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l)APPLYING MATHEMATICAL MODELS TO SURGICAL PATIENT PLANNING

On a daily basis surgeons, nurses, and managers face cancellation of surgery, peak
demands on wards, and overtime in operating rooms. Moreover, the lack of an integral
planning approach for operating rooms, wards, and intensive care units causes low
resource utilization and makes patient flows unpredictable. An ageing population and
advances in medicine are putting the available healthcare budget under great pressure.
Under these circumstances, hospitals are seeking innovative ways of providing optimal
quality at the lowest costs.

This thesis provides hospitals with instruments for optimizing surgical patient
planning. We describe a cyclic and integrated operating room planning approach, called
master surgical scheduling, and models for efficient planning of emergency operations.
Application of these instruments enables the simultaneous optimization of the utilization
of operating rooms, ward and intensive care units. Moreover, iteratively executing a
master schedule of surgical case types provides steady and thus more predictable patient
flows in hospitals. 

The approach is generic and so can be implemented taking account of specific
characteristics of individual hospitals. Prerequisites for successful implementation of
logistical models in hospitals comprise sufficient room for last-minute changes as well as
keeping the ultimate responsibility for individual patient scheduling with medical
specialists. Both are satisfied in the master surgical scheduling approach which has already
been successfully implemented in hospitals.
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Chapter 1

Introduction

1. General introduction and research motivation

European countries face an ageing population and rising health care costs (OECD, 2008).

At the same time, the general public demands the latest technologies, combined with short

waiting and access times. This growing demand for cure and care provided by hospitals

puts a strong focus on effectiveness and efficiency. Hospital management is challenged to

deal with the seemingly conflicting objectives of low costs, high quality of care, and high

quality of labor. Health care logistics can potentially make a major contribution to

maintaining high level care and affordable costs.

One of the major challenges of health care logistics in hospitals is to improve

processes related to surgical case scheduling. Surgical scheduling is a complex task in

hospitals, and a popular topic among academic researchers. Typically, the focus is on

maximizing operating room utilization and revenues. However, an operating room

department is not a stand-alone unit within a hospital. Studies on academic models and real

implementations of strategies that optimize surgical scheduling taking into account the

other partners in the care chain.

This thesis describes the concept of master surgical scheduling in a 7-stepwise

approach. This approach cyclically executes a master schedule of surgical case types. A

master surgical schedule not only allows for optimization of operating room utilization, it

creates robustness and minimizes overtime while it also makes resource demands on other

departments, such as wards, more predictable. Master surgical scheduling is a generic

framework that helps hospitals to improve their logistics. This thesis provides the reader

with organizational prerequisites, mathematical models, managerial aspects, and practical

insights into the suggested master surgical scheduling approach.

Dealing with emergency arrivals in operating room departments is for surgeons

and staff one of the most demanding tasks. Within a master surgical scheduling approach

the thesis provides insights into how to deal with emergency surgical patients arriving

during day and night times. The proposed models may be integrated in the master surgical

scheduling approach, but can function in conjunction with other elective scheduling

approaches as well. Together with the master surgical scheduling approach this thesis

provides a logistical approach to improve both the operational and tactical level of

operating room management.

1.1. Organizational aspects

Hospital organizations are organizations with a complex structure. An operating room

department is one of those places where many workers cooperate to deliver complex and
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high-level care to patients. About sixty percent of the inpatient hospital admissions are

surgery related. Hence, often one of the biggest concerns of hospital management is the

manageability of surgical scheduling processes. Any logistical problem in surgical

scheduling has a substantial impact on a hospital organization. Moreover, such disruptions

due to logistical problems cause both frustrations of staff and inefficiency. Many actors are

involved in the process of surgical case scheduling. This can easily lead to inefficiencies in

information transfer and unnecessarily repeated work. Hospital management wants to keep

the surgical scheduling processes efficient, and at the work floor level easy and

transparent.

Sometimes patients are scheduled months ahead, sometimes they are scheduled

just minutes in advance. Hence, flexibility in hospital organizations is a prerequisite for

providing optimal care to patients. The argument that flexibility is required to schedule

emergency patients is particularly used by physicians. However, the argument is often

misused to claim more resources than are necessary. For example, requests by surgical

departments for operating room capacity often substantially exceed the amount of

operating room time that is actually needed. This leads to underutilization of expensive and

scarce operating room capacity. Finding a good balance between efficiency and flexibility

to deal with emergencies is hence of paramount importance.

Physicians are high-level educated professionals who work with individual

patients and who perform multiple tasks, ranging from seeing patients at outpatient clinics

and performing surgery to research and managerial tasks. From an organizational

perspective, physicians have a substantial amount of formal and informal power. Any

change in a logistical process should therefore be accounted by this group of actors.

Therefore, to be applicable, any logistical model should take account of the autonomy and

particularities of this group of actors. Therefore any logistical improvement project needs

to discuss these limits carefully. Operations research models can help by providing

analytical insights for such discussions.

Personnel at wards and operating room departments are employed by hospitals.

Strict labor rules apply for this group of actors in hospitals such that work schedules of

nurses are highly regulated. For example, changing staffing levels of regularly employed

staff can only be done weeks in advance. It is therefore important that forecasts on the

required demand are close to the actual demand, because deviations generally increase

costs. Hence, stability of patient flows improves efficient usage of this scarce resource.

1.2. Operations Research aspects

Operations Research can generate models to improve patient planning. However,

improving hospital logistics by such models is only possible when they actually get

implemented. A prerequisite for such models is a good trade-off between a correct

representation of reality and understandability. Models that include huge numbers of
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different types of input and output parameters and variables are hard to understand by

practitioners. On the other hand, models that are built up by too few parameters and

variables may lack sufficient detail. Hence, logistical models for operating room planning

and scheduling require thorough modeling such that they are both understandable and a

sufficiently correct representation of reality.

Another requirement for models to be usable in practice is their adherence to

organizational conditions as explained in the previous subsection. When performing a

project, often not all these conditions are clear at a project start. Practitioners frequently do

not want to choose between objectives of efficiency, quality of labor, and quality of care.

Mathematical models therefore generally have multi-criteria objectives, while it might be

impossible to determine weight factors from practice. Additionally, hospital staff often

adds restrictions during logistical projects. These restrictions might lack validity from a

logistical prospective and may be due to personal preferences. They might even prevent

finding a feasible solution at all. Operations researchers working with logistical models in

hospital practice should hence explicitly focus on clearness and check carefully the validity

and impact of organizational constraints to provide practice with useful and applicable

models.

Scheduling decisions in the context of, for example, operating room departments

face fast increasing numbers of possible solutions. In itself this leads to computational

complexity. Moreover, problem solving in hospitals is often complicated due to the

inherent stochastic nature of health care processes. Logistical solutions should therefore be

robust against such stochastic uncertainty. Besides this, the ongoing development of

information technology makes that more data and other sources of information come

available. The combination of increasing availability of data, huge sets of possible

solutions and the stochastic nature of hospital processes makes hospital logistics an

interesting application area for operations research from both a technical and a practical

perspective.

2. Background and literature overview

2.1. Background

Within the relatively small part of the operations research/management science research

community that is active in the field of healthcare management (Carter, 2002),

optimization of operating room (OR) department planning and scheduling has always been

a popular subject (Dexter, et al., 2004; Gerchak, et al., 1996; Guinet and Chaabane, 2003;

Hans, et al., 2008; Lamiri, et al., 2008). As approximately 60% of all inpatient admissions

consist a visit to an OR department, and various scarce and expensive resources are

involved, it is apparent that its efficiency is paramount.
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The OR department is often regarded as a production facility with many process

uncertainties, like emergencies (Wullink, et al., 2007), surgery durations (Strum, et al.,

2000) and resource availability (McIntosh, et al., 2006). It is myopic to focus on just the

OR department itself. Its schedule influences processes throughout the hospital (van

Oostrum, et al., 2008). Also, other departments like the intensive care units (ICUs) and

wards pose constraints on the OR schedule that may not be ignored (e.g., bed availability

after surgery) (Vanberkel and Blake, 2007). From an operations research perspective, OR

planning and scheduling obviously poses very challenging problems. From the OR

manager’s perspective, the challenge is to actually implement the resulting tools (Stoop

and Wiers, 1996). The influence of various stakeholders, with varying degrees of

autonomy, is often substantial. In the case of OR scheduling, surgical services (with

surgeons), surgery and anesthesia assistants, and anesthesiologists, all have a considerable

influence on OR management (Glouberman and Mintzberg, 2001a; b; Mintzberg, 1997).

Intelligent OR planning and scheduling approaches proposed in the literature often fail to

account for this, which explains their relatively marginal impact in practice (Harper, 2002;

Roth and van Dierdonck, 1995) and the small number of successful implementations in the

literature (Blake and Donald, 2002).

As we shall argue, Master Surgical Scheduling (MSS) is a very promising

approach from both perspectives. It cyclically executes a master schedule of surgery types,

which contains slots for surgery types that recur at least once every cycle (of, say, 4

weeks). In most hospitals and especially clinics, a large part of the case mix in the OR

department is recurrent. Such recurrent surgery types can be scheduled in advance in an

MSS. From an operations research perspective an MSS can be optimized regarding OR

utilization, robustness, overtime, resource conflicts (e.g. limited X-rays), etc. Moreover, it

can be drawn up to optimize the inflow into subsequent departments (e.g., ICU, wards).

From an OR manager’s perspective, the cyclic approach lowers the management burden of

making a new schedule every week. It also allows early coordination of personnel and

departments involved. More importantly, the medical autonomy is maintained: surgeons

remain in charge of selecting patients for particular slots in the schedule. Different MSS

approaches have been proposed in the literature (Belien and Demeulemeester, 2007; Blake

and Donald, 2002; Van Houdenhoven, et al., 2007c; van Oostrum, et al., 2008; Vissers, et

al., 2005). Nevertheless, various MSS implementation issues have not been dealt with.

2.2. A hierarchical overview of OR planning and scheduling

This section gives an overview of the various OR planning and scheduling problems, and

the solution approaches suggested in the literature. We focus entirely on resource capacity

planning and scheduling problems, and discard other managerial areas such as medical

planning, material coordination, and financial management. To position the various OR

planning and scheduling problems we use the classical hierarchical decomposition of the
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managerial functions into four levels: strategic, tactical, offline and online operational

control (Vissers, et al., 2001). The remainder of this section subsequently addresses each

level. For a complete overview of the literature concerning OR planning and scheduling

we refer to (Denton, et al., 2007; Dexter, et al., 2004; Dexter, et al., 1999a; b; Guinet and

Chaabane, 2003; Hans, et al., 2008; McIntosh, et al., 2006; Pham and Klinkert, 2008; Sier,

et al., 1997; Van Houdenhoven, et al., 2007b; Zhou and Dexter, 1998).

Strategic OR planning and scheduling

To reach organizational goals, the strategic level addresses the dimensioning of

core OR resources, such as (inpatient, outpatient, emergency) ORs, personnel, instruments

(e.g. X-rays), etc. It also involves case mix planning, i.e. the selection of surgery types, and

the determination of the desired patient type volumes (Vissers, et al., 2002). Agreements

are made with surgical services / specialties concerning their annual patient volumes and

assigned OR time. The dimensioning of subsequent departments’ resources (e.g. ICUs,

ward beds) is also done (Vanberkel and Blake, 2007). Strategic planning is typically based

on historical data and/or forecasts. The planning horizon is typically a year or more.

Tactical OR planning and scheduling

The tactical level addresses the usage of the resource on a medium term, typically

with a planning horizon of several weeks (Blake and Donald, 2002; Wachtel and Dexter,

2008). The actual patient demand (e.g. waiting lists, appointment requests for surgery) is

used as input. In this stage, the weekly OR time is divided over specialties or surgeons, and

elective patients are assigned to days. For the division of OR time, two approaches exist.

When a closed block planning approach is used, each specialty will receive a number of

OR blocks (usually OR-days). In an (uncommon) open block planning approach, OR time

is assigned following the arrival of requests for OR time by surgeons.

On the tactical level, the surgery sequence is usually not of concern. Instead on

this level is verified whether the planned elective surgeries cause resource conflicts for the

OR, for subsequent departments (ICU, wards), or for required instruments with limited

availability (e.g. X-rays). The design of a Master Surgical Schedule is a tactical planning

problem.

Offline operational OR planning and scheduling

The offline operational level addresses the in advance scheduling of resources and

sequencing of activities, typically with a planning horizon of a week (Sier, et al., 1997). It

encompasses the rostering of OR-personnel, and the add-on scheduling of semi-urgent

surgeries in reserved or unused OR-time (Dexter, et al., 1999b). In addition, it addresses

the sequencing of surgeries (Denton, et al., 2007), to prevent critical resource conflicts, e.g.

regarding X-rays, instrument sets, surgeons, etc. When there are no emergency ORs, the

sequencing of the elective surgeries can also aid in spreading the planned starting times of
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elective surgeries (which are “break-in moments” for emergency surgeries) in order to

reduce the emergency surgery waiting time (Wullink, et al., 2007).

Online operational OR planning and scheduling

The online operational level addresses the monitoring and control of the OR

activities during the day. Obviously at this level of control, all uncertainty materializes and

has to be dealt with. If necessary, surgeries are rescheduled, or even cancelled (Dexter, et

al., 2004; McIntosh, et al., 2006). This is usually done by a day coordinator in the OR

department. Emergency surgeries, which have to be dealt with as soon as possible, are

scheduled, and emergency OR teams may have to be assembled and dispatched to the first

available OR. If there are emergency ORs, these emergency surgeries are dispatched in

these ORs. If there are no such ORs, they are scheduled somewhere in the elective surgical

schedule.

3. Success factors for planning approaches

We subsequently discuss several criteria that influence the success of a planning approach:

data requirements, resource utilization, robustness, alignment with planning of relevant

other departments or resources, autonomy of surgeons, managerial workload, and financial

control.

Data requirements

Intelligent planning approaches are data intensive. A larger amount of data or

higher level of detail available generally gives more insight in processes and leads to better

predictions (Dexter, et al., 2007). On the one hand, the quality of planning potentially

increases. On the other hand, a smaller amount of data or a lower level of detail required

makes it more likely that these data can be obtained.

Resource utilization

The OR department is one of the most expensive resources in a hospital.

Therefore, planning approaches generally try to maximize the utilization of this

department. As we shall argue with the following assessment criterion, utilization by itself

is not a good performance indicator – it should always be jointly considered with

robustness.

Robustness

Robustness of a planning approach can have two interpretations: robustness

against disruptions and robustness against ‘cheating’. The former is the extent in which an

approach is able to deal with disruptions like emergency arrivals, resource unavailability,

overtime, and late cancellations. Moreover, a robust approach should deal with such

disruptions on a short term. A high responsiveness to disruption reduces the potential

number of affected processes in a hospital.



21

Chapter 1 9

The latter is the extent in which an approach is able to cope with actors trying to

‘trick’ the planning in their favor. As an example, a surgeon may request more OR time

than he actually needs. A planning approach that can handle both disruptions and prevent

actors to cheat the system leads to stable schedules and is thus optimally robust.

Robustness against disruptions is typically obtained by using slack time or slack

capacity. For example, in an elective surgery, usually some time is reserved at the end of

the regular program to deal with possible disruptions. Obviously, the more robust the

program, the more time needs to be reserved, and thus the lower the OR utilization.

Consequently, robustness and utilization should always be jointly considered as

performance criteria (Van Houdenhoven, et al., 2007a).

Alignment with planning of relevant other departments or resources

An OR planning approach should be aligned with the planning of other relevant

departments or resources, such as wards, outpatient clinics, and central sterilization

departments. A mismatch between, for instance, the surgical schedules and the scheduling

of wards, can seriously affect resource utilization and lead to surgery cancellations.

Autonomy of surgeons

Healthcare delivery necessitates medical decision making by professionals. This

includes decisions on when to deliver care, which are not always based on medical

necessity. When this is a medical necessity, a planning approach should incorporate

sufficient flexibility to allow for this. Here, the surgeon’s autonomy is essential.

Managerial workload

Many logistical concepts like just-in-time and workload control are focused on

reducing system complexity, and thereby the managerial workload. This workload consists

of the required effort to make planning decisions and maintain operational control. The

required managerial workload is influenced by a planning and scheduling approach.

Financial control

The more centralized a planning approach, the more it allows financial monitoring

and control of the OR department’s production. This is particularly important for countries

with healthcare systems that apply elements of market competition, such as yard stick

competition.

4. Comparing surgical scheduling approaches

4.1. Decentralized and centralized planning approaches: advantages and

disadvantages

We discern between centralized and decentralized planning approaches. In a decentralized

approach, surgeons decide on the assignment of patients. In a centralized approach, a
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central planner decides on the eventual division of OR time and assignment of patients.

Both approaches require hospital information systems to store data and monitor

production. The allocation of decision making power should be reflected in and supported

by such decision support systems and information systems. In a way these systems offer an

implementation of the chosen allocation of decision making power. We compare

advantages and disadvantages of the centralized and decentralized planning approaches,

using the success factors outlined in Section 3. The comparison is summarized in Table 1.

A decentralized planning approach offers surgeons full autonomy. It requires very

limited data, and reduces the managerial workload at a tactical level. However, the lack of

coordination amongst surgeons, and between surgeons and other departments, deteriorates

predictability of patient flows, robustness, and resource utilization and necessitates a more

intensive online operational control. A decentralized approach is not robust against

surgeons trying to ‘cheat’ the system in their advantage, e.g. by claiming more OR time

than actually required, thus leading to lower resource utilization. Finally, although a

decentralized planning approach allows for monitoring, it complicates the financial control

of the OR department’s production.

A centralized planning approach offers little autonomy to surgeons. It requires

substantial amounts of data and comes with a substantial workload at a tactical level. The

resulting schedules are characterized by high robustness and high utilization. The OR

Decentralized planning approach Centralized planning approach

Full surgeon autonomy Little surgeon autonomy

Requires limited data Requires substantial amount of data

Reduces managerial workload at tactical

level

Substantial workload at tactical level

Requires intensive online operational

control

Requires online operational control

Results in lack of coordination Good integration of multiple planning

processes

Low robustness against cheating, lo w

predictability of patient flows, and lo w

utilization

High robustness against cheating, high

pred ictability of patient flows, and high

utilization

Table 1: Summary of the advantages and disadvantages of decentralized and centralized

planning approaches
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department has to gather and record data of the particularities of all surgeons, patients, and

treatments types, and continuously update these data to provide the required process

insight to the planner. Since fewer actors are involved in a centralized planning approach,

integration with other planning processes within the hospital is easier. Nevertheless, this

alignment still requires substantial effort. A major disadvantage of this planning approach

is the low autonomy of the surgeons. Surgeons are not allowed to decide when to operate a

patient, which might result in surgeons ‘cheating’ the approach by labeling all patients as

urgent. Finally, a centralized planning approach allows for monitoring and financial

control.

4.2. Potential advantages of the MSS approach

An MSS approach comprises of a schedule of recurrent surgery types, which is cyclically

executed. The goal of an MSS approach is to optimize utilization, level the workload, and

construct a robust schedule. Patients are assigned to the appropriate slots in this schedule.

The planning horizon of the schedule is called the MSS cycle length.

The MSS approach combines advantages of both centralized and decentralized

approaches. The main advantages are that it offers the autonomy of medical decision

making to surgeons (who may assign patients to slots), while at the same time it yields a

high utilization, robustness of schedules, a low degree of required organizational effort at

operational level, and offers financial control. Although an MSS approach requires a

substantial amount of data, it reduces the managerial workload as compared to a non-

repetitive centralized planning approach.

The repetitive execution of an MSS approach structures the generally chaotic

working practice in OR departments. Hospital departments, such as wards, central

sterilization departments, and X-rays, can easily anticipate future demands, thereby

reducing the required slack at these departments and improving their efficiency. An MSS

thus supports alignment of these resources with the OR department.

An MSS offers all the advantages of a centralized planning approach, regarding

optimization of resource utilization and workload leveling. Clustering surgery types with a

high variability in a single operating room, for example, might be beneficial for reducing

overtime (Hans, et al., 2008), and enables management to predict surgery start times more

accurately. Furthermore, surgery types that require movable resources such as X-rays can

be clustered together in one OR to reduce waiting time for such equipment. Consequently,

MSS reduces the managerial burden of operational control.
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5. A 7-stepwise approach for master surgical scheduling in practice

We present a 7- stepwise approach for implementing an MSS in practice (see also Figure

1). In this thesis we address models that are required for the seven steps and address

potential issues that might be encountered.

5.1. Scope of the MSS

The first step is to define the scope, i.e., the

resources and organizational units to be

included in the MSS. These are typically the

expensive and scarce resources for which

increased utilization is beneficial. As an

example, an MSS could also cover ICUs, wards,

and medical departments. Including a resource

or unit is only beneficial if it results in an

improved patient flow.

5.2. Data gathering

Planning and scheduling relies heavily on

reliable data (Harper, 2002). Developing an

MSS requires at least a year of historical data

concerning all processes and resources within its

scope. Hospitals routinely collect substantial

amounts of process data (Harper, 2002).

However, these data are often incomplete and

polluted, which complicates logistical analyses.

Hospitals carefully must record data following

strict guidelines, and tools should be

implemented that allow quick information

retrieval from the involved databases. Detailed

and reliable data allow analysis of variance,

which is essential for robust planning.

5.3. Capacity planning

Based on historical data and trends, capacity plans are made for every resource within the

MSS scope. Capacity planning involves resource dimensioning and allocation within the

constraints set by target production agreements, and agreements on utilization and

availability of resources (Van Houdenhoven, et al., 2007a). It also involves reserving slack

Figure 1: Seven steps to implement a

Master Surgical Schedule
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time for dealing with the inherent variability of the process. There is a trade-off between

utilization and robustness: reserving much slack time results in low utilization and high

robustness against disruptions and overtime. To determine an acceptable amount of slack

per resource, we recommend analyzing the effects of different capacity plans by ‘what if’

scenarios. Capacity plans should be adjusted accordingly.

Resources are allocated to specialists, specialties, or considered shared. The

chosen type of allocation has consequences for the implementation of an MSS. Aside from

the technical difficulties that arise when allocating to specialists, sharing resources might

invoke resistance. As in most professional organizations, such as hospitals, professionals

are organized in groups that are typically outside the control of the organization

(Georgopoulos and Mann, 1962). This leads to distrust between specialists and managers

regarding each other’s intentions (Glouberman and Mintzberg, 2001a; b). Sharing

resources, without clear allocation criteria, might lead to specialists refusing to cooperate.

This may delay or even prevent implementation of an MSS.

5.4. Define a set of recurrent standard case types

An MSS is built up by a set of recurrent surgery types. Clustering techniques are used on

the elective case mix (Bagirov and Churilov, 2003; Maruster, et al., 2002) to create a

limited number of logistically and medically homogeneous surgery types. Examples of

logistical characteristics are length of stay and surgery duration; examples of medical

characteristics are diagnosis related groups and procedure codes. By periodically updating

the set of recurrent surgery types (see Section 3.7), a hospital accounts for trends in data,

for example seasonality in patient arrival and waiting lists. Aside from the standard surgery

types for elective care, additional types are defined to cover emergency and semi-urgent

patient mix.

The frequency of a surgery type in the MSS depends on the definition of the

surgery type: the broader its definition, the less homogeneous it is but the higher its

frequency will be. In addition, the broader the definition of the surgery type, the more the

realization of the MSS will deviate from the initial schedule. The definition of the surgery

types is thus a trade-off. We suggest the following iterative approach. First, given the

initial definition of surgery types, each surgery type’s frequency is calculated from

historical demand and production data. These frequencies are proportionally adjusted to

the MSS cycle length, and rounded down. The remaining fractions of surgery types are

clustered (based on medical and logistical properties) into a small number of broad defined

/ dummy surgery types. Ideally, only a small proportion of the case mix is covered by these

broad defined surgery types. If their proportion is too large, the definition of the initial

surgery types is broadened, and the procedure is repeated. This approach should be

repeated for different appropriate MSS cycle lengths to reach an optimum.
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The organization may impose restrictions on the surgery type clustering.

Management may e.g. impose that the MSS cycle length is aligned with the cycle of the

roster of the involved personnel. Also, surgery type clustering is complicated if it takes

place on the level of individual surgeons, instead of specialties.

5.5. Construction of the Master Surgical Schedule

The surgery types for emergency, semi-urgent and elective care are scheduled in an MSS

such that the workload of involved resources is leveled, utilization is optimized, overtime

is minimized, and emergency and semi-urgent surgery type waiting time is minimized

(Van Houdenhoven, et al., 2007c; van Oostrum, et al., 2008), subject to various hard and

soft constraints. Too many soft constraints that stem from personal preferences impact the

quality of the resulting schedule. We refer to van Oostrum et al. (2008) for an advanced

approach for constructing an MSS.

5.6. Execute the Master Surgical Schedule

For the execution of an MSS, a hospital should develop operational scheduling rules for

three groups of patients, i.e., (1) emergency patients, (2) semi-urgent patients, and for

patients who require elective surgery (3). Scheduling of emergency patients (1) in an MSS

approach is no different than in other scheduling approaches, although we recommend not

using a dedicated emergency OR (Wullink, et al., 2007). Regarding scheduling rules for

semi-urgent patients (2) we suggest scheduling patients based in an earliest due date

sequence (Dexter, et al., 1999a). Elective surgeries (3) can be planned by either surgeons

or by an administrative department. In the latter case, input regarding the medically safe

waiting interval is required. Assignment of elective patients is subject to the following

guidelines:

 Assignment is allowed within the patient’s medically safe interval and the

planning horizon;

 Patients are assigned to the most appropriate surgery type slot, on a first come –

first serve basis, and as early as possible;

 Re-assigning patients is not allowed during the time required to make

preparations for surgery (e.g. material coordination).

The selection of the length of the planning horizon is a trade-off between

utilization and waiting time. The longer the planning horizon, the higher the utilization

might become, since more possibilities for assigning patients to appropriate slots exist.

However, some patients’ waiting times might become longer than acceptable since they are

postponed to surgery types at the end of the planning horizon, while they would have been

assigned to dummy surgery types in case of a short planning horizon.
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5.7. Update a Master Surgical Schedule

As long as the access times for all surgery types are balanced, the MSS needs no revision.

However, access times change continuously under influence of seasonality in demand and

changes in case mix characteristics such as new surgery types. The access times thus need

to be monitored regularly, and the MSS should be revised if necessary. Performing a

revision of an MSS holds all previous steps, with the only exception that the current MSS

is taken as a start. Deviation from the previous MSS is to be minimized to reduce

organizational effort related to an MSS update.

6. Thesis outline

In Chapters 2 – 5 we present models that are required in a master surgical scheduling

approach. Chapter 6 presents both theoretical prerequisites for implementation of master

surgical scheduling in practices and practical lessons learned of the successful

implementation in an acute general hospital. Chapter 7 – 9 provides insight in how to deal

with emergency patients in operating room departments. The chapters are written such that

they can be read independently of each other. Therefore, each chapter starts with an

abstract and an introduction.

Chapter 2 proposes a method to determine the costs of organizational constraints

in operating room departments. These constraints concern the refusal of surgical

departments to share operating room capacity. Analysis presented in this thesis shows how

to objectively calculate the costs by means of mathematical programming techniques.

Based upon the results of such calculations, a hospital can decide whether or not to take

away organizational constraints. Such decisions affect the prerequisites under which a

master surgical scheduling approach is developed in a particular hospital.

Chapter 3 deals with constructing basic surgery types. These surgery types

function as building blocks for the master surgical schedule. Our aim is to construct

surgery types that are medically and logistically homogenous. A modified version of

Ward’s hierarchical cluster method is proposed to do so. The proposed mathematical

programming technique is tested on a case of an acute hospital, which has led to

satisfactory results. The results give insights into the trade-off between variability in

resource usage of surgery types and their fit into a master surgical schedule.

Chapter 4 considers the construction of the actual master surgical schedules. The

problem comprises of scheduling surgery types, as can be constructed by the method

proposed in Chapter 3, such that operating room utilization is maximized and bed usage is

leveled. In this thesis a two-phase approach is proposed in which at first operating room-

days are constructed by a column generation heuristic. Operating room-days represent a set

of surgery types that can be performed in a single operating room on a single day. In a

second phase an integer linear programming model is solved to assign these operating
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room-days to a master surgical schedule cycle such that bed usage is leveled.

Computational experiments show that the two-phase approach works out well for both

maximizing operating room utilization as well for bed usage leveling.

Chapter 5 evaluates the potential effect of using a master surgical schedule in a

large university hospital and a large acute hospital in terms of increased operating room

utilization and leveled bed occupancy. Both hospitals substantially benefit, but the acute

hospital benefits more than the university hospital due to patient-mix characteristics. This

chapter also discusses managerial advantages of using a master surgical schedule

compared to other planning and scheduling approaches in hospitals.

Chapter 6 discusses that hospitals differ in size and organizational structure. This

has implications for the applicability of master surgical scheduling. Using operations

management as starting point the thesis evaluates potential implementation problems of

master surgical scheduling in different types of organization. We conclude that the

different organizational forms of hospitals have impact, but that the suggested master

surgical scheduling concept is sufficiently flexible to be applicable in any of the

organizational hospital forms. This has been investigated by implementation of the

suggested master surgical scheduling approach in Beatrix hospital.

Chapter 7 presents a case study on the full service guarantee that Erasmus MC

aims to give its surgical patients. This means that all elective surgical patients are treated

on their scheduled date. Service guarantee is given to patients scheduled at schedules that

adhere to organizational rules. Discrete-event simulation shows the effects on utilization,

overtime, and number of cancellations when all patients receive service guarantee given

that a certain number of operating room schedules fulfill the scheduling rules.

Chapter 8 deals with the issue of using a dedicated emergency operating room or

not. This is an important issue for surgeons and plays an important role in discussions in

scientific medical journals (see appendix to Chapter 8). Analysis shows for a large

university hospital that having a dedicated emergency operating room is not only

inefficient, but that it also increases emergency patient waiting times. The improved

flexibility in operating room departments that allocate capacity for emergency surgery to

all operating rooms is the major reason of the surprising results.

