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Tiger got to hunt, 
Bird got to fly; 

Man got to sit and wonder, “Why, why, why?” 

Tiger got to sleep, 
Bird got to land; 

Man got to tell himself he understand. 

Kurt Vonnegut, Cat’s Cradle 

 
 

 

Evelyn, a dog, having undergone  
Further modification 

Pondered the significance of short-person behaviour 
In pedal-depressed panchromatic resonance 

And other highly ambient domains… 
Arf, she said 

Frank Zappa, Evelyn, A Modified Dog 
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 1

1. Introduction and Summary 

1.1. Introduction 

The process of producing statistical information as practised at national statistical institutes 
can be broken down into a number of steps. Willeboordse (1998), for instance, 
distinguishes the following phases in the statistical process for business surveys, and a 
similar division can be made for social surveys: 

• setting survey objectives; 

• form design and sampling design; 

• data collection and data entry; 

• data processing and data analysis; 

• publication and data dissemination. 

Each phase itself can be subdivided into several steps. When the surveys objectives are set, 
user groups for the statistical information under consideration are identified, user needs are 
assessed, available data sources are explored, potential respondents are contacted, the 
survey is embedded in the general framework for business surveys, the target population 
and the target variables of the intended output are specified, and the output table is 
designed. 

When the form is designed and sampling design is constructed, the potential usefulness of 
available administrative registers is determined, the frame population in the so-called 
Statistical Business Register is compared with the target population, the sampling frame is 
defined, the sampling design and estimation method are selected, and the questionnaire is 
designed. 

During the data collection and data entry phase, the sample is drawn, data are collected and 
are entered into the computer system at the statistical office. During this phase the 
statistical office tries to minimise the response burden for businesses and to minimise non-
response. There is a decision process on how to collect the data: paper questionnaires, 
personal interviews, telephone interviews, or electronic data interchange. 

In the processing and analysis phase the collected data are edited, missing and erroneous 
data are imputed, raising weights are determined, population figures are estimated, the data 
are incorporated in the integration framework, and the data are analysed (for example to 
adjust for seasonal effects). 

The publication and dissemination phase includes setting out a publication and 
dissemination strategy, protecting the final data (both tabular data and microdata, i.e. the 
data of individual respondents) against disclosure of sensitive information, and lastly 
publication of the protected data. 
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This book examines two different, but related, subjects mentioned above. The first is 
statistical data editing, which takes places during the processing and analysis phase. The 
aim of statistical data editing is to identify errors in the data and to correct them. To 
achieve this the data are enriched with the aid of subject-matter knowledge and statistical 
modelling techniques. That is, we try to create more information than we have observed. 
The second subject is statistical disclosure control, which takes place during the 
publication and data dissemination phase to prevent sensitive information about individual 
respondents, or small groups of respondents being disclosed in the published data. To 
achieve this, data are deleted, or the information contained in the data is reduced by adding 
noise or by recoding variables. In other words, we try to reduce the information content of 
the data.  

On the surface, statistical data editing and statistical disclosure control seem to be opposed 
- and therefore unrelated - subjects. At a deeper level, however, the two subjects are 
related. In both areas we try to retain as much information as possible. The main difference 
between the two areas is formed by the constraints that have to be satisfied in order to 
achieve this. In statistical data editing errors are usually detected by means of certain rules, 
referred to as edits. Often it is assumed that a minimum number of errors occur in the 
observed data. Given this assumption, we then try to change as few values as possible such 
that all edits become satisfied. On the other hand, in statistical disclosure control we often 
assume that safe microdata should satisfy certain frequency count rules. We then try to 
delete as few observed values as possible such that the frequency count rules become 
satisfied. In both cases we are faced with a mathematical optimisation problem. In 
statistical disclosure control this particular optimisation problem can be formulated as a 
set-covering problem, in statistical data editing the corresponding optimisation problem 
can partly be solved by means of set-covering algorithms.  

The similarity between the mathematics of both subjects becomes even clearer in Chapters 
8 and 20 of this book. While in Chapter 8 Fourier-Motzkin elimination is used to detect 
errors in data, in Chapter 20 it is applied to produce safe tabular data. In fact, in Chapter 20 
we use Fourier-Motzkin elimination to generate so-called elementary aggregations, a 
fundamental concept in disclosure control of tabular data. In statistical data editing 
parlance, such an aggregation would be referred to as an implicit edit, a fundamental 
concept in automatic data editing. We briefly discuss statistical data editing and statistical 
disclosure control in Sections 1.2 and 1.3, respectively. 

1.2. Statistical data editing 

In order to make well-informed decisions, managers, politicians and other policy makers 
need high quality statistical information about social, demographic, industrial, economic, 
financial, political, and cultural aspects of society. National statistical institutes (NSIs) 
fulfil a very important role in providing such statistical information. The task of NSIs is 
considerably complicated by the rapid changes in present-day society. Moreover, the 
power of modern computers also enables end-users to process and analyse huge amounts 
of statistical information themselves. As a result, these users are demanding statistical 
information with a greater level of detail and higher quality. To fulfil their role 
successfully NSIs also need to produce these high-quality data within a shorter span of 
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time. Most NSIs face these challenges while their financial budgets are constantly 
diminishing.  

It is difficult to produce high-quality data in a short space of time. A major complicating 
factor is that collected data generally contain errors. The data collection stage in particular 
is a potential source of errors. A lot can go wrong in the process of asking questions and 
recording the answers. For instance, a respondent may give a wrong answer (intentionally 
or not), errors can occur at the statistical office when the data are transferred from the 
questionnaire to the computer system, etc. The presence of errors makes it necessary to 
carry out an extensive data editing process of checking the collected data, and when 
necessary, correcting them.  

Traditionally, statistical agencies have always put a lot of effort and resources into data 
editing, as they considered it a prerequisite for publishing accurate statistics. In traditional 
survey processing, data editing was mainly an interactive activity intended to correct all 
data in every detail. Detected errors or inconsistencies were reported and explained on a 
computer screen and corrected after consulting the questionnaire, or contacting 
respondents: time and labour-intensive procedures.  

It has long been recognised, however, that it is not necessary to correct all data in every 
detail. Several studies (see for example Granquist, 1984; Granquist, 1997; Granquist and 
Kovar, 1997; Houbiers, 1999a; Houbiers, Quere and De Waal, 1999) have shown that in 
general it is not necessary to remove all errors from a data set in order to obtain reliable 
publication figures. The main products of statistical offices are tables containing aggregate 
data, which are often based on samples of the population. This implies that small errors in 
individual records are acceptable. First, because small errors in individual records tend to 
cancel out when aggregated. Second, because if the data are obtained from a sample of the 
population there will always be a sampling error in the published figures, even when all 
collected data are completely correct. In this case an error in the results caused by incorrect 
data is acceptable as long as it is small in comparison to the sampling error. In order to 
obtain data of sufficiently high quality it is usually enough to remove only the most 
influential errors. The above-mentioned studies have been confirmed by many years of 
practical experience at several statistical offices. 

In the past, and often even in the present, too much effort was spent on correcting errors 
that did not have a noticeable impact on the ultimately published figures. This has been 
referred to as “over-editing”. Over-editing not only costs money, but also a considerable 
amount of time, making the period between data collection and publication unnecessarily 
long. Sometimes over-editing even becomes “creative editing”: the editing process is then 
continued for such a length of time that unlikely, but correct, data are “corrected”. Such 
unjustified alterations can be detrimental for data quality. For more about the danger of 
over-editing and creative editing see for example Granquist (1995), Granquist (1997) and 
Granquist and Kovar (1997). 

The ever-increasing power of modern computers not only provides challenges for NSIs, 
but also the opportunities to solve them. One of the solutions for the earlier mentioned 
challenge of providing huge amounts of high-quality data in a short space of time is to 
improve the traditional editing and imputation process. Well-known, although still 
relatively modern, techniques such as selective editing, (graphical) macro-editing, and 
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automatic editing can be applied instead of the traditional interactive approach. Selective 
editing entails dividing the data in two: one part that probably contains influential errors 
and one that is unlikely to contain influential errors. Subsequently, only the former part is 
edited using the traditional interactive approach. In macro-editing, the plausibility of 
aggregates is checked. Only when aggregates are not plausible are the corresponding data 
edited in the traditional manner. The most drastic modern editing technique is automatic 
editing. It is the opposite of the traditional approach to the editing problem, where each 
record is edited manually. With automatic editing the records are edited entirely by means 
of a computer. These modern techniques take less time and cost less than the traditional 
interactive method, while preserving or often even increasing quality. More details about 
these techniques can be found in Chapter 2. 

In principle, automatic editing offers great prospects in terms of saving time and money. It 
is one of the main subjects of this book. In fact, we concentrate on one important and 
complicated aspect of automatic data editing, namely the problem of localising the 
erroneous (or more precisely: implausible) values in the data. Our aim is to develop a 
general algorithm for solving this error localisation problem that can be applied to a wide 
range of data sets without requiring specific subject-matter knowledge other than a 
specification of the edits that correct data have to satisfy. Such an algorithm should be able 
to solve the error localisation problem for data sets involving thousands of records and 
several dozens of complex edits within a few hours at most. Finding solutions to the error 
localisation problem for a set of complex edits amounts to solving a difficult combinatorial 
puzzle for which techniques from operations research can be used. While solving this 
puzzle, one should not forget that the determined solutions should be useful from a 
statistical point of view. In order to solve the error localisation problem successfully, 
therefore, expertise on two different areas is required: operations research and statistics. 
We examine the error localisation problem in detail in Chapters 2 to 13 of this book. 
Section 1.4 contains a brief summary of these chapters. 

Literature on the error localisation problem is scarce. In fact, the only articles in scientific 
journals we are aware of are: Freund and Hartley (1967), Fellegi and Holt (1976), 
Garfinkel, Kunnathur and Liepins (1986 and 1988), McKeown (1984), Schaffer (1987), 
and Ragsdale and McKeown (1996).  

1.3. Statistical disclosure control 

The other subject of this book is statistical disclosure control, one of the last steps in the 
statistical process. On the one hand, it is the duty of statistical offices to release as much 
statistical information as possible. On the other hand, they are also bound by legal 
restrictions and moral obligations to protect the information of individual respondents. In 
particular, it should be practically impossible for potential intruders to disclose confidential 
data of individual respondents or small groups of respondents. It is usually difficult to 
provide absolute protection, as in many cases this would entail that hardly any information 
may be released. Statistical disclosure control therefore aims to limit the risk of disclosure 
to an acceptable level.  

The main challenge of statistical disclosure control is to put oneself in the shoes of a 
potential intruder trying to disclose sensitive information. Talking about the famous chess 
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grandmaster Tigran Petrosjan, Bobby Fischer once said that he had the ability to prevent 
potential attacking possibilities of his opponent long before these possibilities had even 
entered his opponent’s head. We are trying to do the same as Petrosjan. We are trying to 
protect sensitive information against potential attacks by potential intruders before such 
potential intruders have even realised that such attacks might be possible. As many 
potential attack paths are possible, statistical disclosure control obviously requires 
expertise in many different areas, of which again operations research and statistics are the 
most important. 

Statistical offices release different data in various formats. Two well-known formats are 
microdata sets and tabular data. Microdata sets consist of data on individual respondents. 
These microdata have been anonymised, i.e. personal identifiers such as name and address, 
are not released. In addition, various disclosure control techniques are applied to further 
limit the risk of disclosure, as respondents may be recognisable from other data that are 
released. Tabular data are aggregate data released in the form of tables. Like microdata 
aggregate data have to be protected against disclosure. Of course, tabular data do not 
contain personal identifiers, but other information might enable a potential intruder to 
identify a respondent and misuse the information. 

There is more literature on statistical disclosure control for tabular data than on disclosure 
control for microdata. To fill this void, we focus on statistical disclosure control for 
microdata in this book. In contrast to the first part of this book where we basically 
concentrate on one problem of statistical data editing, the error localisation problem, we 
examine various aspects of statistical disclosure control in the second part of this book. 
Examples are: protection of microdata in general, synthetic and combined estimators to 
estimate population frequencies, and an optimisation model to minimise the number of 
suppressed values in a protected microdata set. A brief summary of the chapters on 
statistical disclosure control is given in Section 1.4 below. 

There is quite a lot of literature on statistical disclosure control. Four books have been 
published: Willenborg and De Waal (1996 and 2001), Doyle et al. (2001), and Domingo-
Ferrer (2002). At least two Ph.D. theses have been written on statistical disclosure control 
(see Sullivan, 1989, and Kelly, 1990). Lastly, several overview articles on this area have 
been published (see e.g. Duncan and Lambert, 1986, and Fienberg, 1994), and special 
issues of journals have devoted to the subject (cf. the 1993 special issue of the Journal of 
Official Statistics on confidentiality and data access).  

1.4. Summary 

The first part of this book, Chapters 2 to 13, concentrates on data editing, in particular on 
the so-called error localisation problem. In Chapter 2 we consider the data editing problem, 
i.e. the problem of cleaning up statistical data, in general. We also consider some 
techniques for (efficiently) solving this problem. One of the techniques we mention in this 
chapter is automatic editing, the editing technique we focus on in subsequent chapters. 

As mentioned earlier, we concentrate on one aspect of automatic data editing, namely the 
error localisation problem. This problem is usually considered either for categorical data, 
i.e. discrete data without any arithmetic structure such as “Gender” or “Profession”, or for 
continuous data in literature. This book is an exception: we consider the error localisation 
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problem for a mix of categorical and continuous data, a problem that occurs quite often in 
practice. A precise mathematical formulation of the error localisation problem for a mix of 
categorical and continuous data is given in Chapter 3. This mathematical formulation is 
based on simple concepts from mathematical logic. In particular, the formulation uses the 
implication operator (IF/THEN statement). We are the first to give such a formulation of 
the error localisation problem, which seems more natural than a mixed integer 
programming formulation. In the same chapter we also formulate the error localisation 
problem as a mixed integer programming problem. In principle, this mathematical 
optimisation problem can be solved by a solver for mixed integer programming problems. 
A drawback of such a solver is, however, that it usually determines only one optimal 
solution to the mathematical optimisation problem, whereas we would like to determine all 
optimal solutions so we can choose one of them according to an additional criterion. In 
order to determine all optimal solutions by means of a commercial solver for mixed integer 
programming problems special steps need to be taken. It remains to be examined whether 
available solvers for mixed integer programming problems are sufficiently fast to 
determine all optimal solutions for practical instances of the error localisation problem. 

Chapters 4 to 10 examine several dedicated methods for solving the error localisation 
problem. The motivation for examining so many methods stems from the significance of 
efficient editing of business survey data in particular for Statistics Netherlands. For purely 
numerical data and non-conditional linear edits, we first studied the methods described in 
Chapters 4 and 5, which are known from available reports. We decided to implement the 
method of Chapter 5 for such kinds of data and edits in our production software. Later, the 
wish to develop algorithms for more general data and edits slowly grew. The first attempts 
to develop such algorithms were unsuccessful. We tried to extend the algorithm of Chapter 
5 to include categorical data, which led to a rather complicated algorithm; too complicated 
for our purposes. We subsequently examined and developed the methods of Chapters 6, 7, 
and 8. We were not satisfied with the algorithms of Chapters 6 and 7. The algorithm of 
Chapter 8 was considered satisfactory. We extended that algorithm to include integer-
valued data (see Chapter 9). Lastly, we decided to compare the algorithm of Chapter 8 with 
cutting plane algorithms similar to cutting plane algorithms known from the literature. This 
resulted in Chapter 10. 

Chapter 4 describes a method developed by Fellegi and Holt (1976) based on generating 
so-called implicit edits. This chapter hardly contains new results, except for a simple proof 
that the method works for numerical data and the brief remark that the method can, in 
principle, be applied to a mix of categorical and numerical data.  

Chapter 5 describes vertex generation methods. These methods, in particular a method by 
Chernikova (1964, 1965) have been applied to solve the error localisation problem in 
continuous data. In the literature the possibility of extending the methods to a mix of 
categorical and continuous data is briefly mentioned (Sande, 1978a), although no details 
are given. In Chapter 5 we provide such details, and show that many results for continuous 
data also hold true for a mix of categorical and continuous data. We also mention that 
vertex generation methods other than Chernikova’s algorithm may be used to solve the 
error localisation problem. 

Chapter 6 describes the error localisation problem as a so-called dynamic disjunctive-facet 
problem. Glover, Klingman and Stutz (1974) describe a cutting plane algorithm for solving 
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the disjunctive-facet problem. Originally, we tried to formulate the error localisation 
problem as a disjunctive-facet problem, but this turned out to be not completely possible. 
We had to extend the disjunctive-facet problem to a dynamic disjunctive-facet problem. 
The cutting plane algorithm for solving the disjunctive-facet problem had to be extended 
accordingly. Moreover, we show that the algorithm of Glover, Klingman and Stutz does 
not necessarily terminate after a finite number of steps. We extend our algorithm so it is 
guaranteed to be finite. 

Chapter 7 describes a method developed by Pergamentsev (1998) based on local search 
heuristics. Pergamentsev was a post-graduate student at Eindhoven University of 
Technology who worked on the error localisation problem at Statistics Netherlands. In 
Chapter 7 we propose several improvements on his method.  

Chapter 8 describes a branch-and-bound algorithm for solving the error localisation 
problem for a mix of categorical and continuous data. Quere, another post-graduate student 
from Eindhoven University of Technology who worked on the error localisation problem 
at Statistics Netherlands, first developed a similar branch-and-bound algorithm for the 
error localisation problem for continuous data. Together with Quere we later extended this 
algorithm to a mix of categorical and continuous data. This extended algorithm is the 
subject of Chapter 8. 

In Chapter 9 we extend the problem formulated in Chapter 3 to include integer data. We 
propose an extension of the algorithm of Chapter 8 in order to solve it. The developed 
algorithm uses Fourier-Motzkin elimination in integer-valued data as developed by Pugh 
(1992). Our algorithm efficiently combines Fourier-Motzkin elimination in integer-valued 
data with the algorithm of Chapter 8.  

Chapter 10 starts by describing a cutting plane algorithm based on algorithms due to 
Garfinkel, Kunnathur and Liepins (1986 and 1988). The original algorithms developed by 
Garfinkel, Kunnathur and Liepins were designed for categorical and continuous data 
respectively only. In Chapter 10 we extend these algorithms to a mix of categorical and 
continuous data. Subsequently, we use the theory of Chapters 8 and 9 to improve on these 
cutting plane algorithms and a similar cutting plane algorithm by Ragsdale and McKeown 
(1996). Finally, we extend the improved algorithm to a mix categorical, continuous and 
integer data. 

Computational results for the algorithms of Chapter 3 (based on a standard mixed integer 
programming formulation), Chapter 5 (based on vertex generation), Chapter 8 (based on 
branch-and-bound), and Chapter 10 (based on cutting planes) on several numerical data 
sets are presented in Chapter 11. 

Chapter 12 considers imputation, and in particular the problem of consistent imputation, 
i.e. the problem of filling in values for erroneous and missing data in such a way that the 
resulting data are both acceptable from a statistical point of view and internally consistent. 
We propose an algorithm, similar to the algorithm proposed in Chapters 8 and 9, for 
solving the problem of consistent imputation. We developed the basic ideas of the 
algorithm presented in Chapter 12. Later a post-graduate student from Delft University of 
Technology, Kartika, implemented the algorithm and in the course of that work filled in 
many implementation details. In the same chapter we also briefly describe WAID, 
imputation software we have developed in a European project. 
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Chapter 13 concludes the part of this book on statistical data editing by considering some 
practical issues of error localisation. The final section of that chapter also briefly discusses 
the impact of the developed methodology on the daily practice at Statistics Netherlands. 

The error localisation problem is related to many other problems, both mathematical and 
non-mathematical. Examples of related mathematical problems are: the imputation 
problem (or: how to estimate missing or erroneous data), the outlier detection problem 
(how to identify univariate or multivariate outliers in statistical data) and the weighting 
problem (how to calculate raising weights). Examples of non-mathematical problems are: 
the logistics of handling large amounts of data, and the ICT problem of developing 
computer programs for data editing as part of the software suite for the entire survey 
process. Such problems are for the main part outside the scope of this book. 

The second part of this book, Chapters 14 to 20, concentrates on statistical disclosure 
control. Chapter 14 gives an overview of the area, focusing on a general approach to 
statistical disclosure control for microdata of mainly social surveys applied at several 
statistical offices, including Statistics Netherlands. According to this approach, statistical 
disclosure control rules for microdata for social surveys should primarily be based on 
requiring minimum population frequencies for certain characteristics. The subsequent 
chapters elaborate on this general approach. 

Chapter 15 examines the worst possible populations from a statistical disclosure point of 
view. Such populations give rise to the highest possible expected number of unique 
individuals in randomly selected samples. We are the first to propose this problem, and a 
solution to it.  

Population frequencies of characteristics are usually unknown. Standard statistical methods 
can be applied to estimate them for large areas. To estimate frequencies for small areas, 
however, one has to resort to small area estimation techniques: synthetic and combined 
estimators, for example. In Chapter 16 we try to estimate population frequencies for small 
areas by means of such synthetic and combined estimators. The estimators of Chapter 16 
have been developed and tested in conjunction with Pannekoek. 

If the population frequency of a certain characteristic is below the required minimum, it is 
considered too unsafe for release, and may not be released as such. In such a case, 
measures should be taken to protect respondents with this characteristic. One possible 
technique is suppression, where the characteristic, or part of it, is deleted. As a statistical 
office aims to publish as much information as is legally and morally permissible, we try to 
minimise the number of suppressed values subject to the constraint that the resulting data 
set is considered safe. In collaboration with Willenborg we have developed optimisation 
models for a number of such problems. The mathematical formulations of these 
optimisation models are presented in Chapter 17. 

Apart from suppression, there are other statistical disclosure control techniques to limit the 
risk of disclosure: recoding and perturbation, for example. All these techniques, i.e. 
suppression, recoding and perturbation, lead to a certain loss of information. As our goal is 
to publish as much information as possible, subject to the condition that the released data 
are sufficiently protected, we want to compare the amounts of information lost as a result 
of the various techniques. Chapter 18 offers a general framework based on entropy to make 
such comparisons. This framework has again been developed jointly with Willenborg. 
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Release of sampling, or better: raising, weights together with the corresponding microdata 
set requires some additional attention. These weights may enable a potential intruder to 
extract more information from the released data than is permitted under the disclosure 
control rules. Chapter 19 describes this danger of releasing sampling weights, and suggests 
methods to overcome it. Once again, the material in Chapter 19 has been developed 
together with Willenborg. 

Lastly, Chapter 20 concludes with a description of the so-called cell suppression problem 
in tabular data. In particular, the chapter points out that the usually applied definition of a 
safe table is inconsistent. We propose an alternative for this inconsistent definition, based 
on so-called elementary aggregations. The use of elementary aggregations to determine 
whether a table is safe or not was already suggested by Sande in the late 70’s (see, e.g., 
Sande, 1977). Sande’s concept of a safe table is not always correct, however. We have 
corrected the flaw in his concept of a safe table, and we demonstrate that our definition 
does not lead to suppressed cells that can be re-calculated (too) precisely.  

Chapter 20 is a good conclusion to this book as it returns to concepts from the first part, 
such as implicit edits and Fourier-Motzkin elimination. Elementary aggregations can be 
considered as implicit edits; and they can be derived by means of Fourier-Motzkin 
elimination. In a sense, Chapter 20 demonstrates that studying statistical disclosure control 
is essentially the same as studying automatic error localisation. 

Several parts of this book have previously been published as articles in scientific journals. 
We indicate this in the relevant chapters. 
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2. Statistical Data Editing 

2.1. Introduction 

In this chapter we discuss several data editing techniques, ranging from computer-assisted 
editing to automatic editing. The latter technique, in particular the problem of 
automatically identifying erroneous (or more precisely: implausible) values in the data, is 
one of the main topics of this book.  

In Section 2.2 we discuss how data are edited in general. In particular we explain the use of 
edit rules. The advantages and disadvantages of computer-assisted editing are discussed in 
Section 2.3. Section 2.4 gives a global description of the modern editing techniques 
selective editing and (graphical) macro-editing. A more detailed discussion of another 
modern editing technique, automatic editing, follows in Section 2.5. Section 2.6 concludes 
the chapter with a short discussion of editing techniques and how they could be combined. 

For a more detailed overview of statistical data editing we refer to Ferguson (1994), and 
Hoogland, Houbiers and De Waal (2002). 

2.2. Statistical data editing in general 

Errors in data can be detected by specifying certain constraints that have to be satisfied by 
the individual records, i.e. data of individual respondents. These constraints are called edit 
rules (or edits for short). They are specified by subject matter specialists. When a record 
fails an edit, it is considered erroneous. When a record satisfies all edits, it is considered 
correct. The values in an erroneous record have to be modified in such a way that the 
resulting record is a better approximation of the true data of the corresponding respondent. 

At Statistics Netherlands editing of business surveys is a much bigger problem than editing 
of social surveys on households and persons. Business surveys mainly consist of numerical 
data. Typically, business surveys in the Netherlands are not very large. Large and 
complicated surveys may have somewhat over 100 variables and 100 edits. The number of 
records in a business survey is usually a few thousand. In countries where in contrast to the 
Netherlands a census on persons is held, editing census data is generally a big problem. 
Census data are mostly categorical data. They do not contain a high percentage of errors, 
but the number of edits (a few hundred), number of variables (a few hundred), and 
especially the number of records can be high (several millions). 

To modify an erroneous record two steps have to be carried out. First, the incorrect values 
in such a record have to be localised. This is called the error localisation problem. Second, 
after the faulty fields in an erroneous record have been identified these faulty fields have to 
be imputed, i.e. the values of these fields have to be replaced by better, preferably the 
correct, values. The error localisation problem must be solved in such a way that the fields 
that are considered faulty can indeed be imputed consistently, i.e. that these fields can be 
imputed in such a way that the resulting modified record satisfies all edits. 
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The error localisation problem is traditionally solved by humans, possibly assisted by a 
computer. Examples of methods that are used to solve the error localisation problem are: 
re-contacting the respondent, comparing the respondent’s data to his data from previous 
years, comparing the respondent’s data to data from similar respondents, and using 
subject-matter knowledge. The major drawbacks of the traditional approach are that it is 
time and money consuming. 

For erroneous records the error localisation problem and the imputation problem are 
closely related. Often it is hard to distinguish where the error localisation phase ends and 
where the imputation phase starts. When humans edit data, they frequently look at possible 
ways of imputing a record before completing the error localisation phase. So, for erroneous 
records the imputation problem is traditionally also solved by humans, again possibly 
assisted by a computer. Methods are similar to “manual” methods for solving the error 
localisation problem, namely re-contacting the respondent, using the respondent’s data 
from previous years to impute for erroneous data from this year, using data from similar 
respondents to impute for erroneous data, and using subject-matter knowledge.  

For records for which “only” some values are missing, but that otherwise are correct, the 
imputation is traditionally solved automatically by means of a computer program. For 
those records there is no interaction with the error localisation phase, so no human 
intervention is deemed necessary. 

2.3. Computer-assisted editing 

2.3.1. The mainframe age 
The use of computers in the editing process started many years ago. In the early years their 
role was, however, restricted to checking which edits were violated. Subject-matter 
specialists entered data into a mainframe computer. Subsequently, the computer checked 
whether these data satisfied all specified edits. For each record all violated edits were 
listed. Subject-matter specialists then used these lists to correct the records. That is, they 
retrieved all paper questionnaires that did not pass all edits and corrected these 
questionnaires. After they had corrected the data, these data were again entered into the 
mainframe computer, and the computer again checked whether the data satisfied all edits. 
This iterative process continued until (nearly) all records passed all edits. 

A major problem of this approach was that during the manual correction process the 
records were not checked for consistency. As a result, a record that was “corrected” could 
still fail one or more specified edits. Such a record hence required more correction. It was 
not exceptional that some records had to be corrected four times in this way. It is therefore 
not surprising that editing in this way was very costly, both in terms of money as well as in 
terms of time. In literature it was estimated that 25 to 40 per cent of the total budget was 
spent on editing (see e.g. Federal Committee on Statistical Methodology, 1990; Granquist 
and Kovar, 1997). 
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2.3.2. Interactive editing in the PC age 
The introduction of PC’s and computer systems such as Blaise, the integrated survey-
processing system developed by Statistics Netherlands (see e.g. Blaise Reference Manual, 
2002, and Blaise Developer’s Guide, 2002), led to a substantial efficiency improvement of 
the editing process. The potency of Blaise is that during data entry the consistency of the 
entered data is checked. It is no longer necessary to edit the data in several iterations, 
consisting of a checking phase and a correction phase. When a system such as Blaise is 
used, checking and correction can be combined into one step. After this step the data are 
consistent. 

Blaise not only applies edits, but also so-called routing rules. Frequently, different 
questions are posed to different kinds of respondents. For instance, it is not useful to ask a 
male respondent whether he has ever been pregnant as the answer to this question would 
not provide any additional information. A system like Blaise ensures that each respondent 
is asked the questions that are applicable to this kind of respondent. Due to this 
functionality Blaise is an excellent system for CAPI (Computer Assisted Personal 
Interviewing) and CATI (Computer Assisted Telephone Interviewing). When CAPI is used 
to collect the data, an interviewer visits the respondent and enters the answers directly into 
a laptop. When CATI is used to collect the data, the interview is carried out during a 
telephone call. When an inconsistency between the answers of two or more questions is 
noted, this is reported by Blaise. The error can then be resolved during the interview by 
asking the respondent these questions again. Data collected by means of CAPI, and to a 
slightly lesser extent by CATI, therefore hardly contain errors. CAPI and CATI may hence 
seem to be ideal ways to collect data, but – unfortunately – they too have their 
disadvantages. 

The first disadvantage is that CAPI especially is very expensive. Sending a paper 
questionnaire to a respondent is much cheaper than sending an interviewer to a respondent.  

A second, very important, disadvantage is that CAPI and CATI are much less suited for 
surveys on enterprises than for surveys on persons and households. A prerequisite for 
CAPI and CATI is that the respondent is able to answer the questions during the interview. 
For a survey on persons and households, this is often the case. The respondent knows the 
answers to the questions, or is able to retrieve these answers quickly. For a survey on 
enterprises, the situation is quite different. Often it is impossible to retrieve the correct 
answers quickly, and often the answers are not even known by one person or one 
department of an enterprise. Frequently, data from different departments have to be 
collected in order to answer a questionnaire from a national statistical office. Finally, even 
in the exceptional case that one person knew all answers to the questions, the statistical 
office would generally not know the name of this person. So, it would be very likely that 
the statistical office would interview the wrong person.  

For the above-mentioned reasons Statistics Netherlands, and many other national statistical 
institutes, frequently use CAPI and CATI to collect data on persons and household but 
only rarely for data on enterprises.  

An alternative approach to collect data on, for example, enterprises is to use the Internet. 
Enterprises can then fill in an electronic questionnaire and send it electronically to the 
statistical office as soon as the questionnaire has been completed. Part of the edits can be 
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checked while the respondent is filling in the questionnaire. When answers are detected to 
be inconsistent, the respondent can immediately be prompted to fill in other answers. 
Using the Internet to collect data is potentially a very attractive approach, and it has 
therefore been tested in several pilot studies. These pilot studies have revealed that 
collecting data via the Internet may indeed be a very useful option in future, but also that 
many problems have to be solved before it is fully operational in practice. A few technical 
problems with data collection via the Internet are: 

• the software - and the Internet – should be fast and reliable; 

• the security of the transmitted data should be guaranteed; 

• the underlying software should be flexible enough in order to allow respondents to fill 
in part of their answers, and continue filling in their answers at a later time. 

An example of a non-technical problem is that sometimes a respondent simply does not 
know the answer to a certain question. If the edits keep on reporting that the answer is 
incorrect, the respondent may get annoyed and refuse to fill in the questionnaire anymore.  

Although a system like Blaise is rarely used to collect data on enterprises, it is often used 
to enter data on enterprises into the computer system at statistical offices. During data 
entry (part of) the specified edits are then immediately checked. 

Data on persons and households collected by Statistics Netherlands hardly contain errors 
because for these data CAPI or CATI is used. Data on enterprises, however, do contain a 
lot of errors, because these data frequently are obtained by means of paper questionnaires. 
The emphasis in the remainder of this book will therefore be on editing of economic, i.e. 
mainly numerical, data. 

Computer-assisted editing is nowadays the standard way to edit data. It can be used to edit 
both categorical and numerical data. The number of variables, edits and records may, in 
principle, be high. Given a flexible system such as Blaise, it is easy to compare data from 
the current period to data from a previous period. Generally, the quality of data editing in a 
computer-assisted manner is considered high. 

As we already mentioned in Section 2.2, when computer-assisted editing is used to clean 
data, imputation is usually carried out by re-contacting the respondent, by comparing the 
respondent’s data to his data from a previous period, by comparing the respondent’s data to 
data of similar respondents, or by using subject-matter knowledge to estimate values for 
erroneous fields.  

Interactive editing of data, using PC’s and a system like Blaise, has the major advantage in 
comparison to editing in the mainframe age that checking and correction is done at the 
same time. Each record has to be edited only once, after which it satisfies all edits. The 
fundamental problem of editing in this way is that, even though each record has to be 
edited only once, still all records have to be edited. In Chapter 1 we have already 
mentioned that this can, and usually does, lead to “over-editing” and even to “creative 
editing”. In the following section we consider ways to limit computer-assisted editing to 
only those records that are likely to contain the most influential errors. 
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2.4. Modern editing techniques 

In this section we describe two editing techniques that aim to identify the most influential 
errors quickly. This implies that they are more appropriate for numerical data than for 
categorical data, because it is more natural to define the term “most influential” for 
numerical data than for categorical data. An error in numerical data is influential if the 
difference between the recorded value and the actual value is large. It only remains to 
define what is meant by “large”. In categorical data, however, there often is no concept of 
a large deviation between the recorded data and the actual data.  

On the other hand, although the techniques we describe in this section are more appropriate 
for numerical data than for categorical data, some versions of these techniques are still 
applicable to categorical data. 

2.4.1. Selective editing 
We have already mentioned in Section 1.2 that it is not necessary for each individual 
record to be absolutely correct. Statistical offices publish aggregate data often based on 
samples of the population, hence small errors in individual records are acceptable as long 
as the raising weights of these records are not very high compared to the weights of other 
records.  

Selective editing is an umbrella term for several methods to identify the influential errors, 
i.e. the errors that have a substantial impact on the publication figures. The aim of selective 
editing is to split the data into two streams: the critical stream and the non-critical stream. 
The critical stream consists of records that are the most likely ones to contain influential 
errors; the non-critical stream consists of records that are unlikely to contain influential 
errors. The records in the critical stream, the critical records, are edited in a traditional 
computer-assisted manner. The records in the non-critical stream, the non-critical records, 
are not edited in a computer-assisted manner. They may later be edited automatically. 

At present no accepted theory for selective editing methods exists. Consequently, most of 
these methods are simple ad-hoc methods based on common sense. It is hardly possible to 
describe here all selective editing methods that have been developed over the years, nor is 
this necessary to understand the rest of this book. We only mention here that a score 
function or OK-index is often used to split the records into the critical stream and non-
critical stream (see e.g. Hidiroglou and Berthelot; 1986; Van de Pol and Molenaar, 1995). 
Such a score function or OK-index measures the distance between the recorded values and 
“expected” values. “Expected” values are, for example, medians in certain groups of 
records or values from a previous year. Besides, score functions and OK-index measures 
usually also take the sampling weight and “importance” of a record into account. 

Selective editing is a relatively new technique. It is gradually becoming a popular method 
to edit business (numerical) data. Increasingly more statistical offices use selective editing 
to clean their data, or experiment with selective editing.  

The scope of selective editing is limited to business (numerical) data. In business 
(numerical) data some respondents can be more important than other respondents, simply 
because the magnitude of their contributions are higher. Social (categorical) data are count 
data where respondents contribute more or less the same, namely their raising weight, to 
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the estimated population total. In social data it is therefore difficult to differentiate between 
respondents. In business data such a differentiation is much easier to provide. 

In selective editing data from the current period can easily be compared to data of a 
previous period. There is no limit on the number of edits. A problem of selective editing at 
the moment is that the number of variables may not be too high. At present, good 
techniques are not available to combine local scores, for example, those based on the 
distance between the recorded value and the expected value for each variable, into one 
global score for each record if there are many variables. This may be a mere technical 
problem that will be solved in due course, but it may also be a fundamental problem of 
selective editing. More research is needed to answer this question. 

2.4.2. (Graphical) macro-editing 
Macro-editing offers a solution to some of the problems of micro-editing. Particularly, 
macro-editing can deal with editing tasks related to the distributional aspect. We 
distinguish between two forms of macro-editing. The first form is sometimes called the 
aggregation method (see e.g. Granquist, 1990). It formalises and systematises what every 
statistical agency does before publication: verifying whether figures to be published seem 
plausible. This is accomplished by comparing quantities in publication tables with the 
same quantities in previous publications. Examples of this form of macro-editing are the 
foreign trade surveys of the Netherlands (Van de Pol and Diederen, 1996) and Canada 
(Laflamme et al., 1996). Only if an unusual value is observed, a micro-editing procedure is 
applied to the individual records and fields contributing to the quantity in error.  

A second form of macro-editing is the distribution method. The available data are used to 
characterise the distribution of the variables. Then, all individual values are compared with 
the distribution. Typically, measures of location and spread are computed. Records 
containing values that could be considered uncommon (given the distribution) are 
candidates for further inspection and possibly for editing.  

There is an area in statistics providing all kinds of techniques for analysing the distribution 
of variables, namely Exploratory Data Analysis (EDA) (see e.g. Tukey, 1977). Many EDA 
techniques can be applied in macro-editing. Advocates of EDA stress the importance of the 
use of graphical techniques. These techniques provide much more insight in the behaviour 
of variables than numerical techniques do. This also applies to macro-editing. Graphs of 
the distribution of the data show a lot of information, and are capable of showing 
unexpected properties that would not have been discovered if just numerical quantities 
were computed. For more information on (graphical) macro-editing we refer to De Waal, 
Renssen and Van de Pol (2000). 

Macro-editing has always been applied in some form at statistical offices. Non-graphical 
macro-editing techniques can be used for both business (numerical) data and social 
(categorical) data. The use of graphical techniques seems to be restricted to business 
(numerical) data. 

In macro-editing, data from the current period can easily be compared to data of a previous 
period. There is no limit on the number of edits. A drawback of graphical techniques is that 
the number of variables may not be too high. For humans it is usually very difficult to 
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visualise points in a, say, 10-dimensional space. Discovering outliers in such a high-
dimensional space in a visual manner is a non-trivial task. 

2.5. Automatic editing 

The aim of automatic editing is to let a computer do all the work. The main role of the 
human is to provide the computer with meta-data, such as edits, imputation models and 
rules to guide the error localisation process. After the meta-data have been provided, the 
computer edits the data and all the human has to do is examine the output generated by the 
computer. In case the quality of the edited data is considered too low, the meta-data have 
to be adjusted or some records have to be edited in another way. 

In the 60’s and early 70’s automatic editing was usually based on predetermined rules of 
the following kind: if a certain combination of edits is violated in a certain way than a 
certain action has to be undertaken to correct the data. There are some problems with this 
deterministic approach. First, it is often too difficult to develop predetermined rules that 
ensure that the data satisfy all edits after they have been edited. This may lead to a 
complex iterative process where “edited” records that still fail some edits are again edited. 
Moreover, for some records this process may not converge. 

Second, even if we do not aim to develop predetermined rules that lead to records that 
satisfy all edits, the set of predetermined rules will be very large and very difficult to 
handle. Basing a computer program on such a complex set of rules will be even more 
difficult. 

Freund and Hartley (1967) propose an alternative approach based on minimising the total 
deviation between the original values in a record and the “corrected” values plus the total 
violation of the edits (the more an edit is violated, the more this edit contributes to the 
objective function). In this way only the edits had to be specified. The “corrected” values 
are subsequently determined by minimising a quadratic function. The approach by Freund 
and Hartley never became popular, probably because edits may – and often are – still be 
violated after correction of the data. 

In 1976 Fellegi and Holt published a landmark paper in the Journal of the American 
Statistical Association that was a major breakthrough. In their paper Fellegi and Holt 
describe a paradigm for localising errors in a record automatically. According to this 
paradigm the data of a record should be made to satisfy all edits by changing the values of 
the fewest possible number of variables. In Chapter 3 we will discuss a generalised version 
of this paradigm. That generalised paradigm is the basis of several algorithms and 
computer programs for localising errors in records automatically. It is the de facto standard 
for modern automatic editing systems. 

At Statistics Netherlands the first computer program for automatic editing based on the 
generalised Fellegi-Holt paradigm was CherryPi (see e.g. De Waal, 1996 and 1998b). 
CherryPi was designed for numerical data only, and could handle linear equalities and 
inequalities as edits. The range of the variables is not a priori restricted to non-negative 
values. Positivity, or more precisely non-negativity, of variables can be achieved by 
defining the corresponding edits. The algorithm on which CherryPi is based is explained in 
Chapter 5. 
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Automatic editing has already been used in the 60’s and 70’s. Nevertheless, it has never 
become really popular. For this several reasons can be pointed out. First, in former days 
computers were too slow to edit data automatically. Second, development of a system for 
automatic editing is considered too complicated and too costly by many statistical offices. 
Statistical offices often lack the expertise to develop and maintain such a system. Third, 
many statistical offices assume that data edited automatically are of unacceptably low 
quality. This is a serious point. It has been given ample attention in experiments on actual 
data, but more evaluation studies are required. 

Automatic editing can be used for both categorical and numerical data. Most systems that 
have been developed are, however, suitable for either categorical data or numerical data. 
As far as the author is aware only Sande, Statistics Canada and Statistics Netherlands have 
developed systems that can handle both types of data simultaneously. The systems by 
Sande and Statistics Netherlands are based on the earlier mentioned Fellegi-Holt paradigm, 
the system by Statistics Canada on a slightly different paradigm. That latter system, NIM 
(see Bankier, 1999; Bankier et al., 2000), has originally been developed to edit 
demographic data automatically. It has later been extended to handle also numerical data to 
a limited extent. The system uses donor records to replace implausible values in erroneous 
records. The implausible values are found based on the edits and the available donor 
records. 

In automatic editing data from the present period may be compared to data from a previous 
period. The simplest way to do this in, for example, CherryPi is to combine the record 
from a respondent in the present period with the record from the same respondent in a 
previous period into one large, combined record. The data from the previous period are set 
to “fixed” in CherryPi, which means that these data may not be changed during the 
automatic editing process. That record can then be edited in the normal way by CherryPi. 

When automatic editing is used to clean the data, imputation may be carried out by a great 
variety of automatic imputation methods. Well-known classes of imputation models are 
regression imputation and donor imputation. Which (class of) method is best suited for a 
certain data set depends on the characteristics of the data set. For instance, for many 
business surveys regression imputation is a good option, and for many social surveys hot-
deck donor imputation is a good option. In Chapter 12 we briefly discuss some aspects of 
automatic imputation. 

The publicly available literature on automatic editing is quite limited. Most papers on 
automatic editing have only appeared as reports of statistical offices. Papers that are 
published as articles in mathematical and statistical journals include Freund and Hartley 
(1967), Fellegi and Holt (1976), Garfinkel, Kunnathur and Liepins (1986 and 1988), 
McKeown (1984), Schaffer (1987), and Ragsdale and McKeown (1996). The author of this 
book is not aware of other papers on automatic editing that are published as articles in 
scientific journals. Two papers by the author have been submitted for publication in 
statistical journals, namely De Waal (2003), and De Waal and Quere (2003). Finally, in the 
early 80’s Liepins, who then worked at the Oak Ridge National Laboratory, wrote several 
papers on automatic editing (see Liepins, 1980, 1981, 1983 and 1984). 
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2.6. Discussion  

In our view the ideal edit strategy is a combination of selective, automatic micro-editing 
and (graphical) macro-editing (see De Jong, 1996; Van de Pol and Bethlehem, 1997; Van 
de Pol et al., 1997; De Waal, Renssen and Van de Pol, 2000). After data entry, simple 
checks and simple (semi-automatic) corrections are applied. Examples of simple checks 
are range checks, examples of simple corrections are cases in which it is clear that a 
respondent filled in a financial figure in Euros instead of the requested thousands of Euros.  

After that stage selective editing is applied to split the data into the critical stream and the 
non-critical stream. The critical records are edited in a computer-assisted manner, the non-
critical records are either not edited or are edited automatically. 

The latter approach, editing the records in the non-critical stream automatically, clearly has 
our preference. The sum of the errors in the non-critical records may have an influential 
impact on the publication figures, although each error itself is non-influential. Moreover, 
many non-critical records will be internally inconsistent. This may lead to problems when 
publication figures are calculated. Automatic editing helps to reduce the errors in the data, 
and makes sure that the records become internally consistent.  

In our opinion, automatic editing should only be applied if just a few fields have to be 
changed in order to make a record pass all edits. We feel that records that require many 
changes should not be edited automatically. We regard the quality of such a record to be 
too low to allow for automatic correction. Such a record should either be edited manually, 
i.e. should be part of the critical stream, or be discarded completely. 

In our view macro-editing should be used as a final check just before publication. Macro-
editing cannot be missed, because it reveals errors that will go unnoticed with micro-
editing.  

We consider the combined use of selective editing, automatic editing and (graphical) 
macro-editing to be an efficient and effective way of cleaning data. In comparison with the 
traditional computer-assisted approach, the quality of the data can be maintained, while the 
resources needed to clean the data are substantially reduced and the timeliness of 
publication of the statistical data is clearly improved. 
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3. The Mathematical Error Localisation Problem 

3.1. Introduction 

In Section 3.2 of this chapter we give a detailed mathematical formulation of the error 
localisation problem for a mix of categorical and continuous data. In Section 3.3 we 
discuss a naive approach for solving the error localisation problem, and show that this 
approach does not work. Section 3.4 provides a mixed integer programming formulation 
for the problem. This formulation is similar to a formulation given by McKeown (1984) 
for purely continuous data, and a formulation by Schaffer (1987) for a mix of categorical 
and continuous data. Finally, we discuss the use of commercial mixed integer 
programming problem solvers in Section 3.5. We argue that large-scale application of such 
solvers at statistical offices for solving the error localisation problem is an unlikely event. 

The mathematical formulation of the error localisation problem in Section 3.2 uses simple 
concepts from mathematical logic, in particular the implication operator (IF/THEN 
statement). This formulation for the error localisation problem is more natural than the 
mixed integer programming formulation in Section 3.4 or the mixed integer formulations 
by McKeown (1984) and Schaffer (1987). We are the first to give such a formulation of 
the error localisation problem. 

3.2. A mathematical formulation of the error localisation problem 

In this section we give a mathematical formulation of the error localisation problem for a 
mix of categorical and numerical data. This formulation is taken from De Waal (1998a). 
We start by introducing some notation and terminology. Categorical, or discrete, data are 
data that can assume only a finite number of values, categories, and that do not have an 
arithmetic structure. Examples of categorical variables are “Gender” and “Profession”. The 
variable “Gender” can assume only the values “Male” and “Female”. The variable 
“Profession” can assume a finite number of categories. These categories depend on the 
classification scheme used for “Profession”. Numerical data are data that do possess an 
arithmetic structure. Throughout this book “numerical data or values” will mean 
“continuous numerical data or values”, i.e. data that can assume any real number, unless 
otherwise noted. Integer-valued data are only considered in Chapters 9, 10 and 12. 

We denote the categorical variables by iv  (i=1,…,m) and the numerical variables by ix  
(i=1,…,n). For categorical data we denote the domain, i.e. the set of the possible values, of 
variable i by iD . We assume that every edit, i.e. constraint that has to be satisfied by 

correct data, jE  (j=1,...,J) is written in the following form: edit jE  is satisfied by a record 
),...,,,...,( 11 nm xxvv  if the following statement  
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IF j
ii Fv ∈  for i=1,…,m   

THEN }0...|{),...,( 111 ≥+++∈ jnnjjn bxaxaxx x ,   (3.1a) 

 

or 

 

IF j
ii Fv ∈  for i=1,…,m   

THEN }0...|{),...,( 111 =+++∈ jnnjjn bxaxaxx x ,   (3.1b) 

 

holds. The ija  are assumed to be rational numbers. i
j

i DF ⊆  for all i and j. Note that 
without loss of generality all numerical expressions in (3.1) may assumed to be 
inequalities, because any equality can be expressed as two inequalities. We will not make 
this assumption here, however, because in later chapters we occasionally treat equalities in 
a different manner as inequalities for efficiency reasons. 

The edits given by (3.1) are simply linear numerical conditions that are triggered by certain 
combinations of categorical values. Non-linear numerical conditions occur hardly ever in 
practice. Such non-linear edits are usually too hard to specify and too hard to handle. In 
principle, for each combination of categorical values different numerical conditions may 
be specified. One may even specify a self-contradicting numerical condition, such as 
“0 ≥ 1” for a combination of categorical values. That edit then means that this particular 
combination of categorical values may not occur. 

All edits given by (3.1) have to be satisfied simultaneously. We assume that the edits can 
indeed be satisfied simultaneously, i.e. we assume that the set of edits is consistent. 
Without loss of generality we also assume that the set of edits cannot be split into several 
disjoint subsets, i.e. subsets without any overlapping variables. If a set of edits can be split 
into disjoint subsets, we assume that this has already been done and that the error 
localisation problem is solved for each subset separately. 

The condition after the IF-statement, i.e. “ j
ii Fv ∈  for all i=1,…,m”, is called the IF-

condition of the edit. The condition after the THEN-statement is called the THEN-
condition. A categorical variable iv  is said to enter an edit jE  given by (3.1) if i

j
i DF ⊂  

and i
j

i DF ≠ , i.e. if j
iF  is strictly contained in the domain of variable i. That edit is then 

said to be involved with this categorical variable. A numerical variable ix  is said to enter 

the THEN-condition of edit jE  given by (3.1) if 0≠ija . That THEN-condition is then 
said to be involved with this numerical variable. 

We assume that none of the values of the variables entering the edits may be missing. That 
is, we assume that for each variable entering the edits a value has to be filled in. Any field 
for which the value is missing is hence considered to be erroneous. 
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The set in the THEN-condition of (3.1) may be the empty set or the entire n-dimensional 
real vector space. If the set in the THEN-condition of (3.1) is the entire n-dimensional real 
vector space, then the edit is always satisfied. Such an edit may be discarded. If the set in 
the THEN-condition of (3.1) is empty, then the edit is failed by any record for which the 
IF-condition holds true, i.e. for any record for which  Fv j

ii ∈  for i=1,…,m. Likewise, j
iF  

in (3.1) may be the empty set or equal to iD . If a set ∅=j
iF  (for some i=1,...m), the edit 

is always satisfied, and can be discarded. If the IF-condition does not hold true for a 
particular record, the edit is satisfied, irrespective of the values of the numerical variables. 

For each record ),...,,,...,( 00
1

00
1 nm xxvv  in the data set that is to be edited automatically we 

now have to determine, or more precisely: have to ensure the existence of, a synthetic 
record ),...,,,...,( 11 nm xxvv  such that (3.1) becomes satisfied for all edits j=1,…,J and such 
that  

 ∑ ∑
= =

++
m

i

n

i
iiimiii xxwvvw

1 1

00 ),(),( δδ      (3.2) 

is minimised. Here iw  is the so-called reliability weight of variable i, 1),( 0 =yyδ  if 

yy ≠0 , and 0),( 0 =yyδ  if yy =0 . The reliability weight expresses how reliable the 
value of the corresponding variable is. The higher the reliability weight, the more reliable 
the value. The objective function (3.2) is simply the weighted number of variables that 
have to be changed. The variables for which the values in the synthetic record differ from 
the original values plus the variables for which the original value was missing together 
form an optimal solution to the error localisation problem. 

The error localisation problem can be formulated compactly as: 

Minimise (3.2) so that (3.1) is satisfied for all edits. 

Note that the above formulation is a mathematical formulation of the generalised Fellegi-
Holt paradigm. Note also that there may be several optimal solutions to a specific instance 
of the error localisation problem.  

Our aim is to find and enumerate all optimal solutions to the error localisation problem. 
For an optimisation problem this is quite an unnatural aim. The reason for pursuing this 
goal is that the actual statistical problem of automatic data editing is more comprehensive 
than the above optimisation problem. This statistical problem is “simply” the problem of 
obtaining high quality data from a data set with errors in an efficient manner. Solving the 
above-mentioned error localisation problem is only one step in this process. For instance, 
after the erroneous fields have been identified, they must be imputed (hereby carefully 
taking potentially outliers into account) and later the records must be re-weighted. To solve 
the underlying statistical problem effectively it is not sufficient to simply solve the 
optimisation problem. In particular, during the error localisation phase one should 
somehow take into account that the identified errors can indeed be imputed in such a way 
that the resulting records are of sufficient quality. One should also somehow take into 
account that the final re-weighted data set is of sufficient quality. The statistical problems 
related to the imputation phase and re-weighting phase need to be taken into account 
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during the error localisation phase. These problems are at least as important, and difficult, 
as solving the above-mentioned mathematical error localisation problem. 

By generating all optimal solutions to the mathematical error localisation problem, we gain 
the option to later select one of these optimal solutions, using a secondary, more statistical 
criterion. The variables involved in the selected solution for which the values in the 
synthetic record differ from the original values are set to missing. In most practical cases, 
there is only one optimal solution to a record, but records with more solutions do regularly 
occur. In the worst cases we have experienced so far, records had many thousands optimal 
solutions. So many optimal are extremely rare, however. In practice, records with 10 or 
more optimal solutions already occur rarely. 

In the present book we will not explore the problem of selecting an optimal solution to the 
error localisation problem from several optimal solutions in more detail. 

The weights iw  are fixed for each record that is to be edited, but may differ for different 
records. In practice, the weights may be calculated before a record is edited automatically. 
In this way the probability that a particular value in a particular record is incorrect can be 
taken into account (see also Section 13.4.3). 

In Chapter 9 the problem described in this section is extended further to include numerical 
variables that have to be integer-valued, rather than only numerical variables that are 
continuous. 

The error localisation problem is NP-complete as the so-called satisfiability problem can 
be transformed into an error localisation problem in polynomial time (see also Liepins, 
Garfinkel and Kunnathur, 1982; Willenborg, 1988; see, for example, Schrijver, 1986, for 
an explanation of the term NP-complete). So, assuming P≠NP, for any algorithm we can 
design problems that take a more than polynomial time (in the number of edits and number 
of variables) to solve. Therefore, our aim will not be to develop algorithms that solve the 
error localisation problem efficiently for the worst cases, but rather to develop algorithms 
that solve the problem efficiently for average cases. 

The error localisation problem for purely numerical data is a special case of the so-called 
(linear) fixed charge problem (see e.g. Hirsch and Dantzig, 1968; Walker, 1976; 
McKeown, 1975 and 1981; McKeown and Ragsdale, 1990; Ragsdale and McKeown, 
1991). The fixed-charge problem can be formulated as 

 Minimise ∑
=

+
n

i
iiii ydxc

1
)(       (3.3) 

subject to 

 bx =A ,        (3.4) 

 0x ≥ ,        (3.5) 

 




=
>

=
0if0
0if1

i

i
i x

x
y   for i=1,…,n.   (3.6) 
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The fixed-charge problem reduces to a linear programming problem if d = 0. It reduces to 
the error localisation problem for purely numerical data if c = 0. The fixed-charge problem 
is relatively easy to solve if the continuous, or “unit”, costs ic  dominate the fixed, or 
“setup”, costs id . If the fixed costs dominate the continuous costs, the fixed-charge 
problem is quite difficult to solve (for computational “evidence” for this claim we refer to 
the above-mentioned papers on the fixed-charge problem). In the error localisation 
problem the fixed costs completely dominate the continuous costs, which are zero by 
definition. Algorithms for the general fixed-charge problem therefore do not offer an 
efficient way for solving the error localisation problem. 

3.3. A naive approach 

It is clear that at least one value per violated edit should be changed. Let us assume for a 
while that it is sufficient to change any value per violated edit. In that case the error 
localisation problem reduces to an associated set-covering problem. To formalise this, we 
define variables iy  (i=1,...,n), where iy  equals 1 if the value of variable i should be 
changed, and equals 0 otherwise. Of course, iy  equals 1 if the value of variable i is 
missing. For a general set of edits the set-covering problem is given by: minimise the 
objective function given by 

 ∑
=

n

i
ii yw

1
        (3.7) 

subject to the condition that in each violated edit at least one variable should be changed. 
We define  

 




=
otherwise.     0

edit  in  involved is     variableif      1 ji
aij    (3.8) 

Then the constraints can be written as 

 V

n

i
iij jya Ω∈≥∑

=
for       1

1
,     (3.9) 

where VΩ  is the set of edits violated by the record under consideration.  

Unfortunately, our assumption that any value per violated edit can be changed generally 
does not hold. The solution to the associated set-covering problem is usually not a solution 
to the corresponding error localisation problem. This is illustrated by the following 
example.  

 

Example 3.1:  
Suppose the explicitly specified edits are given by 

 CPT += ,       (3.10) 
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 1.15.0 ≤≤
T
C ,       (3.11) 

5500 ≤≤
N
T ,       (3.12) 

0≥T ,        (3.13) 

 0≥C ,        (3.14) 

and 

 0≥N .        (3.15) 

where T denotes the turnover of an enterprise, P its profit, C its costs, and N the number of 
employees. The turnover, profit and costs are given in thousands of Euros. Edit (3.10) says 
that the turnover of an enterprise should be equal to the sum of the profit and the costs. 
Edit (3.11) gives bounds for the costs of an enterprise in terms of the turnover, edit (3.12) 
gives bounds for the turnover in terms of the number of employees, and edits (3.13) to 
(3.15) say that the turnover, the costs of an enterprise and the number of employees are 
non-negative. Edits (3.10), (3.13), (3.14) and (3.15) are edits that can be logically derived, 
and hold for every enterprise. Edits (3.11) and (3.12) cannot be logically derived, and will 
hold only for certain classes of enterprises. 

Let us consider a specific record with values T = 100, P = 40,000, C = 60,000 and N = 5. 
Edits (3.12) to (3.15) are satisfied, whereas edits (3.10) and (3.11) are violated. We assume 
that the reliability weights of variables T, P and C equal 1, and the reliability weight of 
variable N equals 2. That is, the value of variable N, the number of employees, is 
considered trustworthier than the values of the financial variables T, P and C. 

The set-covering problem associated to the error localisation problem has the optimal 
solution that the value of T should be changed, because this variable covers the violated 
edits and has a minimal reliability weight. The optimal value of the objective function (3.7) 
of the set-covering problem equals 1. However, to satisfy edit (3.10) by changing the value 
of T the imputation value of T should be 100,000, but in that case edit (3.12) would be 
violated. The optimal solution of the set-covering problem is not a feasible solution to the 
error localisation problem, because variable T cannot be imputed consistently. The error 
localisation problem has the optimal solution that variables P and C should both be 
changed. The optimal value of the objective function (3.2) to the error localisation problem 
equals 2. This is larger than the optimal value of the objective function of the associated 
set-covering problem. Possible imputation values for variables P and C are P = 40 and 
C = 60. The resulting, imputed, record passes all edits. Note that in this example the 
respondent probably forgot that the values of P and C should be given in thousands of 
Euros.          � 

 

A feasible solution to the error localisation problem is a feasible solution to the associated 
set-covering problem, but not vice versa. Hence, the value of the optimal solution to the 
error localisation problem is at least equal to the value of the optimal solution to the 
associated set-covering problem. 
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3.4. A mixed integer programming formulation 

In this section we assume, for notational convenience, that all edits are of type (3.1a). An 
equality can, of course, be represented by two inequalities, so the generality of our model 
is not reduced by this choice. We also assume that the values of the numerical variables are 
bounded. That is, we assume that for the i-th numerical variable (i=1,...,n) constants iα  
and iβ  exist such that 

 iii x βα ≤≤ .       (3.16) 

In practice, such values iα  and iβ  always exist, because numerical variables that occur in 
statistical data are bounded. If the value of the i-th numerical variable is missing we code 
this by assigning either a value less than iα  or a value larger than iβ  to ix . 

Denote the number of categories of the i-th categorical variable by ig  (i=1,...,m), i.e. 
|| ii Dg = . For the k-th value ikc  of categorical variable i we introduce a binary variable 

ikγ  such that 

 




=
otherwise.  0

  equals     variablelcategorica of  value theif   1 ik
ik

ci
γ   (3.17) 

To the i-th categorical variable a vector ),...,( 1 iigi γγ  corresponds such that 1=ikγ  if and 

only if the value of this categorical variable equals ikc , otherwise 0=ikγ . For each 
categorical variable i the relation 

 ∑ =
k

ik 1γ        (3.18) 

has to hold true. A vector ),...,( 1 iigi γγ  will also be denoted by iγ . If the value of the i-th 

categorical variable (i=1,...,m) is missing we set all ikγ  equal to zero (k=1,…, ig ). 

In terms of the binary variables ikγ  an edit j given by (3.1a) can be written as 

 



























−≥+++ ∑ ∑

= ∈

m

i Fc
ikjnnjj

j
iik

Mbxaxa
1

11 1... γ ,   (3.19) 

where M is a sufficiently large positive number. If the IF-condition of (3.1a) holds true, the 
right-hand side of (3.1a) equals zero. Consequently, the THEN-condition of (3.1a) has to 
hold true for the numerical variables. If the IF-condition of (3.1a) does not hold true, the 
right-hand side of (3.19) equals a large negative value. Consequently, (3.19) holds true 
irrespective of the values of numerical variables (provided that the value of the right-hand 
side of (3.19) is sufficiently small). 

Alternatively, inequality (3.19) may be replaced by 
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 ∑ ∑
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iik1 2
1γ ,      (3.20) 

and 

 ∑
=

≥+++
n

i
iijjnnjj aubxaxa

1
11 ... α ,     (3.21) 

where u is a binary variable. If j
ii Fv ∈  for i=1,…,m, then u has to equal zero, and the 

THEN-condition of (3.1a) has to be satisfied. If u equals one, then (3.21) is always 
satisfied. 

If (3.1a) is not satisfied by a record ),...,,,...,( 00
1

00
1 nm xxvv , or equivalently if (3.19) is not 

satisfied by ),...,,,...,( 00
1 nxx0

m
0
1 γγ , then we seek values P

ike (k=1,..., ig ; i=1,...,m), 
N
ike (k=1,..., ig ; i=1,...,m), P

iz  (i=1,...,n) and N
iz  (i=1,...,n). The P

ike  and the P
iz  correspond 

to positive changes in value of 0
ikγ  and 0

ix , respectively. Likewise, the N
ike  and the N

iz  

correspond to negative changes in value of 0
ikγ  and 0

ix , respectively. The vector 

),...,( 1
P
ig

P
i i

ee  will also be denoted as P
ie , and the vector ),...,( 1

N
ig

N
i i

ee  as N
ie . 

The above values have to be determined in such a way that  
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∑∑ ∑
=
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=

,    (3.22) 

where iw  is the reliability weight of variable i, 1)( =xδ  if and only if 0≠x  and 0)( =xδ  
otherwise, is minimised subject to the constraints: 

 }1,0{, ∈N
ik

P
ik ee ,   (i=1,...,m)   (3.23) 

 0, ≥N
i

P
i zz ,   (i=1,...,n)   (3.24) 

 1≤+ N
ik

P
ik ee    (i=1,…,m)   (3.25) 

∑ ≤
k

P
ike 1 ,   (i=1,...,m)   (3.26)  

 0=N
ike  if 00 =ikγ   (i=1,...,m)   (3.27) 

 ∑ =−+
k

N
ik

P
ikik ee 1)( 0γ ,  (i=1,...,m)   (3.28) 

 i
N
i

P
iii zzx βα ≤−+≤ 0   (i=1,...,n)   (3.29) 

and 
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for all edits j=1,...,K. 

Relation (3.25) expresses that the same negative and positive correction may not be 
applied to a categorical variable. Relation (3.26) expresses that at most one value may be 
imputed, i.e. estimated and filled in, for a categorical variable, and relation (3.27) that a 
negative correction may not be applied to a categorical variable if the original value is not 
equal to the corresponding category. Relation (3.28) ensures that a value for each 
categorical variable is filled in, even if the original value was missing. Relation (3.29) 
states that the value of a numerical variable must be bounded by the appropriate constants. 
In particular, relation (3.29) also states that the value of a numerical variable may not be 
missing. Finally, relation (3.30) expresses that the modified record should satisfy all edits 
given by (3.1a). 

