A.R. Thurik & Prof.dr. L.M. Uhlaner, EPS-2010-207-ORG,

http://hdl.handle.net/1765/20634

Zwan, P.W. van der, The Entrepreneurial Process: An International Analysis of Entry and

Exit, Promoter(s): Prof.dr. A.R. Thurik & Prof.dr. P.J.F. Groenen, EPS-2011-234-ORG,

http://hdl.handle.net/1765/23422

Zwart, G.J. de, Empirical Studies on Financial Markets: Private Equity, Corporate Bonds and Emerg-

ing Markets, Promoter(s): Prof.dr. M.J.C.M. Verbeek & Prof.dr. D.J.C. van Dijk, EPS-2008-131-F&A,

http://hdl.handle.net/1765/12703

AMIR HOSSEIN GHAREHGOZLI

Developing New Methods
for Efficient Container
Stacking Operations

A
M

IR
 H

O
S

S
E

IN
 G

H
A

R
E

H
G

O
Z

LI
- D

e
v

e
lo

p
in

g
 N

e
w

 M
e

th
o

d
s fo

r
E

fficie
n

t C
o

n
ta

in
e

r S
ta

ck
in

g
 O

p
e

ra
tio

n
s

ERIM PhD Series
Research in Management

E
ra

sm
u

s
R

e
se

a
rc

h
 I

n
st

it
u

te
 o

f
M

a
n

a
g

e
m

e
n

t
-

269

E
R

IM

D
e

si
g

n
 &

 l
a

yo
u

t:
 B

&
T

 O
n

tw
e

rp
 e

n
 a

d
vi

e
s

 (
w

w
w

.b
-e

n
-t

.n
l)

P
ri

n
t:

 H
a

ve
k

a

 (
w

w
w

.h
a

ve
k

a
.n

l)DEVELOPING NEW METHODS FOR EFFICIENT CONTAINER STACKING OPERATIONS

Containerized transportation has become an essential part of the intermodal freight
transport. Millions of containers pass through container terminals on an annual basis.
Handling a large number of containers arriving and leaving terminals by different
modalities including the new mega-size ships significantly affects the performance of
terminals. Container terminal operators are always looking for new technologies and
smart solutions to maintain efficiency. They need to know how different operations at the
terminal interact and affect the performance of the terminal as a whole. Among all
operations, the stacking area is of special importance since almost every container must be
stacked in this area for a period of time. If the stacking operations of the terminal are not
well managed, then the response time of the terminal significantly increases and
consequently the performance decreases. In this dissertation, we propose, develop, and
test optimization methods to support the decisions of container terminal operators in the
stacking area. First, we study how to sequence storage and retrieval containers to be
carried out by a single or two automated stacking cranes in a block of containers. The
objective is to minimize the makespan of the cranes. Finally, we study how to minimize the
expected number of reshuffles when incoming containers have to be stacked in a block of
containers. A reshuffle is the removal of a container stacked on top of a desired container.
Reshuffling containers is one of the daily operations at a container terminal which is time
consuming and increases a ship's berthing time.

The Erasmus Research Institute of Management (ERIM) is the Research School (Onder -
zoek school) in the field of management of the Erasmus University Rotterdam. The founding
participants of ERIM are the Rotterdam School of Management (RSM), and the Erasmus
School of Econo mics (ESE). ERIM was founded in 1999 and is officially accre dited by the
Royal Netherlands Academy of Arts and Sciences (KNAW). The research under taken by
ERIM is focused on the management of the firm in its environment, its intra- and interfirm
relations, and its busi ness processes in their interdependent connections.

The objective of ERIM is to carry out first rate research in manage ment, and to offer an
ad vanced doctoral pro gramme in Research in Management. Within ERIM, over three
hundred senior researchers and PhD candidates are active in the different research pro -
grammes. From a variety of acade mic backgrounds and expertises, the ERIM commu nity is
united in striving for excellence and working at the fore front of creating new business
knowledge.

Erasmus Research Institute of Management -
Rotterdam School of Management (RSM)
Erasmus School of Economics (ESE)
Erasmus University Rotterdam (EUR)
P.O. Box 1738, 3000 DR Rotterdam,
The Netherlands

Tel. +31 10 408 11 82
Fax +31 10 408 96 40
E-mail info@erim.eur.nl
Internet www.erim.eur.nl

Tue Oct 02 2012 - B&T12609_ERIM_Omslag_Gharehgozli_2okt12.pdf