Chapter 9 considers the problem of determining the optimal size of emergency

teams on call in the operating room during nights. The study explicitly uses so-called

safety intervals for emergency patients. These safety intervals denote the time by which an

emergency case can be delayed without causing increased morbidity and decreased

probability of full recovery. By a discrete-event simulation model it is shown that staffing

levels can be further reduced compared to other existing approaches when safety intervals

are adopted.
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Improving operating room efficiency by applying bin-packing

and portfolio techniques to surgical case scheduling

Abstract

BACKGROUND: An operating room (OR) department has adopted an efficient business model and

subsequently investigated how efficiency could be further improved. The aim of this study is to show

the efficiency improvement of lowering organizational barriers and applying advanced mathematical

techniques.

METHODS: We applied advanced mathematical algorithms in combination with scenarios that

model relaxation of various organizational barriers using prospectively collected data. The setting is

the main inpatient OR department of a university hospital, which sets its surgical case schedules 2

wk in advance using a block planning method. The main outcome measures are the number of freed

OR blocks and OR utilization.

RESULTS: Lowering organizational barriers and applying mathematical algorithms can yield a

4.5% point increase in OR utilization (95% confidence interval 4.0%–5.0%). This is obtained by

reducing the total required OR time.

CONCLUSIONS: Efficient OR departments can further improve their efficiency. The paper shows

that a radical cultural change that comprises the use of mathematical algorithms and lowering

organizational barriers improves OR utilization.

1. Introduction

Optimal use of scarce and expensive facilities such as operating rooms (ORs) requires

efficient planning. The Erasmus University Medical Center (Erasmus MC), Rotterdam,

The Netherlands, developed an OR business model based on controlled surgical case

scheduling and management contracts. Nevertheless, OR department managers still

explore new ways to improve OR efficiency.

The main inpatient OR department in Erasmus MC is run as a facilitating

department that provides staffed and fully equipped ORs for the various surgical

departments. A block planning approach has been adopted in which blocks of OR time are

made available to surgical departments in advance (1,2). Departments may only assign

patients to OR blocks that were made available to them. Regrettably, these organizational

barriers result in suboptimal use of OR time. The OR business model furthermore

incorporates the annual management contracts specifying the yearly amounts of OR time

available for each surgical department. Capacity for emergency cases and uncertainty of

case durations is accounted for by determining target OR utilizations for each surgical

department independently. Any surgical case schedule, therefore, must include free OR
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time, or “planned slack.” Since target utilizations differ, planned slack also differs among

surgical departments.

In summary, for the planning of surgical cases the surgical departments must

adhere to the following rules:

1. Submit elective case schedules 2 wk in advance;

2. Maximize use of OR time and not exceed block times;

3. Plan elective cases using historical mean case durations;

4. Include planned slack to deal with emergency cases and variability of case

durations.

Provided these rules are adhered to, the OR department “guarantees” that all

scheduled surgical cases and emergency cases will be performed, whatever happens during

the day. Moreover, applying these rules consequently helps surgical departments in their

yearly contract negotiations about OR time with the hospital board.

The hypothesis to be tested was: combining advanced mathematical algorithms

with lowering of organizational barriers among surgical departments improves OR

efficiency. Several methods to improve efficiency have been proposed in the literature.

Strum et al. (3) reported a benefit of approaching the OR planning problem as a news-

vendor problem. Dexter et al. (4) recently showed the benefits of various approaches to

surgical case scheduling. A broad overview of relevant literature is presented by McIntosh

et al. (5). Mathematical algorithms to optimize surgical case schedules is a widely

researched topic (3,6–8). Several studies addressed the application of bin packing

techniques, such as the Best Fit Descending heuristic (9,10) or Regret-Based Random

Sampling (RBRS) (11), yet within single departments. Finally, there is evidence that

approaching the OR scheduling problem as a portfolio problem (12) may deal with the

unpredictability of case durations and improve efficiency (11). Similar portfolio techniques

are already in use for case mix management problems (13,14).

Given the business model used by the main OR department of Erasmus MC,

efforts are still focused on improving the current OR utilization. The aforementioned

mathematical methods were examined. In addition, we report a computer simulation study

assessing promising methods for creating efficient surgical schedules within scenarios that

represent various degrees of lowering organizational barriers.

2. Methods

2.1. Data

Erasmus MC is a university hospital and tertiary referral center in Rotterdam, The

Netherlands. Erasmus MC has 1237 beds and admits 34,500 patients per year, 60%–

70% of whom undergo operation. The main inpatient OR suite consists of 16 ORs,
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Unit1 Unit 2 Unit 3 Unit 4

Ear–nose–throat

surgery

General surgery Oral surgery Gynecological

surgery

Neurosurgery Trauma Urology

Ophthalmology Orthopaedic

surgery

Plastic surgery Plastic surgery

providing the complete spectrum of surgical cases, including transplantation and trauma

surgery. Organizationally, the Erasmus MC inpatient OR department is subdivided into

four units, each serving a set of specialties (Table 1). Prospective data, approved

immediately after the surgical procedure, are available for more than 180,000

surgical cases since 1994. Data on expected and real case durations and variations in

durations for the 10 largest surgical departments were retrieved. Based on frequency,

mean duration, and standard deviation of case duration, data were classified into

four to eight homogeneous categories per surgical department (Table 2). Table 3

shows the OR suite fixed weekly block plan. All OR blocks in this study consisted of

450 min.

2.2. Mathematical representation of Erasmus MC’s surgical case

scheduling

Surgical case scheduling involves finding the combination of surgical cases that makes

optimal use of available OR time. In the field of applied mathematics, this problem is

known as the bin-packing problem. Currently, surgical departments schedule their surgical

cases using a First-Fit approach (15). Searching from the beginning, patients are selected

from a waiting list and scheduled in the first available OR in a particular week.

In our study, waiting lists were generated based on different surgical case

categories representing each department’s case mix (Table 2). Subsequently, a First- Fit

algorithm simultaneously selected and scheduled surgical cases for the period of 1 wk

which, in practice, is done approximately 2 wk before the date of surgery. This algorithm

scheduled next cases only if the previous surgical case had been scheduled and if the

algorithm concluded that it was impossible to fit the previous case into any of the available

OR blocks. If the case did not fit in any of the available blocks, it was placed back on the

waiting list. The algorithm terminates once it reaches the end of the waiting list. Note that

for scheduling of cases the mean duration was used and that no planned overtime was

allowed, as prescribed by the Erasmus MC rules. The resulting surgical case schedules

comprised surgical cases, planned slack, and unused OR capacity (Fig. 1).

Table 1: Clustering of 10 Erasmus Medical Center Surgical Departments into four units
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Mean
a

Freq. Mean Freq. Mean Freq. Mean Freq. Mean Freq.

Cat. (SD) (%) (SD) (%) (SD) (%) (SD) (%) (SD) (%)

1 150 (89) 8 80 (65) 2 119 (107) 5 102 (125) 4 107 (58) 9

2 67 (31) 3 52 (19) 14 63 (22) 14 40 (17) 33 61 (23) 10

3 100 (44) 12 73 (33) 19 82 (28) 17 65 (24) 19 83 (30) 18

4 135 (52) 19 98 (32) 25 112 (36) 21 102 (35) 12 109 (38) 21

5 171 (63) 20 125 (43) 32 139 (39) 22 127 (32) 14 160 (43) 21

6 213 (89) 3 156 (41) 2 187 (57) 11 182 (65) 8 199 (45) 16

7 262 (87) 25 213 (82) 6 432 (181) 10 254 (75) 5 291 (102) 5

8 351 (124) 9 549 (203) 6

Mean Freq. Mean Freq. Mean Freq. Mean Freq. Mean Freq.

Cat. (SD) (%) (SD) (%) (SD) (%) (SD) (%) (SD) (%)

1 121 (68) 3 100 (68) 7 83 (46) 1 192 (165) 8 97 (37) 1

2 59 (30) 5 62 (23) 22 46 (14) 35 113 (41) 17 87 (29) 44

3 74 (26) 30 81 (30) 32 60 (22) 42 171 (62) 14 130 (43) 44

4 102 (49) 15 122 (38) 20 95 (30) 17 255 (62) 28 238 (87) 11

5 152 (49) 17 176 (92) 19 127 (34) 5 324 (73) 12

6 230 (68) 21 492 (177) 21

7 385 (123) 8

a Mean and standard deviation (SD) are given in minutes.

OphthalmologyTraumaUrology

Cat. = category; SD = standard deviation; Freq. = frequency.

Sample sizes: General surgery 31,209, gynecological surgery 10,163, plastic surgery 14,318, ear–nose–throat surgery 17,103, orthopedic

surgery 11,859, urology 11,876, trauma 8385, ophthalmology surgery 9801, neurosurgery 10,370, and oral surgery 2608. Surgical cases were

classified based on their expected duration. Surgical cases for which no prediction of the case duration was available are grouped in Category

1.

surgery

Orthopedic

surgery

Oral

surgery
Neurosurgery

General

surgery

Gynecological

surgery

Plastic

surgery

Ear–nose–throat

Specialty Mon Tue Wed Thu Fri

General surgery 3 3 3 3 3

Gynecological surgery 1 1 1 1 1

Oral surgery 1 1 1 1 1

Ear–nose–throat surgery 2 2 2 1 2

Neurosurgery 2 2 2 2 2

Trauma 1 1 0 1 1

Ophthalmology 1 1 1 1 1

Orthopedic surgery 1 1 2 1 2

Plastic surgery 2 2 2 2 1

Urology 2 2 2 2 2

No. Of Operating rooms per day of the week

Table 3: Fixed weekly block plan for the inpatient operating room department of Erasmus

medical center with 16 operating rooms

Table 2: Characteristics of the 10 main surgical departments in Erasmus Medical Center. Each

category represents the patient mix for a department
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2.3. Planned slack and the portfolio effect

The financial world deals with

uncertainty by using the portfolio

effect. This ensures that the expected

return of a stock portfolio is less

vulnerable to fluctuations on the stock

market. The term “portfolio effect” then

indicates that portfolio risk decreases

with increasing diversity, as measured

by the absence of correlation

(covariance) between portfolio

components (16). We earlier found

application of the portfolio effect to

surgical case scheduling to be successful

in increasing OR efficiency, since it

reduces the required amount of planned

slack, given an accepted risk of

overtime (11). The approach clustered

surgical cases with similar variability

in the same OR block, assuming these

to be uncorrelated.

We illustrate the portfolio effect

applied to surgical case scheduling by the

following example: Consider two OR

Surgical
procedure

B

Surgical
procedure

A

Planned
Slack

Unused c.q. lost
OR capacity

A
v
a
ila

b
le

O
R

c
a
p
a

ci
ty

Figure 1: Graphical representation of a surgical

case schedule, which typically includes various

surgical cases, planned slack, and unused

operating room time.

Figure 2: Example of planned slack reduction as a result of the portfolio effect. The

sum of the shaded areas in the two operating room blocks on the left exceeds that

in the two operating room blocks on the right.
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blocks, both of which have two surgical cases scheduled. One case with (mean, standard

deviation) = (100, 10) and one case with (mean, standard deviation) = (100, 50) (Fig. 2)

(all values are given in minutes). We assumed that case durations are described by a

normal distribution function. In this example, we now compared this situation (the left side

of Fig. 2) with the situation in which surgical cases with similar variance are clustered. In

the first situation, the standard deviation of total duration is the same for both OR blocks:

√(502 + 102) = 51.0 min. The total planned slack for the two blocks is thus 102.0β min,

where β is a risk factor to deal with risk of overtime. Since the sum of the durations

follows a normal distribution the following holds: P(mean + β standard deviation) ~

accepted risk of overtime, such that given a certain accepted risk of overtime the risk factor

can be calculated. In the second situation, the total planned slack is: (√(502 + 502) + √(102

+ 102))β = 84.9β min. This means a 17.1β min reduction in the total required planned slack

time, and thus an equal increase in available capacity. This portfolio profit will increase

with higher variability of the cases concerned. This example illustrates that rescheduling a

surgical case can reduce the extent of planned slack.

2.4. Organizational barriers

We constructed three scenarios to investigate the impact of lowering organizational

barriers imposed by block planning (Table 4). The scenarios are graded as to

interdepartmental flexibility (i.e., scheduling cases of different departments in the same

OR on 1 day) and flexibility of rescheduling surgical cases between days of the week

compared with the current situation. Rescheduling of surgical cases throughout the week

does not affect patients, since they have not yet been scheduled.

In this study, we assumed application of the scenarios directly after the

construction of the surgical case schedules, approximately 2 wk before the actual

execution of the schedule (Fig. 3). This enables OR departments to take necessary

steps to ensure feasibility; for example regarding material logistics, ranging from

specific surgical material to complete navigation system for complex craniotomy

Scenario Interdepartmental flexibility Flexibility over the week

1
OR block consists of surgical cases of a

single department
Rescheduling on the same day

2
OR block consists of surgical cases of a

single department
Rescheduling within the same week

3
OR block consists of surgical cases of a

department within one unit
Rescheduling on the same day

See Table 1 for the clustering of surgical departments in organizational units. The flexibility is applied to the construction of

surgical schedules 2 wk in advance. OR = operating room.

Table 4: Description of scenarios representing various flexibility levels
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surgery. Surgical departments are responsible for the scheduling of semi-urgent or

add-on elective patients who need an operation on a day for which a surgical case

schedule is already set. For this purpose, departments may schedule cases without

assigning a patient to it, or by canceling one or more of the elective cases. Emergency

patients are operated on within the reserved OR time as described earlier.

2.5. Advanced mathematical algorithms

Application of the different scenarios to a surgical case schedule implied rescheduling of

surgical cases according to the organizational flexibility of the scenario under

consideration. A bin-packing algorithm, based on work of Hans et al. (11), who used

RBRS, did the rescheduling of the surgical schedules given the scenarios. Figure 4 shows

how rescheduling surgical cases saves OR time. The objective of the algorithm is to

minimize planned slack by exploiting the portfolio effect and the required number of OR

blocks. RBRS procedures start with removing all cases of the existing surgical schedule to

a list. Then, RBRS iteratively schedules a random surgical case from the list until all cases

are scheduled. The drawing probability of each of the cases is based on the case’s Best Fit

suitability. This randomized procedure gives a new solution (a “surgical case”) every time

it is executed. We stopped the algorithm after generating a preset number of 1500 surgical

case schedules. The generated schedules were evaluated on the objective criterion (amount

of free OR capacity) and the best schedule was saved (11). The algorithm was coded in the

Borland Delphi computer language (Cupertino, USA).

2.6. Experimental design

The Erasmus MC’s main inpatient department considered using the news-vendor approach

of Strum et al. (3). Subsequently, we investigated the benefits of the RBRS that exploited

the portfolio effect and relaxation of the organizational constraints. To this aim, the

surgical case scheduled created by the RBRS algorithm was compared with the surgical

schedules constructed by the First-Fit approach. The RBRS algorithm was compared with

the Best Fit algorithm (7) to assess the performance of advanced mathematical algorithms

over available and simpler heuristic techniques.

We performed a robustness analysis on the influence of unpredictability of case

duration on OR utilization, wherein the unpredictability was represented by the standard

deviation of case duration. The influence of number of ORs within an OR department on

OR utilization was investigated as well. Both analyses were performed for each of the

three flexibility scenarios. The outcome measures of this study are OR utilization and the

number of freed OR blocks, so- called “freed ORs.” OR utilization was defined as the ratio

between the total duration of elective surgical cases and the total staffed OR capacity per

week. Hence, it is similar to what is known in the literature as “raw OR utilization” (17).
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Figure 3: Positioning of the operating room scheduling process. The focus of this paper

is on scheduling surgical cases approximately 2 wk in advance, methodology for scheduling

add-on and elective cases is beyond the scope of this paper and therefore not explicitly

described in the figure.

Figure 4: Example of creating a free operating room block by reallocating surgical

cases.
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3. Results

Applying the news-vendor approach of Strum et al. (3) did not lead to improved efficiency.

With staffing costs determined by the allocated capacity and overtime by a relative cost

ratio of 1.5 and increasing the block times with 15 min, it even decreased efficiency (Table

5). Therefore, new ways to increase OR efficiency were explored, as described in the

previous section.

Increased flexibility in the three scenarios increased the number of freed OR

blocks (Table 6). Eventually, this resulted in an improved utilization rate of 4.5% points

(95% confidence interval 4.0%–5.0%). Both the Best Fit Descending heuristic and the

RBRS algorithm improved utilization. The latter, more advanced, algorithm significantly

out-performed the first heuristic by 0.7% point in Scenario 2 (95% confidence interval

0.2%–1.2%). Applying either the RBRS algorithm or the Best Fit Descending did not

significantly improve the initial surgical schedules when combined with Scenario 1 (i.e.,

blocks consists of surgical cases of a single department and cases are rescheduled on the

day). No significant difference was measured between the Best Fit Descending heuristic

and the RBRS algorithm in Scenario 1 (Table 6).

Mean (min)

Standard

deviation (min) Proportion (%)

Under-utilization 59 68 52

Over-utilization 40 94 47

Measures are based on 30 consecutive months from January 1, 2004 onwards.

Current situation Scenario 1 Scenario 2 Scenario 3

Mean ± SE Mean ± SE Mean ± SE Mean ± SE

(%) (%) (%) (%)

First Fit case schedule 77.4 ± 0.2

RBRS algorithm 77.5 ± 0.2 81.9 ± 0.2 78.8 ± 0.2

Best Fit Descending 77.4 ± 0.2 81.2 ± 0.2 78.2 ± 0.2

RBRS algorithm versus Best

Fit Descending 0.1 (-0.5 to 0.6)a 0.7 (0.2 to 1.2)a 0.6 (0.1 to 1.0)a

a Mean (95% CI) (%).

Utilization is defined as the ratio between the total amount of elective surgical cases and the total allocated OR capacity.

SE = standard error. Mean and 95% confidence interval (CI) of differences between Regret-Based Random Sampling

(RBRS) algorithm and Best Fit Descending in the three scenarios are examined by a paired t -distribution.

Table 5: Operating room performance

Table 6: Operating room (OR) Utilization rates
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Number of freed OR blocks, and hence OR utilization, increased relative to the

standard deviation of case duration within one department (Fig. 5). The RBRS algorithm

and the portfolio effect did not significantly improve the original schedule in Scenario 1,

regardless of the standard deviation in the patient mix. Furthermore, in Scenarios 2 and 3,

the benefits of the RBRS algorithm increased with the standard deviation of case duration.

Figure 6 shows the association between number of ORs and OR utilization rate

expressed in number of freed OR days for the three scenarios. The findings shows that if

more flexibility would be achievable, benefits progressively increase with the number of

cases performed daily relatively to the available hours provided.

Figure 5: Graphic representation of the number of freed operating room blocks in Erasmus

Medical Center when the Regret-Based Random Sampling algorithm is applied in

combination with the three scenarios in which the standard deviation of case

Figure 6: Graphic representation of the number of freed operating room blocks when

the Regret-Based Random Sampling algorithm is used in combination with the three

scenarios for operating room departments of various sizes.
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4. Discussion

The study showed how to improve OR efficiency by combining advanced mathematical

and financial techniques with the lowering of organizational barriers. The combination

facilitates OR departments to improve OR efficiency when current methods will no longer

benefit (3,7). The method is applicable in hospitals that set their surgical case schedules

approximately 2 wk in advance, and potentially improves OR utilization by 4.5%.

Improved efficiency implies that more operations can be performed at the same OR

capacity or that less OR capacity is needed for the same number of operations. We also

showed that potential benefits vary for different OR departments, depending on the

uncertainty in case duration and number of ORs within one OR department. Absolute

measures of this study are difficult to compare with results from other studies because

Erasmus MC uses a specific method of reserving OR time in surgical schedules.

The algorithms used aimed to free OR blocks, because capacity that was

previously allocated in these blocks is not accounted for while calculating the utilization

rate. This is true for all OR departments that have sufficient flexibility in their staff

scheduling to allow changes approximately 2 wk in advance.

We assumed in the analysis that surgical case durations show normal distribution.

Other studies have shown that a lognormal distribution is a better approximation of the real

duration (18). Calculation of planned slack, which is required to simulate the portfolio

effect, requires a closed form probability distribution. This is not the case for a lognormal

distribution, and this is why we have opted for a normal distribution, which may modestly

influence the outcomes. Since the amount of planned slack is similarly calculated for the

RBRS algorithm compared with that for the Best Fit heuristic, we do not expect that the

assumption influences the calculated outcomes.

Many hospital use information technology systems to actually schedule their

surgical cases in the available blocks. The mathematical techniques presented in this paper

can easily be incorporated in such information technology systems, permitting planners to

actually use the mathematical algorithms. Using the techniques addressed in this paper,

and given a flexibility scenario agreed upon beforehand, the set of cases planned by the

different departments in their blocks is collectively optimized after surgeons have set their

patients’ surgery dates. After optimization, each department can match its surgeon and bed

planning with the new, more efficient, case schedule.

Lowering organizational barriers might have some negative effects and will

require a more flexible attitude of surgical departments and individual surgeons. First,

allowing various surgical departments to use the same OR may result in longer waiting

times for surgeons. Second, surgeons may be scheduled in various ORs on the same day.

Third, having surgeons operate on different days in the week requires adjustment of their

other tasks, especially in hospitals where surgeons are highly specialized and where cases

cannot be interchanged among surgeons. All these issues should be carefully addressed and
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weighed against the efficiency increase. The essential consideration, we believe, is that the

drawbacks for a surgical department can be compensated for by the huge amount of extra

OR capacity, which can be used to shorten the waiting list and earn more money.

Another aspect of implementation of the techniques is the required additional

flexibility of the ORs. Each OR has to be uniformly equipped so that all surgical

departments may operate in it. The efficiency increase achieved by the proposed method

would justify the investment to equip all ORs generically.

Each hospital can choose a flexibility scenario that matches its requirements.

Even more scenarios can be made to show benefits of even lower organizational barriers.

The potential benefits can be calculated by comparing the current case scheduling strategy,

in this paper represented by a first-fit algorithm, and the future situation in which the

portfolio effect and bin-packing techniques have been applied and organizational

constraints have been relieved. This paper provides a tool for any hospital type to make

their own trade-off between flexibility and higher utilization of OR capacity.
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A method for clustering surgical cases to allow master surgical

scheduling

Abstract

Master surgical scheduling can improve manageability and efficiency of operating room

departments. This approach cyclically executes a master surgical schedule of surgery types. These

surgery types need to be constructed with low variability to be efficient. Each surgery type is

scheduled based upon its frequency per cycle. Surgery types that cannot be scheduled repetitively are

put together in so-called dummy surgeries. Narrow defined surgery types, with low variability, lead

to many of such dummy surgeries, which reduces the benefits of a master surgical scheduling

approach. In this paper we propose a method, based on Ward’s hierarchical cluster method, to

obtain surgery types that minimize the weighted sum of the dummy surgery volume and the

variability in resource demand of surgery types. The resulting surgery types (clusters) are thus based

on logical features and can be used in master surgical scheduling. The approach is successfully

tested on a case study in a regional hospital.

1. Introduction

Hospitals are complex-structured organizations that are often hard to manage (5; 4). An

operating room department is a typical example of a department where many different

actors cooperate, which leads to a complex organizational situation. Moreover, hospitals

consider operating room departments as the organization part that generates the most

revenue and the most costs. Hence, manageability and the efficiency of this department is

subject of a broad range of studies, see for examples (7; 1; 16). A good overview of

operating room planning and scheduling can be found in Cardoen et al. (2) and McIntosh

et al. (11).

One approach to improve efficiency and manageability of operating room

departments is the so-called master surgical scheduling approach (8; 14; 13). It cyclically

executes a master surgical schedule (MSS) of surgery types. An MSS allows not only for

optimization of operating room utilization, robustness, and overtime, but it also takes

resource demand on other departments such as wards into account. The surgery types in an

MSS function as its building blocks. Based on their resource demand profiles the MSS is

optimized (14; 13). Constructing surgery types with little variability in their resource

demand is therefore preferred.

Newly arrived patients or patients from waiting lists are assigned to surgery types

in an MSS on a weekly basis. To reduce the probability of non-assigned surgery types, the

historical frequencies of the demand for a surgery types per week are rounded down to

obtain the frequencies of surgery types that are allocated in the MSS. For example, when

cataract surgery occurs on average 6.7 times per week, only 6 surgeries of the cataract type
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are incorporated in the MSS. The remaining demand fraction will be allocated in so-called

dummy surgery types. The positive effect of using an MSS is reduced when the volume of

dummy surgeries becomes large. We therefore aim to construct a set of surgery types with

a low volume of dummy surgeries as well as a low variability in demand usage.

In this paper we propose a method to obtain such a set of surgery types. We draw

more elaborately the background of the problem in Section 2 and we formally introduce

the problem in Section 3. In Section 4 we provide a brief summary of available method for

clustering. Our suggested solution approach is presented in Section 5 and applied to a case

study in Section 6. We conclude the paper in Section 7.

2. Background

An MSS is built from a set of recurrent surgery types. The problem at hand is to create a

limited number of logistically and medically homogeneous surgery types. Examples of

logistical characteristics are length of stay and surgery duration; examples of medical

characteristics are diagnosis related groups and procedure codes. We assume that a

previous period is representative for the coming period, both for the frequency of

occurrence of surgical cases as for the variability in resource consumption by patients.

We focus on the construction of surgery types for the elective case mix. Aside

from the standard surgery types for elective care, additional types can be defined to cover

the emergency and semi-urgent case mix. The hospital organization may impose

restrictions on the surgery type clustering. For instance, clustering might be done only

within a surgical department as we assume in this paper.

The frequencies of surgery types are calculated as follows. Given historical data,

surgery types are constructed as combination of one or more specific surgical cases. The

surgical cases define the lowest level in the required data. Given a surgery type, and the

historical demand for its underlying surgical cases, an average frequency per MSS cycle is

calculated. Management may require that the MSS cycle length is aligned with other

process cycles in the hospital such as personnel rostering. Furthermore a hospital may not

be opened during all weeks. After obtaining an average frequency per MSS cycle, given its

length and the total number of repetitions per year, the frequency is rounded down. The

remaining fractions of surgery types are clustered into dummy surgery types. Clearly the

volume of dummy surgery types depends on the definition of the surgery types. When a set

consists of surgery types that are broadly defined, this tends to reduce the volume of

dummy surgery types, but lead to higher uncertainty in the resource consumption of

patients assigned to such a broadly defined surgery types than a situation where patients

are assigned to narrowly defined surgery types. However, the latter may results in a

substantial volume of dummy surgery types which is conflicting with the MSS approach.

Ideally, only a small proportion of the case mix is covered by dummy surgery types.
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An MSS aggregates the level of surgical scheduling from individual patients to

patient types. The loss of information due to this aggregation (e.g., surgery duration will be

less predictable) will be compensated by benefits inherent to the MSS approach (13).

Using an MSS cyclically will improve manageability and will reduce weekly variation in

bed occupancy compared to an operating room department that weekly constructs a

surgical schedule from scratch. In the latter the hospital organization suffers from late

information and peak demand. Still, when constructing surgery types, we aim to minimize

the loss of information in the process of constructing surgery types.

3. Literature

Clustering problems and cluster analysis form a large research area. Also in the area of

health care this topic is far from new. An excellent overview of existing techniques and

their application in a health care setting is given by Dilts et al. (3). The complexity of

clustering problems rapidly increases with the problem size (9). Therefore solution

algorithms are often derived from available methods in the field of mathematical

programming, see for example Hansen and Jaumard (6).

Algorithms to solve clustering problems are usually subdivided into hierarchical

algorithms and non-hierarchical algorithms (e.g., partitioning algorithms) (3; 9).

Constraints may be added to hierarchical methods to reduce the number of possible splits

or merges. The optimal number of clusters does not need to be known beforehand. An

investigator selects the best set of clusters after all different numbers of clusters are

generated. Hierarchical cluster algorithms are either agglomerative or divisive in nature.

Agglomerative hierarchical methods successively combine items closest to one another

into a new cluster until one cluster is left. Divisive methods start with all items grouped in

one cluster, and successively split off a set of items to form a new cluster. The divisive

splitting is based on either one variable (monothetic) or upon multiple variables

(polythethic).

Non-hierarchical methods generally start with an initial set of clusters. Based

upon the definition of similarity/distance measure items are assigned to these clusters by

some heuristic. Afterwards items may be reassigned to further optimize the clustering. The

K-means method is one of the well known methods in this group of cluster algorithms. For

a detailed overview of available clustering techniques and their application we refer to

Dilts et al.(3), Romesburg (12), and Johnson and Wichern (9).

The need to classify patients to allow advanced planning and scheduling has also

been acknowledged in the field of health care logistics, see for example Vissers et al. (15),

who show how classification of patients can be used to improve hospital management

using patient clustering as one of their building block in a logistical framework. Maruster

et al. (10) show the application of clustering techniques to obtain logistic-based patient

groups of patients treated for peripheral arterial vascular diseases. The authors show that
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the resulting clusters support improved planning and control of patients to increase the

efficiency of resources within hospitals.

4. Problem definition

We denote Z as the set of all types of surgery, called surgical case, that are performed in

the hospital by a surgical department, with ∋ݖ ܼ a particular surgical case. Basically z is

the lowest level of registration in a hospital’s database. Consider a hospital that wants to

optimize utilization of resources r = 1, ... , R by means of an MSS, where r can be for

instance the operating room department or wards. These resources may vary in importance,

for instance by their costs. Hence, to make the various resources comparable we scale r by

parameter wr.

We perform the clustering of surgical cases based upon patient data of the

previous period, hence we use post-classification. For reasons of simplicity and without

loss of generality we assume that this period equals one year. Let I be the set of all patients

that are operated in that year. We denote their consumption of resource r, scaled by wr, for

patient i by Xir.

By clustering surgical cases ∋ݖ ܼ we generate surgery types that are scheduled in

an MSS. Hence, the surgery types are the outcome of the application of a clustering. We

describe a particular surgery type by c ϵ C.

We introduce subset Iz to denote all patients that were operated for surgical case z.

Subset Zc denotes the surgical cases z that are clustered to surgery type c. The MSS

approach requires that all surgical cases are assigned to exactly one surgery type, therefore

ܼ⋂ܼ̅ = ∅ for ܿ≠ ܿ̅and ∑ ܼ = ܼ∈ .

Our problem now comprises of optimizing the clustering of surgical cases z in

surgery types c such that the weighted sum of the volume of dummy surgeries and the

variability within clusters is minimal. We concern variability in terms of the variation in

demand per resource. The variability of a cluster of surgical cases is therefore a sum of the

variability that occurs in resource demand of each of the separate resources. Minimizing

this sum makes that we obtain logistically homogeneous clusters usable in an MSS.