After solving this optimisation problem the resulting, modified record is given by  

),...,,,...,( 0
11

0
1

N
n

P
nn

NP zzxzzx −+−+−+−+ N
m

P
m

0
m

N
1
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1
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A solution to the above mathematical problem corresponds to a solution to the error 
localisation problem. A solution to the error localisation problem is simply given by 
naming the variables of which the values have to be changed, without specifying their new 
values. Given a modified record corresponding to an optimal solution to the above 
problem, the corresponding solution to the error localisation problem is given by the 
variables for which the value in this modified record differs from the original value. As we 
already mentioned in Section 3.2, our aim is to find all optimal solutions. 

The above optimisation problem is a translation of the generalised Fellegi-Holt paradigm 
in mathematical terms. The objective function (3.22) is the sum of the reliability weights of 
the variables of which the original values must be modified. Note that minimising (3.22) is 
equivalent to minimising 
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.    (3.31) 

The objective function (3.31) is the sum of the reliability weights of the variables for 
which a new value must be imputed. To be precisely, the value of this objective function is 
equal to the value of the objective function (3.22) plus the sum of reliability weights of the 
categorical variables for which the value was missing. 

We end this section with two remarks. First, note that in practice only one N
ike -variable for 

each variable i is needed, namely for the index k for which 10 =ikγ . The other N
ike  equal 

zero. In the present chapter we use ig  binary N
ike -variables for each variable i to keep the 

notation as simple as possible. Of course, in a practical implementation one would use only 
one N

ike -variable for each variable i instead of ig  N
ike -variables. Second, note that in an 
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optimal solution to the above optimisation problem either 0=P
iz  or 0=N

iz  (or both), and 

that, similarly, in an optimal solution either 0=P
ike  or 0=N

ike  (or both). 

3.5. Using standard algorithms 

Perhaps the best known class of algorithms for minimising a linear objective function 
subject to linear constraints where some of the variables involved are binary variables 
consists of the so-called branch-and-bound algorithms (see for example Nemhauser and 
Wolsey (1988), Walukiewicz (1990), Hillier and Lieberman (1995), Wolsey (1998) for an 
introduction to branch-and-bound algorithms). Before we can apply a standard branch-and-
bound algorithm to the general error localisation problem we first have to introduce some 
additional variables. 

The objective function (3.22) contains a non-linear function, namely δ . By introducing 
additional binary variables P

id  and N
id  for i=1,...,n that satisfy the following relations: 

 }1,0{, ∈N
i

P
i dd        (3.32) 
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and 
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N
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where M is again a sufficiently large positive number, we can rewrite (3.22) in the 
following linear form: 
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The objective function (3.37) should be minimised subject to the constraints (3.23) to 
(3.30) and (3.32) to (3.36). Relations (3.33) and (3.34) express that 1=P

id  if and only if 

0≠P
iz , otherwise 0=P

id . Similarly, relations (3.35) and (3.36) express that 1=N
id  if 

and only if 0≠N
iz , otherwise 0=N

id . If and only if a continuous variable differs from 
zero, the associated binary variable equals one. The fact whether or not a continuous 
variable differs from zero is incorporated in the objective function by means of the 
associated binary variable. Stated in this way the general error localisation problem 
becomes a mixed integer programming problem. 

A branch-and-bound algorithm is an iterative algorithm for solving (mixed) integer 
programming problems. A branch-and-bound algorithm basically consists of three steps: 
branching, bounding and fathoming. These three steps are performed during each iteration. 
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During the branch-step a linear programming (LP) problem is split up into two separate 
linear subproblems by fixing a binary variable at either 0 or 1. For each of these 
subproblems a bound is determined during the bound-step. This bound is determined by 
solving the LP relaxation to the subproblem, i.e. by solving the linear subproblem without 
taking into account that the binary variables that have not been fixed yet can only assume 
the values 0 or 1. Finally, during the fathom-step it is determined whether the subproblems 
themselves have to be split up into even smaller subproblems. A subproblem does not have 
to be split up into smaller subproblems if the optimal solution to the LP relaxation of the 
subproblem is a solution to the subproblem as well (in that case the optimal solution to the 
LP relaxation is also an optimal solution to the subproblem), if the bound obtained from 
the LP relaxation is worse than a bound obtained from a previously found solution to the 
(mixed) integer programming problem, or if the LP relaxation has no feasible solution. 

The application of a branch-and-bound algorithm for solving the general error localisation 
problem is, in principle, possible. Modern commercial solvers for mixed integer 
programming (MIP) problems, such as ILOG CPLEX (see ILOG CPLEX 7.5 Reference 
Manual, 2001), are powerful enough to determine an optimal solution to the error 
localisation problem within an acceptable amount of time. There are a few problems 
related to applying a commercial MIP solver to the error localisation problem, however. 

A technical problem is that preferably we would like to generate all optimal solutions to 
the error localisation problem. Standard commercial MIP solvers seem to be less suited for 
this task. A special-purpose algorithm designed to find all optimal solutions to the error 
localisation problem may lead to better results than standard MIP solvers. 

There are also several non-technical problems with using a commercial MIP solver. First, 
the error localisation problem is just a part of a statistical process to clean records. 
Statistical offices like to have complete control over how this statistical process works. 
They want to be able to mould the error localisation problem so it fits into the rest of the 
statistical production process. Statistical offices do not want to end up in a situation where 
the commercial MIP solver restricts them in their actions.  

Second, statistical offices do not like to depend on commercial software vendors in 
general. Changes in the software of the commercial software vendor may have a major 
impact on the software systems at the statistical office. It may be difficult to maintain 
software systems, especially if the commercially acquired software is mathematically 
relatively complicated, as is the case for MIP solvers. 

Third, commercial MIP solvers are quite expensive. In a statistical office there are 
potentially many users of an automatic data editing system. This would be especially true 
if the automatic data editing system were integrated into the software for computer-assisted 
editing. Such integration would allow the human editor to ask the computer for a 
suggestion on how to clean a particular record. They can then accept this suggestion, 
modify this suggestion, or reject the suggestion. Such integration is, for example, 
envisaged at Statistics Netherlands. Buying hundreds of licences for a commercial MIP 
solver could be too costly for a statistical office.  

In Chapter 11 we compare computational results of a program based on a commercial MIP 
solver, ILOG CPLEX, to several other programs for automatic error localisation. These 
other programs are based on algorithms described in later chapters of this book. 
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4. The Fellegi-Holt Method 

4.1. Introduction 

In Section 2.5 we have introduced the well-known paradigm due to Fellegi and Holt (1976) 
that says that an erroneous record should be made to satisfy all edits by changing the 
values of the fewest possible number of variables. A formulation for the resulting 
mathematical problem has been presented in Section 3.2. 

In their paper Fellegi and Holt not only propose their paradigm, they also propose an 
important method for solving the resulting mathematical problem. This method can be 
applied to both categorical data and numerical data, and is the best-known method for 
solving the error localisation problem. It is also the most often applied technique for 
solving the error localisation problem for categorical data. In this chapter we explain the 
method developed by Fellegi and Holt. 

This chapter hardly contains original results. An exception is a proof that the Fellegi-Holt 
method works for numerical data. Such a proof appears to be lacking in literature. Another 
exception is the brief remark in Section 4.5 that the Fellegi-Holt method can, in principle, 
also be used to solve the error localisation problem in a mix of categorical and numerical 
data. In literature no one seems to have noted this before. 

This chapter is organised in the following way. In the next three sections we restrict 
ourselves to categorical data. In Section 4.2 we illustrate the basic idea of the Fellegi-Holt 
approach without any mathematical rigour. Mathematical details are sketched in Section 
4.3. Proofs are not provided. The reader is referred to the original papers for these proofs. 
Improvements on the method proposed by Fellegi and Holt are examined in Section 4.4. 
Numerical and mixed data are discussed in Section 4.5. The chapter concludes with a brief 
discussion in Section 4.6. 

4.2. The basic idea of the Fellegi-Holt approach 

The method developed by Fellegi and Holt is based on generating so-called implicit, or 
implied, edits. Such implicit edits are logically implied by the explicitly specified edits. 
Implicit edits can be defined for numerical as well as categorical data.  

Although implicit edits are redundant, they can reveal important information about the 
feasible region defined by the explicitly defined edits. This information is, of course, 
already contained in the explicitly defined edits, but there that information may be rather 
hidden. Implicit edits sometimes allow one to see relations between variables more clearly. 
We illustrate this point by means of a simple example, which is taken from Daalmans 
(2000). We will refer to this example more often in this chapter. 
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Example 4.1: 
In a small survey respondents are asked to choose one of the possible alternatives for the 
following three questions: 
1. What is the most important reason for you to buy sugar? 
2. Do you drink coffee with sugar? 
3. What is the average amount of sugar you consume in one cup of coffee? 

The alternatives for the first question are: 
• ‘I consume sugar in my coffee’;  
• ‘I use sugar to bake cherry pie’;  
• ‘I never buy sugar’; 
• ‘Other reason’. 

The alternatives for the second question are: 

• ‘Yes’; 
• ‘No’. 

The alternatives for the last question are: 
• ‘0 grams’; 
• ‘more than 0 grams but less than 10’; 
• ‘more than 10 grams’. 

The following (explicit) edits have been defined: 
1. The main reason to buy sugar is not to consume it with coffee, for someone who does 

not drink coffee with sugar.  
2. The average amount of sugar consumed in one cup of coffee by someone who drinks 

coffee with sugar is not equal to 0 gram. 
3. Someone who never buys sugar does not consume more than 0 gram of sugar in his 

coffee on average. 

An example of an implicit edit is: 

4. Someone who never buys sugar does not consume sugar in his coffee.  

This edit is implied by the second and third explicit edit (since the second explicit edit 
implies that somebody who drinks sugar in his/her coffee must consume more than 0 gram 
of sugar per cup of coffee on average and the third explicit edit says that somebody who 
drinks more than 0 gram of sugar per cup of coffee on average sometimes buys sugar).  

Edit 4 is by definition a redundant edit, because this information is already present in the 
second and third explicit edit. However, this edit makes the relation between buying sugar 
and consuming sugar more clearly. This relation is less clear if one only looks at the 
second and third explicit edit. The benefits of generating implicit edits become more 
apparent later when we continue this example. 

A trivial example of another implicit edit is the following: 

• Explicit edit 2 or explicit edit 3 has to hold true. 
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This is an implicit edit, but it is rather useless as it does not make any relation between the 
variables clearer.         � 

 

Note that for categorical data many ‘useless’ implicit edits can be derived like the second 
implicit edit in Example 4.1 above. For numerical data the set of edits that are logically 
implied by the explicitly specified edits contains infinitely many elements. A simple 
example is given below. 

 
Example 4.2: 
If 1≥x  is an edit, then λλ ≥x  is an implied edit for all 0≥λ .   � 

 

Generating all implicit edits is out of the question for numerical data, and is a waste of 
time and memory for categorical data. 

The method proposed by Fellegi and Holt starts by generating a well-defined sufficiently 
large set of implicit and explicit edits. This set of edits is referred to as the complete set of 
edits. It is referred as the complete set of edits not because all possible implicit edits are 
generated, but because this is the set of (implicit and explicit) edits that is sufficient and 
necessary to translate the error localisation problem into a set-covering problem. The 
mathematical details on how to generate the complete set of edits are provided in Section 
4.3. 

In particular, once a complete set of edits has been generated it suffices to find a set of 
variables S that covers the violated (explicit and implicit) edits, i.e. in each violated edit at 
least one variable of S should be involved. 

For categorical data a formal definition of implicit edits and the complete set of edits will 
be given later in this chapter. Here we restrict ourselves to giving the complete set of edits 
for Example 4.1. 

 
Example 4.3: 
In our example the complete set of edits is given by edits 1 to 4, and 

5. The average amount of sugar consumed per cup of coffee by someone whose main 
reason to buy sugar is to consume it with coffee is not equal to 0 gram.   � 

 

Why the complete set of edits is important is precisely explained in mathematical terms in 
the next section. Here we illustrate the idea with an example. 

 
Example 4.4: 
Suppose the explicit edits are given again by the explicit edits of Example 4.1. Suppose 
also that the answers recorded for one of the respondents are:  
1. The most important reason for buying sugar: I never buy sugar; 
2. Do you drink coffee with sugar: Yes; 
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3. What is the average amount of sugar per cup of coffee: 0 grams. 

Note that this record does not satisfy the second explicit edit. Obviously either the answer 
to the second question or the answer to the third question has to be changed. Note that 
changing the answer to the first question alone cannot result in a consistent record. 

An approach to see which value can be changed is simply trial and error. One possibility is 
to change the third answer to “more than 0 but less than 10 grams”. As a consequence, the 
second explicit edit will become satisfied, but unfortunately the third explicit edit will 
become failed. So, changing the third answer to “more than 0 but less than 10 grams” is 
not such a good idea.  

Let us try to change the third answer to “more than 10 grams”. This is neither a good idea, 
because the second explicit edit will become satisfied through this change, but again the 
third explicit edit will become failed.  

Now, suppose the answer to the second question is changed to “No”, while the third 
answer is fixed to its original value. Now all edits have become satisfied and a solution to 
the error localisation problem has been found. In this small example a solution is found 
after a few steps using the trial and error approach. But for large problems the trial and 

error approach is not so efficient. In the worst case all ∏
=

m

i
iD

1
||  possible records have to be 

checked in order to find all optimal solutions. Here the implicit edits show their importance 
as we illustrate in the paragraph below. 

Consider (implicit) edit 4 of Example 4.1, i.e. the edit that says: “Someone who never buys 
sugar does not consume sugar in his coffee”. Note that to determine whether this edit is 
satisfied or not we only have to consider the answers to the first two questions. That is, 
whether the edit is satisfied or not does not depend on the answer to the third question. 
Note also that this edit is failed by the record under consideration. Changing the answer to 
the third question cannot make this edit satisfied. So, we do not have to consider changing 
only the value of the third question. 

This edit is implied by the second and third explicit edits, so it is obviously redundant. 
However, as we see it does contain useful information that helps us to identify the most 
implausible values.        � 

4.3. Fellegi-Holt approach for categorical data: mathematical details 

For purely categorical data, the edits that we consider in this book are given by: 

 IF j
ii Fv ∈  (for i=1,…,m) THEN ∅.     (4.1) 

An edit given by (4.1) is violated if j
ii Fv ∈  for all i=1,…,m. Otherwise, the edit is 

satisfied. 

Alternatively, we will write a categorical edit, jE , given by (4.1) as  
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j
i

j FEP
1

)( ,       (4.2) 

where ∏ denotes the Cartesian product. That is, edit jE  is failed if and only if the values 
iv  of the record under consideration lie in the space given by the right-hand-side of (4.2). 

Fellegi and Holt (1976) refer to (4.2) as the normal form of (categorical) edits. 

A set of edits is satisfied if all edits given by (4.2) are satisfied, i.e. a set of edits is failed if 
at least one edit is failed. If we denote the set of edits jE  (j=1,…,J) by E , then a record v 
fails this set of edits if and only if 

 )(EP∈v ,       (4.3) 

where 

 )()( 1
jJ

j EPEP == t .      (4.4) 

If the value set j
iF  is a proper subset of the domain iD  of variable i, then variable i is said 

to enter edit jE , and edit jE  is said to involve variable i. Fellegi and Holt show that any 
system of categorical edits can equivalently be expressed in normal form.  

A simple example, illustrating the introduced concepts, is given below. 

 
Example 4.5: 
Suppose there are three variables: “Age”, “Marital Status” and “Sex”. The variable “Age” 
assumes three values: 1, 2 and 3 (i.e. 1D ={1,2,3}), representing respectively: “Age=0-14”, 
“Age=15-80” and “Age>80”. The variable “Marital Status” only has two possible values: 1 
and 2 (i.e. 2D ={1,2}), representing respectively “Married” and “Not married”. The 
variable “Sex” assumes two possible values: 1 and 2 (i.e. 3D ={1,2}), representing 
respectively “Male” and “Female”.  

The statement:  

“IF (Age<15) THEN (Marital Status = Not Married)”  

is identical to the statement that a failure occurs if both (Age=0-14) and (Marital Status = 
Married) hold true, irrespective of the value of variable “Sex”. In more mathematical 
notation: 1

1F ={1}, 1
2F ={1} and 1

3F = 3D ={1,2}, and in normal form the edit is given by: 

)( 1EP ={1}×{1}×{1,2}. 

“Age” and “Marital Status” enter this edit because 1
1F  is a proper subset of 1D  and 1

2F  is 

a proper subset of 2D , but the edit does not involve “Sex” since 1
3F  is not a proper subset 

of 3D .           � 
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In Example 4.6 below we return to Example 4.1. 

 
Example 4.6: 
In normal form the explicit edits of Example 4.1 are given by 

 )( 1EP = {1}×{2}×{1,2,3}      (4.5) 

)( 2EP = {1,2,3,4}×{1}×{1}     (4.6) 

)( 2EP = {3}×{1,2}×{2,3}     (4.7) � 

 

In Section 4.2 we have already illustrated the concept of implicit edits. In the algorithm of 
Fellegi and Holt a subset of all possible explicit and implicit edits, the so-called complete 
set of edits, has to be generated. The following lemma of Fellegi and Holt is the basis of 
generating implicit edits. 

 

Lemma 4.1. Let gE  be an arbitrary set of edits, explicit or already generated implicit 

ones, that involve a field g (g∈{1,…,m}). Let *E  be the edit defined by:  

 k
j

EEk
j FF

g
k∈

=
,

*
h   j∈{1,…,m}, j ≠ g 

 k
j

EEk
g FF

g
k∈

=
,

*
� . 

If ∅≠*
jF  for every j∈{1,…,m}, then *E  is an implicit edit in normal form. 

 

Fellegi and Holt (1976) prove that all implicit edits required for their complete set of edits 
can be generated via repeated application of this lemma. Note that this lemma implies that 
in general implicit edits can be deduced from one, two, three, four, or even more explicit or 
implicit edits. 

The subset gE  is called the contributing set, it contains the contributing edits, or the edits 

that imply *E . Field g is called the generating field of edit *E . 

In the example below we again return to Example 4.1. 
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Example 4.7: 
In Example 4.1 the (implicit) edit 4, denoted as 4E , can be obtained using Lemma 4.1 
with the third field as the generating field and contributing set gE ={ 2E , 3E }, i.e. the 
second and third edits.  

Besides 4E  there are two other implicit edits: 5E  with )( 5EP ={1}×{1,2}×{1} and 6E , 

with )( 6EP ={1, 3}×{2}× {2,3}. Edit 5E  can be obtained by using Lemma 4.1 with 

contributing set { 1E , 2E } and generating field 2. Edit 4E  can be obtained by using 
Lemma 4.1 with generating field 1 and contributing set { 1E , 2E }. In fact 6E  and 4E  
could also be combined, using variable 2 as generating field but the resulting implied edit 
would be identical to 3E .        � 

 

Fellegi and Holt show that it is not necessary to generate all implicit edits by means of 
Lemma 4.1 in order to solve the error localisation problem. To this end they introduce the 
concept of an essentially new implicit edit. An essentially new implicit edit *E  is an 
implicit edit that does not involve its generating field g (i.e. gg DF =* ). The set of explicit 
edits together with the set of all essentially new implicit edits is called the complete set of 
edits. 

 
Example 4.8: 
In Example 4.7 it is easy to see that 4E  and 4E  are both essentially new implicit edits, but 

6E  is not. The complete set of edits CE  is given by },,,,{ 54321 EEEEE .  � 

 

An essentially new implicit edit *E  can be interpreted as the projection of the edits gE  on 
their entering fields except generating field g. That is, it defines a relation that has to hold 
for these entering fields except field g. By generating essentially new implicit edits, hidden 
relations between various variables can be clarified. Once the hidden relations have been 
made explicit, solving the error localisation problem is relatively straightforward. 

After generation of the complete set of edits all failed edits are selected for each record. 
According to Theorem 4.1, i.e. Corollary 2 to Theorem 1 of Fellegi and Holt (1976), 
mentioned below, sets of variables S have to be found that cover the set of failed edits (i.e. 
at least one variable contained in S is involved in each failed edit). 

 

Theorem 4.1. If S is any set of variables that covers the complete set of failed edits, then a 
set of values exists for the variables in S that together with the set of original values for all 
other variables will result in a consistent record. That is, the variables in S can be imputed 
consistently. 
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Theorem 4.1 says that some set of variables S is a (possibly suboptimal) solution to the 
error localisation problem if S covers the set of failed edits. Note that in order to obtain a 
consistent record at least one of the entering fields of each failed edit has to be imputed. 
Therefore it also holds true that a variable set S cannot be imputed consistently, if S does 
not cover the set of failed edits. Consequently, all solutions to the error localisation 
problem can be found by finding all covering sets of variables. According to the 
generalised paradigm of Fellegi and Holt all sets with a minimal sum of reliability weights 
among all sets of variables that cover the violated edits are the optimal solutions to the 
error localisation problem (see also Section 4.4.1`). 

 
Example 4.9: 
Suppose that in Example 4.1 the reliability weights are 1 for the first field, 2 for the second 
field and 1 for the third field. Now consider the record v of Example 4.4. The edits 2E  and 

4E  (see also Examples 4.7 and 4.8) are violated by this record. Note that the second field 
enters both failed edits. In other words, field 2 covers the set of failed edits { 2E , 4E }. 
This implies that the variable sets { 1v , 2v }, { 2v , 3v } and { 1v , 2v , 3v } also cover the 
complete set of failed edits. However, according to the generalised paradigm of Fellegi and 
Holt these latter sets of variables should not be imputed.  

There is one remaining variable set that also covers { 2E , 4E }, namely { 1v , 3v }. The sum 
of the reliability weights of the two variables in this set equals two, exactly the same as the 
reliability weight of the second field. This means that { 2v } and { 1v , 3v } are the optimal 
solutions to the error localisation problem.      � 

 

Note that Theorem 4.1 implies that if the variables in a subset S cannot be imputed 
consistently then there is a failed (explicit or implicit) edit in which none of the variables 
of S are involved.  

To prove Theorem 4.1 Fellegi and Holt apply a principle that we will refer to as the lifting 
principle. Define KΩ  as that subset of the set of complete edits that involves only fields 
1,…,K. The lifting principle, i.e. Theorem 1 of Fellegi and Holt (1976), then states the 
following. 

 

Theorem 4.2. If 0
iv  (i=1,…,K-1) are values for the first K-1 variables that satisfy all edits 

in 1−ΩK , then there exists some value 0
Kv  such that the values 0

iv  (i=1,…,K) satisfy all 
edits in KΩ . 

 

Theorem 4.2 states that if the values for K-1 variables satisfy all corresponding (explicit 
and essentially new implicit) edits, then there exits a value for the K-th variable such that 
all edits corresponding to the first K variables become satisfied. In other words, the 
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possibility to satisfy the edits involving only K-1 variables is lifted to K variables. The 
lifting principle is a very important principle. In Chapters 8 and 9 we will return to it. 

N.B. The term lifting principle as it is used in this book should not be confused with lifting 
ground resolutions to more abstract general resolutions as is done in predicate logic. In 
predicate logic “lifting” refers to translating a property for relatively concrete cases to a 
property for more abstract cases. In this book “lifting” simply refers to translating a 
property involving a certain number of variables to a property involving more variables. 

Note that by repeated application of Theorem 4.2 we can show the following corollary, 
where m denotes the number of categorical variables. 

 

Corollary 4.2. If 0
iv  (i=1,…,K-1) are values for the first K-1 variables that satisfy all edits 

in 1−ΩK , then there exists values 0
iv  (i=K,…,m) such that the values 0

iv  (i=1,…,m) satisfy 
all edits in the complete set of edits. 

 

The correctness of Theorem 4.1 follows immediately from Corollary 4.2. 

Using implicit edits to solve the error localisation problem was an important 
methodological breakthrough. The concept of implicit edits was, however, not a 
completely new idea. For instance, the concept of implicit edits is similar to that of 
surrogate constraints in linear or integer programming. Moreover, the Fellegi-Holt method 
to generate implicit edits for categorical data can be considered as a special case of the 
resolution technique that is used in machine learning and mathematical logic (see for 
example Robinson, 1965 and 1968; Russell and Norvig, 1995; Williams and Brailsford, 
1996; Marriott and Stuckey, 1998; Warners, 1999; Hooker, 2000; Ben-Ari, 2001).  

4.4. Improvements on the Fellegi-Holt method for categorical data 

In the previous section we have described that a subset of the implicit edits is sufficient in 
order to solve the error localisation problem, namely the subset of the essentially new 
implicit edits. This subset of essentially new implicit edits is much smaller than the set of 
all implicit edits. Nevertheless, the practical problem of the method of Fellegi and Holt is 
that the number of (essentially new) implicit edits can be high. As a result the method may 
be too slow in practice, or even worse, the number of (essentially new) implicit edits may 
even be too high to be handled by a computer. 

Suppose Lemma 4.1 is applied to generate the essentially new implicit edits with field j as 
generating field. Remember that implicit edits can be deduced from at least two edits. So if 

jN  denotes the number of edits (explicit and already generated implicit ones) that involve 
field j (j=1,…,m), then an upper bound on the number of essentially new implicit edits that 
can be generated by applying Lemma 4.1 is:  

∑
=

−−=
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j
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i

N

2
12 .      (4.8) 
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So, generation of all essentially new implicit edits grows exponentially with the number of 
entering fields in the original edits. Winkler (1999) even reports that the amount of 
computation required to generate the complete set of edits for J explicit edits is of the order 
exp(exp(J)). He also reports that the complete set of edits cannot always be generated in 
practice, due to the computer memory and computations required.  

The complete set of edits can be extremely large. There are two reasons for this of which 
the first one plays the by far more important role in most practical situations. This first 
reason is that to generate the complete set of edits one should, in principle, consider all 
possible subsets of variables. Each of these subsets should be eliminated from the edits in 
order to obtain the complete set of edits. The total number of subsets of variables from a 
set of variables is m2 , where m is the number of variables. 

The second reason is that the number of new edits that are obtained after a variable (or 
subset of variables) has been eliminated may also be large. For instance, suppose there are 
s edits, where s is even. Suppose, furthermore, that the domain of the variable to be edited, 
variable g, equals }2,1{=gD . If }1{=j

gF  for j=1,…,s/2, and }2{=j
gF  for j=s/2 + 1,…,s, 

then the total number of new edits may in the worst case equal s2/4 (see also (4.8)). 

Reducing computing time and required computer memory are therefore the most important 
aspects in implementing a Fellegi-Holt based algorithm. 

Garfinkel, Kunnathur and Liepins (1986) made an important contribution to the theory of 
the categorical error localisation problem. In their paper they start by reformulating the 
categorical error localisation problem as an equivalent integer programming problem, 
which is a mathematical formulation of the ideas of Fellegi and Holt. We give this 
formulation in Subsection 4.4.1. 

Further, Garfinkel, Kunnathur and Liepins provide two Fellegi-Holt based algorithms. 
Their first algorithm consists of rules for the implicit edit generation. In comparison with 
the original method proposed by Fellegi and Holt less implicit edits have to be generated, 
leading to a reduced computing time. Their idea is to generate only a subset of the 
essentially new implicit edits, namely the non-redundant essentially new implicit edits. 
This set is sufficiently large to solve the error localisation problem. The method developed 
by Garfinkel, Kunnathur and Liepins has been further improved by Winkler (1995). This 
method is sketched in Subsection 4.4.2. 

The second algorithm of Garfinkel, Kunnathur and Liepins is a cutting plane algorithm. It 
solves a sequence of small set-covering problems (SCP’s) for each failing record. In the 
algorithm of Fellegi and Holt the complete set of edits has to be generated and for each 
record an SCP has to be solved, while in this algorithm for each record only a few implicit 
edits have to be generated and some SCP’s have to be solved. This algorithm can lead to a 
significant improvement in computing time in comparison with the algorithm proposed by 
Fellegi and Holt, especially in cases in which many fields are involved in the edits. In this 
book we discuss the second algorithm of Garfinkel, Kunnathur and Liepins in Chapter 10. 
In that same chapter we also extend the algorithm to mixed data, and propose 
improvements. 



The Fellegi-Holt Method 

 43

Besides the method described in Subsection 4.4.2 there are other approaches to develop a 
system based on the Fellegi-Holt method. For instance, if the total number of essentially 
new implicit edits is too high, then one can resort to generating a set of implicit edits for 
each violated record separately. Barcaroli and Venturi (1996) show that in order to solve 
the error localisation problem for a certain record it is sufficient to generate the set of 
(essentially new) implicit edits implied by the violated explicit edits and the explicit edits 
in which at least one variable is involved that is also involved in a violated explicit edit. 

For categorical data and edits a number of systems based on the Fellegi and Holt method 
have been developed, for example DAISY (Barcaroli and Venturi, 1997), SCIA (Barcaroli 
et al., 1995) and DISCRETE (Winkler and Petkunas, 1997). 

4.4.1. The categorical error localisation problem as an SCP 
Denote the set of explicit edits by EE . Suppose a record v0∈ )( EEP  is to be edited. We 
denote by v the consistent version of v0

 (in the sense that it is the corrected record) and by 

iz  (i=1,…,m) a binary variable such that 

 




 ≠=

otherwise
if         

0
1 0

ii
i

vvz      (4.9) 

The integer programming model, equivalent to the error localisation problem, for v is then 
given by: 

 Minimise ∑
=

m

i
ii zw

1
      (4.10) 

 Subject to: v ∈ )( EEPD −      (4.11) 

Here m denotes, as usual, the number of categorical variables. 

As we noted before, a necessary condition for a vector v to solve the error localisation 
problem is that it solves the following SCP (see Sections 3.3 and 4.3): 

 Minimise ∑
=

m

i
ii yw

1
       (4.12) 

Subject to: 1
1

≥∑
=

i

m

i
ji ya  for jE ∈ )( 0xEF     (4.13) 

}1,0{∈iy  for i=1,…,m      (4.14) 

 where 
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=
otherwise0

entersfieldif1 j

ji
Eia      (4.15) 

)( 0vFE  : set of explicit edits violated by 0v .   (4.16) 

The inequalities say that if an edit is violated, then the value of at least one variable 
involved with that edit has to be changed. In Section 4.3 we noted that if FE  is expanded 
to include the set of implicit edits, then a sufficient and necessary condition for z to solve 
the error localisation problem is that z solves the SCP. The correctness of this observation 
is, of course, guaranteed by Theorem 4.1 (see also Garfinkel, Kunnathur and Liepins, 
1986). 

Winkler (1995) notes that the upper bound on the computing time for the SCP integer 
programming problem is proportional to tmt2 , where t denotes the total number of 
(explicit and implicit) edits. So, the computing time can be reduced drastically if the 
number of implicit edits can be reduced. 

4.4.2. Improved implicit edit generation 
Winkler (1995) provides an adaptation of the Fellegi-Holt algorithm for categorical data 
sets. His result is an alternative for the first algorithm of Garfinkel, Kunnathur and Liepins. 
Winkler reduces the number of implicit edits needed to solve the categorical error 
localisation problem. For large problems Winkler’s algorithm leads to a large reduction in 
computing time in comparison with the algorithm of Fellegi and Holt. 

One of his observations concerns the so-called redundant edits. An edit rE  is called 
redundant, if there exists another edit dE  that dominates edit rE , i.e. )()( dr EPEP ⊆ . 

Note that dE  is failed, if rE  is failed. Note also that the entering fields of dE  are 
covered by the entering fields of rE . So, if some set of variables S covers one of the 
entering variables of dE , then S covers at least one of the entering variables of rE . This 
implies that redundant edits are not needed to find sets of variables that cover the complete 
set of failed edits. Consequently, redundant edits are not needed to find all optimal 
solutions to the error localisation problem. Furthermore, Winkler (1995) observes that if 

dE  replaces rE  in a generating set of edits, then any generated edit would necessarily 
dominate the edit that would have been obtained if rE  had been used. This implies that 
redundant edits need not be included in contributing sets of edits. Thus we can conclude 
that redundant edits can be deleted from the set of edits.  

Garfinkel, Kunnathur and Liepins (1986) observe that if one contributing set is a proper 
subset of another contributing set and if generating on field j (using Lemma 4.1) yields 
essentially new implicit edits for both contributing sets, then the edit generated using the 
larger contributing set is redundant to the one using the smaller set. Because redundant 
edits are not useful for error localisation purposes, only prime contributing sets, i.e. 
contributing sets for which no proper subset exists that is also a contributing set of an 
essentially new implicit edit, have to be used in Lemma 4.1.  
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Example 4.10:  
Suppose m = 2, 1D ={1,2,3}, 2D ={1,2,3} and 

)( 1EP ={1,2}×{1,2,3}      (4.17) 

)( 2EP ={1,3}×{1,3}      (4.18) 

)( 3EP ={2,3}×{2,3}      (4.19) 

)( 4EP ={1}×{2}       (4.20) 

4E  is redundant, since it is dominated by 1E . Suppose that Lemma 4.1 is used to generate 
(essentially new) implicit edits on generating field 1. Consider the contributing sets 

1S ={ 1E , 3E } and 2S ={ 1E , 2E , 3E }. Note that 1S  is a proper subset of 2S . Generating 

on field 1 using contributing set 1S  yields the essentially new implicit edit 5E , with 

)( 5EP ={1,2,3}×{2,3}. The essentially new implicit edit 6E , with )( 6EP ={1,2,3}×{3} is 

obtained by generating on field 1 using contributing set 2S . Obviously, 5E  dominates 
6E .          �  

4.5. The Fellegi-Holt method for numerical and mixed data 

In the previous sections we have explained how the Fellegi-Holt method works for 
categorical data. For numerical data the method works similarly. The only difference is the 
way in which the essentially new implicit edits are generated. To generate implicit edits for 
categorical data we can apply Lemma 4.1. It is clear that for numerical data, we cannot 
apply this lemma. In this section we start by explaining how implicit edits are generated in 
numerical data. Subsequently, we briefly discuss the Fellegi-Holt method for mixed data. 

For purely numerical data, the edits are given either by inequalities or by equalities. To 
generate an implicit edit we first select a generating field. Next, we basically apply 
Fourier-Motzkin elimination (see Chvátal, 1983; Korte and Vygen, 2000; see also Chapter 
8) to eliminate the generating variable from the set of edits.  

We consider all edits involving the selected variable rx  pair-wise. Suppose edit s is given 
by 

0...11 =+++ snnss bxaxa       (4.21a) 

or 

 0...11 ≥+++ snnss bxaxa ,      (4.21b) 

and edit t by 

0...11 =+++ tnntt bxaxa ,      (4.22a) 
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or 

 0...11 ≥+++ tnntt bxaxa .      (4.22b) 

We now construct an implicit edit. If (4.21) is an equality, we use the equality  
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to eliminate rx  from (4.22).  

If (4.21) is an inequality and (4.22) is an equality, then similarly we can use the equality in 
(4.22) to eliminate rx . If (4.21) and (4.22) are inequalities, we check whether the 
coefficients of rx  in those inequalities have opposite signs. That is, we check whether 

0<× rtrs aa . If that is the case, we generate the following implicit edit not involving rx : 

0
~~...~

11 ≥+++ bxaxa nn ,      (4.24) 

where 

isrtitrsi aaaaa ||||~ +=   for all i=1,…,m    (4.25) 

and 

 srttrs babab ||||
~

+= .      (4.26) 

Apart from the different way in which implicit edits are generated, the Fellegi-Holt method 
for numerical data is the same as the Fellegi-Holt method for categorical data. Again, the 
complete set of edits is generated by repeatedly selecting a generating field. Subsequently, 
all pairs of edits (explicit or implicit) are considered, and it is checked whether new 
(essentially new) implicit edits can be obtained by eliminating the selected generating field 
from these pairs of edits. This process continues until no new (essentially new) implicit 
edits can be generating anymore, whatever generating field is selected. The complete set of 
edits has then been determined. 

To illustrate, we give the example below. This example is basically an example provided 
by Fellegi and Holt (1976), except for the fact that in their paper the edits indicate a 
condition of edit failure (i.e. if a numerical condition holds true, the edit is violated), 
whereas here the edits indicate the opposite condition of edit consistency (i.e. if a 
numerical condition holds true, the edit is satisfied). 

 
Example 4.11: 
Suppose we have four numerical variables ix  (i=1,…,4). The explicit edits are given by: 

04321 ≥++− xxxx       (4.27) 

and 
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 032 321 ≥−+− xxx .      (4.28) 

The implicit edits are given by: 

 02 432 ≥+− xxx ,      (4.29) 

 02 431 ≥+− xxx        (4.30) 

and 

 032 421 ≥+− xxx .      (4.31) 

The above five edits form the complete set of edits as no new (essentially new) implicit 
edit can be generated anymore. 

Now, suppose we are editing a record with values (3, 4, 6, 1), and suppose that the 
reliability weights are all equal to 1. Examining the explicit edits we see that the first edit 
is satisfied, whereas the second edit is violated. From the explicit edits it is not clear which 
of the fields should be changed. If we also examine the implicit edits, however, we see that 
edits (4.28), (4.29) and (4.30) fail. Variable 3x  occurs in all three violated edits. So, we 
can satisfy all edits by changing the value of 3x , for example 3x  could be made equal to 1. 
Changing the value of 3x  is the only optimal solution to this error localisation problem. � 

 

Fellegi and Holt do not give a proof that their method works for numerical data. In 
particular, they do not prove that a solution to the set-covering problem based on all 
explicit and essentially new implicit edits is also a solution to the error localisation 
problem. Fortunately, a proof is easy to provide by using a standard result for Fourier-
Motzkin elimination (see e.g. Chvátal, 1983). Suppose a solution to the set-covering 
problem based on all explicit and essentially new implicit edits has been obtained. We then 
eliminate all variables involved in this solution from the explicit edits. The obtained set of 
(implicit) edits is satisfied, if the original values are filled in for all variables not involved 
in the solution to the set-covering problem. This follows from the construction of the set-
covering problem, where violated (explicit and implicit) edits correspond to constraints for 
the set-covering problem. A standard result for Fourier-Motzkin elimination now says that 
the (explicit) edits can be satisfied by filling in appropriate values for the variables 
involved in the solution to the set-covering problem. A solution to the set-covering 
problem is therefore also a solution to error localisation problem. 

Instead of applying the standard result for Fourier-Motzkin one could also apply the results 
of Chapter 8 in this book. Those results are more general than the mentioned standard 
result for Fourier-Motzkin elimination as they include categorical data. 

An important practical problem of the Fellegi-Holt method for numerical data is that the 
number of implicit edits may be very high. We have already mentioned that this is a 
serious problem of the Fellegi-Holt method for categorical data. The reasons for the 
potentially large number of implicit edits for numerical data are again that an enormous 
amount of subsets of the set of variables have to be eliminated, and that the number of 
edits may increase whenever a variable (or subset of variables) is eliminated. As for 
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categorical data, in most practical situations the first reason is mainly responsible for the 
large size of the complete set of edits. 

In fact, the size of the complete set of edits appears to be an even more serious problem for 
numerical data than for categorical data. For most real-life problems the number of implicit 
edits becomes extremely high even for a small to moderate number of explicit edits, as 
some early experiments at Statistics Netherlands quickly confirmed. Due to the practical 
and theoretical hopelessness of the situation, this path based on the Fellegi-Holt method 
was quickly abandoned for numerical data.  

An exception to the rule that the number of implicit edits becomes extremely high is 
formed by ratio-edits, i.e. ratios of two numerical variables that are bounded by constant 
lower and upper bounds. For ratio-edits the number of implicit edits is low, and the 
Fellegi-Holt method can be applied in practice (see Winkler and Draper, 1997).  

For mixed data, we can – in principle – also use the Fellegi-Holt method to solve the error 
localisation problem. However, the logic to generate the implicit edits becomes quite 
complex. This logic becomes so complex because in order to generate the complete set of 
edits categorical variables frequently have to be eliminated from edits in which still some 
numerical variables are involved. The resulting edits are quite complicated ones. In Section 
8.5 we return to this point, be it in a somewhat different context. For this reason, and 
because the number of implicit edits can become very high just like for purely numerical 
data, we do not consider the Fellegi-Holt method for mixed data in further detail in this 
book. 

 

Remark: We would like to end this section with a remark on the history of Fourier-
Motzkin elimination. In the early 19th century Fourier became interested in systems of 
linear inequalities. In particular, Fourier was interested in the problem whether a feasible 
solution to a specified set of linear inequalities exists. Fourier developed an interesting 
method for solving this problem based on successively eliminating variables from the 
system of inequalities. This method was later called Fourier-Motzkin elimination. It was 
published for the first time in 1826 (see Fourier, 1826, and Kohler, 1973). Fourier himself 
was not too impressed by his discovery. In his book on determinate equations, “Analyse 
des equations déterminées”, that was published after his death in 1831 this method for 
eliminating variables was omitted. 

Fourier's method eliminates variables from a system of linear inequalities and equalities. 
The number of linear inequalities and equalities may change while eliminating variables. 
This may be a problem for large systems. For large systems the number of linear 
(in)equalities often becomes so high that Fourier-Motzkin elimination becomes 
impractical, i.e. too much computing time and computer memory is required to apply 
Fourier-Motzkin elimination. 

There is a dual version of Fourier-Motzkin elimination. Here linear (in)equalities are 
eliminated rather than variables. The number of variables may vary while eliminating 
constraints. The dual version of Fourier-Motzkin elimination suffers from the same 
problem as the primal version: for large systems the number of variables often becomes so 
high that the method is impractical. 
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For many years Fourier's method was forgotten. In the 20th century it was rediscovered 
several times. For instance, Motzkin (1936) rediscovered the method. For this reason the 
method is usually referred to as Fourier-Motzkin elimination. Other people who have 
rediscovered the method are Dines (1927) and Chernikova (1964, 1965). Chernikova in 
fact rediscovered the dual version of Fourier-Motzkin elimination (see also Chapter 5 of 
this book). 

In 1976 Fellegi and Holt again rediscovered Fourier-Motzkin elimination. Fellegi and 
Holt, however, not only rediscovered Fourier-Motzkin elimination for numerical data, they 
also extended the method to categorical variables. This extension is similar to the 
resolution technique known from machine learning and mathematical logic (see for 
example Robinson, 1965 and 1968; Russell and Norvig, 1995; Williams and Brailsford, 
1996; Marriott and Stuckey, 1998; Warners, 1999; Ben-Ari, 2001).  

In the present book Fourier-Motzkin elimination and its extension to categorical data play 
a major role. The dual version of Fourier-Motzkin elimination is used in Chapter 5. The 
primal version of Fourier-Motzkin elimination and its extension to categorical data are 
used in Chapters 8 and 10. Finally, an extension of Fourier-Motzkin elimination to integer 
data is described and applied in Chapter 9. 

4.6. Discussion 

In this chapter we have described the Fellegi-Holt method for solving the error localisation 
problem. Hereby we have focussed on the method for categorical data. The reason for this 
is that the Fellegi-Holt method seems to be more suitable for categorical data than for 
numerical data. In practice, the number of implicit edits for numerical data appears to be 
too high for the Fellegi-Holt method to be applicable. 

For mixed data the situation is even worse. Not only can the number of implicit edits 
become extremely high, but also the logic to generate implicit edits becomes complicated. 
Due to this complexity it is unlikely that implicit edits can be generated quickly. We can 
conclude that for mixed data the Fellegi-Holt method offers little promise at the moment. 
Therefore, in subsequent chapters of this book we will not consider the Fellegi-Holt 
method; instead we will examine several other methods for solving the error localisation 
problem in mixed data. 

We end this chapter with the remark that although we do not consider the Fellegi-Holt 
method a promising method for solving the error localisation problem in mixed data, we 
do consider several ideas on which this method is based to be very important ones. In 
Chapter 8 we will again use the concept of implicit edits. There we will not generate the 
complete set of edits, but will restrict ourselves to (small) subsets. In Chapter 9 we will 
also use the lifting principle introduced in the present chapter extensively.  
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5. Vertex Generation Methods 

5.1. Introduction 

A well-known method for solving the error localisation problem for numerical 
(continuous) data is based on vertex generation techniques, in particular the algorithm of 
Chernikova. In this chapter we examine how vertex generation methods can be extended to 
solve the error localisation problem in a combination of categorical (discrete) and 
numerical data. The material contained in this chapter is for a substantial part based on 
many excellent papers, such as Chernikova (1964 and 1965), Duffin (1974), Rubin (1975 
and 1977), Sande (1978a), Schiopu-Kratina and Kovar (1989), and Fillion and Schiopu-
Kratina (1993).  

Only the last three of these papers focus on the error localisation problem. The other 
papers describe general algorithms. Chernikova (1964 and 1965) describes an algorithm to 
determine the edges of a convex polyhedral cone in the nonnegative orthant with a vertex 
at the origin. Rubin (1975 and 1977) extends this algorithm to related problems. Duffin 
(1974) gives a thorough description of Fourier-Motzkin elimination. Chernikova’s 
algorithm is in fact the dual of Fourier-Motzkin elimination. 

Sande (1978a) discusses the error localisation problem for numerical data, and briefly also 
the error localisation problems for categorical data and mixed data. He proposes methods 
based on vertex generation in order to solve these problems. He does not provide details of 
the method for categorical and numerical data, however. Schiopu-Kratina and Kovar 
(1989) and Fillion and Schiopu-Kratina (1993) propose a number of improvements on 
Sande’s method for solving the error localisation problem for numerical data. They, 
however, do not consider the error localisation problems for categorical or mixed data. 

The main aim of this chapter is not to present new results, but rather to combine the ideas 
of the above-mentioned papers in order to give a “complete”, self-contained description of 
the use of vertex generation methods in order to solve the error localisation problem in 
mixed data. In particular, we describe how the method based on vertex generation can be 
applied to identify errors in a mix of categorical and numerical data. In doing so, we give a 
detailed account of the method for the first time in literature. Furthermore, we show that 
many results for numerical data also hold true for a mix of categorical and numerical data. 
We will especially describe how improvements suggested by Schiopu-Kratina and Kovar 
(1989) and Fillion and Schiopu-Kratina (1993) on Sande’s method for solving the error 
localisation problem for continuous data can also be used for mixed data. This had not yet 
been pointed out in literature before. Finally, we mention that vertex generation methods 
other than Chernikova’s algorithm may be used to solve the error localisation problem. As 
far as we know this had not yet been noted in existing literature on the error localisation 
problem. 

The remainder of the present chapter is organised as follows. Section 5.2 shows that the 
error localisation problem can be solved by generating the vertices of a certain polyhedron. 
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Unfortunately, the number of vertices of this polyhedron is often too high for this approach 
to be applicable in practice. Instead, one should generate a suitable subset of the vertices 
only. There are a number of vertex generation algorithms that efficiently generate such a 
suitable subset of the vertices of a polyhedron. A vertex generation algorithm that has been 
proposed by Chernikova (1964, 1965) has been used in several computer systems for 
automatic edit and imputation of numerical data, for example GEIS (Kovar and Whitridge, 
1990; Pierzchala, 1995), CherryPi (De Waal, 1996; De Waal and Van de Pol, 1997), 
AGGIES (Todaro, 1999) and a SAS program developed by the Central Statistical Office of 
Ireland (see Central Statistical Office, 2000). 

As noted above, the original algorithm of Chernikova was designed for calculating the 
edges of a convex polyhedral cone. When applied to solve the error localisation problem, 
this general algorithm turns out to be rather slow, as could be expected. The algorithm has 
been accelerated by various modifications (see Rubin, 1975 and 1977; Sande, 1978a; 
Schiopu-Kratina and Kovar, 1989; Fillion and Schiopu-Kratina, 1993). We describe 
Chernikova’s algorithm and the above-mentioned modifications in Sections 5.3 to 5.5. 

An alternative to Chernikova’s algorithm is an algorithm described by Duffin (1974). That 
algorithm is very similar to Chernikova’s algorithm. The two algorithms differ only with 
respect to a few technical details (see e.g. Houbiers, 1999b). We describe Duffin’s 
algorithm and the differences with Chernikova’s algorithm in Section 5.6 to 5.8. 

Chernikova’s algorithm and Duffin’s algorithm have been designed to handle inequalities. 
In practice, however, many edits involve equalities rather than inequalities. Of course, we 
could represent each equality by two inequalities, and then use the algorithms proposed by 
Chernikova or Duffin to solve the error localisation problem. That would be a rather 
inefficient approach, however. A better approach is to treat equalities in a slightly different 
way than inequalities. In Section 5.9 we describe how Chernikova’s algorithm and 
Duffin’s algorithm can be modified in order to deal with equalities in an efficient manner. 

Section 5.10 concludes the chapter with a brief discussion. Before we proceed we would 
like to remark that for some theorems mentioned in this chapter - short ones that provide 
an insight into the method - we give the proof. For theorems for which the proof is rather 
long and technical, we omit the proof, as such a proof would not give further insight into 
the method. The interested reader is referred to the literature for those proofs. 

This chapter is based on De Waal (2000b). Part of this material is planned to be published 
in De Waal (2003). 

5.2. Vertex generation methods and error localisation for mixed data 

In this section we explain why vertex generation methods can be used to solve the error 
localisation problem in mixed data. An optimal solution to the error localisation problem 
corresponds to a minimum of  
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where iw  is the reliability weight of variable i, 1)( =xδ  if and only if 0≠x  and 0)( =xδ  
otherwise, is minimised subject to the constraints: 
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for all edits j=1,...,K (see Section 3.4). Suppose a minimum of (5.1) subject to (5.2) to (5.9) 
is attained in a point given by: 

1. 0=N
ike  for N

eIki ∈),( , 1=N
ike  otherwise,  

2. 0=P
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iz  otherwise, 

where N
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zI  are certain index sets. 

We now consider the problem of minimising the linear function  
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subject to (5.3) to (5.9) and 
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Note that all variables are non-negative by (5.4) and (5.11), and that the P
ike  and N

ike  are at 
most equal to one by (5.11). Hence, function (5.10) is non-negative. Its value equals zero 
only for a point satisfying 1 to 4 above. 

It is well-known that a linear function subject to a set of linear constraints attains its 
minimum, if such a minimum exists, in a vertex of the feasible polyhedron described by 
the set of linear constraints (see e.g. Chvátal, 1983; Hillier and Lieberman, 1995). So, the 
minimum of (5.10), zero, is attained in a vertex of the feasible polyhedron described by 
(5.2) to (5.9) and (5.11). We can conclude that a point satisfying by 1 to 4 above, i.e. an 
optimum of (5.1) subject to (5.2) to (5.9), is a vertex of the polyhedron defined by (5.3) to 
(5.9) and (5.11).  

The above observation implies that the minimum of (5.1) subject to (5.2) to (5.9) can be 
found by generating all vertices of the feasible polyhedron given by (5.3) to (5.9) and 
(5.11). From these vertices we select the vertices that satisfy (5.2). From those vertices we 
subsequently select the vertices for which the value of objective function (5.1) is minimal. 
These vertices correspond to the optimal solutions to the error localisation problem. 

5.3. Chernikova’s algorithm 

We start this section by describing Chernikova’s algorithm. Subsequently, we explain how 
it can be used to determine the vertices of a polyhedron. Chernikova’s algorithm is in fact 
designed to generate the edges of a system of linear inequalities given by  

 0Cx ≥         (5.12) 

and 

0x ≥ ,        (5.13) 

where C is a constant cr nn × -matrix and x an cn -dimensional vector of unknowns.  

Rubin’s formulation (Rubin, 1975 and 1977) of Chernikova’s algorithm is as follows: 

1. Construct the ccr nnn ×+ )( -matrix 









= 0

0
0

L
UY , where CU0 =  and 

cn
0 IL = : the 

cc nn × -identity matrix. 

2. k := 0 

3. If any row of kU  has all components negative, set k equal to rn . In this case x = 0 is 
the only point satisfying (5.12) and (5.13). 

4. If all the elements of kU  are non-negative, then set k equal to rn . The columns of 
rnL  are the edges of the cone described by (5.12) and (5.13). 

5. If neither 3 nor 4 holds: choose a row of kU , say row r, with at least one negative 
entry. 
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6. Let R = }0|{ ≥k
rjyj . Let v be the number of elements in R. Then the first v columns of 

the new matrix 1kY +  are all the columns k
jy*  of kY  for j ∈ R, where k

jy*  denotes the 

j-th column of kY . 

7. Examine the matrix kY . 

a. If kY  has only two columns and 021 <× k
r

k
r yy , then choose 0, 21 >µµ  such that 

02211 =+ k
r

k
r yy µµ . Adjoin the column kk yy 2*21*1 µµ +  to 1kY + . Go to Step 9. 

b. If kY  has more than two columns then let }  and  0|),{( styytsS k
rt

k
rs ><×= , i.e. 

let S be the set of all pairs of columns of kY  whose elements in row r have 
opposite signs. Let 0I  be the index set of all non-negative rows of kY , i.e. all 

rows of kY  with only non-negative entries. For each (s,t) ∈ S, find all 0Ii∈  such 

that 0== k
it

k
is yy . Call this set ),(1 tsI . 

• If ∅=),(1 tsI , then k
sy*  and k

ty*  do not contribute another column to the new 
matrix. 

• If ∅≠),(1 tsI , check to see if there a v not equal to s or t such that 0=k
ivy  for 

all ),(1 tsIi∈ . If such a v exists, then k
sy*  and k

ty*  do not contribute a column 
to the new matrix. If no such v exists, then choose 0, 21 >µµ  such that 

021 =+ k
rt

k
rs yy µµ . Adjoin the column k

t
k
s yy *2*1µ +  to 1kY + . 

8. When all pairs in S have been examined, and the additional columns (if any) have 
been added, we say that row r has been processed. We then define matrices 1kU +  and 

1kL +  by 









= +

+
+

1k

1k
1k

L
UY , where 1kU +  is a matrix with rn  rows and 1kL +  a matrix 

with cn  rows. 

9.  k := k + 1, and go to Step 3. 

In Chernikova’s original papers the transpose of the matrix kY  is used, and the processing 
is done column-wise rather than row-wise as in Rubin’s formulation. The formulation 
given here is used throughout this chapter, because this formulation is used most 
frequently in literature (see Rubin, 1975; Sande, 1978a; Schiopu-Kratina, 1989; Fillion and 
Schiopu-Kratina, 1993; De Waal, 2000b). 

Chernikova’s algorithm can be used to find the vertices of a system of linear inequalities 
because of the following lemma (see Rubin, 1975 and 1977). 

 

Lemma 5.1: The vector 0x  is a vertex of the system of linear inequalities   

µ
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 bAx ≤         (5.14) 
and 
 0x ≥         (5.15)  
if and only if { }0,)  | ( ≥λλλ T0x  is an edge of the cone described by  

 0
x

b   A ≥







−

ξ
)|(        (5.16) 

and 

 0
x
≥









ξ
.       (5.17) 

Here A is an vr nn × -matrix, b an rn -vector, x an vn -vector, and ξ  and λ  scalar 
variables.  

 

For notational convenience we write  

1+= vc nn        (5.18) 

throughout this chapter. The matrix in (5.16) is then an cr nn × -matrix just like in (5.12), 
so we can use the same notation as in Rubin’s formulation of Chernikova’s algorithm. 

If Chernikova’s algorithm is used to determine the edges of (5.16) and (5.17), then after 
termination of the algorithm the vertices of (5.14) and (5.15) correspond to those columns j 
of rnL  for which 0, ≠r

c

n
jnl . The entries of such a vertex x′  are given by  

r
c

r n
jn

n
iji llx ,=′  for i=1,…, vn .     (5.19) 

 
Example 5.1: 
Suppose we want to use Chernikova’s algorithm to determine the vertices of the following 
system: 

 

12
243
3225
12

321

321

321

321

−≤+−−
≤−+
≤+−
≤−+

xxx
xxx
xxx
xxx

     (5.20) 

where the ix  are non-negative. 

The matrix 0Y  is then given by 
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−−
−−

−−
−−

=

1000
0100
0010
0001
1211
2413
3225
1211

0Y .     (5.21) 

The horizontal line separates the upper matrix 0U  from the lower matrix 0L . 

We process the first row, and obtain the following result. 

 

































−−
−−
−−−

=

101010
010101
120000
001200
000012
121224
5221232
000012

1Y .    (5.22) 

For instance, the first two columns of 1Y  are obtained by copying the last two columns of 
0Y . The third column of 1Y  is obtained by adding the third column of 0Y  to two times 

the first column of 0Y . In a similar way the other columns of 1Y  are obtained. 

We now process the fourth row. The result is: 

 

































−−
−−

=

1010
0101
1200
0012
0000
1212
52212
0000

2Y .      (5.23) 

Processing the third row yields: 
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−

=

2010
0201
1212
1200
0000
0012
31052
0000

3Y .      (5.24) 

Note that columns 1 and 4 of 2Y  are not combined into a column of 3Y  (see Step 7b of 
Chernikova’s algorithm). Likewise, columns 2 and 3 of 2Y  are not combined into a 
column of 3Y . 

Finally, we process the second row and obtain the final matrix 

 

































=

200210
67001

1612112
162100
00000
010012
00352
00000

4Y .     (5.25) 

Note that columns 2 and 3 of 3Y  are not combined into a column of 4Y . 

In matrix 4Y  we can see that the vertices of system (5.20) are given by (0, 1, 0), 
(0.5, 0.5, 0 ) and (0.8, 0.8, 0.3) (see (5.19)).      � 

5.4. Chernikova’s algorithm and the error localisation problem 

In the previous section we have described Chernikova’s algorithm. In this section we 
explain how this algorithm can be used to solve the error localisation problem in mixed 
data. 

The set of constraints (5.3) to (5.9) and (5.11) can be written in the form (5.14) and (5.15). 
We can find the vertices of the polyhedron corresponding to this set of constraints by 
applying Chernikova’s algorithm to (5.16) and (5.17). Vertices of the polyhedron defined 
by (5.3) to (5.9) and (5.11) are given by columns rn

sy*  for which 0≥rn
isu  for all i and 

0, >r
c

n
snl , where cn  is the number of rows of the final matrix rnL . In our case, cn  equals 

the total number of variables P
ik

N
i

P
i ezz ,,  and N

ike  plus one (corresponding to ξ  in (5.16) 
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and (5.17)), i.e. 122 ++= Gnnc , where ∑=
i

igG . The values of the variables 

P
ik

N
i

P
i ezz ,,  and N

ike  in such a vertex are given by the corresponding values r
c

r n
sn

n
js ll , .  

In this way all vertices of the polyhedron defined by (5.3) to (5.9) and (5.11) can, in 
principle, be determined. However, because there may be extremely many vertices, 
determining all vertices of the feasible polyhedron is not an efficient way for solving the 
error localisation problem. McMullen (1970) gives the following, tight upper bound on the 
number of vertices for a set of s linear inequalities involving t unrestricted variables: 

 
















−







 +−+
















−







 +−=
ts

ts

ts

tstsf 2
2

2
1

),( ,    (5.26) 

where  x  stands for the largest integer smaller than x . 

Even more important than the number of vertices in the worst case, is the number of 
vertices for a “typical” polyhedron. Prékopa (1972) shows that the expected number of 
vertices for a set of s linear inequalities involving t variables, assuming a simple chance 
mechanism for generating the s linear inequalities, is given by 

 st

t
s

tsg −








= 2),( .       (5.27) 

Both the number of vertices in the worst case and the number of vertices of a typical 
polyhedron can be very high. 

Because generating all vertices is likely to be far too demanding from a computational 
point of view, we aim to limit the number of vertices that are generated as much as 
possible. This can be done in the following way. If a (possibly suboptimal) solution to the 
error localisation problem has been found for which the value of the objective function 
equals η, then we look only for vertices corresponding to solutions that are at least as 
good, i.e. solutions for which the value of the objective function is at most equal to η. 

A minor technical problem is that we cannot use objective function (5.1) directly when 
applying Chernikova’s algorithm, because each N

ike , each P
iz  and each N

iz  has been 
replaced by several variables. Therefore, we need to introduce a new objective function. 
This objective function associates a value to each column of the matrix kY . Assume that 
the first G entries of a column k

sl*  of kL  correspond to the N
ike -variables, the next G 

entries to the P
ike -variables, the next n entries to the N

iz -variables, and the following n 

entries to the P
iz -variables. We define the following objective function 

 ( )∑ ∑∑
= =

++++
=

++









m

i

n

i

k
sinG

k
siGim

g

k

k
sji llwlw

i

1 1
,2,2

1
, )()()( δδδ ,   (5.28) 
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where ∑
−

=
+=

1

1

i

l
l rgj  for each combination of i and r (i=1,…,m; r=1,…, ig ). If column k

sy*  

of kY  corresponds to a solution to the error localisation problem, then the value of the 
objective function (5.28) for k

sy*  equals the value of the objective function (5.1) for this 
solution to the error localisation problem. This implies that we can use the objective 
function (5.28) to update the value of η. 

Now we are ready to explain how Chernikova’s algorithm can be used to solve the error 
localisation problem for mixed data. Two technical problems must be overcome. First, the 
algorithm must be sufficiently fast. Second, the solution found must be feasible for the 
error localisation problem for mixed data, i.e. the values of the variables P

ike  and N
ike  must 

be either 0 or 1. Both problems can be overcome by removing certain “undesirable” 
columns from the current matrix kY , i.e. by deleting columns that cannot yield an optimal 
solution to the error localisation problem. That such undesirable columns may indeed be 
removed from the current matrix kY  is essentially demonstrated by Rubin (1975 and 
1977). We state this result as Theorem 5.1. 

 

Theorem 5.1: Columns that cannot yield an optimal solution to the error localisation 
problem because they contain too many non-zero entries may be removed from an 
intermediate matrix. 

Proof. Suppose we conclude that a certain column c in an intermediate matrix cannot yield 
an optimal solution. We cannot immediately conclude that we can remove this column, 
because this column might later be used in Step 7 of Chernikova’s algorithm to prevent the 
generation of other columns. We note, however, that those columns have non-zero entries 
in the same positions as c, and perhaps more (see Step 7 of Chernikova’s algorithm). This 
implies that those columns cannot yield optimal solutions either, just like c itself. That is, 
any column that might be generated because column c has been removed, may itself be 
removed because it cannot generate an optimal solution to the error localisation problem. 
          � 

 

The computing time of Chernikova’s algorithm can obviously be reduced by removing all 
columns for which the value of the objective function (5.28) is larger than η from the 
current matrix kY  each time Step 9 has been executed. These columns can never generate 
a solution to the error localisation problem that is at least as good as the best one found so 
far, because the value of the objective function (5.28) of a combination of two columns 
(see Step 7) is at least equal to the maximum of the values of the objective function (5.28) 
for these columns separately.  

Initially, the value of η can be set to a certain number η0. All records for which the optimal 
value of (5.1) exceeds η0 will then not be edited automatically. Those records are 
considered too erroneous for automatic correction, and have to be edited interactively or 
have to be discarded completely. 
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The computing time of Chernikova’s algorithm can also be reduced by noting that in an 
optimal solution to the error localisation problem either 0=P

iz  or 0=N
iz  (or both). This 

implies that if in Step 7 of Chernikova’s algorithm the entry of k
sy*  corresponding to P

iz  

differs from zero and the entry of k
ty*  corresponding to N

iz  differs from zero as well, then 

columns k
sy*  and k

ty*  need not be combined to generate a new column. Fillion and 
Schiopu-Kratina (1993) report a reduction in computing time of approximately 45% when 
this ‘complementary condition’ is used. The experience at Statistics Netherlands shows a 
similar reduction in computing time. 

We now consider the problem of constructing a feasible solution to the error localisation 
problem for mixed data. We have to ensure that for each variable i (i=1,...,m) at most one 

P
ike  differs from zero, and that the N

ike  and P
ike  equal either zero or one after the termination 

of the algorithm. We can ensure that for each i at most one P
ike  differs from zero in the 

following way. If in Step 7 of Chernikova’s algorithm the entry of k
sy*  corresponding to 

P
ike

1
 differs from zero and the entry of k

ty*  corresponding to P
ike

2
 )( 12 kk ≠  differs from 

zero as well, then columns k
sy*  and k

ty*  are not combined to generate a new column. 

We can also ensure that the N
ike  equal either zero or one after the termination of the 

algorithm. For each i this is a problem only for the unique N
ike

0
 for which 10

0
=ikγ , namely 

the N
ike  for which 0kk ≠  equal zero because of relation (5.3). We introduce binary 

variables ie~ . These variables have to satisfy 

 1~
0

=+ i
N
ik ee .       (5.29) 

Relation (5.29) is treated as a constraint for the values of binary variables N
ike

0
 and ie~ . 

Because the values of N
ike

0
 and ie~  have to be zero or one, we have to demand that either 

0
0
=N

ike  or 0~ =ie . This can be ensured in the same manner as for the P
iz  and the N

iz . 