Clustering might be subject to additional constraints, as in our case surgery types are

constructed per surgical department. A formal definition of the objective function is given

in Section 5.

5. Solution approach

In our problem, as addressed in Section 1, the volume of dummy surgeries negatively

influences the performance of an MSS. A large number of clusters/surgery types tends to

lead to a high volume of dummy surgeries. Basically this makes that the number of surgery

types cannot be determined in advance. Therefore hierarchical cluster methods fit our
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problem better than nonhierarchical methods do, while we chose for reasons of complexity

for an agglomerative approach (9). Furthermore, from a mathematical point of view the

cost of the volume of dummy surgeries can be described by a step-wise cost function on

the number of items in the clusters. To the best of our knowledge no other papers have

been published that use such costs function in the context of clustering problems.

We aim to construct surgery types with a minimal loss of information compared

to using individual surgical cases. This can be done by Ward’s Hierarchical Clustering

Method (17). We consider this method as most appropriate to use as a starting point for our

solution approach.

5.1. Modeling volume of dummy surgeries

Assume that the available data concerns a period of one year without a trend that

necessitates adjusting frequencies of surgical procedures in the upcoming period. We

denote the length of a single MSS cycle by T days and the number of repetitions per year

by A. Note that in practice T times A is often smaller than a full year since hospitals have

periods during a year, e.g. Christmas Holiday, where almost no elective surgery is

performed. Hence, the volume of dummy surgeries that originates from surgery type c, as

denoted by vc, is calculated by rounding down the frequency per cycle and can be

calculated as:

ݒ ∶= ൬ራ |௭ܫ|
௭∈

൰ ݉ ݀ ܣ ∙ ܶ (1)

5.2. Modeling resource demand variability

Putting two different surgical cases in one surgery type together leads to loss of

information (regarding the resource consumption) compared to a situation where both

procedure types are individually assigned to a surgery type. We base our solution approach

on Ward’s Hierarchical Clustering Method (17). This method uses the error sum of squares

(ESS) as measure for the loss of information. Let ESSc be the error sum of squares of

surgery type c, which is computed by

ܵܵܧ  ∶=    ቆܺ−
∑ ∑ ܺ∈ூ௭∈

⋃ ௭|௭∈ܫ|
ቇ

ଶ

∈ோ∈ூ௭∈

(2)

Note that the different resource types r in Formula 2 are already scaled in Xir. The overall

ESS is determined by the sum of the ESS per cluster: ESS = ESS1 + ESS2 +... + ESSC.
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5.3. Solution heuristic

To cluster surgical cases into surgery types we propose a modified version of Ward’s

Hierarchical Clustering Method. The basic outline, which is similar to most agglomerative

hierarchical clustering methods (3), of this method applied to our problem is the following:

1. Start with N surgery types |ܥ|) = |ܼ| = ܰ), each containing a single surgical

case type z and an ݔܰܰ symmetric matrix of costs D = ݀̃

2. Search the distance matrix for the combination of surgery types with minimal

costs. Let this combination consist of surgery types c and ܿ̃.

3. Merge surgery types c and ܿ̃. Rename the new surgery type as ܿܿ ̃. Update the

distance matrix by adding the new surgery type ܿܿ ̃ and removing c and ܿ̃.

4. Record the intermediate set of surgery types and repeat Step 2, 3 and 4 until one

surgery type remains |ܥ|) = 1).

The elements of matrix D represent the additional costs of combining two surgery

type compared to the current situation. This is calculated as follows:

݀̃ ∶= ଵ݇൫ݒ̃− ݒ) + +̃)൯ݒ ଶ݇൫ܵܵܧ ̃− ܵܵܧ)  + ܵܵܧ ̃)൯ (3)

where k1 and k2 represent respectively the importance of the volume of dummy surgeries

and the importance of the loss of information (increased variability).

The final step comprises of finding the best solution. Note that solutions

correspond to a set of surgery types (clusters) in a particular step of the above procedure.

The costs at such a step are calculated as follows:

 ( ଵ݇ ∙ ݒ + ଶ݇ ∙ ܵܵܧ )

∈

Note that the optimal solution is not necessarily the initial solution, where the ESS is at a

lowest level, or the final solution, where the volume of dummy surgeries is at the lowest

level. The solution with the lowest costs gives the best set of surgery type according to the

criteria defined in the problem definition. However, not all practical restrictions are

incorporated in our solution approach. Therefore, some surgery types may be split in

practice.

6. Case study

In this section we are concerned with the construction of surgery types for Beatrix

Hospital, the Netherlands. Beatrix hospital is a regional hospital for primary hospital care.

There are 5 inpatient and 3 outpatient operating rooms. The hospital has approximately

329 beds. Beatrix hospital currently implements the MSS approach as described by Van

Oostrum et al. (13). Using an MSS, it aims to optimize operating room utilization and to

improve the leveling of ward occupancy. As part of this implementation, the clustering

techniques as described in Section 5 were used to propose surgery types for the MSS. The
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experiments were performed by the solution heuristic (Section 5) coded in MathLab

version 7.0.

6.1. Data

To construct surgery types we obtained data of all elective surgical inpatients that were

operated in 2006. From each patient we obtained, among other data, their surgical

procedures, their length of stay (LOS) in the hospital, and their surgery duration (SurDur)

∋ݎ) ܮܱ} ,ܵ .({ݎݑܦݎݑܵ Surgical data was registered in the operating room by nurses and

retrospectively approved by surgeons. LOS data was registered by nurses at wards for

financial purposes.

To scale the resource variables, Beatrix hospitals assumes that one day admission

equals one hour of operating room time in costs ைௌݓ) = ௌ௨௨ݓ,1 = 1 60/ ). Beatrix

hospital considers implementation of an MSS with a length of either one or two weeks

(ܶ = 1 or 2). The operating room department runs on an annual basis during a period

equivalent with 46 weeks ܣ) = 46). Table 1 presents a summary of the Beatrix hospital

data. In the first column all seven surgical departments are given. The second column

presents the total number of patients (set I), while the third column presents the total

number of different surgical cases (z = 1, … , Z). We solve the cluster problem in Beatrix

hospital for each surgical department separately.

We vary the parameter values k1 and k2 indicating the importance of the volume of

dummy surgeries relative to the loss of information. We take as values

ଵ݇ = {0,0.5,1,5,10,20} and keep k2 constant at ଶ݇ = 1.

Number of Mean Std. dev. Std. dev.

Number of surgical surg. dur. surg. dur. LOS LOS

patients cases (minutes) (minutes) (days) (days)

General surgery 1428 153 72 56.2 2.7 4.7

Gynecology 783 47 57 43.8 2.3 2.4

ENT 1432 42 27 29.8 1.2 0.8

Eye surgery 1194 24 29 10.3 1.0 0.6

Orthopedic
surgery

1751 89 47 37.5 2.2 3.0

Plastic surgery 369 20 39 25.3 1.6 3.2

Urology 434 53 71 68.6 3.4 2.7

Overall 7391 428 47 44.1 2.0 2.9

Surgical
department

Table 1: Overview patient mix data Beatrix Hospital in 2006. Surg. dur. = surgery

duration, Std. dev. = standard deviation, and LOS = Length of stay
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6.2. Case study results

Table 2 presents the number of surgery types resulting after application of our solution

heuristic. As can be expected the number of resulting surgery types equals the number of

different case types in the data when ଶ݇ = 0 is taken. However, when ଶ݇ > 0 is taken the

number of different surgery types sharply declines. Table 3 shows the increase in the loss

of information (ESS) and the volume of dummy surgeries. This data can be visualized to

determine the best trade-off between ESS increase and the volume of dummy surgeries,

see for an example Figure 1. It is clear that obtaining the lowest volume of dummy

surgeries lead to a high increase in ESS and contrarily that the lowest increase in ESS

causes a high volume of dummy surgeries.

0 0.5 1 5 10 20

T=1 General surgery 152-153 31 40 13 13 13

Gynecology 47 14 14 5 2 2

ENT 42 15 15 6 1 1

Eye surgery 22-24 10 10 10 10 10

Orthopedic surgery 86-89 17 17 5 6 6

Plastic surgery 20 16 6 6 1 1

Urology 53 22 13 13 13 5

T=2 General surgery 152-153 40 42 18 20 11

Gynecology 47 16 13 7 5 5

ENT 42 7 7 10 10 3

Eye surgery 22-24 5 5 5 5 5

Orthopedic surgery 86-89 29 19 7 7 7

Plastic surgery 20 7 7 7 2 2

Urology 53 22 23 15 15 15

k1

Table 2: Number of surgery types in the best solution found for different values

of k1. Multiple solutions are denoted as a range.
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6.3. Discussion

In Beatrix hospital the proposed surgery types were used as input in discussions with

surgeons to determine the actual surgery types. They checked for instance whether the

surgical cases that were clustered in a single surgery type could be performed by a single

surgeon. This enhances easy scheduling of surgeons. Surgery types were adjusted when

required, which occurs in approximately 10% of the surgery types. This was mainly

because of surgeon specialization.

During discussion with surgeons and hospital administrators several other issues

raised such as decrease in case mix performed by surgeons and the required training of

surgeons in certain cases. The organizational structure in Beatrix Hospital is such that the

financial pay off for surgeons is based on the volume of their surgical department. Hence,

within a single department no competition exists for financial reasons. However, inherent

to the MSS approach the number of different surgical cases that a surgeon performs will

0 0.5 1 5 10 20

T=1 General surgery Increase ESS 0% 1% 1% 3% 3% 3%

Volume dummy surgery 65% 13% 13% 7% 7% 7%

Gynecology Increase ESS 0% 1% 1% 8% 33% 33%

Volume dummy surgery 82% 18% 18% 6% 0% 0%

ENT Increase ESS 0% 4% 4% 19% 60% 60%

Volume dummy surgery 26% 7% 7% 4% 0% 0%

Eye surgery Increase ESS 0% 0% 0% 0% 0% 0%

Volume dummy surgery 11% 4% 4% 4% 4% 4%

Orthopedic surgery Increase ESS 0% 1% 1% 4% 7% 22%

Volume dummy surgery 37% 5% 5% 3% 3% 3%

Plastic surgery Increase ESS 0% 0% 1% 1% 11% 11%

Volume dummy surgery 75% 25% 13% 13% 0% 0%

Urology Increase ESS 0% 2% 9% 9% 9% 81%

Volume dummy surgery 79% 26% 15% 15% 15% 5%

T=2 General surgery Increase ESS 0% 0% 1% 2% 4% 5%

Volume dummy surgery 48% 11% 11% 5% 5% 5%

Gynecology Increase ESS 0% 1% 2% 11% 19% 19%

Volume dummy surgery 50% 9% 6% 3% 3% 3%

ENT Increase ESS 0% 4% 4% 6% 6% 42%

Volume dummy surgery 15% 2% 2% 2% 2% 0%

Eye surgery Increase ESS 0% 2% 2% 2% 2% 2%

Volume dummy surgery 8% 2% 2% 2% 2% 2%

Orthopedic surgery Increase ESS 0% 0% 1% 3% 3% 3%

Volume dummy surgery 21% 7% 4% 1% 1% 1%

Plastic surgery Increase ESS 0% 0% 1% 1% 5% 5%

Volume dummy surgery 38% 13% 7% 7% 0% 0%

Urology Increase ESS 0% 1% 2% 10% 10% 10%

Volume dummy surgery 68% 21% 21% 10% 10% 10%

k1

Table 3: Trade off between the increase of ESS and the volume of dummy surgeries when

k1 is varied.
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decrease. Some surgical departments consider this as positive since the number of

repetition increases accordingly. Other departments considered this as negative since

surgeons would become less all-round and therefore less flexible to substitute one of their

colleagues.

Another issue is whether the data of a previous year is representative for the

upcoming year. We believe that in general the variability in length of stay and surgery

duration in a upcoming period will be equivalent to a previous period. However, there may

be trends in arrival patterns of patients. This may cause the need of adjusting frequencies

of surgical cases, which in turn may cause that the solution heuristics would have produced

a different set of surgery types. Beatrix hospital did expect trends in arrival patterns (for

instance more hip and knee replacements). However, since such high volume surgical

cases typically ended up in a surgery type without any other surgical case we have chosen

to adjust frequency of surgery

types after their construction.

The frequencies of

surgery types are based on

averages. Seasonal fluctuations

and other reasons cause

temporarily higher or lower

demand. During such period the

MSS may face over or under

utilization. We study this issue in

a forthcoming paper, wherein we

show how to deal with this issue

by manipulating planning

horizon and assignment rules.

7. Conclusion

In this paper we suggest a method for the constructing of surgery types to allow master

surgical scheduling. The method is based on Ward’s hierarchical cluster method that uses

the error sum of squares as measure for the loss of information. We adjusted this model to

account for the volume of dummy surgeries resulting from the clustering of surgery types,

as this is important for the functioning of an MSS approach. The method was successfully

applied to the case of Beatrix hospital.
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Chapter 4

A master surgical scheduling approach for cyclic scheduling in

operating room departments

Abstract

This paper addresses the problem of operating room (OR) scheduling at the tactical level of hospital

planning and control. Hospitals repetitively construct operating room schedules, which is a time-

consuming, tedious, and complex task. The stochasticity of the durations of surgical procedures

complicates the construction of operating room schedules. In addition, unbalanced scheduling of the

operating room department often causes demand fluctuation in other departments such as surgical

wards and intensive care units. We propose cyclic operating room schedules, so-called master

surgical schedules (MSSs) to deal with this problem. In an MSS, frequently performed elective

surgical procedure types are planned in a cyclic manner. To deal with the uncertain duration of

procedures we use planned slack. The problem of constructing MSSs is modeled as a mathematical

program containing probabilistic constraints. Since the resulting mathematical program is

computationally intractable we propose a column generation approach that maximizes the operation

room utilization and levels the requirements for subsequent hospital beds such as wards and

intensive care units in two subsequent phases. We tested the solution approach with data from the

Erasmus Medical Center. Computational experiments show that the proposed solution approach

works well for both the OR utilization and the leveling of requirements of subsequent hospital beds.

1. Introduction

Increasing costs of health care imply pressure on hospitals to make their organization more

efficient. Recent studies show that operations research provides powerful techniques in this

context (Carter 2002). One of the most expensive resources in a hospital is the operating

room (OR) department. Since up to 70% of all hospital admissions involve a stay in an OR

department (OECD 2005), optimal utilization of OR capacity is of paramount importance.

Operating room utilization is typically jeopardized by numerous factors and

various players are active in OR planning, such as individual surgeons, OR managers, and

anesthesiologists (Weissman 2005). All players have autonomy, and can have conflicting

objectives with respect to productivity, quality of care, and quality of labor (Glouberman

and Mintzberg 2001). As a result, OR planning is constantly under scrutiny and pressure of

potentially competing objectives.

A further complicating factor of the OR planning is the stochastic nature of the

process. There are many uncertainties, such as stochastic durations of surgical procedures,

no-shows of patients, personnel availability, and emergency surgical procedures. In

addition, because surgeons tend to plan their procedures independently from others, this

results in peak demands at subsequent hospital resources such as intensive care units
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(ICU). As a result, unavailability of for example ICU bed capacity can result in cancelation

of surgical procedures (McManus et al. 2003).

In this paper we consider the problem of scheduling elective procedures, which is

an operational planning problem that concerns the assignment of elective procedures to

ORs over the days of the week. Due to the aforementioned difficulties, the planning

process is complex, time consuming, and often under a lot of pressure. However, a lot of

elective procedures tend to be identical during consecutive weeks in the year. In a regional

hospital it is not uncommon that this is for more than 80% of the total volume the case

(Bakker and Zuurbier 2002). In manufacturing as well as in health care, repetitive

production is common practice. In such environments a cyclic planning approach is often

used (e.g., Tayur 2000; Schmidt et al. 2001; Millar and Kiragu 1998). This reduces

planning efforts considerably, and leads to reduced demand fluctuations within the supply

chain, and higher utilization rates.

We propose in this paper a model for a cyclic scheduling approach of elective

surgical procedures. We refer to such a cyclic surgical schedule as a master surgical

schedule (MSS). An MSS specifies for each “OR-day” (i.e. operating room on a day) of

the planning cycle a list of recurring surgical procedure types that must be performed. We

demonstrate that our approach is generic: it not only allows to level and control the

workload of the involved surgical specialties, but also from succeeding departments such

as ICUs and surgical wards. It optimizes OR utilization without increasing overtime and

cancelations. Furthermore, our approach accounts for the stochastic nature of the surgical

process, such as stochastic durations of surgical procedures.

The approach for generation of MSSs was tested with data from the Erasmus

Medical Center in Rotterdam, The Netherlands, which is a large university hospital.

Approximately 15,000 patients annually undergo surgery in the OR departments of

Erasmus MC. Since 1994, Erasmus MC has collected their surgical data in a database of

180,000 surgical procedures. The hospital actively supported the research project and

affirms the applicability of this study.

The remainder of the paper is structured as follows. Section 2 presents an

overview of studies related to the problem of construction MSSs. Section 3 presents a base

model that represents the problem of constructing MSSs. Section 4 proposes a solution

approach to solve the problem. In Sect. 5 we evaluate the solution approach. Section 6

draws conclusions from this research.

2. Related literature

There exist a strong interest in OR scheduling problems, resulting in a wide range of

papers on this subject. These studies can be separated into short-term operating room

scheduling (e.g., Gerhak et al. 1996; Sier et al. 1997; Ozkaraham 2000; Lamiri et al. 2005;
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Jebali et al. 2006) and mid-term planning and control (e.g., Guinet and Chaabane 2003;

Ogulata and Erol 2003; Kim and Horowitz 2002). Studies about MSS are, however, scarce.

Moreover, various definitions of a MSS are used. Blake and Donald (2002) construct

MSSs that specify the number and type of operating rooms, the hours that ORs are

available, and the specialty that has priority at an operating room. They use an integer

programming formulation for the assignment of specialties to operating rooms. The

objective function minimizes penalties related to the total under-supply of operating rooms

to specialties. The authors implement a straightforward enumerative algorithm, which

results in considerable improvements. Beliën and Demeulemeester (2005) use a nonlinear

integer programming model to construct MSSs. The model assigns blocks of OR time to

specialties in such a way, that the total expected bed shortage on the wards is minimized.

After linearization of the model the authors examine and compare several heuristics to

solve the resulting mixed integer program. They conclude that a simulated annealing

approach yields the best results, but since this heuristic requires much computation time

they propose a hybrid algorithm that combines simulated annealing with a quadratic

programming model. This approach yields the best results concerning solution quality and

computation times. Vissers et al. (2005) propose an MSS approach for a cardiothoracic

department. At an aggregate level they form surgical procedure types and level resource

requirements such as bed requirements. The objective of their approach is to minimize the

deviation of target utilization rates for the OR, the ICU, and the wards. The approach

focuses on capacity planning and does not account for the stochastic nature of health care

processes.

The aforementioned authors propose various approaches for cyclic OR planning,

some of them taking into account succeeding or preceding hospital departments. These

approaches are designed for a higher level of aggregation than what we focus on. None

actually constructs OR schedules in which actual surgical procedures or procedure types

and their stochasticity are incorporated.

3. Problem description

The aim of this paper is to develop methods to generate MSSs, i.e., OR schedules that are

cyclically executed in a given planning period. The cyclic nature of an MSS requires that

not surgical procedures of concrete patients but surgical procedures of a certain type are

scheduled. The concrete assignment of patients to the planned procedure types has to be

done in a later stage. To make such an approach applicable, the types of surgical

procedures must represent surgical procedures, which are medically homogeneous in the

sense that they share the same diagnosis and are performed by the same surgical

department. In most hospitals there are three categories of types of procedures:

1. Category A: elective procedures that occur quite frequent,
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2. Category B: elective procedures that occur rather seldom,

3. Category C: emergency procedures.

Following the above discussion, an MSS can concern only Category A proce-

dures. More precisely, we define Category A procedures as elective procedure types,

which have a frequency such that they occur at least once during the cycle time of the

MSS. The chosen cycle length thus determines the number of surgical procedure types

incorporated in an MSS. Category B procedures consist of all other elective procedures

and cannot be planned in an MSS, whereas Category C procedures cannot be planned due

to their nature. However, in the construction of an MSS, capacity for the procedures of

types B and C will be reserved.

An MSS is part of a cyclic OR planning strategy, which has three stages. First,

clinicians and managers determine the MSS cycle length. Correspondingly, they determine

how the OR capacity is divided over the three categories. Second, before each cycle,

clinicians assign actual Category A patients to the procedure type “slots” in the MSS, and

Category B procedures to their reserved capacity. Third, during execution of the elective

schedule, Category C (emergency) procedures are scheduled. Widely used approaches are

to assign these to reserved capacity (Goldratt 1997), or to capacity obtained by canceling

elective procedures (Jebali et al. 2006).

In this paper we propose a model for the construction of MSSs for Category A

procedures. Scheduling Category B and C procedures is beyond the scope of this paper. An

MSS can be used repetitively by a hospital until the size and the content of the three

categories change. Then, the MSS must be reoptimized.

The goal of our MSS is to generate a cyclic schedule, in which all Category A

procedures are scheduled according to their expected frequency, in such a way that the

workload of subsequent departments like wards and IC is leveled as much as possible. This

leveling results in reduction of peak demands on hospital bed departments caused by

elective surgical procedures and, as such positively influences resource shortages and

minimizes the number of cancelation of surgical procedures McManus et al. 2003. The

number of available ORs restricts constructing the MSS as well as the available operating

time and the capacity of succeeding departments (i.e., number of available beds).

Personnel restrictions are not taken into account. We assume that sufficient flexibility

remains for personnel scheduling at the operational level when the scheduling of Category

B procedures is done. To avoid the probability of overtime, planned slack is included in the

construction of MSSs. The amount of slack depends on the accepted probability that

overtime occurs, which is determined by the management, and the variance of procedure

durations. We use the portfolio effect to minimize the total amount of required slack (Hans

et al. 2006). The portfolio effect is the tendency for the risk of a well-diversified range of

stochastic variables to fall below the risk of most and sometimes, all of its individual com-
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ponents. This principle can be applied with respect to the stochastic surgery durations.

Exploiting the portfolio effect can thus reduce the required amount of slack.

3.1. Formal problem description

The surgical procedures to be incorporated into an MSS (Category A procedures) are

categorized into I different types of medical and logistical similar procedures. From type i,

i = 1,…,I we have si procedures to be added in the MSS. The duration of a surgical

procedure of type i is a stochastic variable ξi, and based on Strum et al. (2000). We assume

that ξi has a lognormal distribution. Let B be the number of different hospital bed types.

The various hospital bed types differ in importance and to indicate the relative importance

of hospital bed type b we introduce priority factor cb. The duration of hospital bed

requirements of type b for a procedure of type i is denoted by ݈ ∈ ℕ,݅= 1, … =ܾ;ܫ,

1, … .ܤ, We assume that only one patient per day can use a bed.

The MSS has a fixed duration, the cycle length T. This cycle length is measured in

days and typically is a multiple of 7 days. The given surgical procedures have to be carried

out in J identical ORs, where OR j on day t has a capacity of =݆,௧ 1, … =ݐ;ܬ, 1, … , .ܶ

For creating an MSS, procedures have to be assigned to the ORs. The total sum of the

duration of procedures assigned on a single OR on a specific day may not exceed the

available capacity with probability α, i.e., with probability α that no overtime occurs. We

refer to OR j on day t as OR-day (j,t).

The combined objective of the problem is to construct MSSs such that both the

required OR capacity is minimized and the hospital bed requirements are leveled over the

cycle.

3.2. Base model

In this subsection we give a base model of the MSS problem. The aim of the model is to

create a precise description of the objectives and the constraints.

To distinguish between minimization of OR capacity and hospital bed

requirement leveling we define a weighted objective function, in which θ1 is the weight of

minimization of the required OR capacity and θ2 is the weight of the hospital bed leveling.

The weights may for example be related to the costs of the reduction of required OR

capacity relative to the costs of peak demand on hospital beds.

We introduce an integer decision variable Vijt to indicate the number of surgical

procedures of type i that is assigned to OR-day (j,t), and an auxiliary binary variable Wjt to

indicate whether an OR j is used on day t. An OR is considered to be used on day t if at

least one surgical procedure is assigned to this OR-day. The total amount of OR capacity

that is made available on day t is the sum of the available capacity of all used ORs. This is
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given by

  ௧ ∙ ܹ௧



ୀଵ

்

௧ୀଵ

To calculate the number of beds that is required from hospital bed type b, we

introduce parameters ψtτib that denotes the requirements for hospital bed type b on day τ for

a surgical procedure of type i, if this procedure is scheduled on day t. More specific,

parameter ψtτib is ቒ
್

்
ቓif min{(ݐ− 1) mod ,ܶ +ݐ) ݈ − 2)mod ܶ } ≤ (߬− 1) ≤ max{(ݐ−

1mod ݈݅+ݐܶ, −ܾ2mod ܶ and ݈ܾ݅ܶ otherwise. To illustrate this expression, suppose an MSS

has cycle length T = 7 days. On day t = 5, a procedure of type i is scheduled that

subsequently requires an IC bed for 8 days (lib = 8). This results in the requirement of two

ICU beds on day τ = 5 of the cycle and one IC bed on all other days. On day 5 the

requirement is two beds, because the patient of the previous cycle is still occupying an ICU

bed.

To level the hospital bed requirements, we minimize the maximum demand for

hospital beds during an MSS cycle. This min–max type of resource leveling objective is

generally used for problems where resource usage is very expensive (for this and other

types, see: Brucker et al. 1999; Neumann and Zimmermann 2000). The presented approach

is not specific for beds but can be used similarly for other types of hospital resources.

The maximum demand for hospital bed type b in a cycle is:

maxఛఢ் ∑ ∑ ∑ ߰௧ఛ ∙ ܸ௧
்
௧ୀଵ


ୀଵ

ூ
ୀଵ . To ensure that the objective function is not influenced

by the total requirement of different hospital bed types, but only by their relative

importance, we normalize the maximum demand for any hospital bed. The normalization

factor is the total demand for a hospital bed type b during one cycle: (∑ ݈ ∙ ݏ
ூ
ୀଵ ) ܶ/ . This

yields the normative sum of the maximum demand of all hospital bed types:

 ቈ
ܿ

[∑ ݈ ∙ ݏ
ூ
ୀଵ ] ܶ/

∙ max
ఛ∈்

   ߰௧ఛ ∙ ܸ௧

்

௧ୀଵ



ୀଵ

ூ

ୀଵ



ୀଵ

The overall objective function consisting of the weighted sum of needed OR

capacity and the peak demands of hospital beds is given by formula (1) in the base model

presented below.

To ensure that an operating room is considered to be used if at least one procedure

is assigned to that operating room, constraints (2) are introduced. Constraints (3) ensure

that all surgical procedures of all types are assigned. To model the bound on the

probability that overtime occurs, we introduce a function fjt(V). It denotes the probability

distribution of the total duration of all procedures that are scheduled on OR-day (j,t) by V,

where V is the vector of all variables Vijt (a possible way to deal with this function, is given

in the following section). Using the function fjt(V) , the restriction that the total duration of
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procedures on an OR-day may not exceed the available capacity with probability α, can be

expressed by the probabilistic constraints (5). We refer to Charnes et al. (1964) for detailed

information on probabilistic constraints. Summarizing, the base model becomes:

minߠଵ ∙   ௧ ∙ ܹ௧



ୀଵ

்

௧ୀଵ

+ ଶߠ ∙  ቈ
ܿ

[∑ ݈ ∙ ݏ
ூ
ୀଵ ] ܶ/

∙ max
ఛ∈்

   ߰௧ఛ ∙ ܸ௧

்

௧ୀଵ



ୀଵ

ூ

ୀଵ



ୀଵ

(1)

subject to

ܸ௧≤ ∙ݏ ܹ௧, ݅= 1, … ,ܫ, ݆= 1, … ,ܬ, =ݐ 1, … ,ܶ (2)

  ܸ௧



ୀଵ

= ݏ

்

௧ୀଵ

, ݅= 1, … ܫ, (3)

Prൣ݂௧(ܸ) ≤ ≤௧൧ ,ߙ ݅= 1, … ,ܫ, ݆= 1, … ܬ, (4)

ܸ௧ ∈ ℕ, ݅= 1, … ,ܫ, ݆= 1, … ,ܬ, =ݐ 1, … ,ܶ

ܹ௧ ∈ {0,1}, ݅= 1, … ,ܫ, =ݐ 1, … ,ܶ

The min–max objective can be reformulated (see Williams 1999, p. 23) such that

the base model is an integer linear program (ILP) with additional probabilistic constraints.

The size of instances from practice gets extremely large (the Erasmus MC instances

approximately have 1.9 × 105 decision variables), such that even without the probabilistic

constraints this is far too large to solve the model to optimality within reasonable

computation time. The MSS problem itself is NP-hard even if the probabilistic effects are

neglected. The first part of the objective function together with the packing constraints

contains e.g. the bin-packing problem and the second part of the objective function

contains e.g. the three-partitioning problem. Based on this, we concentrate on a heuristic

approach to solve the MSS problem.

4. Solution approach

The main decision in the MSS problem is to fill OR-days (j,t) according to the imposed

restrictions. Since in practice the given capacities ojt are often the same for different ORs

and for different days, we introduce the concept of so-called operating room day schedule

(ORDS). An ORDS for capacity o is a set of surgical procedures of various types, which is

feasible with respect to the OR-capacity constraint (5) with ojt = o. As a consequence, an

ORDS for capacity o can be assigned to all OR-days (j, t) with ojt = o. MSS comprises of

assigning one ORDS to each OR-day (j,t) in the cycle, such that the objective function (1)

is minimized.

We propose a two-phase decomposition approach. In Phase 1 hospital bed

requirement leveling is ignored, and a set of ORDSs that covers all procedures is selected.

These ORDSs have capacities fitting to the capacities of the OR- days, and minimize the

required OR capacity. We discretize the probabilistic OR capacity constraints, and
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formulate an ILP that we solve with an implicit column generation approach. In Phase 2

we assign ORDSs to concrete OR- days in such a way, that the hospital bed capacity

demand is leveled. For this purpose, the problem is formulated as mixed integer linear

program (MILP).

4.1. Phase 1

The problem in Phase 1 consists of selecting a set of ORDSs that covers all surgical

procedures and all OR-day capacities and minimizes the required OR capacity. In Sect.