Finally, we have to ensure that the P
ike  equal either zero or one after the termination of the 

algorithm. This is automatically the case if for each i only one P
ike  differs from zero, at 

most one N
ike  equals one, and the rest of the N

ike  equal zero, because relation (5.7) has to 

hold true. We have already ensured that the above conditions are satisfied, so all P
ike  equal 

zero or one after the termination of the algorithm. With the adaptations described above 
Chernikova’s algorithm can be applied to solve the error localisation problem in mixed 
data. 

Examining the algorithm described so far one might think that in a computer program the 
binary variables that are used for the categories of the discrete variables should be 
processed as bits rather than as variables that allow arithmetic operations. Sande (1978a), 
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however, disagrees and points out the advantage of treating the binary variables in the 
latter way. Using arithmetic operations on binary variables is sometimes called pseudo-
Boolean programming to distinguish it from Boolean programming that uses logical 
operations. Pseudo-Boolean programming allows the combination of several Boolean edits 
into a single edit. For instance, edits expressing that at most one person in a household can 
be married to the head of the household can readily be expressed in a single pseudo-
Boolean edit. In the Boolean format, edits for all pairs of persons would have to be 
constructed. 

5.5. Adapting Chernikova’s algorithm to the error localisation problem 

In this section we consider more advanced adaptations of Chernikova’s algorithm in order 
to make the algorithm better suited for solving the error localisation problem. Sande 
(1978a) notes that when two columns in the initial matrix 0Y  have exactly the same 
entries in the upper matrix 0U , they will be treated exactly the same in the algorithm. The 
two columns are always combined with the same other columns, and never with each 
other. Keeping both columns in the matrix only makes the problem unnecessarily bigger. 
One of the columns may therefore be temporarily deleted. After the termination of the 
algorithm, the combinations with the temporarily deleted column can easily be generated. 

Suppose, for example, that for columns s and t we have 00
jtjs uu =  for all j. We can then 

temporarily delete one of these columns, say column t. Thus, we obtain a reduced matrix 
0Y~  with upper matrix 0U~  and lower matrix 0L~ . If Chernikova’s algorithm applied to the 

reduced matrix finds a vertex given by  

 ∑
i

ii l
0

*
~λ         (5.30) 

then the vertices corresponding to the original matrix are given by  

 ∑
i

iil
0
*λ         (5.31) 

and if 0≠sλ  also by 

 0
*

0
* ts

si
ii ll λλ +∑

≠
.       (5.32) 

Fillion and Schiopu-Kratina (1993) define a number of important concepts. These concepts 
allow several of their improvements to be explained easily. Suppose again that the upper 
matrix kU  and lower matrix kL  of a matrix kY  have rn  and cn  rows, respectively. A 

correction pattern associated with column k
sy*  in an intermediate matrix kY  is defined as 

the cn -dimensional vector with entries )( k
jsyδ  for crr nnjn +≤< , )( k

jsyδ  equals one if 

0≠k
jsy  and )( k

jsyδ  equals zero if 0=k
jsy . We have already noted that in the error 

localisation problem it suffices to find all correction patterns that correspond to vertices for 
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which (5.28), or equivalently (5.1), is minimal. That is, not all vertices for which (5.28) is 
minimal have to be found. 

Sande (1978a) notes that Theorem 5.1 implies that once a vertex has been found, all 
columns with correction patterns with ones on the same places as in the correction pattern 
of this vertex can be removed. 

The concept of correction patterns has been extended by Fillion and Schiopu-Kratina, who 
note that it is not important how the value of a variable is changed, but only whether the 
value of a variable is changed or not. A generalised correction pattern associated with 
column k

sy*  in an intermediate matrix kY  is defined as the (m + n)-dimensional vector of 

which the j-th entry equals one if and only if the column k
sy*  indicates that the value of the 

j-th variable should be changed, and zero otherwise. Here m denotes the number of 
categorical variables and n the number of numerical variables. Again Theorem 5.1 implies 
that once a vertex has been found, all columns with generalised correction patterns with 
ones on the same places as in the generalised correction pattern of this vertex can be 
deleted. 

Fillion and Schiopu-Kratina call a column of which the last entry is non-zero a generator. 
This is quite an understandable definition. In Chernikova’s algorithm vertices and extremal 
rays are constructed by combining columns in intermediate matrices. To generate a vertex 
at least one generator has to be combined with other columns. It is impossible to generate a 
vertex by combining only columns that are non-generators. 

Fillion and Schiopu-Kratina define a failed row as a row that contains at least one negative 
entry placed on a generator. They note that in order to solve the error localisation problem 
we can already terminate Chernikova’s algorithm as soon as all failed rows have been 
processed. This is Theorem 5.2. 

 

Theorem 5.2: If an intermediate matrix contains no failed rows, then all (generalised) 
patterns corresponding to vertices for which (5.28) is minimal have been found. 

Proof. Suppose the theorem does not hold true, and there is a vertex for which (5.28) is 
minimal and with a new optimal generalised pattern that has not yet been generated. This 
vertex can only be generated by combining a generator c that does not correspond to a 
vertex (because if this generator were a vertex either the value of (5.28) would increase or 
the same generalised pattern would be repeated) with other columns. This implies, 
however, that c contains a negative entry. Hence the intermediate matrix contains a failed 
row, contradicting the assumption.       � 

 

Fillion and Schiopu-Kratina (1993) report a reduction in computing time by a factor 60! 
The results at Statistics Netherlands were in the same order of magnitude, but slightly less 
spectacular. At Statistics Netherlands the reduction in computing time was approximately a 
factor 10 to 15. The disparity with the results of Fillion and Schiopu-Kratina may be 
explained by differences in the implementation details of the programs at Statistics Canada 
and Statistics Netherlands. 
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In Step 5 of Chernikova’s algorithm a failed row should be selected, but we have not yet 
specified which failed row. In principle, the failed row that will be processed may be 
chosen arbitrarily. The efficiency of the algorithm depends strongly on the order in which 
the rows are processed, however. Rubin (1975) and Schiopu-Kratina and Kovar (1989) 
propose a simple rule for selecting the row that will be processed. Suppose that a failed 
row has z entries equal to zero, p positive entries and q negative entries, then processing 
this row may at worst lead to a matrix with z + p + pq columns. The proposed rule says 
that a failed row should be selected to be processed for which the maximum number of 
resulting columns is as low as possible. If there are several failed rows that may be selected 
according to this rule, one of them is selected randomly. 

The final adaptation of Fillion and Schiopu-Kratina to Chernikova’s algorithm in order to 
solve the error localisation problem more efficiently is a method to speed-up the algorithm 
for records with missing values. Suppose the error localisation problem has to be solved 
for a record with missing values. In the standard algorithm described so far these missing 
values are replaced by values that are not allowed. Subsequently, the standard algorithm is 
applied. In the adapted algorithm proposed by Fillion and Schiopu-Kratina the variables 
with missing values are identified before Chernikova’s algorithm starts. These variables 
will be part of the solution to the error localisation problem anyway. For each numerical 
variable an arbitrary value, say zero, is substituted. Next, a slightly adapted version of the 
algorithm described so far is applied. This slightly adapted version of the algorithm only 
differs from the standard algorithm with respect to the way in which the value of objective 
function (5.28) of a column is determined. In the standard algorithm all entries of a column 
are taken into account when calculating the value of function (5.28), i.e. also the entries 
that correspond to variables of which the value is missing. In the adapted version of the 
algorithm only the entries corresponding to variables with non-missing values are taken 
into account when calculating the value of function (5.28) of a column. The solution to the 
error localisation problem is given by the variables corresponding to the optimal 
generalised correction patterns that are determined plus the variables with missing values. 
It is clear that the adapted algorithm leads to correct solutions to the error localisation 
problem. 

The advantage of using the adapted algorithm over using the original algorithm is that in 
the initial stages of the algorithm not much time is spent examining generalised correction 
patterns according to which many variables with non-missing values should be changed, 
which may happen in the standard algorithm. The values of function (5.28) of the 
corresponding columns later become too high when the variables with missing values are 
also identified as part of the optimal solutions to the error localisation problem. 

Fillion and Schiopu-Kratina (1993) give computational results for two applications. The 
reduction in computing time due to the above treatment of missing data varies between a 
mere 43% to a factor 13! The applications at Statistics Netherlands show a reduction in 
computing time that is comparable to the 43% reduction. 

5.6. Duffin’s algorithm and Fourier-Motzkin elimination 

Duffin (1974) considers parametric linear programming problems and uses Fourier-
Motzkin elimination to analyse these problems. To make Fourier’s method more efficient 
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Duffin proposes some improvements. Therefore, we will refer to the algorithm described 
by Duffin as Duffin’s algorithm. The algorithm proposed by Fourier and later modified by 
Duffin was, in contrast to Chernikova’s algorithm, not intended for determining the 
extremal points or extremal rays of a polyhedron. Nevertheless, Duffin’s algorithm can be 
used for generating the extremal points of a polyhedron, as we will show. 

In Duffin’s paper the processing is done column-wise. Because in the present chapter all 
processing is done row-wise instead of column-wise, we have reformulated Duffin’s 
algorithm to conform to the notation of the present chapter. 

Given is a system of linear inequalities of the following form: 

 ),...,(),...,( 11 cr nnzz λλ≥C ,     (5.33) 

where C  is an cr nn × -matrix, the iz  are unknown variables, and the jλ  are parameters. 
We say that column j of matrix C  corresponds to the j-th entry of the parameter vector.  

To examine whether such a system has a solution, we apply Fourier-Motzkin elimination 
to eliminate the variables. To eliminate variable rz  from (5.33) by means of Fourier-
Motzkin elimination we first determine all rjc  that are equal to zero, and copy those 
columns to a new matrix C′ . The entry *λ′  of the parameter vector corresponding to such a 
copied column h equals hλ .  

Next, we consider all pairs (s,t) such that 0<× rtrs cc . For each such pair we choose 
0, 21 >µµ  such that 021 =+ rtrs cc µµ , and add column ts cc *2*1 µµ +  to C′ . The 

corresponding entry *λ′  of the parameter vector is given by ts λµλµ 21 + . After all pairs 
(s,t) such that 0<× rtrs cc  have been considered row r of matrix C′  is deleted. We have 
now obtained a system given by 

 ),...,(),...,,,...,( 1111 knrr r
zzzz λλ ′′≥′+− C ,    (5.34) 

where the jλ′  are certain linear combinations of the parameters jλ , and k equals the 
number of columns of C′ . 

Continuing in this fashion we can eliminate all variables from (5.33). In each step the 
entries of the parameter vector can be expressed as linear combinations of the (original) 
parameters jλ . The resulting system is referred to as a solvent system and is of the form 

 B),...,(0 1 cnλλ≥ , 

where B is the so-called solvent matrix. The following theorem is easy to show (see e.g. 
Duffin, 1974). 

 

Theorem 5.3. A system of linear inequalities has a feasible solution if and only if the 
solvent system is satisfied. 
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Example 5.2: 
Consider the following very simple system of linear inequalities. 

 ),,(
101

011
),( 32121 λλλ≥









−
−

zz .     (5.35) 

Eliminating 1z  from (5.35) yields 

 ),()11( 3212 λλλ +≥−z .      (5.36) 

Eliminating 2z  from (5.36) gives us 

 3210 λλλ ++≥ .       (5.37) 

So, the solvent matrix is given by T)111(=B . System (5.35) has a feasible solution if 
an only if (5.37) is satisfied.       � 

 

If there is at least one pair (s,t) such that 0<× rtrs cc  when we are eliminating variable rz , 
variable rz  is said to be actively eliminated. Otherwise, it is said to be passively 
eliminated. Duffin proves the following theorem. 

 

Theorem 5.4. Theorem 5.3 remains valid if after t variables have been actively eliminated, 
any inequality involving t+2 or more parametric terms is deleted. 

 

Theorem 5.4 can be used to remove some redundant columns. In general, however, not all 
redundant columns will be removed when we apply Theorem 5.3. To remove all redundant 
columns we introduce the concept of dominated columns.  

Without loss of generality we suppose that the variables 1z  to 
rnz  are eliminated in order. 

When d variables have been eliminated from a system of linear inequalities S, we obtain an 
eliminant system S(d) consisting of linear inequalities involving only 1+dz  to 

rnz . Variable 

1+dz  may already have dropped out of S(d). In that case, S(d+1)=S(d). 

In an eliminant system S(d) a column sc* , corresponding to an entry of the parameter 

vector given by ∑
=

rn

i
ii

1
λα , is dominated by another column tc* , corresponding to an entry of 

the parameter vector given by ∑
=

rn

i
ii

1
λβ , if 0=iα  implies 0=iβ . Duffin proves the 

following theorems. 
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Theorem 5.5. Theorem 5.3 remains valid if redundant columns in an eliminant system 
S(d) are deleted in the iterative process to determine the solvent matrix. 

 

Theorem 5.6. A column in an eliminant system S(d) is redundant if and only if it is a non-
negative combination of the other inequalities. Moreover, a redundant column is 
dominated. 

5.7. Duffin’s algorithm and the error localisation problem 

5.7.1. Dines’ problem 
Closely related to Duffin’s algorithm is Dines’ problem (see Dines, 1927; Duffin, 1974; 
Houbiers, 1999b). Dines’ problem is to find all solutions of the system  

0Cx =         (5.38) 

and 

 0x ≥ ,        (5.39) 

where C is a constant cr nn × -matrix and x an cn -dimensional vector of unknowns. 

The problem can be solved by elimination of equations rather than elimination of 
variables. Dines’ problem can be considered as a dual to Fourier’s problem (see e.g. 
Duffin, 1974, and Williams, 1986). 

To solve Dines’ problem we can use Fourier’s method, and hence Duffin’s algorithm (see 
Duffin, 1974). Namely, the general solution to Dines’ problem is given by 

 Bx ),...,( 1 cn
T µµ=       (5.40) 

where 0≥iµ  and B is the solvent matrix of the corresponding parametric linear 
programming problem given by 

 ),...,(),...,( 11 cr nnzz λλ≥C       (5.41) 

Solutions to the system given by (5.38) and (5.39) are linear combinations of the columns 
of the solvent matrix B. 

5.7.2. Applying Duffin’s algorithm to the error localisation problem 
We now describe how Duffin’s algorithm can be applied to the error localisation problem. 
We have already noted before that the error localisation problem can be solved by finding 
vertices of the polyhedron given by a system of the form (5.14) and (5.15). It remains to be 
described how the vertices of this polyhedron can be found by Duffin’s algorithm. To this 
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end Houbiers (1999b) introduces additional non-negative variables φ  and 1u  to 
rnu , and 

rewrites (5.14) as a set of rn  equalities 

 0
u

x
IbA

rn =
















−− φ)( ,      (5.42) 

where 
rnI  is the rr nn × -identity matrix. Finding all feasible solutions to the constraints 

given by (5.42) together with the non-negativity constraints  

 0
u

x
≥

















φ         (5.43) 

is precisely Dines’ problem. 

So, the solutions to (5.42) and (5.43) can be found by applying Duffin’s algorithm to the 
system 

 ),...,())(,...,( 11 crr nnnzz +≥−− λλ
rnIbA ,    (5.44) 

where the iλ  are again parameters. These solutions are given by the columns of 

 B′+ ),...,( 1 cr nnµµ ,      (5.45) 

where 0≥iµ , and B′  is the solvent matrix of (5.44). 

Applying Lemma 5.1 and Theorems 5.3, 5.5 and 5.6, we see that the vertices of the system 
(5.14) and (5.15) correspond to non-dominated columns of B′  for which the entry 
corresponding to φ , i.e. the cn -th entry, is larger than zero. The vertex corresponding to 
such a column j is given by 

 jniji c
bbv ,* ′′=  for i=1,…, vn .     (5.46) 

5.7.3. A formulation of Duffin’s algorithm for finding vertices 
If we apply Duffin’s algorithm to find the vertices of the system given by (5.14) and 
(5.15), the algorithm can be formulated in almost the same way as Chernikova’s algorithm 
(see Section 5.3). In this section we first give a formulation of the former algorithm, and 
then illustrate it by means of an example. 

Like Chernikova’s algorithm, Duffin’s algorithm for finding the vertices of the system 
given by (5.14) and (5.15) consists of 9 steps. Steps 1 to 6 and Steps 8 and 9 are exactly 
the same. Only Step 7 has to be formulated differently. 



Vertex Generation Methods 

 69

To explain why only Step 7 has to be formulated differently, we make two remarks. First, 
the matrix kL  that is used in Chernikova’s algorithm can also be used in Duffin’s 
algorithm. It is then used to keep track of the parameters iλ . See also Example 5.3 below. 

Second, in Duffin’s algorithm as described in Section 5.6 the entries of a row that is being 
processed all have to become zero, whereas in Chernikova’s algorithm it is sufficient that 
the entries in a row all have to become non-negative. However, when Duffin’s algorithm is 
used to find the vertices of the system given by (5.14) and (5.15) a slightly different matrix 
as in Chernikova’s algorithm is used. This matrix includes 

rnI− , the rr nn × -identity 

matrix (see Section 5.7.2). We can avoid the use of this rr nn × -identity matrix 
rnI− , 

however. Like in Chernikova’s algorithm, it is then sufficient that all entries in a row that 
is being processed have to become non-negative. Again, see also Example 5.3 below. 

Step 7 in Duffin’s algorithm for finding the vertices of the system (5.14) and (5.15) 
consists of two parts: 
• For each pair (s,t) for which 0<× k

rt
k
rs yy  we choose 0, 21 >µµ  such that 

021 =+ k
rt

k
rs yy µµ  and adjoin the column k

t
k
s yy *2*1 µµ +  to 1kY + . 

• Delete (some of) the redundant columns of 1kY + . 

Duffin (1974) gives two rules to delete redundant columns of 1kY + . The first rule is 
weaker than the rule that is used in Step 7 of Chernikova’s algorithm. This rule is called 
the refined elimination rule, and is based on Theorem 5.4. It can be formulated as follows: 

 

Refined elimination rule: When t variables have been actively eliminated, delete any 
columns that have been generated by combining t+2 or more original columns. 

 

This first rule allows the generation of redundant columns. The second rule makes sure that 
no redundant columns are generated. We call this rule the dominance rule. This rule is 
based on Theorems 5.5 and 5.6.  

 

Dominance rule: Delete any column k
uy*  in kY  that is dominated by some other column 

k
vy* . 

 
Example 5.3: 
Suppose we want to use Duffin’s algorithm with the refined elimination rule to determine 
the vertices of the set of constraints of Example 5.1 of Section 5.3, i.e. the constraints 
given by (5.20). We process the rows in the same order as in Example 5.1. 

If we write the system in form (5.42), then we have to apply Duffin’s algorithm to the 
system 
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),...,(

10001211
01002413
00103225
00011211

),...,( 8141 λλ≥





















−−−
−−−

−−−
−−−

zz  (5.47) 

according to (5.44). 

Like we mentioned above, we prefer to use the matrix 0Y  given by (5.21). The i-th 
column of the lower matrix 0L  then corresponds to iλ  (for i=1,…,4). In 0Y  the last four 
columns of the matrix above do not occur. As a result, we do not have to make sure that all 
entries in all rows become zero (like Duffin’s algorithm requires), but rather that all entries 
in all rows become non-negative. 

When we process row one, we obtain matrix 1Y . Note that a column in matrix 1L  
corresponds to a linear combination of the iλ . Similarly, a column in a matrix kL  will also 
correspond to a linear combination of the iλ .  

Processing row four, we obtain matrix 2Y . Subsequently, processing row three, we obtain 
matrix 3Y . The combination of columns 1 and 4 of matrix 2Y  is deleted because of the 
refined elimination rule. Likewise, the combination of columns 2 and 3 of matrix 2Y  is 
also deleted because of the refined elimination rule. 

Finally, processing row two, we obtain the matrix below. 

 

































=

2020210
627001

16412112
1622100
000000
0210012
000352
000000

ˆ 4Y .     (5.48) 

In comparison to matrix 4Y  of Example 5.1, this matrix has an additional column, namely 
the fifth column. If we apply the dominance rule, we see that this column is redundant and 
may be deleted.  

The vertices that Duffin’s algorithm determines are, of course, the same as the vertices 
determined by Chernikova’s algorithm.      � 

5.8. Comparing Chernikova’s algorithm to Duffin’s algorithm 

If Duffin’s algorithm for finding vertices is applied with the dominance rule, the resulting 
matrix does not contain any redundant columns. One might think that Duffin’s algorithm is 
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better in this respect than Chernikova’s algorithm. This is not the case: Chernikova’s 
algorithm does not generate any redundant columns either.  

The above statement is easy to prove by induction. First note that the initial matrix 0Y  
does not contain any redundant columns. Now, suppose that a matrix kY  does not contain 
any redundant columns, but Chernikova’s algorithm generates a redundant column c in the 
next matrix 1kY + . According to Theorem 5.6 there is a column v that dominates c. There 
are two possibilities: either v was copied from kY , or v is a combination of two columns 
of kY . In both cases, v (if v was copied from kY ) or the constituent columns of v (if v is a 
combination of two columns of kY ) already dominated c (if c was copied from kY ) or 
the constituent columns of c (if c is a combination of two columns of kY ). So, both cases 
would contradict the assumption that kY  does not contain any redundant columns. 

The problem with Chernikova’s algorithm is not that it generates redundant columns, but 
that it is a rather slow algorithm. This is for a substantial part caused by its Step 7. In Step 
7 of Chernikova’s algorithm a time-consuming check has to be performed to prevent the 
generation of redundant columns. Duffin manages to identify a rule, the refined 
elimination rule, that prevents the generation of a number of redundant columns. This rule 
is much faster to apply than Step 7 of Chernikova’s algorithm, but allows the generation of 
redundant columns.  

All the modifications to Chernikova’s algorithm by Rubin, Sande, Schiopu-Kratina and 
Kovar, and Fillion and Schiopu-Kratina described in this chapter to make it more efficient 
for solving the error localisation problem also apply to Duffin’s algorithm. One could 
therefore consider using the refined elimination rule during most iterations and only every 
once in a while, for instance when the number of columns becomes too high to be handled 
efficiently by a computer, resort to the dominance rule. After all failed rows have been 
processed the dominance rule has to be applied to remove redundant columns in the 
solvent matrix B′  of (5.44). One may hope that this leads to an algorithm that is faster 
than Chernikova’s algorithm, but this remains to be tested. 

5.9. Modifications for equalities 

In Chernikova’s algorithm, and equivalently Duffin’s algorithm, equalities can be dealt 
with by specifying each equality as two inequalities. This is, however, rather inefficient, 
and equalities can be dealt with more efficiently by treating them in a special way. First, a 
row corresponding to an equality is considered failed if at least one non-zero entry is 
placed on a generator (see Section 5.5 for a definition of a failed row corresponding to an 
inequality). 

Second, when all entries on a row corresponding to an equality are positive, or all entries 
on such a row are negative, then the only feasibly solution to (5.12) and (5.13) is 0x = . 

Third, when a row representing an equality is processed, only the columns that contain 
zeroes on that row will be copied in Step 6 of Chernikova’s or Duffin’s algorithm rather 
than all columns with non-negative entries on that row.  
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Fourth, when checking whether two columns should be combined, the rows corresponding 
to processed equalities need not be considered as they contain only zeroes.  

Fifth, if a failed row corresponds to an equality, processing this row may at worst lead to a 
matrix with z + pq columns, where the failed row has z entries equal to zero, p positive 
entries and q negative entries. Thus, the criterion given in Section 5.5 to decide which row 
should be processed next is replaced by the following criterion:  

• Calculate for each failed row the value maxN  given by pqpzN ++=max  if the row 
corresponds to an inequality, and by pqzN +=max  if the row corresponds to an 
equality. Here, z is the number of entries in the row equal to zero, p the number of 
positive entries in the row and q the number of negative entries in the row. 

• Process the failed row with the lowest value of maxN . If there are several failed rows 
for which the value of maxN  is minimal, select one of them randomly for processing. 

5.10. Discussion 

Chernikova’s algorithm has been implemented in several software packages for error 
localisation, namely GEIS (Kovar and Whitridge, 1990), CherryPi (De Waal, 1996; De 
Waal and Van de Pol, 1997), AGGIES (Todaro, 1999), and a program developed by the 
Central Statistical Office of Ireland (see Central Statistical Office, 2000). All these systems 
can handle only numerical data. Sande has developed a computer program for error 
localisation of mixed data based on Chernikova’s algorithm. 

In GEIS none of the improvements proposed by Fillion and Schiopu-Kratina have been 
implemented. The computing power of GEIS is limited to approximately 25 edits 
involving 25 variables. Larger surveys have to be split up. AGGIES and the program 
developed by the Central Statistical Office of Ireland have both been developed in SAS. As 
far as the author of this book is aware the improvements proposed by Fillion and Schiopu-
Kratina have been implemented in both systems. Like GEIS the computing power is 
limited to approximately 25 edits involving 25 variables. Again, larger sets of variables or 
edits have to be split up into smaller subsets. CherryPi has been developed in Delphi 3. All 
improvements proposed by Fillion and Schiopu-Kratina have been incorporated into 
CherryPi. The program can handle a bit more than 100 edits involving a bit more than 100 
variables. This is sufficient to handle most business surveys at Statistics Netherlands. For 
larger surveys the program becomes very slow, i.e. several minutes per record on a 500 
MHz PC. For some practical results using CherryPi we refer to Section 11.4. The computer 
program developed by Sande can handle the same number of edits and variables as 
CherryPi, or may be even a bit more. Unfortunately, Sande has not published any details 
on his system. 

The method described in this chapter can be improved upon in several ways. First of all, it 
should be possible to develop a better way to select the row to be processed. In this chapter 
we only consider one criterion, namely the maximum number of columns that will be 
generated in the next intermediate matrix. Other criteria, for example a criterion that aims 
to generate a good feasible solution to the error localisation problem quickly, should be 
developed and tested. 
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Second, missing values might be handled better than in the way that is proposed in this 
chapter. Here we simply fill in an arbitrary value, say zero, for a value that is missing, and 
then run the vertex generation method to determine the optimal solutions to the error 
localisation problem. Instead of filling in an arbitrary value, one could consider filling in a 
more appropriate value. For instance, if the total of some variables is missing, but the 
values of the constituent variables are not missing, it is probably a good idea to fill in the 
sum of these values for the missing total. It remains to be examined when appropriate 
values can be determined quickly, and whether filling these values in really leads to an 
improved performance of the algorithm. 

Third, in this chapter we only consider the vertex generation methods due to Chernikova 
and Duffin. One could also consider using other vertex generation methods. Sande (2000a) 
considers a vertex generation algorithm proposed by Bremner, Fukuda and Marzetta 
(1998) to be a promising one. 

At first sight it seems very useful to remove redundant edits that were specified by the 
subject-matter specialists (see e.g. Houbiers, 1999c). Because the number of rows is 
reduced if redundant edits are removed, fewer rows have to be processed by the method 
presented in this chapter, so one could expect this method to terminate sooner. Sande 
(2000a), however, draws attention to another phenomenon, namely that redundant 
constraints may help the method in its search for feasible solutions to the error localisation 
problem. Redundant edits may therefore help the algorithm find a good feasible solution 
rather quickly. According to Sande (2000a) having redundant edits can often result in 
shorter computing time. 

In Chapter 11 we compare computational results of CherryPi to computational results of 
various others programs for automatic error localisation, such as a program based on a 
commercial solver for mixed integer programming problems (see also Section 3.5), and 
program based on a non-standard branch-and-bound algorithm (see Chapter 8). 

We end this chapter with the remark that a modified version of Chernikova’s can be used 
to solve general 0-1 integer programming problems (see Rubin, 1977). In turn, an adapted 
version of that modification can be used to detect balance edits in a data set of which the 
edits are as yet unknown (see De Waal, 1997b). 
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6. The Error Localisation Problem as a Disjunctive-Facet Problem 

6.1. Introduction 

The disjunctive-facet problem was proposed in 1974 by Glover, Klingman and Stutz. In 
their words, the motivation for studying this problem is that “it provides a ‘direct’ 
formulation for certain classes of mixed integer programs in which one desires to select an 
optimal production schedule, rental policy, distribution pattern, etc., from a variety of 
alternatives (disjunctive sets), each of which has an associated set of constraints that must 
all be satisfied if a particular alternative is chosen”. To illustrate the usefulness of the 
disjunctive-facet problem we briefly describe in Section 6.2 a motivational example given 
by Glover, Klingman and Stutz. From an abstract point of view, the disjunctive-facet 
problem is mathematically equivalent to the mixed integer programming problem. The 
difference is that the disjunctive-facet problem models certain discrete alternatives by 
means of so-called facet conditions rather than by means of integer variables. In many 
cases modelling an optimisation problem as a disjunctive-facet problem appears to be more 
natural than modelling it as a standard mixed integer programming problem. At first sight 
this seems to be also true for the error localisation problem (see the end of Section 6.2). 
This was one reason why we became interested in formulating the error localisation 
problem as a disjunctive-facet problem. 

Glover, Klingman and Stutz (1974) also propose a method for solving the disjunctive-facet 
problem. This method is an extension of an earlier method by Glover and Klingman (1973) 
for solving the so-called generalised lattice-point problem. The method exploits the 
structure of the disjunctive-facet problem by means of suitably defined convexity cuts. It is 
based on repeatedly solving standard linear programming (LP) problems. If the solution to 
such an LP-problem also constitutes a solution to the disjunctive-facet problem, we are 
done. Otherwise, we generate a cut and add it to the current LP-problem. The fact that the 
disjunctive-facet problem can be solved by solving a sequence of standard LP-problems 
was another reason for our interest in formulating the error localisation problem as a 
disjunctive-facet problem. 

Apart from the article by Glover, Klingman and Stutz, we were unable to find more 
information on the disjunctive-facet problem in literature. The problem and the solution 
method by Glover, Klingman and Stutz apparently never became popular. Despite this 
unpopularity, the two above-mentioned positive aspects of the disjunctive-facet problem, 
the rather natural formulation for certain classes of optimisation problems and the fact that 
disjunctive-facet problems can be solved by repeatedly solving LP-problems, offered 
enough potential in our opinion to study both the problem formulation and the solution 
method in detail. 

In Section 6.3 we describe the disjunctive-facet problem, and in Section 6.4 the algorithm 
proposed by Glover, Klingman and Stutz for solving it. Section 6.5 illustrates the 
algorithm by means of an example. The material in these sections is based on the article by 
Glover, Klingman and Stutz. 
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In Section 6.6 we show that the algorithm proposed by Glover, Klingman and Stutz is not 
necessarily finite. This had not yet been noted in literature before. In Section 6.7 we try to 
formulate the error localisation problem for continuous data as a disjunctive-facet problem. 
This turns out to be a non-trivial task. In fact, we need to adapt the disjunctive-facet 
problem from a ‘static’ problem where all requirements are given beforehand to a 
‘dynamic’ problem where some additional requirements are determined while solving the 
problem. In Section 6.7 we also modify the algorithm due to Glover, Klingman and Stutz 
in order to solve the error localisation problem for continuous data. Our algorithm is 
illustrated in Section 6.8 by means of an example. We prove the finiteness of the proposed 
algorithm in Section 6.9 for some simple instances. In Section 6.9 we also propose 
modifications to the algorithm of Section 6.7 so that finiteness is guaranteed in the general 
case. The material in Sections 6.6 to 6.9 is original work. 

Section 6.10 defines some cuts proposed by Cabot (1975) that are in some cases stronger 
than the cuts used by Glover, Klingman and Stutz. In Section 6.11 we formulate the error 
localisation problem in a mix of continuous and categorical data as a dynamic disjunctive-
facet problem. In the same section we also propose algorithms for solving this problem, 
and discuss the finiteness of these algorithms. Finally, Section 6.12 concludes this chapter 
with a brief discussion. Sections 6.11 and 6.12 are again original work. 

This chapter is based on De Waal (1997c and 1998a). 

6.2. Motivational example 

Glover, Klingman and Stutz (1974) give the following motivational example for the 
disjunctive-facet problem. A group of investors has 20 pounds of a raw material from 
which they can make either of two finished products. For the first product three pounds of 
the raw material per pound of the finished product is required, and for product 2 five 
pounds of the raw material per pound of the finished product. A buyer has offered to buy 
all of each product the investors can produce in one week at 100 Euro per pound of product 
1 and 150 Euro per pound of product 2. The products can be produced at two shops (A and 
B). The investors can buy 17 man-hours of work from shop A for 450 Euro or 17 man-
hours from shop B for 350 Euro. To produce a pound of product 1 shop A takes four man-
hours and shop B 6 man-hours. To produce a pound of product 2 takes shop A 7 man-
hours and shop B 4 man-hours. The decisions the investors need to make is whether to use 
shop A or shop B and how much of each product to produce in order to maximise their 
profit. 

Let ix  (i=1,2) be the pounds of product i produced. Let 3x  be 1 if shop A is used and 0 if 
it is not, and let 4x  be 1 if shop B is used and 0 if it is not. The objective function that is to 
be maximised is then given by  

4321 350450150100 xxxx −−+ .     (6.1) 

The objective function (6.1) has to be maximised subject to  

 2053 21 ≤+ xx ,       (6.2) 

 143 ≥+ xx ,       (6.3) 
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 13 ≤x ,        (6.4) 

 14 ≤x ,        (6.5) 

 0x ≥         (6.6) 

and 

 AL∈x  or BL∈x ,      (6.7) 

where 

 }1,1774|{ 321 =≤+= xxxLA x      (6.8) 

and 

 }1,1746|{ 421 =≤+= xxxLB x .     (6.9) 

Constraint (6.2) is a resource constraint. Constraint (6.3) expresses that at least one shop is 
used. Constraint (6.7) says that either the constraint set that corresponds to shop A or the 
constraint set that corresponds to shop B applies. By introducing slack variables 1u , 2u , 

3u , and 4u  given by  

 211 4617 xxu −−= ,      (6.10) 

 212 7417 xxu −−= ,      (6.11) 

 43 1 xu −= ,       (6.12) 

 34 1 xu −= ,       (6.13) 

LA and LB can be re-written as  

 }0,0|{ 24 ≥== uuLA x       (6.14) 

and 

 }0,0|{ 13 ≥== uuLB x .      (6.15) 

The requirement that x be an element of LA or LB is an example of a so-called L-set 
requirement (see next section). Each iu  occurring in the definition of an Lk must satisfy 
either 0=iu  or 0≥iu . We will therefore refer to these conditions as facet conditions (see 
next section). 

In the error localisation problem, one may hope that the structure of edits we consider in 
this book, i.e. edits of type (3.1), allows one to formulate this problem in a natural manner 
as a disjunctive-facet problem. After all, the numerical conditions of systems of edits of 
type (3.1) can be split up into disjunctive subsystems that each have to hold true if the 
corresponding categorical variables values have certain values. At first sight, it appears to 
be possible to let each such disjunctive subsystem correspond with an L-set requirement. 
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Unfortunately, as we will see in the course of this chapter, formulating the error 
localisation problem as a disjunctive-facet problem is a non-trivial exercise. 

6.3. The disjunctive-facet problem 

The disjunctive-facet problem is an LP problem with an extra requirement: the L-set 
requirement. In the disjunctive-facet problem two polyhedral regions are defined: one 
polyhedral region corresponding to the LP problem, the other one corresponding to the L-
set requirement. Loosely speaking, sets kL  are defined that identify (or contain) a number 
of facets of the convex polyhedral region corresponding to the L-set requirement. A set kL  
is said to be satisfied by a vector x when x is an element of kL . Now the L-set requirement 
is that at least q sets kL  are satisfied. Below we give a stricter mathematical formulation of 
the disjunctive-facet problem. This formulation closely follows the formulation given by 
Glover, Klingman and Stutz.  

In the disjunctive-facet problem a set of constraints 

 Dxdu −= ,       (6.16) 

 riui ≥≥ for        0 ,      (6.17) 

(for certain r) is defined. Each component iu  of u is involved in one or more sets kL  
(k = 1,...,s). For a given set kL , each iu  that is involved in kL  has a facet condition 
associated with it. This facet condition is denoted as iki Cu ∈ . There are two types of facet 
conditions: ikC  may be either {0} or the set containing all non-negative real numbers. 
That is, a facet condition for a iu  that is involved in kL  may either be 0=iu  or 0≥iu . A 

iu  may have different facet conditions in different sets kL , but can have only one facet 
condition in a given set (if iu  is involved in that set), because the combination of the two 
facet conditions 0=iu  and 0≥iu  is equivalent to 0=iu . A set kL  is said to be satisfied 
if iki Cu ∈  for all iu  that are involved in kL . For convenience we sometimes write kLi∈  
instead of “ iu  is involved in kL ”. 

Using the above terminology, the disjunctive-facet problem may be defined as finding a 
solution to the problem of minimising  

 cx=0x ,       (6.18) 

i.e. the inner product of a constant vector c and a vector of unknowns x, subject to the 
constraints (6.16) and (6.17), 

 Axbv −= ,       (6.19) 

 0v ≥         (6.20) 

and the L-set requirement, i.e. the constraint that at least q of the sets kL  (k=1,...,s) are 
satisfied. The restrictions (6.19) and (6.20) include 0x ≥ . 
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To illustrate the concepts introduced above we repeat an example of a disjunctive-facet 
problem given by Glover, Klingman and Stutz (1974) for the case q = 1, i.e. for the case 
where only one L-set has to be satisfied. 

 

Example 6.1:  
The objective function, which is to be minimised, is defined as 

 217
1

0 xxx −−= .       (6.21) 

The v-variables, i.e. the slacks corresponding to the ordinary LP constraints, have to satisfy  

 213
2

1 2 xxv ++−= ,      (6.22) 

 217
1

2 6 xxv −+= ,      (6.23) 

 213 12 xxv −−= ,       (6.24) 

 14 xv = ,        (6.25) 

 25 xv =         (6.26) 

and 

 0≥iv  i=1,…,5.      (6.27) 

The u-variables, i.e. the variables that are involved in the facet conditions, have to satisfy 

 216
1

1 3 xxu +−−= ,      (6.28) 

 212 4 xxu ++= ,       (6.29) 

 213
1

3 4 xxu ++−= ,      (6.30) 

 212
3

4 6 xxu +−= ,      (6.31) 

 214
3

5 4 xxu −+= ,      (6.32) 

 217
2

6 xxu +−=        (6.33) 

and 

 4for        0 ≥≥ iui .      (6.34) 

The L-sets 1L , 2L  and 3L  are defined as follows: }0,0,0{ 6311 =≥≥= uuuL , 
}0,0{ 522 =≥= uuL  and }0,0,0{ 4213 =≥≥= uuuL . Each variable iu  is involved in at 

least one set kL , namely 1u  is involved in 1L  and 3L , 2u  in 2L  and 3L , 3u  in 1L , 4u  in 

3L , 5u  in 2L , and 6u  in 1L . A set kL  is satisfied when the vector 








v
u

 is an element of 

kL . At least one set kL  (k = 1,...,3) should be satisfied.  
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6.4. The algorithm of Glover, Klingman and Stutz 

Glover, Klingman and Stutz (1974) distinguish between two cases: q = 1 and q > 1. The 
algorithm for the second case being a simple extension of the algorithm for the case q = 1. 
In the present book we only discuss the algorithm for the case q = 1. 

The general idea of the algorithm as follows. A set of constraints, cuts, is defined while 
executing the algorithm. These cuts are added to the set of constraints defined by (6.16), 
(6.17), (6.19) and (6.20). Initially, the set of cuts is empty. We repeat the following two 
steps until a solution that satisfies the L-set requirement has been found.  

1. Use the simplex method (see e.g. Hadley, 1962, and Chvátal, 1983) to solve the LP 
problem of minimising objective function (6.18) subject to the constraints defined by 
(6.16), (6.17), (6.19) and (6.20), where (6.19) consists of the original constraints and 
the current set of cuts.  

2. Add an additional cut to the set of cuts when the solution obtained does not satisfy the 
L-set requirement. 

It is clear that the performance of the algorithm depends on the cuts that are generated 
during the algorithm. The cuts that are generated have to be valid, i.e. they have to be 
violated by the current solution obtained by the simplex method in Step 1 but have to be 
satisfied by an optimal solution (if a feasible solution exists) to the disjunctive-facet 
problem. This guarantees that when an optimal solution to an LP problem is found during 
the algorithm that satisfies the L-set requirement, this solution to the LP problem is also an 
optimal solution to the disjunctive-facet problem. The cuts preferably should be as deep as 
possible, i.e. they should cut off a region of the feasible region of the current LP problem 
that is as large as possible. When the cuts are deep, the algorithm generally terminates after 
relatively few iterations. 

We now describe the cuts that are proposed by Glover, Klingman and Stutz. Their cuts are 
constructed by considering the simplex tableau after an iteration of the simplex method. 
First the vector y is defined by 









=

v
u

y .       (6.35) 

We construct the simplex tableau for the following LP problem: maximise  

cx−=0x        (6.36) 

subject to the constraints 

 xBBy 0 −= ,       (6.37) 

and  

 v ≥ 0 and 0≥iy  (for i ≥ r),     (6.38) 

where, initially,  
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=

b
d

B0  and 







=

A
D

B .       (6.39) 

The above format of the simplex tableau enables us to keep track of the transformations of 
the u-constraints due to pivoting. We keep in mind, however, that it is not the above LP 
problem that needs to be solved. Besides satisfying (6.37) and (6.38) at least one of the sets 

kL  has to be satisfied. 

Using the above simplex tableau as the initial tableau, the general current tableau 
representation of the problem may be given as: maximise 

 ct−= 00 cx        (6.40)  

subject to the constraints  

 Btby 0 −=        (6.41) 

and (6.38), where y is the same as above, t denotes any set of current non-basic variables, 
and 0c , c, b0 and B depend on the composition of t. After the termination of the simplex 
algorithm the current optimal solution is denoted as 

 0b
v
u

y =








′
′

=′ ,       (6.42)  

and the j-th column of B as bj. 

In order to describe the cuts of Glover, Klingman and Stutz conveniently we need to 
introduce some notation for the distinct values of a non-basic variable occurring in (6.40) 
and (6.41), say jt , corresponding to the sequence in which the iu -variables become zero 

as jt  is increased from zero. The sequence determines values h
jt , h=1,...,p (where p 

depends on j) such that ∞=<<<<= p
jjjj tttt ...0 210 , where at least one iu  that was not 

equal to 0 for 0=jt  becomes 0 for h
jj tt = , 0 < h < p (we define p = 1 if no such iu  

exists), and where no iu  is 0 unless h
jj tt =  for 0 < h < p. 

We also define h
jI  by }for    0|{ h

jji
h
j ttuiI === , i.e. h

jI  is the set of indices of the iu  

that become 0 when h
jj tt = , holding the remaining non-basic variables at 0. 

To initiate their algorithm Glover, Klingman and Stutz define a “current” set *
kL  for each 

kL  that consists of the indices of the iu  involved in kL  such that iki Cu ∉′ . 

Having introduced all this notation we are finally ready to state the algorithm of Glover, 
Klingman and Stutz: 

1. Find the optimal solution to the current LP problem by means of the simplex 
algorithm. 
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2. Select a non-basic variable jt  (not previously selected) and examine the values h
jt  in 

sequence, beginning with h = 1. If ∞=1
jt , then let ∞=*

jt  and select another jt . 

3. If h
jk IL ⊂*  for any k such that jt  is not involved in kL , then let h

jj tt =*  and return to 

Step 2 to select another jt  variable. 

4. Otherwise, for each k such that jt  is not involved in kL , update *
kL  to be h

jk IL −* , and 

increase h by 1. If now ∞=h
jt , set ∞=*

jt  and return to Step 2. Otherwise, return to 

Step 3. 

5. When all jt  have been selected: construct the cut      

0≥*v ,        (6.43) 

where 

∑ −=
j

jj* ttv 1)1( * ,      (6.44) 

and add it to the set of constraints. Return to Step 1. 

Note that the number of entries of the vectors v and y is increased by one each time Step 5 
is executed. 

Glover, Klingman and Stutz (1974) give an algebraic proof that the cuts generated in the 
above way are indeed valid ones. We restrict ourselves to giving geometric arguments for 
the validity of the cuts. First note that *

kL  consists of the indices of those iu  involved in 

kL  for which iki Cu ∉′  and such that the associated hyperplanes, i.e. 0=iu , do not 
intersect any of the line segments  

 *0for        jt<<− λλj0 bb      (6.45) 

corresponding to the jt  that have already been selected, nor the line segment  

 h
jt<<− µµ 0for        j0 bb      (6.46) 

corresponding to the jt  that is currently being dealt with, where h
jt  is the value that is 

currently being examined in Step 3. Namely, any i in the initial current set *
kL , i.e. the 

index of any iu  involved in kL  for which iki Cu ∉′ , for which the associated hyperplane, 
0=iu , intersects either one of the line segments (6.45) or the line segment (6.46) is 

removed from *
kL . 



The Error Localisation Problem as a Disjunctive-Facet Problem 

 83

When a current set *
kL  is contained in a set h

jI  in Step 3, then all hyperplanes associated to 
the iu  involved in kL  intersect at least one of the line segments (6.45), or the line segment  

 h
jt≤<− µµ 0for        j0 bb      (6.47) 

corresponding to the jt  that is currently being dealt with, where h
jt  is the value that is 

currently being examined. At least one hyperplane associated to a iu  involved in kL  
intersects the line segment (6.47) in the point  

h
jtj0 bb − .       (6.48) 

After all jt  have been dealt with, for each jt  a value *
jt  has been determined. The cutting 

plane that is constructed in Step 5 is the plane through those points given by 

 ∞<− **  for which       jj ttj0 bb       (6.49) 

and parallel to those vectors bj for which ∞=*
jt . 

If jt  is involved in kL  then *
kL  does not have to be updated in Step 4. Namely, suppose 

that i is an element of the h
jI  for the jt  involved in kL  ( Jj∈ ) only, then no point in the 

region that is cut off can satisfy 0=iu  and 0=jt  for all Jj∈ . 

It is clear that the cut generated in Step 5 cuts off the optimal solution to the current LP 
problem. Now suppose that a cut generated by the algorithm of Glover, Klingman and 
Stutz would not be valid, i.e. suppose that the new feasible region would not contain the 
optimal solution to the disjunctive-facet problem (assuming that such an optimal solution 
exists). In other words, suppose that an optimal solution to the disjunctive-facet problem is 
contained in the region that is cut off. Denote this optimal solution by 

 








′′
′′

=′′
v
u

y .       (6.50) 

This optimal solution satisfies the L-set requirement, say it satisfies at least kL . The set kL  
can be written as 

 }for    0 ,for    0|{ 21 JjuJiuL jik ∈≥∈== y    (6.51) 

for certain index sets 1J  and 2J  ( ∅=∩ 21 JJ ). The initial current set *
kL  can be 

expressed in terms of 1J  and 2J  as 

 }0|{}0|{ 21
* <′∈∪≠′∈= iik uJiuJiL .    (6.52) 

Now suppose i  is an element of the above initial current set *
kL . We consider two cases. 
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1. If 1Ji∈ , then 0≠′iu  in the optimal solution to the current LP problem and 0=′′iu  in 

an optimal solution to the disjunctive-facet problem, which we assume to lie in the 
region that is cut off. This implies that the hyperplane 0=iu  intersects at least one of 

the line segments given by (6.45). This latter observation is clear from a geometric 
point of view. Glover (1973) calls this the first cut-search lemma, and proves it 
algebraically. 

2. If 2Ji∈ , then 0<′iu  in the optimal solution to the current LP problem and 0≥′′iu  in 

an optimal solution to the disjunctive-facet problem, which we assume to lie in the 
region that is cut off. This implies that there is a point in the region that is cut off for 
which 0=iu . This in turn implies again that the hyperplane 0=iu  intersects at least 

one of the line segments given by (6.45). 

We conclude that if the region that is cut off contained an optimal solution to the 
disjunctive-facet problem (assuming that such an optimal solution exists) then all 
hyperplanes 0=iu  for i  in the initial current set *

kL , where kL  is any L-set that is 
satisfied by this optimal solution to the disjunctive-facet problem, would intersect a line 
segment of the form (6.45). This is a contradiction, because by construction of the 
algorithm there exists at least one i  in the initial current set *

kL  such that the hyperplane 
0=iu  intersects the half line 

 )0(      >− λλj0 bb       (6.53) 

in a point of the form (6.49).  

Above we have given geometric arguments for the validity of the cuts generated by the 
algorithm of Glover, Klingman and Stutz. In principle, it is possible that the cuts can be 
made somewhat deeper. The algorithm guarantees only that an optimal solution to the 
disjunctive-facet problem does not lie in the region that is cut off, but it does not guarantee 
that an optimal solution lies on the boundary of the cut constructed in Step 5. In Section 
6.10 alternative cuts are described that are sometimes stronger than the cuts proposed by 
Glover, Klingman and Stutz. 

6.5. An example of the algorithm of Glover, Klingman and Stutz 

In this section we apply the algorithm of Glover, Klingman and Stutz to the example of 
Section 6.3. We only construct one cut. We use the dual simplex algorithm to find the 
optimal LP solution to the problem of minimising (6.21) subject to (6.22) to (6.34). The 
optimal LP solution is attained at the point for which both 01 =v  and 06 =u . This point is 
infeasible for the disjunctive-facet problem. The simplex tableau (in “extended Tucker 
form”) is given in Table 6.1. 
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Table 6.1: Simplex tableau 

  1v−  6u−  

0x  -9/10 9/20 11/20 

1u  -11/4 -1/8 -7/8 

2u  -13/10 -27/20 7/20 

3u  -27/10 -13/20 -7/20 

4u  69/20 51/40 -91/40 

5u  199/40 -39/80 119/80 

6u  0 0 -1 

1v  0 -1 0 

2v  57/10 3/20 17/20 

3v  93/10 27/20 -7/20 

4v  21/10 -21/20 21/20 

5v  3/5 -6/20 -7/10 

 

According to the current simplex tableau given in Table 6.1 we can express the basic u-
variables in the following way in terms of the non-basic variables: 

 68
7

18
1

4
11

1 uvu ++−= ,      (6.54) 

 620
7

120
27

10
13

2 uvu −+−= ,     (6.55) 

 620
7

120
13

10
27

3 uvu ++−= ,     (6.56) 

 640
91

140
51

20
69

4 uvu +−= ,      (6.57) 

and 

 680
119

180
39

40
199

5 uvu −+= .     (6.58) 

Increasing 1v  we find: 

 96.027
261

1 ==t  and }2{1
1 =I  (i.e. 02 =u  for 27

26
1 =v  and 06 =u ), 

 71.217
462

1 ==t  and }4{2
1 =I , 
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 15.413
543

1 ==t  and }3{3
1 =I  

and 

 224
1 =t  and }1{4

1 =I . 

Similarly, increasing 6u  we find: 

 14.37
221

2 ==t  and }1{1
2 =I , 

 34.3119
3982

2 ==t  and }5{2
2 =I  

and 

 71.77
543

2 ==t  and }3{3
2 =I . 

The initial current sets *
kL  (k=1,...,3) are given by }3,1{*

1 =L , }5 ,2{*
2 =L  and 

}4 ,2 ,1{*
3 =L . 

We first consider 1v . Since 1
1

* ILk ⊄  (k = 1,...,3), the current sets *
kL  are updated to 

become: }3 ,1{*
1 =L , }5{*

2 =L  and }4 ,1{*
3 =L . Since 2

1
* ILk ⊄  (k = 1,...,3), the current sets 

*
kL  are again updated to become: }3 ,1{*

1 =L , }5{*
2 =L  and }1{*

3 =L . Since 3
1

* ILk ⊄  

(k=1,...,3), the current sets *
kL  are once again updated to become: }1{*

1 =L , }5{*
2 =L  and 

}1{*
3 =L . Since 4

1
* ILk ⊂  for k=1, 3, we set 224

1
*
1 == tt . 

Next we consider 6u . Since 1
2

* ILk ⊂  for k=1,…,3, we set 7
221

2
*
2 == tt . 

We construct the cut 

 1622
7

122
1 ≥+ uv ,      (6.59) 

i.e. the cut  

 01 622
7

122
1

6 ≥++−= uvv .     (6.60) 

We add the constraint 

 06 ≥v         (6.61) 

to the set of constraints. We solve the new LP problem, i.e. the problem of minimising 
(6.21) subject to (6.22) to (6.34), (6.60) and (6.61). If necessary, we construct a new cut, 
etc, until the disjunctive-facet problem has been solved. In fact, it turns out that in this 
example in total two cuts are necessary (see Glover, Klingman and Stutz, 1974). After 
these two cuts have been added to the set of constraints the disjunctive-facet problem can 
solved to optimality by solving the associated LP problem. 
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6.6. Finiteness of the algorithm of Glover, Klingman and Stutz 

Glover, Klingman and Stutz (1974) do not discuss the finiteness of their algorithm. In this 
section we demonstrate that their algorithm for the disjunctive-facet problem does not 
always terminate after a finite number of iterations. The counterexample we consider is 
given below. This example is taken from De Waal (1997c). 

The objective function to be minimised is given by 

 00 =x ,        (6.62) 

i.e. we are in fact only trying to find a feasible vector. 

The v-variables are given by 

 11 xv = ,        (6.63) 

 22 xv = ,        (6.64) 

 323 213 +−−= xxv ,      (6.65) 

and 

 33 214 −−= xxv .      (6.66) 

These v-variables have to satisfy 

 0≥iv  for i=1,…,4.      (6.67) 

Note that the constraint 01 ≥v  is redundant, i.e. it is satisfied if the other three constraints 
are satisfied. 

The u-variables are given by 

 2
3

11 −= xu ,       (6.68) 

 333 212 −−= xxu ,      (6.69) 

and 

 3233 213 −+= xxu .      (6.70) 

The L-sets 1L , 2L  and 3L  are defined by 

 }0,0{ 321 === uuL ,      (6.71) 

 }0,0{ 312 === uuL       (6.72) 

and 

 }0,0{ 213 === uuL .      (6.73) 

At least one of the sets kL  (k=1,...3) has to be satisfied. 
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The disjunctive-facet problem has only one feasible solution, namely 2
3

1 =x  and 

36
1

2 =x . In that case all sets kL  (k=1,...3) happen to be satisfied. 

In (x1, x2)-space, the polyhedron defined by (6.63) to (6.70) has three vertices: vertex 0A  
given by 11 =x  and 02 =x  (corresponding to 02 =v  and 04 =v ), vertex 0B  given by 

21 =x  and 02 =x  (corresponding to 02 =v  and 03 =v ), and vertex 0C  given by 2
3

1 =x  

and 32
1

2 =x  (corresponding to 03 =v  and 04 =v ). 

Suppose that during the first iteration vertex 0A  is found as solution to the current LP 
problem. The cut generated by the algorithm of Glover, Klingman and Stutz is given by 

 033 2
3

215 ≥−+= xxv .     (6.74) 

Vertex 0A  is cut off by this cut, whereas two new vertices are generated in (x1, x2)-space (a 

vertex given by 2
3

1 =x  and 02 =x , and a vertex given by 4
5

1 =x  and 34
1

2 =x ). 
Name one of these new vertices 1A . 

Suppose that during the second iteration vertex 0B  is found as solution to the current LP 
problem. The cut generated by the algorithm of Glover, Klingman and Stutz is given by 

 033 2
3

216 ≥++−= xxv .     (6.75) 

Vertex 0B  is cut off by this cut. There are two vertices of the new polyhedron for which 
06 =v , namely a vertex given by 2

3
1 =x  and 02 =x , and a vertex given by 4

7
1 =x  and 

34
1

2 =x . At least one of the vertices for which 06 =v  differs from vertex 1A . Name 
one of these vertices 1B . 

Suppose that during the third iteration vertex 0C  is found as solution to the current LP 
problem. The cut generated by the algorithm of Glover, Klingman and Stutz is given by 

 034
1

27 ≥+−= xv .      (6.76)  

Vertex 0C  is cut off by this cut. There are two vertices of the new polyhedron for which 

07 =v , namely a vertex given by 4
5

1 =x  and 34
1

2 =x , and a vertex given by 4
7

1 =x  

and 34
1

2 =x . Either one of these vertices has been named 1A , or the other one has been 
named 1B . Name the vertex that has not received a name yet 1C . 

In (x1, x2)-space, the new feasible region, consisting of convex combinations of 1A , 1B  and 

1C , is in some sense similar to the original feasible region, consisting of convex 
combinations of 0A , 0B  and 0C . The new feasible region can be constructed from the 
original feasible region by applying the transformation 
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 )3,(),(: 22
1

4
1

12
1

4
9

21 xxxx −−vϕ     (6.77) 

to each point ),( 21 xx  in the original feasible region in (x1, x2)-space. The transformation 

ϕ  maps the point )3,( 6
1

2
3  onto itself. Another property of ϕ  is that it leaves 01 =u , 

02 =u  and 03 =u  invariant. That is, ϕ  maps points on 01 =u  to points on 01 =u , points 
on 02 =u  to points on 02 =u , and points on 03 =u  to points on 03 =u . The area of the 
new feasible region is a factor four smaller than the area of the original feasible region. 

In the same manner we can construct a sequence of vertices iA , iB  and iC  (i ≥ 1) such 
that the area of the region given by convex combinations of iA , iB  and iC  is a factor four 
smaller than the area of the region given by convex combinations of 1−iA , 1−iB  and 1−iC . 
The transformation ϕ  transforms each region given by convex combinations of 1−iA , 1−iB  
and 1−iC  into the region given by convex combinations of iA , iB  and iC . Each of the 
regions given by convex combinations of iA , iB  and iC  contains the only feasible point 
to the disjunctive-facet problem in its interior. We can conclude that irrespective of the 
number of cuts generated in the above way we will never obtain the optimal solution to the 
disjunctive-facet problem. This concludes our counterexample to the finiteness of the 
algorithm of Glover, Klingman and Stutz.  

6.7. Error localisation for continuous data as a dynamic disjunctive-facet 
problem 

The error localisation problem described in Chapter 3 can be considered as a dynamic 
disjunctive-facet problem. That is, the L-sets in the L-set requirement are not fixed 
beforehand, but are generated during the algorithm. After a, generally non-optimal, 
solution to the error localisation problem has been found the L-sets are updated. The new 
L-sets express the wish to find a solution to the error localisation problem that is better 
than the previous best one, i.e. they express the wish to find a solution to the error 
localisation problem for which the value of the objective function is smaller than the 
smallest value found so far. This process goes on until an L-set requirement cannot be 
satisfied anymore. The best solution to the error localisation problem that has been found is 
then an optimal one.  

Whenever we refer to the error localisation problem in the present section, or in Section 
6.8, 6.9, or 6.10, we in fact mean the error localisation problem for continuous data. Below 
we first reformulate the error localisation problem for continuous data in terms of u and v 
variables. 

Edit checks for numerical data are written as a set of linear inequalities that have to hold 
simultaneously, i.e. they are written as 

 bAz ≤ ,        (6.78) 

where A is a constant matrix and b is a constant vector. When a record z0 fails the edit 
checks, we want to find a modification vector z∆  such that zz0 ∆+  satisfies the edit 
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checks. We introduce two non-negative vectors zP and zN. These vectors satisfy the 
following relations 

 NP zzz −=∆  .       (6.79) 

We also introduce a vector v defined by 

 xAbv ′−′= ,       (6.80) 

where 

 0Azbb −=′ ,        (6.81) 

 )  | ( A-AA =′        (6.82) 

and 

 









= N

P

z
zx .       (6.83) 

We also introduce u-variables given by 

 ii xu =  for i=1,…,2n.      (6.84) 

In terms of the u- and v-variables the error localisation problem for continuous data can be 
written as: minimise the objective function  

 ∑
=

n

i
ii uw

2

1
)(δ        (6.85) 

subject to 

 0v ≥ ,        (6.86) 

where n is the number of continuous variables involved in the error localisation problem, 
and 

 iin ww =+  for i=1,…,n.      (6.87) 

Suppose that at least one, generally non-optimal, solution x to the error localisation 
problem has already been determined. For each of the already determined solutions we 
evaluate the value of the objective function (6.85). We let an L-set correspond to all 
solutions to the error localisation problem better than the best one found so far. If the 
smallest value of the objective function found so far equals T, then these L-sets are given 
by  

 ∑
∉

<
kLi

i Tw ,       (6.88) 

i.e. by 

}|0{ kik JixL ∈== ,      (6.89) 
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where kJ  is any set of indices such that 

 ∑
∉

<
kJi

i Tw .       (6.90)  

There may be extremely many of such L-sets. In fact, there may be too many L-sets to 
apply the algorithm of Glover, Klingman and Stutz efficiently to the error localisation 
problem. Therefore, the L-sets are not specified explicitly, but instead are incorporated 
implicitly in our algorithm.  

Define 0I  to be }  somefor   |{ jxti ij = . Define the initial current set *
iI  (for 0Ii∈ ) to be 

the empty set. Also define the initial current set *Q  to be the empty set. Finally, define the 
initial value of T  to be ∞. We are now ready to formulate our first algorithm, which we 
call Algorithm 6.1. 

 

1. Find a feasible solution to the current LP problem. The algorithm terminates if no 
feasible solution to the current LP problem exists. In that case the best solution to the 
error localisation problem that has been found so far is the optimal one. 

2. Evaluate the value V  of the objective function (6.85) for the solution found in Step 1. 
If TV < , then update T  to be V . 

3. Select a non-basic variable jt  (not previously selected). If ij xt =  (for some i), then 

}{0* iIJ −= , else 0* IJ = . Examine the values h
jt  in sequence, beginning with 

h = 1. If ∞=1
jt , then let ∞=*

jt  and select another jt .  

4. Determine the minimum N of ∑
Ω∉i

iw , where h
ji

Ji
IQR ∪∪







=Ω
∈

*
*

�  and iR  is either 

}{i  or *
iI  (for *Ji∈ ). If N < T then let h

jj tt =*  and return to Step 3 to select another 

jt  variable. 

5. If N ≥ T and ij xt ≠  for all i then update *Q  to be h
jIQ ∪* . If N ≥ T and ij xt =  for 

some i then update *
iI  to be h

ji II ∪* . Increase h by 1. If now ∞=h
jt , set ∞=*

jt  and 

return to Step 3. Otherwise, return to Step 4. 

6. When all jt  have been selected: check whether one (or more) of the vectors *
jtj0 bb −  

( ∞<*
jt ) for which the value of the objective function is smaller than T (if such a 

vector exists), is a feasible solution to the current LP problem. If none of the vectors 
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*
jtj0 bb −  satisfies these conditions, then go to Step 7. Otherwise, select the best of 

these vectors, i.e. the vector for which the value of the objective function (6.85) is the 
smallest, and pivot to this feasible solution. Return to Step 2.  

7. Construct the following cut 

0* ≥v ,        (6.91) 

where 

∑ −=
j

jj ttv 1)1( *
*       (6.92) 

and add it to the set of constraints. Return to Step 1.    � 

 

Theorem 6.1: The cuts generated by Algorithm 6.1 (without Step 6) are the same as the 
cuts generated by the algorithm of Glover, Klingman and Stutz for the case where the L-
sets are all sets kL  such that ∑

∉
<

kLi
i Tw  (provided the t-variables are selected in the same 

order in both algorithms). 

Proof. Suppose that h
jk IL ⊂*  (for any k such that jt  is not involved in kL ) in Step 3 of the 

algorithm of Glover, Klingman and Stutz. In that case 

h
ji

Ji
ki IQRLxi ∪∪







⊂
∈

*0
*

}in   involved is  |{ � ,  

for certain sets 0
iR  for which either }{0 iRi =  or *0

ii IR = . This implies that N < T in Step 4 

of Algorithm 6.1, because N is the minimum of all sets h
ji

Ji
IQR ∪∪







=Ω
∈

*
*

�  where iR  

is either }{i  or *
iI . Note that because jt  is not involved in kL , we can take }{0* mIJ −=  

if mj xt =  for some m. If mj xt ≠  for all m we take 0* IJ = . 

 On the other hand, suppose that ∑
Ω∉

<
0i

i Tw  in Step 4 of Algorithm 6.1, where 

h
ji

Ji
IQR ∪∪







=Ω
∈

*0
0 *

�  then define }for    0{ 0Ω∈== ixL ik . For this set kL  we have 

h
jk IL ⊂*  and ∑ ∑

∉ Ω∉
<=

kLi i
ii Tww

0

. Finally, note that jt  is not involved in kL , because if 

mj xt =  (for some m) then 0Ω∉m .      � 
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Unfortunately, Algorithm 6.1 seems inefficient in practice, because in Step 4 a time 
consuming optimisation problem must be solved. We can avoid solving this optimisation 
problem if we construct cuts that are less deep than the cuts of Glover, Klingman and 
Stutz. Denote the sum of all reliability weights by W. Initially, we set ii ww =′  (for all i). 
We replace Step 4 of Algorithm 6.1 by  

 

4. If ∑
Γ∈

<′−
i

i TwW , where h
jIQJ ∪∪=Γ **  then let h

jj tt =* . If in addition ij xt =  then 

update iw′  to be the maximum of iw  and ∑
∈ *

jIi
iw . Return to Step 3 to select another jt  

variable.  

 

This algorithm is called Algorithm 6.2. 

 

Theorem 6.2: The cuts generated by Algorithm 6.2 are valid. 

Proof. The term ∑
Γ∈

′−
i

iwW , where h
jIQJ ∪∪=Γ ** , which is evaluated in Step 4 of 

Algorithm 6.2 is a lower bound on N, which has to be determined in Step 4 of Algorithm 
6.1. So, the cuts generated by Algorithm 6.2 are at most as deep as the cuts generated by 
Algorithm 6.1. Because the cuts generated by Algorithm 6.1 are valid, the cuts generated 
by algorithm 6.2 are valid as well.       � 

 

Theorem 6.3: If the current LP solution is the best solution found so far to the error 
localisation problem for continuous data then the cuts made by Algorithms 6.2 and 6.1 
(and hence by the algorithm of Glover, Klingman and Stutz) are the same (provided the t-
variables are selected in the same order). 

Proof. If the current LP solution is the best solution found so far to the error localisation 
problem then for ij xt =  we have ∑

∈

>
*
jIk

ki ww . So, the minimum N of ∑
Ω∉i

iw  determined 

in Step 4 of Algorithm 6.1 equals the lower bound on N, ∑
Γ∈

′−
i

iwW , determined in Step 4 

of Algorithm 6.2.         � 

 

We conclude this section with some remarks regarding the algorithms. First of all note that 
in the formulation of the error localisation problem as a dynamic disjunctive-facet problem 
we do not minimise a linear objective function. This implies that in each iteration we only 
have to find a feasible solution to an LP problem in Step 1.  
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Step 6 is included with the aim of accelerating the algorithms. Any vector *
jtj0 bb −  

( ∞<*
jt ) that is a feasible solution to the error localisation problem is a vertex 

neighbouring the solution to the current LP problem. If one of the vectors *
jtj0 bb −  

( ∞<*
jt ) is a feasible solution to the error localisation problem and is better than any 

previously found solution, then we pivot to that vector. Not only do we find a better 
solution to the error localisation problem, but also we update the value T. The subsequent 
cuts will be deeper than if we would not have pivoted to that solution. However, Step 6 
requires some computing time. Further research is necessary to determine whether 
execution of Step 6 really reduces the computing time. 

The first step when applying Algorithm 6.1 or Algorithm 6.2 is the determination of a, 
generally non-optimal, solution zz0 ∆+  to the error localisation problem. In principle, any 
solution to the error localisation problem suffices. In practice, however, it is a good idea to 
start with a relatively good solution, i.e. a solution with only few non-zero entries. If the 
modification vector z∆  has many non-zero entries then the original data vector z0 
apparently contains many errors. Consequently, the data vector z0 and its modified version 

zz0 ∆+  are of little statistical value, and may as well be discarded. One can therefore 
specify an upper bound, say Tmax, on the number of non-zero entries of the modification 
vector z∆ . When the number of non-zero entries of z∆  exceeds Tmax then z0 is discarded 
for automatic error localisation. The use of an upper bound Tmax for the number of non-
zero entries of z∆  generally leads faster to the optimal solution of the error localisation 
problem than when such an upper bound would not be used. So, our first step to solve the 
error localisation problem optimally is to find a solution to the error localisation problem 
with at least n-Tmax entries equal to zero, where n denotes the number of variables involved 
in the error localisation problem. This first step can be solved by applying, for instance, 
Algorithm 6.2, where the objective function is given by the number of non-zero entries and 
where initially the value of T equals Tmax. 

6.8. An example 

In this we apply Algorithm 6.2 proposed in Section 6.7 to generate a cut for a simple 
example. In this example we assume that the edits are given by 

 CPT += ,       (6.93) 

 CT ≤5.0        (6.94) 

and 

 TC 1.1≤ .       (6.95) 

where T denotes the turnover of an enterprise, P its profit and C its costs. T and C may 
only assume non-negative values, whereas P may assume any value (if P is negative the 
enterprise actually made a loss). Edit (6.93) expresses that the turnover of an enterprise 
equals the sum of the profit and the costs. This is an edit check that can be logically 
derived, and holds true for every enterprise. Edits (6.94) and (6.95) give bounds for the 
costs of an enterprise in terms of its turnover. These edits cannot be logically derived, but 
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have to be determined by a subject matter specialist by means of data analysis. It will hold 
true for certain classes of enterprises only. 

We assume that the original values of the variables in a certain faulty record are given by 
T = 100, C = 60,000, and P = 40,000. The reliability weights are assumed to be 2

3=Tw , 
1=Cw  and 1=pw . The optimal solution to the error localisation is changing the value of 

T to be 100,000. The optimum value of the objective function is 2
3 . 

For each variable we introduce a positive change, denoted by subscript 1, and a negative 
change, denoted by subscript 2. We replace each variable by its original value plus the 
positive change minus the negative change. For instance, we replace T by 21100 TT −+ . 
The problem of adapting the values of T, C and P in such a way that the sum of reliability 
weights is minimised while the new values of T, C and P satisfy (6.93), (6.94) and (6.95) 
can then be written as 

minimise ∑
=

6

1
)(

i
ii uw δ ,      (6.96) 

where 

 PCT wwwwwwwww ====== 635241   and  , ,   (6.97) 

subject to the v-constraints 

 0900,992121211 ≥−+−+−−= PPCCTTv ,    (6.98) 

 0900,992121212 ≥+−+−++−= PPCCTTv ,   (6.99) 

 0950,592122
1

12
1

3 ≥+−++−= CCTTv ,    (6.100) 

 0890,591.11.1 21214 ≥−+−−= CCTTv ,    (6.101) 

 0100215 ≥+−= TTv ,      (6.102) 

 0000,60216 ≥+−= CCv ,     (6.103) 

017 ≥= Tv ,        (6.104) 

018 ≥= Cv ,        (6.105) 

019 ≥= Pv ,        (6.106) 

0210 ≥= Tv ,        (6.107) 

0211 ≥= Cv ,        (6.108) 

0212 ≥= Pv ,       (6.109) 

and the u-constraints 



Chapter 6 

 96

 11 Tu = ,        (6.110) 

 12 Cu = ,       (6.111) 

 13 Pu = ,        (6.112) 

 24 Tu = ,        (6.113) 

 25 Cu =         (6.114) 

and 

 26 Pu = .        (6.115) 

Constraints (6.98) and (6.99) correspond to (6.93), constraint (6.100) to (6.94), and 
constraint(6.101) to (6.95). Constraints (6.102) and (6.103) reflect that the turnover and the 
costs of an enterprise, respectively, are non-negative. 

In the first step of the algorithm we have to determine a vector satisfying (6.98) to (6.109). 
Suppose the feasible solution 010987321 ======= vvvvvvv , 604 =v , 1005 =v , 

506 =v , 950,5911 =v  and 950,3912 =v  is determined by the simplex algorithm. The 
value of the objective function (6.85) equals 2 for this solution.  

The solution is degenerate. Suppose that variables 2v , 3v , 7v , 8v , 9v  and 10v  are the non-
basic variables. We can express the u-variables in terms of the non-basic variables: 

 71 vu = ,        (6.116) 

 82 vu = ,        (6.117) 

 93 vu = ,        (6.118) 

 104 vu = ,       (6.119) 

 102
1

872
1

35 950,59 vvvvu ++−−=     (6.120) 

and 

 102
1

972
1

326 950,39 vvvvvu ++−+−= .    (6.121) 

The total sum of reliability weights W equals 7. The weights iw′  are initially given by 

ii ww =′  (i=1,...,6). The set 0I  is given by 

 }4 ,3 ,2 ,1{0 =I ,       (6.122) 

i.e. by the indices of the u-variables with value zero in the current solution to the LP 
problem. 

We select a non-basic variable, say 2v . We have 950,391
1 =t  and }6{1

1 =I . So, 

}6,4,3,2,1{=Γ . Because 2)( 64321 <′+′+′+′+′− wwwwwW , we let 950,39*
1 =t . 
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We select another non-basic variable, say 3v . We have 950,591
2 =t  and }5{1

2 =I . So,  

}5,4,3,2,1{=Γ . Because 2)( 54321 <′+′+′+′+′− wwwwwW , we let 950,59*
2 =t . 

We select yet another non-basic variable, say 7v . In this case }4 ,3 ,2{* =J , because 

71 vu = . We have 900,791
3 =t  and }6{1

3 =I . So, }6,4,3,2{=Γ . Because 

2)( 6432 ≥′+′+′+′− wwwwW , we update *
1I  to be }6{ . We consider 900,1192

3 =t  and 

}5{2
3 =I . Because 2)( 65432 <′+′+′+′+′− wwwwwW , we let 900,119*

3 =t .  

We select another non-basic variable, say 8v . We find that ∞=*
4t . Similarly, we find for 

the remaining non-basic variables that the corresponding *t -values equal ∞ . 

We obtain the following cut: 

 1900,119950,59950,39 732 ≥++ vvv .    (6.123) 

Note that the solution to the current LP problem violates this constraint, whereas the 
optimal solution to the error localisation problem (for which 02 =v , 000,103 =v  and 

900,997 =v ) satisfies this constraint. This demonstrates that the generated cut is a valid 
one. 

6.9. Finiteness of the algorithms 

It is not clear whether the algorithms presented in Section 6.7 are finite. We have neither 
been able yet to demonstrate finiteness for the general case, nor to find a counterexample 
to finiteness. In contrast to the algorithm of Glover, Klingman and Stutz for the normal 
disjunctive-facet problem (see Section 6.6) the algorithms for the error localisation 
problem presented in Section 6.7 are finite for the two-dimensional case. This is caused by 
the special structure of the u-constraints. 

 

Theorem 6.4: For the two-dimensional case the algorithms for the error localisation 
problem for continuous data presented in Section 6.7 terminate after a finite number of 
iterations. 

Proof. In this proof we assume that the vector x given by (6.83) is two-dimensional. We 
divide the set of v-constraints into three classes: edge defining ones, vertex defining ones 
and redundant ones. For an edge defining v-constraint 0≥iv  we have that 0=iv  on an 
entire edge of the feasible polyhedron. For a vertex defining v-constraint 0≥iv  we have 
that 0=iv  in a vertex of the feasible polyhedron only. For a redundant v-constraint 0≥iv  
we have that iv  is larger than zero for all points in the feasible polyhedron. Note that 
according to the above definition two v-constraints that are equal to zero on the same edge 
of the feasible polyhedron are both considered edge defining. A subset of the vertex 
defining v-constraints is formed by the inner-vertex defining v-constraints. An inner-vertex 
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defining v-constraint 0≥iv  is a vertex defining v-constraint for which 0=iv  in a vertex 
where both 01 >x  and 02 >x . Denote the number of edge defining v-constraints by E, the 
number of inner-vertex defining v-constraints by I and the number of vertices with 01 =x  
or 02 =x  (or both) by Z. By the construction of the cuts new vertices for which 01 =x  or 

02 =x  are never created during the algorithm (either Algorithm 6.1 or Algorithm 6.2 of 
Section 6.7). So, Z is non-increasing during the algorithm. 

Suppose iv  and jv  are the non-basic variables that are used in Steps 3 to 7 of the 
algorithm to generate the cut. Both these non-basic variables are either edge defining or 
vertex defining. When iv  and jv  intersect in a point for which either 01 =x  or 02 =x  
then Z is decreased by one. The sum E+I may have been increased by one (the cut, an edge 
defining v-constraint, has been added to the set of constraints). 

Suppose that iv  and jv  do not intersect in a point for which 01 =x  or 02 =x . We 
consider the generated cut. There are three possibilities. First, the cut may be given by 
“ 10 ≥ ”, i.e. both ∞=*

it  and ∞=*
jt . In this case the algorithm terminates immediately, 

because the new set of constraints is infeasible. 

Second, suppose that the cut is given by 

 1** ≥+ jjii tvtv ,      (6.124) 

where ∞<< **,0 ji tt . Then the only possible feasible point for which 0=iv  is the point 

for which *
jj tv =  (if jv  became larger than *

jt  then either 1x  or 2x  would become smaller 
than zero). For this point we therefore have 01 =x  or 02 =x . This implies that 0≥iv  is 
neither an edge defining v-constraint nor an inner-vertex defining v-constraint. Similarly, 
we can prove that 0≥jv  is neither an edge defining v-constraint nor an inner-vertex 
defining v-constraint. 

Third, suppose only one variable is involved in the cut, i.e. that, without loss of generality, 
the cut is given by 

 1* ≥jj tv ,       (6.125) 

where ∞<< *0 jt . In this case it is clear that 0≥jv  has become redundant. We examine 

whether 0≥iv  can be edge defining or inner-vertex defining. For *
jj tv =  and 0=iv  

either 01 =x  or 02 =x  (or both). Without loss of generality we assume that 01 =x  for 
*
jj tv =  and 0=iv . This implies that 1x  can be written as 

 jji vtvx )( *
1 αβα −+= ,      (6.126) 
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where 0≥α  ( 0≥α  because 0== ji vv  defines a feasible point). So, 0=iv  implies that 

1x  and jv  are related by 

 jj vtx )( *
1 αα −= .      (6.127) 

Combining (6.125) and (6.127), we find 01 ≤x  if 0=iv . Because we also have to satisfy 

the constraint 01 ≥x , we have derived that 01 =x  (and )*
jj tv =  if 0=iv . That is, we 

have derived that 0≥iv  is neither an inner-vertex defining v-constraint nor an edge-
defining v-constraint. So, after adding a cut involving only one v-variable both v-
constraints 0≥iv  and 0≥jv  become neither edge defining nor inner-vertex defining.  

Summarising, when a cut is added to the set of v-constraints the following may happen: 

Either the trivial cut “ 10 ≥ ” is added, in which case the algorithm terminates immediately, 
or 

1. An edge defining v-constraint, namely the cut, is added. 

2. Some of the edge defining or inner-vertex defining v-constraints, different from 0≥iv  
and 0≥jv , may become neither edge defining nor inner-vertex defining v-constraints. 

3. Some of the edge defining v-constraints, different from 0≥iv  and 0≥jv , may 
become inner-vertex defining v-constraints. 

4. If 0≥iv  and 0≥jv  are used to generate the cut, and 01 =v  and 02 =v  intersect in a 
point for which 01 =x  or 02 =x , then Z is decreased by at least one. 

5. If 0≥iv  and 0≥jv  are used to generated the cut, and 01 =v  and 02 =v  do not 
intersect in a point for which 01 =x  or 02 =x , then both v-constraints become neither 
edge defining nor inner-vertex defining. 

Whenever a non-trivial cut, i.e. a cut different from “0 ≥ 1”, is added to the set of 
constraints the value of G = E + I + 2Z is decreased by at least one. Because initially the 
value of G is finite and the algorithm terminates when G becomes zero, the algorithm 
(either Algorithm 6.1 or Algorithm 6.2) is finite.     � 

 

The two-dimensional case is not a very interesting one. In fact, this case arises when only 
one variable occurs in the error localisation problem (because to each variable in the error 
localisation problem two variables in the dynamic disjunctive-facet problem correspond; 
see (6.83)). The above theorem does show, however, that the infiniteness of the algorithm 
proposed by Glover, Klingman and Stutz does not imply that our algorithms for the error 
localisation problem are infinite. For higher-dimensional cases we do not know whether 
our algorithms are finite. However, we can prove finiteness when we modify the 
algorithms a bit.  
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In Step 1 of the algorithms of Section 6.7 no linear objective function is minimised, only a 
feasible solution to the current LP problem is determined. Although the simplex algorithm 
requires more iterations to determine the optimum of a linear function than to determine a 
feasible solution only, it may still be worthwhile minimising a linear function in Step 1. 
Not only can we prove finiteness when we minimise a particular linear function in Step 1, 
but this may possibly also accelerate the algorithm because better solutions to the error 
localisation problem (resulting in an update of the best value T of the objective function) 
may be found faster. We now describe the proposed modification of the algorithms. 

Initially, let ∅=Φ S  and ∅=ΨC . SΦ  and CΨ  are sets of sets. During the first iteration 
Step 1 of the modified algorithms is the same as Step 1 of the algorithms of Section 6.7. 
During later iterations Step 1 is replaced by: 

 

1. Select a set 0Ω  from the set of sets CΨ . Minimise the linear objective function 

∑
Ω∈ 0i

ix         (6.128) 

subject to the constraints (v-constraints and u-constraints) of the current LP problem. 
Replace SΦ  by }{ 0Ω∪Φ S , and let ∅=ΨC  . 

 

Step 4 of Algorithm 6.1 is replaced by: 

4. Determine the minimum N of ∑
Ω∉i

iw , where h
ji

Ji
IQR ∪∪







=Ω
∈

*
*

t  and iR  is either 

}{i  or *
iI  (for *Ji∈ ), and SΦ∉Ω . If N < T then let h

jj tt =* , and replace CΨ  by 

}{Ω∪ΨC . Return to Step 3 to select another jt  variable. 

 

Step 4 of Algorithm 6.2 is replaced by: 

 

4. If ∑
Γ∈

<′−
i

i TwW , where h
jIQJ ∪∪=Γ **  then add a set given by 

h
ji

Ji
IQR ∪∪







=Ω
∈

*
*

t , where iR  is either }{i  or *
iI  (for *Ji∈ ), such that SΦ∉Ω  

to CΨ .  
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a) If such a set Ω  exists then let h
jj tt =* . If in addition ij xt =  (for some i) 

then update iw′  to be the maximum of iw  and ∑
∈ *

jIi
iw . Return to Step 3 

to select another jt  variable.  

b) If such a set Ω  does not exist then go to Step 5. 

 

Theorem 6.5: With the above modifications the algorithms for solving the error 
localisation problem for continuous data are finite. 

Proof. First note that if ∅=ΨC  after all jt  have been dealt with then the best solution to 
the error localisation problem determined so far cannot be improved anymore. The 
algorithm terminates in this case. Therefore, we assume that ∅≠ΨC  after all jt  have 
been dealt with. Suppose that a set CΨ∈Ω0  is used to specify the linear function in Step 
1. There are two possibilities: 

1. If the optimal value of (6.128) is larger than zero, then there is no feasible solution to 
the error localisation problem for which 0=ix  for all 0Ω∈i . 

2. If the optimal value of (6.128) equals zero, then the value of objective function (6.85) is 
at most ∑

Ω∉
=

0

0
i

iwV . In later iterations we want to find a solution to the error 

localisation problem for which the value of the objective function (6.85) is less than 
0VT ≤ . This implies that in later iterations the set 0Ω  does not have to be used in Step 

1 to specify the linear function.  

So, a set of indices 0Ω  has to be used at most once to specify a linear function in Step 1. 
The set of sets SΦ  consists of those sets that have already been used to specify the linear 
function in Step 1. During each iteration the number of sets 0Ω  contained in SΦ  is 
increased by one. Because there are only finitely many different sets 0Ω  the algorithm 
terminates after a finite number of iterations.     �  

 

In the modified version of Algorithm 6.1 the set of sets CΨ  keeps track of those sets that 
may correspond to a better solution to the error localisation problem than the best one 
previously found. If the optimal value of (6.128) equals zero in Step 1, then we have found 
a better solution to the error localisation problem.  

In the modified version of Algorithm 6.2 the value ∑
Ω∉i

iw  corresponding to the set Ω  

added to CΨ  in the modified Step 4 should preferably be as small as possible. If this value 
is less than T and the optimal value of (6.128) equals zero in Step 1, then we have found a 
better solution to the error localisation problem. 
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6.10. Cabot-cuts 

In this section we describe another kind of cuts than those presented in Sections 6.4 to 6.9. 
These cuts have been proposed by Cabot (1975) for the generalised lattice-point problem. 
In some cases these cuts are stronger than the cuts proposed by Glover, Klingman and 
Stutz. Cabot (1975) proposed his cuts for a problem with fixed constraints. We describe 
how such cuts can be generated for the error localisation problem, where the constraints 
are determined dynamically. 

We first observe that an optimal solution to the error localisation problem is attained in a 
vertex of the feasible polyhedron defined by (6.86) (see Section 5.2 for a simple proof). 
This observation implies the existence of a number ε  such that if ix  is non-zero in an 
optimal solution to the error localisation problem then automatically ε≥ix . We assume 
that the feasible region is bounded, i.e. that Mxi ≤  (for all i) for a sufficiently large 
number M . This assumption is justified for the error localisation problem, because all 
variables refer to observable quantities, such as turnover, costs and profit of an enterprise. 
Observable quantities are bounded.  

Suppose the best solution to the error localisation problem found so far is given by 0=ix  
for Ii∈ , otherwise 0≠ix , where I is a certain index set. The value of the objective 
function equals ∑

∉
=

Ii
i Hw 0 . We want to find a better solution to the error localisation 

problem. That is, we want to find any solution to the error localisation problem such that 
0=jx  if and only if Jj∈  (otherwise 0≠jx ) and ∑

∉
<=

Jj
j HHw 01 . 

We consider the convex function 

 ∑ +
=

i i

i
n qxp

wxxF ),...,( 1 ,      (6.129) 

where p and q are non-negative constants. 

In the current best solution to the error localisation problem the value of (6.129) is given 
by 

 ∑ ∑
∈ ∉ +

+
Ii Ii i

ii

qxp
w

p
w
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An upper bound on this value is given by 
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where W is the sum of all reliability weights. 

The value of F in a better solution to the error localisation problem is given by  
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A lower bound on this value is given by 
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Now, we want the value of F in the current best solution to the error localisation problem 
to be smaller than the value of F in any better solution to the error localisation problem. 
This is the case if 
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This leads to 
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if M is sufficiently large so that 01 HMH ε> . 

The value of F is smaller in the current best solution to the error localisation problem than 
in any better solution if p is chosen according to (6.135) and 1H  is chosen equal to the 
largest possible sum of jw  smaller than 0H . M is chosen in such a way that Mxi ≤  (for 
all i) for each feasible solution to the error localisation problem, and 10 HHM ε> . The 
value of q can be chosen equal to an arbitrary positive number. 

Given a non-basic variable iv  we may increase its value from zero (while keeping the 
values of the other non-basic variables equal to zero) until the value of (6.129) equals 
(6.133). This gives us the value *

it . After all *
it  have been determined in this way, we 

generate the valid cut 

 ∑ ≥
i

ij tt 1)1( * .       (6.136) 

This cut is added to the set of constraints. A feasible solution to the updated set of 
constraints is subsequently determined, and a new cut is constructed, etc. This process goes 
on until a set of constraints does not have a feasible solution. The best solution to the error 
localisation problem obtained so far is then the optimal one. 

 
Example 6.2:  

We use the simple example of Section 6.8 again to illustrate the cuts that are generated by 
the algorithm. We assume that the original values of the variables in a faulty record are 
given by T = 100, C = 60,000, and P = 40,000, like we also assumed in Section 6.8. The 
error localisation problem is then given by (6.96) to (6.115). Again we suppose that in the 
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first step of the algorithm the feasible solution given by v1 = v2 = v3 = v7 = v8 = v9 = v10 = 0, 
604 =v , 1005 =v , 506 =v , 950,5911 =v  and 950,3912 =v  is determined by the simplex 

algorithm. The value of the objective function (6.85) equals 2 for this solution. The 
solution is degenerate. Suppose that variables 2v , 3v , 7v , 8v , 9v  and 10v  are the non-
basic variables. We can express the u-variables in terms of the non-basic variables by 
(6.116) to (6.121). 

We suppose that in this case M = 1,000,000 is sufficiently large to be an upper bound on 
the values of the variables iT , iC  and iP  (i=1,2). Usually the numbers that have to be 
filled in by respondents as answers to questions posed in a questionnaire are rounded 
figures, i.e. they are integer. We assume this to be the case in the present situation too. We 
can therefore choose ε  to be equal to 1. We also choose q to be equal to 1. The value of 
the objective function (6.96) of the best solution to the error localisation problem found so 
far is given by 20 =H . The largest sum of reliability weights smaller than 0H  is given by 

2
3

1 =H . Relation (6.135) gives 333.0<p . We choose .3.0=p  

We have 7=W  and 333.18=LF . We write the convex function (6.129) in terms of the 
non-basic variables. 
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To find the value *
1t  corresponding to the first non-basic variable, say 2v , we set all other 

non-basic variables equal to zero in (6.137). We find the following function 
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The value *
1t  is now found by solving  

 Lv FtF =)( *
12

,       (6.139) 

i.e. by solving 

333.18
3.39950

1666.16 *
1

=
−

+
t

.     (6.140) 

We find 7.949,39*
1 =t . The other values *

it  can be found in a similar way. After all values 
*
it  have been determined the cut (6.136) is added to the set of constraints. This concludes 

our example.         � 
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The Cabot-cuts described above can be used in combination with the cuts described in 
Section 6.7. If the Cabot-cuts are stronger than the cuts described in Section 6.7, the Cabot-
cuts are added to the system of constraints, otherwise the cuts described in Section 6.7 are 
added to the system of constraints. The advantage of this approach is that the cuts that are 
added to the system of constraints sometimes are stronger than the cuts described in 
Section 6.7. The disadvantage is that generating cuts in this way can be very time-
consuming. First, because in many cases the cuts generated by the algorithms in Section 
6.7 are stronger than the Cabot-cuts. For instance, in the example the value *

1t  determined 

for 2v  is less when the above approach is used than when the value *
1t  is determined by 

means of Algorithm 6.2 of Section 6.7 (see also the example in Section 6.8). Second, it 
may be difficult to determine the largest possible sum of jw  smaller than 0H  efficiently. 
In the above example it is easy to see that 1H  is equal to 2

3 , but in general this is not so 
easy. However, when all reliability weights are equal, say equal to one, then the 
determination of the largest possible sum of reliability weights smaller than 0H  is trivial: 

it is given by 10 −H . Third, the computation of *
it  may require relatively much computing 

time. Generally, to compute a *
it  a non-linear equation in one variable must be solved. In 

the above example the calculation of *
it  for any non-basic variable different from 2v  is a 

non-trivial matter. 

6.11. Error localisation for mixed data as a dynamic disjunctive-facet problem 

In this section we formulate the error localisation problem for mixed data, i.e. for a mix of 
categorical and continuous data, as a dynamic disjunctive-facet problem. In particular, we 
formulate the mixed integer programming (MIP) formulation for the error localisation 
problem given in Section 3.3 as a dynamic disjunctive-facet problem. The algorithms of 
Section 6.7 cannot be applied directly to solve this error localisation problem for mixed 
data. We therefore consider a relaxation of the error localisation problem for mixed data. 
This relaxation of the error localisation problem for mixed data is the problem of 
minimising a certain objective function, which is described later (see (6.154)), subject to 
constraints (3.24) to (3.30) and the constraint that the variables P

ike  and N
ike  lie between 0 

and 1 (see Section 3.3). That is, the constraints of the relaxation of the error localisation 
problem for mixed data are the same as those of the error localisation problem for mixed 
data except that the variables P

ike  and N
ike  do not have to be integer; the variables P

ike  and 
N
ike  are treated as continuous non-negative numerical variables. In the relaxation of the 

error localisation problem for mixed data a large penalty is given in the case that a variable 
P
ike  or N

ike  is not integral. If this penalty is sufficiently high, an optimal solution to the 
relaxation of error localisation problem for mixed data is automatically also an optimal 
solution to the error localisation problem for mixed data.  
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The relaxation of the error localisation problem for mixed data can itself be considered to 
be an error localisation problem for continuous data. The relaxation can hence be solved by 
the iterative algorithms described in Section 6.7. Below we describe the relaxation of the 
error localisation problem for mixed data in detail. We especially focus on the v-
constraints and the costs (weights) involved in the objective function. By an appropriate 
choice of these costs, the weights iŵ  (see (6.149) to (6.153) below), an optimal solution to 
the relaxation of the error localisation problem for mixed data is also an optimal solution to 
the error localisation problem for mixed data itself. 

We denote the total number of categories of the categorical variables by G , i.e. 

∑=
i

igG , where gi is the number of categories of the i-th categorical variable (i=1,…,m) 

We introduce slack variables jv  by 
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for all edits j=1,...,K, and 

P
ikj ev =  ( kgKj
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; i=1,…,m; k=1,…, ig ),   (6.142) 
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l
l kgGKj ;i=1,…,m; k=1,…, ig ),   (6.145) 

P
imj zv +=  ( iGKj ++= 4 ; i=1,…,n),     (6.146) 

N
imj zv +=  ( inGKk +++= 4 ;i=1,…,n).    (6.147) 

A feasible solution to the relaxation of the error localisation problem for mixed data has to 
satisfy 

 0v ≥ ,        (6.148) 

where the entries of vector v are given by the jv . 

We associate the following weights to the slack variables: 

Hwj =ˆ  ( GKKj 2,...,1 ++= ), (6.149) 



The Error Localisation Problem as a Disjunctive-Facet Problem 

 107 

ij wHw +=ˆ  ( kgGKj
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Hwj =ˆ  ( ∑
−

=
+++=

1

1
3

i

l
l kgGKj ;i=1,…,m; k=1,…, ig ), (6.151) 

imj ww +=ˆ  ( iGKj ++= 4  and inGKj +++= 4 ; i=1,…,n) (6.152) 

and 

0ˆ =jw  otherwise, (6.153) 

where H is any number larger than ∑
+

=

nm

j
jw

1
. Equation (6.153) says that the weight jŵ  of 

any variable jv  corresponding to a cut that is created in Step 7 of the applied algorithm, 
either Algorithm 6.1, Algorithm 6.2, or a modified version of these algorithms (see Section 
6.9 for these modifications), equals zero. 

The objective function of the relaxation of the error localisation problem for mixed data is 
defined by  

 ∑
j

jj vw )(ˆ δ .       (6.154) 

The relaxation of the error localisation problem for mixed data is the problem of 
minimising (6.154) subject to (6.141) to (6.148).  

Theorems 6.1 and 6.2 imply that the cuts generated by Algorithms 6.1 and 6.2 are valid for 
the relaxation of the error localisation problem for mixed data. In Theorem 6.6 below we 
demonstrate that these cuts are also valid for the error localisation problem for mixed data 
itself. That is, we demonstrate that the cuts cut off, i.e. are violated by, the solution to the 
current LP problem determined in Step 1, but are satisfied by any optimal solution to the 
error localisation problem for mixed data. 

 

Theorem 6.6: Algorithms 6.1 and 6.2 generate valid cuts for the error localisation problem 
for mixed data. 

Proof. First note that any feasible solution to the relaxation of the error localisation 
problem for mixed data for which HGT )12( +<  is also a feasible solution to the error 

localisation problem for mixed data. Namely, if HGT )12( +<  then N
ike  and P

ike  equal 
either zero or one for all k=1,…, ig  and i=1,…,m. For such a feasible solution to the 
relaxation of the error localisation problem for mixed data the value of the function (3.31) 
equals GHT 2− . Conversely, any feasible solution to the error localisation problem for 
mixed data is also a feasible solution to the relaxation of the error localisation problem for 
mixed data. The value of function (6.154) equals the value of function (3.31) plus GH2 . 
This shows that an optimal solution to the relaxation of the error localisation problem for 
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mixed data is also an optimal solution to the error localisation problem for mixed data 
itself, and vice versa. Because the algorithms generate valid cuts for the relaxation of the 
error localisation problem for mixed data (see Theorems 6.1 and 6.2), they also generate 
valid cuts for the error localisation problem for mixed data itself.   � 

 

As we mentioned before, it is not clear whether Algorithms 6.1 and 6.2 are guaranteed to 
be finite. However, according to Theorem 6.5, finiteness is ensured for the error 
localisation problem for continuous data if Algorithm 6.1 or Algorithm 6.2 is adapted 
according to the modifications described in Section 6.9. Theorem 6.7 below states that 
finiteness of the modified algorithms is also ensured for the error localisation problem for 
mixed data. 

 

Theorem 6.7: With the modifications of Section 6.9 Algorithms 6.1 and 6.2 solve the error 
localisation problem for mixed data to optimality in a finite number of iterations. 

Proof. With the modifications of Section 6.9, Algorithms 6.1 and 6.2 solve the relaxation 
of the error localisation problem for mixed data to optimality in a finite number of 
iterations (see Theorem 6.5). Because an optimum to the relaxation of the error localisation 
problem for mixed data is also an optimum to the error localisation problem for mixed data 
itself (see Theorem 6.6), the modified algorithms solve the error localisation problem for 
mixed data to optimality in a finite number of iterations.     � 

6.12. Discussion 

In this chapter we have shown how to adapt the algorithm of Glover, Klingman and Stutz 
for the disjunctive-facet problem in such a way that it is suited for the error localisation 
problem. We have demonstrated that the cuts generated by our algorithms are valid ones. 

At the moment it is unknown whether the algorithms described in Section 6.7 are finite. 
More research is needed to answer this question. In case the algorithms turn out to be 
infinite, the algorithms should be adapted. A modification of the algorithms of Section 6.7 
such that finiteness is ensured is given in Section 6.9. This modification complicates the 
procedure and possibly leads to an increase in computing time, however. 

As we explained in the introduction to this chapter there are two aspects of the disjunctive-
facet problem that attracted us to this problem and the solution method proposed by 
Glover, Klingman and Stutz (1974). One reason was that certain optimisation problems 
could be formulated more naturally as a disjunctive-facet problem than as a standard mixed 
integer programming problem. The other reason was the fact that the disjunctive-facet 
problem can be solved by solving a sequence of standard LP problems. 

Unfortunately, when we tried to formulate the error localisation problem as a disjunctive-
facet problem and use the solution method proposed by Glover, Klingman and Stutz to 
solve it, both the formulation of the problem and the solution method became less 
attractive. First, formulating the error localisation problem as a (dynamic) disjunctive-facet 
problem turned out to be less natural than we initially hoped. The edits of type (3.1) (see 
Chapter 3) rather naturally split up the linear numerical constraints into disjunctive 
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problems, each triggered by appropriate categorical values. We hoped to exploit this 
structure when formulating the error localisation problem for mixed data as a disjunctive-
facet problem. However, in the error localisation problem for mixed data the categorical 
values may themselves be incorrect, which implies that the problem cannot be directly 
formulated as a disjunctive-facet problem. Besides, in the error localisation problem it is 
not clear beforehand which L-set requirement has to be satisfied. We need to work with a 
(very) large number of potential L-requirements. The final L-set requirement needs to be 
determined dynamically. Due to the fact that we need to work with a (very) large number 
of potential L-set requirements, even for the very simple and small instance of the error 
localisation problem of Section 6.8 the corresponding dynamic disjunctive-facet problem 
already contains relatively many variables and constraints. For real-life instances of the 
error localisation problem, the number of variables and constraints involved in the 
corresponding dynamic disjunctive-facet problem will be (very) high.  

Second, to solve the dynamic disjunctive-facet problem for mixed data a (probably) large 
number of LP problems has to be solved. Each LP problem is obtained from the previous 
one by adding an additional constraint. It may be necessary to solve many LP problems to 
arrive at an optimal solution to the error localisation problem. So, the algorithm is likely to 
be slow. Moreover, after the termination of the algorithms proposed in this chapter we 
have obtained only one optimal solution to the error localisation problem. It is unclear how 
to find all solutions to the error localisation problem in an efficient manner once one 
optimal solution has been found. 

Finally, the algorithms are quite complicated. It would be very difficult to implement the 
algorithms without making mistakes. A computer program based on these algorithms 
would be hard to maintain by software engineers. This basically rules out the possibility to 
apply the algorithms in the actual editing processes at Statistics Netherlands.  

For the above reasons, we decided not to implement the proposed algorithms. Of course, 
we would feel grateful if anyone had the courage to implement the proposed algorithms 
and evaluate them by means of experiments on test data. 
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7. Pergamentsev’s Algorithm 

7.1. Introduction 

In this chapter we describe a heuristic for the error localisation problem for categorical and 
continuous data. This heuristic has been developed by Pergamentsev, a post-graduate 
student at Eindhoven University of Technology who did an internship at Statistics 
Netherlands for nine months. At Eindhoven University of Technology Pergamentsev was 
supervised by Dr. Hurkens, and at Statistics Netherlands by the author of this book. Our 
own contribution to Pergamentsev’s algorithm is limited to proposing several potential 
improvements. 

The basic idea of the developed algorithm is to solve the error localisation problem for the 
numerical variables, given certain values for the categorical variables. The values for the 
categorical variables, and hence also whether the values of these variables need to be 
changed, are determined by a local search technique. 

The simplicity of this approach, solving the problem for numerical data and trying to 
improve on the solution by local search, is its major appeal. The solutions of the algorithm 
will generally not be optimal ones, but we hope that its simplicity will compensate for this. 
The non-optimal solutions determined by Pergamentsev’s algorithm could in any case 
serve as a benchmark for other algorithms. 

The remainder of this chapter is organised as follows. Section 7.2 starts by describing the 
error localisation problem in numerical data as a mixed integer problem. Section 7.3 
describes the basic form of the heuristic. Section 7.4 describes our potential improvements 
on Pergamentsev’s original algorithm. Section 7.5 concludes with a brief discussion of the 
algorithm and the suggested improvements. 

This chapter is based on De Waal (1998c). 

7.2. The mixed integer programming problem for numerical variables 

The error localisation problem in a mix of categorical and continuous data can be split into 
two parts: identifying the optimal changes in the categorical variables and subsequently, 
given these optimal changes in the categorical variables, identifying the optimal changes in 
the continuous variables. Of course, in practice it is very difficult to identify the optimal 
changes in the categorical variables without considering the numerical variables 
simultaneously. Nevertheless, the idea of splitting the error localisation problem into a 
categorical part and a numerical part is quite useful, and allows us to construct a heuristic. 

To explain this heuristic we consider the error localisation problem for numerical data for 
given values of the categorical ones. This problem is generally much simpler than the 
problem for a mix of categorical and continuous data. It has the following structure:  
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Minimise ∑
+

+=

nm

mi
ii zw

1
,       (7.1) 

subject to  

jnnjj bxaxa ~
...11 ≤∆++∆  for j=1,...,s,    (7.2) 

iiiii zUxzL ~~ ≤∆≤   for i=m+1,...,m+n,  (7.3) 

and 

}1,0{∈iz    for i=1,...,m+n.   (7.4) 

Here 0
ix  (i=1,…,n) denotes the original numerical values, and s the number of numerical 

constraints in all edits applicable to this record. Moreover, )...(
~ 00

11 nnjjjj xaxabb ++−=  

(j=1,...,s), and 0
iii xxx −=∆  is the change in the value of the i-th numerical variable. The 

numerical constraints are determined by the values of the categorical variables mvv ,...,1 . 
The lower and upper bound on a single ix∆  are induced by the upper bound Ui and lower 

bound Li on the corresponding numerical variable, namely 0~
iii xUU −=  and 0~

iii xLL −=  
(i=1,...,n).  

The above formulation allows the ix∆  to be non-zero only if the corresponding iz  are 
equal to 1. Thus, any change in a numerical variable is allowed only when we add the cost 
(reliability weight) of this variable to the objective function. Because 

jnnnjj bxxaxxa ≤∆+++∆+ )(...)( 0
1

0
11 for all j=1,...s, the modified values satisfy all 

applicable numerical constraints. The fields corresponding to those iz  that are equal to 1 
should be modified. The values of the ix∆  provide us with a feasible solution, i.e. with a 
modified record that satisfies all edits. Having solved this mixed integer programming 
(MIP) problem we add the weights corresponding to changes in the categorical part of the 
record to obtain the real cost of the found solution. We aim the find a solution, or 
preferably all solutions, with the lowest possible cost. 

7.3. Pergamentsev’s algorithm for error localisation 

Pergamentsev (1998) proposes an algorithm for solving the error localisation problem. 
This algorithm is presented below. 

1. Fix the categorical variables to their current values (in the first iteration the current 
values are the original values) and solve the resulting MIP problem. Save the 
numerical part of the solution. 

2. Check if it is possible to change any categorical variable to its original value such that 
the set of numerical constraints induced by the values of the categorical variables 
remains the same (in the first iteration this check can obviously be skipped). If so, then 
make this change because this obviously leads to an improvement of the cost function, 
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and if the number of iterations is less than a predefined number, say 0M , go to Step 1, 
else go to Step 3. If no categorical variable can be returned to its original value 
without changing the set of induced numerical constraints, go to Step 3. 

3. Check if it is possible to change any categorical variable to its original value such that 
- although the set of numerical edits induced by the values of the categorical variables 
changes - the numerical part of one of the already found solutions satisfies all 
constraints. Whenever a solution is found in this way, the value of the cost function is 
evaluated and compared with the best solution found so far. If the new solution is 
better, then store it and try to improve it by returning one of the modified numerical 
values to its original value. To do this all but one of the numerical variables with 
values in the solution that differ from their original values are allowed to be modified, 
the other numerical variables are fixed on their original values. Then check if by 
modifying the allowed numerical variables a feasible solution to the system of linear 
numerical constraints can be found. If an improvement to the best solution up to date 
is found, this improvement is stored. If the number of iterations is less than 0M  then 
go to Step 1, else go to Step 4. 

4. Select for every 1-step change in the categorical variables, i.e. a change in one 
categorical field, the violated numerical constraints and estimate the number of 
numerical variables that need to be modified to satisfy these constraints. We make the 
following observation: to satisfy a violated numerical constraint at least one numerical 
variable that occurs in this constraint needs to be modified. Based on this observation 
Pergamentsev (1998) suggests to estimate the number of numerical variables that need 
to be modified in a greedy way. First find the numerical variable that occurs most 
frequently in the violated constraints, then the one that occurs most frequently in the 
remainder of the violated constraints and so on. A number, say 0N , 1-step changes in 
categorical variables with the lowest estimated costs is selected. For each of the 0N  
combinations of values of categorical variables the MIP problem from Section 7.2 is 
constructed, and the first improvement to the best solution so far is chosen. If no 
improvement is found, the best of the 0N  solutions is chosen. If the number of 
iterations is less than 0M  then go to Step 2, else stop. 

In Step 4 of Pergamentsev’s algorithm the number of numerical variables that need to be 
modified, given the values of the categorical variables, is estimated. In fact, this is not 
quite correct. Instead the sum of the reliability weights of the numerical variables that need 
to be modified, given the values of the categorical variables, should be estimated. We 
therefore propose to look not at the frequency of a numerical variable in the remaining 
violated constraints, but at that frequency divided by the variable’s reliability weight. In 
each iteration of the greedy heuristic the numerical variable for which this ratio is the 
highest is selected in the estimated solution (see also Section 7.4.1).  

We also remark that if a combination of values of categorical variables induces an 
impossible constraint, such as “1≤0”, the total cost associated to that combination is set to 
infinity. That is, in such a case this combination of values of categorical variables will 
never be among the 0N  best combinations of values of categorical variables. 
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After termination of Pergamentsev’s algorithm a, probably good but not necessarily 
optimal, solution to the error localisation problem has been found. 

7.4. Improvements on Pergamentsev’s algorithm 

7.4.1. Using better heuristics for solving set-covering problems 
A very important part of Pergamentsev’s algorithm is the estimation of the minimum sum 
of weights of the numerical variables that need to be changed to satisfy the edits, given the 
values of the categorical variables. This estimation is done in a rather crude manner. It is 
based on a simple greedy heuristic for solving set-covering problems. Instead of this 
simple heuristic more advanced hybrid heuristics proposed by Vasko and Wilson (1986) 
can be applied. Such hybrid heuristics have, for instance, been applied successfully in the 
field of statistical disclosure control (cf. Van Gelderen, 1995). 

The general, or weighted, set-covering problem is given by 

Minimise  ∑
=

k

i
ii yw

1
      (7.5) 

subject to  

∑
=

≥
k

i
iij ya

1
1 , for j=1,...,t,     (7.6) 

and 

 }1,0{∈iy , for i=1,...,k,     (7.7) 

where each ija  is either 0 or 1, and the iw  are non-negative weights. For each iy  that 
equals 1 in a (suboptimal) solution to the set-covering problem we say that this variable 
enters the solution. In that case that all iw  equal the same positive number, say 1, the 
problem is known as the minimum cardinality set-covering problem.  

It is clear that the observation in Step 4 of Pergamentsev’s algorithm, i.e. the observation 
that to satisfy a violated numerical constraint it is necessary to modify at least one 
numerical variable that enters it, translates into a weighted set-covering problem. 

Vasko and Wilson (1986) distinguish between two basic greedy heuristics for solving 
minimum cardinality set-covering problems. These two basic greedy heuristics are the 
main ingredients for their hybrid algorithms.  

The first basic greedy heuristic is the same one as proposed by Pergamentsev. That is, in 
each iteration of the heuristic the variable that occurs most frequently in the remaining 
violated constraints is selected in the solution. The violated constraints in which the 
selected variable occurs are removed from the set of remaining violated constraints. This 
process goes on until the set of remaining violated edits is empty. This greedy heuristic is 
the most obvious one for solving set-covering problems. 
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The second basic greedy heuristic selects variables to enter the solution based on their 
ability to satisfy inflexible constraints, i.e. constraints with only a few non-zero ija . The 
rationale for this heuristic is that these inflexible constraints are the hardest ones to satisfy. 
If inflexible constraints are not satisfied until the end of the heuristic, it is likely that each 
of these constraints will require a separate variable to enter the solution. Therefore, it is a 
good idea to satisfy inflexible constraints as soon as possible. 

Vasko and Wilson make the following two observations. 

1. The first several variables to enter a solution should primarily be chosen on their ability 
to satisfy inflexible constraints, i.e. initially the second basic greedy heuristic should be 
used. However, not the entire solution should be determined by that heuristic. At some 
point variables should enter the solution based strictly on how many constraints they 
satisfy, i.e. at some point the first basic greedy heuristic should be used. 

2. After a partial solution has been generated, it is likely that variables that entered the 
solution early in the selection process may no longer contribute as much to that 
solution, in terms of number of constraints satisfied, because of variables that have 
since entered the solution. It is therefore advantageous to determine if any variables in 
the solution can be replaced by a variable not in the solution, resulting in a larger 
number of satisfied constraints. 

To construct a hybrid heuristic based on the two basic greedy ones, one should describe 
when to switch from considering the second basic greedy heuristic to the first one, and 
when to start checking if an exchange of two variables, one in the solution and one not, 
might be beneficial. Different choices for either when to switch from the second basic 
greedy heuristic to the first one, or when to start checking if an exchange might be 
beneficial, result in different hybrid algorithms. In Vasko and Wilson (1986) and Van 
Gelderen (1995) computational results for several hybrid algorithms are presented. 
Generally these hybrid algorithms perform better than the basic greedy algorithms.  

To apply the hybrid algorithms proposed by Vasko and Wilson (1986) for the minimum 
cardinality set-covering problem to the weighted set-covering problem, we suggest 
replacing the frequency of occurrence of a variable in the remaining violated constraints by 
this frequency divided by the variable’s weight. With this modification the hybrid 
algorithms proposed by Vasko and Wilson (1986) can be applied in Step 4 of 
Pergamentsev’s algorithm. It remains to be examined which hybrid algorithms perform 
best for this particular estimation problem. 

7.4.2. Updating the constraints of the set-covering problems 
To estimate the number of numerical variables that need to be modified in Step 4 of his 
algorithm Pergamentsev only considers the specified edits. However, more information 
becomes available during the execution of the algorithm. Each time the estimated number 
of numerical variables that need to be modified is less than the actual number of numerical 
variables that need to be modified, it is apparently impossible to satisfy all edits by 
modifying only the numerical variables in the estimated solution. We may therefore 
specify that, for this particular combination of values of the categorical variables, an 
additional constraint should be satisfied, namely the constraint that at least one of the 
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numerical variables not in the estimated solution should be modified. Taking this 
additional constraint into account during later iterations of the algorithm may result in 
better estimates for the number of numerical variables that need to be modified. 

7.4.3. Solving a MIP instead of checking the feasibility 
In Step 3 of Pergamentsev’s algorithm it is tried to change any categorical variable to its 
original value such that - although the set of numerical edits induced by the values of the 
categorical variables changes - the numerical part of one of the already found solutions 
satisfies all constraints. If such a solution is found, and is better than the best solution 
found so far, it is subsequently tried to return one of the modified numerical variables to its 
original value. This is done by checking the feasibility of a number of systems of linear 
numerical constraints. Instead one may construct a single MIP problem. In this MIP 
problem each numerical variable is given its original value, the values of the categorical 
variables are equal to their values in the current solution, and only the numerical variables 
in the current solution are allowed to change. The constraint is that the values of the 
numerical variables should satisfy all edits corresponding to the values of the categorical 
variables. The goal is to minimise the sum of the reliability weights of the numerical 
variables that need to be modified. Because generally one a few variables are allowed to be 
modified in this MIP problem, it can be solved relatively fast. 

Solving a MIP problem instead of checking the feasibility of a number of systems of linear 
constraints has the advantage that the solution of the MIP problem gives the variables with 
the maximum sum of reliability weights that may be returned to their original values. 
Checking the feasibility of a number of systems of linear constraints gives only one 
variable that may be returned to its original value. A disadvantage is that solving a MIP 
problem may possibly require more time than checking a number of systems of linear 
constraints. However, because only a few variables are involved in the MIP problem, not 
much time (if any) will be gained by checking a number of systems of linear constraints 
instead. In any case, the time required to solve this small MIP problem will generally be 
negligible in comparison with the time required to solve the large MIP problems in Step 1 
and Step 4 of Pergamentsev’s algorithm. 

7.4.4. Generating several optimal solutions 
An important feature of the present versions of CherryPi, the computer program for 
solving the error localisation problem in numerical data based on Chernikova’s algorithm 
(see Chapter 5) developed by Statistics Netherlands (see e.g. De Waal, 1996 and 1998b), 
and Leo, a prototype computer program for solving the error localisation problem in a mix 
of categorical and continuous data based on a non-standard branch-and-bound algorithm 
(see Chapter 8) also developed by Statistics Netherlands, is that they are able to generate 
several solutions to the error localisation problem with the same minimal weighted sum of 
variables that should be modified. The best, in some sense (a sense differing from the 
generalised Fellegi-Holt paradigm), of these solutions is subsequently selected for 
imputation. The algorithm of Pergamentsev, however, does not generate several solutions 
to the error localisation problem, but only one. 
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If one wants to apply Pergamentsev’s algorithm, but nevertheless wants to generate several 
solutions to the error localisation problem, one can follow a number of simple approaches. 
First, Pergamentsev’s algorithm can be applied to obtain a solution to the error localisation 
problem in mixed data. Assuming that in all solutions to the error localisation problem the 
categorical variables should have the same values, one can fix the categorical variables to 
their values in the obtained solution, and subsequently use, for example, the present 
version of CherryPi or Leo to arrive at several optimal solutions for the numerical part. 

Second, the constraint can be added that at least one of the variables not in the solution 
should be modified. That is, if the index set S describes all variables that should be 
changed, the following constraint should be added 
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Applying Pergamentsev’s algorithm again will generally result in a solution with cost at 
least equal to the cost of the original solution. If we find another equally good solution, we 
may add another constraint, namely that at least one variable not in the new solution 
should be modified. We can continue this process until we find a solution that is less good 
than the original solution. Note that, because Pergamentsev’s algorithm is a heuristic, we 
may sometimes find a better solution if we add an additional constraint. In that case we 
should proceed with the best solution, and consider this as the original solution. 

In principle, the second approach is better, because in the first approach only the values of 
the numerical variables are allowed to differ from the original solution obtained by 
Pergamentsev’s algorithm. The drawback of the second approach is, however, that 
Pergamentsev’s algorithm may have to be applied many times to obtain all equally good 
solutions. This may be very time-consuming. The algorithm implemented in the present 
version of CherryPi or Leo has to be applied only once to arrive at all equally good 
numerical parts. 

Both approaches can be combined. After Pergamentsev’s algorithm has found a solution 
we can use the present version of CherryPi or Leo to arrive at all optimal numerical parts 
corresponding to the categorical part of the found solution. To examine whether there exist 
other categorical parts that also yield the same value for the objective function as the 
original solution, we add the constraint that at least one of the categorical variables not in 
the solution should changed. That is, if S is again the index set of the variables that should 
be changed, the following constraint should be added 
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If the solution to this problem is equally good as the solution to the original problem, we 
can again apply the present version of CherryPi or Leo to arrive at all optimal numerical 
parts corresponding to the categorical part of this solution. This process goes on until 
Pergamentsev’s algorithm finds a solution that is worse than the original solution.  



Chapter 7 

 118

7.4.5. Determining the quality of the solution 
The number of optimal solutions to the error localisation is a measure for the quality of 
error localisation. We feel that in case the quality of error localisation is estimated to be 
low, the corresponding record should not be corrected automatically, but by other means. 
Many optimal solutions to the error localisation problem suggest that the quality of the 
final imputed record will be low, because the Fellegi-Holt paradigm is apparently not 
powerful enough to distinguish between these solutions and additional assumptions are 
necessary. Few optimal solutions suggest the quality may be high. Algorithms that 
determine all optimal solutions to the error localisation problem, such as the ones we 
propose in other chapters of this book, by definition provide this quality measure. 
However, as we have seen in Section 7.4.4 generating all optimal solutions by means of 
Pergamentsev’s algorithm - possibly in combination with, for example, the present version 
of CherryPi or Leo - may be (too) time-consuming. So, we want a measure for the quality 
of error localisation that can be evaluated faster. 

Such a measure can be based on the estimated sums of weights of the categorical and 
numerical variables that need to be modified. In fact, an estimated sum of weights of the 
categorical and numerical variables that need to be modified consists of the corresponding 
estimate for the numerical part (see Step 4 of Pergamentsev’s algorithm) plus the sum of 
the weights of the categorical variables for which the current value differs from the 
original value. To use these estimates to measure the quality of error localisation a number 
of aspects is important. Examples of such aspects are: the number of estimates close to the 
sum of weights of the best solution, the differences between the estimates and the sum of 
weights of the best solution, and the quality of the estimates themselves. 

The quality of error localisation is probably low if several of the estimates are almost equal 
to the sum of weights of the best solution, or if the differences between the estimates 
closest to the sum of weights of the best solution and this sum is small. In both cases the 
Fellegi-Holt paradigm is not powerful enough to select a clearly best solution. The quality 
of error localisation is probably high if the sum of weights of the best solution is clearly 
less than the estimates, and the distances between estimates closest to the sum of weights 
of the best solution and this sum is large. In this case the Fellegi-Holt paradigm succeeds 
in selecting a clearly best solution. 

If the quality of the estimates is low, which can be evaluated by comparing the estimates 
for the numerical part to the solutions of the MIP problems in Step 4, the conclusion drawn 
about the quality of error localisation is not very trustworthy. Even if the conclusion would 
be that the quality of error localisation is fairly high, one may decide not to edit the record 
under consideration automatically in case the quality of the estimates for the numerical part 
in Step 4 is low. This is an extra precaution to ensure that the quality of the carried out 
error localisation will be sufficiently high. 

7.4.6. Using other local search strategies 
The best changes in the categorical variables in Pergamentsev’s algorithm are found by a 
simple heuristic. Instead other heuristics, for example simulated annealing and tabu search, 
may be used to find the best changes. Below we briefly describe simulated annealing and 
tabu search.  
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Simulated annealing is based on an analogy between cooling of solids to reach a low level 
energy ground state and solving a combinatorial optimisation problem. At each evaluation 
of a neighbouring solution, we always accept an improvement of the current solution. 
However, we may also accept worse solutions. A worse solution is accepted with a certain 
probability. 

The rationale of accepting worse solutions is to avoid getting trapped in a local minimum. 
When only improvements would be accepted, the process stops as soon as a local 
minimum, not necessarily a global minimum, has been found. 

The probability of accepting a worse solution depends on both the change in cost of the 
candidate solution and the current temperature of the system. The temperature is analogous 
to the temperature in physical annealing. The temperature is lowered throughout the 
annealing process. At high temperatures almost any candidate solution is accepted, while 
at lower temperatures candidate solutions worse than the current solution are only rarely 
accepted. The idea behind reducing temperature is that near the end of the annealing 
process only the neighbourhood of a locally optimal solution is explored.  

The temperature is reduced by an appropriate cooling schedule. One of the most applied 
cooling schedules is to start at some initial temperature T, and after a certain number of 
iterations reduce T by a factor K, where K is less than 1. The number of repetitions at each 
temperature may be varied depending on the size of the neighbourhood and the 
temperature. The performance of a simulated annealing algorithm often strongly depends 
on the cooling schedule employed.  

At Statistics Netherlands simulated annealing has been applied to round tables in a 
controlled manner (cf. Bakker, 1997). For more information on simulated annealing we 
refer to Van Laarhoven and Aarts (1987).  

Tabu search is a recent heuristic technique used for solving combinatorial optimisation 
problems. Tabu search is based on using information gained earlier in the search process to 
guide the search. When the neighbourhood of a solution is evaluated some potential 
solutions are considered tabu based on the history of the search process. In each iteration 
we go to the best neighbouring solution that is not tabu, even if this solution is worse than 
the current one. The rationale of this approach is again that we want to avoid being trapped 
in a local minimum.  

A simple method is to record the recent steps and classify these steps, or the corresponding 
reverse steps, as tabu. For example, in the error localisation problem we may say that when 
a 1-step change in the categorical variables is made, the corresponding reverse 1-step 
change becomes tabu for a certain period of time. 

7.5. Discussion 

From a theoretical point of view Pergamentsev’s algorithm offers many possibilities for 
future research. First, in Pergamentsev’s algorithm two parameters, the number of 
iterations )( 0M  and the number of 1-step changes in the categorical variables for which a 
MIP problem is solved )( 0N , should be specified. At the moment it is unclear what 
appropriate values for 0M  and 0N  are. 
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Second, it remains to be examined which hybrid heuristic is best-suited for estimating the 
weighted number of numerical variables that need to be modified in Step 4 (see Section 
7.4.1). In fact, it is not clear that such a hybrid heuristic should be used, other algorithms 
may be more appropriate for estimating this value. 

Third, in Section 7.4.2 a simple method is described to update the constraints of the set-
covering problems. Other, more advanced, methods might be developed that give better 
results. Moreover, it remains to be investigated whether updating the constraints really 
improves the quality of the estimates. 

Fourth, it remains to be investigated if it is beneficial to solve a MIP problem instead of 
checking the feasibility of several systems of linear constraints (see Section 7.4.3). Solving 
a MIP problem may possibly increase the computing time in each iteration, but on the 
other hand it may also lead to a better solution after the completion of the iteration. 

Fifth, to generate several optimal solutions to the error localisation problem in mixed data 
three simple approaches have been described. One approach aims to find only the optimal 
solutions that share the same categorical part as the original solution determined by 
Pergamentsev’s algorithm, the other two approaches aim to find all optimal solutions. The 
later two approaches are more time-consuming than the former one. It remains to compare 
these approaches in terms of both computing time and quality. Besides, other approaches 
may be developed to generate several optimal solutions. 

Sixth, to determine the quality of error localisation three constituents for a quality measure 
are mentioned in Section 7.4.5. It is an open question how these constituents should be 
combined to yield a good quality measure. It is quite likely that a good quality measure 
should also incorporate other ingredients. Such other ingredients remain to be found. 

Seventh, instead of the search technique applied in Pergamentsev’s algorithm one can 
apply other search techniques. Two general techniques, simulated annealing and tabu 
search, have been briefly described in Section 7.4.6. It has yet to be determined which 
local search technique is best for the error localisation problem in mixed data. 

From a practical point of view, however, Pergamentsev’s algorithm offers less perspective. 
As we mentioned in Section 7.1 the major appeal of the algorithm was its apparent 
simplicity. Unfortunately, implementation of the algorithm in a computer program turned 
out to be much more complex than was anticipated. In fact, although two persons worked 
on it for several months, we never succeeded in obtaining a fully operational version of the 
intended computer program.  

Besides the unexpected complexity, a computer program based on Pergamentsev’s 
algorithm would have several other disadvantages. A practical advantage would be that the 
error localisation problem for numerical data would need to be solved by means of another 
algorithm. This implies that two different algorithms need to be maintained by the 
statistical office.  

Another disadvantage is that Pergamentsev’s algorithm does not necessarily determine all 
optimal solutions to the error localisation problem. Because the solution returned by 
Pergamentsev’s algorithm need not be optimal, the quality of the record that is edited and 
the quality of the determined solution are unclear. Additional steps must be taken in order 
to get some idea about the quality of the record or the determined solution. To obtain more 
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than one solution the algorithm needs to be extended slightly, thereby making it even more 
complex. 

For the above reasons Pergamentsev’s algorithm has never been fully implemented in a 
computer program. Therefore the algorithm will obviously not be evaluated in the chapter 
on computational results, Chapter 11, of this book. We do not consider this to be a serious 
omission as the evaluation experiments in Chapter 11 are done on purely numerical data 
only, and Pergamentsev’s algorithm needs another algorithm in order to solve the error 
localisation problem for purely numerical data anyway. 
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8. A Branch-and-Bound Algorithm 

8.1. Introduction 

In 1999 Quere, a post-graduate student at Eindhoven University of Technology, did an 
internship at Statistics Netherlands. During his internship Quere worked on the error 
localisation problem for purely numerical data. During this period he was supervised by 
Dr. Hurkens from Eindhoven University of Technology and the author of this book. Quere 
succeeded in developing an algorithm that seemed so promising that after his internship 
had ended Statistics Netherlands hired Quere for a short period, during which he was again 
supervised by the author of this book, in order to jointly extend the developed algorithm to 
a mix of categorical and continuous data.  

In this chapter the result of this work, a branch-and-bound algorithm for solving the error 
localisation problem for a mix of categorical and continuous data, is described. The 
algorithm is based on constructing a binary tree, and subsequently searching this tree for 
optimal solutions to the error localisation problem. In a standard branch-and-bound tree in 
each node of the tree a variable is selected. Subsequently, branches are constructed by 
fixing the selected variable to (some of) its possible values. In the branch-and-bound 
algorithm by Quere and De Waal, however, two branches are constructed by fixing the 
selected variable to its original value in one branch and by eliminating the selected variable 
in the other branch. To eliminate a variable, the algorithm by Quere and De Waal uses 
implicit edits, just like the Fellegi-Holt method. We give a mathematical description of the 
branching part of this algorithm in Section 8.2. An example illustrating the algorithm is 
given in Section 8.3. A proof that the proposed algorithm indeed generates all optimal 
solutions to the error localisation problem is given in Section 8.4. In Section 8.5 we 
examine what happens if we allow categorical variables to be selected before all numerical 
variables have been selected. In Section 8.6 computational aspects of the algorithm are 
briefly considered. The material in that section is partly based on work carried out by 
Daalmans when he was doing an internship at Statistics Netherlands as a student at Tilburg 
University. At Tilburg University Daalmans was supervised by Prof. Dr. Magnus, and at 
Statistics Netherlands by the author of this book. In Section 8.6 we also describe the 
bounding part of the algorithm. Finally, Section 8.7 concludes this chapter with a short 
discussion. 

This section is based on Quere and De Waal (2000), De Waal (2000a), and Daalmans 
(2000). Part of this material is planned to be published in De Waal and Quere (2003). 

8.2. A branching algorithm 

We first assume that no values are missing. The basic idea of the algorithm is then that a 
binary tree is constructed. In each node of this tree a variable is selected that has not yet 
been selected in any predecessor node. If all variables have already been selected in a 
predecessor node, we have reached a terminal node of the tree.  
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After selection of a variable two branches are constructed: in one branch the selected 
variable is fixed to its original value, in the other branch the selected variable is eliminated 
from the set of current edits. In each branch the current set of edits is updated. A variable 
that has either been fixed or eliminated is said to have been treated. The algorithm we 
propose is based on a depth-first search: the current branch is searched for solutions to the 
error localisation problem until its terminal nodes are reached before another branch is 
searched. 

For simplicity we assume in this section that all numerical variables are selected before 
any categorical variable is selected. In Section 8.5 we briefly consider the more general, 
and more complicated, case where categorical variables may be selected before all 
numerical variables have been selected. In particular, we show that the resulting implied 
edits are more difficult than when all numerical variables are selected before any 
categorical variable. 

Fixing a variable to its original value corresponds to assuming that this original value is 
correct, eliminating a variable from the set of current edits corresponds to assuming that 
the original value of this variable is incorrect and has to be modified. 