4.1.1 we formalize the problem as an ILP problem where the variables correspond to

ORDSs of given capacities. Afterwards, in Sect. 4.1.2 we propose a column generation

approach to generate possible ORDSs. In this part we discretize the probabilistic

constraints on the ORDSs.

Phase 1 model

The available capacity of ORs in the MSS cycle may differ from day to day. Let R be the

number of different OR capacity sizes (sorted in non-decreasing order). The actual

capacity of an OR of capacity size type r is given by ݀,ݎ= 1, … ,ܴ. Let U be the set of

possible ORDSs, and let Ur be the subset of U that contains all the ORDSs that belong to

the rth capacity size. In this context an ORDS u belongs to Ur if the rth capacity size is the

smallest available capacity size where the ORDS fits in. Hence, ܷ = ⋃ ܷ
ோ
ୀଵ . Let mr be

the number of OR-days within one cycle length that have the rth capacity size and let ϕr be

the set of corresponding tuples (j,t). For a given ORDS ݑ ∈ ܷ we denote the number of

surgical procedures of type i that are scheduled in u by ܽ௨ ∈ ℕ.

To formulate the Phase 1 model, we introduce integer decision variables ܺ௨
ݑ) ∈ ܷ) that represent the number of times that ORDS u is selected. The objective

function (5) corresponds to the first part of the objective function (1) of the base model:

minimization of the required OR capacity. Constraints (6) impose that all procedures are

selected. The number of ORDSs generated for every OR capacity size that we can select is

restricted by the number of available OR-days mr of capacity type r. This restriction is

imposed by constraints (7). Summarizing, in Phase 1 we must solve the following ILP:

min  ݀ ∙ ܺ௨
௨∈ೝ

(5)

ோ

ୀଵ

subject to   ܽ௨ ∙ ܺ௨
௨∈ೝ

ோ

ୀଵ

≥ ,ݏ ݅= 1, … ܫ, (6)

 ܺ௨ ≤ ݉ 

௨∈ೝ

, =ݎ 1, … ,ܴ (7)

ܺ௨ ∈ ℕ, ݑ ∈ ܷ.
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This model has two main drawbacks. The set of possible ORDSs U grows exponentially

with the number of procedure types, and due to the probabilistic constraints, the

identification of all possible elements of U is difficult. To overcome this, a column

generation approach for this problem is presented where furthermore the check on

containment of an ORDS in a set Ur is discretized.

Column generation

Column generation is an often-used approach to solve complex optimization problems

with a large number of variables (e.g. cutting stock, capacity planning, and crew

scheduling, e.g., Barnhart et al. 1998; Pinedo 2005). The outline of our approach is as

follows. We use column generation to solve the LP relaxation of the Phase 1 model, and

round this solution to obtain a feasible solution. In the column generation procedure we

iteratively generate subsets of U (i.e., subsets of ORDSs) and solve the Phase 1 model for

these subsets. The Phase 1 model restricted to such a subset of U is called the restricted

master problem. In each iteration, solving the restricted LP-relaxation (i.e. the LP-

relaxation of the restricted master problem) yields shadow prices. These are used as input

for the sub-problem (the pricing problem), which revolves around generating ORDSs that

are not included in the restricted master problem, but that may improve its solution. The

reduced costs of the corresponding variables Xu are negative. These ORDSs are added to

the restricted master problem, and the LP-relaxation is re-optimized. This procedure stops

if no ORDSs exist that may improve the restricted LP-relaxation solution. The restricted

LP-relaxation solution is then optimal to the LP-relaxation. We then apply a rounding

procedure to obtain a feasible Phase 1 solution.

Initialization We use an initialization heuristic to generate subsets of Ur for all OR

capacity sizes r = 1,…,R. More precisely, for each r = 1,…,R we generate subsets ഥܷ ⊂ ܷ

of ORDSs that cover all surgical procedures. This initial set of ORDSs serves as a starting

point for the column generation procedure.

Let the variable ܼ
 ∈ ℕ, (݅= 1, … (ܫ, denote the number of procedures of type i

that is scheduled in an ORDS for OR capacity size r. Any vector ܼ = ( ଵܼ
, … , ூܼ

) must

satisfy the probabilistic bin-packing constraint (8) to be a feasible ORDS for capacity size

r, where f(Zr) denotes the distribution function that represents the stochastic sum of the

duration of all surgical procedures in the ORDS.

]ݎܲ (݂ܼ) ≤ ݀] ≥ ߙ (8)

The probabilistic constraints (8) impose difficulties on the generation of ORDSs. We

discretize constraints (8) using prediction bounds. A prediction bound ݊
ఈ denotes that the

duration ξi of procedure type i is smaller than or equal to ݊
ఈ with a probability α. These

prediction bounds are used to replace the stochastic variables ξi, and can be calculated

using the primitive of the distribution function of ξi. The total required OR capacity for an

ORDS given by the vector Zr is given by ∑ ݊
ఈ ∙ ܼ

ூ
ୀଵ . The difference between the value of
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a prediction bound and the average surgical procedure duration is used to compute the

planned slack.

As discussed by Hans et al. (2006) the total amount of planned slack for a

multiple of surgical procedures is reduced by the portfolio effect. This portfolio effect may

be approximated by a function g, which only depends on the number of procedures that are

scheduled in the operating room and on the average standard deviation of all types of

surgical procedures. The reduction of required planned slack g(∑ ܼ
ூ

ୀଵ ), as a result of the

portfolio effect, is subtracted from the sum of the prediction bounds. This results in the

following OR capacity constraints:

൭ ݊
ఈ ∙ ܼ



ூ

ୀଵ

൱− g൭ ܼ


ூ

ୀଵ

൱ ≤ ݀ (9)

All vectors ( ଵܼ
, … , ூܼ

) that satisfy constraints (9) are possible elements of Ur.

Since the generation of ORDS is basically a bin-packing problem, we may apply bin-

packing heuristics such as First Fit Decreasing (FFD), Best Fit Decreasing (BFD) and

Minimum Bin Slack (MBS) (Gupta and Ho 1999) or a heuristic such as Randomized List

Scheduling Heuristic (van den Akker et al. 1999) to generated initial set of ORDSs. Since

in a study of off-line bin-packing algorithms by Dell’Olmo and Speranza (1999) Longest

Processing Time (LPT) performs well, we use this heuristic for the generation of an initial

set of ORDSs for an OR capacity size r. LPT first sorts all procedures of all types in

decreasing order of their prediction bound ݊
ఈ and then it creates an ORDS in which it

plans the longest procedure that fit, i.e., that satisfy constraints (9). If the heuristic reaches

the end of the ordered list it closes the ORDS. This is repeated until no surgical procedures

remain in the ordered list. The heuristic is executed for all OR capacity sizes.

Pricing problem An optimal solution of the LP relaxation of the restricted problem is

optimal for the LP relaxation of the complete master problem if the corresponding dual

solution is feasible for the dual problem of the LP relaxation of the master problem. The

pricing problem is thus to determine whether there exist ORDSs that are not in the

restricted LP relaxation that violate the dual constraints from the LP relaxation of the

master problem. Such ORDSs are added to the restricted LP relaxation and a next iteration

starts. If such ORDSs do not exist, column generation terminates, and the current restricted

LP relaxation solution is optimal to the LP relaxation of the master problem.
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The dual constraints of the LP relaxation of the Phase 1 model are:

ߨ +  ∙ߣ ܽ௨

ூ

ୀଵ

≤ ݀, =ݎ 1, … ,ܴ

ߨ ≤ 0, =ݎ 1, … ,ܴ (10)

≤ߣ 0, ݅= 1, … ܫ,

where λi are the dual variables corresponding to constraints (6), and πr the dual variables

corresponding to constraints (7) of the Phase 1 LP.

As input for the pricing problem we obtain two vectors ൫ߨത, ൯ofߣ̅ shadow prices

from the restricted LP relaxation. The pricing algorithm now examines whether for this

solution ൫ߨത, ൯ߣ̅ an ORDS ݑ ∈ ܷ, represented by a1u,…,aIu, exists that violates the dual

constraint (10), i.e. values a1u,…,aIu, with:

݀− −തߨ  ߣ̅ ∙ ܽ௨ < 0 (11)

ூ

ୀଵ

The left-hand side of constraints (11) are the reduced costs for variable Xu ݑ) ∈ ܷ). We

evaluate each OR capacity size r separately to determine whether an ORDS exists, formed

by a vector ( ܼ
, … , ூܼ

), that violates the dual constraints (10). In the rth problem we thus

need to maximize

 పഥߣ ∙ ܼ


ூ

ୀଵ

over all vectors ( ܼ
, … , ூܼ

) representing a new ORDS, i.e. satisfying constraint (9).

To solve the pricing problem as an ILP we write the term: g(∑ ܼ
ூ

ୀଵ ) as a

telescopic sum. For this purpose, we introduce additional notation. The binary variable Ae

indicates whether there are at least e procedures in an ORDS (e ≤ E, where E is the

maximum number of procedures that can be performed during 1 day in one operating

room). The function g( )݁ ∶= gଵ + ⋯+ g provides the correction for the portfolio effect

for e surgical procedures. Using this function and the binary variables Ae, the rth pricing

problem ILP becomes:

max ∙ߣ̅ ܼ


ூ

ୀଵ

subject to

൭ ݊
ఈ ∙ ܼ



ூ

ୀଵ

൱−  g( )݁ ∙ ܣ

ூ

ୀଵ

≤ ݀, =ݎ 1, …ܴ

 ܼ


ூ

ୀଵ

=  ܣ

ா

ୀଵ

, ݁= 1, … ܧ,

ܣ ≥ ,ାଵܣ ݁= 1, … ܧ,
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ܣ ∈ {0,1}, ݁= 1, … ܧ,

ܼ
 ∈ ℕ, ݅= 1, … ܫ,

After this problem is solved for all capacity sizes r, the resulting ORDSs with

negative reduced costs are added to the restricted LP relaxation of the Phase 1 model. This

model is reoptimized to obtain new shadow prices. Column generation stops if no such

ORDSs are found any more. If in practice this process takes very long and generates a

large number of extra columns, one might incorporate some of the stopping criteria like the

amount of improvement in the LP resulting from the newly generated columns. This may

have some effect on the quality of the LP-solution, but since afterwards still an integer

solution has to be constructed, the effect on the solution after Phase 2 might be only

marginal. In our test instances, we always were able to solve the LP-relaxation to

optimality.

Rounding heuristic The solution to the restricted LP relaxation does not directly lead to a

starting point for the second phase, since ORDSs may have been selected fractionally. To

obtain an integer solution we use a rounding heuristic that rounds down the fractional

solution. This results in an integer solution with a small number of surgical procedures that

are not assigned to selected ORDSs. These procedures are assigned to newly created

ORDSs using an LPT heuristic. There may also be some redundant surgical procedures

due to the “≥” sign in constraints (6). We remove these redundant procedures randomly. In

general, this approach does not guarantee to result in a feasible solution. However, for the

tested instances a quite large fraction of procedures was planned before rounding, only a

fraction had to be planned by the LPT heuristic. We never got stuck with infeasible

solutions at this stage. If infeasibility might get an issue, the simple rounding heuristic

leave room for algorithmic improvements and may be replaced by more elaborate

approaches. Summarizing, the output of Phase 1 consists of a set of ORDSs that cover the

set of all surgical procedures to be assigned within the MSS.

4.2. Phase 2

In Phase 2 the actual MSS cycle is constructed. We propose an ILP in which the set of

ORDSs is assigned to OR-days such that the hospital bed requirements are leveled over the

days.

Phase 2 model

Given is a set ഥܷ of ORDSs to be assigned to the OR-days of the MSS. Let ഥܷ ⊂ ഥܷ

denote the ORDSs which are of capacity size r. To model the assignment of an ORDS u to

an OR-day (j,t) we introduce binary decision variables Yujt for all ݑ ∈ ഥܷ
 and ( (ݐ݆, ∈ ߮.

We ensure that the OR capacity sizes match and that at most one ORDS is assigned to an

OR on a day. The objective function takes into account the requirements for all hospital
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beds for all days within one MSS cycle, thus also requirements of surgical procedures that

have taken place in previous cycles. Corrected by a normalized priority factor (see Sect.

3.2), we minimize the maximum requirements for hospital beds. The objective function is

the second term of the objective function (1) of the base model. This objective function is a

minimax objective and can be rewritten to Eq. (12) and constraints (13) in which HBb is

the maximum requirement of hospital bed type b on a given day in the cycle.

All selected ORDSs from Phase 1 must be assigned to an operating room and a

day. This is ensured by constraints (14). No more than one ORDS can be assigned to an

operating room on a day, which is imposed by constraints (15). Summarizing, the model of

Phase 2 is the following ILP:

min ቈ
ܿ

[∑ ݈ ∙ ݏ
ூ
ୀଵ ] ܶ/





ୀଵ

∙ ܤܪ (12)

subject to

     ߰௧ఛ ∙ ܽ௨ ∙ ௨ܻ௧

்

௧ୀଵ

ூ

ୀଵ(,௧)∈ఝೝ௨∈ഥೝ

≤ ,ܤܪ ߬= 1, … , ,ܶ ܾ= 1, … ܤ, (13)

ோ

ୀଵ

 ௨ܻ௧

(,௧)∈ఝೝ

= ܺ௨, =ݎ 1, … ,ܴ, ݑ ∈ ഥܷ
 (14)

 ௨ܻ௧

௨∈ഥೝ

≤ 1, =ݎ 1, … ,ܴ, ( (ݐ݆, ∈ ߮ (15)

௨ܻ௧ ∈ {0,1}, ݑ ∈ ഥܷ
, ( (ݐ݆, ∈ ߮

ܤܪ ≥ 0, ܾ= 1, … ܤ,

Solving the Phase 2 model

We solve the Phase 2 model using the commercial solver ILOG CPLEX 9.0. We use lower

bound on the values HBb to determine the quality of an intermediate solution and to speed

up the computation. These lower bounds are calculated by rounding up the sum of the total

requirements of hospital beds during one cycle divided by the cycle length:

ቜ
∑ ݈ ∙
ூ
ୀଵ ݏ

ܶ
ቝ

This represents a theoretical minimum of the maximum requirements for hospital bed type

b on 1 day in a cycle. The lower bounds are multiplied by the normative sum used in the

objective (1) of the base model:

 ቈ
ܿ

[∑ ݈ ∙ ݏ
ூ
ୀଵ ] ܶ/





ୀଵ

∙ ቜ
∑ ݈ ∙
ூ
ୀଵ ݏ

ܶ
ቝ (16)

This overall lower bound (16) is given as an initial lower bound to CPLEX to speed up the

branch-and-bound process.
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5. Computational experiments

We implemented the two-phase approach in the AIMMS mathematical modeling-language

3.5 (Bisschop 1999), which interfaces with the ILOG CPLEX 9.0 LP/ILP solver. We test

our approach with realistic data instances from the Erasmus MC based on the available

database of surgical procedures that has been collected from 1994 until 2004. This data

consists of the frequency of surgical procedures, procedure durations, and data about the

usage of hospital beds after surgical procedures.

5.1. Instance generation

Since 1994 Erasmus MC has been collecting data on the frequency of surgical procedures,

the duration of procedures, and standard deviation of the duration of procedures. In

cooperation with surgeons we defined procedure types by grouping medically

homogeneous procedures, which results in the Erasmus MC instance. The data consist for

each surgical procedure type i of the frequency of a surgical procedure type during one

cycle si, the prediction bound ݊
ఈ, and the length of a request of a hospital bed lib. We vary

the parameter values of the cycle length T, the number of operating rooms J, and the

number of hospital bed types B (see Table 1) , which results in 36 instances types. For each

parameter combination 9 additional instances are generated, this yields a total of 360

instances. The additional instances are generated by randomly drawing data from the

intervals in Table 2 and rounding them to the nearest integers (the values with a tilde in the

table represent the values of the parameters resulting from the Erasmus MC instance).

The cycle length influences the number of procedure types and the number of

surgical procedures that can be incorporated into the MSS (Category A procedures). Table

3 shows the dependency between the cycle length and the number of surgical procedure

types in Category A together with their numbers and total duration.

Cycle length in days T ∈ {7, 14,28}

Number of operating rooms J ∈ {5, 10,15,20}

Number of hospital bed types B ∈ {1 ,2,3}

Table 1: Parameter values for the instances

ݏ݅ ∈ [0.9 ∙ ,݅ݏ 1.1 ∙ [݅ݏ

݅݊
ߙ ∈ [0.9 ∙ ݅݊

,ߙ 1.1 ∙ ݅݊
[ߙ

݈ܾ݅ ∈ [0.9 ∙ ݈ܾ݅ , 1.1 ∙ ݈ܾ݅ ]

Table 2: Intervals for creating

instances
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We assume that all ORs are available during weekdays and are closed for elective

procedures in weekends. For the computational experiments in this paper we use one OR

capacity size (R = 1) of 450 min (dr := 450). Furthermore, we assume that procedures are

finished before their prediction bound in 69% of the cases, i.e., α := 69%. This value is

taken from the current practice of Erasmus MC. The priority factors of hospital beds are

given by: c(1) := 5 c(2) := 2 c(3) := 1.

The function g, which we use to model the portfolio effect, depends on the

number of procedures that is scheduled in an ORDS and the average standard deviation തߪ

of all surgical procedures. We approximate the portfolio effect using the function g(e) that

takes the values indicated in Table 4. The value for the average surgical procedure standard

deviation തisߪ 36, based on the database of the Erasmus MC.

5.2. Test results

In the tests we focus on three different aspects. Firstly, we study the dependencies of the

computation times of both phases on the used parameter combinations. Secondly, we

investigate the obtained results of the minimization of the required OR capacity. And

finally, we address the hospital bed leveling. For this last issue, we have truncated

computations that exceed 600 s. and have used the best incumbent solutions as output.

These incumbent solutions are, therefore, generally not optimal for the Phase 2 model.

Computation times

Table 5 presents the computation times in Phase 1 for all parameter combinations. The

computation times in Phase 1 include the initialization and rounding heuristic.

The computation time increases with T, whereas B and J hardly influence the

computation time. Similar results are obtained when computation times of the initialization

Cycle length Number of Total number Total duration of all

in days procedure types of procedures procedures (in hours)

7 42 56 126

14 109 177 398

28 203 423 952

Table 3: The relation between the cycle length and procedures in Category A

e 1 2 3 4 5

g(e) 0.00·σ 0.10·σ 0.22·σ 0.36·σ 0.48·σ

Table 4: Parameter values for function g, to model he portfolio effect
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heuristic are considered solely. Here the computation times vary from 0 to 6 s. We

conclude that the initialization heuristic only needs a small fraction of time that is required

by the complete Phase 1 computation. Table 6 presents the computation time in Phase 2 for

all parameter combinations.

Table 6 shows that all three parameters have considerable impact on the

computation time and in all cases the computations time increases with increasing

parameter value. Table 7 shows the number of times that the calculation is truncated after

600 s. for all parameter combinations. The ‘–’ sign denotes that these test instances are

infeasible due to the lack of operating rooms.

The extreme growth of the computation time for some of the test instances in

Table 6 results mainly from hard instances, where the calculation is truncated (see Table

7). Computation times are not high and therefore allow use of the proposed approach in

practice.

T → 7 14 28

J ↓ B → 1 2 3 1 2 3 1 2 3

5 15.10 17.08 13.76 43.91 47.00 45.90 80.96 78.78 74.56

10 15.29 16.59 13.36 47.12 44.28 45.62 80.24 83.90 87.01

15 16.29 16.12 13.17 47.24 44.70 44.03 80.20 75.96 95.17

20 15.01 16.73 14.35 48.01 45.94 42.39 81.07 75.00 89.70

Table 5: Computation times of Phase 1 in relation with T, B and J

T → 7 14 28

J ↓ B → 1 2 3 1 2 3 1 2 3

5 0.30 0.49 0.56 1.55 2.79 3.69 6.16 8.94 13.32

10 0.63 0.93 1.11 3.78 5.86 72.04 15.02 30.54 325.08

15 0.96 1.37 121.60 5.39 8.69 72.92 18.87 43.09 517.08

20 1.21 1.81 122.27 7.45 11.26 87.79 24.54 47.25 478.67

Table 6: Computation times of Phase 2 in relation with T, B and J

T → 7 14 28

J ↓ B → 1 2 3 1 2 3 1 2 3

5 0 0 0 - - - - - -

10 0 0 0 0 0 1 0 0 3

15 0 0 2 0 0 1 0 0 7

20 0 0 2 0 0 1 0 0 5

Table 7: The number of times that computation is truncated
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OR utilization

Table 8 shows the average number of required ORs per week in relation to the cycle length

T. The number of required ORs increases if the cycle length increases, which may be

expected since the total surgical procedure volume increases as well (see Table 3). The

rounding gap between the integer solution of Phase 1 and the value after rounding up the

optimal fractional solution of the LP relaxation denotes the quality of the rounding

heuristic. We conclude that the rounding gap is small and decreases if more ORDSs are

required. Thus, we may conclude that the achieved OR utilization after Phase 1 is close to

the best possible utilization.

Table 8 gives the results of using only the ORDSs generated by the initialization

heuristic. These values are found by solving the restricted LP using the initially generated

ORDSs and applying the rounding heuristic. They are equal to the values of the complete

column generation approach for the construction of MSSs with the cycle length of 7 and 14

days. For larger instances with the cycle length of 28 days, the complete column

generation slightly improves the initialization heuristic. Thus, in most of the cases, the

ORDSs generated by the initial heuristic already contain the ORDSs needed for the

optimal fractional solution of the LP-relaxation of the Phase 1 model. But since an MSS is

typically constructed once a year, the additional computational effort of the column

generation approach should be used to try to improve the initial solution.

Hospital bed leveling

In this section we discuss the hospital bed leveling. The relative difference between the

objective value of the Phase 2 model and the lower bound [see expression (16)] indicates

the quality of the solutions found. Table 9 presents the relative differences.

The results in Table 9 show that the difference between the found solutions and

the lower bound is small. Therefore, Phase 2 almost optimally levels the hospital bed

requirements. This is the more surprising, since the ORDSs in Phase 1 have been generated

with the only goal to optimize resource utilization not taking into account the subsequent

problem of hospital bed leveling.

Initialization heuristic and column generation Initialization heuristic only

T ↓ Required number of Rounding Required number of

operating rooms gap(%) operating rooms

during 1 week during 1 week

7 16.50 1.25 16.50

14 27.80 0.9 27.80

28 34.18 0.6 34.33

Table 8: Test results of Phase 1
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In 22 out of 360 experiments the computation of Phase 2 is truncated. Table 10

presents the relative differences between the found solution and the lower bound for the 22

truncated instances.

Even for these instances the average gap is small; the maximum gap is 10.1%.

Based on the presented results we conclude that the constructed MSSs level the hospital

bed requirements of the incorporated surgical procedures. This means that the

requirements on one day rarely exceed the lower bound.

6. Conclusions and further research

The computational experiments show that generation of MSSs is well possible within

acceptable time bounds by the proposed two-phase decomposition approach. The proposed

solution approach generates MSSs that minimize the required OR capacity for a given set

of procedures and level the hospital bed requirements well. The chosen solution approach

makes it possible to add restrictions imposed by personnel and to consider other types of

hospital resources than beds. This flexibility is required to implement an OR planning

strategy that includes an MSS. The approach has been successfully tested on real data from

Erasmus MC. The hospital management is pleased with the outcomes, and encourages and

initiates further research into implementing the MSS-approach in practice.

In further research we will investigate implementation aspects, and scheduling of

Category B and C procedures as such is required to determine the overall benefits of cyclic

T → 7 14 28

J ↓ B → 1 2 3 1 2 3 1 2 3

5 0.0% 0.0% 0.5% – – – – – –

10 0.0% 0.0% 0.5% 0.0% 0.0% 0.2% 0.0% 0.0% 1.3%

15 0.0% 0.0% 0.5% 0.0% 0.0% 0.2% 0.0% 0.0% 2.4%

20 0.0% 0.0% 0.5% 0.0% 0.0% 0.2% 0.0% 0.0% 1.5%

Table 9: Average gap between the lower bound and the Phase 2 solution

T → 7 14 28

J ↓ B → 1 2 3 1 2 3 1 2 3

5

10 1.9% 4.5%

15 2.7% 1.9% 3.4%

20 2.7% 1.9% 3.0%

Table 10: Average gap between the lower bound and the Phase 2 solution for truncated

instances
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scheduling of OR departments. This research should also provide insight into the benefits

of a cyclic OR planning approach for hospitals with various patient mixes. Furthermore,

we will investigate the leveling of hospital beds when the length of request for beds is

assumed to be stochastic.

The repetitive nature of our cyclic surgical planning approach yields that it

reduces the overall management effort. In addition, it not only optimizes OR utilization but

also levels the output towards wards and ICU. This results in less surgery cancelations, and

thus a reduction of the lead-time of the patient’s care pathway. Therefore, MSS contributes

to an improved integral planning of hospital processes. The intensive cooperation with

clinicians and OR managers has lead to a framework for cyclic OR planning and a method

for construction of MSSs that can handle constraints imposed by health care processes.

This flexibility ensures the applicability of the developed method in OR departments and

hospitals.
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Chapter 5

Fewer intensive care unit refusals and a higher capacity

utilization by using a cyclic surgical case schedule

Abstract

PURPOSE: Mounting health care costs force hospital managers to maximize utilization of

scarce resources and simultaneously improve access to hospital services. This article

assesses the benefits of a cyclic case scheduling approach that exploits a master surgical

schedule (MSS). An MSS maximizes operating room (OR ) capacity and simultaneously

levels the outflow of patients toward the intensive care unit (ICU) to reduce surgery

cancellation.

MATERIALS AND METHDOS: Relevant data for Erasmus MC have been electronically

collected since 1994. These data are used to cons truct an MSS that consisted of a set of

surgical case types scheduled for a period or cycle. This cycle was executed repetitively.

During such a cycle, surgical cases for each surgical department were scheduled on a

specific day and OR. The experiments were performed for the Erasmus University Medical

Center and for a virtual hospital.

RESULTS: Unused OR capacity can be reduced by up to 6.3% for a cycle length of 4

weeks, with simultaneous optimal leveling of the ICU workload.

CONCLUSIONS: Our findings show that the proposed cyclic OR planning policy may

benefit OR utilization and reduce surgical case cancellation and peak demands on the ICU.

1. Introduction

Mounting health care costs force hospital managers to maximize utilization of scarce

resources and simultaneously improve access to hospital services. Efforts are therefore

directed at developing planning methods that may deal with these seemingly conflicting

objectives [1].

Typically, Dutch hospitals use a block planning approach for surgical scheduling

[2]. In this approach, surgeons of various departments plan their patients in blocks of

operating room (OR) time assigned to their specific department. The method of planning

largely determines the utilization of the available OR capacity and thus the efficiency of

the OR department. Implicitly a substantial part of the surgical schedules is basic and

performed in a cyclic manner. In addition, the surgical schedule determines the daily

number of patients flowing from the OR to the intensive care unit (ICU) postoperatively

and hence influences surgical and nonsurgical patients' access to the ICU. Scheduling

surgical cases without taking into account the inherent ICU or ward occupancy will result

in peak demands on these hospital resources. Such peak demands may lead to bed

shortages and thus to cancellation of surgical cases or refused ICU admissions for other
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indications [3]. Moreover, the uncertain duration of operations and ICU stay, as well as the

unforeseeable emergency cases, is a complicating factor in surgical scheduling.

Faced with similar challenges regarding availability of services, peak demands,

and capacity utilization, industry has developed methods to deal with these problems. One

of these methods is to explicit create and use master schedules, which are repetitively used,

for subsequent production steps. In such a master schedule, repetitive jobs are scheduled

leading to improved utilization of scarce resources and coordination in the supply chain

[4,5].

Based on this experience, the aim of this study is to assess, by means of

computational experiments, the benefit of a comprehensive cyclic case schedule for a

university hospital and a virtual hospital with a different case mix.

2. Materials and methods

Erasmus MC's main OR department consists of 16 ORs. Planning data have been

electronically collected since 1994. From this extensive database, we obtained data on

frequencies and durations of specific surgical cases and on the standard deviation of

duration of all surgical cases. We also obtained data on related length of stay in the ICU if

applicable. Erasmus MC has a tertiary referral case mix. Its mean utilization rate was

85.5%.

The Erasmus MC case mix differed from case mixes of community hospitals.

Therefore, besides the experiments using Erasmus MC data, experiments are performed

using a case mix of a virtual hospital. The procedure for constructing a data set of the

virtual hospital was as follows. The surgical cases from the Erasmus MC data set were put

in descending order of frequency. We then selected surgical cases from the ordered list

until half of the total surgery volume of the Erasmus MC was accounted for. Subsequently,

the frequency was doubled to obtain a case mix with the same volume as the case mix of

the Erasmus MC. Table 1 depicts the data for Erasmus MC and the virtual hospital.

We used the block planning method that is currently used in the Erasmus MC as

starting point for the analysis [2,6]. In the Erasmus MC's block planning method, months

in advance blocks are assigned to surgical department that subsequently plan their patients

in the available OR time according to strict rules. One of these rules is to plan reserved OR

time for emergency patients and the reduction of overtime [7-10]. The amount reserved for

the latter depends upon a chosen probability, which is in the Erasmus MC set at 31%.
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The use of a master surgical schedule (MS S) implies the following 3 stages in the

case scheduling process. First, the length of a cycle period is determined, and an MSS is

constructed for that period. Thereafter, surgical departments will assign actual patients to

the surgical case types incorporated in the MSS. Patients who require a surgical case that is

not incorporated may be scheduled in one of the OR blocks that are kept free. At this stage,

all patients are assigned to a specific day, for which the clinicians can make the

appointments with the patient for surgery. Stage 3 finally provides for the admission of

emergency cases and possible replanning of elective cases.

The focus of this article is on the first stage, that is, determining the optional cycle

period and the construction of an MSS for such a period. The choice for a particular cycle

period was of importance because it determined the number of surgical cases that could be

incorporated in the schedule. A longer cycle period lead to a larger set of surgical cases

that is on average performed at least once. Given the cycle length and, consequently, the

number of case types per cycle, the optimal case schedule was constructed using

mathematical optimization techniques. Its ultimate aim was 2-fold: optimizing the use of

OR time and minimizing the peak demands of required ICU beds for elective surgical

patients [8]. We applied the method of Van Oostrum et al [8], by which first the OR

utilization is maximized by reducing the unused OR capacity, and subsequently the ICU

bed requirements are leveled. Maximization of OR capacity was accomplished by

generating sets of case types that fitted in one OR, such a set is referred to as Operating

Room Day Schedule (ORDS). A column-generation approach generated and selected an

optimal set of ORDSs [11].