Updating the set of current edits is the most important step in the algorithm. How the set of 
edits has to be updated depends on whether the selected variable was fixed or eliminated, 
and also on whether this variable was categorical or continuous. 

Fixing a variable, either numerical or categorical, to its value is easy. We simply substitute 
this value in all current edits. Note that, given that we fix this variable to its original value, 
the new set of current edits is a set of implicit edits for the remaining variables in the tree, 
i.e. the remaining variables have to satisfy the new set of edits. As a result of fixing the 
selected variable to its value some edits may become always satisfied, for example when a 
categorical variable is fixed to a value such that the IF-condition of an edit can never 
become true anymore. These edits may be discarded from the new set of edits. Conversely, 
some edits may become violated. In such a case this branch of the binary tree can never 
result in a solution to the error localisation problem. 

Eliminating a variable is a relatively complicated process. It amounts to generating a set of 
implicit edits that do not involve this variable. That set of implicit edits becomes the 
current set of edits corresponding to the current branch of the tree.  

If a numerical variable is to be eliminated, we basically apply Fourier-Motzkin elimination 
(see Duffin, 1974; Chvátal, 1983; Imbert, 1993; Schrijver, 1986; Korte and Vygen, 2000; 
Quere, 2000; Quere and De Waal, 2000) to eliminate that variable from the set of edits. 
Some care has to be taken in order to ensure that the IF-conditions of the resulting edits are 
correctly defined.  

In particular, if we want to eliminate a numerical variable rx  from the current set of edits, 
we start by copying all edits not involving this numerical variable from the current set of 
edits to the new set of edits. Next, we examine all edits of the type we consider in this 
book, i.e. of type  
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IF j
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THEN }0...|{),...,( 111 ≥+++∈ jnnjjn bxaxaxx x ,   (8.1a) 

 

or 

 

IF j
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involving rx  pair-wise. Suppose we consider the pair consisting of edit s and edit t. 

We start by checking whether the intersection of the IF-conditions is non-empty, i.e. 
whether the intersections t

i
s

i FF ∩  are non-empty for all i=1,…,m. If any of these 
intersections is empty, we do not have to consider this pair of edits anymore. So, suppose 
that all intersections are non-empty. We now construct an implicit edit. If the THEN-
condition of edit s is an equality, we use the equality  
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to eliminate rx  from the THEN-condition of edit t. Similarly, if the THEN-condition of 
edit s is an inequality and the THEN-condition of edit t is an equality, the equality in the 
THEN-condition of edit t is used to eliminate rx . 

If the THEN-conditions of both edit s and edit t are inequalities, we check whether the 
coefficients of rx  in those inequalities have opposite signs. That is, we check whether 

0<× rtrs aa . If the coefficients of rx  in the two inequalities do not have opposite signs, 
we do not consider this pair of edits anymore.  

If the coefficients of rx  in the two inequalities do have opposite signs, one of the 
inequalities can be written as a lower bound on rx  and the other as an upper bound on rx . 
Combining these two bounds leads to an inequality not involving rx . We generate the 
THEN-condition: 

}0
~~...~|{),...,( 111 ≥+++∈ bxaxaxx nnn x ,    (8.3) 

where 

isrtitrsi aaaaa ×+×= ||||~   for all i=1,…,n    (8.4) 

and 
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Note that rx  indeed does not enter the resulting THEN-condition. 

The above THEN-condition forms the THEN-condition of a new implied edit. The IF-
condition of this implicit edit is given by the intersections t

i
s

i FF ∩  for all i=1,…,m. That 

the IF-condition of the new implicit edit is given by the intersections t
i

s
i FF ∩  (i=1,…,m) 

is intuitively clear: two numerical THEN-conditions can only be combined into the 
(numerical) THEN-condition of an implicit edit for the overlapping parts of their 
corresponding categorical IF-conditions. Taking the intersections of the categorical IF-
conditions provides a natural and convenient way of keeping track of the combinations of 
categorical values for which the numerical THEN-condition of an implicit edit is defined. 
Note that if we eliminate a numerical variable in any of the ways described above, the 
resulting set of edits is, given that we allow the eliminated variable to attain any possible 
value, a set of implicit edits for the remaining variables in the tree. That is, this resulting 
set of edits has to be satisfied by the remaining variables in the tree, given that the 
eliminated variable may in principle take any real value. 

Repeatedly applying the above elimination process until all numerical variables have been 
eliminated results in a THEN-condition not involving any unknowns that is either true, for 
example “1 ≥ 0”, or a THEN-condition that is false, for example “0 ≥ 1”. The edits for 
which the THEN-condition is true are discarded. 

Categorical variables are only treated, i.e. fixed or eliminated, once all numerical variables 
have been treated. So, once the categorical variables may be selected the edits in the 
current set of edits all have the following form: 

 

IF  j
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THEN ∅∈),...,( 1 nxx .      (8.6) 

 

To eliminate categorical variable rv  from the set of edits given by (8.6), we start by 
copying all edits not involving this variable to the set of implicit edits. 

Next, we basically apply the method of Fellegi and Holt to the IF-conditions to generate 
the IF-conditions of the implicit edits (see also Daalmans, 2000). In the terminology of 
Fellegi and Holt, field rv  is selected as the generated field. We start by determining all 
index sets S such that 
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From these index sets we select the minimal ones, i.e. the index sets S that obey (8.7) and 
(8.8), but none of their subsets obey (8.7). 

Given such a minimal index set S we construct the implied edit given by 
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Note that if we eliminate a categorical variable in the way described above, the resulting 
set of edits is, given that we allow the eliminated variable to attain any possible value in its 
domain, a set of implicit edits for the remaining variables in the tree. That is, this resulting 
set of edits has to be satisfied by the remaining variables in the tree, given that the 
eliminated variable may in principle take any value in its domain. 

If values are missing in the original record, the corresponding variables only have to be 
eliminated (and not fixed) from the set of edits, because these variables always have to be 
imputed. At precisely what moment the variables with missing variables are eliminated is 
not important for obtaining all optimal solutions to the error localisation problem as long 
as all numerical variables are treated before any categorical variable is (see, however, also 
Section 8.5). However, a natural choice is to treat the variables in the following order: 

• eliminate all numerical variables with missing values; 

• fix or eliminate the remaining numerical variables; 

• eliminate all categorical variables with missing values; 

• fix or eliminate the remaining categorical variables. 

We have now explained how the current set of edits changes if we fix or eliminate a 
variable. After all categorical variables have been treated we are left with a set of relations 
without any unknowns. This set of relations may be the empty set. These relations may 
either be contradictions or not. A contradicting relation is given by 

 

IF ii Dv ∈  for i=1,…,m   

THEN ∅∈),...,( 1 nxx .      (8.10) 

 

If the set of relations is empty, it does not contain any contradictions. The relations contain 
no contradictions if and only if the variables that have been eliminated in order to reach the 
corresponding terminal node of the tree can be imputed consistently, i.e. such that all 
original edits can be satisfied. This statement is proved in Section 8.4. 
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In the algorithm we check for each terminal node of the tree whether the variables that 
have been eliminated in order to reach this node can be imputed consistently. Of all sets of 
variables that can be imputed consistently we select the ones with the lowest sums of 
reliability weights. In this way we find all optimal solutions to the error localisation 
problem (see also Section 8.4). 

Equalities in THEN-conditions can be handled more efficiently than we described so far. 
For instance, if the numerical variable to be eliminated is involved in an equality that has 
to hold irrespective of the values of the categorical variables, i.e. is involved in an edit of 
the following type 

 

IF ii Dv ∈  for i=1,…,m   

THEN }0...|{),...,( 111 =+++∈ jnnjjn bxaxaxx x ,   (8.11) 

 

then we do not have to consider all edits pair-wise in order to eliminate this variable. 
Instead, we only have to combine (8.11) with all other current edits. So, if there are J 
current edits, we do not have to consider J(J – 1) pairs, but only J – 1 pairs. Besides, the 
number of resulting implied edits is generally less than when all pairs of current edits are 
considered. We will refer to this rule as the equality-elimination rule. In principle, similar 
rules can be developed for other types of edits involving an equality as THEN-condition. 
We will not pursue this path in this book, however. 

The algorithm described in this chapter is a so-called branch-and-bound algorithm. In a 
branch-and-bound algorithm a tree is constructed and bounds on the objective function are 
used to cut off branches from the tree. In Section 8.6 we briefly explain how our bound is 
calculated and branches can be cut off from our tree. 

8.3. Example 

In this section we illustrate the idea of the algorithm presented in the previous section by 
means of an example. This example is similar to an example given in Quere and De Waal 
(2000). . In this example we will not use the equality-elimination rule described at the end 
of the previous section. We will not build the entire tree, because this would take too much 
space and would hardly teach us anything. Instead we will only generate one branch of the 
tree. 

Suppose we have to edit a data set containing four categorical variables iv  (i=1,…,4) and 
three numerical variables ix  (i=1,…,3). The domains of the first two categorical variables 
are {1,2}, and of the last two categorical variables {1,2,3}. The set of explicit edits is given 
below. 

 
IF ( 11 =v  AND }3,1{4 ∈v ) THEN ∅    (8.12) 
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IF ( 12 =v  AND 13 =v ) THEN ∅     (8.13) 

IF ( 21 =v  AND }3,1{3 ∈v  AND }3,1{4 ∈v ) THEN ∅   (8.14) 

0121 ≥−x        (8.15) 

IF ( }3,1{3 ∈v ) THEN 02 =x      (8.16) 

IF ( 23 =v ) THEN 012502 ≥−x      (8.17) 

IF ( 23 =v ) THEN 012875 21 ≥+− xx     (8.18) 

IF ( 23 =v ) THEN 081250 21 ≥− xx     (8.19) 

IF ( }3,1{3 ∈v ) THEN 01250 31 =− xx     (8.20) 

IF ( 22 =v  AND 23 =v ) THEN 01250121250 321 =+−+ xxx   (8.21)  

IF ( 12 =v  AND 23 =v ) THEN 0121250 321 =−+ xxx   (8.22) 

 

Here, if a categorical variable is not mentioned in an IF-condition, this variable may take 
any value. For instance, edit (8.12) actually means 

 
IF ( 11 =v  AND 22 Dv ∈  AND 33 Dv ∈  AND }3,1{4 ∈v ) THEN ∅, (8.23) 

 

where iD  is the domain of categorical variable i. 

Now, suppose that a record with values 11 =v , 22 =v , 23 =v , 14 =v , 251 =x , 
050,32 =x  and 000,903 =x  is to be edited. Edits (8.12) and (8.21) are failed, so this 

record is inconsistent. We apply the algorithm described in the previous section and start 
by selecting a numerical variable, say 1x . In the algorithm two branches are generated: one 
branch where 1x  is fixed to its original value 25, and one branch where 1x  is eliminated 
from the current set of edits. Here we only consider the second branch and eliminate 1x  
from the current set of edits. 

For instance, if we combine (8.15) and (8.18), we first take the intersection of their IF-
conditions. This intersection is given by “ 23 =v ”. This intersection is non-empty, so we 
proceed. We write (8.15) as a lower bound on 1x , i.e. as 121 ≥x , and the THEN-condition 
of (8.18) as an upper bound on 1x , i.e. as 21 12875 xx ≤ . The THEN-condition of the 
resulting implied edit is then given by 1287512 2 ×≥x , or equivalently by 8752 ≥x . The 
resulting implied edit is hence given by 
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IF ( 23 =v ) THEN 08752 ≥−x      (8.24) 

 

The complete set of resulting (implicit) edits is given by (8.24) and: 

 
IF ( }3,1{3 ∈v ) THEN 150003 ≥x      (8.25) 

IF ( 12 =v  AND 23 =v ) THEN 01625012 23 ≥−− xx    (8.26) 

IF ( 22 =v  AND 23 =v ) THEN 01500012 23 ≥−− xx   (8.27) 

IF ( 23 =v ) THEN 02 ≥x       (8.28) 

IF ( 22 =v  AND 23 =v ) THEN 08757.04.20 32 ≥+− xx   (8.29) 

IF ( 12 =v  AND 23 =v ) THEN 07.04.20 32 ≥− xx    (8.30) 

IF ( 12 =v  AND 23 =v ) THEN 0125020 32 ≥−+− xx    (8.31) 

IF ( 22 =v  AND 23 =v ) THEN 020 32 ≥+− xx    (8.32) 

 

and (8.12), (8.13), (8.14), (8.16) and (8.17). 

Note that some of the generated edits may be completely useless. For instance, implicit 
edit (8.28) is less strong than, is dominated by, edit (8.24). If edit (8.24) is satisfied, then 
automatically edit (8.28) is satisfied. Such dominated edits may be deleted. 

We select another numerical variable, say 2x , and again construct two branches: one 
branch where 2x  is fixed to its original value 3,050, and one branch where 2x  is 
eliminated from the current set of edits. Here we only consider the first branch and fix 2x  
to its original value. As a result, some of the current edits may become satisfied. Those 
edits can be discarded. In this case, for example, edit (8.24) becomes satisfied and is 
discarded in the current branch of the tree. Some other edits may become violated. In such 
a case the current branch of the tree cannot lead to a solution to the error localisation 
problem. In our example none of the edits becomes violated. 

The resulting set of implicit edits obtained by fixing 2x  to its original value is given by: 

 

IF ( }3,1{3 ∈v ) THEN ∅      (8.33) 

IF ( 12 =v  AND 23 =v ) THEN 0528503 ≥−x    (8.34) 

IF ( 22 =v  AND 23 =v ) THEN 0516003 ≥−x    (8.35) 
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IF ( 22 =v  AND 23 =v ) THEN 0630957.0 3 ≥+− x    (8.36) 

IF ( 12 =v  AND 23 =v ) THEN 0622207.0 3 ≥+− x    (8.37) 

IF ( 22 =v  AND 23 =v ) THEN 0610003 ≥−x    (8.38) 

IF ( 12 =v  AND 23 =v ) THEN 0622503 ≥−x    (8.39) 

 

and (8.12), (8.13), (8.14) and (8.25). Edit (8.33) arises from edit (8.16) by substituting 
3,050 for 2x . The resulting numerical THEN-condition is failed. 

We select the final numerical variable, 3x , and split the tree into two branches: one where 

3x  is fixed to its original value and one where it is eliminated. Here we only consider the 
branch where 3x  is fixed to its original value, 90,000. Again some of the edits become 
satisfied and are discarded. None of the edits become violated in our case. The resulting set 
of implicit edits is given by: 

 
IF ( 12 =v  AND 23 =v ) THEN ∅,     (8.40) 

 

and (8.12), (8.13), (8.14) and (8.33). Edit (8.40) arises from edit (8.37) by substituting 
90,000 for 3x . The resulting numerical THEN-condition is failed. 

All numerical variables have now been treated, either by fixing or by eliminating. We see 
that the current set of edits is given by the purely categorical explicit edits supplemented 
by categorical edits that have been generated when the numerical variables were treated. 
We now treat the categorical variables. We select a categorical variable, say 1v , and again 
split the tree into two branches: a branch where 1v  is fixed to its original value and a 
branch where it is eliminated. We only consider the branch where 1v  is eliminated. The 
resulting set of implicit edits is given by: 

 
IF ( }3,1{3 ∈v  AND }3,1{4 ∈v ) THEN ∅,    (8.41) 

 

and (8.13), (8.33) and (8.40).  

We select a categorical variable, say 2v . Fixing and eliminating this variable again results 
in two branches. We only consider the branch where 2v  is fixed to its original value, 2. 
We obtain only two implicit edits, namely (8.33) and (8.41). 
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Again, we select a categorical variable, say 3v . Fixing and eliminating this variable again 
results in two branches. We only consider the branch where 3v  is fixed to its original 
value, 2. The resulting set of implicit edits is empty. 

This implies that the set of original, explicit edits can be satisfied by changing the values 
of 1x  and 1v , and fixing the other variables to their original values. In other words, a 
solution to the error localisation problem for this record is given by: change the values of 

1x  and 1v . Possible values, the only ones in this case, are 21 =v  and 72.411 =x . It is easy 
to check that the resulting record indeed satisfies all explicit edits.  

The other branches of the tree, which we have skipped, also need to be examined, because 
it is possible that they contain a better solution to the error localisation problem. By 
examining all branches of the tree one can obtain all optimal solutions to the error 
localisation problem for the record under consideration. 

 

8.4. An optimality proof 

In this section we prove that the algorithm described in Section 8.2 indeed finds all optimal 
solutions to the error localisation problem. We do this in three steps. We start by showing 
that if the variables that have been eliminated in order to reach a certain node can be 
imputed in such a way that the set of edits corresponding to this node become satisfied, the 
variables that have been eliminated in order to reach the parent node can also be imputed 
in such a way that the set of edits corresponding to that parent node become satisfied. This 
is the lifting principle that was introduced in Chapter 4. Using this result we show that if 
and only if the set of relations without any unknowns in a terminal node do not contradict 
each other, we can consistently impute the variables that have been eliminated in order to 
reach this terminal node, i.e. such that the original edits become satisfied. The final step 
consists of noticing that the terminal nodes correspond to all potential solutions of the error 
localisation problem, and hence that the algorithm indeed determines all optimal solutions 
to the error localisation problem. Steps 2 and 3 are trivial once the first step has been 
proved. 

The proof of the first step, the lifting principle, is similar to the proof of Theorem 1 in 
Fellegi and Holt (1976) (see also Chapter 4 of the present book). The main differences are 
that our edits are more general than the edits considered by Fellegi and Holt, and that 
Fellegi and Holt assume that the so-called complete set of (explicit and implicit) edits has 
been generated. 

 

Theorem 8.1. Suppose the set of variables in a certain node is given by 0T , and the current 
set of edits corresponding to that node by 0Ω . Suppose, furthermore, that a certain 
variable r is either fixed or eliminated. Denote the set of resulting variables by 1T , 

}{01 rTT −= , and the set of edits corresponding to the next node by 1Ω . Then there exist 

values 0
iu  for the variables in 1T  that satisfy the edits in 1Ω  if and only if there exists a 



A Branch-and-Bound Algorithm 

 133

value 0
ru  for variable r such that the values 0

iu  for the variables in 0T  satisfy the edits in 

0Ω . 

Proof. It is easy to verify that if there exist values 0
iu  for the variables in 0T  that satisfy 

the edits in 0Ω  then the same values (except the value of the variable that is fixed or 
eliminated) automatically satisfy the edits 1Ω  of the next node. 

It is a bit more work to prove the other part of the proof. We have to distinguish between 
several cases. First, let us suppose that the selected variable is fixed. This is a trivial case. 
It is clear that if there exist values 0

iu  for the variables in 1T  that satisfy the edits in 1Ω , 

there exist values 0
iu  for the variables in 0T  that satisfy the edits in 0Ω . Namely, for the 

fixed variable r we set the value 0
ru  equal to the original value of r. 

Let us now suppose that a categorical variable r has been eliminated. Suppose that there 
exist values 0

iu  for the variables in 1T  that satisfy the edits in 1Ω , but there does not exist 

a value 0
ru  for the selected variable r such that the variables in 0T  satisfy the edits in 0Ω . 

Identify a failed edit in 0Ω  for each possible value k
rv  of variable r. The index set of these 

failed edits need not be a minimal one. We therefore remove some of these failed edits 
such that the corresponding index set S becomes minimal. We then construct the implicit 
edit given by (8.9). 

Edit (8.9) is an element of 1Ω . Moreover, the values 0
iu  for the variables in 1T  do not 

satisfy this edit. This contradicts our assumption that these values satisfy all edits in 1Ω . 

So, we can conclude that a value 0
ru  for the selected variable r exists such that the values 

0
iu  for variables in 0T  satisfy the edits in 0Ω . 

Finally, let us suppose that a numerical variable r has been eliminated. Suppose that there 
exist values 0

iu  for the variables in 1T  that satisfy the edits in 1Ω . Each edit in 1Ω  is 
either obtained from copying the edits in 0Ω  not involving variable r, or from two edits in 

0Ω  involving variable r that have been combined.  

It is clear that if the edits in 1Ω  that have been obtained from copying the edits in 0Ω  not 

involving variable r are satisfied by values 0
iu  for the variables in 1T , these edits in 0Ω  

are also satisfied by the same values for the variables in 0T .  

It remains to prove that if the edits in 1Ω  that have been obtained by combining two edits 
in 0Ω  are satisfied by the variables in 1T , there exists a value for variable r such that all 

edits in 0Ω  involving variable r can be satisfied. To show this we fill in the values 0
iu  for 

the variables in 1T  in the edits in 0Ω . As a result, we obtain a number of constraints of the 
following types for the value of the selected variable r: 
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E
kr Mx =        (8.42) 

L
kr Mx ≥ ,       (8.43) 

and 
U
kr Mx ≤ .       (8.44) 

Here E
kM , L

kM , and U
kM  are certain constants for k=1,…,Kr, where Kr is the number of 

edits in 0Ω  involving variable r that are triggered by the values 0
iu  of the categorical 

variables in 0T . 

Constraint (8.42) has been obtained from an edit k in 0Ω  of which the THEN-condition 
can be written in the following form 

 ∑
≠

′+′=
ri

kiikr bxax       (8.45) 

by filling in the values 0
iu  for the variables in 1T . Similarly, constraints (8.43) and (8.44) 

have been obtained from edits in 0Ω  of which the THEN-conditions can be written in the 
following forms 

 ∑
≠

′+′≥
ri

kiikr bxax       (8.46) 

and  

 ∑
≠

′+′≤
ri

kiikr bxax ,      (8.47) 

respectively, by filling in the values 0
iu  for the variables in 1T . 

If the constraints given by (8.42) to (8.44) do not contradict each other, we can find a value 
for variable r such that this value plus the values 0

iu  for the variables in 1T  satisfy the edits 
in 0Ω . 

So, suppose the constraints given by (8.42) to (8.44) do contradict each other. These 
constraints can only contradict each other if there are constraints s and t given by 

1. E
sr Mx =  and E

tr Mx =  with E
t

E
s MM ≠ ,   (8.48) 

2. E
sr Mx =  and L

tr Mx ≥  with L
t

E
s MM < ,   (8.49) 

3. U
sr Mx ≤  and E

tr Mx =  with E
t

U
s MM < ,   (8.50) 

or 

4. U
sr Mx ≤  and L

tr Mx ≥  with L
t

U
s MM < .   (8.51) 
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In case 1 constraints s and t have been derived from edits in 0Ω  of which the THEN-
conditions are equalities. The IF-conditions of these edits have a non-empty intersection, 
because both edits are triggered when we fill in the values 0

iu  for the categorical variables 
in 1T . So, these edits generate an implicit edit in 1Ω  if we eliminate variable r. The 
THEN-condition of this implicit edit can be written as 

 ∑∑
≠≠

′+′=′+′
ri

tiit
ri

siis bxabxa ,     (8.52) 

where we have used (8.45). 

Filling in the values 0
iu  for the variables in 1T  in this implicit edit, we find that E

sM  

should be equal to E
tM . In other words, we have constructed an edit in 1Ω  that would be 

failed if we filled in the values 0
iu  for the variables in 1T . This contradicts the assumption 

that these values satisfy all edits in 1Ω , and we conclude that the constraints given by 
(8.42) cannot contradict each other. 

For cases 2, 3 and 4 we can show in a similar manner that we would be able to construct a 
failed implicit edit in 1Ω . This contradicts the assumption that the values 0

iu  for the 
variables in 1T  satisfy all edits in 1Ω , and we conclude that the constraints given by (8.42) 
to (8.44) cannot contradict each other.  

In turn this allows us to conclude that a value for variable r exists such that this value plus 
the values 0

iu  for the variables in 1T  satisfy the edits in 0Ω .  

Finally, note that when the equality-elimination rule (see the end of Section 8.2) has been 
applied to eliminate a continuous variable r by means of the edit 

 

IF ii Dv ∈  for i=1,…,m   

THEN }0...|{),...,( 111 =+++∈ snnssn bxaxaxx x ,   (8.53) 

 

the value given by  

 







+−= ∑

≠ri
iiss

rs
r uab

a
x 01       (8.54) 

plus the values 0
iu  for the variables in 1T  satisfy the edits in 0Ω .  

This concludes the proof of Theorem 8.1.      � 
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Theorem 8.2. The set of edits corresponding to a terminal node, i.e. a set of relations 
without any unknowns, is consistent, i.e. contains no contradictions, if and only if the 
variables that have been eliminated in order to reach this terminal node can be imputed in 
such a way that the original set of edits becomes satisfied. 

Proof. This follows directly from a repeated application of Theorem 8.1.  � 

 

Theorem 8.3. The algorithm of Section 8.2 determines all optimal solutions to the error 
localisation problem. 

Proof. The terminal nodes of the tree correspond to all possible combinations of fixing and 
eliminating variables. So, according to Theorem 8.2 above, the algorithm checks which of 
all possible sets of variables can be imputed consistently. The algorithm simply selects all 
optimal sets of variables that can be imputed consistently from all possible sets. So, we can 
conclude that the algorithm finds all optimal solutions to the error localisation problem. � 

8.5. The order of treating numerical and categorical variables 

In this section we briefly consider what happens if categorical variables are treated before 
all numerical ones have been treated. We will see that treating the categorical variables 
before all numerical variables have been treated leads to a more complicated algorithm 
than the one described in Section 8.2, because the problem has to be split into several 
subproblems. 

Even if we allow categorical variables to be treated before all numerical variables have 
been treated, fixing a variable or eliminating a numerical variable rx  from the current set 
of edits is done in the same way as in Section 8.2. Only eliminating categorical variables 
has to be done a bit differently as in Section 8.2. 

To eliminate categorical variable rv  from a set of edits given by (8.1), we start by copying 
all edits not involving this variable to the new set of edits. Next, we determine all minimal 
index sets kS  such that (8.7) and (8.8) are satisfied.  

Given such a minimal index set kS  we construct the implied edit given by 

 

IF rr Dv ∈ , j
i

Sj
i Fv

k∈
∈ h  for i=1,…,r-1,r+1,…,m 

THEN j
Sj

n Rxx
k∈

∈ t),...,( 1 ,     (8.55) 

 

where either }0...|{ 11 ≥+++= jnnjjj bxaxaR x  or }0...|{ 11 =+++= jnnjjj bxaxaR x , 
depending on whether the THEN-condition of edit j is an inequality or an equality. That is, 
the THEN-condition of this implied edit consists of || kS  elementary numerical conditions 
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given by }0...|{ 11 ≥+++ jnnjj bxaxax  or }0...|{ 11 =+++ jnnjj bxaxax  for kSj∈ . An 
edit of format (8.55) is satisfied if the IF-condition is not satisfied, or if the IF-condition is 
satisfied and at least one of the elementary numerical conditions is satisfied. Note that edit 
(8.55) is indeed an implied edit. It has to be satisfied by the variables that have not yet 
been treated. 

Edits of format (8.55) can be handled by splitting the error localisation problem into 
several subproblems. In each subproblem only one elementary numerical condition of each 
edit is involved. That is, in each subproblem the edits are of format (8.1). In total ∏

k
kS ||  

subproblems have to be solved. In a latter stage of the algorithm these subproblems may 
themselves be split into new subproblems. The best solutions to the final subproblems are 
the optimal solutions to the overall problem. 

If one wants to treat categorical variables before all numerical ones have been treated, one 
may consider allowing the broader class of explicit edits given by (8.55) instead the class 
given by (8.1). Edits of format (8.55) arise any way if categorical variables are treated 
before all numerical variables have been treated, even if the edits specified by the subject-
matter specialists are of format (8.1).  

It is easy to see that Theorem 8.1 is still valid if categorical variables are allowed to be 
treated before all numerical variables have been treated. As a consequence, Theorems 8.2 
and 8.3 are also valid for this case, and we obtain the following corollary to the theorems. 

 

Corollary to Theorems 8.1, 8.2 and 8.3. The algorithm presented in this section, where 
categorical variables are allowed to be treated before all numerical variables have been 
treated, determines all optimal solutions to the error localisation problem. 

8.6. Computational aspects of the algorithm 

We have demonstrated in Section 8.4 that the developed algorithm, described in Section 
8.2, determines all optimal solutions to the error localisation problem for mixed data. At 
first sight, however, the developed algorithm may seem rather slow because an extremely 
large binary tree has to be generated to find all optimal solutions, even for moderately 
sized problems. Fortunately, the situation is not nearly as bad as it may seem. 

8.6.1. Reducing the size of the tree 
First of all, if the minimum number of fields that have to be changed in order to make a 
record pass all edits is (too) large, we feel that the record should not be edited 
automatically. In our opinion, the quality of such a record is simply too low to allow for 
automatic correction. We suggest that such a record should either be edited manually, or be 
discarded completely. By specifying an upper bound for the number of fields that may be 
changed, the size of the tree can drastically be reduced. 

To illustrate the effect of the total number of variables m + n and the upper bound maxN  
for the number of fields that may be changed on the maximum size of the generated tree, 
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we calculate the total number of nodes, both internal ones and terminal ones, in such a 
binary tree. Denote the number of nodes in a tree involving t variables where at most s 
variables may be eliminated by ),( tsF . This function satisfies the following recurrence 
relation: 

 )1,()1,1(1),( −+−−+= tsFtsFtsF  for 1, ≥ts ,  (8.56) 

with boundary conditions 

 1)0,( =aF        (8.57) 

and 

 1),0( += bbF .       (8.58) 

After some puzzling we find that the solution to this recurrence relation and the boundary 
conditions is 

 ( ) ( )1212),(
1

1 −






 −
−−= ∑

−

=

+ i
st

i

t

s
it

tsF .    (8.59) 

In our case we are interested in the value of ),( max nmNF + . Some numerical results to 
illustrate the behaviour of this function are given in Table 8.1 below. 

 

Table 8.1. Total number of nodes in binary tree 

 maxN = 1 maxN = 2 maxN = 5 maxN = 10 maxN = m + n 

m + n = 10 66 231 1,485 2,047 2,047 

m + n = 20 231 1,561 82,159 1.40×106 2.10×106 

m + n = 50 1,326 22,151 2.06×106 6.42×1010 2.25×1015 

m + n = 100 5,151 171,801 1.35×109 1.80×1014 2.54×1030 

 

Note that for a large tree a very substantial part of the tree may be cut off by specifying an 
upper bound for the number of fields that may be changed. 

The size of the tree can also be reduced during the execution of the algorithm, because it 
may already become clear in an intermediate node of the tree that the terminal nodes in the 
corresponding branch cannot generate an optimal solution to the problem. For instance, by 
fixing the wrong variables we may make the set of edits infeasible. This may be noticed in 
an intermediate node.  
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8.6.2. Using the value of the objective function as an incumbent 
The value of the objective function can also be used as an incumbent in order to reduce the 
size of the tree. This value cannot decrease while going down the tree. So, if the value of 
the objective function exceeds the value of an already found (possibly suboptimal) 
solution, we can again conclude that the terminal nodes in the corresponding branch cannot 
generate an optimal solution to the problem. In other words, the value of the best already 
found solution is used as the bound in our branch-and-bound scheme. During the execution 
of the algorithm the bound is updated.  

In the present version of Leo, a prototype program implementing the algorithm of Section 
8.2 that has originally been written Quere and later been adapted by Van den Broeke and 
De Waal, we simply compare the current value of the objective function in a node with the 
current bound. However, in a future version of Leo we plan to compute in each node a 
lower bound on the final value of the objective function, and compare that lower bound to 
the current bound. For each node such a lower bound on the final value of the objective 
function can be computed by adding the current value of the objective function to a lower 
bound on the sum of reliability weights of the other variables that need to be changed. A 
simple algorithm for determining a lower bound on the sum of reliability weights of the 
remaining variables that need to be changed in a certain node can be based on splitting the 
set of failed edits in this node into a maximum number of mutually disjoint subsets. Here, 
two sets of edits are said to be disjoint if and only if the set of variables involved in these 
edits are disjoint. In each subset of failed edits at least one variable needs to be changed in 
order to make these edits satisfied. A lower bound on the sum of reliability weights of the 
remaining variables that need to be changed is hence given by the sum of the minima of 
the reliability weights per subset. Splitting a set of failed edits into a maximum number of 
mutually disjoint edits is similar to determining the strongly connected subgraphs of a 
given graph (see Korte and Vygen, 2000, for an algorithm to determine strongly connected 
subgraphs). Such an algorithm can also be used to check before application of the branch-
and-bound algorithm whether a record will require (too) many changes.  

8.6.3. The number of edits due to elimination of a continuous variable 
One might suspect that the number of implied edits grows rapidly. Fortunately, this is not 
the case in most practical situations. In fact, it is quite simple to calculate an upper bound 
on the number of edits after elimination of a continuous variable. Suppose our data set 
contains only continuous data. Let the total number of current edits be given by t. Suppose 
the variable to be eliminated occurs in r current edits. Suppose also that s of those r edits 
are inequalities, and that u of those r edits are equalities. Obviously, s + u = r. 

We start by copying all t-r current edits not involving the variable under consideration to 
the new set of edits. If the equality-elimination rule is not used, each equality can be used 
in combination with any of the other r-1 edits involving the variable under consideration to 
eliminate this variable. This yields  

us
u
+









2
       (8.60) 

new edits.  
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If the equality-elimination rule is used, one equality involving the variable under 
consideration is combined with any of the other r-1 edits involving this variable in order to 
eliminate this variable. This yields r-1 new edits. 

The number of new edits due to combining inequalities is given by pq, where p is the 
number of inequalities that can be written as an upper bound on the value of the variable 
under consideration and q the number of inequalities that can be written as a lower bound. 
If s is even, the worst case is given by p=q=s/2. If s is odd, the worst case is given by 
p=(s+1)/2 and q=(s-1)/2, or vice versa. The maximum number of new edits due to 
elimination of the variable under consideration by combining inequalities only is hence 
given by:  

• 42s    if s is even;    (8.61) 

• 4)1)(1( −+ ss   if s is odd.    (8.62) 

If the equality-elimination rule is not used, an upper bound on the number of edits after 
elimination of a continuous variable is hence given by 

• 42)1()( 2susuusut ++−++−    if s is even;  (8.63) 

• 4)1)(1(2)1()( −+++−++− ssusuusut  if s is odd.  (8.64) 

In other words, if the equality-elimination rule is not used the expected increase in the 
number of edits due to elimination is given by 

• sususuu −−++− 42)1( 2    if s is even;  (8.65) 

• sussusuu −−−+++− 4)1)(1(2)1(    if s is odd.  (8.66) 

Table 8.2 below shows the maximum increase in the number of edits due to elimination of 
a continuous variable for several values of s and u if the equality-elimination rule is not 
used. 



A Branch-and-Bound Algorithm 

 141

 

Table 8.2. The maximum increase in number of edits due to elimination of a 
continuous variable. 

 u=0 u=1 u=2 u=3 u=4 u=5 u=10 

s=0 0 -1 -1 0 2 5 35 

s=1 -1 -1 0 2 5 9 44 

s=2 -1 0 2 5 9 14 54 

s=3 -1 1 4 8 13 19 64 

s=4 0 3 7 12 18 25 75 

s=5 1 5 10 16 23 31 86 

s=6 3 8 14 21 29 38 98 

s=7 5 11 18 26 35 45 110 

s=8 8 15 23 32 42 53 123 

s=9 11 19 28 38 49 61 136 

s=10 15 24 34 45 57 70 150 

s=20 80 99 119 140 162 185 315 

s=50 575 624 674 725 777 830 1,110 

s=100 2,400 2,499 2,599 2,700 2,802 2,905 3,435 

 

If the equality-elimination rule is used, the increase in the number of edits due to 
elimination of a continuous variable is given by –1 if u > 0. If this rule is applied and u = 0, 
the maximum increase for various values of s is given by the column u = 0. 

For high values of s and u, the maximum number of edits due to elimination of a 
continuous variable grows quickly. In most practical applications, however, the number of 
times that a variable is involved in the edits is rather low on the average. It is quite 
exceptional for a variable to be involved in six or more edits. This means that the number 
of edits hardly grows for most practical applications, and often does not grow at all. This is 
especially true if the equality-elimination rule is applied. 

Assuming the natural probability model that, given that the variable to be eliminated is 
involved in a certain inequality, it is equally likely that this inequality provides an upper 
bound on the variable’s value as it is likely that the inequality provides a lower bound, we 
can also calculate the expected number of new edits due to elimination of a continuous 
variable. Using the same notation as above, this expected number of new edits by 
combining inequalities only is given by 
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Table 8.3 below shows the expected increase in the number of edits due to elimination of a 
continuous variable if the equality-elimination rule is not used for the same values of s and 
u as in Table 8.2. 

 

Table 8.3. The expected increase in number of edits due to elimination of a 
continuous variable. 

 u=0 u=1 u=2 u=3 u=4 u=5 u=10 

s=0 0 -1 -1 0 2 5 35 

s=1 -1 -1 0 2 5 9 44 

s=2 -1.5 -0.5 1.5 4.5 8.5 13.5 53.5 

s=3 -1.5 0.5 3.5 7.5 12.5 18.5 63.5 

s=4 -1 2 6 11 17 24 74 

s=5 0 4 9 15 22 30 85 

s=6 1.5 6.5 12.5 19.5 27.5 36.5 96.5 

s=7 3.5 9.5 16.5 24.5 33.5 43.5 108.5 

s=8 6 13 21 30 40 51 121 

s=9 9 17 26 36 47 59 134 

s=10 12.5 21.5 31.5 42.5 54.5 67.5 147.5 

s=20 75 94 114 135 157 180 310 

s=50 562.5 611.5 661.5 712.5 764.5 817.5 1,097.5 

s=100 2,375 2,474 2,574 2,675 2,777 2,880 3,410 

 

Again, if the equality-elimination rule is used, the increase in the number of edits due to 
elimination of a continuous variable is given by –1 if u > 0. If this rule is applied and u = 0, 
the maximum increase for various values of s is given by the column u = 0. 

The values in Table 8.3 are quite close to the values in Table 8.2, demonstrating that the 
“average”, i.e. expected, case is quite close to the worst case. However, as we already 
remarked when discussing Table 8.2, in practice variables are unlikely to occur in many 
edits. Table 8.3 shows that, if the equality-elimination rule is applied, as long as variables 
on the average occur in at most 5 inequalities, the number of edits can on the average be 
expected to decrease while eliminating continuous variables. 
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8.6.4. Using good branching rules 
Because the size of the tree, and hence the computing time of the algorithm, can be 
influenced by the order in which the variables are treated, this order is very important in 
practice. For purely categorical data Daalmans (2000) has tested several orders in which to 
treat the variables, namely: 

a) select the variable that has not yet been eliminated and that appears first; 

b) select a variable that has not yet been eliminated and that is involved in the largest 
number of failed edits; 

c) select a variable that has not yet been eliminated and that is involved in the smallest 
number of failed edits; 

d) select a variable that has not yet been eliminated, that is involved in the largest number 
of satisfied edits and is involved in at least one failed edit; 

e) select a variable that has not yet been eliminated, that is involved in the smallest 
number of satisfied edits and is involved in at least one failed edit; 

For a slightly different version of the branch-and-bound algorithm Daalmans (2000) has 
also tested the following orders: 

f) select the failed edit that appears first in the set of edits, and select the variable that has 
not yet been eliminated and appears first in the selected failed edit; 

g) select a failed edit that involves the largest number of variables, and select the variable 
that has not yet been eliminated and appears first in the selected failed edit; 

h) select a failed edit that involves the smallest number of variables, and select the 
variable that has not yet been eliminated and appears first in the selected failed edit; 

i) select a failed edit that involves the smallest number of variables, and select a variable 
that has not yet been eliminated and is involved in the largest number of failed edits; 

j) select a failed edit that involves the smallest number of variables, and select a variable 
that has not yet been eliminated and is involved in the smallest number of failed edits; 

k) select a failed edit that involves the smallest number of variables, and select a variable 
that has not yet been eliminated and is involved in the largest number of satisfied 
edits; 

l) select a failed edit that involves the smallest number of variables, and select a variable 
that has not yet been eliminated and is involved in the smallest number of satisfied 
edits; 

m) select a failed edit that involves the smallest number of variables, and select a variable 
that has not yet been eliminated and is involved in the largest number of edits (either 
satisfied or failed). 

In Daalmans’ implementation of the algorithm variables are first eliminated and then fixed 
to their original values. In Leo the opposite order has been implemented, i.e. variables are 
first fixed to their original values and then eliminated. 
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Daalmans has used six data sets to test his algorithm and related computer program for 
categorical data. The data sets were generated synthetically. They differ from each other 
with respect to the number of records, the number of variables, the reliability weights of 
the variables and the percentage of fields involved in the individual edits. Below we have 
listed some characteristics of the data sets. 

• Data set A contains 96 fields involved in 11 edits. The individual edits involve 
25% to 75% of the fields. Furthermore, data set A contains 10 records of which 1 
is consistent. All reliability weights are equal to 1.  

• Data set B differs from data set A with respect to the edits only. The edit set of 
data set B contains 6 edits. The individual edits involve 12.5% to 37.5% of the 
fields. 

• Data set C contains 48 fields, all with a reliability weight of 1. These fields are 
involved in 11 edits. The individual edits involve 25% to 75% of the fields. There 
are 10 erroneous records. Each record has been replicated 10 times. So, in total 
the data set contains 100 records.  

• Data set D differs from data set C with respect to the edits only. The edit set of 
data set D also contains 11 edits, but the individual edits involve only 12.5% to 
37.5% of the fields. 

• Data set E contains 24 fields, 11 edits and 12 records of which 1 is consistent. The 
individual edits involve 25% to 75% of the fields. The reliability weights of all 
variables are equal to 1. 

• Data set F has been constructed by the Bureau of the Census. It contains 10 fields, 
involved in 27 edits. Each edit only involves two fields. Furthermore, the data 
contains 10 records of which 4 are consistent. Contrary to the first five data sets 
not all reliability weights are equal.  

The results of Daalmans are listed in the tables below. In those tables run time is measured 
in seconds. Those results were obtained from simulations on a Pentium running at 500 
MHz and with 127.0 MB of RAM. In the tables the column ‘Nodes’ refers to the number 
of nodes in the tree, so it measures the size of the tree. The third column ‘Implied’ refers to 
the number of implied edits that have been generated during execution of the program. 
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 Table 8.4. Results for data set A            Table 8.5. Results for data set B  

Version 

 

Run time 

 

Nodes Implied  Version Run time Nodes Implied 

a 11.54 407770 2968  a 9.39 715818 580 

b 7.91 66912 2358  b 3.68 98899 701 

c 24.33 444332 7974  c 5.93 218383 1837 

d 7.74 75225 1450  d 4.29 122202 229 

e 29.88 474629 7561  e 6.34 263982 1138 

f 7.91 56368 2238  f 3.68 98717 1457 

g 8.57 148977 1898  g 3.52 102031 2237 

h 7.58 55240 2569  h 3.68 91424 1346 

i 7.80 47035 3134  i 3.46 74126 1185 

j 12.73 69173 6504  j 4.89 126500 1578 

k 9.06 57013 4513  k 3.46 85533 992 

l 13.08 63077 4146  l 7.53 119641 2257 

m 8.95 54316 4553  m 3.47 79215 1054 
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 Table 8.6. Results for data set C            Table 8.7. Results for data set D  

Version Run time 

 

Nodes Implied  Version Run time Nodes Implied 

a 27.19 1328640 18160  a 58.05 3262140 25200 

b 34.44 518770 35110  b 27.62 507310 30370 

c 67.78 1512440 67710  c 57.94 1107170 62070 

d 26.86 366030 25070  d 22.03 501610 15290 

e 77.89 1348160 83320  e 52.82 1092450 41220 

f 27.46 317210 37470  f 17.91 273230 22270 

g 26.86 510190 36630  g 27.84 500150 35810 

h 28.16 306010 35410  h 18.13 241410 23100 

i 34.98 450220 38110  i 21.64 271640 29950 

j 48.23 345160 74530  j 20.05 294320 21670 

k 31.08 308710 42580  k 13.73 212320 21660 

l 70.03 546500 82830  l 26.68 322040 30850 

m 37.13 457990 40010  m 19.43 266340 24550 
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 Table 8.8. Results for data set E             Table 8.9. Results for data set F 

Version Run time 

 

Nodes Implied  Version Run time Nodes Implied 

a 0.49 19568 966  a 0.05 317 48 
b 0.55 7838 1539  b 0.00 141 45 

c 0.88 18877 2167  c 0.05 208 69 

d 0.44 7181 1149  d 0.05 152 50 

e 1.04 8146 2786  e 0.06 64 79 

f 0.49 5693 1441  f 0.00 48 43 

g 0.44 8765 1481  g 0.00 48 43 

h 0.44 5487 1400  h 0.00 48 43 

i 0.55 6188 1474  i 0.00 45 42 

j 0.60 6008 2068  j 0.00 51 47 

k 0.49 5523 1604  k 0.00 47 43 

l 0.82 7376 2274  l 0.06 47 43 

m 0.55 6333 1571  m 0.00 45 42 

 

The number of solutions to the error localisation problem does not depend on the version 
of the program used. The number of optimal solutions found by the program can be huge 
for some records. For example, in data set A we have one record with 15,200 optimal 
solutions. 

When we consider the columns ‘Run time’ we observe that most versions require less than 
1 second to process one record on the average for each data set. This confirms that a 
branch and bound method seems to be suitable for practical usage  

From the results of the performed tests we cannot conclude that the run time is mainly 
affected by either the size of the tree or the number of implied edits alone. It seems to be 
the combination of the size of the tree and the number of implied edits that determines the 
run time. Besides, there are more factors than just the size of the tree and the number of 
implied edits that influence the run time. Consider, for example, data set C and compare 
version g with version h. Although the number of implied edits is lower and the size of the 
tree is smaller when version h is implemented, version g is faster. 

None of the implemented versions has the best performance, i.e. smallest run time, for 
each of the tested data sets. However, some of the versions are faster than other versions 
for all tested data sets. For example, versions b, d and k are respectively faster than 
versions c, e and l. Although the “best” overall order could not be identified from 
Daalmans’ work, the results suggest that order d, or order k for the slightly modified 
version of the branch-and-bound algorithm, is a good order in practice.  
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If we are dealing with a mix of categorical and continuous data, the order in which the 
variables are treated not only influences the computation time of the algorithm but also its 
complexity. If we allow categorical variables to be treated before all numerical variables 
have been treated, the complexity of the algorithm increases, as is discussed in Section 8.5, 
because the problem has to be split into several subproblems.  

8.7. Discussion 

In this chapter we have presented an algorithm for solving the error localisation problem in 
categorical and continuous data that appears to be very promising. There are several 
reasons why we consider the algorithm so promising. 

First, the algorithm proposed in this chapter is quite simple. It is (much) simpler to 
understand and implement than the algorithms presented in previous chapters. One of the 
reasons for the simplicity of the algorithm is that it is a very “natural” one. For instance, in 
the algorithm categorical and continuous variables are treated in almost the same manner, 
only the underlying method to generate implicit edits differs. Moreover, searching for 
optimal solutions to the error localisation problem is also a natural process. All possible 
solutions are simply checked, and the best solutions found are the optimal ones. Because of 
the simplicity of the branch-and-bound algorithm discussed in this chapter, maintaining 
software based on this algorithm is (much) simpler than maintaining software based on the 
algorithms discussed in previous chapters. Not only Operations Research specialists can 
understand the algorithm in detail, but also the IT-specialists who develop and maintain the 
final computer program based on the mathematical algorithm. 

Second, the algorithm can be extended to solve the error localisation problem in 
categorical, continuous and integer data. This is discussed in detail in the next chapter. 
Handling integer data properly with any of the algorithms presented in previous chapters 
would either be impossible or would lead to extremely complicated algorithms. 

Third, the algorithm can, without too much trouble, also be used for other purposes. For 
instance, the algorithm can be used to test whether a set of edits is consistent or not, i.e. 
whether these edits contradict each other or not. The algorithm can also be used to detect 
redundant edits in a given set of edits. These two topics are discussed in Chapter 13. 
Moreover, a slightly modified version of the algorithm can be applied to ensure that 
imputed data satisfy all edits. This problem of ensuring that imputed data satisfy all edits, 
the so-called consistent imputation problem, and a heuristic for solving it are discussed in 
Chapter 12. 
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9. The Error Localisation Problem for Integer Data 

9.1. Introduction 

In this chapter we consider the error localisation problem for a mix of categorical, 
continuous and integer data. In Section 9.2 we sketch the problem by means of a simple 
example. Section 9.3 provides a mathematical formulation for the error localisation 
problem for a mix of categorical, continuous and integer data. In Section 9.5 we describe 
an extension of the branch-and-bound algorithm presented in Chapter 8 that solves the 
error localisation problem for a mix of categorical, continuous and integer data to 
optimality. Essential in this extended algorithm is Fourier-Motzkin elimination for integer 
data, which we describe in Section 9.4. We conclude the chapter with a brief discussion in 
Section 9.6. 

The method to apply Fourier-Motzkin elimination on integer data discussed in Section 9.4 
is due to Pugh (see Pugh, 1992; Pugh and Wonnacott, 1994). Pugh applied this technique 
to develop so-called array data dependence testing algorithms. Such algorithms are used to 
detect ordering constraints among references to an array. These ordering constraints are 
used in parallelising and vectorising computer compilers. In other words, array data 
dependence testing algorithms are used to optimise computer compilers. Our algorithm for 
solving the error localisation problem for a mix of categorical, continuous and integer data 
efficiently combines Fourier-Motzkin elimination in integer data with the algorithm of 
Chapter 8. The application of Pugh’s method for Fourier-Motzkin elimination in integer 
data to the error localisation problem, see Section 9.5, was first described in De Waal 
(2001a). 

9.2. The problem for integer data 

In this section we sketch the difference between the error localisation problem for a mix of 
categorical and continuous data and the error localisation problem for a mix of categorical, 
continuous and integer data. We also sketch the idea of the solution method, which 
basically consists of checking whether all integer-valued variables involved in a solution to 
the continuous error localisation problem, i.e. the error localisation problem where we 
temporarily assume all numerical variables to be continuous, can indeed attain integer 
values. 

Suppose a set of explicit edits is given by 

 CPT += ,       (9.1) 

 1.15.0 ≤≤
T
C ,       (9.2) 

5500 ≤≤
N
T ,       (9.3) 
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0≥T ,        (9.4) 

 0≥C ,        (9.5) 

 0≥N ,        (9.6) 

and 

 
320
CN ≤ .       (9.7) 

where T denotes the turnover of an enterprise, P its profit, C its costs, and N the number of 
employees. The turnover, profit and costs are continuous variables, the number of 
employees an integer one. The turnover, profit and costs are given in thousands of Euros. 
By multiplying (9.2) by T and (9.3) by N both edits can be written as two linear inequality 
edits each.  

Let us consider a specific record with values T = 5,060, P = 2,020, C = 3,040 and N = 5. 
This record fails both (9.3) and (9.7). We assume that the reliability weights for T, P and C 
are equal to 1, and the reliability weight of N to 2. 

If N were continuous, the only optimal solution to the above error localisation problem 
would be: change the value of N. However, N is an integer-valued variable. So, we need to 
check whether a feasible integer value for N exists. By filling in the values for T, P, and C 
in (9.3) and (9.7) we find 9.2 ≤ N ≤ 9.5. In other words, a feasible integer value for N does 
not exist. Changing the value of N is hence not a solution to this error localisation problem.  

There is one next best solution to the continuous error localisation problem. This next best 
solution is given by: change the values of T, P and C. This is obviously also a feasible 
solution to the problem at hand, as variable N retains its original value (5), which is 
integer. It is the optimal solution to our problem as this is the best solution to the 
continuous error localisation problem where all integer-valued variables can indeed attain 
integer values.  

9.3. The error localisation problem for categorical, continuous and integer data 

The error localisation problem for a mix of categorical, continuous and integer data can be 
formulated as follows: 

Minimise   

∑ ∑
= =

++
m

i

n

i
iiimiii xxwvvw

1 1

00 ),(),( δδ     (9.8) 

 so that all edits j=1,…,J given by either  

 

IF j
ii Fv ∈  for i=1,…,m   

THEN }0...|{),...,( 111 ≥+++∈ jnnjjn bxaxaxx x ,  (9.9a) 
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or 

 

IF j
ii Fv ∈  for i=1,…,m   

THEN }0...|{),...,( 111 =+++∈ jnnjjn bxaxaxx x ,  (9.9b) 

 

are satisfied, where ix  is integer for Ii∈ , and the remaining ix  are continuous. 

Here I denotes the index set of the integer variables. The ija  in (9.9) are assumed to be 
rational numbers. By multiplying the coefficients ija  involved in the statement after the 
THEN-condition of (9.9) by an appropriately chosen integer we can ensure that in each 
THEN-condition these coefficients become integral and that their greatest common divisor 
equals 1. 

All edits given by (9.9) and all integrality constraints have to be satisfied simultaneously. 
We assume that the edits and integrality constraints can indeed be satisfied simultaneously. 
We also assume that none of the values of the variables entering the edits may be missing 
and that any non-integral value for an integer-valued variable is considered erroneous. 

Our aim is to find all optimal solutions to this error localisation problem. Later, one of 
these optimal solutions is selected, using a secondary criterion. The variables involved in 
the selected solution are set to missing. 

9.4. Fourier-Motzkin elimination in integer data 

An important technique used in the algorithm described in Chapter 8 is Fourier-Motzkin 
elimination for eliminating a continuous variable from a set of linear equalities and 
inequalities. Fourier-Motzkin elimination can be extended to integer data in several ways. 
For example, Dantzig and Eaves (1973) and Williams (1976 and 1983) describe extensions 
of Fourier-Motzkin elimination to integer programming problems. Unfortunately, these 
methods appear to be rather inefficient, i.e. they are too time-consuming to be applied in 
many practical cases. 

Pugh (1992) proposes an alternative extension of Fourier-Motzkin elimination to integer-
valued data. He refers to this extension as the Omega test, and we will follow his 
terminology. Below we briefly explain the Omega test. For more details on Fourier-
Motzkin elimination in integer data and the Omega test we refer to Pugh (1992), Pugh and 
Wonnacott (1994), and Van den Broeke (2000). This section is for a substantial part based 
on those papers, especially the last one. 

The Omega test has been designed to determine whether an integer-valued solution to a 
given set of linear equalities and inequalities exists. Suppose the linear inequalities and 
equalities are given by 
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 0...11 ≥+++ jnnjj bxaxa       (9.10a) 

and 

 0...11 =+++ jnnjj bxaxa .      (9.10b) 

To simplify our notation we define 10 =x  and jj ba =0 , and re-write the linear 
inequalities and equalities as 

 0...1100 ≥+++ nnjjj xaxaxa ,     (9.11a) 

respectively as 

 0...1100 =+++ nnjjj xaxaxa .     (9.11b) 

Like we mentioned in Section 9.3 we can assume – without loss of generality – that all 
equalities and inequalities are normalised, i.e. that all ija  are integer and the greatest 
common divisor of the ija  in each constraint j equals 1. All variables ix  are integer-valued 
in this section. 

We start by “eliminating” all equality constraints until we arrive at a new problem 
involving only inequality constraints. In this context, we say that all equalities have been 
eliminated once we have transformed the original system of (in)equalities (9.11) into an 
equivalent system of (in)equalities of the following type: 

 ∑
>

′′=′
ki

iijk xax
k

 for k=0,…,s-1,     (9.12a) 

 ∑
≠≥

′′≥′
kisi

iijk xax
k

,
 for k=s,…, J ′ ,     (9.12b) 

where the ija′  are integer. The ix′  are a permutation of the ix , possibly supplemented by 
some additional variables (see Subsection 9.4.1). The first s ix′ , which are only involved in 
equalities, are expressed in terms of the remaining variables, which may also be involved 
in inequalities. Due to the possible introduction of additional variables, the system (9.12) 
may have more equalities than the original system (9.11). The original system (9.11) has 
an integer-valued solution if and only if the system (9.12b) has an integer-valued solution. 
Namely, an integer solution for the ix′  (k ≥ s) yields an integer solution for the ix′  (k < s) 
by back-substitution. In other words, to check whether a system (9.11) has an integer-
valued solution, we only need to check whether the inequalities (9.12b) of the equivalent 
system (9.12) have an integer-valued solution. In this sense, the equalities of (9.11) have 
been eliminated once we have transformed a system given by (9.11) into an equivalent 
system given by (9.12). How equalities involving only integer variables can be eliminated 
is explained in the next subsection. 

9.4.1. Eliminating equalities 
We define the following operation involving two integers a and b: 
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  2/1/ mod +−= bababa ,     (9.13) 

where  u  denotes the largest integer less than or equal to u. If b is odd, the value of 

ba  mod  lies in ]2)1(,2)1([ −−− bb . If b is even, the value of ba  mod  lies in 

]12,2[ −− bb . If   21<ba , then baba  mod  mod = . If   21≥ba , 

baba  mod  mod −= . Here, the mod b operator assumes values in [0, b-1]. 

To eliminate an equality given by  

∑
=

=
n

i
iis xa

0
0 ,        (9.14) 

we do the following.  

We first check whether there is a 0≠j  such that 1=jsa . If this is the case, we eliminate 

the constraint by using this constraint to express jx  in the other variables. This expression 
for jx  is then substituted into the other constraints.  

If such a j does not exist, we select a variable k for which the coefficient ksa  has the lowest 
absolute value in this equality. We define 1+= ksam .  

Now we introduce a new variable σ  defined by the following relation: 

i

n

i
is xmam  ) mod(

0
∑
=

=σ       (9.15) 

This variable σ  is integer-valued. This can be shown as follows.  

i

n

i
is xma  ) mod(

0
∑
=

=  ( ) i

n

i
isis xmama   21

0
∑
=

+− = 

  i

n

i

n

i
isiis xmamxa  21

0 0
∑ ∑
= =

+− =   i

n

i
is xmam  21

0
∑
=

+− .  (9.16) 

So, σ  equals   i

n

i
is xma  21

1
∑
=

+− , which is integer because the ix  and their coefficients 

in (9.16) are integer. 

It is easy to see that )(signmod ksks ama −= . Now we use constraint (9.15) to express kx  
in terms of the other variables. 

iisks

n

kii
ksk xmaamax  ) mod)((sign)(sign

,0
∑
≠=

+−= σ    (9.17) 

Substituting (9.17) into the original equality (9.14) gives 
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∑
≠=

=++−
n

kii
iisksisk xmaaama

,0
0 )) mod((σ .   (9.18) 

Because 1−= maks , (9.18) can be written as 

∑
≠=

=+−+−
n

kii
iisisisks xmammaama

,0
0 )) mod() mod((σ   (9.19) 

Dividing (9.19) by m and using (9.13) gives 

 ( )∑
≠=

=+++−
n

kii
iisisks xmamaa

,0
0 ) mod(21 σ .   (9.20) 

In (9.20) all coefficients are integer-valued.  

It is clear that if the coefficient of variable i equals zero in (9.14) the corresponding 
coefficient in (9.20) also equals zero. It is also clear that the absolute value of the 
coefficient of σ  in (9.20) is equal to the coefficient of kx  in (9.14). However, for all other 
variables with a non-zero coefficient in (9.14) the absolute value of the coefficient in 
(9.20) is smaller than the absolute value of the corresponding coefficient in (9.14). To 
prove this statement we first re-write the value of the coefficient of ix  ( ki ≠ ) in (9.20) in 
the following way: 

  ) mod(21 m ama isis ++ =    2121 +−++ mamama isisis = 

isis
ks

is
ks aa

a
aa ˆ

2
1

1||
|| ≡+








+

+
− .     (9.21) 

We now consider the cases that isa  is positive and negative separately. If 0>isa , then 

ksis aa ≥ . Suppose ksis aa λ= , where λ ≥ 1. We then have 














+












+

+
−= 1

2
1

1
1ˆ

ks

ks
isis a

a
aa

λ
λ

.     (9.22) 

Using 

 λ
λ

≤











+

+
≤

2
1

1
1

ks

ks

a
a

,      (9.23) 

we obtain isis aa )11(ˆ0
λ

−≤≤ . Hence, we can conclude that isis aa <ˆ . 

Similarly, we can show that if 0<isa , then too isis aa <ˆ . This is left for the reader to 
verify (alternatively, the reader is referred to Van den Broeke, 2000). 
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After repeated application of the above substitution rule, where each time a new variable is 
introduced and an old variable is eliminated, to the original equality (9.14) and its derived 
form (9.20) the equality is transformed into an equality in which (at least) one of the 
coefficients has absolute value 1. The corresponding variable can then be used to eliminate 
the equality. 

This process continues until we have eliminated all equalities and we are left only with 
inequalities. In the next subsection we explain how integer variables can be eliminated 
from a set of linear inequalities, but first we give an example of how equalities are 
eliminated. 

 

Example 9.1: 

Pugh (1992) illustrates his method to eliminate equalities by means of an example. In this 
example, six constraints have been specified: 

 1731127 =++ zyx ,      (9.24) 

 71453 =++ zyx ,      (9.25) 

 401 ≤≤ x ,       (9.26) 

 5050 ≤≤− y .       (9.27) 

Note that (9.26) and (9.27) each stand for two constraints. We begin by eliminating 
equality (9.24). Note that m = 8, and using (9.15) we start by introducing a variable σ 
defined by  

 148 +++−= zyxσ .      (9.28) 

We eliminate x from (9.24) to (9.26) by substituting this expression into these constraints. 
This yields 

 3327 =+−− zyσ ,      (9.29) 

 1011724 =+−− zyσ ,      (9.30) 

 401481 ≤−−−−≤ zyσ .      (9.31) 

The set of constraints (9.24) to (9.27) is hence equivalent to (9.27) to (9.31). 

Equation (9.29) has been obtained from equation (9.24). We continue with the elimination 
of this equation. We now introduce a variable τ , defined by 

 στ −= y3 .       (9.32) 

We eliminate y from (9.27), and (9.29) to (9.31) by substituting (9.32) into these 
constraints. This yields 

 123 =+−− zτσ ,       (9.33) 

 10112131 =+−− zτσ ,      (9.34) 
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 40112121 ≤−−−−≤ zτσ ,     (9.35) 

 50350 ≤+≤− τσ .      (9.36) 

The original set of constraints is equivalent to (9.28), (9.32) and (9.33) to (9.36). Equation 
(9.33) has been obtained from (9.29), and hence indirectly from (9.24). We continue with 
the elimination of this equation. Variable z has coefficient 1 in this equation, so we 
eliminate z from (9.34) to (9.36). We obtain 

 12 −=+τσ ,       (9.37) 

 40214151 ≤−−−≤ τσ ,      (9.38) 

and (9.36). The original set of constraints is equivalent to (9.28), (9.32), (9.33), (9.36), 
(9.37) and (9.38). Variable τ  has coefficient 1 in (9.37). We use this equation to eliminate 
τ from (9.36) and (9.38). We obtain  

 4012131 ≤+≤ σ ,      (9.39) 

 503550 ≤−−≤− σ .      (9.40) 

We can re-write (9.39) and (9.40) as 

 20 ≤≤ σ .       (9.41) 

We are now done. The original set of constraints is equivalent to (9.28), (9.32), (9.33), 
(9.37) and (9.41). This latter set of constraints can be written in the desired format (9.12).
          � 

9.4.2. Eliminating an integer variable from a set of inequalities 
When an integer variable is eliminated from a set of inequalities, two different sets of 
inequalities are determined. The first set is referred to as the real shadow. This is simply 
the set of inequalities that results if we apply the standard form of Fourier-Motzkin 
elimination. That is, the real shadow results if we treat the integer variable that is being 
eliminated as continuous.  

The second set of resulting inequalities is referred to as the dark shadow. This dark shadow 
is constructed in such a way that if it contains a feasible (integer) solution, then there is an 
integer value for the eliminated variable such that all original inequalities become satisfied.  

The construction of the dark shadow is quite simple. Suppose that two inequalities 

 α≤ax         (9.42) 

and 

 β≥bx         (9.43) 

are combined to eliminate the integer variable x. Here a and b are positive integer 
constants, and α and β are linear expressions that can involve all variables except x. Each 
variable involved in α or β is assumed to have an integer coefficient. The real shadow of 
(9.42) and (9.43) obviously is aβ ≤ bα. 
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Consider the case in which there is an integer value larger than or equal to aβ and smaller 
than or equal to bα, but there is no integer solution for x to aβ ≤ abx ≤ bα. Let  bi β= , 
then 

 )1( +<≤< iabbaabi αβ       (9.44) 

We clearly have 0)1( >−+ αia . Since the values of a, b, α and β are integer, we have 
1)1( ≥−+ αia , and hence 

 bbiab ≥−+ α)1( .      (9.45) 

Similarly, we obtain 

 aabia ≥−β .       (9.46) 

Combining (9.45), (9.46), we arrive at 

 baabab −−≤− βα .      (9.47) 

In other words, if 

 )1)(1(1 −−=+−−≥− babaabab βα ,    (9.48) 

then an integer solution for x necessarily exists. 