Erasmus MC Virtual hospital

Data

Total annual case volume (h) 18549 18861

Mean case duration (min) 142 104

Standard deviation (min) 36 30

Mean no. of required ICU beds

per day
6 5

Assumptions

Mean OR utilization (%) 85.5 85.5

Accepted risk on overtime (%) 31 31

Table 1: Descriptive characteristics of the data sets of Erasmus MC and the virtual hospital
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Such an approach starts with an initial set of ORDSs that is generated by a longest

processing time heuristic [12]. A longest processing time heuristics applied to surgical case

scheduling orders at first all case types based on their expected duration. Then, the first

case in line is selected and scheduled in an empty ORDS, followed by the next ones in line

unless the sum of durations exceeds the available OR time of the ORDS under

consideration. Upon this moment, a new ORDS is created, and the heuristic continues

adding surgical cases until the capacity limit is exceeded. After all case types are scheduled

Figure 1: Overview methodology for construction of an MSS.

Figure 2: Operating room utilization for both hospitals and various

cycle periods.
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this way, an initial set of ORDSs is created, which covers all case types to be scheduled in

the MSS.

Subsequently, the unused time (slack) in the ORDSs is calculated, and applying

linear programming (LP) techniques, a new ORDS is constructed, which may reduce the

total capacity needed. This ORDS is added to the available set of ORDSs. A selection of

ORDS is made using LP techniques, which covers all-surgical case types; and again, the

slack in the all ORDS is calculated [8]. Using the renewed slack calculation, a new ORDS

that may reduce the required OR capacity is constructed and added to the existing set of

ORDS. These steps are repeated until no ORDS can be constructed, which possibly benefit

the amount of required OR capacity.

Hence, each ORDS consists of case type that causes a certain bed requirement

profile. To reduce peak ICU peak demands, the selected ORDSs were assigned to a

specific OR and particular day during the cycle. Base on an LP formulation of this problem

[8], all possible combinations of assignment of ORDS to a specific OR and a particular day

were considered using computer modeling. The ICU bed demands of the resulting case

schedule were calculated based on the ICU requirements of surgical cases performed in the

previous cycles and surgical cases performed in current cycle. For this purpose, we used

the mean ICU length of stay for each case type. See Fig. 1 for an example of how an MSS

might be constructed. The computer-modeling package AIMMS (Paragon decision

technology B.V., Haarlem, the Netherlands) was used to construct the MSS for both

Erasmus MC and the virtual hospital.

Any surgical case that was not incorporated in an MSS was scheduled following

the current Erasmus MC scheduling method, resulting in similar performance measures.

The value of different MSSs was assessed by 2 outcome measures: the increase in OR

utilization and the leveling of the number of ICU beds occupied by elective surgical

patients. For both Erasmus MC and the virtual hospital, cycle periods of 1, 2, and 4 weeks

were examined.

3. Results

Use of an MSS can improve OR utilization considerably by up to 6.3% point.

Simultaneously, the ICU workload from such an MSS can be optimal leveled, resulting in

less surgery cancellation and fewer ICU refusals. The length of a single MSS cycle has a

strong influence on the obtainable improvement of OR capacity. In addition, the virtual

hospital potentially has benefits more than the Erasmus MC does (Fig. 2).

Fig. 3 presents for the Erasmus MC a comparison of the ICU demand when it

used an MSS, with a 2-week cycle period, compared to a situation when no MSS is used.

Comparable results hold for other cycle periods of the Erasmus MC and the virtual

hospital.
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Data analysis yields that the cycle period is important for the proportion of

surgical cases incorporated in the MSS as well as that of total related ICU workload (Table

2). The MSSs for Erasmus MC incorporated fewer cases than that for the virtual hospital.

In addition, shorter cycle periods resulted in smaller proportions.

4. Discussion

The aim of this study was to determine the benefits of an MSS in terms of improved OR

utilization and leveling of ICU workload. Computational experiments showed for the

Erasmus MC and a virtual hospital that a cyclic case schedule is indeed able to reduce peak

demands on the ICU while at the same time increasing OR utilization. Apparently, the

seemingly conflicting goals of efficiency and access to hospital services can be optimized

simultaneously.

Figure 3: Number of occupied ICU beds by patients for which a surgical case was incorporated

in an MSS with a cycle period of 2 weeks compared with an arbitrary chosen 2-week period

(June 3, 2004, until June 16, 2004) in the Erasmus MC. Note that approximately 70% of the

ICU demand of elective surgical patients is incorporated in the MSS (see Table 2).

Cycle period

1y 4wk 2wk 1wk

Proportion of surgical cases incorporated in an MSS (%)

Erasmus MC 100 53 42 27

Virtual Hospital 100 80 75 62

Proportion of the ICU demand of surgical patients determined by an MSS(%)

Erasmus MC 100 45 38 17

Virtual Hospital 100 74 69 68

Table 2: Description of the influence of length of the cycle period on the proportion of surgical

cases incorporated in an MSS and on the proportion of the ICU demand of surgical patients
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Existing literature on surgical case and ICU scheduling is mostly concerned with

scheduling of add-on cases, emergency cases, and allocation of OR and ICU time to

departments [13-15]. Only a few authors have investigated the use of cyclic surgical case

scheduling approaches [16-18]. None of them, however, proposes a case scheduling

method that actually schedules individual surgical case types, accounts for uncertain case

durations, and levels the associated workload on ICUs. Hence, MSSs described in this

article enriches the available literature and available case scheduling methods.

We assumed that the Erasmus MC block planning method was used. This implies

that OR time is reserved to deal with emergencies and to lower the risk on overtime.

Hence, 100% utilization is not obtainable. A higher accepted risk on overtime results in a

higher norm utilization. In combination with the assumption that surgical cases that were

not incorporated in an MSS were scheduled following the current Erasmus MC practice,

the potential improvement may therefore differ for other hospitals depending on their

choice to accept overtime and their current OR scheduling practice.

Like the durations of surgical cases, length of stay on the ICU and surgical wards

may be highly unpredictable, particularly in a tertiary referral environment. A system that

guarantees no cancellation of surgical cases needs a considerable amount of reserve

capacity [10]. Unless this capacity is available, leveling of bed requirements by taking into

account mean length of stay reduces the probability of peak demands. This helps to reduce

the number of case cancellation. An adequate registration system is therefore indispensable

to predict surgical duration and bed usage. Note that leveling of ICU bed requirements

only concerns the proportion of surgical cases incorporated in an MSS and that therefore

the obtained benefits strongly depend on the proportion of ICU bed requirements

incorporated in an MSS. The remaining part of the ICU bed requirements might be leveled

according to other principles such as the method of Kim and Horowitz [19].

When a single surgical department schedules its patients independently from other

departments, the result is a suboptimal schedule in terms of ICU demands and OR

utilization. A more flexible hospital organization and cooperation between different

surgical departments may further improve the surgical schedules in terms of OR

utilization. An MSS as described in this article offers the opportunity to integrate such

flexibility in the care pathway and hence optimize or utilization and level ICU demand.

The use of ORs by various surgical departments on the same day has large

organizational implications such as the requirements for specialized equipment, multi-

employable personnel in all ORs, and possibly longer changeover times. Moreover, the

daily activities of clinicians are influenced by the unpredictable durations of surgical cases

of other surgical departments. Operating room utilization is higher when surgical cases of

multiple surgical departments can be scheduled in the same OR, on the same day [9]. A

hospital should make a trade-off between OR utilization and the flexibility to schedule

surgical cases from multiple specialties in the same OR on the same day. Nevertheless, a
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cyclic planning approach that includes the use of an MSS is also applicable to a single

surgical department.

Clinicians are responsible for the patient scheduling, which is a requirement for

implementation. In addition, most clinicians already have a repetitive schedule. The same

type of patients is every week operated on the same day. An MSS offers the opportunity to

optimize OR utilization and level ICU bed requirement for all clinicians together.

Therefore, it functions as communication tool between planners, clinicians, and other

services within hospitals for which an MSS structures for example material coordination.

Consequently, the week-to-week case scheduling requires less effort, and the

administrative burden on medical staff is lowered because an MSS provides a substantial

part of the final surgical schedule.

Our findings show that the proposed cyclic OR planning policy results in a

leveled outflow of patients toward the ICU. Although in this study we have focused on

reduction of surgical case cancellation because of ICU bed shortages, leveling of other

resource requirements might be beneficial for other aspects of a hospital's organization, for

example, required intraoperative navigation systems, numbers of fluoroscopy equipment,

availability of beds on the ward, and fluctuations in the required number of postoperative

computed tomography scans.
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Implementing a master surgical scheduling approach in an

acute general hospital

Abstract

A regional hospital in the Netherlands improved its performance by implementation of a cyclic and

integrated surgical scheduling approach. This approach cyclically executes a master surgical

schedule of surgery types and is dedicated to optimize operating room utilization, robustness, and

overtime, while it also takes resource demand on other hospital departments into account, such as

wards. Before 2007, the hospital faced severe problems, such as excessive underutilization of

resources, huge budget deficits, and pressure on quality of care due to badly organized hospital

logistics. Implementation of the surgical scheduling approach resulted in the first substantial

organizational improvements in years. Hospital management obtained higher controllability of

hospital logistics, while ward management reported substantial reduction in unforeseen fluctuations

in bed occupancy. The study shows the added value of Operations Research models in hospital

practice.

1. Introduction

The Netherlands face ageing population and rising health care costs, as most western

countries do (OECD, 2008). At the same time, the public is more and more demanding for

the latest technology, and short waiting and access times. The growing demand for cure

and care provided by hospitals put a strong focus on their efficiency and efficacy. Hospital

management has to deal with the seemingly conflicting objectives of low costs, high

quality of care, and high quality of labor.

In most Dutch hospitals, physicians work on fee-for-service. Before 2004, the

entire budget of a hospital was based upon contracts with the government and insurance

companies. This generally put hospitals in a position where they had to manage budget-

constrained resources. Moreover, before 2008 all physicians were paid by a lump sum

system, which provides income guarantee without much financial incentives to maximize

patient throughput. Both systems severely restrict the flexibility of adjusting capacity to

the actual demand in hospitals. Also, the system was highly driven by capacity supply

instead of care demand. This in total resulted in high inefficiencies.

The Dutch government is currently changing the health care system in favor of a

more market-oriented structure. This provides incentives to surgeons, anesthesiologists,

and hospitals to work more efficiently. Beatrix Hospital (Gorinchem, The Netherlands)

deliberately wants to improve their performance regarding efficiency and manageability of

patient flows. One of its major challenges is to improve processes related to surgical case

scheduling. Surgical scheduling is a complex task in hospitals, and a popular topic among

academic researchers (Blake and Donald, 2002; Cardoen, et al., 2008; Carter, 2002;
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Dexter, et al., 2004). Typically, the focus is on maximizing operating room utilization and

revenues. However, an operating room department is not a stand-alone unit within a

hospital. Reports on real implementations of strategies that optimize surgical scheduling in

an integrated way with preceding and subsequent departments are scarce.

Beatrix Hospital successfully implemented a Master Surgical Scheduling (MSS)

approach. This approach cyclically executes a master surgical schedule of surgery types. A

master surgical schedule allows not only for optimization of operating room utilization,

robustness, and overtime, but it also takes resource demand on other departments into

account, such as wards. We describe in this article the implementation process and the

reported benefits of the master surgical scheduling approach in the hospital. To position

this process in a more theoretical context we start with an organizational approach on

implementation problems in Section 2. We then introduce the case in Section 3, followed

by a detailed discussion of the implementation in Section 4 of each of the seven steps of

master surgical scheduling as they were introduced in Chapter 1.In Section 5 we present

results. Section 6 discusses the implementation in Beatrix hospital. Finally we draw

conclusions in Section 7.

2. Dealing with implementation problems: an organizational approach

Hospitals consist of organizational units that use both bureaucratic and professional forms

of control (Georgopoulos and Mann, 1962; Lawrence and Dyer, 1983). The organizational

culture and focus of these units influence many aspects of MSS implementation.

Organizational culture concerns norms, beliefs, and values (Peterson, 1979). In

other words, it concerns the mindset of people working in an organization. Four different

mindsets or worlds are distinguished in hospitals: care, cure, control, and community

(Glouberman and Mintzberg, 2001a; b). Distrust amongst these four worlds makes health

care a disconnected process.

Organizational focus of a unit/department depends on the patient groups treated

and the treatments offered (Davidow and Uttal, 1989; Herzlinger, 1997). A focused unit is

aimed at a limited number of patient groups and/or treatments. Next to general purpose

units, we distinguish three types of focused units: specialty based, delivery based, and

procedure based. In this section we describe the effects of each of these foci on the

organizational culture and how prerequisites of implementing an MSS arise in each of

these foci.

2.1. Specialty based focused units

Specialty based departments / units are aimed at a single patient group and offer almost all

treatments for this group of patients. Examples in the literature are centers for cardiac care

and centers for orthopedics (Casalino, et al., 2003; Herzlinger, 1997; Meyer, 1998). These
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centers encompass all resources required for treatment. As resources in specialty based

focused units are dedicated, surgeons have more control (Casalino, et al., 2003). We

therefore expect organizational culture to highly value professional autonomy.

Successful implementation of MSS in specialty based focused units is also highly

dependent on the degree of sub-specialization of surgeons, the volume of patients treated,

and the case-mix. A high degree of specialization of surgeons, or high variety in case-mix,

complicates defining surgery types, and makes implementing an MSS difficult. For such

specialty based organizational units with high sub-specialization and high case-mix variety

an MSS such as defined by Belien and Demeulemeester (2007) is more suitable. In

general, an MSS can be successfully implemented in specialty based focused units with

low sub specialization and in those units where a high sub specialization is combined with

large patient volumes and moderate case mix variety.

2.2. Delivery based focused units

Delivery based organizational units are aimed at multiple patient groups, which require a

similar type of treatment or type of care delivery. The main examples in the literature are

ambulatory surgery centers (ASCs) (Casalino, et al., 2003; McLaughlin, et al., 1995; Yang,

et al., 1992). ASCs offer ambulatory, or day-case, surgery and impose limitations on the

maximum length of stay, complexity of the surgical procedures, and physical condition of

patients. ASCs typically encompass both ORs and wards.

Delivery based focused units exhibit a culture of (strong) common goals related to

the timeliness of the care delivery process (Yang, et al., 1992). For instance, the authors

witnessed remarkable differences in punctuality of starting times of ORs between general

purpose and delivery based focused units within a single hospital. While the delivery based

(ASC) ORs almost always start on time, the general purpose ORs are on average 20

minutes late. These delays can not be explained by emergency or urgent cases. We argue

that the difference in average starting time is the consequence of differences in

organizational culture.

As multiple patient groups are treated, multiple specialties work in a delivery

based unit. The unit’s resources, therefore, must be shared between specialties. An MSS

offers clear allocation criteria, and guarantees timely and sufficient capacities. In

combination with the common goals in this type of unit, this stimulates cooperation

between surgeons and personnel. Moreover, since delivery based focused units treat high

volumes of patients with low case-mix variety, they are well suited for an MSS approach.

2.3. Procedure based focused units

Procedure based focused units are aimed at a single patient group and a single type of

treatment. The best known example in the literature of a procedure based organization is
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the Shouldice Hospital in Canada. Shouldice is aimed at the surgical treatment of hernia

patients, and has adapted its processes and lay-out to the patient group treated (Heskett,

1983). Examples in the literature of procedure focused organizational units are

ophthalmologic centers for cataract surgery (Schrijvers and Oudendijk, 2002).

Procedure based focused units exhibit an even stronger culture of common goals

and values than delivery based units. Procedure based focused units treat large volumes of

patients, with low case-mix variety and are, therefore, well-suited for MSS.

2.4. General purpose units

General purpose units are not aimed at specific patient groups or treatments. Typical

examples are the OR department of a community general hospital, or a general ward.

These units operate as shared resources, used by all specialties. Resource sharing might

lead to conflicts between the four worlds in hospital care. Specialists might be tempted to

cheat the system in their advantage, to ascertain required resources. The organizational

culture is presumably weak. Whether an MSS approach is feasible for such general

purpose units, therefore, strongly depends on case-mix variety, volume, the number of

specialties, and the potential efficiency gain. MSS may offer allocation criteria to win

support from surgeons, staff and management by creating insights in resource allocation

and hereby offer financial control.

2.5. Implications for practice

Aside from general purpose organizational units, we discussed three different foci for

organizational units and their effects on implementing an MSS approach. Hence, the

suitability of MSS is affected by the organizational focus and culture, and the case mix

characteristics that come with it.

We argued that implementing an MSS in a hospital consisting of focused

organizational units with a low sub specialization of surgeons is relatively easy for a

number of reasons. First, focused units exhibit a culture of common norms and beliefs.

This culture enforces the willingness to cooperate between specialties, surgeons and

personnel, and lowers distrust. Second, delivery and procedure based focused units treat

larger numbers of similar patients. As a consequence, repetition is higher, which simplifies

defining surgery types. Third, MSS offers clear allocation criteria for shared resources.

Last, focused organizational units are, typically, easier to control. Focus thus reduces the

managerial workload. Therefore, managerial attention can be paid to implementation of the

MSS.

Hospitals with unfocused organizational units that want to implement an MSS

might contemplate creating focused organizational units. Focus influences case-mix and

volume characteristics of these units, and might thus improve the potential for the MSS
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approach. Creating such an organizational structure, although requiring considerable

efforts, might also further reduce the implementation prerequisites considering managerial

control and data collection.

Even implementation of a planning approach that is well-equipped to deal with

the characteristics of processes, cultures, and foci in hospitals is often hard. A considerable

amount of leadership is required to overcome resistance from surgeons and staff against

organizational changes. However, integration of the four worlds (Glouberman and

Mintzberg, 2001a; b) and alignment of processes of different units potentially improves

efficiency (Harper, 2002) to the extent that hospitals, in these times of costs reduction,

have no other choice.

Hospitals that consist of focused units will benefit most from the advanced

planning methods. Hospitals that not yet consist of focused units benefit from MSS

implementation through the focusing that comes with the MSS concept. Implementation of

an advanced planning approach such as MSS comes with several implementation issues.

Particularly the availability of reliable data and weak cooperation between different actors

in a hospital organization are of concern. The magnitude of the implementation issues

depend on organizational foci and culture, and the inherent characteristics of the processes.

3. Case background

Beatrix hospital is a regional hospital that provides primary care. The hospital has annually

approximately 10,000 hospital admissions. Total ward capacity is 329 beds. The hospital

has two operating room locations where respectively five inpatient and three outpatient

operating rooms are located. Beatrix Hospital is part of the Rivas Zorggroep that

incorporates Beatrix Hospital, home care, elderly and nursing homes. Physicians in Beatrix

hospital are private entrepreneurs who work fee-for-service.

Before 2007, Beatrix hospital faced severe problems due to badly organized

hospital logistics. These comprise excessive underutilization of resources, huge budget

deficits, and pressure on quality of care. As in most hospitals, surgical scheduling is a

tedious task, performed by numerous people such as clerics, nurses, managers and

surgeons. In Beatrix hospital this logistical process was strongly surgeon-oriented, and

typically subject to fierce fights. The hospital had no proper managerial structure to discuss

basic logistical measures such as utilization and overtime. Nobody had a clear overview of

responsibilities. To make it even more complex, each department, and sometimes even

among surgeons within a single department, were using different planning and scheduling

guidelines and systems.

Within the chaotic situation of surgical case scheduling in Beatrix hospital,

surgeons were the most influential actors who created maximum flexibility to adjust

schedules whenever they wanted, for whatever reason. Surgical cases tended to be

announced very shortly in advance by the surgeons, even the most elective cases. This
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habit of late submissions resulted in little insight in the upcoming volume of inpatients at

wards and other hospital resources. Generally, this resulted in overestimation of demand

and hence higher costs. Moreover, the chaotic situation and the conflicts coming along

with it, substantially lowered labor satisfaction of hospital employee.

Under Dutch law, employed staff has the right to be scheduled six weeks in

advance. Whilst surgeons are self-employed, other hospital staff, such as operating room

nurses, are not. Late changes such as cancellation of surgical patients hence generate high

costs for the hospital that cannot timely reduce its amount of staff. In turn, late case

submission could result in resource conflicts that cause delay, overtime and or cancellation

of other elective patients.

The quality of care came under pressure due to the badly organized hospital

logistics. The late announced admissions resulted in last-minute preparations causing

higher fault rates, resulting in for example prolonged length of stay. In 2006, Rivas

Zorggroep, owner of the Beatrix Hospital, changed hospital management to deal with all

these urgent problems. Their objectives were to improve the financial situation, efficiency,

and the chaotic planning and scheduling practice, particularly in relation to surgical

inpatients. Hence, the organizational structure was to be changed such that resource

utilization and throughput would increase. Moreover, due to the changes in the Dutch

health care system since 2004, Beatrix hospital can now negotiate with health insurance

companies on the revenues and volumes of Diagnostic Treatment Combinations (DTCs).

To maximize benefits, Beatrix Hospital aims to control production of those DTCs that

generate revenues to improve the financial situation.

4. Solving the surgical scheduling problem at Beatrix Hospital

Beatrix hospital’s problem hence comprises of redesigning its surgical scheduling

processes to improve efficiency and manageability. As such, an attempt can only be

successful when surgeons are convinced that their patients are scheduled in time. We

therefore introduced an approach that allows sufficient medical autonomy for surgeons to

do so. Hence, scheduling of individual patients remains under the responsibility of

surgeons.

Manageability concerns the ability to focus on the most beneficial surgical cases

as well as the ability to organize stable patient flow through the hospital. In the field of

industrial engineering, master production plans (for capacity) and master production

schedules (for actual batches of items/patients) do so. When applied to operating room

departments they are usually both called Master Surgical Schedule. To use the industrial

engineering terminology we redefine the first as surgical block plan (Belien and

Demeulemeester, 2007; Blake and Donald, 2002) and we call only the latter Master

Surgical Schedule (van Oostrum, et al., 2008a; van Oostrum, et al., 2008b).
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We define a master surgical schedule as a cyclic schedule repetitively executed on

the level of individual surgical case types. It covers all frequent elective surgery types,

levels the workload of other hospital departments, is robust against uncertainty, improves

utilization rates, and maintains autonomy for surgeons. In the execution phase, actual

patients are assigned to surgery types that build up the master surgical schedule. The

logistical concept for operating room management that incorporates such a master surgical

schedule is called a master surgical scheduling approach. Beatrix Hospital chooses this

approach to solve its surgical scheduling related problems.

The model for the master surgical scheduling approach comprises of seven steps

as defined by Van Oostrum et al. (2008a). First, a hospital defines the scope of the master

surgical scheduling approach, i.e., the resources and departments to be included in the

logistical improvement project. Second, reliable data on hospital processes needs to be

gathered. In addition, the organizational structure and working needs to be adequately

described. Third, capacity plans are made for all resources involved. Fourth, a set of

recurrent surgery types needs to be defined that cover the surgical case mix of a hospital.

Fifth, the actual master surgical schedule is constructed (van Oostrum, et al., 2008b). Sixth,

patients are assigned to the surgery types in the master surgical schedule. Seventh, the

master surgical schedule needs to be periodically revised to account for trends in patient

arrivals, changes in waiting lists, and renewed contracts with health insurance companies.

Beatrix hospital started the implementation trajectory on April 1, 2007. Hospital

management was involved together with a project leader, an internal business consultant,

while no external business consultants were involved. There were weekly meetings

between the project leader and representatives of the surgeons and managers of the

operating room and wards to inform and discuss progress and intermediate results. An

implementation trajectory typically is a process of going back and forward, where the

Figure 1: Overview landmarks and time periods of the different steps during the

implementation of a master surgical scheduling approach in Beatrix hospital.



108

96 Implementing a master surgical scheduling approach in a regional hospital

results in latter steps may cause the need to redo or refine earlier steps. Figure 1 shows per

step the timeline of the project, including the most important landmarks. We will discuss

each implementation step below and comment on our experiences during these steps.

4.1. Step 1: Scope of the MSS

Beatrix Hospital defined as implementation goal the improvement of operating room

efficiency, stability of ward occupancy, and manageability of the planning and scheduling

processes. Consequently, the capacity planning and operational scheduling of the operating

room department, the wards, and the intensive care unit were involved. Due to the scope of

these resources, the most important actors were operating room and ward managers,

surgeons, and the hospital management. The need for efficiency and organizational

improvement were very clear. This substantially helped the hospital management in

convincing other actors. The main advantages for physicians were the reduction of

cancellations and higher income. The latter was only possible since the last changes in the

Dutch health care system. Ward management obtained benefits of improved labor

satisfaction, while the hospital itself had reduced costs. These win-win situations were a

prerequisite for implementation of the MSS approach. This step was officially finished

after the first general meeting, including presence of most surgeons, about 6 weeks after

the start of the project.

4.2. Step 2: Data gathering

At the start of the project it became clear that useful logistical information was fairly

unavailable in Beatrix hospital. This complicated the project as we required basic data to

perform calculations in order to optimize operating room efficiency and stability of ward

occupancy. Required data comprised of data on patient level of all hospital admissions that

include surgery, as well as data on the surgery itself. We used the year 2006 for analysis.

All data are entered by nurses and approved by physicians. Some delays in the

project occurred due to the time needed to obtain data. Partly due to the database

containing surgical information being maintained by a commercial company who was not

willing to provide fast access to the data, partly due databases maintained by departments

of Rivas Zorggroep that were generally unable to provide data quickly. After obtaining all

patient data they were merged using Microsoft Access. Hence, we obtained a single

database providing information about all patients that underwent surgery in 2006. In a

similar way we obtained data on the availability of capacity during that year. We checked

all data for inconsistency and verified the source of data.

Also, the organizational structure and the inherent difference in planning and

scheduling processes were investigated. This showed that the tendency in Beatrix hospital

was that planning and scheduling processes were surgeon-oriented. However, major
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difference existed between surgical departments. For instance, surgeons of the department

of General Surgery were highly specialized, while surgeons of the Gynecology department

were generalists. Hence, it was required to deal with all kinds of different backgrounds to

implement the MSS approach. The total data gathering was completed about five months

after the start of the project.

4.3. Step 3: Capacity planning

Replanning capacity of the wards and operating rooms was started after the first data came

available, approximately one month after the project start. It involved resource

dimensioning and allocation within the constraints set by agreements on target production,

and target utilization and availability of resources. These agreements are summarized in a

norm-utilization (Van Houdenhoven, et al., 2007) of a particular user on a particular

resource, e.g., the norm utilization of general surgery (user) of operating room capacity

(resource) is 80%. It also comprises of sufficient slack to deal with variability in resource

demand.

Based upon previous experiences, Beatrix hospital identified 40 high-volume

weeks and 12 low-volume weeks to account for holidays and reduced staff availability.

Moreover, the hospital and the surgical departments expect the patient demand to grow

annually by 3%. We used the norm utilization, the identification of low and high-volume

weeks, the expected growth, and organizational restriction as input to the capacity

planning.

Basically, ward capacity is determined by the amount of available staff and not

the amount of available physical beds. Ward management has a limited budget to hire extra

staff at (very) short term. This

is clearly to be minimized. A

master surgical scheduling

approach generates a stable

flow of elective surgical

patients and thereby lowers the

expected need of additional

staff. We determined the

amount of required staff such

that overall costs (including

hiring extra staff) were

minimal.

Analysis of the

operating room data showed

that 30.9% of the operating

room budget was wasted.
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Figure 2: Total number of assigned hours in block plan

per week in Beatrix hospital in the year 2006. These

hours are made available several weeks in advance to

surgical departments to schedule surgical patients.
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Furthermore, there existed a strong fluctuation in weekly operating room production (see

figure 2). This causes strong fluctuations of demand at for example wards. This initial

analysis was presented to representatives of all surgical departments on May 22, 2007.

Despite the initial fierce discussion, all actors, including surgeons, agreed that the

current situation was unacceptable. The hospital and surgical departments agreed on an

immediate capacity cut-down of about 20%. Moreover, all actors accepted that it was

required to re-define the operating room block plan that defines, weekly, which

departments operates when and in which operating room. This is obviously a prerequisite

to optimize the master surgical schedule to its full potential.

During reconstruction of the operating room block plan, surgeons and hospital

staff came up with all kinds of restrictions. Clearly, this potentially reduced substantially

the flexibility to change the capacity plan and thereby the potential efficiency gains. Such

restrictions concerned for example weekly personal appointments and old privileges. The

proposed requests were discussed with the project leader who had the final decision power

to implement or refuse the requests for changes.

The initial operating room capacity cut-down was completed by September 2007,

about five months after the project start. In total this step took much longer as it was

necessary to change several times the operating room block plan to maximize the benefits

of the master surgical schedule (see Step 5).

4.4. Step 4: Define a set of recurrent standard case types

Surgery types function as building blocks of a master surgical schedule. In Beatrix

Hospital we defined surgery types separately for each surgical department as the operating

room block plan identifies rooms dedicated to a particular department. We used a cluster

method based on Ward’s Hierarchical Cluster Method (Ward, 1963) to construct standard

surgery types that minimize the variability in surgery duration, length of stay, and the

portion of dummy surgeries. In addition to standard surgery types, dummy surgeries are

needed to cover the surgical case mix uncovered by the standard surgery types. After

constructing the initial set of standard surgery types, we discussed them with surgeons to

determine their applicability. Some modifications were made such that surgeons could

better identify themselves with the set of surgery types of their department. Before

applying clustering, we identified 282 different surgical cases. These were finally brought

down to 91 standard surgery types, including dummy surgery types.

After construction of the standard case types, the frequencies of some of them

were adjusted. Beatrix hospital did so to improve market performance with regard to

access times and aimed in this way to increase revenues. This was done particularly for

cases belonging to DTCs that are subject to negotiations with insurance companies.
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4.5. Step 5: Construction of the Master Surgical Schedule

In this step we scheduled surgery types, based upon their frequency, into the surgical block

plan determined in Step 3 to obtain a master surgical schedule. We distinguished wards

into a ward for inpatients from General Surgery and Gynecology, a ward for all remaining

surgical inpatients, a ward for outpatients, and an intensive care unit. Scheduling was done

so that the bed occupancy of each ward and patient outflow from the operating room

towards each of the wards are stabilized.

To make a first version of the master surgical schedule we used linear

programming techniques by Van Oostrum et al. (2008b). During discussions on the master

surgical schedule with hospital staff and surgeons, many bottlenecks appeared that

required changes in the schedule. Instead of programming all these additional constraints

and objectives we adjusted the schedule manually and monitored the effect of these

changes by comparing the performance of the new schedule with the initial one. In this

way we were able to construct a near optimal schedule that had the support of all actors.

Step 3 and 5 were redone subsequently several times to make sure that the

surgical block plan of step 3 did not substantially prevent optimization of the master

surgical schedule in step 5. Constructing of the final version required about half a year,

including discussion sessions with involved actors.

4.6. Step 6: Execute the Master Surgical Schedule

Orthopedic Surgery, ENT, and Eye Surgery started using the master surgical schedule

about one year after the project start. After a patient receives an indication for surgery, he

or she is assigned to a slot in one of the weeks ahead. Beatrix hospital currently uses a

planning horizon of three weeks. When a patient cannot be assigned to an appropriate slot

during this period, he or she will be assigned to a scheduled dummy surgery. Patient

scheduling is done by administrative supportive staff at outpatient clinics or at the

centralized patient administration department in Beatrix hospital. Thanks to the in advance

preparation, the implementation start went smoothly.

4.7. Step 7: Update a Master Surgical Schedule

Variation in patient demand, organizational changes, changes in the medical staff, and new

annual production agreements with health care insurances may cause the need to revise a

master surgical schedule. Beatrix hospital continuously monitors the need for revision. A

couple of months after implementation the waiting lists for certain surgery types

disappeared. The lack of patients resulted in under utilization of resources and conflicts

between anesthesiologists, who refused to work for half days, and surgeons, who wanted to

operate on their patients. Analysis on the cause of the lack of patients showed that the
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capacity plans of the operating room and wards one side and the capacity plans of the

outpatient clinics on the other side are still not properly aligned. Beatrix hospital urgently

works on this problem.

5. Results

Beatrix hospital considers the implementation of the MSS approach as a success, as both

efficiency and organizational gains are realized. First, efficiency gains are obtained at the

operating room department where the annual budget for operating room hours is reduced

from 12,848 hours to 9,972 hours (22.4% reduction). Beatrix hospital operated on 7.7%

more patients in 2007 when compared to 2006, using the same capacity as at the same time

surgery duration decrease by 9.0%.

The actual cost reduction was realized by lowering the amount of employed

operating room staff. Second, the hospital reported efficiency gains obtained by substantial

improvements of the insights in fluctuation of patient inflow and occupancy at wards. This

resulted in less last-minute hiring of staff. Third, efficiency gains are realized by an

increase of revenues by the increase of number of surgeries in 2007.

The organizational benefits are considered to be also substantial. Implementation

of the MSS approach was used as a tool to redesign the hospital management, resulting in

a much clearer managerial structure regarding capacity and financial management.

Implementation showed the causes of badly adjusted plans and schedules. While in the

past substantial amounts of overcapacity hid these causes and their resulting problems,

implementation of master surgical scheduling showed both. Furthermore, implementation

of the master surgical scheduling approach pushed communication between actors in

Beatrix hospital, leading to easy forecasting and capacity planning on longer term.

Moreover, thanks to the in advance adjustments of plans and schedules, fewer people are

involved in the operational schedules, hence, substantially reducing the total time effort for

planning and scheduling surgical processes.

6. Discussion

Results from implementing logistical models strongly depend on the involvement

and focus of actors. Moreover, results are subject to unforeseen and temporal changes in

patient mix and arrival patterns. The reported results are calculated for a period when the

implementation was not yet completed. Hence, longer post-implementation analysis is

required to determine the gains on long term. Current results show that the master surgical

scheduling approach has the potential to change processes to reduce fluctuation in patients’

volumes and improve efficiency and manageability.

It remains unsure whether implementing another logistical approach would have

led to better, the same, or worse results. For a particular hospital this will probably remain
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unknown. However, when a couple of different logistical approaches are implemented in

multiple hospitals, meta-analysis may reveal advantages of one logistical approach in

respect to the others. Until then, empirical evidence that shows which logistical approach

outperforms the other remains unavailable.

Hospital management has taken the lead for implementation of an MSS in Beatrix

hospital. This created a situation wherein surgeons, who work on a fee-for-service basis,

possibly do not immediately have benefits while they are faced with reduced flexibility

regarding patient planning. The lack of (financial) incentives for surgeons initially resulted

in some resistance. Due to the system changes in the Dutch health care sector, surgeons

nowadays are paid extra when more surgical cases are performed. The increase in the

patient volume hence resulted in higher income and this solved the resistance from the

surgeon adequately. Other hospitals might focus on creating these incentives first so that

from the start on the benefits for all actors is clearer.

Beatrix hospital set up a new management information system that provides

essential information regarding resource utilization, waiting lists, and volume forecasts that

were previously unavailable. All information required for the MSS approach is provided to

different actors and readily available to use. The information helped during discussions

with surgeons on the actual improvements, and made them actually see that their patients

are scheduled on time.

Using norm utilization for resources, the hospital created room for fluctuation and

unforeseen events such as emergency arrivals. In addition, surgeons are able to schedule

their patients in the MSS according to the medical requirements, while the secretary staff

may take care of the remaining organizational work. Although the flexibility to plan the

operating room has been reduced for surgeons, the medical autonomy of surgeons to

schedule patients based on medical requirements remain unaffected for both elective as for

emergency patients as sufficient flexibility remains at that point.

Beatrix hospital has a central administration department that does the

administration of the surgical scheduling for some of the departments. Given a fully

functional MSS there is no need to organize it this way. Since the communication and

adjustment of capacity plans of different departments is done in the master surgical

scheduling approach, surgical departments can simply assign patients to predetermined

slots. This improves the communication with surgeons and reduces the number of

information transfers. Moreover, the central administration department no longer needs a

front office, resulting in additional cost savings.

7. Conclusion

Hospital management is enthusiastic because of increased operating room efficiency and

higher predictability in patient flows. Moreover, the first substantial organizational

improvements have been realized in years. This resulted in higher controllability of
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hospital logistics, lower costs, and higher financial benefits. Longer post-implementation is

required to back the claims of the hospital management by quantitative measures.

This study shows that implementation of the MSS approach leads to

improvements, showing the efficacy of the academic logistical models in practice. By the

actual implementation and the study of its side-effects we fill the gap between the

academic logistical models and the hospital logistics in practice.

References

Belien, J. and Demeulemeester, E., (2007). 'Building cyclic master surgery

schedules with leveled resulting bed occupancy'. European Journal of Operational

Research, 176 (2):1185-1204.

Blake, J.T. and Donald, J., (2002). 'Mount Sinai Hospital Uses Integer

Programming to Allocate Operating Room Time'. Interfaces, 32 (2):63-73.

Cardoen, B., Demeulemeester, E. and Belien, J., (2008). 'Operating room planning

and scheduling: A literature review'. KBI. Leuven: Catholic University Leuven.

Carter, M., (2002). 'Diagnosis: Mismanagement of Resources'. OR/MS Today, 29

(2):26-32.

Casalino, L.P., Devers, K.J. and Brewster, L.R., (2003). 'Focused Factories?

Physician Ownded Specialty Facilities'. Health Affairs, 22 (6):56-67.

Davidow, W.H. and Uttal, B., (1989). 'Service Companies: Focus or Falter'.

Harvard Business Review, 67:75-85.

Dexter, F., Epstein, R.H., Traub, R.D. and Xiao, Y., (2004). 'Making management

decisions on the day of surgery based on operating room efficiency and patient waiting

times'. Anesthesiology, 101 (6):1444-1453.

Georgopoulos, B.S. and Mann, F.C., (1962). The Community General Hospital.

New York: Macmillan.

Glouberman, S. and Mintzberg, H., (2001a). 'Managing the care of health and the

cure of disease - Part I: Differentiation'. Health Care Management Review, 26 (1):56-69.

Glouberman, S. and Mintzberg, H., (2001b). 'Managing the care of health and the

cure of disease - Part II: Integration'. Health Care Management Review, 26 (1):70-84.

Harper, P.R., (2002). 'A Framework for Operational Modelling of Hospital

Resources'. Health care management Science, 5:165-173.

Herzlinger, R.E., (1997). Market Driven Healthcare, Who wins, who loses in the

transformation of America's largest service industry. Reading: Addisson-Wesley.

Heskett, J.L., (1983). 'Shouldice Hospital Limited'. Harvard Business School

Publishing.

Lawrence, P.R. and Dyer, D., (1983). Renewing American Industry. New York:

Free Press.



115

Chapter 6 103

McLaughlin, C.P., Yang, S. and van Dierdonck, R., (1995). 'Professional Service

Organizations and Focus'. Management Science, 41:1185-1193.

Meyer, H., (1998). 'Focused Factories'. Hospital & Health Networks, 72 (7):24-

30.

OECD, (2008). 'OECD Health Data 2008 - Frequently Requested Data'. In:

OECD (ed): OECD.

Peterson, R.A., (1979). 'Revitalizing the Culture Concept'. Annual Review of

Sociology, 5:137-166.

Schrijvers, G. and Oudendijk, N., (2002). Moderne patiëntenzorg in Nederland:

Van kennis naar actie Reed Business Information.

Van Houdenhoven, M., Hans, E.W., Klein, J., Wullink, G. and Kazemier, G.,

(2007). 'A norm utilisation for scarce hospital resources: Evidence from operating rooms in

a dutch university hospital'. Journal of Medical Systems, 31 (4):231-236.

van Oostrum, J.M., Bredenhoff, E. and Hans, E.W., (2008a). 'Managerial

implication and suitability of a Master Surgical Scheduling approach'. Erasmus University

Rotterdam.

van Oostrum, J.M., Van Houdenhoven, M., Hurink, J.L., Hans, E.W., Wullink, G.

and Kazemier, G., (2008b). 'A master surgical scheduling approach for cyclic scheduling

in operating room departments'. OR spectrum, 30 (2):355-374.

Ward, J.H., (1963). 'Hierarchical grouping to optimize an objective function'.

Journal of the American Statistical Association, 58:236-244.

Yang, S., McLaughlin, C.P., Vaughan, R.W. and Aluise, J.J., (1992). 'Factory

Focus in Hospital-owned Ambulatory Surgery'. International Journal of Service Industry

Management, 3 (4):63-75.



116

104 Implementing a master surgical scheduling approach in a regional hospital



117

Chapter 7

Requirements for a full service level agreement at an operating

room department - a case study

Appeared as:

Van Oostrum, JM., Bonfrer, I., Wagelmans, A.P.M., Kazemier, G. (2009) Requirements

for a full service level agreement at an operating room department - a case study.

Unpublished.



118

106



119

Chapter 7

Requirements for a full service level agreement at an operating

room department - a case study

Abstract:

BACKGROUND: A university hospital aims to have a service guarantee to all elective surgical

patients, meaning that all are treated on their scheduled day. To prevent excessive overtime and to

ensure proper treatment of emergency patients, the hospital controls case scheduling of surgical

departments. Each individual schedule for an operating room may obtain a service guarantee, given

that it adheres to organizational conditions. We study when it is possible to give all case schedules

service guarantee, despite the fact that some are not properly constructed according to hospital

rules.

METHODS: Computer simulation modeling was applied using two years of complete operating

room data of Erasmus University Medical Center. Historical data were used to construct two sets of

surgical schedules. One set including schedules that were properly constructed, patients at such

schedules automatically obtain a service guarantee. And one set of schedules that were not properly

constructed. We varied the number of properly constructed schedules to study the effect of having

more or fewer schedules fulfilling the rules. We defined as main output parameters raw utilization,

number of late finishing ORs, and cancellation rates.

RESULTS: Utilization drops when more surgical schedules are properly constructed. The number of

operating rooms running late remains more or less constant when only patients of properly

constructed schedules obtain service guarantee. When all patients obtain service guarantee, the

number of operating rooms running late substantially increases if the number of properly

constructed case schedules decreases.

CONCLUSION: In this study we determine that a full service guarantee at Erasmus University

Medical Center is possible if nine or more out of twelve schedules are properly constructed. To keep

efficiency high, we recommend striving to nine guaranteed schedules in Erasmus MC.

1. Introduction

Efficient use of expensive hospital resources such as operating room departments is

nowadays of high interest (1-3). Erasmus University Medical Center (Erasmus MC)

adopted a business model based on controlled surgical case scheduling (4). Basically this

business model, called Guaranteed Operating Room, guarantees that all elective patients

are served. Hence, the objective is to have no cancellation of elective patients on the

condition that surgical schedules are properly constructed. Such schedules are referred to

as guaranteed schedules. After introduction of this system, it appeared to be particularly

hard in practice to get all surgical schedules guaranteed. Without all schedules guaranteed,

Erasmus MC did still not have a guaranteed service to all its elective patients. Erasmus MC

considers guaranteeing service to all elective patients if the number of guaranteed
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schedules is equal to or bigger than a certain threshold number. We investigate in this

paper the effect of such an additional rule.

The main inpatient OR department in Erasmus MC is run as a facilitating

department that provides staffed and fully equipped ORs to various surgical departments.

A block planning approach has been adopted in which blocks of OR time are made

available to surgical departments in advance (5,6). Departments may only assign patients

to OR blocks that were made available to them. The OR business model furthermore

incorporates annual management contracts specifying the yearly amounts of OR time

available for each of the surgical departments. Capacity for emergency cases and

uncertainty of case durations is accounted for by determining target OR utilizations, which

is done for each surgical department independently (7). One of the conditions for a

guaranteed schedule is that it must include a predetermined amount of free OR time, or

“planned slack.” Because capacity for emergency cases is assigned to surgical case

schedules, Erasmus MC does not operate a dedicated emergency OR (8).

In summary, elective patients are guaranteed when scheduled of properly

constructed surgical schedules that adhere to the following rules and guidelines (4):

1. Case schedules are submitted 2 weeks in advance;

2. OR time is used maximally and block times are not exceeded;

3. Elective cases are planned using historical mean case durations;

4. Planned slack is included to deal with emergency cases and variability of case

durations.

The advantage for the surgical department is that the OR department guarantees

the service to all scheduled surgical cases whatever occurs during a day. Moreover,

consistently applying these rules helps surgical departments in their yearly contract

negotiations with the hospital board on the amount of annual OR time.

The OR day coordinator in Erasmus MC does the scheduling of emergency

patients and eventually the rescheduling of delayed elective patients. Upon arrival of an

emergency patient an interval is determined by anaesthesiologists wherein the patient has

to be operated on without increased morbidity or reduced probability of full recovery (9).

Depending upon the determined interval, the OR day coordinator decides to either

postpone an elective case to perform the emergency surgery first or to add the emergency

surgery at the end of one of the elective surgical schedules. When the surgical schedules

have obtained a guarantee, cancelling of elective patients is not an option, while this does

remain an option to the OR day coordinator when some of the surgical schedules did not

obtain a guarantee. The business model helps in reducing the emotional debate that can be

present at the OR when discussing the scheduling of emergency cases and the cancelling of

elective cases.

Evidently, adding emergency patients to surgical schedules while at the same time

guaranteeing that all elective patients undergo surgery can cause substantial overtime.
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Erasmus MC deals with this issue by hiring staff for late afternoon and evening shifts to

ensure that there is no excessive overtime for shifts that started in the morning.

Erasmus MC is interested in the effect of guaranteeing all elective patients when

only a part of the schedules fulfill the aforementioned rules since for good reasons surgical

departments are not always able to fulfill all the rules. For instance, some surgical cases

will in expectation take longer than any available block of regular OR time. Hence, they

will never fit in a guaranteed schedule. Therefore, we answer the following research

question: when is a full service guarantee possible in terms of efficiency, quality of care,

and quality of labor given that not all surgical schedules adhere to the Guaranteed

Operating Room rules? Moreover, we are interested in the optimal number of guaranteed

schedules for Erasmus MC. In the study we assume that all kinds of administrative

problems are solved, e.g., surgical schedules are handed in on time with the right

information. The following main output measures are used: utilization rates, number of

ORs finishing late, and cancellation rates.

2. Methods

Erasmus MC is a tertiary referral center that has maintained a database with information on

all surgical cases since 1994. Information includes case duration, surgeon and surgical

department involved, performed procedures within a case, patient arrival time, and

composition of the surgical and anesthesia team present for each case. Anesthesia and

surgery nurses prospectively collected these data, surgeons retrospectively approved all

data.

Simulation was used as a tool for analysis because of its visual power and the

ability to realistically represent surgical processes (10-12). We represented the OR

department of Erasmus MC by 12 ORs including all its staff, and we modeled holding and

recovery facilities with infinite capacity. All elective and emergency processes during day

time were represented as well as the work floor coordination. The model was built in

Tecnomatix Plant Simulation (Tecnomatix, Plano, TX, USA).

We defined three main output parameters, namely raw utilization, number of late

finishing ORs, and cancellation rates. Raw utilization is defined as the sum of the elective

and emergency case durations divided by the available regular capacity during working

hours. The number of ORs finishing late is compared to the planned end of block and

compared to the availability of OR teams. The cancellation rates are subdivided in the

percentage of scheduled elective patients cancelled on the day and the percentage

emergency patients that is safely delayed until a next day.
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2.1. Modeling

The main inpatient OR department uses block plans that are fixed at least six weeks in

advanced. These block plans are based upon annual capacity agreements between surgical

departments and the board of directors. A block plan determines which ORs are allocated

to a surgical department. We use in this study a most common block plan as is shown in

Table 1. This includes all main surgical departments operating at the inpatient department.

Other surgical departments that perform only rarely surgery are left out of consideration.

The ORs were assumed to be generic such that all surgical cases can be performed

in any of the rooms. Moreover, we do not consider scheduling restrictions due to staff

unavailability, nor do we consider change-over times and late-starts. We assume that all

ORs have a regular capacity of 450 minutes per day (from 8.00 hours until 15.30 hours). In

addition, to deal with overtime without paying excessive increased overtime wages

Erasmus MC has allocated extra OR teams to run 4 ORs from 15.30 hours until 17.00

hours and 3 ORs from 17.00 hours until 20.00 hours.

We use empirical data to simulate the processes at the OR department. These data

consist of all performed elective and emergency surgical cases during day time in the

period January 2006 until December 2007 at the main inpatient OR at Erasmus MC. From

all cases the realized duration is known. Moreover, from a substantial proportion of the

elective cases the planned duration is known. The planned duration originates from the

scheduling stage. At this stage, the planner obtains the mean duration of the previous 15

cases (surgeon-dependent), subsequently he may adjust this time for the specific case. We

assumed that no biased prediction was made to obtain a guarantee at a schedule.

Information on late cancellation of elective patients at particular surgical

schedules could not be obtained from the electronic databases. From practice it is known

that this number is limited. Moreover, we cannot determine whether patients are operated

Surgical department Number of ORs

Planned slack per surgical

schedule (minutes)

General surgery 3 40

Gynecology 1 23

Ear-nose-throat surgery 2 7

Neurosurgery 1 38

Traumatology 1 77

Orthopedic surgery 1 20

Plastic surgery 2 32

Urology 1 12

Overall 12 249

Table 1: median number of ORs on a regular work day allocated to a surgical

department and the amount of slack to be planned at each schedule at the main

inpatient department in Erasmus MC.
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on in an OR that is different from the original scheduled OR. For experimental purposes,

we assume that the realized surgical schedules do not differ from the planned schedules

with respect to the set of cases that is performed.

2.2. Modeling elective surgical schedules

We assumed that all surgical schedules are handed in on time. Hence, we can now

retrospectively check whether surgical schedules fulfill the aforementioned rules and

should obtain service guarantee for all elective patients. Essentially, on basis of the rules,

denoted in the Introduction, guarantee of schedules is obtained if and only if all surgical

cases have a planned duration and the sum of the planned durations is less than the

available capacity minus the planned slack applicable to the department that submits the

schedule. The amount of planned slack is annually determined on the expected mean

duration of emergency cases per OR during day time. The amount of planned slack to be

planned in each schedule is given in the third column of Table 1.

We were able to construct two sets of schedules based upon the historical data. A

first set consisting of schedules that should have obtained guarantee, a second consisting of

schedules that should not have obtained guarantee. From the database we were able to

reconstruct in total 3,818 guaranteed surgical schedules and 1,374 non-guaranteed surgical

schedules. Table 2 provides an overview of the number of guaranteed and non-guaranteed

schedules.

Where all cases have a

planned duration

Where not all cases have a

planned duration

General surgery 879 247 95

Gynecology 315 5 29

Ear-nose-throat surgery 721 97 50

Neurosurgery 258 237 38

Traumatology 323 12 47

Orthopedic surgery 384 175 82

Plastic surgery 595 91 41

Urology 338 102 26

Overall 3813 966 408

Surgical department
Number of guaranteed

surgical schedules

Number of non-guaranteed schedules

Table 2: Overview of the number of guaranteed and non-guaranteed surgical schedules of the

inpatient department of Erasmus MC in between 1-1-2006 and 12-31-2007.
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2.3. Modeling emergency surgical cases

Erasmus MC does not use a dedicated emergency OR at its inpatient department. Instead,

the OR day coordinator uses the planned slack and the slack that occurs due to early

finishing of cases to schedule emergency patients. Anesthesiologists determine the

maximum waiting time for a new emergency patient. Basically, four different categories

are used. When a patient is classified in Category A this means that surgery is to be

performed as quickly as possible because of serious life or limb threatening injuries. In

practice this corresponds to a maximum waiting time of 30 minutes starting when a case is

announced. Category B denotes those patients with an organ, limb, tissue, joint or

transplant threatening injury who need to be operated on within one hour. Category C

denotes patients who have a high risk of infection or diminished functioning of organ, limb

or transplant who need to be operated on within 6 hours. Category D denotes those patients

who need to be operated on within 24 hours to avoid increased risk. Although it is

preferred to schedule Category D patients on the day of arrival the day coordinator may

decide to schedule the patient the next day. In the latter case, it may replace a scheduled

elective case depending on the available space in the surgical schedule. Table 3 gives the

different proportions of emergency patients in each of the categories according to expert

opinions.

From the data we obtained all emergency surgeries that arrived during day shifts

in the period January 2006 – December 2007. This data includes the case duration and the

time of arrival. We grouped together all patients that arrived on the same day. We had,

however, no information of the emergency category of a particular patient nor did we have

information about the expected duration. Therefore, we randomly assigned, based on

averages as presented in Table 3, one of the categories to patients prior to the arrival at the

OR. For the purpose of this simulation study we have chosen to take the expected duration

equal to the realized duration. During the performance of simulation runs we randomly

selected each day a group of emergency patients that arrived on a single day in the

empirical data.

At Erasmus MC it is common

practice that a surgeon that has non-OR

duties is called in to perform an

emergency case when none of the

surgeons already operating has time to

perform the case. Due to the large size of

the hospital we do not consider

availability of surgeons as a restriction.

Emergency Category Percentage

A 5

B 5

C 35

D 55

Table 3: Proportion of emergency patient

categorized in the different categories based

upon expert opinions.
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2.4. Modeling the OR day coordination

At Erasmus MC an OR day coordinator does the work floor management. Besides all

kinds of other tasks, to ensure that OR processes run smoothly, the day coordinator is

responsible for deciding whether or not an elective case has to be cancelled to avoid

overtime, moreover he is responsible for scheduling emergency cases. For these purposes

the day coordinators uses the Guaranteed Operating Room set of rules. We describe the

working of these rules more elaborately below.

During a working day, the coordinator continuously keeps track of the expected

unused time in ORs. At the start of the day this is determined by the difference between the

sum of the planned duration of elective cases and the available time (450 minutes). Upon

completion of a case, the unused time is

adjusted according to the difference in

the planned and the realized duration of

an elective case. Note that the planned

slack is no longer relevant on the day of

execution where it is replaced by the

amount of unused time.

The day coordinator allows all

cases belonging to guaranteed schedules

to be executed, regardless of whether the

expected completion time is later than

15.30 hours. Moreover, all first-

scheduled elective cases of all non-

guaranteed surgical schedules are

allowed to start up. For all other (second,

third, etc.) cases of non-guaranteed

schedules the day coordinator

recalculates the expected completion time

based upon previously performed elective

and emergency cases. Those cases of

non-guaranteed schedules that are now

expected to be completed after 15.30

hours are cancelled. See Figure 1 for a

graphical representation.

Emergency cases belonging to

Category A (maximum waiting time 30

minutes) are scheduled at the OR that

comes first available. Cases that belong to

Figure 1: Decision flow diagram for checking

whether an elective case is allowed to start.
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either Category B or C are scheduled at an OR of the surgical department where they

belong to if this OR comes available within the maximum waiting time and if sufficient

unused time is left over at that OR. Otherwise, the day coordinator will find the ORs that

come available within the accepted maximum waiting time and chooses from these the OR

that has the largest unused time. When none of the ORs comes available within the

maximum waiting time the day coordinator schedules the patient in the OR that comes first

available. Emergency cases belonging to Category D are scheduled in the OR that has the

largest amount of unused time, given that this amount is more than the case duration.

When a day coordinator expects a Category D case to take longer than any of the amounts

of unused capacity the case is postponed to the next day.

2.5. Scenario modeling

To investigate the effect of guaranteeing surgical schedules we conducted computer

simulation experiments. The effect of guaranteeing surgical schedules was investigated by

increasing the number of guaranteed surgical schedules in steps of two. Each experiment

was subsequently repeated by guaranteeing service to all elective patients, using the same

set of schedules. Hence, after an experiment in which only guaranteed service was

available for patients at for example 4 out of 12 schedules, the experiment was repeated by

assuming that service was guaranteed to all patients. This makes it possible to study the

effect of guaranteeing service to all surgical schedules while the schedules themselves

would not have obtained guarantee.

We conducted a preliminary experiment to determine an appropriate number of

repetitions for the experiments. For this purpose we used the experiment of 8 guaranteed

schedules where we guarantee only elective patients scheduled of the guaranteed

schedules. This initial experiment had a run length of 100 working days. Using Law and

Kelton (13) we determined the number of repetitions such that with 90% certainty (a) the

absolute error of the mean utilization is less than 0.5%, (b) the absolute error of the mean

number of late finishing ORs is less than 0.1, and (c) the absolute error of the elective

cancellation rate is less than 0.5%. The minimum number run length that fulfilled these

constraints was 959 working days. We have chosen to use 1,000 working days for the

simulation experiments.

The numbers of available guaranteed and non-guaranteed surgical schedules from

the database are insufficient to perform simulation runs of 1,000 working days. We

randomly duplicated schedules until the required number of guaranteed or non-guaranteed

surgical schedules was obtained. We have grouped the emergency patients per day. During

a simulation run we randomly selected the arrival pattern of one of these days.

We fixed for each number of guaranteed schedules the surgical department

supplying such guaranteed schedules. Given a certain number of guaranteed schedules,
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there are many combinations to form these schedules assuming the OR block plan (see

Table 1). We have chosen to use the most likely combination of guaranteed surgical

schedules, which is based upon the relative frequency of guaranteed schedules per

department in the available database (see Table 2).

As a sensitivity analysis we adopt two other variants where the second is a

combination of guaranteed schedules such that the amount of planned slack is maximized.

The third variant is a combination of guaranteed schedules in which the amount of planned

slack is minimized. See Table 4 for an overview of all scenarios.

3. Results

Figure 2 presents the mean utilization rate for the most likely set of guaranteed surgical

schedules. The figure shows that the utilization of the OR department decreases when

more schedules are guaranteed. Moreover, guaranteeing all elective patients in respect with

only those patients at guaranteed schedules results in substantially higher utilization rates,

which is beneficial for the hospital.

Total number of

guaranteed

schedules

Type

composition

General

surgery
Gynecology

Ear-nose-

throat

surgery

Neuro-

surgery

Trauma-

tology

Orthopedic

surgery

Plastic

surgery
Urology

0 All

2 Min 2

2 Max 1 1

2 ML 1 1

4 Min 2 1 1

4 Max 3 1

4 ML 1 1 1 1

6 Min 1 2 1 1 1

6 Max 3 1 1 1

6 ML 2 1 1 1 1

8 Min 1 2 1 1 2 1

8 Max 3 1 1 1 2

8 ML 2 1 2 1 2

10 Min 2 1 2 1 1 2 1

10 Max 3 1 1 1 1 2 1

10 ML 2 1 2 1 1 2 1

12 All 3 1 2 1 1 1 2 1

Table 4: Scenario overview, the scenarios are referred to as a combination of the number of

guaranteed schedules and the type of composition (min = minimum amount of planned slack,

max = maximum amount of planned slack, and ML = most likely combination). The numbers

represent the number of guaranteed surgical schedules in a particular scenario.
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Figure 3 shows the mean number of ORs finishing after 15.30 hours. Remarkably,

the number of ORs finishing late when only elective patients of guaranteed schedules are

guaranteed is on average always lower than 4, which is the number of available OR teams

after 15.30 hours. The results furthermore show that the number of late finishing ORs is

substantially higher when service to all elective patients is guaranteed. When eight or

fewer case schedules are guaranteed, the mean number of late finishing ORs is higher than

the availability of extra OR teams.
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Figure 2: Raw utilization rate for different numbers of guaranteed schedules.
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Figure 3: Mean number of ORs finishing after 15.30 hours, for different numbers of

guaranteed schedules.
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In Figure 4 the mean number of OR teams that have to work in overtime is

addressed and in Figure 5 we present the percentage of working days that at least one OR

team has to work in overtime. Herein we accounted for the extra OR teams, available after

15.30 hours. The numbers of teams working in overtime remains constantly low when only

elective patients at guaranteed schedules are guaranteed. However, from Figure 4 and 5 it

becomes clear that guaranteeing all elective patients with only a minority of the schedules

being guaranteed leads to substantially more teams working in overtime.

Table 5 presents the percentage of emergency patients that are postponed to the

next day, the percentage of emergency patients that is treated too late, and the cancellation
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Figure 4: Mean number of OR teams finishing late. The extra teams are accounted for.
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rate of elective patients. The results show that there is hardly a relation between on one

hand the percentage of emergency patients delayed to the next day and the percentage of

emergency patients that are operated on too late and on the other hand the input of surgical

schedule plus whether or not all elective patient are guaranteed. There exists a clear

difference in the cancellation rate between guaranteeing all elective patients and

guaranteeing only those of the guaranteed schedules. A substantial number of elective

patients are cancelled in the latter case, particularly when the number of guaranteed

schedules is low.