To be able to satisfy (9.42) and (9.43) by an integer value for x it is sufficient that (9.48) 
holds true. We therefore define the dark shadow of (9.42) and (9.43) obtained by 
eliminating variable x by (9.48). Note that if (9.48) holds true, there is an integer value 
larger than or equal to aβ and smaller than or equal to bα.  

Note that if a = 1 or b = 1, the real shadow and the dark shadow are identical. If the real 
shadow and the dark shadow resulting from each combination of an upper bound and a 
lower bound for x are identical, we say that the elimination, or projection, is exact. If the 
projection is exact, an integer solution exists if and only if an integer solution to the 
real/dark shadow exists.  

If the real shadow and the dark shadow are not identical, we have the following 
possibilities:  
• If the dark shadow has an integer solution, the system (9.42) and (9.43) has an integer 

solution for x. 
• If the real shadow does not contain a feasible (integer) solution, there is no integer 

solution for x to (9.42) and (9.43). Note that the real shadow contains a feasible integer 
solution if and only if it has a feasible solution, because (9.42) and (9.43) involve only 
integer-valued coefficients and variables. 

• In all other cases, it is not yet clear whether an integer solution to (9.42) and (9.43) 
exists. We know that if in such a case an integer solution to (9.42) and (9.43) exists, a 
pair of constraints ax ≤ α and β ≤ bx exists such that βα abbaab −≥−−  and 

βα aabxb ≥≥ . From this we can conclude that in such a case an integer solution to 
(9.42) and (9.43) would satisfy ββ aabxabaab ≥≥+−− . 
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In the latter case we can check whether such a solution exists by basically examining all 
possibilities. That is, we determine the largest coefficient a of x for all upper bounds on x. 
For each lower bound β ≤ bx we then test whether an integer solution exists to the original 
constraints combined with bx = β + i for each integer i satisfying 0/)( ≥≥−− iabaab . 

In other words, in the latter case we examine smaller subproblems of the original problem. 
These smaller subproblems are referred to as splinters. Testing all splinters for integer 
solutions can be quite time-consuming. Therefore, creating splinters and testing them for 
integer solutions should be avoided as much as possible. 

If n = 1, i.e. if there is only variable x involved in the set of inequalities, the dark shadow 
and the real shadow involve only numbers and no unknowns. We then have the following 
possibilities: 
• If the set of inequalities defining the dark shadow does not contain an inequality that is 

a contradiction, the system (9.42) and (9.43) has an integer solution for x. 
• If the set of inequalities defining the real shadow contains a contradiction, the system 

(9.42) and (9.43) has no integer solution for x. 
• In all other cases, we add the constraints bx = β + i for 0/)( ≥≥−− iabaab  (i 

integer) to the original set of constraints, and check whether there is an integer 
solution to the resulting set of constraints. Again, the result of such a check will be 
that either we obtain a set of inequalities not involving numbers that contains a 
contradiction (in which case this particular splinter does not contain an integer 
solution to the original set of constraints) or we obtain a set of inequalities not 
involving numbers that does not contain a contradiction (in which case this particular 
splinter does contain an integer solution to the original set of constraints). If none of 
the examined splinters contains an integer solution, there is no integer solution to the 
original set of constraints. 

We illustrate the procedure by means of the simple example below. 

 

Example 9.2:  
We consider two inequalities involving two unknowns: 

1043 21 ≥+ xx        (9.49) 

and 

 252 21 ≥− xx .       (9.50) 

The real shadow obtained by eliminating 2x  from (9.49) and (9.50) is given by 

 5823 1 ≥x .       (9.51) 

The dark shadow obtained by eliminating 2x  from (9.49) and (9.50) is given by 

 7023 1 ≥x .       (9.52) 
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There are three splinters, each defined by three constraints. Two of these constraints are 
the same for all three splinters. They are given by (9.49) and (9.50). The third constraint 
differs for each splinter. This constraint is given by  

 ixx +−= 12 3104 ,      (9.53) 

for i = 0, 1, 2.         � 

 

It is clear that if the dark shadow or one of the splinters has an integer solution, then also 
the original set of equalities and inequalities has an integer solution. On the other hand, 
because we basically examine all possibilities, it also holds true that if the original set of 
equalities and inequalities has an integer solution then also the dark shadow or one of the 
splinters has an integer solution. These two solutions are essentially the same, except for 
some transformations, and the possible introduction of some auxiliary variables (if a 
splinter has been eliminated). 

So, we have the following theorem. 

 

Theorem 9.1. If and only if an integer solution to the dark shadow (involving only n-1 
variables) or one of the splinters (involving only n-1 integer variables after the added 
equalities have been eliminated) exists, then an integer solution to the original set of 
equalities and inequalities (involving n integer variables) exists.  

 

This is a lifting principle. A property involving only n-1 variables is lifted to the 
corresponding property for n variables. 

We have now explained how we can check whether a feasible integer value exists for an 
integer variable involved in a set of linear inequalities by eliminating this integer variable. 
In the next subsection we examine how we can check whether an integer solution exists for 
several variables simultaneously by eliminating these variables.  

9.4.3. Eliminating several variables from a set of inequalities 
Suppose we want to solve the problem whether an integer solution exists for a set of linear 
constraints involving n variables. We solve this problem by eliminating these n variables. 
During the elimination process the original problem may split into several subproblems 
due to the splinters that may arise. We apply the procedure sketched below. 

We treat each subproblem separately. We first eliminate all variables by standard Fourier-
Motzkin elimination, i.e. we repeatedly determine the real shadow until all variables have 
been eliminated. If the final real shadow is inconsistent, the subproblem does not have a 
continuous solution, let alone an integer solution. In such a case this subproblem can be 
discarded.  

If the final real shadow of a subproblem is consistent, we examine the subproblem again 
and check whether there is an integer solution to this subproblem. For this subproblem we 
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iteratively select a variable from the variables that have not yet been eliminated. The 
selected variable will be eliminated. In order to keep the number of computations limited 
we choose the variable so that the elimination will be exact if possible. As a secondary aim 
we may then also minimise the number of constraints resulting from the combination of 
upper and lower bounds. If an exact elimination/projection is not possible, we select a 
variable with coefficients as close as possible to zero. For such a variable the number of 
splinters will be relatively small. For the subproblem under consideration, we determine 
the dark shadow and the splinters by eliminating the selected variable.  

We continue this process until all n variables have been eliminated. The final 
“subproblems”, or better: final sets of relations, only involve numbers and no unknowns. 
We have the following theorem. 

 

Theorem 9.2. If any of the final sets of relations does not contain a contradiction, the 
original set of constraints has an integer solution. If all final sets of relations contain a 
contradiction, the original set of constraints does not have an integer solution. 

Proof. This follows directly from a repeated application of Theorem 9.1.  � 

 

In more formal notation, the above procedure can be sketched as follows: 

0. The list L of (sub)problems to solve contains only the original problem. 

1. Select a subproblem s from L. If L is empty or if the selected subproblem contains no 
variables go to Step 4, else go to Step 2.  

2. Temporarily eliminate all variables from the selected subproblem s by standard 
Fourier-Motzkin elimination, i.e. repeatedly determine the real shadow until all 
variables have been eliminated. If the final set of relations involving only numbers and 
no unknowns is inconsistent, subproblem s is deleted from L. In this case we go to 
Step 1, else we go to Step 3. 

3. For the subproblem s selected in Step 1, select a variable rx  that has not yet been 
eliminated. Determine the dark shadow and splinters of subproblem s obtained by 
eliminating variable rx . Eliminate the equality, and a corresponding unknown, from 
each splinter. Add the dark shadow and the splinters to L, and delete subproblem s 
from L. Go to Step 1. 

4. If L is empty, the original problem does not have an integer solution and the procedure 
terminates. If L is not empty and the selected subproblem s does not contain any 
variables, check whether the corresponding set of relations involving only numbers 
and no unknowns is consistent or not. If the set is inconsistent, delete s from L and go 
to Step 1. If the set is consistent, an integer solution to the original problem exists and 
the procedure terminates. 

Now we have described the Omega test we are ready to move on to the error localisation 
problem for categorical, continuous and integer data. 
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9.5. Error localisation in categorical, continuous and integer data 

At first sight it may not be clear that the Omega test method can be integrated efficiently 
with the branch-and-bound approach proposed by Quere and De Waal (see Chapter 8, and 
De Waal and Quere, 2003) for solving the error localisation problem for categorical and 
continuous data. In this section we describe a simple way to integrate both methods.  

Before we describe the algorithm, we first explain in Section 9.5.1. how equalities in 
THEN-conditions involving integer variables can be eliminated. Next, in Section 9.5.2 we 
explain how integer variables can be eliminated from inequalities in THEN-conditions. 
Finally, in Section 9.5.3 we describe our algorithm for solving the error localisation 
problem in categorical, continuous and integer data. 

9.5.1. Error localisation: eliminating equalities involving integer variables 
In our algorithm (see Section 9.5.3) integer variables are treated after all continuous 
variables have been treated and before any categorical variable is treated. That is, once the 
integer variables are treated all edits involve only categorical and integer variables. 

If integer variables are involved in equalities in THEN-conditions of edits, we first 
eliminate these equalities. We select an equality, and apply the technique explained in 
Section 9.4.1 to arrive at an equality in which the coefficient of a variable equals 1. During 
this process the IF-condition of the edit under consideration does not alter. That is, if the 
selected edit is given by 

  

 IF s
ii Fv ∈  for i=1,…,m 

 THEN ∑
=

=∈
n

i
iisn xaxx

0
1 }0|{),...,( x ,    (9.54) 

 

we transform this edit into an edit given by 

 

 IF s
ii Fv ∈  for i=1,…,m 

 THEN ∑
=

=∈
n

i
iisn xaxx

~

0
1 }0~~|~{)~,...,~( x ,    (9.55) 

 

where the ija~  are integers, and the ix~  are the transformed integer variables, possibly 
supplemented by some additional variables due to the elimination of the equalities. In 
(9.55), n~  denotes the total number of variables ix~ , i.e. the number of transformed original 
variables plus the number of additional variables due to the elimination of the equalities. In 
(9.55) at least one integer variable, say rx~  (r > 0), has a coefficient with absolute value 
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equal to one. The other edits are also written in terms of the ix~  by applying rule (9.17) to 
the numerical THEN-conditions. The IF-conditions of the other edits are not altered by this 
transformation process. Because auxiliary variables may need to be introduced during this 
transformation process, we may in fact need to introduce some auxiliary equations of type 
(9.55). In each of these auxiliary equations, the new auxiliary variable is expressed in 
terms of the other variables, i.e. the original variables and the already generated auxiliary 
variables (see (9.15) and (9.16)). 

For notational convenience, we write the transformed coefficients ija~  and transformed 
variables ix~  again as ija  and ix , respectively. It is important to keep in mind, though, that 
these coefficients and variables may differ from the original coefficients and variables.  

Once we have a (transformed) coefficient rsa  (r > 0) such that 1=rsa  in our selected 
edit, we use the THEN-condition of this edit to express the (transformed) variable rx  in 
terms of the other variables. That is, we use 

 ∑
≠

−=
ri

iisrsr xaax )sign( .      (9.56) 

This expression for rx  is then substituted into the THEN-conditions of the other edits as 
far as this is possible. The IF-conditions of these other edits are changed by the substitution 
process. In particular, due to this substitution process an edit given by  

 

 IF t
ii Fv ∈  for i=1,…,m 

 THEN ∑
=

≥∈
n

i
iitn xaxx

0
1 }0|{),...,( x ,    (9.57) 

 

involving rx  in its THEN-condition leads to 

 

 IF s
i

t
ii FFv ∩∈  for i=1,…,m 

 THEN ∑
≠

≥−∈
ri

iisrtrsitn xaaaaxx }0))sign((|{),...,( 1 x ,  (9.58) 

 

and  
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 IF s
i

t
ii FFv −∈  for i=1,…,m 

 THEN ∑
=

≥∈
n

i
iitn xaxx

0
1 }0|{),...,( x ,    (9.59) 

 

In (9.57) to (9.59) the inequality sign may be replaced by an equality sign. 

Edits of type (9.58) for which ∅=∩ s
i

t
i FF  may be discarded. Likewise, edits of type 

(9.59) for which ∅=− s
i

t
i FF  may also be discarded. After all edits of types (9.58) and 

(9.59) have been generated, the selected edit with (9.56) as THEN-condition is deleted. 
Edits given by (9.57) not involving rx  in their THEN-condition are not modified, neither 
are they deleted. 

It is obvious that the new system of edits is equivalent to the original system of edits. 
Namely, for the categorical values for which we can use equation (9.56) to eliminate 
variable rx , we do this (see (9.58)). For the categorical values for which we cannot use 
equation (9.56) to eliminate this variable, we simply leave rx  untouched (see (9.59)). An 
implicit edit of type (9.58) where rx  has been eliminated will never be combined with an 
edit still involving rx , because the IF-conditions of these edits have an empty overlap (see 
also Section 9.5.2). 

We continue eliminating the equalities until they have all been eliminated. Note that these 
equalities will be eliminated after finitely many steps. Each time we eliminate an equality 
we may generate more equalities (see (9.58) and (9.59)), but at least one of the sets of 
categorical values in the IF-conditions corresponding to the new equalities is smaller than 
the set of categorical values in the IF-condition of the edit (9.57) under consideration. 
After a finite number of steps, these sets of categorical values inevitably become empty. 
After all equalities have been eliminated, we are left with only linear inequalities involving 
only integer variables as THEN-conditions. Because additional, auxiliary variables may 
have been introduced to eliminate variables from equalities while the original variables 
may still occur in other edits, the total number of integer-valued variables in this system of 
inequalities may be larger than the original number of integer-valued variables. How we 
deal with a set of THEN-conditions consisting of inequalities involving only integer-
valued variables is explained in the next section. 

9.5.2. Error localisation: eliminating integer variables from inequalities 
We assume that all THEN-conditions are linear inequalities involving only integer 
variables. When an integer variable is eliminated from a set of linear inequalities, a dark 
shadow and possibly several splinters are generated. Below we describe how this dark 
shadow and these splinters are defined. 
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We start by selecting an integer variable that we want to eliminate, say variable rx . All 
current edits not involving rx  are retained. The current edits involving rx  are combined 
into implicit edits not involving rx . 

We consider all edits involving rx  pair-wise. Such a pair of edits is given by 

 

 IF s
ii Fv ∈  for i=1,…,m 

 THEN ∑
=

≥∈
n

i
iisn xaxx

0
1 }0|{),...,( x     (9.60) 

 

and 

 

 IF t
ii Fv ∈  for i=1,…,m 

 THEN ∑
=

≥∈
n

i
iitn xaxx

0
1 }0|{),...,( x     (9.61) 

 

where all involved numerical variables are integer-valued. We assume that the isa  
(i=0,…,n) are normalised, i.e. they are integer and their greatest common divisor equals 1. 
Similarly, the ita  (i=0,…,n) are assumed to be normalised. 

Like the real shadow, the dark shadow is only defined if 0<× rtrs aa . In that case one 
coefficient is larger than zero, say 0>rsa , and the other coefficient is less than zero, 

0<rta . The dark shadow of the above pair of edits (9.60) and (9.61) obtained by 
eliminating rx  is then defined as 

 

IF t
i

s
ii FFv ∩∈  for i=1,…,m 

THEN })1)(1()(|{),...,(
0

1 ∑
=

−−−≥−∈
n

i
rtrsiisrtitrsn aaxaaaaxx x . (9.62) 

 

If s
i

t
i FF ∩  is empty for some categorical variable i (i=1,…,m), edit (9.62) is deleted. Once 

again, the IF-condition of an implicit edit (9.62) is given by the intersections t
i

s
i FF ∩  



Integer Data 

 165

(i=1,…,m), because two numerical THEN-conditions can only be combined into an 
implicit edit for the overlapping parts of their corresponding categorical IF-conditions. 

Defining the splinters obtained by eliminating rx  from a set of edits with only linear 
inequalities as THEN-conditions is more tricky than in Section 9.4.2. The reason is that 
here we want to define splinters for various combinations of categorical values, whereas in 
Section 9.4.2 we only had to define the splinters once. There are two possibilities to define 
splinters.  

According to the first possibility we determine the intersections ),( tsMFF i
t

i
s

i ≡∩  (for 
i=1,…,m) for each pair of edits s and t with 0>rsa  and 0<rta . We only consider those 
pairs s and t for which ),( tsM i  is non-empty for all i. For each unique combination of the 
sets ),( tsM i  (i=1,…,m) occurring in the current set of edits we determine the largest 
coefficient ria  of rx  for all upper bounds on rx  in THEN-conditions with corresponding 
IF-conditions that are triggered by this combination of the ),( tsM i  (i=1,…,m). Suppose 
that this largest coefficient occurs in the u-th edit. For each lower bound  

 

IF  j
ii Fv ∈  for i=1,…,m  

THEN  rrj
ri

iij xaxa ≤∑
≠

       (9.63) 

 

we then test whether an integer solution exists to the original edits combined with  

 

 IF  j
i

u
ii FFv ∩∈  for i=1,…,m 

THEN  ∑
≠

+=
ri

iijrrj kxaxa       (9.64) 

 

for each k satisfying 0)( ≥≥−− kaaaaa rurjrurjru  (k integer). That is, 

  1)( +−− rurjrurjru aaaaa  splinters are considered for each unique combination of the 
sets ),( tsM i  (i=1,…,m) occurring in the current set of edits. 

If j
i

u
i FF ∩  is empty for some categorical variable i, edit (9.64) is not used. The 

intersections j
i

u
i FF ∩  ensure that the equalities (9.64) are only defined for those 

combinations of categorical values for which they should be defined and not for others. 

This way to define splinters has the advantage that for each combination of the sets 
),( tsM i  (i=1,…,m) occurring in the data we will not consider too many subproblems. It 
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has the disadvantage, though, that the largest coefficient rua  has to be determined for each 
unique combination of the sets ),( tsM i  (i=1,…,m) separately, which is possibly a lot of 
work. 

The alternative way to define splinters is to determine the largest coefficient ria  of rx  for 
all upper bounds on rx  in THEN-conditions. Say this largest coefficient is given by rqa . 
For each lower bound (9.63) we then test whether an integer solution exists to the original 
edits combined with  

 

 IF  j
ii Fv ∈  for i=1,…,m 

THEN ∑
≠

+=
ri

iijrrj kxaxa       (9.65) 

 

for each k satisfying 0)( ≥≥−− kaaaaa rqrjrqrjrq  (k integer).  

This way of defining the splinters has the advantage that only one upper bound has to be 
determined. It has the disadvantage that for certain combinations of categorical values 
possibly too many subproblems have to be considered. Defining splinters in the second 
way has the effect that more subproblems have to be considered than defining splinters in 
the first way. This becomes clear as soon as we combine the relations given by (9.65) with 
the edits: we get the relations given by (9.64) plus some additional ones that are redundant. 
The redundant relations correspond to redundant subproblems. Examining a redundant 
problem only costs more computing time, but does not do any harm otherwise. 

Independent on which of the two ways of defining splinters is used, we have the following 
important theorem.  

 

Theorem 9.3. The original set of edits with linear inequalities involving only integer 
variables as THEN-conditions has a solution if and only if the dark shadow or a splinter 
resulting from the elimination of variable rx  has a solution.  

Proof. It is clear that if the original set of edits has a solution, then the same solution is 
also a solution to either the dark shadow or a splinter. 

Suppose on the other hand that the dark shadow or a splinter has a solution. Fill the values 
of this solution in into all original edits. This results in a set of edits involving only the 
eliminated integer variable rx . Now, an integer value exists for variable rx  such that all 
numerical THEN-conditions of the original edits that are triggered by the categorical 
values involved in the solution to the dark shadow or a splinter become satisfied. Namely, 
suppose such an integer value would not exist. In that case there is a set of edits with 
contradicting THEN-conditions. These edits have a non-empty categorical intersection, 
because they are all triggered by the categorical values of the solution to the dark shadow 
or a splinter. Hence, these edits would have generated a dark shadow (defined by (9.62)) 
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and splinters (defined by (9.64) or (9.65)) without any solutions. This contradicts our 
assumption that there is a solution to the dark shadow or a splinter.   � 

 

Theorem 9.3 is again a lifting principle. The existence of a solution for a certain set of 
(implicit) edits is lifted to a set of edits involving more variables.  

9.5.3. Error localisation: an algorithm for categorical, continuous and integer data 
We denote the error localisation problem in categorical, continuous and integer data, i.e. 

Minimise (9.8) so that (9.9) is satisfied for all edits j=1,…,J, ix  is integer for 
Ii∈ , and the remaining ix  are continuous, 

by IP . 

To solve the error localisation problem for a mix of categorical, continuous and integer-
valued data we first apply the branch-and-bound algorithm presented in Chapter 8 without 
taking into account that some of the variables are integer-valued, i.e. we first treat these 
variables as being continuous. We denote the problem where integer variables are treated 
as continuous ones by CP . 

Let B denotes the value of (9.8) for the currently best solution to IP , and S the current set 
of optimal solutions to IP . We initialise B to ∞, and S to ∅.  

A solution to CP  not involving any integer variables is automatically also a solution to IP . 
So, whenever we find a solution to CP  not involving any integer variables for which (9.8) 
is less than B, we update B with that value of (9.8) and set S equal to the current solution to 

CP . Furthermore, whenever we find a solution to CP  not involving any integer variables 
for which (9.8) is equal to B, we add the current solution to CP  to S. 

Whenever we find a solution to problem CP  involving integer variables for which (9.8) is 
at most equal to B, we consider problem IP . We know, of course, which variables have 
been eliminated to arrive at the current optimal solution to problem CP . We now check 
whether these variables also constitute a solution to IP . To do this we first eliminate the 
continuous variables. This yields a system in which only integer-valued and categorical 
variables occur. The current edits are edits of type (9.9) where all involved numerical 
variables ix  are integer-valued. 

Next, we eliminate all integer-valued variables involved in the found current optimal 
solution to CP  in the manner described in Sections 9.5.1 and 9.5.2. During this process the 
original problem may be split into several subproblems due to the splinters that may arise. 
Subsequently, we eliminate all categorical variables from these subproblems. For each 
subproblem we end up with a set of relations not involving any unknowns. This set of 
relations may be empty. If a set of relations we obtain in this way does not contain a 
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contradiction, which is for instance (by definition) the case if the set of relations is empty, 
we have found a current optimal solution to IP . In that case, if the value of (9.8) for the 
current solution to IP  is less than B we update B accordingly and set S equal to the current 
solution of IP , else we add the current solution to IP  to S. If none of the subproblems 
leads to a solution to IP , the solution to CP  under consideration is not a solution to IP . In 
that case B is not updated, and we continue with finding solutions to CP . 

In the above approach, the relatively time-consuming algorithm to check for solutions of 
IP  is only invoked once a solution to CP  with an objective value of B or less involving 

integer-valued variables has been found, so only rather infrequently. 

If we only want to find all optimal solutions to IP  in the case that the optimal value of 
(9.8) is less than a certain maximum B0, we simply initialise B to B0. All solutions to IP  
for which the value of (9.8) is larger than B0 will then automatically be discarded. 

We have the following theorem.  

 

Theorem 9.4. The above procedure finds all optimal solutions to problem IP . 

Proof. The proof that our procedure finds all optimal solutions to problem IP  is similar to 
the proofs of Theorems 8.2 and 8.3 that the branch-and-bound algorithm for categorical 
and continuous data finds all optimal solutions to the corresponding problem.  

We start by noting that a set of variables is a solution to IP  if and only if eliminating these 
variables does not lead to inconsistencies in all subproblems. For all three kinds of 
variables a lifting principle holds true: if we eliminate a variable, the current set of edits 
can be satisfied if and only if at least one of the resulting sets of implicit edits can be 
satisfied. Repeated application of the lifting principle shows that if and only if any of the 
final sets of relations does not contain a contradiction, the original set of edits can be 
satisfied. 

Now, the branch-and-bound algorithm for categorical and continuous data can be used to 
find all solutions to the corresponding problem CP  with an objective value (9.8) of B or 
less. For each solution to CP  with a value for (9.8) equal to or less than B, we check 
whether it is also a solution to IP . The result of this test is conclusive. We update B 
whenever we have found a better solution to IP  than the best one found so far. In other 
words, all possible optimal solutions to IP  are considered by the procedure, and all 
optimal solutions to IP  are indeed identified as such.    � 

 

We illustrate the procedure by means of the simple example involving only integer-valued 
variables below. 
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Example 9.3:  
We consider the case where we have only three variables 1x , 2x  and 3x , and only four 
edits that are given below. 

 01 =x ,        (9.66) 

 052 3 ≥+− x ,       (9.67) 

 05 32 ≥− xx        (9.68) 

and 

 023 32 ≥+− xx .       (9.69) 

All three variables are integer-valued, and all reliability weights equal one. The original, 
incorrect, record is given by )1 ,1 ,0(),,( 321 =xxx . We only want to find all optimal 
solutions where the value of at most one variable has to be changed. Solutions where the 
values of two or even all three variables have to be changed are not considered. To this end 
we initialise B to 1. The set of optimal solutions S is, of course, initially set to ∅. 

We start by solving problem CP . To this end we select a variable, say 1x , and construct 
two branches: in the first branch we eliminate 1x  from the current set of edits, in the 
second branch we fix 1x  to its original value. The first branch corresponds to deciding to 
change the value of 1x , the second branch corresponds to accepting the original value of 

1x  as being correct. 

When we eliminate 1x  from the set of edits we obtain (9.67) to (9.69) as our new current 
set of edits. This set of edits is not satisfied by the original values of 2x  and 3x . We need 
not consider this branch any further, because we are only interested in solutions where the 
value of at most one variable has to be changed. 

We now consider the branch where 1x  is fixed to its original value 0. Our new current set 
of edits is again given by (9.67) to (9.69). We again select a variable, say 2x , and construct 
two branches: in the first branch we eliminate 2x  from the current set of edits, in the 
second branch we fix 2x  to its original value.  

When we eliminate 2x  from the current set of edits we obtain (9.67) and 03 ≥x  as our 
new current set of edits. This new current set of edits is satisfied by the original value of 

3x . Hence, we have found a solution to CP . The value of (9.8) for this solution to CP  is 
equal to 1. We therefore check whether changing the value of 2x  only is also a solution to 

IP . 

To check whether changing the value of only 2x  is a solution to IP  we start by filling in 
the original values of 1x  and 3x  into the original set of edits. We obtain the set of edits 
involving only 2x  given below. 
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 015 2 ≥−x        (9.70) 

and 

 023 2 ≥+− x .       (9.71) 

We do not need to check whether the real shadow obtained by eliminating 2x  from these 
two inequalities is consistent. This is necessarily the case, because changing the value of 

2x  is a solution to CP .  

The dark shadow (see (9.62)), obtained by eliminating 2x  from (9.70) and (9.71), is given 
by  

 7 ≥ 8,        (9.72) 

which is clearly a contradiction.  

We therefore have to consider the splinters. In this simple case there are only two splinters. 
For the first splinter we have to add the constraint 

 15 2 =x         (9.73) 

to (9.70) and (9.71), for the second one we have to add the constraint 

 25 2 =x         (9.74) 

to (9.70) and (9.71). It is clear that neither of the two splinters has an integer solution for 
2x . This also follows if we would apply the proposed algorithm. We can conclude that 

although changing 2x  is a solution to CP , it is not a solution to IP . 

After this intermezzo during which we checked whether changing the value of only 2x  is a 
solution to IP  we continue with finding solutions to CP . We now consider the branch 
where both 1x  and 2x  are fixed to their original values. The current set of edits is given by 
(9.67), 

 053 ≥+−x        (9.75) 

and 

 032 3 ≥−x .       (9.76) 

By eliminating 3x  we see that changing the value of only 3x  is a solution to CP . The 
value of (9.8) for this solution to CP  is equal to 1. We therefore check whether changing 
the value of 3x  only is also a solution to IP . 

To check whether changing the value of only 3x  is a solution to IP  we start by filling in 
the original values of 1x  and 2x  into the original set of edits. We obtain the system (9.67), 
(9.75) and (9.76). Edit (9.75) is clearly redundant and can be discarded. The real shadow 
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obviously is consistent. The dark shadow of (9.67) and (9.76) (see (9.62)) obtained by 
eliminating 3x  is given by 

  4 ≥ 1.        (9.77) 

Relation (9.77) is consistent, so we can conclude that changing the value of 3x  is a 
solution to CP . We can even conclude that this is the only optimal solution to CP . A 
feasible value for 3x , the only one in this case, is 2.     � 

9.6. Discussion 

The method described in the previous section may appear to be very slow in many cases. 
Indeed, it is not difficult to design sets of edits for which the method is extremely slow. 
However, we argue that in practice the situation is not so bad. First, as we already 
mentioned the time-consuming algorithm to check for solutions of IP  is only invoked 
once a new solution to CP  with an objective value less than or equal to the current value of 
B has been found. In practice, the number of times that such a solution to CP  is found is in 
most cases rather limited. 

Second, once we have found a new solution to CP  with a target value less than or equal to 
the current value of B we only have to test whether the variables occurring in this 
particular solution also form a solution to IP . Moreover, often one is only interested in 
solutions to the error localisation problem with a few variables, say less than 10. In case a 
record requires more values to be changed than a pre-set limit, the record will not be edited 
automatically for else the statistical quality of the edited record would be too low. This 
means that the number of variables involved in our test will never be more than the pre-set 
limit. In other words, our test involves only a few variables. 

Third, the algorithm to check for solutions of IP  becomes only really time-consuming 
when many splinters have to be considered. However, in most edits, either explicit or 
implicit ones, encountered in practice the coefficients of many integer variables equal –1 
or +1. This is especially true for edits expressing equalities. For integer variables with 
coefficient –1 or +1 elimination from inequalities will be exact, i.e. the dark shadow and 
real shadow coincide and no splinters have to be generated. For the same reason, 
elimination of equalities can generally be performed very fast in practice.  

Fourth, we can resort to simple heuristics to improve the performance of the algorithm. For 
instance, we may first try to find a solution to IP  without splitting the problem into 
subproblems. That is, after all continuous variables involved in the current solution to CP  
have been eliminated we repeatedly use relation (9.62) to eliminate the integer-valued 
variables involved in this solution to CP . Each time we thus compute a dark shadow until 
all integer variables involved in the current solution to CP  have been eliminated. This 
results in a system in which only categorical variables occur. We eliminate the categorical 
variables involved in the current solution to CP  to check whether a solution IP  to exists. 
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If eliminating these categorical variables does not lead to a contradiction, we have found a 
current optimal solution to IP . Only when the sketched approach does not lead to a 
solution to IP , we could try to find a solution to IP  by splitting the problem into a number 
of subproblems, not necessarily all subproblems. The simplest approach is, of course, not 
splitting the problem into subproblems at all, but assuming instead that if the above-
sketched approach does not lead to a solution to IP , IP  does not have a solution. By not 
checking all subproblems, we can restrict the number of subproblems that we have to 
consider. The price we have to pay for this is that we may sometimes conclude that an 
integer solution to IP  does not exist, whereas in fact it does. 

We conclude that the performance of the described test for checking the integrality of a 
proposed solution is likely to be good in practice. Moreover, there is hardly an alternative 
to applying this test. The simple approach of not applying any test for the integrality of the 
solutions, and rounding the found continuous solutions does not always work. In practice, 
cases do occur where the found continuous solutions cannot be rounded to integer values 
such that all edits become satisfied. The only remaining alternative to the described test we 
see at the moment is the application of a commercial solver for mixed integer 
programming problems. Using such a solver is, however, expensive, and is likely to be 
more time consuming than our simple test. 
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10. Cutting Plane Algorithms 

10.1. Introduction 

Garfinkel, Kunnathur and Liepins (1986) present a so-called cutting plane algorithm for 
solving the error localisation problem for categorical data. The algorithm is based on 
solving the set-covering problem associated to the error localisation problem (see e.g. 
Section 3.3), and subsequently adding constraints, cuts, to this set-covering problem in 
case the set-covering solution turns out to be infeasible for the error localisation problem. 
This algorithm is described in Section 10.2. 

In 1988 Garfinkel, Kunnathur and Liepins proposed a similar cutting plane algorithm for 
continuous data. This algorithm was improved upon by Ragsdale and McKeown (1996), 
who instead of the associated set-covering problem considered a modified set-covering 
problem associated to the error localisation problem. These algorithms are described in 
Section 10.3. Our proof that these algorithms find an optimal solution to the error 
localisation problem in a finite number of steps is more general than the proof given by 
Garfinkel, Kunnathur and Liepins (1988), and is not restricted to only continuous data. 

In Section 10.4 we propose an extension of the algorithms by Garfinkel, Kunnathur and 
Liepins (1986 and 1988) to a mix of categorical and continuous data. Such an extension 
has not yet been described in literature before. Our algorithm is again a cutting plane 
algorithm.  

In the previous two chapters we have developed theory for solving the error localisation 
problem. The basis of this theory is formed by the elimination methods of Sections 8.2 and 
9.5 for continuous, integer-valued and categorical data. Now, we utilise the developed 
elimination techniques to develop alternative cutting plane algorithms. 

The algorithms we propose in Sections 10.5 to 10.8 of this chapter are similar to the ones 
proposed by Garfinkel, Kunnathur and Liepins (1986 and 1988), and Ragsdale and 
McKeown (1996). The new algorithms are again cutting plane algorithms, and as in the 
algorithms of Sections 10.2 to 10.4 a potential solution to the error localisation problem is 
proposed that is subsequently checked for feasibility. Instead of executing the first phase of 
the simplex algorithm (if any continuous variable is involved in the potential solution) for 
each combination of values of the categorical variables (if any categorical variable is 
involved in the potential solution) involved in the potential solution as in the algorithms of 
Sections 10.2 to 10.4, we now eliminate all variables involved in the proposed solution. 
Continuous variables are eliminated by (an extension of) Fourier-Motzkin elimination, 
categorical variables are eliminated by an elimination method proposed by Fellegi and 
Holt (1976). By eliminating the variables we can check the feasibility of a proposed 
solution and simultaneously generate additional cuts in case the proposed solution turns 
out to be infeasible. In other words, the former two steps of checking the feasibility of a 
proposed solution and generating additional constraints are combined into a single step. 
Intuitively, our proposed algorithm therefore seems to be more efficient than the ones due 
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to Garfinkel, Kunnathur and Liepins (1986 and 1988), and Ragsdale and McKeown 
(1996). 

In Section 10.5 we propose a cutting plane algorithm for categorical or continuous data 
based on elimination. Section 10.6 illustrates this algorithm by means of an example. In 
Section 10.7 we extend this cutting plane algorithm to a mix of categorical and continuous 
data, and Section 10.8 we further extend the algorithm to a mix of categorical, continuous 
and integer data. This latter algorithm is the culmination of our work on cutting plane 
algorithms so far. Section 10.9 concludes the chapter with a brief discussion. The material 
in Sections 10.5 and 10.9 are original work. 

Sections 10.2 to 10.4 are based on De Waal (1997a), Sections 10.5 to 10.8 are based on De 
Waal (2002b). 

10.2. The Garfinkel, Kunnathur and Liepins method for categorical data 

We assume that a record ),...,( 00
1 mvv  with only categorical data has to be edited. The edits 

we consider are given by: 

IF j
ii Fv ∈  (for i=1,…,m) THEN ∅.    (10.1) 

An edit given by (10.1) is violated if j
ii Fv ∈  for all i=1,…,m. Otherwise, the edit is 

satisfied. 

The cutting plane algorithm of Garfinkel, Kunnathur and Liepins for categorical data is 
defined in the following way: 

 

Algorithm 10.1: 

1. Determine the constraints of the set-covering problem associated with the error 
localisation problem (see Section 3.3). 

2. Solve the set-covering problem. Its solution is denoted by ŷ . 

3. Let }1ˆ|{ˆ == iyiI . Set 0
ii vv =  for Ii ˆ∉ . For every Ii ˆ∈ , let iv  assume each of the 

values in iD . Test for each of the ∏∈Ii iDˆ ||  records constructed in this way whether 

they satisfy all edits. If such a record is found, then ŷ  corresponds to a solution to the 
error localisation problem, and we are done. Otherwise, go to Step 4. 

4. Construct any prime cover, i.e. a cover such that if any element is removed from the 
cover the remaining set is no longer a cover, 0u  to     

1≥uQ ,        (10.2)  

}1,0{∈ju ,       (10.3) 
where the matrix Q is defined by      
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=
otherwise.     0

3 Step  of    recordby  failed is    if      1 kEq
j

jk    (10.4) 

Let }1|{ˆ 0 == jujJ . 

5. Now the following edit is implied by the explicit ones:   

 
Ii
Ii

F
D

F j
iJj

i
i ˆ

ˆ

     
     ˆ

ˆ ∉
∈







=
∈h

      (10.5) 

6. Add the set-covering constraint corresponding to the implied edit (10.5) to the already 
defined set-covering constraints, and return to Step 2. 

The algorithm works because of the following reasons. Any record satisfying the explicit 
edits automatically satisfies the implied edit (10.5) as we demonstrate in the next 
paragraph. Any feasible solution to the error localisation problem is also a feasible solution 
to the associated set-covering problem (with constraints corresponding to the explicit edits 
and the already constructed implied edits). So, any optimal solution to the set-covering 
problem in Step 2 that can be imputed consistently is an optimal solution to the error 
localisation problem. Step 3 checks whether an optimal solution to the current set-covering 
problem can be imputed consistently. The algorithm terminates after a finite number of 
iterations, because due to the added constraints in Step 6 during each iteration a different 
optimal cover to the set-covering problem is found in Step 2. Such a cover found in Step 2 
is also a cover of the violated explicit edits. There are only finitely many different covers 
of the violated explicit edits. 

It has to be shown that the edit constructed in Step 5 is indeed an implied edit. This can be 
proved by making the following two observations. First, after Steps 3 and 4 it is clear that 
the edit 0E  defined by ii DF =ˆ  for Ii ˆ∈ , and }{ˆ 0

ii vF =  for Ii ˆ∉  is implied by the edits 

in Ĵ . Second, according to Theorem 2 of Fellegi and Holt (1976), for any implied edit E 
there is, in turn, an implied edit E ′  of the following form: 

 r
i

Sr
i FF

∈
= h

~  for i=1,…,m; 0ii ≠      (10.6) 

and 

 r
i

Sr
i FF

00

~
∈

= t ,       (10.7) 

where S is a subset of the explicit edits, such that when E is violated then so is E ′ . In other 
words, E is dominated by E ′  in the sense that E ′  whenever E is. 

Because edit 0E  is an implied edit, it has to be dominated by an implied edit of the above 
form. Therefore, we can conclude that edit (10.5) is indeed an implied edit. 

Steps 4 and 5 may seem redundant, because after Step 3 we can immediately deduce that 
the edit given by ii DF =ˆ  for Ii ˆ∈ , and j

iji FF
VΩ∈= hˆ  for Ii ˆ∉  (where VΩ  is the set of 

all violated explicit edits) is violated. We can then add the corresponding constraint to the 
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set-covering problem, and return to Step 2. However, the set-covering constraint generated 
by that edit can be less strong, i.e. involves more variables, than the set-covering constraint 
generated by the edit determined in Steps 4 and 5. This is the case when i

j
ij DF

V
≠Ω∈h  

and i
j

iJj DF =∈ ˆh  for Ii ˆ∉ . In other cases the same set-covering constraint is generated 

by both implied edits. By using the possibly stronger constraint determined in Steps 4 and 
5 we hope to find a solution to the error localisation problem in less iterations than when 
we use the simple edit which we can deduce immediately after Step 3.  

Determining a prime cover in Step 4 is easy, and does not cost much time. Just start with 
the cover consisting of all violated edits, and then sequentially discard any edit not 
uniquely responsible for covering of at least one record considered in Step 3. So, it seems 
worthwhile performing Steps 4 and 5 of the algorithm, because probably more time is won 
because less iterations have to be performed than lost because prime covers have to be 
determined. 

An even stronger set-covering constraint can be obtained by determining an optimal cover, 
i.e. a cover with a minimum of non-zero coefficients, in Step 4 instead of just any prime 
cover. The resulting implied edit is generally stronger than when just any prime cover is 
determined, but determining an optimal cover is much more difficult than determining an 
arbitrary prime cover. All in all, it is likely that more time is lost than gained, when we 
solve the set-covering problem of Step 4 to optimality. 

In principle, Step 2 is the most difficult step to solve. Standard techniques for solving set-
covering problems may be too slow when the problems become large. In such a case one 
should resort to simple heuristics (see e.g. Vasko and Wilson, 1986; Vazirani, 2001). 
However, as it is not likely that many values of variables are incorrect and that many 
explicit edits are violated the standard techniques may be fast enough in most cases. 
Moreover, when there are many mistakes in a record, then the information in this record is 
probably worthless anyway, and one may just as well discard this record entirely. 

10.3. A cutting plane algorithm for error localisation in numerical data 

In this section we assume that a record with only numerical data is to be edited. We 
therefore assume that the edits are given by  

0...11 ≥+++ jnnjj bxaxa ,      (10.8) 

The edits of the form (10.8) have to hold simultaneously for a record to pass all edits. 
Equivalently, we can say that a record is faulty if at least one of the relations  

 0...11 <+++ jnnjj bxaxa       (10.9) 

holds true.  

Given a record with values ),...,( 00
1 nxx , we want to modify the values of a set of variables 

such that all inequalities of (10.8) are satisfied, and such that the sum of the reliability 
weights of the modified variables is minimal. To solve this problem Garfinkel, Kunnathur 
and Liepins (1988) propose a cutting plane algorithm that follows the following outline. 
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Algorithm 10.2: 

1. Determine the edits of (10.8) that are violated by the record under consideration. If no 
edits are violated, we are done. Otherwise, these violated edits correspond to 
constraints of the associated set-covering problem, and we go to Step 2. 

2. Determine an optimal cover of the constraints of the set-covering problem, i.e. a cover 
with a minimal sum of reliability weights. The optimal cover is denoted by ŷ , and the 

index set of the optimal cover is denoted by Î , i.e. }1ˆ|{ˆ == iyiI . 

3. Determine a set of reduced constraints for the variables )ˆ(  Iixi ∈ . This set of reduced 
constraints can be written as  

0ˆ ≥′+∑ ∈ jIi iij bxa  (j=1,…,R),    (10.10) 
where         
 ∑ ∉

+=′ Ii jiijj bxab ˆ
0  (j=1,…,R).    (10.11)  

4. If the system (10.10) has a feasible solution then the solution to the set-covering 
problem corresponds to an optimal solution to the error localisation problem, and we 
are done. Otherwise we go to Step 5. 

5. Determine an infeasible subset MΩ  of constraints of (10.10). 

6. Add the following constraint to the set-covering problem:    

∑
=

≥
n

i
ii ya

1
1 ,       (10.12) 

where 





 Ω∈=

otherwise.1
in   involvednot  is     variableifor  , ˆ  if0 M

i
iIia   (10.13) 

Go to Step 2. 

 

Example 10.1:  

Before we comment on this algorithm we illustrate it by applying it to Example 3.1 of 
Section 3.3. So, we assume that the explicit edits are given by (3.10) to (3.15). The values 
of the variables in a certain record are given by T = 100, P = 40,000, C = 60,000 and N = 5. 
The reliability weights of variables T, P and C equal 1, the reliability weight of variable N 
equals 2. 

Edits (3.10) and (3.11) are violated. The associated set-covering problem is given by:  

Minimise NCPT yyyy 2+++      (10.14) 

under the constraints 
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 1≥++ CPT yyy ,      (10.15) 

 1≥+ CT yy        (10.16) 

and 

 }1,0{,,, ∈NCPT yyyy .      (10.17) 

The optimal solution to this problem is 1=Ty  and 0=== NCP yyy . The set of reduced 
constraints considered in Step 3 is given by 

 000,100=T ,       (10.18) 

 1.1000,605.0 ≤≤
T

      (10.19) 

and 

 550≤T .       (10.20) 

This clearly is an infeasible system of constraints. We select an infeasible subset of 
constraints, say (10.18) and (10.20). The explicit edits corresponding to these constraints 
generate a violated implied edit, namely 

 NCP 550≤+ .       (10.21) 

The set-covering constraint corresponding to this violated implied edit is given by 

 1≥++ NCP yyy .      (10.22) 

We add this set-covering constraint to the other set-covering constraints (10.15) to (10.17), 
and minimise the objective function (10.14) under the updated system of set-covering 
constraints. The optimal solution to the new set-covering problem is 1== CP yy  and 

0== NT yy . 

The set of reduced constraints of Step 3 is now given by 

 100=+CP ,       (10.23) 

 1.1
100

5.0 ≤≤ C        (10.24) 

and 

 550100 ≤ .       (10.25) 

This is a feasible system. A solution is for instance P = 40 and C = 60. The optimal 
solution to the error localisation problem is therefore: change the values of variables P and 
C.           � 

 

Ragsdale and McKeown (1996) strengthen the algorithm by Garfinkel, Kunnathur and 
Liepins (1988) by noting that the set-covering problem does not take the direction of 
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change of the numerical variables into account. The above formulation only says that a 
variable of each violated edit should be changed. It does not consider pairs of edits. 
However, in order to satisfy a violated edit by changing a particular variable it may be 
necessary to increase its value whereas to satisfy another violated edit is may be necessary 
to decrease its value. Ragsdale and McKeown (1996) replace each numerical variable ix  

in the violated edits by −+ −+ iii xxx0 , where 0
ix  denotes the observed value in the data set, 

0≥+ix  a positive change in value, and 0≥−ix  a negative change in value. This yields a 

set of constraints for the +
ix  and the −

ix . Next, they specify a modified set-covering 

problem involving binary variables +
iy  and −

iy  corresponding to the +
ix  and −

ix  rather 
than the ix . Example 10.2, which is taken from Ragsdale and McKeown (1996), illustrates 
the modified set-covering problem.  

 

Example 10.2: 

Suppose only two edits involving three numerical variables have been specified, and that 
edits are given by 

 52 21 ≤+ xx        (10.26) 

and 

 131 ≤+− xx .       (10.27) 

Suppose, furthermore, that an erroneous record given by )3,4,1(=0x  is to be edited 
automatically, and that the reliability weights are given by )3,2,1(=w . Both edits are 
violated. The associated set-covering problem is then given by 

 Minimise 321 32 yyy ++       (10.28) 

subject to 

 121 ≥+ yy ,       (10.29) 

 131 ≥+ yy ,       (10.30) 

 }1,0{,, 321 ∈yyy .       (10.31) 

A solution to this set-covering problem is: )0,0,1(=y . Changing 1x  is, however, not a 
feasible solution to the error localisation problem. 

However, when we replace ix  in the violated edits by −+ −+ iii xxx0 , we obtain the 

following two constraints for the +
ix  and the −

ix : 

 122 2121 ≥++−− −−++ xxxx       (10.32) 

and 
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 13131 ≥+−− −−++ xxxx .      (10.33) 

To satisfy (10.32) at least one of the variables −
1x  and −

2x  must assume a positive value. 

To satisfy (10.33) at least one of the variables +
1x  and −

3x  must assume a positive value. 
This leads to the following modified set-covering problem: 

 Minimise −−−+ +++ 3211 32 yyyy      (10.34) 

subject to 

 121 ≥+ −− yy ,       (10.35) 

 131 ≥+ −+ yy ,       (10.36) 

 111 ≤+ −+ yy ,       (10.37) 

 }1,0{, ∈−+
ii yy , for i=1,…,3.     (10.38) 

The constraints (10.35), (10.36) and (10.38) are the familiar set-covering constraints. 
Constraint (10.37) expresses that 1x  cannot be increased and decreased simultaneously. 
Due to such constraints the model by Ragsdale and McKeown leads to a modified set-
covering problem instead of an ordinary set-covering problem.  

The solution to the above modified set-covering problem is: 121 == −+ yy  and 

031 == +− yy . The corresponding, potential solution to the error localisation problem, 
change 1x  and 2x , turns out to be indeed feasible.     � 

 

The algorithm proposed by Ragsdale and McKeown (1996) for solving the error 
localisation problem for continuous data is the same as the algorithm proposed by 
Garfinkel, Kunnathur and Liepins (1988) except for the fact that a modified set-covering 
problem instead of a set-covering problem is solved in Step 2. 

The modified set-covering problem proposed by Ragsdale and McKeown cuts off certain 
infeasible solutions to the error localisation problem that are not cut off by the standard 
set-covering problem. In this sense the formulation by Ragsdale and McKeown is stronger 
than the standard set-covering formulation. The price that has to be paid is that standard 
methods for solving set-covering problems cannot be applied to solve the modified set-
covering problem. 

We now discuss the algorithms by Garfinkel, Kunnathur and Liepins, and Ragsdale and 
McKeown in some detail. In Step 4 we have to check whether the set of reduced 
constraints of Step 3 has a feasible solution. This can be done by standard linear 
programming techniques. The feasibility of a set of linear constraints is checked in the first 
step of the simplex method, for instance (see e.g. Hadley, 1962, and Chvátal, 1983). 
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Step 5 is the most interesting step. It corresponds to Steps 4 and 5 in Algorithm 10.1 
proposed by Garfinkel, Kunnathur and Liepins (1986). Any infeasible subset of (10.10), 
for example the entire set (10.10), suffices to determine an optimal solution to the error 
localisation problem in the end, but the number of iterations needed to arrive at this 
solution is influenced by the selected subset of constraints of (10.10). Before we consider 
the problem of selecting a suitable subset of constraints of (10.10) we first show that the 
above algorithms Garfinkel, Kunnathur and Liepins (1986) and Ragsdale and McKeown 
(1996) succeeds in finding an optimal solution to the error localisation problem in a finite 
number of iterations. 

 

Theorem 10.1. The above algorithms determine an optimal solution to the error 
localisation problem in a finite number of iterations.  

Proof. When a subset Ω  of the constraints of the system (10.10) is not feasible, there is 
apparently a contradiction between the variables not involved in the cover. According to 
Corollary 2 to Theorem 1 of Fellegi and Holt (1976) there is an implied edit generated by 
the edits in Ω  in which only the variables are involved that are not part of the cover. In 
Step 6 the (modified) set-covering constraint corresponding to such an implied edit is 
added to the system of set-covering constraints. Any solution to the error localisation 
problem has to satisfy this (modified) set-covering constraint. Therefore, a solution to the 
error localisation problem is a solution to any of the (modified) set-covering problems 
considered in Step 2. On the other hand, a solution to a (modified) set-covering problem 
considered in Step 2 is a solution to the error localisation problem if and only if the 
variables involved in the cover can indeed be imputed, i.e. if and only if system (10.10) has 
a feasible solution. So, when an optimal cover of a (modified) set-covering problem is 
determined in Step 2 such that the variables involved in this cover can be imputed 
consistently then the error localisation problem has been solved optimally.  

The algorithms terminate after a finite number of iterations, because the (modified) set-
covering constraints added in Step 6 ensure that during each iteration a different 
(modified) cover is the optimal solution to the (modified) set-covering problem considered 
in Step 2. As there are only finitely many (modified) covers only finitely many iterations 
are necessary to arrive at the optimal solution to the error localisation problem. Hereby we 
have shown that the algorithm can be used to solve the error localisation problem to 
optimality.         � 

 

The above proof differs from the one originally given by Garfinkel, Kunnathur and Liepins 
(1988), which was based on Farkas’ Lemma. Our proof is more general as it is not 
restricted to continuous data, but – in principle – also applies to categorical data or even to 
a mix of categorical and continuous data. The advantage of our proof over the one given 
by Garfinkel, Kunnathur and Liepins will become apparent in the next section when we 
consider a more general theorem, Theorem 10.2. 

There are several options for selecting a suitable subset MΩ  of constraints of (10.10) in 
Step 5 of the algorithm. First, we can select all violated constraints of (10.10). This is the 
easiest solution, but has the disadvantage that the resulting set-covering constraint can be 
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rather weak. As a consequence at lot of iterations may be necessary to arrive at the optimal 
solution. This method of determining MΩ  corresponds to not applying Steps 4 and 5 in 
Algorithm 10.1 proposed Garfinkel, Kunnathur and Liepins (1986) (see Section 10.2). 

Second, we can apply the following simple algorithm. Consider a constraint of type 
(10.10) and check whether we can remove this constraint without making the remaining set 
of constraints feasible. If so, we remove this constraint from the set of constraints (10.10), 
else we retain the constraint. Next we consider another constraint which has not been 
checked before. While checking this other constraint we use the updated set of constraints 
(10.10), i.e. some constraints from the original set (10.10) may have been removed. We go 
on with this process until all constraints of (10.10) have been checked. In the end we are 
left with an infeasible set of constraints such that if any constraint is removed then the 
system becomes feasible. Because the system of constraints is infeasible, the 
corresponding explicit edits generate a violated implicit edit. This is ensured by Corollary 
2 to Theorem 1 of Fellegi and Holt (1976). This method of determining MΩ  corresponds 
to Steps 4 and 5 of Algorithm 10.1 proposed by Garfinkel, Kunnathur and Liepins, because 
the set MΩ  is a prime cover of a p-dimensional real vector space, where p equals the 

number of elements in Î . 

We can exploit the fact that we can choose the order in which the constraints of (10.10) are 
examined in the above algorithm. We suggest determining the order of the constraints in 
the following way. To select a constraint of (10.10) we calculate for each constraint that 
has not been checked already the number of variables nV  involved in that constraint that 
are not involved in constraints that have already been checked and that have been retained. 
The constraint with the highest number nV  is chosen to be checked. The idea of this 
approach is that for the first constraints of (10.10) that are checked it is (a bit) more likely 
that they are removed than for later constraints. By selecting the order of the constraints in 
the above manner we hope that the number of variables involved in the constraints that are 
retained is low. As a consequence the corresponding set-covering constraints are likely to 
be rather strong. 

Third, we can apply the approach proposed by Garfinkel, Kunnathur and Liepins (1988). 
We write the set of explicit edits (10.8) as 

 bx ≥A ,        (10.39) 

We consider the set of reduced constraints given by (10.10) and (10.11). We write this 
system as 

 0ˆ ≥′+bxIB .       (10.40) 

Now, we determine a solution to 

 0=Bp ,        (10.41) 

 1−≤′bp        (10.42) 

and 
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 0p ≥ .        (10.43) 

The edits i for which 0>ip  are included in MΩ . In fact, we construct the (modified) set-
covering constraint corresponding to the implied edit 

 0pbxp ≥+A .       (10.44) 

Fourth, we can construct an implied edit with a minimal number of involved variables. For 
this we have to solve the following integer programming problem. Minimise the objective 
function  

∑
∉Ii

iz
ˆ

)( δ ,       (10.45) 

where )( izδ  equals 1 if 0≠iz , otherwise it equals 0, under the constraints 

1
1

=∑
=

R

j
jλ ,       (10.46)

 Iia
R

j
ijj

ˆfor       0
1

∈=∑
=
λ ,      (10.47)  

 ∑
=

<+++
R

j
jnnjjj bvava

1
11 0)...(λ ,     (10.48) 

 ∑
=

∉=
R

j
ijji Iiaz

1

ˆfor        λ       (10.49)  

and          
 0≥jλ  for j=1,…,R.      (10.50) 

In this way we construct an implied edit given by 

 ∑∑∑
=∈ =

≥+
R

j
j

Ii
i

R

j
ijj bxa

1ˆ 1
0λ .      (10.51) 

This implied edit is violated by the record under consideration, because constraint (10.48) 
has to be satisfied. Moreover, the number of variables involved in this edit is minimal, 
because the objective function (10.45) is minimised. 

It is important to notice that the set of constraints (10.46) to (10.50) has a feasible solution. 
Again this is ensured by Corollary 2 to Theorem 1 of Fellegi and Holt (1976). 

The problem of minimising (10.45) under the constraints (10.46) to (10.50) can, for 
example, be solved by Chernikova’s algorithm, or by standard techniques for solving 
integer programming problems such as branch-and-bound algorithms. The problems that 
have to be solved are relatively small. In any case they are much smaller than the error 
localisation problem itself. So, solving the above problem can be done relatively fast. Still, 
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it is not clear whether solving the above problem leads to better result than the simple 
heuristics discussed before. 

10.4. A cutting plane algorithm for error localisation in mixed data 

For a mix of categorical and continuous data we propose a combination of the two 
algorithms by Garfinkel, Kunnathur and Liepins (1986 and 1988), which are suitable for 
categorical data and continuous data, respectively.  

We write an edit of type  

 

IF j
ii Fv ∈  for i=1,…,m   

THEN }0...|{),...,( 111 ≥+++∈ jnnjjn bxaxaxx x ,   (10.52) 

 

in the following way: an edit jE  is failed if and only if  
j

ii Fv ∈  for i=1,…,m      (10.53) 

and 

 }0...|{),...,( 111 <+++∈ jnnjjn bxaxaxx x ,    (10.54) 

where i
j

i DF ⊆  ( iD  is the domain of variable i). The set on the right-hand side of (10.54) 
may be empty or the entire n-dimensional real vector space.  

We assume that a record ),...,,,...,( 00
1

00
1 nm xxvv  has to be edited. We propose the following 

cutting plane algorithm. 

 

Algorithm 10.3: 

1. Determine the edits given by (10.53) and (10.54) that are violated by the record under 
consideration. If no edits are violated, we are done. Otherwise, these violated edits 
correspond to the constraints of the associated set-covering problem, and we go to Step 
2. 

2. Determine an optimal cover of the constraints of the set-covering problem, i.e. a cover 
with a minimal sum of reliability weights. The optimal cover is denoted by ŷ , and the 

index set of the optimal cover is denoted by Î , i.e. }1ˆ|{ˆ == iyiI . Here 1ˆ =iy  (for 
i = 1,...,m) indicates that the value of the i-th categorical variable should be modified, 
and 1ˆ =+miy  (for i = 1,...,n) indicates that the value of the i-th numerical variable 

should be modified. The set Î  can be decomposed into two subsets: a subset cÎ  
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corresponding to categorical variables only, and a subset nÎ  corresponding to 
numerical variables only. 

3. Set 0
i

k
i vv =  for cImi ˆ},...,1{ −∈ , and 0

ii xx =  for nIni ˆ},...,1{ −∈ . For every cIi∈ , let 
k
iv  assume each of the values in iD . The index k refers to one of the ∏∈ cIi iDˆ ||  

combinations of values of categorical variables constructed in this manner. For each of 
these combinations we can determine a set of reduced constraints for the numerical 
variables )ˆ( ni Iix ∈ . For the k-th combination of values of categorical variables 

),...,( 1
k
m

k vv  such a set of reduced constraints can be written as  

    0ˆ ≥′+∑ ∈ jIi iij bxa
n

      (10.55) 

for all j such that   
j

i
k
i Fv ∈   for i=1,…,m,     (10.56)  

where         
 ∑ ∉

+=′
nIi jiijj bxab ˆ

0 .      (10.57) 

The constraints given by (10.55) have to hold simultaneously.  

4. If any of the sets of reduced constraints (10.55) considered in Step 3 has a feasible 
solution then the solution to the set-covering problem corresponds to an optimal 
solution to the error localisation problem, and we are done. Otherwise we go to Step 5. 

5. Determine an infeasible subset MΩ  of edits given by (10.53) and (10.54). That is, 
determine a subset of edits such that for each combination k of values of categorical 
variables with indices in cÎ , the resulting set of reduced constraints for variables with 

indices in nÎ  is infeasible. 

6. Add the following constraint to the set-covering problem:     

∑
+

=
≥

nm

i
ii ya

1
1 ,       (10.58) 

where   





 Ω∈=

otherwise.1
in   involvednot  is     variableifor  , ˆ  if0 M

i
iIia   (10.59) 

Go to Step 2. 

 

Theorem 10.2. This algorithm determines an optimal solution to the error localisation 
problem in a finite number of iterations. 

Proof. See the proof of Theorem 10.1.       � 
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Step 4 can be done by linear programming techniques. For instance, for each set of 
reduced constraints (10.55) we can use the first step of the simplex method to test the 
feasibility of this set. Step 4 can be time-consuming when the product ∏∈ cIi iDˆ ||  is large. 

However, if this product is large then usually cÎ  contains many elements. If this is the 
case, then the record under consideration contains many errors. Hence, the record contains 
little information. In such a case we may just as well remove the entire record from the 
data set. 

Again Step 5 is the most interesting step. The problem of selecting a suitable subset of 
constraints MΩ  is somewhat more difficult than the similar problem discussed in Section 
10.3. The difference is that in Section 10.3 we should select a suitable infeasible subset of 
constraints, whereas here we should select a subset of constraints MΩ  such that for each 
combination of values of categorical variables considered in Step 3 the corresponding set 
of numerical constraints given by (10.55) is infeasible. In other words, here we should 
select MΩ  in such a way that several subsets of constraints of MΩ  are infeasible. 
Nevertheless, although the problem of selecting a suitable subset of constraints MΩ  is 
more complicated in this case than in the case of Section 10.3 we can still use similar 
heuristics to determine MΩ . 

10.5. A cutting plane algorithm for continuous or categorical data based on 
elimination 

From this section on we will use the elimination techniques developed in Sections 8.2 and 
9.5 to improve upon the algorithms proposed in the previous sections of this chapter. 

In this section we assume that the edits given by  

 

IF j
ii Fv ∈  for i=1,…,m   

THEN }0...|{),...,( 111 ≥+++∈ jnnjjn bxaxaxx x ,   (10.60a) 

 

or 

 

IF j
ii Fv ∈  for i=1,…,m   

THEN }0...|{),...,( 111 =+++∈ jnnjjn bxaxaxx x ,   (10.60b) 
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are either purely continuous or purely categorical. In other words, either all numerical 
THEN-conditions of edits of type (10.60) always have to be satisfied irrespective of the 
values of the categorical variables, or the set in the THEN-condition of each edit of type 
(10.60) is the empty set.  

Our proposed algorithm for solving the error localisation problem in continuous or 
categorical data is given below. 

 

Algorithm 10.4: 

0. We denote the original set of edits that has to be satisfied by 0Ω . We define ∅=Γ0 , 
and set s equal to 1.  

1. Determine the edits in 1−Ω s  that are violated by the record under consideration. If no 
edits are violated, we are done. Otherwise, go to Step 2. 

2. The violated edits of 1−Ω s  correspond to constraints of the associated set-covering 

problem. For the j-th violated constraint jE  of 1−Ω s , the corresponding constraint for 
the set-covering problem is given by:      

∑
+

=
≥

nm

i
iij yd

1
1,       (10.61)  

where 

 




=
otherwise.1

in  involvednot  is      variableif0 j

ij
Eid    (10.62) 

Let s}constraint covering-set new{: 1 ∪Γ=Γ −ss . Go to Step 3. 

3. Determine all optimal covers for the constraints of the set-covering problem defined 
by sΓ . That is, determine all covers with a minimal sum of reliability weights. The 

optimal covers are denoted by kŷ , and the index set of the k-th optimal cover 

(k=1,..., sK ) is denoted by kÎ , i.e. }1ˆ|{ˆ == k
i

k yiI . If the sum of the reliability 
weights of these solutions exceeds maxN , the maximum (weighted) number of fields 
that may be modified (see Section 8.6.1), we stop: the record is considered too 
erroneous for automatic editing, and is discarded. Otherwise, go to Step 4. 

4. For each optimal cover k=1,..., sK , eliminate all variables in kÎ , i.e. all variables in 

this cover, from 0Ω . If the resulting set of edits, denoted by k
sΩ , does not contain any 

edit violated by the original values of the remaining variables, the variables in kÎ  
form an optimal solution to the error localisation problem.  
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If any optimal solution to the error localisation problem has been found in Step 4, we 
output all found optimal solutions and stop. If no optimal solution to the error 
localisation problem has been found, we go to Step 5. 

5. Set k
s

K
ks

s Ω=Ω =1t , and let s := s + 1. Go to Step 1.    
   

 

We have the following theorem. 

 

Theorem 10.3. After termination of Algorithm 10.4, all optimal solutions to the error 
localisation problem for either continuous or categorical data have been determined. 
Moreover, Algorithm 10.4 is guaranteed to terminate after a finite number of iterations. 

Proof. A necessary condition for a set S of variables to be a feasible solution to the error 
localisation problem is that after elimination of these variables the original values of the 
remaining variables satisfy the edits (explicit ones and implied ones obtained by 
elimination of variables in S) involving only these latter variables. So, none of these edits 
for the latter variables may be violated. This means that for each violated edit (either 
explicit or implied) at least one variable should be changed, i.e. at least one variable 
entering this edit should be part of a solution to the error localisation problem. This shows 
that any solution to the error localisation problem is also be a solution to the set-covering 
problem defined by minimising the sum of reliability weights subject to (10.61) where the 
constraints correspond to explicit edits plus generated implied edits. Hence, any optimal 
solution to the error localisation problem is also a solution to the associated set-covering 
problem. 

It remains to show that a set S of variables is indeed a feasible solution to the error 
localisation problem if the original values of the remaining variables satisfy the explicit 
and implicit edits obtained by elimination of the variables in S from the original set of 
edits. This follows directly from Theorem 8.2 that says that a set of variables S ′  is a 
solution to the error localisation problem if and only if the set of relations involving no 
unknowns obtained by eliminating the variables in S ′  from the original edits and fixing 
the values of the remaining variables to their original values is consistent. 

It is easy to see that Algorithm 10.4 terminates after a finite number of iterations as there 
are only finitely many different set-covering problems, each with finitely many optimal 
solutions. Whenever an optimal solution to the current set-covering problem does not 
correspond to a feasible solution to the error localisation problem, cuts are added to the set-
covering problem (see Steps 2 and 5) in order make this optimal set-covering solution 
infeasible for all subsequent set-covering problems.     � 

 

The proposed algorithm can be modified in two different ways. First, instead of generating 
and solving the standard set-covering problem associated to an instance of the error 
localisation problem, one could generate and solve the modified set-covering problem 
proposed by Ragsdale and McKeown (1996) (see also Section 10.3). The results by 
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Ragsdale and McKeown suggest that this modified algorithm will be faster than the 
algorithm formulated above. 

Second, instead of determining all optimal solutions to the (modified) set-covering 
problem in Step 3, one could determine only one optimal solution. To fulfil our aim of 
finding all optimal solutions to the error localisation problem we must then perform an 
additional step to find all optimal solutions to the error localisation problem after we have 
found one. This additional step could be carried out in the following way. Once we have 
found an optimal solution to the error localisation problem we re-run the last iteration. This 
time, however, we do find all optimal solutions to the (modified) set-covering problem in 
Step 3, and check for all those solutions whether they are feasible for the error localisation 
problem. 

Finding only one optimal solution to a (modified) set-covering problem in an iteration is 
obviously faster than determining all optimal solutions. However, in general more 
iterations will be needed before the algorithm terminates and, moreover, an additional step 
is required to find all optimal solutions to the error localisation problem. Intuitively, we 
would prefer to generate all optimal solutions in each iteration. However, without further 
research it is unclear whether finding all optimal solutions to the (modified) set-covering 
problem in each iteration is really better than finding only one optimal solution.  

Theorem 10.3 remains valid if Algorithm 10.4 is modified in either of the two (or both) 
ways. 

In the algorithm generated implicit edits are not stored. However, in a practical 
implementation one could, of course, decide to store generated implicit edits in order to 
avoid having to generate the same implicit edits several times. 

10.6. Example 

We illustrate the algorithm described in the previous section by means of a small example 
involving only four continuous variables. Suppose the explicitly specified edits are given 
by 

 CPT += ,       (10.63) 

 TP 5.0≤ ,       (10.64) 

PT ≤− 1.0 ,       (10.65) 

0≥T ,        (10.66) 

 NT 550≤ ,       (10.67) 

where T denotes the turnover of an enterprise, P its profit, C its costs, and N the number of 
employees. Let us consider a specific erroneous record with values T = 100, P = 40,000, 
C = 60,000 and N = 10. Edits (10.65), (10.66) and (10.67) are satisfied, whereas edits 
(10.63) and (10.64) are violated. The reliability weights of variables T, P and C equal 1, 
and the reliability weight of variable N equals 2. That is, the value of variable N, the 
number of employees, is considered more reliable than the values of the financial variables 
T, P and C. 



Chapter 10 

 190

Edits (10.63) and (10.64) are violated. The associated set-covering problem is hence given 
by:  

Minimise NCPT yyyy 2+++      (10.68) 

subject to the constraints 

 1≥++ CPT yyy ,      (10.69) 

 1≥+ PT yy ,       (10.70) 

 }1,0{,,, ∈NCPT yyyy .      (10.71) 

Constraint (10.69) says that at least one of the variables T, P or C should be changed, and 
constraint (10.70) that at least one of the variables T or P should be changed. 

The optimal solutions to this problem are  

a) 1=Ty  and 0=== NCP yyy ;  

b) 1=Py  and 0=== NCT yyy . 

Potential solutions to the error localisation problem are hence:  

a) change the value of T; 

b) change the value of P.  

We first eliminate T from the explicit edits (10.63) to (10.67) using the equality-
elimination rule (see Section 8.2) to check whether changing T is indeed a solution to the 
error localisation problem. We obtain the following new edits: 

 )(5.0 CPP +≤  (combination of (10.63) and (10.64))  (10.72) 

 PCP ≤+− )(1.0  (combination of (10.63) and (10.65))  (10.73) 

 0≥+CP  (combination of (10.63) and (10.66))  (10.74) 

 NCP 550≤+  (combination of (10.63) and (10.67))  (10.75) 

Edits (10.72) to (10.74) are satisfied, edit (10.75) is violated. Because edit (10.75) is 
violated, changing the value of T is not a solution to the error localisation problem. 

We now eliminate P from the explicit edits (10.63) to (10.67) using the equality-
elimination rule to check whether changing P is a solution to the error localisation 
problem. We obtain: 

 TCT 5.0≤− , (combination of (10.63) and (10.64))  (10.76) 

 CTT −≤− 1.0 , (combination of (10.63) and (10.65))  (10.77) 

0≥T ,        (10.78) 

 NT 550≤ .       (10.79) 
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Edit (10.77) is violated, edits (10.76), (10.78), and (10.79) are satisfied. Because edit 
(10.77) is violated, changing the value of P is not a solution to the error localisation 
problem. 

The set-covering constraints corresponding to violated edits (10.75) and (10.77) are given 
by 

 1≥++ NCP yyy ,      (10.80) 

respectively 

 1≥+ CT yy        (10.81) 

We add these set-covering constraints to the other set-covering constraints (10.69) to 
(10.71), and minimise target function (10.68) subject to the updated system of set-covering 
constraints. The optimal solutions to the new set-covering problem are:  

a) 1== CP yy  and 0== NT yy ; 

b) 1== CT yy  and 0== NP yy ; 

c) 1== TP yy  and 0== NC yy . 

Potential optimal solutions to the error localisation problem are hence:  

a) change the values of P and C; 

b) change the values of T and C; 

c) change the values of P and T. 

We first check the first potential solution to the error localisation problem by eliminating P 
and C from all explicit edits (10.63) to (10.67). We first eliminate P, and again obtain 
(10.76) to (10.79). Now, we eliminate C from (10.76) to (10.79). We obtain  

 TT 1.15.0 ≤ , (combination of (10.76) and (10.77))  (10.82) 

0≥T ,        (10.83) 

 NT 550≤ .       (10.84) 

This set of edits is satisfied by the values of the remaining variables. An optimal solution 
to the error localisation problem is therefore: change the values of variables P and C. 

Now, we check the second potential solution to the error localisation problem by 
eliminating T and C from all explicit edits (10.63) to (10.67). We first eliminate T, and 
again obtain (10.72) to (10.75). Now, we eliminate C from (10.72) to (10.75). We obtain 
several new edits. One of those edits is 

 NP 5502 ≤ . (combination of (10.72) and (10.75))  (10.85) 

This edit is violated. Changing T and C is therefore not a solution to the error localisation 
problem. 
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Finally, we check the third potential solution to the error localisation problem by 
eliminating P and T from all explicit edits (10.63) to (10.67). We first eliminate P, and 
again obtain (10.76) to (10.79). Now, we eliminate T from (10.76) to (10.79). We obtain 
several new edits. One of those edits is 

 NC 550
1.1
≤ . (combination of (10.77) and (10.79))  (10.86) 

This edit is violated. Changing P and T is therefore not a solution to the error localisation 
problem. 

We conclude that there is only one optimal solution to the error localisation problem, 
namely: change the values of P and C. 

10.7. A cutting plane algorithm for categorical and continuous data based on 
elimination 

Thus far we have discussed an algorithm for the error localisation problem for either 
categorical or continuous data. We now consider the error localisation problem for a mix 
of categorical and continuous data. The cutting plane algorithm we propose for the error 
localisation problem in categorical and continuous data simultaneously, Algorithm 10.5, is 
similar to Algorithm 10.4. In fact, only Step 4 of Algorithm 10.5 differs from Step 4 of 
Algorithm 10.4. 

 

Step 4 of Algorithm 10.5: 

4. For each optimal cover k=1,..., sK , eliminate all variables in kÎ , i.e. all variables in 

this cover, from 0Ω . For each kÎ  we first eliminate the continuous variables involved 

in this cover. For edits also involving categorical variables in kÎ  we then fix the 
remaining continuous variables to their original values, and finally eliminate the 
categorical variables in kÎ . If the resulting set of constraints, *

sΩ , does not contain 

any constraint violated by the values of the remaining variables, the variables in kÎ  
form an optimal solution to the error localisation problem.  

In case no optimal solution to the error localisation problem has been found for any 
cover k we define ∅=Ωk

s  for k=1,..., sK . For each cover k we then add each implied 

edit in *
sΩ  obtained by eliminating only continuous variables, and each implied edit in 

*
sΩ  obtained by eliminating only categorical variables from edits 0Ω  not involving 

any continuous variables, to k
sΩ .  

If a constraint in *
sΩ  has been obtained by eliminating at least one categorical variable 

(and possibly some continuous variables) from edits involving continuous variables, 
we construct the following set-covering constraint: 
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   ∑
−∈

≥
kITi

iy
ˆ

1,     (10.87) 

where T denotes the set of variables involved in the edits that were used to eliminate 
the variables in kÎ  in order to obtain the constraint in *

sΩ  under consideration. Such a 

set-covering constraint says that the value of at least one variable not in kÎ  involved 
in the edits used to eliminate the variables involved in kÎ  in order to obtain the 
constraint under consideration should be changed. The set-covering constraints 
defined by (10.87) are added to 1+Γs .  

If any optimal solution to the error localisation problem has been found in Step 4, we 
output all found optimal solutions and stop. If no optimal solution to the error 
localisation problem has been found, we go to Step 5.    
      

 

As Algorithm 10.4, Algorithm 10.5 can be modified in either of two ways (or both): by 
generating and solving a modified set-covering problem instead of a set-covering problem, 
and by determining only one optimal solution to the (modified) set-covering problem 
instead of all optimal solutions. If Algorithm 10.5 is modified in the latter way, the last 
iteration needs to be re-run in order to find all optimal solutions to the error localisation 
problem (see also Section 10.5). For (the modified versions of) Algorithm 10.5 we have a 
similar theorem as Theorem 10.3. 

 

Theorem 10.4. After the termination of Algorithm 10.5, or a modified version, all optimal 
solutions to the error localisation problem for a mix of continuous and categorical data 
have been determined. Moreover, Algorithm 10.5 is guaranteed to terminate after a finite 
number of iterations. 

 

This theorem can be proven in the same manner as Theorem 10.3. 

10.8. A cutting plane algorithm for general data based on elimination 

In this section we consider the error localisation problem for general data, i.e. a mix of 
categorical, continuous and integer data. Again we propose a cutting plane algorithm. This 
algorithm, Algorithm 10.6, is an extension of Algorithm 10.5. Again, the only difference 
between Algorithm 10.6 and the previous algorithms is Step 4. Below we describe Step 4 
of Algorithm 10.6. 

 

Step 4 of Algorithm 10.6: 

4. For each optimal cover k=1,..., sK , eliminate all variables in kÎ , i.e. all variables in 

this cover, from 0Ω . For each kÎ  we first eliminate the numerical variables in this 
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cover in the normal manner for continuous data. For edits also involving categorical 
variables in kÎ  we then fix the remaining numerical variables to their original values, 
and finally eliminate the categorical variables in kÎ . If the resulting set of constraints, 

*
sΩ , does not contain any constraint violated by the values of the remaining variables, 

we know that the variables in kÎ  would form an optimal solution to the error 
localisation problem if all variables were either categorical or continuous. We then say 
that a solution to the categorical and continuous error localisation problem, shortly a 
continuous solution, has been found. 

If such a continuous solution does not involve any integer-valued variables, it is 
obviously also a solution to the general error localisation problem, shortly an integer 
solution. 

If a continuous solution does involve integer-valued variables, we apply the method 
described in Section 9.5 to check whether this continuous solution is also an integer 
solution.  

In case no integer solution to the error localisation problem has been found we define 
∅=Ωk

s  for k=1,..., sK . For each cover k we now consider two cases: 

a) Cover k does not correspond to a continuous solution. 

In this case we do the same as in Step 4 of Algorithm 10.5. For each cover k we 
then add each implied edit in *

sΩ  obtained by eliminating only continuous 

variables, and each implied edit in *
sΩ  obtained by eliminating only categorical 

variables from edits in 0Ω  not involving any continuous variables, to k
sΩ . If a 

constraint has been obtained by eliminating at least one categorical variable (and 
possibly some continuous variables) from edits involving continuous variables, 
we construct a set-covering constraint of type (10.87). All above set-covering 
constraints defined by (10.87) are added to 1+Γs . 

b) Cover k corresponds to a continuous solution. 

In this case, we add the set-covering constraint 

∑
∉

≥
kIi

iy
ˆ

1 ,      (10.88) 

i.e. the set-covering constraint saying that at least one of the variables not 
involved in optimal cover k should be modified, to 1+Γs . 

If any optimal integer solution has been found in Step 4, we output all found optimal 
solutions and stop. If no optimal integer solution to the error localisation problem has 
been found, we go to Step 5.        

 

Once again, Algorithm 10.6 can be modified in either of two ways (or both): by generating 
and solving a modified set-covering problem, and by determining only one optimal 
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solution to the (modified) set-covering problem instead of all optimal solutions. Similar to 
the previous algorithms proposed in this chapter, if Algorithm 10.6 is modified in the latter 
way, the last iteration needs to be re-run in order to find all optimal solutions to the error 
localisation problem. For (the modified versions of) Algorithm 10.6 we have a similar 
theorem as Theorems 10.3 and 10.4. 

 

Theorem 10.5. After the termination of Algorithm 10.6, or a modified version, all optimal 
solutions to the error localisation problem for a mix of categorical, continuous and integer 
data have been determined. Moreover, Algorithm 10.6 is guaranteed to terminate after a 
finite number of iterations. 

This theorem can be proven in the same way as Theorem 10.3. The main things to notice 
are that the method described in Section 9.5 provides an exact test to decide whether a 
continuous solution is also an integer solution, and that constraint (10.88) cuts off 
continuous solutions that are not integer solutions. 

10.9. Discussion 

In this chapter cutting plane algorithms for the error localisation problem are presented. 
The basic algorithm of Section 10.4 is able to deal with both categorical and continuous 
data simultaneously. The main aspect of this algorithm that remains to be examined is the 
selection of MΩ . To decide which method of selecting MΩ  is the best, computational 
experience with various selection methods proposed in this chapter, and possibly some 
other methods, should be gained.  

In Sections 10.5 to 10.8 of this chapter we have extended cutting plane methods proposed 
by Garfinkel, Kunnathur and Liepins (1986 and 1988) and Ragsdale and McKeown (1996) 
for solving either the categorical or the continuous error localisation problem to cutting 
plane methods for solving the error localisation problem for a mix of categorical and 
continuous data, and even for a mix of categorical, continuous and integer-valued data. 
These methods seem to be more efficient than the algorithms of Sections 10.2 to 10.4 as 
checking the feasibility of a proposed solution to the error localisation problem and 
generating additional set-covering cuts in case the proposed solution turns out to be 
infeasible are combined into a single step. 
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11. Computational results 

11.1. Introduction 

In this chapter we compare computational results for four different algorithms for 
automatic error localisation on six data sets involving only numerical data. The aim of our 
comparison study is not to perform a comprehensive evaluation study for all possible data 
sets, but rather to perform a succinct evaluation study that allows us to identify the most 
promising algorithm(s) for a number of realistic data sets. We restrict ourselves to data sets 
involving exclusively numerical data for two reasons. First, automatic data editing of 
economic – and hence (mostly) numerical – data is a far more important subject for 
Statistics Netherlands than automatic data editing of social – and hence (mostly) 
categorical – data. Second, the complexity of the algorithms, and corresponding computer 
programs, increases drastically if they are to be applied to a mix of categorical and 
numerical data instead of only to numerical data. Due to restrictions in time and available 
resources we want to extent only the most promising program(s) to a mix of categorical 
and continuous data. 

In literature some evaluation studies are already described, see Garfinkel, Kunnathur and 
Liepins (1986 and 1988), Kovar and Winkler (1996), and Ragsdale and McKeown (1996). 
Garfinkel, Kunnathur and Liepins (1986) concentrate on error localisation for purely 
categorical data. The other papers concentrate on error localisation for purely numerical 
data. It is difficult to compare our results to the described results for numerical data. First, 
because in most cases the actual computing speeds of the computer systems used in those 
studies are difficult to retrieve, and hence difficult to compare to the computing speed of 
present-day PC’s. Second, because the used data sets with their edit rules are not publicly 
available.  

The algorithms we examine are an algorithm based on a standard mixed integer 
programming (MIP) formulation that is solved by means of the commercial MIP-solver 
ILOG CPLEX (see Chapter 3), a vertex generation algorithm (see Chapter 5), a non-
standard branch-and-bound algorithm (see Chapter 8), and a cutting plane algorithm (see 
Chapter 10).  

The remainder of this chapter is organised as follows. In Section 11.2 we describe the data 
sets that we have used for our evaluation study. In Section 11.3 we provide some 
information regarding the implementation of the above-mentioned algorithms. The 
computational results are summarised in Section 11.4. Section 11.5 concludes the chapter 
with a brief discussion. 

11.2. The data sets 

For our evaluation experiments we have used realistic data. In several cases we have used 
actually observed data, in other cases observed data have been slightly perturbed in order 
to prevent disclosure of confidential information. Due to confidentiality restrictions the 
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values and names of the variables are not mentioned in this book. In the sequel of this 
section we briefly describe the characteristics of the six data sets, such as the number of 
variables, number of records, and the edits corresponding to each data set. 

11.2.1. Data set A 
Data set A contains 90 continuous variables X1 to X90, and 4,347 records. All records 
contain missing values, and are hence considered inconsistent. In total there are 259,838 
missing values, i.e. 59.8 missing values on average per record. All variables are non-
negative, i.e. Xi ≥ 0 for i=1,…,90. Besides these non-negativity constraints, there are 8 
other edits involving only the first 16 variables, which are given by: 

 

-X1 + 100 X5 + 100 X9 + X13 ≥ 0 

-X2 + 100 X6 + 100 X10 + X14 ≥ 0 

-X3 + 100 X7 + 100 X11 + X15 ≥ 0 

-X4 + 100 X8 + 100 X12 + X16 ≥ 0 

X1 + 0.99 X5 + 0.99 X9 - X13 ≥ 0  

X2 + 0.99 X6 + 0.99 X10 - X14 ≥ 0 

X3 + 0.99 X7 + 0.99 X11 - X15 ≥ 0 

X4 + 0.99 X8 + 0.99 X12 - X16 ≥ 0. 

 

For the other 74 variables only the non-negativity constraints have to be satisfied. The first 
16 variables contain 18,555 missing values in total. 

11.2.2. Data set B 
Data set B contains 76 continuous variables X1 to X76, and only 274 records of which 157 
are inconsistent, i.e. do not satisfy all edits, and 117 consistent. The data set contains no 
missing values, because missing values were imputed with the value zero before the data 
set was delivered to the author. The reason for this pre-processing step is that in reality 
most missing values in this data set should be zeros. All variables, except X9, X14, X15, X16, 
X21, and X27, are non-negative. Besides the non-negativity restrictions, the following edits 
should be satisfied. 

X14 + X15 - X16 = 0 

X9 + X10 - X11 + X12 + X13 - X14 = 0 

X1 - X8 - X9 = 0 

X2 + X3 + X4 +X5 + X6 + X7 - X8 = 0 
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X1 - X28 = 0 

X55 + X57 + X59 + X61 + X63 + X65 + X67 + X69 - X71 = 0 

X56 + X58 + X60 + X62 + X64 + X66 + X68 - X70 = 0 

X51 - X52 - X53 = 0 

X46 + X48 + X49 + X50 - X51 = 0 

X40 + X41 + X42 + X43 + X44 - X45 = 0 

X35 + X38 - X39 = 0 

X36 + X37 - X38 = 0 

X29 + X30 + X31 + X32 + X33 + X34 - X35 = 0 

X20 + X21 + X22 + X23 + X24 + X25 + X26 + X27 - X28 = 0 

X17 + X18 + X19 - X20 = 0 

X7 - X45 = 0 

X5 - X39 = 0  

X72 + X73 - X74 = 0 

-X53+X54 ≤ 0 

-X46+X47 ≤ 0.  

 

Note that the above set of edits can be split into several sets of edits involving disjoint sets 
of variables. The error localisation problem could be solved for each of these edit sets 
separately. This would generally lead to reduced computing times for our algorithms. We 
have, however, not performed this pre-processing step. We have neither split the edit set 
for any of the other data sets. 

11.2.3. Data set C 
Data set C contains 53 continuous variables X1 to X53, and 1,480 records of which 1,404 
are inconsistent and 76 consistent. The data set contains no missing values, because 
missing values were replaced by zeros before the data set was delivered to the author. All 
variables, except X2, X3, X15, X16, X17, X19, X20, X24, X25, X28, X31, X34, X35, X39, X41, X50, and 
X51, are non-negative. Besides the non-negativity restrictions, the following edits should be 
satisfied. 

-X25 - X28 - X31 - X34 + X35 = 0 

X18 - X47 = 0 

X12 - X38 = 0 

X16 - X41 = 0 
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X23 - X53 = 0 

X14 - X40 = 0 

X13 - X39 = 0 

X20 - X51 = 0 

-X42 - X43 - X44 - X45 - X46 + X47 = 0 

-X32 + X33 + X34 = 0 

-X29 + X30 + X31 = 0 

-X26 + X27 + X28 = 0 

-X19 + X24 + X25 = 0 

-X20 - X22 - X23 + X24 = 0 

-X15 - X16 - X17 - X18 + X19 = 0 

-X12 + X13 + X14 + X15 = 0 

-X36 - X37 + X38 = 0 

-X7 + X8 + X9 + X10 + X11 = 0 

-X1 - X2 + X3 = 0 

X3 - X4 - X5 - X6 = 0 

X12 - X37 ≥ 0 

33 X3 - X22 ≥ 0 

0.2 X7 - X10 ≥ 0 

0.2 X7 - X9 ≥ 0 

0.2 X7 - X8 ≥ 0 

-0.25 X11 + X12 - X14 ≥ 0 

-0.09 X11 - X21 + X50 ≥ 0 

-0.02 X12 + X23 ≥ 0 

-100 X3 + X11 ≥ 0 

-20 X3 + X20 ≥ 0 

0.33 X12 - X23 ≥ 0 

110 X3 - X20 ≥ 0 

0.7 X12 - X13 - 0.7 X14 ≥ 0 

270 X3 - X11 ≥ 0 
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2.4 X11 - X12 + X14 ≥ 0 

0.47 X11 + X21 - X50 ≥ 0. 

11.2.4. Data set D 
Data set D contains 4,217 records, of which 2,152 are inconsistent and 2,065 consistent. 
Data set D contains 51 continuous variables X1 to X51. The data set contains no missing 
values, because as in data sets B and C missing values were replaced by zeros before the 
data set was delivered to the author. All variables, except X42 and X43, are non-negative. 
Besides the non-negativity restrictions, the following edits should be satisfied. 

 

X11- X16 - X17 + X18 - X19 + X20 - X21 + X22 + X26 - X30 - X34 - X35 + X36 - X37 + X38 - X39 + X40 
- X41 - X43 =0 

X36 - X37 + X38 - X39 + X40 - X41 - X42 = 0 

X44 + X45 + X46 + X47 + X48 + X49 - X50 = 0 

X31 + X32 + X33 - X34 = 0 

X27 + X28 + X29 - X30 = 0 

X23 + X24 + X25 - X26 = 0 

X12 + X13 + X14 + X15 - X16 = 0 

X4 + X6 + X8 + X10 - X11 = 0 

-X15 - X21 + X22 ≤ 0 

-X12 - X13 - X17 + X18 ≤ 0 

X9 - X10 ≤ 0 

X7 - X8 ≤ 0 

X5 - X6 ≤ 0 

X3 - X4 ≤ 0 

-X1 + X2 ≤ 0. 

11.2.5. Data set E: the EPE data set 
Data set E, the EPE (Environmental Protection Expenditures) data set, is a data set from 
the Swiss Federal Statistical Office1. The data set has been used in the EUREDIT project, 
an international research project on data editing and imputation that was partly funded by 
the European Commission, for evaluation purposes. 

                                                           
1 On certain conditions the EPE data set may be obtained from the Swiss Federal Statistical 
Office. 
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The data set contains 54 continuous variables X1 to X54 that are involved in edits, and 1,039 
records. Of these 1,039 records, 378 are inconsistent and 661 consistent. The data set 
contains 2,230 missing values, i.e. 5.9 missing values on average per inconsistent record. 
All variables are non-negative. Besides these non-negativity edits we have the following 
21 balance edits. 

 

-X1 - X5 - X9 + X13 = 0 

-X2 - X6 - X10 + X14 = 0 

-X3 - X7 - X11 + X15 = 0 

-X4 - X8 - X12 + X16 = 0 

-X17 - X19 - X21 + X23 = 0 

-X1 - X2 - X3 - X4 - X17 + X18 = 0 

-X5 - X6 - X7 - X8 - X19 + X20 = 0 

-X9 - X10 - X11 - X12 - X21 + X22 = 0 

-X18 - X20 - X22 + X24 = 0 

-X13 - X14 - X15 - X16 - X23 + X24 = 0 

-X25 - X31 + X37 = 0 

-X26 - X32 + X38 = 0 

-X27 - X33 + X39 = 0 

-X28 - X34 + X40 = 0 

-X29 - X35 + X41 = 0 

-X25 - X26 - X27 - X28 - X29 + X30 = 0 

-X31 - X32 - X33 - X34 - X35 + X36 = 0 

-X37 - X38 - X39 - X40 - X41 + X42 = 0 

-X30 - X36 + X42 = 0 

-X43 - X44 - X45 - X46 - X47 + X48 = 0 

-X49 - X50 - X51 - X52 - X53 + X54 = 0. 

11.2.6. Data set F: the ABI data set 
Data set F is a subset of the ABI (Annual Business Inquiry) data set that has been used in 
the EUREDIT project2. Data set F consists of the records of the businesses in the ABI data 
                                                           
2 On certain conditions the ABI data set may be obtained from the Office for National 
Statistics (UK). 
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set that have filled in the so-called long questionnaire, have a registered turnover of less 
than 1,000,000 British pounds, and have at least one employee. The data set contains 1,425 
records of which 1,141 are inconsistent, and 284 are consistent. The data set contains 195 
missing values, i.e. 0.2 missing values on average per inconsistent record. Data set F 
contains 26 continuous variables X1 to X26. All variables, except X21 X22, X23, and X24, are 
non-negative. Besides the non-negativity restrictions, the following edits should be 
satisfied. 

 

X16 - 0.3 X17 ≤ 0 

X8 - 0.3 X17 ≤ 0 

-X1 + X24 ≤ 0  

-X1 + X23 ≤ 0 

-X1 + X22 ≤ 0 

-X1 + X21 ≤ 0 

0.25 X1 - X20 ≥ 1 

X7 - 0.4 X17 ≤ 0 

X6 ≥ 1 

X6 - 60 X25 ≤ 0 

- X6 + 4 X25 ≤ 0 

-0.1 X2 + X3 ≤ 0 

0.03 X2 - X3 ≤ 0  

X1 - 2 X26 ≤ 0 

-20 X1 + X26 ≤ 0 

X18 + X19 - X20 = 0 

X7 + X8 + X9 + X10 + X11 + X12 + X13 + X14 + X15 + X16 - X17 = 0 

X2 + X3 + X4 + X5 - X6 = 0. 

11.2.7. Summary of the data sets 
In Table 11.1 below we give a summary of the characteristics of the six data sets. In the 
table the number of variables, the number of non-negativity constraints, the number of 
edits (excluding the non-negativity constraints), the total number of records, the number of 
inconsistent records, and the total number of missing values are listed. Besides we present 
the number of records with more than 6 erroneous fields or missing values. For the purpose 
of our evaluation study we define these records to be ‘highly erroneous’ ones. In Section 
11.4 we compare the computing time required for the records that are not highly erroneous 
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to the computing time that is required for all records for two of the evaluated algorithms. 
Finally, we list the average number of errors per inconsistent record (excluding the missing 
values) and the average number of optimal solutions per inconsistent record.  

The figures in the last two rows of Table 11.1 were hard to establish, because all 
implemented programs suffer to some extent from numerical problems (see also Section 
11.3). They have been obtained by carefully comparing and combining the results of the 
four programs we have applied to each other. For instance, for each record we have 
assumed that the best solution determined by any of the four programs is indeed the 
optimal solution, i.e. the solution with the fewest possible changes. The number of changes 
in this optimal solution is assumed to be the actual number of errors in the record under 
consideration. To determine the number of optimal solutions for each inconsistent record 
we have examined how many optimal solutions are determined by the programs based on 
vertex generation, non-standard branch-and-bound and cutting planes. If two or three 
programs found the same number of optimal solutions (this is usually the case), that 
number is assumed to be the actual number of optimal solutions. In the very rare cases 
where each program determined a different number of optimal solutions, we have assumed 
that the highest number is the actual number of optimal solutions. 
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Table 11.1. Characteristics of the data sets  

 Data set 
A 

Data set 
B 

Data set 
C 

Data set 
D 

Data set 
E 

Data set 
F 

Number of variables 90 76 53 51 54 26 

Number of non-
negativity constraints 

90 70 36 49 54 22 

Number of edits1 8 20 36 15 21 18 

Total number of records 4,347 274 1,480 4,217 1,039 1,425 

Number of inconsistent 
records 

4,347 157 1,404 2,152 378 1,141 

Total number of missing 
values 

259,838 0 0 0 2,230 195 

Number of records with 
more than 6 errors or 
missing values 

4,346 7 117 16 136 8 

Average number of 
errors per inconsistent 
record2 

0.2 2.5 2.6 1.6 5.8 3.0 

Average number of 
optimal solutions per 
inconsistent record 

6.1 12.0 6.9 23.3 1.2 11.6 

1 Excluding non-negativity constraints. 
2 Excluding missing values. 

 

The number of variables, edits and records are in most of the six data sets quite realistic. 
Exceptions are data set A, where the number of edits other than non-negativity edits is very 
small, and data set B, where the number of records is very small. At Statistics Netherlands, 
a very large and complex data set to be edited automatically may involve slightly more 
than 100 variables, about 100 edits, and a few thousand records. These numbers are 
somewhat higher than for the data sets in Table 11.1, but for such large data sets the value 
of many variables equals zero. This simplifies the error localisation problem to some 
extent, for example, because this justifies replacing missing values by zeros in a pre-
processing step. 

The six data sets used in our evaluation tests were not selected because of certain 
characteristics they possess, but because either raw (unedited) and clean (manually edited) 
data were both available, or because we were requested to edit the data set automatically. 
The availability of both raw and clean data enables us to compare the population figures 
estimated using on automatically edited data to population figures estimated using 
manually edited data. This in turn enables us to assess the quality of automatically edited 
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data. The results of these experiments related to the statistical quality of automatic editing 
are not reported in this book. 

The six data sets come from a wide range of business surveys, namely a survey on labour 
costs, a structural business survey on enterprises in the photographic sector, a structural 
business survey on enterprises in the building and construction industry, a structural 
business survey on the retail sector, and a survey on environmental expenditures. Besides 
these data sets we have also used the ABI data set. Due to confidentiality reasons the 
sector to which the businesses in this data set belong has not been made public. 

As far as we are able to tell, the six test data sets are not essentially different from other 
data sets arising in practice. In other words, to the best of our knowledge these data sets are 
representative for other data sets from business surveys. A good performance on the six 
data sets hence suggests that the performance on other data sets arising in practice will be 
acceptable.  

This is confirmed by practical experience at Statistics Netherlands, where nowadays 
almost all annual structural business surveys are treated by a combination of selective 
editing (for details on this implementation of selective editing see Hoogland, 2002) and 
automatic editing. For an overview of this approach for annual structural business surveys 
at Statistics Netherlands we refer to De Jong (2002). Automatic editing for annual 
structural business surveys is carried out by means of SLICE (version 1.0), which is based 
on the vertex generation approach of Chapter 5. Because extensive use of time-consuming 
COM-components is made in the software architecture of SLICE, the computing times are 
of a higher order than those mentioned in Tables 11.2 and 11.3 in Section 11.4 below. 
Nevertheless, all involved structural business surveys can be treated by SLICE 1.0 within a 
reasonable amount of time. Obviously, computing times vary over data sets of different 
surveys, but no data set with an exceedingly high computing time has been encountered so 
far. Our practical experience hence suggests that computational results for our test data sets 
can be carried over to other business data sets.  

11.3. Implementation of the algorithms 

The four algorithms we examine in this chapter have been implemented in four computer 
programs. We briefly discuss the implementation details of these programs in this section. 
The first algorithm, based on a standard MIP formulation (see Chapter 3), we consider has 
been implemented by Van Riessen (Van Riessen, 2002), a student at the Hogeschool van 
Amsterdam (College of Amsterdam), while doing an internship at Statistics Netherlands. 
This algorithm has been implemented in Visual C++ 6.0, and calls routines of ILOG 
CPLEX (version 7.5), a well-known commercial MIP-solver, to actually solve the MIP 
problems involved (see ILOG CPLEX 7.5 Reference Manual, 2001). We refer to Van 
Riessen’s program as ERR_CPLEX in the remainder of this chapter.  

In contrast to all other error localisation programs we consider in this chapter, 
ERR_CPLEX finds only one optimal solution to each instance of the error localisation 
problem. To find all optimal solutions we could – once an optimal solution to the current 
MIP problem has been determined – iteratively add an additional constraint, which 
basically states that the present optimal solution is excluded but other optimal solutions to 
the current MIP problem remain feasible, and solve the new MIP problem. This process of 
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determining an optimal solution to the current MIP problem and adding an additional 
constraint to obtain a new MIP problem goes on until all optimal solutions to the error 
localisation problem have been found. We have not implemented this option, however. 

alternative is to use a hot restart, where information generated to obtain an optimal solution 
to an MIP problem is utilised to obtain an optimal solution to a slightly modified MIP 
problem quickly. A problem with this possibility is that experiences at Statistics 
Netherlands with ILOG CPLEX so far, on linear programming (LP) problems arising in 
statistical disclosure control, show that ILOG CPLEX becomes numerical unstable if too 
many hot restarts in a row are applied. 

The results of ERR_CPLEX are therefore only indicative. If the algorithms we have 
developed ourselves were clearly outperformed by ERR_CPLEX, this would suggest that 
standard MIP-solvers may be preferable to our algorithms. In that case, further studies with 
an extended version of ERR_CPLEX that aims to find all optimal solutions to the error 
localisation problem instead of only one would still be needed, however. 

ERR_CPLEX, or more precise the MIP-solver of ILOG CPLEX, suffers from some 
numerical problems. These problems arise because in (erroneous) records the largest 
values may be a factor 109 or more larger than the smallest values. Due to these numerical 
problems ERR_CPLEX occasionally generates suboptimal solutions containing too many 
variables. In some other cases it does not find a solution at all. The value of M (see (3.33) 
to (3.36) in Section 3.5) in ERR_CPLEX was set to 10,000. Lower values for M led to too 
many incorrect results, whereas higher values for M led to additional numerical problems. 

The second algorithm, based on vertex generation (see Chapter 5), has been implemented 
by the author of this book. This program, CherryPi, has been developed in Delphi 3. The 
implemented algorithm is the adapted version of Chernikova’s algorithm described in 
Sections 5.3 to 5.5 and Section 5.9 of this book. All mentioned improvements due to Rubin 
(1975 and 1977), Sande (1978a), Schiopu-Kratina and Kovar (1989), and Fillion and 
Schiopu-Kratina (1993) on the original algorithm by Chernikova (1964 and 1965) have 
been implemented in CherryPi. The possibly more efficient algorithm due to Duffin has 
not been implemented.  

The adapted version of Chernikova’s algorithm uses a matrix to solve the error localisation 
problem (see Sections 5.3 to 5.5 and Section 5.9 for more details regarding this matrix). 
The number of rows of this matrix is implied by the number of edits and the number of 
variables. The number of columns is determined dynamically. Due to memory and speed 
restrictions a maximum for the allowed number of columns is set in CherryPi. If the actual 
number of columns exceeds the allowed maximum, certain columns are deleted. This 
influences the solutions that are found by CherryPi. Due to this pragmatic rule in some 
cases only non-optimal solutions may be found, and – even worse – in some other cases no 
solutions at all may be found. Another effect of this pragmatic rule is that if columns have 
been deleted in order to arrive at solutions to an instance of the error localisation problem, 
the optimality of the found solutions is not guaranteed. The higher the allowed number of 
columns, the better the quality of the solutions found by CherryPi, but also the slower the 
speed of the program. Practical experience has taught us that in many instances setting the 
allowed number of columns to 4,000 gives an acceptable trade-off between the quality of 
the found solutions and the computing time of the program. In the version of CherryPi that 

Resolving the problem from scratch for each solution would be very time-consuming. The 
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was used for the comparison study the allowed number of columns was therefore set to 
4,000. Besides the above-mentioned memory problems, CherryPi occasionally suffers 
from numerical problems, for the same reason as ERR_CPLEX. 

The third algorithm, based on a non-standard branch-and-bound approach (see Chapter 8), 
has originally been implemented by Quere, a post-graduate student at Eindhoven 
University of Technology, while doing an internship at Statistics Netherlands. At Statistics 
Netherlands Quere was supervised by the author of this book. Later the prototype 
computer program, Leo, was modified by mainly Van den Broeke, and to a lesser extent by 
the author of this book. Leo has been developed in Delphi 3. The program requires that a 
maximum cardinality for the optimal solutions must be specified beforehand. Only optimal 
solutions with at most the specified maximum cardinality are determined.  

In Leo the following rule to select a branching variable has been implemented: first select 
the variables that are involved in at least one failed edit and a minimum number of 
satisfied edits, and then select the variable from this set of variables that occurs most often 
in the failed edits. If there are several ‘best’ variables to branch on, one of them is chosen 
randomly. Considering that in Leo variables are first eliminated and later fixed, i.e. the 
opposite order in comparison to Daalmans’ implementation of a similar algorithm for 
categorical data (see Section 8.6.4 and Daalmans, 2000), Daalmans’ work suggests that 
Leo’s method of selecting the branching variable should be quite reasonable. Other orders 
of treating variables in Leo remain to be tested.  

In Leo, the equality-elimination rule described at the end of Section 8.2 has not been 
implemented. On two data sets, the data sets for which the computing times of Leo are 
comparatively bad, we have applied a special, alternative version of Leo in which the 
equality-elimination rule has been implemented. 

Leo sometimes suffers from memory problems, especially for records with many errors, 
because too many nodes with too many edits need to be stored. For records for which Leo 
suffers from memory problems, it cannot determine an optimal solution. Leo occasionally 
suffers from numerical problems, for the same reason as ERR_CPLEX and CherryPi. 

The fourth and last algorithm, based on the cutting plane algorithm of Section 10.5, has 
been implemented by Coutinho, while working temporarily at Statistics Netherlands. 
Coutinho was supervised by the author of this book. We refer to Coutinho’s program as 
CUTTING in this chapter. CUTTING has been developed in Delphi 3. In this 
implementation a modified set-covering problem (see Ragsdale and McKeown (1996) and 
Section 10.5 of this book) instead of an ordinary set-covering problem is generated and 
solved in each iteration. In each iteration CUTTING determines all optimal solutions to the 
corresponding modified set-covering problem. A fundamental part of the program is a 
solver for modified set-covering problems. Using well-known ideas from literature, we 
have developed this solver ourselves based on a recursive branch-and-bound algorithm. 
We did not spend much time on optimising the performance of this solver. It may, 
therefore, be improved upon. CUTTING can, if desired, determine only optimal solutions 
up to a user-specified maximum cardinality. The program can also work without such a 
maximum cardinality. Like Leo, CUTTING suffers from memory problems for some 
records. For such records, it cannot determine an optimal solution. CUTTING occasionally 
suffers from numerical problems, for the same reason as the other three programs. 
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The computing times of ERR_CPLEX and CherryPi may possibly be improved upon if we 
include a restriction on the number of variables that may be changed, like we do for Leo 
and CUTTING. The stricter this restriction, the faster each program is likely to be. 
Including such a restriction in CherryPi will probably have less effect than for Leo and 
CUTTING, because the search process of CherryPi is based on manipulating edits rather 
than on treating variables directly. The effect of including a restriction on the number of 
variables that may be changed in ERR_CPLEX is not entirely clear. On the one hand, in 
order to include such a restriction an additional integer constraint would be required, which 
would slightly increase the computing time. On the other hand, the search process would 
be shortened because certain possible solutions would not have to be examined. 
Considering the two opposite effects, we expect that including a restriction on the number 
of variables that may be changed in ERR_CPLEX leads to a reduced computing time, but 
this remains to be tested. 

We could use a restriction on the number of variables that may be changed to iteratively 
check the records: first we try to solve the error localisation problem for all inconsistent 
records with the allowed maximum number of errors set to one, for the remaining records 
we then try to solve the error localisation problem with the allowed maximum number of 
errors set to two, etc. until the error localisation problem for each record has been solved. 
This approach is likely to lead to a reduced computing time. We have not implemented this 
approach for any of the four programs, however. 

An important aspect in the evaluation of an algorithm is the time required to implement it 
in a computer program. The easiest algorithm/program to implement is ERR_CPLEX. The 
Visual C++ program only has to transform data and user-specified metadata, such as edits, 
into optimisation problems in a format that can be interpreted by ILOG CPLEX. To solve 
these optimisation problems routines from ILOG CPLEX are used. A bit more complicated 
is CUTTING. The two most important steps are the elimination of variables and solving 
modified set-covering problems. Both steps are actually quite simple to implement. 
Implementing CUTTING required about two months for a non-professional programmer. 
Slightly more complicated is Leo as this involves implementing a recursive algorithm, 
which is difficult to debug. The most complicated program to implement is CherryPi as 
several “tricks” (see Chapter 5) need to be implemented in order to make this program 
sufficiently fast. To implement CherryPi about three to four months were required for a 
non-professional programmer. 

11.4. Computational results 

For Leo and CUTTING we have performed two kinds of experiments per data set. In the 
first kind of experiments we have set the maximum cardinality Nmax to 6. For many 
realistic data sets setting Nmax to 6 is a good option as for records containing more than 6 
errors it is unlikely that automatic error localisation will lead to data of sufficiently high 
statistical quality. Possible exceptions are data sets that contain many missing values, such 
as data set A. In the second kind of experiments for Leo we have set Nmax as high as 
possible without encountering memory problems for many, i.e. 20 or more records. In the 
second kind of experiments for CUTTING we have removed a maximum cardinality all 
together. For ERR_CPLEX and CherryPi we have only performed experiments without a 
specified maximum cardinality. 
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The experiments have been performed on a 1500 MHz PC with 256 MB of RAM. This PC 
is connected to a local area network. Computing times may therefore be influenced by the 
amount of data that was transmitted through the network at the time of the experiments. To 
reduce and to estimate this influence we have performed five experiments per data set at 
various moments during the day. In Table 11.2 we have mentioned the average computing 
times of these experiments for the entire data sets, and between brackets the standard 
deviation of these computing times over the corresponding five experiments. Note that 
some programs, such as Leo, have a random aspect that also influences the computing 
time. This random aspect is reflected in a relatively high standard deviation. In all 
experiments, the reliability weight of each variable was set to 1. 

 

Table 11.2. Average computing times of the error localisation algorithms for entire 
data sets (between brackets the standard deviation of these computing times) 

 Data set A Data set B Data set C Data set D Data set E Data set F 

ERR_CPLEX1 233 (1) 10 (0) 86 (1) 93 (9) 13 (0) 35 (0) 

CherryPi 570 (38) 96 (1) 540 (7) 498 (30) 622 (3) 79 (0) 

CUTTING 601 (17) 513 (12) 1913 (7) 1101 (20) 90 (1) 94 (2) 

CUTTING 
(Nmax = 6) 

156 (10) 395 (23) 695 (31) 1036 
(137)

50 (2) 92 (5) 

Leo2 18 (0) 308 (10) 531 (4) 21 (1) 59 (34) 7 (0) 

Leo (Nmax = 6) 7 (0) 51 (1) 94 (2) 19 (0) 4 (1) 8 (1) 
1 These tests were performed on a special server. On this PC the only fully licensed version of ILOG 
CPLEX at Statistics Netherlands has been installed. For comparison reasons we have also used 
CherryPi for data set A on this machine. The average computing time for data set A on this machine 
is 528 seconds (compared to 570 seconds on the usual PC) with a standard deviation of 0 seconds. To 
compare the computing times of ERR_CPLEX to those of the other programs, we have therefore 
multiplied the original computing times on the special server by a factor of 570/528 = 1.08. 
2 To find the results for Leo for Nmax > 6, we have set Nmax equal to 90 for data set A, to 8 for data 
sets B and C, and to 12 for data sets D, E and F. 

 

Data set F contains only 8 records for which 6 or more changes are required. The 
computing times of Leo and CUTTING are therefore almost equal to the computing times 
of Leo_6, respectively CUTTING_6 (i.e. Leo, respectively CUTTING with Nmax = 6). In 
fact, due to the stochastic variability in the computing times Leo even outperformed Leo_6 
in our experiments. Taking the standard deviation of the experiments into account, Leo and 
Leo_6 are about equally fast. 

The computing time of Leo_8 for data set B was high due to one record. On average Leo_8 
spent 242 seconds (of the total of 308 seconds on the average) to conclude that it could not 
find a solution for this record. Even when we set the maximum to 10, Leo_10 could not 
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find a solution. It took Leo_10 1,398 seconds to come to this conclusion. According to 
ERR_CPLEX this particular record contains 11 errors. 

In Table 11.3 below we present for each data set the average computing time per processed 
record, i.e. the corresponding number of Table 11.2 divided by the total number of 
processed records. Between brackets we mention the average computing time per 
processed erroneous record (assuming that it does not take any computing time to process 
the consistent records), i.e. the corresponding number of Table 11.2 divided by the total 
number of processed erroneous records. Records that require too much computer memory 
for Leo are excluded from the results for Leo. For data sets for which such records occur, 
the average for Leo is hence taken over fewer records than for the other programs. This 
introduces some bias in favour of Leo, as such records are usually rather time-consuming 
to solve. 
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Table 11.3. Average computing times of the error localisation algorithms per 
erroneous record in milliseconds (between brackets the average computing time per 
processed erroneous record) 

 Data set A Data set B Data set C Data set D Data set E Data set F 

ERR_CPLEX1 54 (54) 36 (57) 53 (66) 26 (50) 13 (35) 24 (30)  

CherryPi 131 (131) 350 (611) 365 (385) 118 (231) 599 
(1,646) 

55 (69) 

CUTTING 138 (138) 1,872 
(3,268)

1,293 
(1,363)

261 (512) 87 (238) 66 (82) 

CUTTING 
(Nmax = 6) 

36 (36) 1,442 
(2,516)

470 (495) 246 (481) 48 (132) 65 (81) 

Leo2 4 (4) 1,124 
(1,962)

3613 
(3814)

5 (10) 585 (1626) 5 (6) 

Leo (Nmax = 6) 2 (2) 186 (325) 64 (67) 5 (9) 4 (11) 6 (7) 

1 Tests performed on a special server. To compare the computing times of ERR_CPLEX to those of 
the other programs, they have been multiplied by a factor of 1.08. 
2 To find the results for Leo for Nmax > 6, we have set Nmax equal to 90 for data set A, to 8 for data 
sets B and C, and to 12 for data sets D, E and F. 
3 Average taken over 1,479 processed records (averages of the other programs taken over 1,480 
processed records). 
4 Average taken over 1,395 processed erroneous records (averages of the other programs taken over 
1,404 processed erroneous records). 
5 Average taken over 1,026 processed records (averages of the other programs taken over 1,039 
processed records). 
6 Average taken over 365 processed erroneous records (averages of the other programs taken over 
378 processed erroneous records). 

 

Due to numerical and memory problems, the programs could not always determine 
solutions. None of the programs can guarantee to find (all) optimal solutions for all 
records. For ERR_CPLEX, CherryPi, Leo, and CUTTING we have listed in Table 11.4 
below for each data set the number of records for which these programs could not 
determine solutions to the error localisation problem. For all data sets, Leo_6 and 
CUTTING_6 found all optimal solutions for all records requiring 6 or less changes. 
Especially for data set A, this was very easy as there is only one record in data set A that 
has 6 or fewer errors or missing values (see Table 11.1) 
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Table 11.4. Number of records for which no solution could be found 

 Data set A Data set B Data set C Data set D Data set E Data set F 

ERR_CPLEX 3 0 0 0 0 0  

CherryPi 0 2 11 8 2 7 

CUTTING 0 1 93 0 0 2 

Leo1 0 1 58 0 53 0 
1 To find the results for Leo, we have set Nmax equal to 90 for data set A, to 8 for data sets B and C, 
and to 12 for data sets D, E and F. 

 

For 9 of the 58 records of data set C for which Leo_8 could not find a solution and for 13 
of the 53 records of data set E for which Leo_12 could not find a solution, Leo suffered 
from memory problems. Those 9, respectively 13 records were excluded from the 
computational results for Leo in Tables 11.2 and 11.3 above. As far as we have been able 
to determine, excluding these records from the computational results does not have a large 
effect and does not change the overall picture. Leo_8, respectively Leo_12, could not find 
solutions for the other records referred to in Table 11.4, because more than 8, respectively 
12, changes were required.  

Comparing the evaluation results of the various programs to each other is a complex task. 
If we rank the algorithms according to their computing times, and compare ERR_CPLEX, 
CherryPi, Leo (with Nmax > 6) and CUTTING with each other we see that ERR_CPLEX 
performs best for 3 out of the 6 data sets and second best for the other 3 data sets. Leo 
(with Nmax > 6) performs best for 3 out of 6 data sets and second best for 2 data sets. So, 
one might conclude that – purely looking at of the computing times – ERR_CPLEX is 
slightly better than Leo. Clearly worst is CUTTING. 

Now, if we compare the versions of Leo and CUTTING with Nmax = 6 (i.e. Leo_6 and 
CUTTING_6) to ERR_CPLEX and CherryPi, and again rank the programs according to 
their computing times, we see that ERR_CPLEX performs best for 2 out of the 6 data sets 
and second best for 3 data sets. Leo_6 performs best for 4 out of 6 data sets and second 
best for the other 2 data sets. Here one might conclude that – purely looking at of the 
computing times – Leo_6 is better than ERR_CPLEX. The performances of CherryPi and 
CUTTING_6 are about equally good.  

As we already mentioned in Section 11.3, the equality-elimination rule described at the 
end of Section 8.2 has not been implemented in Leo. For the two data sets for which 
ERR_CPLEX is faster than Leo_6, data sets B and C, we have applied a special version of 
Leo in which this rule has been implemented. The results are given in Table 11.5. In this 
table we have mentioned the average computing times for the entire data sets, and between 
brackets the standard deviation of these computing times. 
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Table 11.5. Average computing times for Leo with equality-elimination rule (between 
brackets the standard deviation of these computing times) 

 Data set B Data set C 

Leo1 308 (10) 531 (4) 

Leo with equality-elimination1 14 (2) 77 (1) 

Leo (Nmax = 6) 51 (1) 94 (2) 

Leo with equality-elimination (Nmax = 6) 4 (1) 19 (1) 
1 To find the results for Leo (both with and without the equality-elimination rule) for Nmax > 6, we 
have set Nmax equal to 8 for both data sets. 

 

For data sets B and C, we present in Table 11.6 the average computing time per processed 
record for the special version of Leo with equality-elimination, and between brackets the 
average computing time per processed erroneous record (assuming that it does not take any 
computing time to process the consistent records). As no records require too much 
computer memory for the version of Leo with equality-elimination the averages are taken 
over all records, respectively over all erroneous records. 

 

Table 11.6. Average computing times for Leo with equality-elimination rule per 
erroneous record in milliseconds (between brackets the average computing time per 
processed erroneous record) 

 Data set B Data set C 

Leo1 1,124 (1,962) 3612 (3813) 

Leo with equality-elimination1 51 (89) 52 (55) 

Leo (Nmax = 6) 186 (325) 64 (67) 

Leo with equality-elimination (Nmax = 6) 15 (25) 13 (14) 
1 To find the results for Leo (both with and without the equality-elimination rule) for Nmax > 6, we 
have set Nmax equal to 8 for both data sets. 
2 Average taken over 1,479 processed records (averages of the other versions taken over 1,480 
processed records). 
3 Average taken over 1,395 processed erroneous records (averages of the other versions taken over 
1,404 processed erroneous records). 

 

For data set B the version of Leo_8 with equality-elimination could not find a solution for 
one record, the one record that requires 11 changes. For data set C the version of Leo_8 
with equality-elimination could not find optimal solutions for 58 records, just like the 
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standard version of Leo. The version of Leo with the equality-elimination rule did not 
suffer from memory problems, however. 

Examining the results of Tables 11.2, 11.3, 11.5 and 11.6, we can conclude that as far as 
computing speed is concerned ERR_CPLEX and Leo (either with Nmax = 6 or with 
Nmax > 6) are the best programs. We note at the same time, however, that this conclusion is 
not completely justified as ERR_CPLEX determines only one optimal solution whereas 
the other programs (aim to) determine all optimal solutions.  

Comparing the results of Tables 11.5 and 11.6 to Tables 11.2 and 11.3 we see that the 
equality-elimination rule described at the end of Section 8.2 leads to a substantial reduction 
in computing time, at least for the two data sets examined. With this rule, Leo_6 is clearly 
faster than ERR_CPLEX for all data sets. 

One might expect ERR_CPLEX to be relatively fast if there are many optimal solutions 
per record on the average as this program only determines one solution per record, whereas 
the other algorithms determine (many) more. Surprisingly, this is not the case. For 
instance, for data set D, with 23.3 optimal solutions per erroneous record on the average, 
ERR_CPLEX is relatively slow. For data set C with ‘only’ 6.9 optimal solutions per 
erroneous record on the average, ERR_CPLEX is relatively fast. 

Besides computing speed other aspects are, of course, important too. We note that all 
programs, even the commercially available ILOG CPLEX, suffer from numerical 
problems. In addition, Leo sometimes suffers from memory problems. Due to its matrix 
with a fixed maximum number of columns, CherryPi does not always determine optimal 
solutions. Instead, it sometimes determines a less good, suboptimal solution. Summarising, 
it is hard to give a verdict on the quality of the solutions found by the programs as the 
programs suffer from a diversity of problems. 

11.5. Discussion 

McKeown (1981), in the context of Special Transportation Problems and Pure Fixed 
Charge Transportation Problems, remarks that ‘It is unclear in any of these contexts as to 
what makes a problem “easy” or “difficult” to solve’. This remark has again been 
confirmed in the context of the error localisation problem. From the characteristics of the 
data sets it is hard to establish beforehand whether the corresponding instances of the error 
localisation problem will be “easy” or “hard”. We can even extend the remark of 
McKeown to the following: it is unclear in our context as to what makes an algorithm a 
“good” or “bad” one. All algorithms we have examined have their good and bad aspects. 
In the end, the algorithm one favours is to some extent a subjective choice. 

From our own developed algorithms, we consider the branch-and-bound algorithm 
described in Chapter 8 the most promising one for solving the error localisation problem. 
The main reason for our choice is the excellent performance of Leo for records with up to 
6 errors. For such records it determines all optimal solutions very fast. We admit that for 
records with more than 6 errors the results of Leo become less good, just like the other 
algorithms. The program begins to suffer from memory problems, and the computing time 
increases. To some extent these problems can be overcome by implementing the equality-
elimination rule described at the end of Section 8.2. Besides, as we argued before in this 
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book, we feel that records with many errors should not be edited in an automatic manner, 
but in a manual manner. That is, we feel that records with more than, say, 6 errors should 
be rejected for automatic editing. Given this point of view, Leo seems to be an excellent 
choice.  

In addition, it is not very complex to extend the branch-and-bound algorithm of Leo to a 
mix of categorical and continuous data. Statistics Netherlands has therefore decided to 
implement this algorithm in a module of version 1.5 (and future versions) of the SLICE 
system (see e.g. De Waal, 2001b). This version reads an upper bound for the number of 
missing values per record as well as a separate upper bound for the number of errors 
(excluding missing values) per record. The former number is allowed to be quite high, say 
50 or more, whereas the latter number is allowed to be moderate, say 10 or less. If the 
number of missing values or the number of errors (excluding missing values) in a record 
exceeds either of these upper bounds, this record is rejected for automatic editing. The new 
module is suitable for a mix of categorical and continuous data, and includes the equality-
elimination rule. In addition, it contains a heuristic to handle integer data based on the 
methodology of Chapter 9. The new module replaces the CherryPi-module, based on 
vertex generation, of SLICE 1.0. 

One may argue that some users of SLICE will want to edit records with many erroneous 
fields, say 10 or more, automatically despite our arguments against editing such extremely 
contaminated records. Such users might then be disappointed, because the new module is 
not able to handle such records. To overcome this problem, we propose to opt for a simple 
heuristic treatment of these extremely erroneous records instead of applying the new 
module. 

There are many simple heuristic treatments possible. As an example we mention how we 
were able to handle the 53 ‘difficult’ records of data set E by means of Leo. To edit these 
53 difficult records, i.e. the 13 records that required too much computer memory and the 
40 records for which no solutions involving 12 or less variables exist, by means of Leo we 
first replaced the missing values by zero. This is quite a standard action as most missing 
values in this data set should equal zero in any case. Subsequently, we tried to find all 
solutions for these adapted records that involve at most 8 variables. Over 5 experiments, 
this took 40 seconds on the average for the entire set of 53 records (with a standard 
deviation of 13 seconds). For only one record we were unable to find a solution at all by 
means of Leo. 

Another simple possibility is to split the set of edits into two subsets. First, we can apply 
the branch-and-bound algorithm on one of these subsets. One of the optimal solutions for 
this subset is chosen, and the corresponding fields are set to missing. Subsequently, we 
apply the branch-and-bound algorithm on the newly created record with possibly some 
additional missing values in comparison to the original record, using all edits. The 
solutions obtained in this way are, possibly suboptimal, solutions to the error localisation 
problem for the original record. This approach utilises the fact that the branch-and-bound 
algorithm works quite well for records with missing values. 

A similar approach, which utilises the same fact, for solving the error localisation problem 
for a record with many errors is to first determine a number of implausible values in a 
heuristic manner. These implausible values are set to missing. Subsequently, we apply the 
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branch-and-bound algorithm on the newly created record with some additional missing 
values in comparison to the original record. The solutions obtained in this way are again, 
possibly suboptimal, solutions to the error localisation problem for the original record. 
Chung, a trainee at Statistics Netherlands, has studied this heuristic approach to solving 
extremely erroneous records (see Chung, 2003). 

Finally, for records containing many errors one could resort to solving an LP 
approximation for the error localisation problem. This LP approximation is described in 
Section 13.2. To determine extremely erroneous records beforehand, Van der Laar at 
Statistics Netherlands has developed algorithms and software. The accuracy of these 
algorithms remains to be tested, however. 

All in all we are confident that records with many errors do not pose a threat for us if we 
apply the branch-and-bound algorithm in practice. The methodology by Van der Laar 
(hopefully) allows us to identify the extremely erroneous records, which can then be 
treated by any of the above-mentioned heuristics. We are willing to admit that our choice 
for the branch-and-bound algorithm is to some extent a subjective choice, but we feel that 
our choice is a justifiable one. 
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12. Imputation 

12.1. Introduction 

Imputation is the process of estimating missing values and filling in these estimates in the 
data set. The “holes” in the data set are filled in this way. These holes may be due to data 
there were originally missing in the data set, or due to values that were set to missing 
because they were considered implausible during the error localisation phase. 

Imputation is a very important topic for both statistical offices and universities. In the last 
two decades a lot of scientific research has been devoted to imputation. In the present 
chapter we restrict ourselves to discussing the current imputation module of SLICE, the 
general software framework for editing and imputation that Statistics Netherlands is 
developing (see De Waal and Wings, 1999; De Waal, 2000d and 2001b), and an 
imputation program, WAID, that has been developed within a European project. The 
author of this book was overall co-ordinator of this project. The reasons for limiting the 
discussion on imputation methods to only this module of SLICE and WAID is that, first, 
too many imputation methods have been developed to discuss them all in this chapter, and, 
second, the author’s personal involvement with the mentioned module and program. The 
imputation module of SLICE is discussed in Section 12.2. The imputation program WAID 
is discussed in Section 12.3. That latter section is based on De Waal (2001c). For two 
overview papers on imputation techniques we refer to Kalton and Kasprzyk (1986) and 
Kovar and Whitridge (1995). For an overview of imputation software we refer to Hox 
(1999), and Chambers et al. (2001b). For a brief overview of imputation methods that are 
applied at Statistics Netherlands see De Waal (2000e). 

The imputation module of SLICE mentioned above uses a so-called regression imputation 
method to impute for missing data (see Section 12.2 for more details), and WAID a so-
called donor imputation method (see Section 12.3). Taking the edits into account with such 
imputation methods is a non-trivial matter. For simplicity, edits are therefore usually not 
taken into account while imputing. So, after imputation the edits may still be violated. 
However, if the (generalised) Fellegi-Holt paradigm has been used to localise the errors in 
the data, we know that it is possible to satisfy all edits by changing the values of the fields 
that were identified as being erroneous. Therefore, after the imputation step we slightly 
modify the imputed values in such a way that all edits become satisfied. Note that if we 
apply the (generalised) Fellegi-Holt paradigm to localise the errors, we only have to 
modify the imputed values. The not imputed, original values, which were considered 
correct during the error localisation phase, do not have to be modified. As we assume that 
the imputations are carried out according to a “good” statistical model, which implies that 
an imputed record will generally be of acceptable quality from a statistical point of view, 
we aim to change the imputed values as little as possible while making sure that the 
resultant record passes all edits. This problem of obtaining consistent records is explored in 
Section 12.4, which is based on De Waal (2001a). We propose an algorithm, similar to the 
algorithm proposed in Chapters 8 and 9, for solving the problem. We have developed the 
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basic ideas of the algorithm. Later a post-graduate student from Delft University of 
Technology, Kartika, implemented the algorithm and in the course of that work filled in 
many implementation details. Section 12.5 concludes this chapter with a brief discussion. 

12.2. Regression imputation in SLICE 

The imputation module of the current version of SLICE (version 1.5) uses regression 
imputation to impute for missing values. For each variable a statistical analyst has to select 
a number of predictor variables. A predictor variable is a variable that is used to estimate 
the missing values of the variable under consideration. The statistical analyst can also 
indicate whether he would like to use an intercept, i.e. a constant term, in the regression 
equation or not. Suppose the statistical analyst indicates that a constant term and s 
predictor variables should be used. The missing value of the variable under consideration Y 
in a certain record r is then estimated by 

 ssr xxy ββα +++= ...11 ,      (12.1) 

where ix  (i=1,…,s) indicates the value of the i-th predictor variable, iβ  (i=1,…,s) the 
value of the i-th regression coefficient, and α the intercept. The underlying regression 
model is given by 

 rssr exxy ++++= ββα ...11 ,     (12.2) 

where re  is an unobservable random variable. 

If at most one predictor variable has been specified, and possibly also a constant term, the 
imputation module of SLICE can automatically compute the value of regression 
coefficient (and the value of the constant term). To do this, the module uses the records in 
a reference data set for which we have both the value of the variable to be imputed as well 
as the value of the predictor variable. The module then maximises the likelihood of the 
regression coefficient and the intercept α, under the assumption that re  is normally 
distributed. 

If two or more predictor variables have been specified, the statistical analyst has to specify 
the values of regression coefficients and the intercept himself. 