The sensitivity of the results for the input set of guaranteed schedules is given in

Table 6. We investigated the effect of the input on utilization, the number of late finishing

ORs and the cancellation rate of elective cases. The results show that the sensitivity is

relatively low. All trends remain visible.

4. Discussion and Conclusion

In this paper we investigated the effect of guaranteeing the service to elective surgical

cases. To answer when a full service guarantee to elective patients is possible we analyzed

two alternatives. In the first, service was only guaranteed to elective patients on properly

constructed, so-called guaranteed, surgical schedules. In the second alternative, the service

to all elective patients was guaranteed. The effect was measured by utilization, number of

late finishing ORs, and cancellation rates of emergency and elective patients. When

Table 5: Simulation results of quality of care parameters for scenarios in which the set

of guaranteed schedules is based upon the “most likely variant”.

Number of

guaranteed

schedules

Percentage of emergency

cases delayed to a next

working day

Percentage of

emergency cases

too late

Cancellation rate

of elective cases

0 14.9% 1.5% 12.8%

2 15.1% 1.5% 10.3%

4 14.9% 1.6% 9.7%

6 15.0% 1.9% 8.5%

8 15.4% 1.7% 6.4%

10 15.8% 1.8% 2.8%

12 17.2% 1.9% 0%

0 14.9% 1.9% 0%

2 15.8% 2.1% 0%

4 16.2% 1.9% 0%

6 16.4% 2.2% 0%

8 16.4% 2.0% 0%

10 17.4% 2.0% 0%

12 20.1% 1.9% 0%

Not

guaranteeing

all elective

patients

Guaranteeing

all elective

patients
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applying service guarantee to only those patients of guaranteed schedules we found that

more guaranteed schedules lead to a lower raw utilization, fewer ORs running late, and a

lower cancellation rate of elective patients. Moreover, when all elective cases are

guaranteed the utilization and the number of ORs running late are higher compared to the

previous alternative. The number of cancellation and lateness of emergency patients

appeared to be relatively indifferent for the number of guaranteed schedules. We

recommend keeping the mean number of ORs running late below the number of available

teams after 15.30 hours. Hence, full service guarantee is possible when nine or more

schedules are guaranteed. Otherwise, service guaranteed should only be given to patients

on guaranteed schedules. Since utilization drops when more schedules are guaranteed and

treatment of emergency patients is indifferent for the number of guaranteed schedules, the

optimal number of guaranteed schedules is nine at Erasmus MC.

We have chosen to use a fixed block plan that is based upon capacity agreements

made between the surgical department and the board of directors. In practice, the number

of ORs in use by the various departments may slightly differ from the block plan we

assumed. In addition, the set of guaranteed schedules that are supplied are likely to differ

from the “most likely” set of guaranteed schedules in the simulation study. However,

results are either indifferent under the various settings or show a dependency on the

number of guaranteed schedules. These trends remain visible when the set of a fixed

number of guaranteed schedules was varied. Hence, we do not expect that changes in the

OR block plan and the set of guaranteed schedules have a large impact on the decision

when to guarantee all elective patients given a certain amount of properly constructed

schedules.

Table 6: Sensitivity of the simulation results for changes in the set of guaranteed schedules.

Max ML Min Max ML Min Max ML Min

0 88.6% 88.6% 88.6% 3.7 3.7 3.7 12.8% 12.8% 12.8%

2 88.0% 87.1% 82.8% 3.7 3.5 2.9 11.7% 10.3% 11.6%

4 86.3% 84.3% 83.0% 3.6 3.2 3.0 10.0% 9.7% 8.3%

6 84.4% 83.7% 82.4% 3.3 3.2 2.9 6.5% 8.5% 6.6%

8 83.6% 80.6% 80.3% 3.3 2.8 2.7 4.6% 6.4% 3.3%

10 83.8% 80.0% 78.7% 3.3 2.8 2.6 0.6% 2.8% 1.4%

12 78.0% 78.0% 78.0% 2.6 2.6 2.6 0% 0% 0%

0 102.3% 102.3% 102.3% 6.3 6.3 6.3 0% 0% 0%

2 100.4% 97.8% 95.9% 6.0 5.6 5.4 0% 0% 0%

4 96.8% 94.6% 92.6% 5.5 5.2 4.7 0% 0% 0%

6 90.6% 92.7% 89.8% 4.5 4.9 4.3 0% 0% 0%

8 87.6% 87.8% 83.4% 4.1 4.2 3.3 0% 0% 0%

10 84.4% 83.3% 79.9% 3.4 3.4 2.8 0% 0% 0%

12 78.0% 78.0% 78.0% 2.6 2.6 2.6 0% 0% 0%

Guaranteeing

all elective

patients

Number of

guaranteed

schedules

Mean utilization Mean number of ORs Cancellation rate of elective

Not

guaranteeing

all elective

patients
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The day coordinator has in practice the ability to reschedule elective patients

during the day. The availability of surgeons mainly determines to which extent

rescheduling is possible. We have not incorporated the rescheduling since we expect the

impact to be similar for all scenarios. However, incorporating rescheduling might improve

the results and may allow guaranteeing all elective cases having fewer case schedules

guaranteed.

One of the major challenges of surgical case scheduling at Erasmus MC is to get

surgical departments handing in case schedules according to the rules. First of all case

schedules are often initially submitted incompletely. While the day coordinator may only

require that information is complete at a very late moment, for the OR department as a

whole it is better to have time to prepare the execution of the schedule. For instance

material coordination and scheduling of X-ray equipment require in advance preparation.

Leaving such administrative issues aside, surgical departments may argue that others have

to hand in schedules that can be guaranteed since they themselves cannot. This can be

advantageous since more patients can be scheduled while they still have the guarantee that

all cases are performed. However, typically all surgical departments argue in the same

way, leaving the OR with surgical schedules that do not fulfill the Guaranteed Operating

Room rules. This potentially brings back the emotional discussions that surround the late

cancellation of elective case in the OR. However, agreeing in advance on guaranteeing

service to all elective patients if and only if more than nine schedules fulfill the rules

moves the discussion forward in time and out of the OR.

OR staff may perceive “technical” overtime not always as overtime. In Erasmus

MC OR staff is paid an extra 30 minutes to clean ORs after 15.30 hour. When an overtime

of less than 30 minutes occur the OR staff working in that room will leave the cleaning

tasks for the night shift and will hence not perceive overtime, although this is technically

the case. This organizational flexibility possibly changes the number of rooms that need to

be guaranteed for a full service concept. In Erasmus MC the number of required rooms

changes from at least 9 to at least 5 guaranteed rooms.

Guaranteeing service to elective patients in other hospitals may work out as well

as it does for Erasmus MC. The Guaranteeing Operating Room approach does not require a

full redesign of the planning processes. Using historical schedules and data a hospital can

determine the effect of guaranteeing schedules and service to elective patients.

Providing a service guarantee to customers of hospitals has a price. Surgical

departments together with the OR should determine when a total service guarantee is

acceptable for all actors involved in surgical case scheduling. The tradeoff between output

measures such as utilization, overtime, and cancellation rates should function in this

process as input to assist decision making. The size of a hospital and the availability of OR

teams during and after day time determine the actual tradeoffs in different hospitals. In this

study we determine that a full service guarantee is possible if nine or more out of twelve
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schedules are properly constructed. Given that the utilization rate drops when more

schedules are guaranteed, at Erasmus MC nine is the best number of guaranteed schedules.
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Chapter 8

Closing emergency operating rooms improves efficiency

Abstract

Long waiting times for emergency operations increase a patient’s risk of postoperative

complications and morbidity. Reserving Operating Room (OR) capacity is a common technique to

maximize the responsiveness of an OR in case of arrival of an emergency patient. This study

determines the best way to reserve OR time for emergency surgery. In this study two approaches of

reserving capacity were compared: (1) concentrating all reserved OR capacity in dedicated

emergency ORs, and (2) evenly reserving capacity in all elective ORs. By using a discrete event

simulation model the real situation was modelled. Main outcome measures were: (1) waiting time,

(2) staff overtime, and (3) OR utilisation were evaluated for the two approaches. Results indicated

that the policy of reserving capacity for emergency surgery in all elective ORs led to an improvement

in waiting times for emergency surgery from 74 (±4.4) minutes to 8 (±0.5) min. Working in overtime

was reduced by 20%, and overall OR utilisation can increase by around 3%. Emergency patients are

operated upon more efficiently on elective Operating Rooms instead of a dedicated Emergency OR.

The results of this study led to closing of the Emergency OR in the Erasmus MC (Rotterdam, The

Netherlands).

1. Introduction

Postponing emergency surgery may increase a patient’s risk of postoperative

complications and morbidity. Waiting times depend on the speed at which an operating

room (OR) can organize its resources to operate upon an emergency patient. A common

approach to deal with emergency procedures is to reserve OR capacity; this is believed to

increase responsiveness to the arrival of an emergency patient [1, 2].

There are two basic policies for reserving OR capacity for emergency patients: in

dedicated emergency ORs or in all elective ORs. The first policy, reserving capacity in

dedicated emergency ORs, would combine short waiting times with low utilisation of

expensive OR capacity. Hence, it is an expensive option, since one or more entire ORs

cannot be used for elective surgery. Emergency patients arriving at a hospital that has

adopted the first policy will be operated immediately if the dedicated OR is empty and will

have to queue otherwise, whereas patients arriving at a hospital that has adopted the second

policy can be operated once one of the ongoing elective cases has ended. Other planned

cases will then be postponed to allow the emergency operation. Thus, besides influencing

waiting times of emergency patients, the choice of either policy will have impact on the

amount of overtime and OR utilisation.

Little evidence is available on the performance in terms of waiting times, OR

utilisation, and overtime for the policy of reserving capacity for emergency patients in all
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elective ORs. In this study we determined the best policy to reserve time for emergency

patients. We assessed the policies using a discrete-event simulation model for this purpose.

2. Data and methods

Erasmus MC with 1,300 beds is the largest teaching hospital and tertiary referral centre in

the Netherlands. It provides for the complete spectrum of surgical procedures, including

transplantation and trauma surgery. Of the 34,500 admissions per year, some 20,000

involve a surgical procedure. Data on more than 180,000 surgical procedures have

prospectively been collected since 1994, including procedure duration, the procedure

name, the procedure type (elective or emergency), and surgical specialty involved. Data

had been approved immediately after the surgical procedure by the surgery or anaesthesia

nurse. The duration of surgical procedures, both emergency and elective, is assumed to be

lognormal [3]. Table 1 shows the aggregate descriptive statistics of the central OR

department of the Erasmus MC.

A block planning approach to schedule the elective procedures was assumed [4,

5]. We assumed that on average 12 ORs per day, five days per week were staffed and

available. The availability of the staffed ORs was limited to 450 min per day. Moreover,

all ORs were assumed to be multi-functional, i.e., all procedures types can be performed in

all ORs.

We developed a discrete event simulation model [6, 7], using the simulation

software tool eM-Plant (Plano, USA). This simulation model was a representation of the

Erasmus MC 12 OR set-up. We simulated days independently of each other. In the first

emergency policy, with emergency capacity allocated to one dedicated emergency OR, the

remaining free OR time is allocated to exclusively elective ORs. In the second policy, with

emergency time allocated to each elective OR, the reserved OR time is distributed evenly

over all elective ORs. Figure 1 illustrates these policies.

Table 1: Aggregate descriptive statistics of the OR in Erasmus MC

Description Number

Number of different surgical procedure types 328

Mean number of elective cases per day 32

Mean case duration (minutes) 142

Standard deviation of the case duration (minutes) 45

Mean number of emergency cases per day 5

Mean emergency case duration (minutes) 126

Standard deviation of emergency case duration (minutes) 91
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A schedule with elective surgical cases is the input for the simulation model.

These schedules are constructed by applying a first-fit algorithm [8]. The first-fit algorithm

subsequently assigns for each surgical department separately surgical cases to the first

available OR. The resulting surgical case schedule specifies therefore for each OR the

elective surgical procedures to be performed. Procedures are planned using their mean

duration, based upon the available data.

The given elective OR program forms the starting point for the comparison. We

model the duration of elective producers by a procedure-specific lognormal distribution.

Emergency patients arrive according to a Poisson process (with mean inter-arrival time of

1/5 day): inter-arrival times are mutually independent and exponentially distributed. The

duration of emergency surgery was based upon one lognormal distribution for all

emergency procedures together. Emergency operation is on a first-come-first-served basis

and is performed either after the first completion of an elective operation or at the

emergency OR, depending on the policy adopted. Each specialty in Erasmus MC reserves

one surgeon for emergency surgery. In practice, that particular day this surgeon has no

outpatient clinics, teaching activities, or scheduled elective surgery, but typically

administrative and research activities. We modelled no delay in starting emergency surgery

due to surgeon or OR staff unavailability. We modelled no delay in starting emergency

surgery due to surgeon or OR staff unavailability. Elective procedures planned in an OR

are postponed until after the emergency operation and might be executed in overtime.

Overtime is defined as the time used for surgical procedures after the regular

block time has ended. Efficiency of OR utilisation is calculated as the ratio between the

total used operating time for elective procedures and the available time. The sequential

procedure [9] to determine the run length of the simulation with a maximum deviation

10% and a reliability of 90% yielded a run length of 780 days, which includes

approximately 4,000 emergency patients.

Figure 1: Visualization of the two studied policies for allocating reserved OR time
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3. Results

Waiting times are plotted cumulatively in Fig. 2. In policy 1, with use of a dedicated

emergency OR, all 4,000 emergency patients were operated on within 7 h. The mean

waiting time was 74 (±4.4) min. In policy 2, with capacity for emergency surgery allocated

to all elective ORs, all 4,000 emergency patients were operated upon within 80 min. The

mean waiting time was 8 (±0.5) min.

Table 2 shows values for the other two performance indicators broken down for

type of policy. Efficiency of OR utilisation computed for all ORs in the first policy is 74%;

for the second policy it is 77%. Overall, the second policy, with emergency capacity

allocated to all elective ORs, substantially outperforms the first policy, with a dedicated

emergency OR, on all outcome measures.

4. Discussion

This study showed that reserving capacity for emergency surgery in elective ORs performs

better than the policy of a dedicated OR for emergency procedures in a large teaching

hospital, based on a discrete-event simulation study with the three performance indicators:

waiting time, overtime, and cost effectiveness of the OR.

The policy of allocating OR capacity for emergency surgery to elective ORs

requires the OR department to be flexible. Upon arrival of an emergency patient, one of the

ORs will have to fit the emergency operation into the elective OR schedule. The patients

originally planned will have to be operated on either in another OR or at a later time. This

requires flexibility of OR staff and surgeons in dealing with and accepting frequent

changes to the original elective surgical case schedule. Also it requires OR to be equipped

for all kinds of emergency surgery. Although OR departments that have physical

overcapacity, i.e. OR departments where in general some of the ORs are unused, do not

face this problem as they may allocate the emergency patient to an empty room that is

sufficiently equipped. This way the OR staff have to move to this room, but not all rooms

need to be fully equipped for all emergency surgery.

Emergency policy: Policy 1 Policy 2

Total overtime per day (hours) 10.6 8.4

Mean number of ORs with overtime per day 3.6 3.8

Mean emergency patients’ waiting time (minutes) 74 (±4.4) 8 (±0.5)

OR utilizationa (%) 74 77

a The OR utilisation is the ratio of elective surgery hours performed and the available

capacity

Table 2: Overview results of the outcome measures
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Interrupting the execution of the elective surgical case schedule for emergency

patients may substantially delay elective cases. However, inpatients are typically admitted

to a ward before they are brought to the OR. Although delay due to emergency arrivals

may cause inconvenience of patients it does not disturb processes in the OR.

Besides reserving OR capacity for emergency patients, ORs generally need to

reserve capacity to cope with the variability in the session durations. In the elective policy,

reservation might be shared to increase the flexibility for dealing with unexpected long

case duration and emergency surgery, whereas the dedicated policy does not offer the

opportunity to use this overflow principle.

In OR departments that have dedicated emergency ORs it is common practice to

re-assign staff to elective ORs to deal with temporary staff shortages. Hence, upon arrival

of an emergency patient, the team may be incomplete, which implies the patient must wait

until the team is complete again, typically when one of the ongoing elective cases ends.

This practice considerably reduces the advantage of a dedicated OR.

A dedicated emergency OR may cause queuing of emergency patients,

confronting OR management and surgeons with the question which patient should be

operated on first. Since such decisions are typically based on medical urgency, trauma

procedures or a ruptured abdominal aneurysm will often be given preference over, for

instance, fracture surgery. Hence, surgeries of specialties with less acute cases are more

likely to be postponed. This would be less so if capacity for emergency surgery were to be

allocated to all elective ORs, providing for various emergency patients to be operated on

simultaneously.

Implementation of the policy by which emergency capacity is reserved in all

elective ORs, requires all stakeholders on the OR to strictly adhere to the policy. In fact,

the surgical departments that use a single OR face the so-called prisoner’s dilemma. A

single surgical department may benefit from not reserving capacity for emergency surgery,

whereas this is disadvantageous for all surgical departments together. If one or more

Figure 2: Cumulative percentage of emergency patients in the two studied policies,

treated within a certain (waiting) interval
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surgical departments do not reserve free OR capacity on their own ORs and hence must

use reserved capacity of other specialties, the latter face the prisoner’s dilemma. Successful

implementation, therefore, would require dedication of all surgical departments.

In this study we have chosen to adopt discrete-event simulation to assess both

policies, while application of queuing theory might have been another method to compare

both policies. Application of queuing theory to the problem at hand is, however, not

straightforward due to the probability distribution of surgery duration. Further, ongoing

research might show application of queuing theory to the problem addressed in this paper.

In conclusion, we have compared two policies to reserve OR capacity for

emergency surgery. Results obtained from a discrete-event simulation study show that

distribution of free OR capacity evenly over all elective ORs performs better than

dedicated ORs on measures reflecting quality of patient care, staff satisfaction, and cost-

effectiveness. The policy of reserving free capacity can be successfully implemented on

ORs only if all stakeholders were to participate. Moreover, besides the quantitative

benefits as shown in this paper, it offers several, more soft advantages to improve ways of

dealing with the variability that is inherent to medical processes.
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Letter 1: non-patient factors related to rates of ruptured

appendicitis (Br J Surg 2007; 94: 214-221)

Sir,

The authors established a positive correlation between higher rates of ruptured appendicitis

and hospitals that have high volume of patients, many competing resources that are used

efficiently, and no designated operating room (OR) for urgent surgical cases. Based on the

authors' article we suspect that the hospitals' case-mixes cause the different rates of

ruptured appendicitis. A hospital with a complex patient mix possibly acquires a relatively

large number of severe ill patients who do already have ruptured appendicitis at admission.

In our opinion a designated OR for acute cases is not the optimal business model to

provide acute care, because a designated OR is inefficient, and because once the

designated OR is occupied none of the other ORs is readily available.

The question to be answered is: how to deal with urgent surgical cases if a

hospital with a complex patient mix is efficiently organised? Erasmus University Medical

Centre in Rotterdam, the Netherlands has adopted a business model in which OR capacity

is efficiently used and where no designated trauma team is available. Upon arrival of an

urgent patient, the patient is brought into an empty operating room and helped by staff of

the OR that finishes first. To prevent overtime and to operate acute surgery spare capacity

is allocated in all elective schedules1,2. Analysis in a forthcoming paper shows that in

Erasmus University Medical Centre more than 80% of the urgent cases were started within

30 minutes after consultation of the Anaesthesiologist in-charge. Hence, without a

designated OR for urgent surgery acute care can be provided efficiently and accurately3.
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A simulation model for determining the optimal size of

emergency teams on call in the operating room at night

Abstract

BACKGROUND: Hospitals that perform emergency surgery during the night (e.g., from 11:00 PM

to 7:30 AM) face decisions on optimal operating room (OR) staffing. Emergency patients need to be

operated on within a predefined safety window to decrease morbidity and improve their chances of

full recovery. We developed a process to determine the optimal OR team composition during the

night, such that staffing costs are minimized, while providing adequate resources to start surgery

within the safety interval.

METHODS: A discrete event simulation in combination with modeling of safety intervals was

applied. Emergency surgery was allowed to be postponed safely. The model was tested using data

from the main OR of Erasmus University Medical Center (Erasmus MC). Two outcome measures

were calculated: violation of safety intervals and frequency with which OR and anesthesia nurses

were called in from home. We used the following input data from Erasmus MC to estimate

distributions of all relevant parameters in our model: arrival times of emergency patients, durations

of surgical cases, length of stay in the postanesthesia care unit, and transportation times. In addition,

surgeons and OR staff of Erasmus MC specified safety intervals.

RESULTS: Reducing in-house team members from 9 to 5 increased the fraction of patients treated

too late by 2.5% as compared to the baseline scenario. Substantially more OR and anesthesia nurses

were called in from home when needed.

CONCLUSION: The use of safety intervals benefits OR management during nights. Modeling of

safety intervals substantially influences the number of emergency patients treated on time. Our case

study showed that by modeling safety intervals and applying computer simulation, an OR can reduce

its staff on call without jeopardizing patient safety.

1. Introduction

Nighttime surgical schedules allow for fewer surgical cases than daytime surgical

schedules. Irregular-hour payments and work-sleep regulations for operating room (OR)

staff contribute to higher costs during the night. Facing OR staff shortages, OR suite

managers must critically appraise nighttime workforce deployment (1).

Appropriate size of the emergency team, with acceptable frequency of calling

team members from home, should ensure sound treatment for all patients. Previous studies

show that analytical methods can help determine numbers of OR and anesthesia nurses

needed (2–7). It has been shown that the labor costs of emergency teams during regular

hours, second shifts, and weekends can be significantly reduced, but most authors exclude

the night shift (7 –9), or focus on single specialty OR suites (2–4). These studies implicitly

assume that all patients are operated upon at the time that they were actually scheduled for

surgery, without considering the option of postponing surgery within a predefined safety
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interval. For example, a facility may consider it imperative for a patient with a ruptured

abdominal aortic aneurysm to be operated on within 30 min of arrival, while a patient with

an amputated finger should be operated on within 90 min of arrival, and a patient with a

perforated gastric ulcer should be operated on within 3 h of arrival. Although studies have

defined safety intervals for emergency surgery during the day (10), the option of

postponing operations by a safe time interval during the night shift has not yet been

addressed.

Dexter and O’Neill propose a statistical method to determine the weekend staffing

requirement of the OR suite (7). It assumes an expected workload and computes the

staffing requirements based on this workload. However, it does not incorporate safety

intervals that might level the workload, hence reduce numbers of staff to be called in from

home.

Tucker et al. proposed a queuing approach to determine OR staff requirements

(6). This approach does not address the issue of treating patients on time. In addition, the

authors do not incorporate detailed characteristics of surgical departments and the OR

suite. This approach, therefore, typically over-estimates the probability of multiple cases

being performed at the same time, since no delaying of cases within their safety intervals

was considered. The method, just like that of Dexter et al. (11) is deliberately conservative.

Our study was designed to determine optimal OR staff on call at nights by explicit

modeling of patients’ safety intervals and by discrete-event simulation modeling. The

simulation model provided insight into the trade-off between the main outcome measures

of providing surgery on time and calling in team members from home. A case study was

performed for the main OR suite of Erasmus Medical Center Rotterdam (Erasmus MC).

2. Methods

Erasmus MC is a tertiary referral center that has maintained a database with information on

all surgical cases since 1994. The information includes duration of the various cases, the

surgeon and surgical department involved, the exact nature of the cases, patient arrival

time, and the composition of the surgical and anesthesia team present for each case.

Anesthesia and surgery nurses prospectively approved these data immediately after a

surgical case and surgeons retrospectively approved all data.

In this study we used a discrete simulation model to determine the optimal size of

emergency teams (i.e., anesthesia and surgery nurses) on call at night. The model involves

several issues already addressed by others, including sequencing of emergency patients12

and determination of staff requirements (2,3,13). Our novel contribution is the additional

modeling of medically sound safety intervals for emergency patients.

In anticipation of emergency cases, anesthesia and surgery nurses are on call

either in the hospital or at home. For this study, the hours from 11:00 PM through 7:30

AM were defined as the night shift. We included the six surgical departments that yearly
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performed at least eight cases during the night shift. These are listed in Table 1, including

data on surgical cases and intensive care unit (ICU) requirements.

We used simulation as a tool for analysis because of its ability to incorporate

uncertain operating times and “what if” scenario analyses (10,14–16). Several earlier

studies have used simulation successfully to assess the effects of staff reduction on

patients’ waiting times or staff requirements (2,3,12,13,17). The model was built in eM-

Plant (Tecnomatix, Plano, TX) and comprised the following elements: (a) holding room,

(b) ORs, (c) recovery room, (d) anesthesia nurses (either at home or in the OR suite) (e)

surgery nurses (either at home or in the OR suite), and (f) patients.

Waiting times for emergency patients and the frequency of calling OR and

anesthesia nurses from home were the primary outcome measures in this study. These

measures combined with information on number of nurses on call in the hospital, provided

insight into the costs of night shifts and the corresponding waiting time of emergency

patients.

2.1. Modeling

The model started at the beginning of the night shift with an empty recovery room and no

patients waiting for emergency surgery (i.e., an empty holding room). Recovery room

capacity is unlikely to be a bottleneck in the process, since patients recovering from earlier

evening shift cases are typically taken care of by evening shift nurses or recovery nurses.

Hence, the assumption of an empty recovery room was valid. The model allowed for the

possibility that evening shift cases (i.e., before 11:00 PM) were continuing after start of the

Proportion of all Proportion of ICU

surgical cases (%) patients (%)

General surgerya 47.1 156.16 118.45 15.6

Traumatologyb 15.9 146.14 82.10 2.7

Neurosurgery 15.5 126.24 72.32 28.6

Plastic surgery 9.9 200.32 142.45 10.6

Gynecology 7.2 74.05 41.02 3.7

ENT surgeryc 4.4 90.21 54.88 10

OR = operating room; ICU = intensive care unit; Erasmus MC = Erasmus University Medical Center.

a Including vascular and transplant surgery.

b Including emergency orthopaedic surgery.

c Ear nose throat surgery.

Surgical department
Mean Variance

Duration of surgical

case (min)

Table 1: Data per surgical department over all night shifts in the period 1994–2004 at the main

OR suite of Erasmus MC
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night shift. We modeled this by assuming that at the start of the night shift there was a 40%

likelihood that one OR was occupied and an 18% likelihood that two ORs were occupied,

based on our case mix data. Remaining times of the surgical cases running into the night

shift were drawn from a lognormal distribution based on the same case mix data. Of

course, these probabilities apply to Erasmus MC and should be adjusted by readers using

numbers suitable for their facility.

We assumed that emergency patients arrive according to a Poisson distribution,

which was modeled time-dependent. Table 2 shows the assumed inter-arrival times for

each of the night shift hours, also expressed as mean number of patients arriving in a

particular hour. Furthermore we assumed that each patient was instantly available for

surgery (i.e., essential tests or scans already having been performed).

The type of surgical cases determined the composition of the team required to be

present. At Erasmus MC, a large team of two anesthesia nurses and three surgery nurses is

used for complex procedures (e.g., liver transplantation) and for unstable trauma patients.

Other cases are staffed with one anesthesia nurse and two surgery nurses. Table 3 shows

the proportion of cases requiring a large team for each surgical department. We did not

incorporate anesthesiologists and surgeons in the model, since we assumed an adequate

staffing of anesthesiologists and surgeons.

Upon arrival of a patient, the simulation checked the availability of ORs and the

presence of the emergency team members. If both were available, the patient was operated

on immediately. If too few emergency team members were available within the safety

interval, the additional members were called in from home. Travel time was taken to be 30

min. We assumed that once assigned to a case, a nurse would be occupied for its duration.

Hour of the Inter-arrival times Expressed in mean number

night shift in minutes of per hour

11:00 pm–0.00 am 175 0.34

0.01 am–1.00 am 204 0.29

1.01 am–2.00 am 520 0.12

2.01 am–3.00 am 656 0.09

3.01 am–4.00 am 1386 0.04

4.01 am–5.00 am 1782 0.03

5.01 am–6.00 am 1386 0.04

6.01 am–7.00 am 891 0.07

7.01 am–8.00 am 1040 0.06

Mean number of patients per

night — 1.1

Table 2: Mean inter-arrival time of emergency patients during the night shift
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by Dutch Anesthesiology recommendations. If only one anesthesia nurse was assisting

surgery and the recovery room was previously empty, the second nurse was called in from

home on time, i.e., 30 min before the end of surgery. The recovery duration was drawn

from a lognormal distribution using a historical mean of 70.2 min and a variance of 37.0

min. The surgery nurses were assumed to clean the OR and to restock materials after the

surgical case. Figure 1 schematically depicts the simulation model.
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Surgical department Percentage

General surgerya

Plastic surgery

Neurosurgery

Traumatologyb

Gynaecology

ENT surgeryc

a Including vascular and transplant surgery.

b Including emergency orthopedic surgery.

c Ear nose throat surgery.

Table 3: Proportions of surgical cases

a large emergency team

oncept process diagram of the simulation model.

139

r bound on transportation time

One anesthesia nurse assisting in the case transported the patient to the recovery

room. There, at least two anesthesia nurses watched patients through the night, as required

ndations. If only one anesthesia nurse was assisting

surgery and the recovery room was previously empty, the second nurse was called in from

home on time, i.e., 30 min before the end of surgery. The recovery duration was drawn

using a historical mean of 70.2 min and a variance of 37.0

min. The surgery nurses were assumed to clean the OR and to restock materials after the

cal experience of the surgeons

mus MC. Then, based on a surgical department’s patient mix and

proportions of patients to be assigned to each of the four

vals for the six Erasmus MC surgical

Percentage

30.0

35.4

0.0

20.0

17.0

0.0

Including vascular and transplant surgery.

Including emergency orthopedic surgery.

ases requiring
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2.2. Precalculations

To benchmark results from the discrete-event simulation model we used the method

developed by Dexter and O’Neill.7 Calculations were based on results from the staffing

scenario that represented the current practice (Scenario 1, Table 5). This scenario was

assumed “safe,” seeing that in the past 10 yrs no emergency patients have been in severe

danger because of OR staff shortage or lateness. Simpler methods such as Dexter and

O’Neill’s (7) will reveal whether an OR suite acts on rational grounds.

Under Dutch Law, a nurse in-house during night shifts is paid 7.5% of the regular

hourly daytime wage, while a nurse on call is paid 6% of the regular hourly daytime wage.

A nurse working during the night shift is paid 47% more than the regular hourly daytime

rate. Travel times of nurses on call are considered to be working time.

2.3. Scenarios

To evaluate compositions of emergency teams, we defined nine scenarios. Current practice

in Erasmus MC (Scenario 1, Table 5) was used as the reference scenario against which we

evaluated the other eight scenarios. In each subsequent scenario, one nurse was excluded

from the night shift or placed on call at home instead of being present at the hospital.

General Plastic

Safety intervals surgerya
surgery Neurosurgery Traumatologyb

Gynecology ENT surgeryc

1. <30 min 15 0 74 15 26 33

2. <90 min 25 32 14 17 18 6

3. <3 h 20 18 10 24 21 29

4. <8 h 40 50 2 44 35 32

a Including vascular and transplant surgery.

b Including emergency orthopedic surgery.

c Ear nose throat surgery.

Table 4: Proportions of emergency patients per surgical department assigned to the four safety

intervals

Scenario 1 2 3 4 5 6 7 8 9

Number of anesthesia nurses

(in-house + on call at home)
4 + 1 3 + 1 3 + 1 2 + 2 3 + 1 2 + 2 2 + 2 2 + 1 2 + 1

Number of surgery nurses (in-

house + on call at home)
5 + 1 5 + 1 4 + 1 4 + 1 3 + 2 3 + 2 2 + 2 2 + 2 2 + 1

Table 5: Scenarios of emergency team compositions
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Scenarios with fewer staff than available in Scenario 9 were not considered, since these

resulted in excessive waiting time for emergency patients.

We performed sensitivity analyses on the safety intervals. This allows comparison

of our discrete- event simulation model with existing methods that do not deploy patient

safety intervals. Five alternatives were analyzed. Each was constructed by excluding one

or more safety intervals. The proportion of patients previously assigned to these intervals

was distributed among the remaining safety intervals according to the original ratios. The

following alternatives were defined:

1. Excluding safety intervals of 8 h;

2. Excluding safety intervals of 3 and 8 h;

3. Excluding safety intervals of 90 min, 3, and 8 h;

4. Excluding safety intervals of 30 min;

5. Excluding safety intervals of 30 min and 90 min.

Further sensitivity analyses were performed on the likelihood of recovery

occupancy at 11:00 PM, the arrival intensity of patients during the night, and the likelihood

of occupied ORs at 11:00 PM. We evaluated the following alternatives:

6. Likelihood of 50% recovery occupancy at 11:00 PM.

7. —10% arrival intensity

8. —20% arrival intensity

9. —30% arrival intensity

10. +10% arrival intensity

11. +20% arrival intensity

12. +30% arrival intensity

13. +25% likelihood of occupied ORs at 11:00 PM.

14. + 50% likelihood of occupied ORs at 11:00 PM.

15. —25% likelihood of occupied ORs at 11:00 PM.

16. —50% likelihood of occupied ORs at 11:00 PM.

Based upon preliminary experiments we tested the alternatives for Scenarios 1

and 6. These two scenarios represented the interval from which Erasmus MC was likely to

select its staffing level.

Before conducting the experiments, the model was validated by comparing the

output of scenario 1 with actual practice. The key validation measure was number of times

anesthesia or surgery nurses were called from home. Validation was provided by this

number in the model being the same as in practice.

The number of runs required to obtain reliable results was determined by the

following equation:

݊
(ߛ)∗ = min ൝݅ ≥ :݊

ିݐ ଵ,ଵିఈ ଶ/ ඥܵଶ( )݊ ݅/

| തܺ( )݊|
≤ ൡߛ
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Where ݊
(ߛ)∗ is the minimum number of runs for obtaining a relative margin of error of γ,

given an average value of തܺ( )݊. The value ܵଶ( )݊ represents the variance of തܺ( )݊ and α is

the probability distribution of t, which is set at 0.05. A relative error of 0.1, which is a

common value in simulation studies, yields 10,000 days (19). To measure patients’ safety,

we categorized amounts of time exceeding the safety interval in four categories: 0 to 10, 11

to 20, 21 to 30, and more than 30 min after the safety interval.

3. Results

The method of O’Neill and Dexter (7) applied to Scenario 1 showed that Erasmus MC

could safely reduce the number of anesthesia nurses by one. The resulting staffing level

guarantees that in 95% of all night shifts sufficient staff are available using the actual times

that patients waited for surgery. Reducing the number of anesthesia nurses by one yields

Scenario 2. Applying the simulation methods, as presented in this paper, will achieve an

additional reduction in the number of surgery nurses by letting patients wait longer for

surgery, but not so long as to exceed the safety intervals.

Table 6 presents proportions of patients treated too late during the night shift.

These computational results show a steady increase in total percentage from Scenario 1

(current situation) to 6. Scenarios 7, 8, and 9 show substantial increases in numbers of

patients treated more than 30 min late. Reducing the numbers of anesthesia and surgery

nurses following Scenarios 1 to 6 only slightly increases the proportion of patients treated

too late. For instance, in Scenario 6 the percentage of patients treated 30 min after their

safety intervals has increased by 2.5% relative to Scenario 1 (1.4% vs 3.9%).

Correspondingly, the total percentage of patients treated too late has increased by only

2.3% in Scenario 6 (10.6% vs 12.9%).

Compared with the baseline Scenario the hospital can reduce overall staffing

levels by one anesthesia nurse and one surgery nurse. In addition, Scenario 6 shows that

one more anesthesia and one more surgery nurse can be allocated to take call from home

instead of being in-house. Compared with Scenario 2 (outcome of method from O’Neill

and Dexter7), Scenario 6 shows that Erasmus MC could reduce the overall staffing level

Safety interval SC1 (%) SC2 (%) SC3 (%) SC4 (%) SC5 (%) SC6 (%) SC7 (%) SC8 (%) SC9 (%)

Total too late 10.6 11.2 12.7 12.6 12.9 12.9 15.5 17.0 23.1

Between 0 min and 10 min

too late
2.9 2.8 2.8 2.7 2.8 2.8 2.6 2.3 2.2

Between 10 min and 20 min

too late
3.2 3.0 3.1 3.1 3.2 3.2 3.0 2.6 2.3

Between 20 min and 30 min

too late
3.1 2.9 2.9 2.9 3.0 3.0 2.9 2.4 2.2

More than 30 min too late 1.4 2.4 3.9 4.0 3.9 3.9 7.1 9.7 16.4

SC = scenario.

Table 6: Proportions of emergency patients treated too late
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by one surgery assistant. The extra reduction in overall staffing levels by our simulation

method compared with the method of O’Neill and Dexter is due to the delay of some

emergency patients within their safe waiting interval.

Figure 2 shows percentages of nights the first anesthesia nurse and the surgery

nurse are called in from home in the different scenarios. Figure 3 shows this for the second

nurses. The frequencies increase significantly beyond Scenario 4, then sharply decline for

Scenario 9. In this scenario significantly more patients are postponed to the day team.

Tables 7 and 8 show the results of the sensitivity analyses. The sensitivity analysis

in Scenario 3 (SA3) shows that setting all safety intervals to 30 min leads to a substantial

increase of patients treated too late. In addition, SA1 to SA5 show that results are sensitive

Figure 2: Proportions of nights in which the first nurses are called in from home.

Figure 3: Proportions of nights in which the second nurses are called in from home.
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to the use of safety intervals. Accepting longer waiting times for all patients (SA4 and

SA5) leads to a decline in the percentages of patients treated outside their safety intervals

(Table 7). Occupancy of the recovery room at 23:00 h increases the number of patients

who are treated late (SA6). Furthermore, outcomes are insensitive to variation in arrival

intensity (SA7–SA12), but are sensitive to the number of occupied ORs at 23:00 h (SA13–

SA16).

Table 8: Proportions of emergency patients treated too late given various sensitivity analysis

scenarios

SA: Rec

Reference 23.00 h

scenario SA1 (%) SA2 (%) SA3 (%) SA4 (%) SA5 (%) SA6 (%)

SC1 Total too late 12.0 12.8 23.3 7.8 3.4 13.4

SC1 Between 0 min and 10 min too late 3.2 3.5 4.8 2.2 1.1 1.7

SC1 Between 10 min and 20 min too late 3.5 3.8 5.8 2.8 1.1 4.2

SC1 Between 20 min and 30 min too late 3.5 3.5 6.5 2.1 1.1 5.6

SC1 More than 30 min too late 1.8 2.0 6.1 0.7 0.1 1.9

SC6 Total too late 14.6 15.5 27.4 9.6 4.5 15.6

SC6 Between 0 min and 10 min too late 3.1 3.3 3.9 2.3 1.3 1.3

SC6 Between 10 min and 20 min too late 3.5 3.8 5.0 2.7 1.3 4.1

SC6 Between 20 min and 30 min too late 3.4 3.5 5.8 2.4 1.5 5.9

SC6 More than 30 min too late 4.6 4.9 12.7 2.1 0.4 4.3

SC = scenario; SA = sensitivity analysis; Rec 23.00 h = recovery room occupancy at 23.00 h.

Safety interval

SA: Varying safety intervals

SA7 SA8 SA9 SA10 SA11 SA12 SA13 SA14 SA15 SA16

scenario interval (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

SC1 Total too late 10.6 10.4 10.4 11.9 11.7 11.7 9.7 13.2 7.5 15.1

SC1
Between 0 min and 10

min too late
3.0 2.7 2.8 3.2 3.0 2.9 2.4 3.6 1.9 3.9

Between 10 min

and 20 min too late

Between 20 min

and 30 min too late

SC1
More than 30 min too

late
1.2 1.1 1.3 2.0 1.9 2.3 1.6 1.9 1.3 2.2

SC6 Total too late 12.7 12.4 12.2 14.3 14.6 14.8 11.7 15.6 9.4 17.8

SC6
Between 0 min and 10

min too late
3.0 2.6 2.8 3.0 3.0 3.0 2.3 3.6 1.9 3.8

Between 10 min

and 20 min too late

Between 20 min

and 30 min too late

SC6
More than 30 min too

late
3.2 3.2 3.0 4.4 4.6 5.2 3.6 4.4 3.0 5.0

SA: likelihood of occupied

ORs at 23.00 h

3.5

Reference Safety

SC1 3.3 3.4 3.2 3.3

SA: varying arrival intensity during

the night

SC1 3.1 3.2 3.1 3.4 2.0 4.6

3.2 2.9 3.8 2.3 4.3

3.6

3.4 3.3 2.9 3.9

SC6 3.3 3.3 3.1 3.4

SC6 3.3 3.2 3.3 3.4 4.7

3.2 2.8 3.8 2.5 4.3

3.3 3.4 2.9 3.8 2.2

Table 7: Proportions of emergency patients treated too late given various sensitivity analysis

scenarios
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4. Discussion

A simulation model was used to determine optimal size of the emergency team on call

during the night, i.e., from 11:00 PM through 7:30 AM, using safety intervals for

emergency patients. The main contribution of this study is that it combines aspects of

patient safety, uncertainty of the case duration, and nocturnal OR staffing in a simulation

approach.2,7,20 Although this is a single center study, variation of the input parameters

showed that the approach can be generalized for use in other centers. To implement this

approach, hospitals need to obtain data on patient arrival rates and safety intervals.

Frequencies per safety interval can be computed by each surgical department.

The case study indicated that staffing, and thus cost, reductions may be realized

for night shifts without jeopardizing patient safety. This is best illustrated in Scenario 6,

which yields reduction of two in-house surgery nurses and two in-house anesthesia nurses

as compared with Scenario 1. The consecutive Scenarios 7 to 9, with even greater

reduction, are associated with substantial increase of patients being treated too late. The

choice for Scenario 6 potentially makes two OR and two anesthesia nurses available for

the daytime surgical schedules. Overall this would increase the productivity of the OR

suite. Historically, the main OR suite in Erasmus MC deployed four anesthesia nurses and

five surgery nurses during the night shift, forming two emergency teams permanently

present in the OR suite. Statistics over the past 4 yrs, however, indicate a structural over-

capacity of these teams. In 45% of the night shifts, no new patients were admitted for sur-

gery after 11 Pm. On average, 1.1 patients per night were operated on. In one of every

seven nights, two teams had to work simultaneously to perform all emergency surgeries on

time. Adopting the method of O’Neill and Dexter7 would have led to a change from

Scenario 1 to Scenario 2, corresponding to an annual saving of approximately €70,000.

Using a simulation approach, including the use of safety intervals, showed that changing

from Scenario 1 to Scenario 6 in. Erasmus MC is safe. Moreover, this reduction allows

cutting night-shift costs by approximately 24%, corresponding to an annual cost reduction

of €245,000. The cost reduction is calculated by the same cost parameters used in the

precalculations plus additional saving due to the increased availability during daytime of

teams on call from home.

Sensitivity analyses (SA1–SA5) showed the impact of safety intervals. Tucker et

al. (6) implicitly assumed that all cases start immediately, while no staffing restrictions

were applied. In SA3 we assumed cases started within 30 min after admission. Since time

is required to transport the patient to the OR, SA3 closely approaches that assumption.

Comparing results from SA3 with results from the basic scenarios showed that not

accounting for safety intervals led to a higher demand for staff in order to maintain low

percentages of patients not treated immediately. Hence, adopting safety intervals, as is

done in this study, lowers staffing levels beyond those determined by methods such as

described by Tucker et al. (6). SA4 and SA5 show that extending safety intervals beyond
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what is medically reasonable leads to a further reduction of required staff. The same results

also show that hospitals that have a similar case mix volume, but with a different

composition from Erasmus MC’s case mix, may have different staffing levels. We

recommend that all hospitals determine appropriate safety intervals before deciding upon

the required staff for night shifts. We also recommended that hospitals not rely solely on

anesthesia billing records, since the latter do not account for safety intervals. Similarly,

hospitals should not reduce staffing and extend waiting intervals without accounting for

safety, as has been noted for some hospitals (20).

SA6 showed that recovery room occupancy at 23:00 h has some effect on the

outcome, although the percentages of patients who would need to wait longer than 30 min

remained within safe margins. Hence, decision-making in Erasmus MC was not affected

by this modeling assumption. Nevertheless, hospitals that do have a substantial number of

patients in the recovery room at 23:00 h should incorporate this in their modeling.

Several studies have shown that safety intervals or medical triage systems for

emergency patients are hard to establish (4,21). In this study, we used safety intervals

determined by surgeons of Erasmus MC. We do not claim that these intervals are valid in

general. However, establishing safety intervals facilitates medical decision-making on

emergency patients.

A significant fraction of the cases performed during the night shift can be

postponed to the day shift (22–24). Safety intervals help to identify cases that cannot be

postponed. In future research, we will investigate the performance of a model with more

precisely measured safety intervals. This would allow modeling the benefits of early

treatment in terms of mortality and risks of complications for certain patient categories.

In the model we assumed transport or travel times between the OR and the ICU or

the wards to be 30 min. Shortening of these times is likely to improve the performance in

all scenarios, which in the end allows for a further reduction of number of nurses required

to be on call in the OR during the night.

In conclusion, this study shows that a discrete simulation model is useful in

determining optimal size and composition of an emergency team, considering patient

safety. Its flexibility provides for different input variables, such as safety interval

frequencies, which might affect the outcome measures. Moreover, the approach allows

evaluating different scenarios as a means to support complex managerial decision-making.

Any hospital that reconsiders its staffing during night shifts should carefully consider the

safety intervals of its patient mix. Using safety intervals, this model showed that at the test

medical center it was possible to deploy fewer surgery and anesthesia nurses on call during

the night without diminishing the quality of care.
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Chapter 10

Concluding remarks and implications

This thesis describes mathematical models and managerial prerequisites for application to

surgical patient planning. We presented an approach for cyclic and integrated operating

room planning, called master surgical scheduling, and models for efficient planning of

emergency surgical cases. The basic idea of master surgical scheduling is to cyclically

execute a master schedule of surgical case types to optimize at the same time operating

room utilization and to provide steady and thus more predictable patient flows in hospitals.

The approach is generic as it can be used in conjunction with other elective surgical patient

planning strategies and while it can be adjusted to characteristics of individual hospitals.

Dealing with the stochastic nature of hospital processes

Processes in hospitals are characterized by their stochastic nature, eventually

resulting in many last minute changes to deal with. The approach chosen in this thesis

explicitly creates room to deal with such changes. Take for instance the planning of

required operating room capacity for emergency surgical patients during day and night

times. Models in this thesis demonstrate the effect of reserving capacity on patient

measures and efficiency and are therefore useful to assist decision-making of hospital

management. Sufficient room for last-minute changes is an important prerequisite for

logistical models to be successfully implemented in hospitals. Another prerequisite is that

the actual scheduling of individual patients remains the responsibility of medical

specialists. Both prerequisites are satisfactorily covered in the master surgical scheduling

approach.

Integrating hospital departments

A hospital typically comprises of several departments that function often

independently. Patients may visit different departments within a single clinical pathway.

Hence, planning and variability of work volume at one department can have large impact

on another. Timely and effective information sharing is essential to be able to deal with

such variability. However, in practice this is hard to organize on a daily basis, which

results in little insight in upcoming patient volumes. This causes departments either to

overestimate their future demand which results in low utilization or underestimate demand

which results in high work pressure and / or cancellations. The proposed master surgical

scheduling approach creates stability in resource usage patterns without the need to

organize information sharing on a daily basis. Hence, it supports the efficient use of

expensive and scarce hospital staff and resources.

Cyclic and integrated planning in a broader scope

Cyclic and integrated planning of patients and creating sufficient capacity to deal

efficiently and medically soundly with emergency surgical patients can be modified and
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applied to other patient flows in hospitals. Consequently, the 7-stepwise plan for

implementation of master surgical scheduling (Chapter 1) is to be used in a more generic

way. Namely, identify the scope of the logistical problem, gather data, plan capacity of

involved resources, define patient groups, construct a cyclic basic schedule that integrates

multiple resources based upon the patient groups, use the basic schedule, and update

periodically the previous steps is a systematic way of dealing with logistical problems that

involve multiple resources, multiple patient groups and various decision-makers. This

thesis presented an application of this generic approach to surgical patient planning.

Using Operations Research models in practice

Operations research models are more easily applicable in practice if they account

for the previously mentioned factors, autonomy and room for last minute changes, and if

they keep model complexity low. For instance, the number of input and output parameters

and variables need to be reasonably small and more advanced mathematical techniques

such as used in this thesis need to be hidden for end-users. Keeping the number of input

and output parameters small enhance the easy explanation of the model to end-users.

Important for hospital logistics is to provide insights in trade-offs between different

objectives to decision-makers. In this way the complex and variable nature of hospital

logistics is structured, which enhances problem-solving, and provision of solutions in an

understandable manner.

Implications for practice

This thesis presents tools to improve operating room planning in such a way that

it is integrated with processes of other hospital departments, while surgeons’ autonomy

and treatment of emergency patients is sufficiently ensured. A next step is to actually use

the techniques in hospitals of which an example is presented in Chapter 6. Whether or not

the mathematical models deliver results to their full potential depends on the actual

implementation in hospitals. The strengths and weaknesses of the models should be

carefully explained to physicians, nurses and other hospital staff. Implementation of a new

logistical approach only delivers desired results if people actually change their ‘old’

behavior. In addition to change-management it is necessary that managers and other

decision-makers at operational and tactical level in a hospital organization are aware of the

need for logistical improvements. When logistical improvement is not demanded from

strategic level or tactical incentives for changes in the logistical process changes are

missing, a hospital organization will not improve its processes and hence its effectiveness

and efficiency.

Need for reliable information

Strategic problems typically consider long term investments and structural

organizational changes. Creating awareness for improving efficiency is from an operations

research perspective in general done by performing quantitative analysis on hospital



165

Chapter 10 153

processes. Ideally, after creating incentives and awareness by evidenced-based quantitative

analysis, lower hierarchical decision-makers should request for assistance for improving

patient planning and scheduling. For the previously mentioned analyses as well as for the

7-steps master surgical scheduling approach reliable and available information is essential.

First steps

Strategic decision-makers should take the lead to create incentives by using clear,

objective, and evidenced-based arguments for their decisions, while asking departments

and their employees to do the same. However, professionals in a hospital may be

unfamiliar with more advanced logistical tools and models. Therefore, a hospital should

ensure that logistical tools and knowledge come available. For this, hospitals should hire at

strategic level advisors that have a high-level knowledge of the fields of operations

research and operations management in health services. These advisors should give advice

at strategic logistical problems and assist strategic-decision makers to create awareness and

incentives at lower hierarchical levels for improving efficiency.

Summarizing

Operations research has a long history in improving logistics. In this thesis

mathematical models were presented that are readily available to be applied for efficient

patient planning in hospitals. Moreover, we have discussed that hospitals can benefit from

operations research models when these get a permanent place in hospital organizations.

Application of mathematical models requires careful modeling and problem solving to

provide sensible and easy-to-understand models as well as creating awareness and

incentives in hospital organizations to actually implement logistical models. Cooperation

between operations researchers, physicians and other decision-makers is therefore essential

to improve hospital efficiency.



166

154 Concluding remarks and implications



167

Nederlandse samenvatting (Summary in Dutch)

Dit proefschrift beschrijft mathematische modellen en organisatorische randvoorwaarden

voor implementatie hiervan voor patiëntplanning in ziekenhuizen. Deze worden toegespitst

op een cyclische en geïntegreerde wijze van het plannen van chirurgische patienten –

master surgical scheduling – inclusief modellen voor het efficiënt plannen van

spoedoperaties. Het idee achter master surgical scheduling is het cyclisch uitvoeren van

een basisrooster van operatietypen zodanig dat het optimaliseren van

operatiekamerbenutting gelijktijdig gebeurd met het spreiden van bedbezetting op

klinieken en intensive care. De opzet is generiek zodat tijdens de uitwerking rekening

gehouden kan worden met ziekenhuisspecifieke karakteristieken. Typerend voor master

surgical scheduling en de modellen voor de planning van spoedpatiënten is dat de

uiteindelijke roostering van patiënten onder de eindverantwoordelijkheid blijft van

medisch specialisten. Daarmee wordt aan een belangrijke voorwaarde voor toepassing in

ziekenhuizen voldaan: de medische autonomie van specialisten blijft gewaarborgd.

In Hoofdstuk 1 worden de voorwaarden beschreven voor een succesvolle

implementatie van planning- en roosterbenaderingen in ziekenhuizen. Bovendien worden

de voor- en nadelen van gecentraliseerde en gedecentraliseerde planningsbenaderingen

vergeleken. Met gebruik van beschikbare literatuur op het gebied van

operatiekamerplanning en roostertechnieken werken we vervolgens het concept van master

surgical scheduling uit en plaatsen dit ten opzichte van eerder genoemde voor- en nadelen

van planningsbenaderingen. Om master surgical scheduling te introduceren wordt een

zevenstappenplan uitgewerkt. De uiteindelijke toepassing van de geïntroduceerde

benadering hangt af van de omvang en organisatie van een ziekenhuis. Aan de hand van

Operations Management literatuur worden potentiële problemen bij implementatie van

master surgical scheduling in de praktijk besproken. We concluderen daarbij dat de

verschillende vormen van ziekenhuisorganisatie zeker invloed hebben op de toepassing,

maar dat het concept van master surgical scheduling voldoende flexibel is om toegepast te

worden in elk van de bekende verschijningsvormen van ziekenhuisorganisaties.

Hoofdstuk 2 beschrijft een methode om de kosten van organisatorische

beperkingen in operatiekamercomplexen te berekenen. Deze beperkingen hebben

betrekking op de weigering van snijdende specialismen om operatiekamercapaciteit te

delen. We maken deze kosten objectief inzichtelijk door toepassing van mathematisch

programmeringtechnieken. Een ziekenhuis kan gebaseerd op dergelijke berekeningen

beslissen om dergelijke organisatorische beperkingen op te heffen. Deze beslissingen

hebben direct invloed op de condities waaronder een master surgical scheduling

benadering in een ziekenhuis wordt uitgewerkt.

Hoofdstuk 3 ontwerpt een methode om standaard operatietypen te klassificeren.

Deze operatietypen fungeren als bouwstenen om een basisrooster voor operatiekamers op

te stellen. Ons doel is deze operatietypen te klassificeren zodanig dat de typen medisch en

logistiek homogeen zijn. Hiervoor gebruiken we een gemodificeerde versie van de Ward’s
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hierarchical cluster method. Deze techniek is succesvol getest op basis van een casus van

een regionaal ziekenhuis.

Hoofdstuk 4 beschouwt de constructie van de daadwerkelijke basisroosters. Dit

complexe mathematische probleem bestaat uit het roosteren van operatietypen, welke

samengesteld kunnen worden met de techniek uit Hoofdstuk 4, zodanig dat de

operatiekamerbenutting gemaximaliseerd is en de bedbezetting van klinieken gelijkmatig

verspreid is. Hier stellen we een tweefasenaanpak voor. In de eerste fase worden

operatiekamerdagroosters gemaakt door een kolomgeneratie heuristiek. Deze

operatiekamerdagroosters geven een set van operatietypen aan die gezamenlijk in een

operatiekamer op één dag uitgevoerd kunnen worden. In de tweede fase worden de

operatiekamerdagroosters met behulp van een integer lineair programmeringmodel in een

planningscyclus gepland, zodanig dat de bedbezetting gelijkmatig over de planningscyclus

verspreid is. Rekenkundige experimenten laten zien dat de tweefasenaanpak goed uitwerkt

voor zowel de operatiekamerbenutting als voor een goed gespreide bedbezetting.

Hoofdstuk 5 evalueert het potentiële effect van het gebruik van een master

surgical schedule in een groot academisch en in een groot regionaal ziekenhuis op basis

van verbeterde operatiekamerbenutting en gespreide bedbezetting. Berekeningen tonen aan

dat winst behaald wordt in beide ziekenhuizen. Wel is de winst in het regionale ziekenhuis

groter dan in het academische ziekenhuis. Daarnaast bediscussiëren we in dit hoofdstuk de

organisatorische voordelen van het gebruik van een master surgical scheduling benadering

ten opzichte van andere planningsbenaderingen in ziekenhuizen.

Hoofdstuk 6 beschrijft de ingebruikname van de master surgical scheduling

benadering in het Beatrix ziekenhuis (Gorinchem, Nederland). Hierbij gaan we nader in op

de moeilijkheden bij het implementatietraject dat is uitgevoerd op basis van de in

Hoofdstuk 2 beschreven stappen. Hoewel er momenteel nog geen complete kwantitatieve

post- implementatie analyse kan worden uitgevoerd, meldt het ziekenhuis grote logistieke

en organisatorische verbeteringen.

Hoofdstuk 7 analyseert de toepassing van een full-service concept binnen een

operatiekamerafdeling. Een dergelijk concept garandeert dat patienten worden geopereerd

op de vooraf geplande datum. Deze garantie is alleen toepasbaar indien operatieroosters

voldoen aan vooraf opgestelde eissen. Met behulp van discrete-event simulation analyseren

we de effecten op benutting, uitloop en aantal afgezegde operaties als het full-service

concept op verschillende manieren wordt toegepast.

Hoofdstuk 8 onderzoekt de efficiëntie van het gebruik van een speciale

spoedoperatiekamer. Onze analyse toont aan dat voor een groot academisch ziekenhuis het

gebruik van een spoedoperatiekamer in plaats van spoedtijd op electieve operatiekamers

niet alleen inefficiënt is, maar dat dit ook zorgt voor langere wachttijden voor

spoedpatiënten. Een verklaring hiervoor is de sterk toegenomen planningsflexibiliteit
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binnen operatiekamercomplexen waar spoed in alle kamers kan worden gepland ten

opzichte van complexen die een speciale spoedoperatiekamer gebruiken.

Hoofdstuk 9 bepaalt de optimale inzet van operatiekamerpersoneel tijdens de

nacht die in het ziekenhuis aanwezig en op oproepbaar zijn. Bij bepaling hiervan

modelleren we expliciet zogenaamde safety intervals voor spoedpatiënten. Deze safety

intervals geven een periode aan waarbinnen een spoedpatiënt geopereerd kan worden

zonder verhoogde morbiditeit of verlaagde kans op volledig herstel. We tonen met behulp

van discrete-event simulatie en safety intervals aan dat de hoeveelheid ingezet personeel

ten opzichte van andere methoden verminderd kan worden.

Hoofdstuk 10 geeft een samenvatting van de verschillende instrumenten om de

patiëntplanning te optimaliseren. Het toepassen van deze instrumenten zorgt voor het

gelijktijdig optimaliseren van operatiekamerbenutting, klinieken en intensive care units.

Bovendien zorgt het repetatief uitvoeren van een master surgical schedule voor een

stabiele en daardoor voorspelbare instroom van patiënten op klinieken. Voorwaarden voor

het succesvol imlementeren van logistieke modellen in ziekenhuizen zijn de ruimte voor

last-minute veranderingen en de eindverantwoordelijkheid van medisch specialisten over

de patiëntroostering. Aan beide randvoorwaarden voldoet het concept master surgical

scheduling.
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Applying mathematical models
to surgical patient planningJE
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l)APPLYING MATHEMATICAL MODELS TO SURGICAL PATIENT PLANNING

On a daily basis surgeons, nurses, and managers face cancellation of surgery, peak
demands on wards, and overtime in operating rooms. Moreover, the lack of an integral
planning approach for operating rooms, wards, and intensive care units causes low
resource utilization and makes patient flows unpredictable. An ageing population and
advances in medicine are putting the available healthcare budget under great pressure.
Under these circumstances, hospitals are seeking innovative ways of providing optimal
quality at the lowest costs.

This thesis provides hospitals with instruments for optimizing surgical patient
planning. We describe a cyclic and integrated operating room planning approach, called
master surgical scheduling, and models for efficient planning of emergency operations.
Application of these instruments enables the simultaneous optimization of the utilization
of operating rooms, ward and intensive care units. Moreover, iteratively executing a
master schedule of surgical case types provides steady and thus more predictable patient
flows in hospitals. 

The approach is generic and so can be implemented taking account of specific
characteristics of individual hospitals. Prerequisites for successful implementation of
logistical models in hospitals comprise sufficient room for last-minute changes as well as
keeping the ultimate responsibility for individual patient scheduling with medical
specialists. Both are satisfied in the master surgical scheduling approach which has already
been successfully implemented in hospitals.
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