12.3. WAID 

Together with University of Southampton, Office for National Statistics, Statistics Finland 
and Instituto Nacional de Estatística de Portugal, Statistics Netherlands has participated in 
a European project called AUTIMP. This project was partly financed by the 4th 
Framework Programme of the European Commission.  

One of the aims of the AUTIMP project was the development of software for automatic 
imputation. The developed prototype imputation software is a stand-alone program, and 
can be used under Windows 95/98 and Windows NT. The software is based on automatic 
interaction detection (AID) trees (cf. Sonquist, Baker and Morgan, 1971). Because the 
developed algorithm gives lower weights to outliers while constructing the tree, the 
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technique is referred to as weighted automatic interaction detection (WAID). The 
developed imputation software is also called WAID. 

A WAID-tree, or generally a tree-based model, classifies the data in terms of the values of 
a set of categorical predictor variables. It is a binary tree that is generated by successively 
splitting a “training” data set into smaller subsets. These subsets are increasingly more 
homogeneous with respect to a selected response variable. This response variable may be 
either categorical or numerical. The process of recursively splitting the data set into two 
subsets continues until a stopping criterion is met. The terminal nodes in this tree form 
homogeneous clusters.  

In the WAID program, homogeneity of a cluster can be measured in several ways. If the 
response variable is categorical, homogeneity is measured by the so-called Gini index. If 
the response variable is numerical, homogeneity can be measured by OLS (Ordinary Least 
Squares), or by outlier robust measures. These outlier robust measures are: Tukey’s 
BiWeight, Huber’s Min/Max, and Andrew’s Sine. See the report by Tsai and Chambers in 
Chambers et al. (2001a) for more details on these homogeneity measures. 

The developed imputation software can impute for missing values of both categorical and 
numerical variables. Several missing categorical values may be imputed simultaneously. 
Technically, a single compound categorical variable based on the categorical variables 
involved in this missing data pattern is then constructed. A numerical variable cannot be 
imputed simultaneously with other variables (neither with numerical ones nor with 
categorical ones). 

To use the WAID methodology to impute for missing values in a data set, the software 
first determines missing data patterns in this data set. For each of these missing data 
patterns, or parts of missing data patterns, the user has to select a set of categorical 
predictor variables.  

Next, for each (part of a) missing data pattern, WAID-trees are grown using a complete 
“training” data set. This “training” data set may be the subset of complete records of the 
data set to be imputed, but it may also be a different data set. The terminal nodes of the 
generated WAID-trees form clusters of records that are as homogeneous as possible with 
respect to the variables involved in this (part of a) missing data pattern. These 
homogeneous clusters themselves are, however, not used by the computer program. Only 
the classification rules that define these homogenous clusters are used. In this way, we can 
use a “training” data set to determine the classification rules, and later use another data set 
with donor records to actually impute for missing values. 

After generation of the WAID-trees, and hence generation of the classification rules for 
constructing homogeneous clusters of records, the data set with missing values is again 
supplied to the computer program. We also supply a data set with donor records to the 
computer program. This data set may be the same as the data set to be imputed, but it may 
also be a different data set. In the data set with donor records we apply the generated 
classification rules to construct homogeneous clusters of donor records. 

To impute for missing values in a certain record, we determine which WAID-trees 
correspond to the missing data pattern of this record. More than one WAID-tree, and hence 
more than one homogeneous cluster, may correspond to a particular record, because 
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separate WAID-trees may have been generated for different parts of its missing data 
pattern. Subsequently, we determine the homogeneous clusters corresponding to this 
record by using the classification rules to classify the values of the predictor variables. The 
records in the data set with donor records corresponding to those clusters are used to 
impute for the missing data in the record under consideration.  

The imputation software supports several imputation methods, for example, the nearest 
neighbour or a random donor record may be selected from a homogeneous cluster. For 
more information about the developed imputation software we refer to De Waal (2001c), 
and to the manual of WAID (see De Waal, De Waard and Plomp, 2001). For more 
information about the underlying methodology we refer to the report by Tsai and 
Chambers in Chambers et al. (2001a). 

The developed software has been tested extensively. We refer to Chambers et al. (2001a) 
for evaluation reports. The main conclusion that can be drawn from these reports is that the 
WAID methodology generally leads to imputed data sets of acceptable quality. 

12.4. Consistent imputation 

As we already described in the introduction to this chapter, automatic edit and imputation 
can be carried out in a number of subsequent steps. During the error localisation phase 
firstly all optimal solutions to the error localisation problem are determined. Subsequently, 
one optimal solution is selected using a secondary criterion. The values of the variables 
involved in this solution are set to missing. 

After the error localisation phase the missing values (both the values that were missing in 
the original record and the values that have been set to missing in the error localisation 
phase) are imputed. In this imputation step imputation methods can be used that preserve 
the statistical properties as well as possible. During this step the edits are not taken into 
account. As a result some edits may still be failed. 

Finally, the imputed values are modified slightly such that all edits become satisfied. The 
non-imputed, original values are not modified. Because we try to keep the final values as 
close as possible to the imputed values, we hope that the resulting, consistent, record 
preserve the statistical properties of the data as well as possible.  

The problem we have described in the paragraph above is the so-called consistent 
imputation problem. This is a non-trivial problem, because although the number of suspect 
fields may be small, the number of missing values in the original record may be high. 

12.4.1. Formulation of the consistent imputation problem 
If an imputed record, i.e. a record after the imputation step, does not satisfy an edit given 
by  

 

IF j
ii Fv ∈  for i=1,…,m   

THEN }0...|{),...,( 111 ≥+++∈ jnnjjn bxaxaxx x ,   (12.3a) 
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or 

 

IF j
ii Fv ∈  for i=1,…,m   

THEN }0...|{),...,( 111 =+++∈ jnnjjn bxaxaxx x ,   (12.3b) 

  

its imputed values have to be modified in such a way that (12.3) becomes satisfied. The 
resulting record should be as close as possible to the imputed record. We assume that the 
imputed values can indeed be modified in such a way that a consistent record results. This 
is, for instance, the case if the implausible values in a record are determined according to 
the Fellegi-Holt paradigm, these values are subsequently set to missing, and the missing 
values – both the original missing values as well as the values that were considered 
implausible – are imputed. 

To measure how close a record is to another record, a suitable distance function has to be 
defined. In this book we will consider distance functions of the type 

 ∑ ∑
= =

+ −+
m

i

n

i
iiimiii xxwvvaw

1 1
|~|)~,( ,     (12.4) 

where the record after the imputation phase is given by ),...,,,...,( 11 nm xxvv , the final 
record by )~,...,~,~,...,~( 11 nm xxvv , the iw  are user-specified weights, and )~,( ii vva  is a non-
negative matrix satisfying 0)~,( =ii vva  if ii vv ~= . Note that ii vv =~  and ii xx =~  for 
variables (categorical and numerical, respectively) that have not been imputed in the 
imputation step, because we only modify the imputed values.  

Note that for purely continuous data (12.4) reduces to  

∑
=

−
n

i
iii xxw

1
|~| .       (12.5) 

The consistent imputation problem can be formulated as 

Minimise (12.4) by modifying the imputed values so that (12.3) becomes satisfied 
for all edits j = 1,…,J, ix  is integer for Ii∈ , and the remaining ix  are 
continuous, 

where I denotes the index set of the integer variables. 

12.4.2. A heuristic algorithm 
The problem of minimising (12.4) subject to the constraint that all edits (12.3) become 
satisfied while all integer variables indeed attain integer values can be formulated as a 
mixed integer programming problem (see Kartika, 2001). This mixed integer programming 



Chapter 12 

 224

problem may be solved by using standard software. Unfortunately, this mixed integer 
programming problem is usually rather large, because for each category of each involved 
categorical variable a 0-1 variable is required. Solving the integer programming problem 
by means of standard mixed integer programming software is therefore likely to be rather 
time-consuming, especially during application in the day-to-day routine at a statistical 
office.  

In this book we will not make an attempt to solve the consistent imputation problem to 
optimality, and restrict ourselves to describing a heuristic that is likely to give acceptable 
results in practice. In any case the heuristic will lead to consistent data that satisfy all edits. 

Given a set of variables that have been imputed S, we first fill in the original values for all 
other variables in the set of explicit edits. This leads to a set of reduced edits involving 
only the imputed variables. We eliminate the imputed variables in S from the set of 
reduced edits by applying the algorithm described in Section 9.5. Because we assume that 
the variables in S can indeed be modified in such a way that the resulting record passes all 
edits, at least one of the subproblems, which may, for example, arise due to splintering, is 
guaranteed to have a solution. We select one of those subproblems, and keep track of the 
corresponding sets of (implicit) edits after i variables in S have been eliminated 
(i=0,…,|S|). We denote the set of (implicit) edits after i variables in S have been eliminated 
by iΦ . The set of (implicit) edits for i=0, 0Φ , is the set of reduced explicit edits. 

After all s=|S| variables in S have been eliminated, the set sΦ  of relations not involving 
any unknowns is consistent ( sΦ  may be the empty set, which is consistent by definition). 
Hence, by the lifting principle (for either categorical, continuous, or integer data; see 
Theorems 8.1 and 9.3), there is a value sv~  for the s-th variable that has been eliminated 
such that 1−Φ s  is consistent if we fill in this value. If the s-th variable is categorical and we 
have several possibilities for sv~ , we choose sv~  such that )~,( ss vva  is minimal. If the s-th 
variable is integer-valued and we have several possibilities for sx~ , we choose sx~  such that 
it is integer and |~| ss xx −  is minimal. For the (s-1)-th variable we apply the same 
approach, etc. 

We continue this process until all values of imputed integer-valued and categorical 
variables have been modified in the above way. We are then left with a set of imputed 
continuous variables (if any) and a current set of (implicit) edits involving only these 
variables. The final values for these variables are then found by minimising (12.5) subject 
to the constraint that the current set of implicit edits is satisfied. This minimisation 
problem can simply be formulated as a linear programming (LP) problem, and can, for 
example, be solved by means of the simplex algorithm (see e.g. Hadley, 1962, and 
Chvátal, 1983). 
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Theorem 12.1. The heuristic described above leads to a record that satisfies all edits. 

Proof. The various lifting principles (see also Theorem 8.1 and Theorem 9.3) say iΦ  can 
be satisfied if and only if 1−Φ i  can be satisfied. If we fill in a value for a categorical or 
integer-valued variable that satisfies all edits in iΦ , we hence know that all edits in 1−Φ i  
can also be satisfied by filling in appropriate values for the imputed values that have not 
yet been modified. After the imputed values of the categorical and integer variables have 
been modified, the lifting principles also say that the remaining imputed continuous 
variables can be modified such that all explicit edits become satisfied. The problem of 
finding modified continuous values that are as close as possible, in the sense of (12.5), to 
the imputed values can be found by solving an LP problem.     � 

 

As an alternative to solving an LP problem for the continuous variables one could also 
treat the continuous variables in the same manner as the integer ones, i.e. each time we 
choose a value ix~  for a continuous variable, we select it so that 1−Φ i  becomes satisfied 
and |~| ii xx −  is minimal. 

Note that if the variables are imputed sequentially, we are not obliged to select the value 
for which the increase in the objective value is minimal. Instead, we may select any 
feasible value. Such a feasible value could, for example, also be selected by applying a 
random draw mechanism using an appropriate probability distribution. 

To illustrate the algorithm we give two examples: one involving only categorical variables, 
the other involving only continuous variables. Example 12.1, involving only categorical 
variables, below is taken from Kartika (2001).  

 
Example 12.1: 
Suppose we have four imputed, categorical variables with domains: }4,3,2,1{1 =D , 

}3,2,1{2 =D , }3,2,1{3 =D  and }2,1{4 =D , and no imputed numerical variables. Suppose 
also that the reduced edit set is given by: 

IF )3( 2 =v  AND })2,1{( 3 ∈v  AND )1( 4 =v  THEN ∅,   (12.6) 

IF })3,2{( 2 ∈v  AND )2( 4 =v  THEN ∅,    (12.7)  

IF })4,2,1{( 1∈v  AND })3,1{( 2 ∈v  AND })3,2{( 3 ∈v  THEN ∅  (12.8) 

and 

IF )3( 1 =v  AND })3,2{( 3 ∈v  AND )1( 4 =v  THEN ∅.   (12.9) 

Here we use the convention that if a categorical variable is not mentioned in an IF-
condition, this variable may take any value. The matrix element )~,( ii vva  in the objective 
function (12.4) equals 1 if ii vv ~≠ , and 0 otherwise. Suppose that the vector of imputed 
values is given by 0v =(3, 3, 2, 2). This vector fails edit (12.7).  



Chapter 12 

 226

We apply our algorithm to obtain a consistent record. We start by selecting a variable, say 
1v . We eliminate this variable and obtain a set of implicit edits without 1v . This set of 

implicit edits is given by (12.6), (12.7) and  

IF })3,1{( 2 ∈v  AND })3,2{( 3 ∈v  AND )1( 4 =v  THEN ∅.  (12.10) 

We again select a variable, say 2v , and eliminate this variable from the current set of edits. 
As a result, we obtain an empty set of implicit edits. This means that we may assign 
arbitrary values to 3v  and 4v . Because our aim is to keep the final record close to the 
imputed record, we assign to both variables their original imputed values, i.e. 2. Now, a 
value has to be assigned to 2v  such that (12.6), (12.7) and (12.10) become satisfied given 
that to both the third and the fourth variable the value 2 has been assigned. Filling in the 
value 2 for both the third and fourth variable in (12.6), (12.7) and (12.10) gives the edit 

 IF })3,2{( 2 ∈v  THEN ∅.      (12.11) 

The only possibility to satisfy (12.11) is to assign the value 1 to 2v . Finally, we assign a 
value to 1v  such that (12.6) to (12.9) are satisfied given the values that have already been 
assigned earlier. Filling in the values assigned to 2v , 3v  and 4v  in (12.6) to (12.9) gives 
the edit 

 IF })4,2,1{( 1∈v  THEN ∅.      (12.12) 

The only way to satisfy (12.12) is to assign the value 3 to 1v , which happens to be its 
original imputed value. So, we obtain a new record 0v~ =(3, 1, 2, 2) with target value 

1)~,(
1

=∑
=

m

i
ii vva .  

If the variables were eliminated in a different order, one might arrive at a different solution 
with a different target value. To illustrate this we now assume that we start by eliminating 

4v  instead of 1v . The set of implicit edits is then given by (12.8),  

IF )3( 2 =v  AND })2,1{( 3 ∈v  THEN ∅    (12.13) 

and 

IF )3( 1 =v  AND })3,2{( 2 ∈v  AND })3,2{( 3 ∈v  THEN ∅.  (12.14) 

We now eliminate variable 1v . The set of implicit edits is given by (12.13) and 

IF )3( 2 =v  AND })3,2{( 3 ∈v  THEN ∅.    (12.15) 

We eliminate 3v , and obtain 

IF )3( 2 =v  THEN ∅.      (12.16) 
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as the only implicit edit. We eliminate 2v  and obtain the empty set as the set of implicit 
edits, which is consistent by definition.  

To satisfy (12.16) we have to change the value of 2v . We make 2v  equal to the feasible 
value nearest to its original imputed value, i.e. to 2. We now have to satisfy (12.13) and 
(12.15) given the value assigned to 2v . For this we do not have to change the value of 3v . 
Next, we have to satisfy (12.8), (12.13) and (12.14) by changing the value 1v  given the 
values already assigned. We make 1v  equal to one of the feasible values nearest to its 
original imputed value, say to 4. Finally, we have to satisfy (12.6) to (12.9) by changing 
the value of 4v  given the values already assigned. We make 4v  equal to the only feasible 
value, i.e. to 1. 

So, we obtain a new record 0v~ =(4, 2, 2, 1) with target value 3)~,(
1

=∑
=

m

i
ii vva . This solution 

is clearly not optimal.        � 

 

Example 12.2 below, involving only continuous variables is taken from De Waal (2002b). 
It demonstrates how error localisation and consistent imputation are related. It also 
demonstrates the alternative approach to solving an LP problem. 

 

Example 12.2: 

Suppose that the original set of edits is given by 

 CPT += ,       (12.17) 

 TP 5.0≤ ,       (12.18) 

PT ≤− 1.0 ,       (12.19) 

0≥T ,        (12.20) 

and 

 NT 550≤ ,       (12.21) 

where T denotes the turnover of an enterprise, P its profit, C its costs, and N the number of 
employees. All variables are considered continuous. Let us consider a specific, erroneous 
record with values T = 100, P = 40,000, C = 60,000 and N = 5. Edits (12.19), (12.20) and 
(12.21) are satisfied, whereas edits (12.17) and (12.18) are violated. The reliability weights 
of variables T, P and C equal 1, and the reliability weight of variable N equals 2. The value 
of variable N, the number of employees, is hence considered more reliable than the values 
of the financial variables T, P and C. The only optimal solution to the error localisation 
problem is: change the values of P and C. We assume that the values of variables P and C 
indeed have been imputed, say the imputed value of P equals 60, and the imputed value of 
C equals 90.  
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We start by filling in the values for the variables that have not been imputed, i.e. T and N. 
We then obtain the following set of reduced edits: 

 CP +=100 ,       (12.22) 

 50≤P ,        (12.23) 

P≤−10 ,       (12.24) 

 0100 ≥ ,       (12.25) 

 2750100 ≤ .       (12.26) 

Edits (12.25) and (12.26) are satisfied and can obviously be discarded.  

In this example we will not solve an LP problem as this is not very interesting to describe. 
More interesting to describe is the alternative approach where we first eliminate all 
variables and then apply back-substitution to find suitable values. 

We select a variable occurring in (12.22) to (12.24), say C. We eliminate this variable from 
these edits. As edit (12.22) cannot be combined with the other two edits to eliminate C, we 
only have to copy (12.23) and (12.24) to the new set of edits. We obtain the system given 
by (12.23) and (12.24). 

To check whether the set of edits (12.17) to (12.21) can be imputed consistently by 
modifying the values of P and C, we could eliminate P from (12.23) and (12.24). The edit 
we would obtain, -10 ≤ 50, is satisfied, which shows that (12.17) to (12.21) can indeed be 
imputed consistently by modifying the values of P and C. 

We now select a value for P such that (12.23) and (12.24) become satisfied, i.e. we select a 
value for P between –10 and 50. As we have mentioned before, any value within this 
interval may be selected. Here we try to keep the final value of P as close as possible to the 
imputed value. We therefore select P = 50.  

Given this value for P, the set of edits (12.22) to (12.26), reduces to 

 C+= 50100 ,       (12.27) 

 5050 ≤ ,       (12.28) 

5010 ≤− ,       (12.29) 

 0100 ≥ ,       (12.30) 

 2750100 ≤ .       (12.31) 

For the final value of C we select a value that satisfies (12.27) to (12.31). In this case there 
is only one allowed value, namely C = 50. We therefore select this value. The resulting 
record passes all edits.         � 

 

When only continuous variables have been imputed, our method can, if desired, solve the 
consistent imputation problem to optimality. When categorical or integer-valued variables 
have been imputed, optimality of the method is not guaranteed, because the optimal 
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modified value is sequentially determined for each individual categorical and integer-
valued variable separately. Optimality of the method would only have been guaranteed if 
the optimal modified values were determined for all variables simultaneously. However, as 
we have already mentioned, this is a very difficult problem. The method described is 
“only” a heuristic. It is, however, much simpler and faster than an optimal method. 

12.5. Discussion 

The quality of the solutions found by the heuristic described in the previous section seems 
likely to be acceptable, because all categorical and integer-valued variables are given 
optimal values when considered separately and the continuous variables are 
simultaneously given optimal values. To confirm this conjecture about the quality of the 
found solutions, these solutions have to be compared to the optimal values. These optimal 
values may be found by formulating the problem of minimising (12.4) subject to the 
constraint that all edits (12.3) are satisfied while all integer variables indeed attain integer 
values as a mixed integer programming problem. Such a mixed integer programming may 
be solved using standard software. 

In Section 12.4.2 we have not described the order in which the imputed variables are 
modified. This order influences the quality of the method, i.e. the difference between the 
value of (12.4) found by the heuristic and the optimal value, as well as the computing time 
of the method. For a mix of categorical and continuous data a prototype computer program 
has been developed implementing the above heuristic. This program has been used to test a 
number of possible orders. The program has been developed by Kartika, a post-graduate 
student from Delft University of Technology, who also carried out the evaluation tests of 
this program. Kartika was supervised by Dr. Kraaikamp at Delft University of Technology, 
and by the author of this book at Statistics Netherlands. Kartika (2001) gives the results of 
the evaluation tests, and also describes details of the implemented algorithm. For the data 
set used by Kartika both the quality of the obtained solutions and the computing time were 
acceptable for Statistics Netherlands. Due to these evaluation results Statistics Netherlands 
decided to implement the algorithm of Section 12.4 in a module of our SLICE system. 
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13. Practical Issues of Error Localisation 

13.1. Introduction 

In this chapter we discuss three practical issues. The first issue is how to handle records 
that contain many errors. The error localisation algorithms of the previous chapters, which 
in most cases aim to find all optimal solutions to the error localisation problem, are 
generally too time-consuming and memory-consuming for such records. In Section 13.2 
we describe a simple and fast approach to obtain a, possibly non-optimal, solution to the 
error localisation problem. This approach is based on the heuristic for consistent 
imputation described in Section 12.4.2. 

The second issue is related to designing a “good” set of edits. This is a non-trivial exercise. 
Designing a good set of edits is a complicated process that requires a lot of experience and 
subject-matter knowledge. Furthermore, many statistical analyses may have to be carried 
out to arrive at a good set of edits. We do not attempt to describe these statistical analyses 
here, let alone the entire process of developing a set of explicit edits. We have a much 
more limited aim in this chapter, and only describe a basic test for a set of edits. A 
prerequisite for a good set of edits is that the edits do not contradict each other, i.e. that the 
set of edits is consistent. In Section 13.3 we sketch how the consistency of a set of edits for 
mixed data can be tested. In the same section we also briefly describe a method to detect 
redundant explicit edits. This may be valuable information for a developer of the edit set. 

The third issue we address in this chapter is how subject-matter knowledge can be used in 
combination with a system based on the Fellegi-Holt paradigm. In Section 13.4 we 
describe various ways in which subject-matter knowledge can influence the results of such 
a system. Section 13.4 is based on De Waal (2000c). Section 13.5 ends this chapter, and 
the part of this book on statistical data editing, by describing the impact of the developed 
methodology on practice at Statistics Netherlands. 

13.2. Handling records with many errors 

As we mentioned in the introduction to this chapter, solving the error localisation problem 
for records containing many errors is generally too demanding in terms of computing time 
and computer memory for the exact error localisation algorithms of earlier chapters. To 
handle such records we suggest a much simpler and faster approach. This approach does 
not aim to find (all) optimal solutions to the error localisation problem. In fact, it does not 
try to solve the mathematical error localisation problem as formulated in Section 3.2. 
Instead, we try to solve a special instance of the consistent imputation problem of Section 
12.4.  

In this special instance, we first fill in arbitrary values for the missing values. 
Subsequently, we try to minimise 
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where the original record (after filling in arbitrary values for the missing values) is given 
by ),...,,,...,( 11 nm xxvv , and the final record by )~,...,~,~,...,~( 11 nm xxvv . As in Section 12.4. the 

iw  are user-specified weights, and )~,( ii vva  is a non-negative matrix satisfying 
0)~,( =ii vva  if ii vv ~= . We try to minimise the objective function (13.1) subject to the 

constraint that all edits (12.3) become satisfied. We can do this by applying the heuristic of 
Section 12.4.2. 

After completion of the heuristic the variables for which the final values differ from the 
values of the original record (after filling in arbitrary values for the missing values) plus 
the variables for which the values were originally missing are considered to be erroneous. 
These erroneous may be imputed by a suitable imputation method. As the objective 
function (13.1) is minimised subject to the constraint that all edits (12.3) become satisfied, 
it is obviously guaranteed that the variables considered to be erroneous can indeed be 
imputed in a consistent manner, i.e. in such a way that all edits become satisfied. 

The objective function (13.1) does not measure the (weighted) number of fields that need 
to be changed. Instead, it measures the distance between the values of the original record 
(after filling in arbitrary values for the missing values) and a consistent synthetic record. 
The closest – in terms of (13.1) – synthetic record that satisfies all edits defines the fields 
that are considered erroneous. 

For purely numerical data the problem of minimising (13.1) subject to the constraint that 
all edits become satisfied reduces to a linear programming (LP) problem. This LP problem 
can usually be solved in a mere fraction of the time required for the corresponding instance 
of the mathematical error localisation problem defined in Chapter 3.  

Harte, a student from the Hogeschool of Amsterdam (College of Amsterdam), has 
developed a prototype computer program based on the above approach. He has tested the 
program and approach on Data set C described in Chapter 11 (for a slightly different set of 
edits). His conclusion was that the LP approach is indeed much faster than any of the 
algorithms evaluated in Chapter 11. As was to be expected, the LP approach did require 
more fields to be changed than the algorithms based on the Fellegi-Holt paradigm. 
Whereas the algorithms based on the Fellegi-Holt paradigm required 3,361 fields in total to 
be changed, the LP approach required 4,139 fields to be changed, i.e. about 23% more. 
After imputation and solving the consistent modification problem of Section 12.4 the 
publication figures obtained by Harte were comparable to the results obtained by applying 
the Fellegi-Holt paradigm, and in some cases the former were even a bit better. For more 
details regarding the LP approach and the results of the evaluation study we refer to Harte 
(2000). 

For records containing many errors the LP approach is our preferred approach. The 
Fellegi-Holt paradigm was designed to identify the fields that are most likely to be 
erroneous. For records containing only a few errors, application of the Fellegi-Holt 
paradigm is frequently successful, i.e. the identified fields are indeed incorrect. For records 
containing many errors, application of the Fellegi-Holt paradigm hardly ever achieves its 
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goal. The fields identified as being erroneous are hardly ever really incorrect. For such 
highly erroneous records, one could just as well resort to the LP approach. In our opinion, 
it is not very important that a record that could be made consistent by changing, say, 8 
fields is in fact made consistent by changing, say, 10 fields. Generally, the probability that 
either the 8 fields or the 10 fields are indeed the erroneous ones is almost equal to zero. In 
contrast, we would object to making a record consistent by changing four fields if this 
record could be made consistent by changing only two fields as it is generally much more 
likely that the latter two fields are indeed erroneous than the former four. 

13.3. Testing the set of explicit edits 

To test whether a set of explicit edits is consistent or not we can again apply the algorithm 
described in Chapters 8 and 9. Namely, to test the consistency of a set of edits we simply 
eliminate all variables. If only categorical and continuous variables are involved in the 
edits, we obtain a set of relations without any unknowns. If this set of relations is 
consistent, the set of explicit edits is consistent. Otherwise, the set of explicit edits is 
inconsistent. This immediately follows from Theorem 8.2. If categorical, continuous and 
integer variables are involved in the edits, we obtain several sets of relations without any 
unknowns. These sets correspond to the dark shadow and “splinters” due to elimination of 
the integer variables (see Chapter 9). If any of these sets of relations without unknowns is 
consistent, the set of explicit edits is consistent. Otherwise, the set of explicit edits is 
inconsistent. This follows from Theorem 9.3. 

Note that a consistency test, such as the one mentioned above, can also be used to test 
whether a given set S of variables can be imputed consistently. Fill in the values of the 
variables not contained in S into the original edits. This results in a set of reduced edits 
involving only variables in S. It is possible that some of the edits in the set of reduced edits 
involve no unknowns anymore. If any such an edit is not satisfied, the variables in S cannot 
be imputed consistently. Otherwise, test the set of reduced edits for consistency. If it is 
indeed consistent, the variables in S can be imputed consistently. If the set of reduced edits 
is inconsistent, the variables in S cannot be imputed consistently. This method for testing 
whether it is possible to impute a specific set of variables consistently might, for example, 
be implemented in a computer program suited for interactive editing such as Blaise. After 
a subject-matter specialist has specified which variables he is planning to modify, the 
computer program could then test whether these variables can indeed be imputed in a 
manner consistent with the edits.  

Testing whether a certain edit is redundant, i.e. can be deleted without altering the feasible 
region described by the edits, can be re-written as a consistency test for a certain collection 
of edits. We suppose that we start with a consistent edit set.  

We want to test whether an edit jE  given by  

 

IF j
ii Fv ∈  for i=1,…,m   

THEN }0...|{),...,( 111 ≥+++∈ jnnjjn bxaxaxx x ,   (13.2a) 



Chapter 13 

 234

 

or 

 

IF j
ii Fv ∈  for i=1,…,m   

THEN }0...|{),...,( 111 =+++∈ jnnjjn bxaxaxx x ,   (13.2b) 

 

is redundant. To this end we first negate the edit. If jE  is an inequality, its negation is 
given by 

 jE1  AND jE2  AND … AND j
mE  AND jE* ,    (13.3) 

where j
iE  is given by 

IF )(for   , ikDvFDv kk
j

iii ≠∈−∈  THEN ∅   (13.4) 

and jE*  is given by 

∑
=

<+
n

i
jiij bxa

1
0 .       (13.5) 

The AND-operators in (13.3) mean that all these edits have to be satisfied simultaneously. 

If jE  is an equality, its negation is given by 

 ( jE1  AND jE2  AND … AND j
mE  AND jE* ) 

OR        (13.6) 
 ( jE1  AND jE2  AND … AND j

mE  AND jE ** ),    

where the j
iE  (i=1,…,m) are given by (13.4), jE*  by (13.5), and jE **  by 

∑
=

>+
n

i
jiij bxa

1
0 .       (13.7) 

In (13.6) the OR-operator means that at least one of the statements between brackets has to 
hold true. The AND-operators mean that all edits between brackets have to be satisfied 
simultaneously for a compound statement between brackets to hold true. 

The edits (13.5) and (13.7) are not yet in standard form. Therefore, we re-write the THEN-
condition (13.5) as 

 ∑
=

−≤+
n

i
jiij bxa

1
ε ,      (13.8) 
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and the THEN-condition (13.7) as 

 ∑
=

≥+
n

i
jiij bxa

1
ε        (13.9) 

for a sufficiently small number ε . We can hence express the negation of an edit as one or 
two sets of edits in our standard type (see (13.2)). 

Now, in the case that the edit under consideration jE  is an inequality, if the other edits in 
combination with (13.3) form an inconsistent edit set, we can conclude that all possible 
records that satisfy the other edits also satisfy jE . In other words, if the other edits in 
combination with (13.3) form an inconsistent edit set, jE  is redundant and can be deleted. 
Similarly, in the case that jE  is an equality, if the other edits in combination with (13.6) 
form an inconsistent edit set, jE  is redundant and can be deleted. 

We can give a formal proof that the above method to determine redundant edits is correct 
using simple propositional logic (for an introduction to propositional logic we refer to Ben-
Ari, 2001). Edit jE  is by definition redundant if and only if 

 ji

ji
EE →∧

≠
)(        (13.10) 

is a valid formula. This is equivalent to  

 ji

ji
EE ∨∧¬

≠
)(        (13.11) 

being a valid formula, where “¬ ” denotes negation. In turn this is equivalent to 

 ji

ji
EE ¬∧∧

≠
)(        (13.12) 

being an unsatisfiable formula, i.e. jE¬  and the edits iE  contradict each other. It remains 
to find the negation of jE . For ease of notation we write jE  as 

 )()...(: 1 xNCCE j
m

jj →∧∧ ,     (13.13) 

where j
kC  denotes j

kk Fv ∈ , and )(xN  the numerical condition ∑
=

≥+
n

i
jiij bxa

1
0 , or 

∑
=

=+
n

i
jiij bxa

1
0 . Alternatively, we can write (13.13) as 

 )()...(: 1 xNCCE j
m

jj ∨∧∧¬ .     (13.14) 

The negation of jE  can hence be written as 

 )()...(: 1 xNCCE j
m

jj ¬∧∧∧¬ .     (13.15) 

Finally, we rewrite the j
kC  so they are in our standard form (13.2). i

kC  is equivalent to 
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 falseC j
k ∨¬¬ )( ,       (13.16) 

which is equivalent to 

 falseC j
k →¬ )( .       (13.17) 

This is exactly the condition given by (13.4).     � 

 

A direct interpretation of (13.3) and (13.6) is easy to provide. The purely categorical edits 
given by the j

iE , which have to be met simultaneously, say that edit jE  is redundant if its 
IF-condition cannot be satisfied given the other explicit edits. The mixed edit given by 

jE* , in combination with the mixed edit jE **  in the case that jE  is an equality, says that 
jE  is redundant if the numerical variables cannot attain values outside the region 

described by the THEN-condition of jE . 

Note that the negation of a purely categorical edit, i.e. an edit for which the THEN-
condition is given by false≡∅∈ }|{ xx , is a set of purely categorical edits. The only, 
potentially, numerical edit (see (13.15)) would be truefalse ≡¬ . The negation of a purely 

numerical edit, i.e. an edit for which the sets i
j

i DF =  (for all i=1,...,m), is again a purely 

numerical edit. All categorical edits that arise due to the negation of jE  are satisfied 
because ∅=− j

ii FD  for some i=1,...,m (see (13.4)). 

In Van den Broeke (2001) an alternative method to detect inconsistency and redundant 
edits in a set of explicit edits is proposed. This method is based on solving certain LP-
problems for many combinations of categorical values. It is more powerful, because it can 
also detect for which combinations of categorical values the corresponding numerical 
constraints form an inconsistent system. However, the method is bound to be much more 
time-consuming than the simple method proposed in this section. 

13.4. Using subject-matter knowledge in a Fellegi-Holt program 

13.4.1. Introduction 
An ideal system for automatic edit and imputation would focus on the statistical 
distribution of the final data, while taking into account that the errors in the raw data may 
have been introduced by several different error generation mechanisms. In discussions 
several persons have expressed their doubts whether a Fellegi-Holt (FH) system, i.e. a 
computer program for automatic editing based on the Fellegi-Holt paradigm, offers 
sufficiently flexibility for it to come even close to an ideal system. Their criticism focuses 
on the following aspects of an FH system: 

• an FH system cannot make a distinction between hard edits, which have to be satisfied 
for every record, and soft – or statistical – edits, which have to be satisfied for only 
most of the records; 
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• an FH system makes a too rigid assumption about the error generating mechanism, 
viz. such a system assumes that the errors in each data set can be identified by 
minimising a weighted number of fields that need to be changed in order to satisfy the 
edits; 

• an FH system is not guided by the final statistical distribution of the data, but only by 
the edits that have to be satisfied. 

The first two points express a doubt whether an FH system can take different error 
generation mechanisms into account. The third point expresses a doubt whether an FH 
system can be so tuned that it succeeds in preserving the statistical distribution of correct 
data. We have to admit that this criticism is partly justified. An FH system is, for example, 
only indirectly guided by the final statistical distribution of the data. An FH system is not 
an ideal system for automatic editing and imputation, but in this section we argue that by 
using subject-matter knowledge as much as possible an FH system can come close to an 
ideal one. In any case, we hope to show in this section that an FH system is quite flexible, 
and offers a lot of opportunities to utilise available subject-matter knowledge. The use of 
subject-matter knowledge can to a considerable extent overcome the above-mentioned 
criticism. 

Subsections 13.4.2 to 13.4.5 describe various ways of providing subject-matter knowledge 
to an FH system. Subsection 13.4.2 is devoted to the edits, and Subsection 13.4.3 to 
reliability weights. These two subsections explain how an FH system may take different 
error generation mechanisms into account. Subsection 13.4.4 is devoted to imputation, and 
Subsection 13.4.5 to the selection of fields to be modified in the case that the FH paradigm 
results in optimal ties. Those two subsections explain how an FH system may aim to 
preserve the statistical distribution of the data rather than simply aim to change as few 
fields as possible. The final subsection, Subsection 13.4.6, concludes this section with a 
very brief discussion. 

Application of the (generalised) FH paradigm may yield several optimal ways, i.e. sets of 
fields with a minimum sum of reliability weights, to modify the data. In this section we 
will refer to such a set of fields as an FH-optimal set of fields. 

13.4.2. Edits 
The most obvious way of supplying subject-matter knowledge to an FH program is by 
means of the edits. Subject-matter knowledge can be used to specify which records are 
allowed, and which records are not allowed.  

The edits used during automatic editing often differ from the edits that are used during 
computer-assisted editing. Some of the edits that are used during computer-assisted editing 
are logical, or hard, edits. These edits logically have to be satisfied by each consistent 
record. Other edits are statistical, or soft, edits. These edits do not have to be satisfied by 
each consistent record, but are satisfied by the vast majority of these records. During 
computer-assisted editing humans may decide to overrule the specified edits. They may 
decide not to change a record that violates one or more edits, they may also decide to 
change a record that satisfies all edits. 
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When records are edited automatically, all records that do not satisfy the edits and none of 
the records that satisfy the edits are modified. This means that if the program uses the same 
edits as during computer-assisted editing, some records may be edited too much, whereas 
others may not be edited enough. 

It seems very natural to demand that an FH program ensures that all logical edits become 
satisfied after application of the program. The statistical edits, however, usually have to be 
adapted in order for them to be useful for a computer program for automatic editing. 
Subject-matter knowledge and experience with such a computer program are both required 
to arrive at an optimal set of edits for automatic editing. 

There are two ways to deal with edits specified by subject-matter specialists. The first 
approach is to modify a record when any edit (either a logical one or a statistical one) is 
violated. The second approach is to modify a record when either a logical edit is violated 
or when the statistical edits are violated to a substantial extent. 

In the computer programs for automatic editing that we know of the first approach is 
usually taken. The second approach is more flexible, however, and would be our preferred 
option. If a record does not violate the logical edits and the statistical edits are only 
violated to a limited extent, the record is not modified. In other words, the violated 
statistical edits will remain violated for that record. Once it is decided that a certain record 
will be modified automatically, we propose to take the statistical edits into account. For 
such a record all edits, both logical and statistical ones, will become satisfied.  

To determine the extent in which the statistical edits are violated one could, for instance, 
consider the following: the number of violated statistical edits, the deviations of the 
variables and the edits from their usual values, the raising weight of the record, and 
possibly weights that indicate how “soft” each edit is. Alternatively, an outlier detection 
method could be used to measure the violation of the statistical edits. A record that only 
violates statistical edits is then modified automatically if it is considered to be an outlier, 
else it is not modified. 

Balance edits, i.e. edits saying that the sum of a number of variables should be equal to the 
sum of some other variables, are usually treated as logical edits in an FH system. However, 
small deviations are quite common in practice, and can naturally arise due to rounding 
errors. Therefore, a better approach would be to treat balance edits as statistical edits rather 
than as logical edits as long as the violation is small. Large violations should never be 
allowed, and should be prohibited by hard edits. Subject-matter knowledge is necessary to 
specify up to which point balance edits should be treated as statistical edits. 

13.4.3. Reliability weights  
The reliability weight that is provided by the subject-matter specialists for a certain 
variable reflects to what extent they a priori trust the values of this variable. Variables of 
which it is known that their values are frequently incorrect should hence be given a low 
weight. Variables of which it is known that their values are rarely incorrect should be 
given a high weight. In the extreme case, the reliability weight of a variable of which the 
value cannot be incorrect equals infinity. 
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The quality of data that have been edited automatically is often strongly influenced by the 
reliability weights assigned to the variables. A badly chosen set of weights may have a 
catastrophical influence on the quality of the resulting data. Correct values may then be 
changed, while incorrect values are not changed. 

In most of the computer programs for automatic editing the reliability weights of the 
variables are fixed before the program starts. CherryPi is an exception: for each record the 
user-specified reliability weights are dynamically adjusted to reflect the occurrence of 
potential typing errors (see Van de Pol, Bakker and De Waal, 1997). To determine whether 
a value is the result of a typing error the balance edits are used. If such an edit is violated 
and can be satisfied by, for example, swapping two digits of a certain value, the reliability 
weight of this variable is dynamically lowered. The value of that variable is then more 
likely to be changed. 

This idea can clearly be extended. Each record could be pre-processed to dynamically 
determine the set of reliability weights. The user-specified weights could be used as the 
initial set of weights. The subject-matter specialist could specify certain rules to adjust 
these weights. For instance, for certain types of records it may be well known that a 
particular error pattern occurs very frequently. The variables involved in this error pattern 
may then be given low reliability weights. An example of such a regularly occurring error 
is a factor 1,000 error, where a financial figure has to be filled in in thousands of Euros, 
but the respondent mistakenly answered in Euros. Such a potential error may often be 
easily detected. The reliability weight of the corresponding variable can then be given a 
low value.  

Information on the occurrence of certain error patterns may be obtained during the 
application of a computer program for error localisation. That is, previously edited records 
may provide valuable information about the errors in the records remaining to be edited 
automatically. 

One can, for example, also compare the value of a variable to a “normal” value of this 
variable. If there is a big difference, the reliability weight of this variable may be given a 
low value. How a “normal” value and a “big” difference are defined has to be specified by 
a subject-matter specialist, or have to be based on statistical analyses. 

A final example of how reliability weights may be dynamically adjusted is when a total 
differs from the sum of the original values of the constituent variables. In some cases one 
may then want to give the total a relatively high reliability weight so that its value is 
unlikely to be changed. In other cases, one might distrust the value of the total. One should 
then give the total a relatively low reliability weight so its value is likely to be modified. 
What value should be assigned to the reliability weight of a total should depend on subject-
matter knowledge. 

Based on subject-matter knowledge methods for dynamically adjusting reliability weights, 
such as in the examples mentioned above, have to be chosen. Also the parameters that 
should be used for these methods should be based on subject-matter knowledge or on 
statistical analyses. 
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13.4.4. Imputation 
In this subsection we first discuss possible imputation models in an FH system, and then 
discuss how consistent imputation can be obtained. 

Imputation model 

A strong aspect of an FH system is that – to a large extent – the user can specify which 
imputation methods he would like to use. In contrast, a system like NIM uses only a hot-
deck donor imputation method (see e.g. Bankier, 1999; Bankier et al., 2000). In an FH 
system the user can choose from a much larger class of techniques, ranging from very 
simple imputation methods, such as imputing the median/modal value of a variable, to 
advanced imputation techniques, such as imputation based on the EM algorithm or 
imputation based on clustering algorithms. In Chapter 12 of this book we discussed 
imputation techniques to a limited extent; for a more thorough discussion of these 
techniques we refer to Kalton and Kasprzyk (1986), and Kovar and Whitridge (1995). 

Subject-matter knowledge may be used to specify an appropriate imputation technique for 
the data set under consideration. For some data sets, for example data from social surveys, 
hot-deck imputation may be a very appropriate technique, whereas for other data sets, for 
example data from establishment surveys, this technique may be inappropriate. For such 
surveys it is often more advisable to use regression imputation. 

Of course, subject-matter knowledge may not only be used when choosing the most 
appropriate imputation technique for a given survey, but also when determining suitable 
parameters for the imputation techniques. For instance, when regression imputation is 
used, subject-matter knowledge may be used to determine suitable auxiliary variables. 
Regression coefficients can subsequently be calculated easily by means of a computer. 

An FH system may not only be used to edit data, but also to impute for item-nonresponse. 
However, in, for instance, an establishment survey it is often unclear whether a certain 
value is missing or not. Values that equal zero are often not filled in by the respondents. 
Subject-matter knowledge should be used to decide for a missing quantitative item whether 
the value is really missing or whether it equals zero. 

Selecting an appropriate imputation technique and associated parameters is essential for 
the quality of data that have been edited by an FH system. In this selection process, 
subject-matter knowledge plays an essential role. The role of the computer is restricted to 
calculating certain parameters, and to actually imputing the data set. 

Consistent imputation 

Specifying the imputation model in such a way that all resulting records will be consistent 
is often too difficult in practice. Therefore, an alternative approach is frequently used. This 
approach consists of two steps. In the first step the missing and implausible values in a 
record are simply imputed by using an imputation model without taking the edits into 
account. In the second step the imputed values are modified slightly in such a way that the 
resultant record will be consistent, and will be as close as possible to the record obtained 
after the first step. This second step can be done by solving a mathematical optimisation 
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problem where the objective is to change the record after the first imputation step as little 
as possible subject to the constraint that the final record satisfies all edits (see Section 12.4 
for more details). 

If this approach is used, a distance function has to be specified that measures how close 
two records are. For practical reasons, the distance functions will have to be restricted to 
certain classes. For instance, for records consisting only of numerical data, the distance 
between two records might be measured by the Euclidean distance function, or by the sum 
of the absolute values of the differences between the values of the variables. Within a class 
of distance functions the particular distance function that is used may be specified by a 
subject-matter specialist. For instance, numerical data may first be scaled in a certain user-
specified way. 

By specifying parameters of the distance function, the subject-matter specialist may force 
that the values of certain variables will be changed relatively less than the values of other 
variables during the second step of the imputation process. For example, one may demand 
that variables that can be imputed very accurately during the first step of the imputation 
process are changed less than variables for which no good imputation model can be 
specified. 

The use of subject-matter knowledge as described in this subsection is admittedly rather 
abstract. Apart from subject-matter knowledge a considerable amount of experience and 
mathematical understanding is required to obtain the best possible results. 

13.4.5. Selection of FH-optimal set of fields to be modified 
If there are several FH-optimal sets of fields, one of these sets has to be selected. For this, 
additional criteria may be used. In the FH based automatic editing programs we know of 
one FH-optimal set of fields is selected before the FH-optimal sets of fields have been 
imputed. In some of FH systems this is done implicitly, because only one FH-optimal set 
of variables is generated; in other systems all FH-optimal sets of variables are generated 
and then one set is explicitly selected. The selected variables are subsequently imputed. A 
possibly better approach would be to first impute all FH-optimal sets of fields and only 
then select one of these sets. This approach would allow the use of more advanced 
additional criteria to select an FH-optimal set of fields.  

In this subsection we give examples of the kinds of subject-matter knowledge that can be 
used for both possible approaches.  

In both cases subject-matter knowledge is used to help the computer identify the set of 
variables with incorrect values. This subject-matter knowledge has to be translated into a 
secondary optimality criterion. Supplementing the FH paradigm – the primary optimality 
criterion – by such subject-matter knowledge in this way can lead to an improved 
algorithm for finding the incorrect fields. 
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Selection of fields to be modified before imputation 

If the fields that have to be modified are selected before the FH-optimal sets are imputed, 
we have, for example, the following two possibilities for the secondary optimality 
criterion: 

• Construct a ranking list of the most common error patterns. The FH-optimal set of 
fields that has the highest rank is then selected.  

• Compare the (original) values of the variables in each FH-optimal set of fields to 
“normal” values for these variables. The FH-optimal set for which the original values 
deviate most from the “normal” values is then selected. “Normal” values may be 
determined in many ways, for example by taking median/modal values. 

The fields of the selected FH-optimal set will be imputed. The use of subject-matter 
knowledge allows one to select the FH-optimal set of fields that most likely is the actual 
set of incorrect fields. 

Other kinds of secondary optimality criteria may also be constructed. It depends on the 
data set under consideration, and hence on subject-matter knowledge, which criterion is the 
best one.  

Selection of fields to be modified after imputation 

If the fields that have to be modified are selected after the FH-optimal sets are imputed, the 
most logical criterion to select an FH-optimal set of fields to be modified is to compare the 
resulting records with “normal” records. The FH-optimal set of fields that leads to the most 
“normal” record may then be selected as the set of fields to be modified. 

For such a comparison a distance function should be specified, and “normal” records 
should be defined. A distance function should be dependent on the data under 
consideration and the purpose of the editing process. “Normal” records could again be 
defined by taking median/modal values, for instance. It should be clear that a distance 
function and the concept of “normal” records should be based on subject-matter 
knowledge. The use of subject-matter knowledge allows one to select the FH-optimal set 
of fields that, once imputed, leads to the record that is most likely to be, or closest to, the 
correct one. 

Of course, other kinds of secondary optimality criteria may also be constructed. Again, it 
depends on the data set and on subject-matter knowledge which criterion is the best one. 

13.4.6. Discussion on using subject-matter knowledge in a Fellegi-Holt program 
The tasks that have to be performed in order to edit a data set can be split into conceptually 
difficult tasks and conceptually easy tasks. Humans are better in solving the former kind of 
tasks than computers. The latter tasks may be conceptually easy, but may at the same time 
require considerable computing power to solve. Computers are therefore better in solving 
these tasks. 
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An FH based computer program enables one to have the best of both worlds. For the 
conceptually easy tasks of identifying the FH-optimal sets of fields and imputation of 
better values for an FH-optimal set, the computer is perfectly suited. Humans are much 
less good in executing these tasks, because both tasks require many accurate computations. 
For the conceptual hard tasks, such as designing a set of edits, designing imputation 
models, and determining (rules for computing) reliability weights, human input is 
essential. In this book we have indicated several possibilities for such human input. 

The final form of human input that has not yet been mentioned in this chapter, but that is 
of utmost importance, is the decision whether to accept the data that have been edited 
automatically or not. It is up to the human subject-matter specialist to decide whether the 
data that have been edited automatically are of acceptable quality. 

The combined use of subject-matter knowledge and computing power of PC’s can lead to 
high quality data that have been edited automatically. Unfortunately, the present-day FH 
systems for automatic editing only allow the use of subject-matter knowledge to a rather 
limited extent. The main conclusion that can be drawn from this chapter is that FH based 
computer systems for automatic editing should become more flexible in order to allow the 
maximal input of subject-matter knowledge.  

In the author’s opinion, SLICE, the general software framework for editing and imputation 
that is currently being developed by Statistics Netherlands (see e.g. De Waal and Wings, 
1999; De Waal, 2000d and 2001b), offers great potential in this respect. SLICE itself is 
planned to become an add-on module of Blaise, the integrated survey processing system 
that has been developed by Statistics Netherlands (see Blaise Reference Manual, 2002, and 
the Blaise Developer’s Guide, 2002). Over the years Blaise has become the de facto 
standard for survey processing. Many modules such a Manipula (for manipulating data 
sets) and Bascula (for calculating raising weights) have been added to the original core that 
was meant for questionnaire design and interviewing. Nowadays, Blaise is used by over 80 
different statistical institutes all over the world. By connecting SLICE to the Blaise system, 
SLICE will be able to read and write data files and corresponding meta-data in Blaise 
format. Moreover, the syntax of SLICE is largely based on the Blaise language. The 
flexibility offered by the Blaise system will enable subject-matter knowledge to be used 
during various stages of the (automatic) editing process. 

13.5. The impact of the developed methodology on practice at Statistics 
Netherlands 

In this last section on statistical data editing, we consider the impact of the developed 
methodology described in this book on the daily practice at Statistics Netherlands. First of 
all, we are glad to say here that the developed methodology has indeed had an impact. In 
fact, when Statistics Netherlands was being re-organised in 1999-2000 the availability of 
methodology and software tools for efficient statistical data editing, such as the 
methodology and tools described in this book, was explicitly mentioned as one of the 
reasons for this re-organisation.  

In 1995 we started our research on automatic editing. In those days obtaining a license for 
a commercial solver for mixed integer programming problems was not even contemplated. 
Instead, we therefore studied the methodology of Chapter 4. Implementation of the 
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algorithm described in Chapter 4 for continuous data was quite simple. Unfortunately, tests 
quickly showed that the developed prototype software was far too slow for practical use. 

The first version of software for automatic error localisation at Statistics Netherlands that 
could be applied in practice, CherryPi based on the vertex generation approach of Chapter 
5, was finished early 1996. That version ran under DOS and was suited for purely 
continuous data only. In subsequent years, CherryPi was tested and converted to a 
Windows version. Early 1998 it was decided to integrate CherryPi into SLICE (version 
1.0), a framework for automatic editing and imputation that was then to be developed. In 
those years CherryPi or SLICE were not yet used in practice at Statistics Netherlands. 

The breakthrough came later when the Division of Business Statistics decided to revise its 
production processes for annual structural business surveys and design a completely new 
uniform computer system to collect and process data for such surveys. After many 
discussions and several tests, it was decided to use a combination of selective editing (for 
details on this implementation of selective editing see Hoogland, 2002) and automatic 
editing to produce clean data. As software framework for automatic editing and imputation 
it was decided to use SLICE 1.0. For a general overview of the approach for annual 
structural business surveys at Statistics Netherlands and a brief description of the software 
system we refer to De Jong (2002). 

After the first Windows-based version of CherryPi was finished we continued with 
methodological research on automatic error localisation in order to be able to handle more 
general data, namely a mix of categorical and continuous data, and edits. The first 
attempts, the extension to categorical data of the vertex generation approach (cf. Chapter 
5), the formulation as a dynamic disjunctive-facet problem (cf. Chapter 6), and the 
heuristic developed by Pergamentsev (cf. Chapter 7), were unsuccessful, mainly because 
the developed algorithms were considered too complicated to implement and maintain. 
The branch-and-bound approach of Chapter 8 was, however, sufficiently simple to 
implement and maintain at a statistical bureau. Moreover, the tests of Chapter 11 show that 
the approach is also sufficiently fast for practical application. The cutting plane algorithms 
described in Chapter 10 were developed later in order to examine whether these 
approaches would perform better with respect to computing speed than the algorithm 
described in Chapter 8. The computational results of Chapter 11 show otherwise, however. 
The cutting plane algorithm described in Section 10.5 to 10.7 has the benefit that it is even 
simpler to implement and maintain than the algorithm of Chapter 8. For statistical offices 
looking for an easy to implement algorithm for automatic error localisation and with a low 
budget, that algorithm would be an excellent starting point. Statistical offices with a higher 
budget could also consider obtaining a license for a commercial solver for mixed integer 
programming problems and use that solver to solve the problem formulated in Section 3.4. 
That approach is also quite simple to implement and maintain. 

As the algorithm described in Chapter 8 is easy to implement and has a good performance, 
we therefore decided to implement that algorithm in SLICE (version 1.5). The 
implemented algorithm contains a heuristic to handle integer-valued data based on the 
algorithm of Chapter 9. The complete, exact algorithm of Chapter 9 has not been 
implemented: again because it would be too complicated to implement and maintain. The 
beta version of SLICE 1.5 has been released for testing purposes early 2003. The Division 
of Business Statistics at Statistics Netherlands is planning to use SLICE 1.5, and its new 
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module for automatic error localisation (CherryPie), in its production processes in the near 
future. 

Version 1.5 of SLICE contains a heuristic to handle records containing many errors. At the 
moment, the favoured method is the heuristic described in Section 13.2. In future this 
heuristic may, perhaps, be replaced by an alternative heuristic developed by Chung (2003) 
that is based on setting suspect values to missing and only then use CherryPie to correct 
the thus created record. 

SLICE also contains a module for consistent imputation. Version 1.0 contained a simple 
module based on solving a linear programming problem. Version 1.5 contains an 
implementation of the heuristic described in Section 12.4. This heuristic is quite easy to 
implement and maintain. 

Methodology for testing the set of explicit edits (see Section 13.3) has not (yet) been 
implemented in SLICE, although it would not be very complicated to do so. The reason for 
not implementing such methodology is that this has low priority. It is not clear whether 
implementing such methodology has many benefits as it only allows one to detect 
inconsistent and redundant edits, but not more subtle mistakes in the specified edits. 

WAID, the software package for imputation sketched in Section 12.3, has made a slight 
impact on the production processes at Statistics Netherlands as it is currently being applied 
in practice by a limited number of users. 
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14. A View on Statistical Disclosure Control 

14.1. Introduction 

The aim of statistical disclosure control (SDC) is to prevent sensitive information about 
individual respondents, or small groups of respondents, from being disclosed. SDC is 
becoming increasingly important due to the growing demand for information provided by 
statistical offices. The information released by these statistical offices can be divided into 
two major parts: tabular data and microdata. Whereas tables have been released 
traditionally by statistical offices, microdata sets are released only since fairly recently. In 
the past the users of data usually did not have the tools to analyse these microdata sets 
properly themselves. Nowadays every serious researcher is in possession of a powerful 
personal computer. Analysing microdata is therefore no longer a privilege of the statistical 
office. The users of data can and want to analyse these microdata themselves. This creates 
non-trivial SDC-problems. 

As absolute prevention of disclosure of sensitive information about individual respondents, 
or small groups of respondents, can only be guaranteed if no or hardly any information is 
released, this aim would be far too restrictive for statistical offices. A more realistic aim is 
to limit the probability that sensitive information about individual respondents or small 
groups of respondents can be disclosed. In this book we therefore concentrate on limiting 
the probability that sensitive information about individual respondents can be disclosed. 

Sensitive information about an individual respondent might be disclosed if the respondent 
were re-identified by an attacker. For example, suppose we have data on the residence of 
respondents, their occupation, their sex and their income. Suppose also that the income of 
an individual respondent is considered sensitive information, as is the case in the 
Netherlands. In a record with the following values Residence = Amsterdam, Occupation = 
Mayor and Sex = Male, sensitive information on the income of this, easily re-identifiable, 
person could immediately be disclosed. In fact, this person could even be re-identified 
without knowledge on his or her sex. To limit the risk of disclosure one could decide not to 
release the income of this person, for instance. Another example of a record from which 
sensitive information might be disclosed if we are not careful is a record with the 
following values Residence = Urk, Occupation = Statistician and Sex = Female. Urk is a 
small village in the Netherlands. In addition, in the Netherlands there are not many female 
statisticians. It is hence quite likely that there is only one female resident in Urk whose 
occupation is statistician. It would be quite easy to re-identify this person and to disclose 
her income in the case that income were released. Even if there were more than one female 
resident in Urk whose occupation is statistician, it is still very likely that there would only 
be a few. By guessing, an attacker would then have a relatively good chance to re-identify 
the correct person. We conclude that it is necessary to protect this record against 
disclosure. 

A key problem in the theory of SDC for microdata is therefore the determination of the 
probability that a record in a released microdata set is re-identified. In order to estimate 
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this probability a number of different approaches have been attempted. The aim of these 
attempts differs considerably. In some publications the aim is to gain a qualitative insight 
into the probability of re-identification of an unspecified record from a microdata set. In 
other publications the aim is set much higher, namely to obtain the probability that a 
specific record is re-identified. These are, of course, extreme cases. The former case is 
comparatively easy to solve, although still difficult. The latter case is more difficult and 
may be impossible to solve. 

The concept of the probability of re-identification of respondents is rather subtle, as we are 
not always dealing with repeatable experiments. The common, traditional definition of the 
probability of an event as the fraction of times this event would occur if experiments with 
the same random mechanism were repeated an infinite number of times can therefore not 
always be used. This is, for instance, the case if we wish to determine the probability that a 
certain respondent has unique identifying characteristics in the population. In a given 
population a respondent either has unique characteristics or not. In a given population the 
probability that a certain respondent has unique identifying characteristics in the 
population is therefore a useless concept. In such cases we resort to using a 
superpopulation model, where the population itself is assumed to be generated by means of 
a certain random mechanism. That random mechanism then provides the probability we 
are interested in, i.e. in our example the probability that a certain respondent has unique 
identifying characteristics in the population. In other cases the traditional definition of a 
probability can be used, for example to determine the probability that a certain person is 
drawn in a survey sample. 

In this chapter we give an overview of the problems for which Statistics Netherlands has 
attempted to provide a solution. We consider the problems and the outline of their 
solutions, while technical points are skipped. The choice of the problems and the possible 
solutions we consider is heavily influenced by the experiences of Statistics Netherlands in 
the field of SDC. 

The approach of Statistics Netherlands to limit the disclosure risk of microdata of social 
surveys, the only kind of microdata Statistics Netherlands currently releases, differs from 
approaches that are used by several other statistical offices. In particular, the North-
American statistical offices generally use another approach than Statistics Netherlands. 
These statistical offices usually perturb their microdata of both social and business surveys 
by adding noise before these microdata are released. Statistics Netherlands, however, 
usually applies a combination of recoding potentially identifying variables and suppressing 
remaining potentially dangerous values for its microdata of social surveys. At present it is 
unclear which approach will prevail in the long run. 

The rest of this chapter is organised as follows. Basic concepts are defined in Section 14.2. 
Preliminaries on SDC for microdata are the subject of Section 14.3. Our basic philosophy 
of SDC for microdata is discussed in Section 14.4. In Section 14.5 we describe the ideal 
situation for microdata: in this case we can accurately calculate a probability for each 
record that this specific record can be re-identified. A somewhat less ideal situation is 
described in Section 14.6: in this case we can accurately calculate a probability for a data 
set that an unspecified record can be re-identified. In Section 14.7 we have to face reality: 
at the moment we do not have a sufficiently good disclosure risk model yet and we have to 
be satisfied with heuristic arguments. Section 14.8 briefly discusses SDC for tabular data. 
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In Section 14.9 we discuss some conclusions we can draw and suggest possibilities for 
future research. 

We would like to point out here that our philosophy for microdata as described in this 
chapter is mainly applicable to microdata of social surveys. For microdata of business data 
our philosophy is less appropriate (see also Franconi, 1999). 

Part of this chapter has appeared in Survey Methodology (De Waal and Willenborg, 1996). 
This article has been supplemented by material from De Waal and Willenborg (1994c). 

For a more complete overview of statistical disclosure control we refer to the following 
books (in chronological order) Willenborg and De Waal (1996 and 2001), Doyle et al. 
(2001), and Domingo-Ferrer (2002). Interesting general reports and articles on 
confidentiality include Citteur and Willenborg (1993), Dalenius (1981), Duncan and 
Lambert (1986, 1989), Fienberg (1994), Lambert (1993), Marsh, Dale and Skinner (1994), 
Paass (1988), Skinner et al. (1994), and the 1993 special issue of the Journal of Official 
Statistics on confidentiality and data access. 

14.2. Basic concepts 

In this section a number of basic concepts are defined. We will assume that the statistical 
office wants to release a microdata set containing records of a sample of the population. 
Each record contains information about an individual entity. Such an entity could be a 
person, a household or a business enterprise. In the rest of this chapter we will usually 
consider the individual entity to be a person, although this is not essential. 

The two most important concepts in the field of SDC are re-identification and disclosure. 
Re-identification is said to occur if an attacker establishes a one-to-one relationship 
between a microdata record and a target individual with a sufficient degree of confidence. 
Following Skinner (1992) we distinguish between two kinds of disclosure. Re-
identification disclosure occurs if the attacker is able to deduce the value of a sensitive 
variable for the target individual after this individual has been re-identified. Prediction 
disclosure (or attribute disclosure) occurs if the microdata enable the attacker to predict the 
value of a sensitive variable for some target individual with a sufficient degree of 
confidence. For prediction disclosure it is not necessary that re-identification has taken 
place. Most research so far has concentrated on re-identification disclosure. In this chapter 
we will use the term disclosure to indicate re-identification disclosure unless stated 
otherwise. 

Now, let us define what is meant by an identifying variable. A variable is called 
identifying if it can serve, alone or in combination with other variables, to re-identify some 
respondents by some user of the data. Examples of identifying variables are residence, sex, 
nationality, age, occupation and education. A subset of the set of identifying variables is 
the set of direct (or formal) identifiers. Examples of direct identifiers are name, address 
and public identification numbers. Direct identifiers must have been removed from a 
microdata set before it is released as else re-identification is very easy. Other identifiers in 
most cases do not have to be removed from the microdata set. A combination of 
identifying variables is called a key. The identifying variables that together constitute a key 
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are also called key variables. A key value is a combination of scores on the identifying 
variables that together constitute the key. 

In the first example given in Section 14.1 the combination of scores Residence = 
Amsterdam, Occupation = Mayor and Sex = Male forms the key value, in the second 
example the combination of scores Residence = Urk, Occupation = Statistician and Sex = 
Female forms the key value. 

In practice, determining whether or not a variable is identifying is a problem that can only 
be solved by sound judgement. No limitative list of intrinsically identifying variables 
exists, nor, for that matter, an unambiguous and well-defined set of rules to determine such 
variables. Selecting a set of identifying variables, and therefore of keys, is generally based 
on subjective assumptions about the population. Statistics Netherlands applies some 
criteria, like the visibility of the categories of a variable, to determine whether or not a 
variable is identifying, but these criteria do not provide a definite answer to this problem 
for all variables. Whether or not a variable is considered identifying is essentially a matter 
of judgement. In the remainder of this chapter we will assume, however, that a set of keys 
has been determined. 

The counterparts of identifying variables are the sensitive (or confidential) variables. A 
variable is called sensitive (or confidential) if some of the values represent characteristics a 
respondent would not like to be revealed about him. In principle, Statistics Netherlands 
considers all variables sensitive, but in practice some variables are considered more 
sensitive than others. As in the case of identifying variables, determining whether or not a 
variable is sensitive can be solved only by sound judgement in practice. The variables 
Sexual Behaviour and Criminal Past are generally considered sensitive, but for other 
variables this may depend on, for instance, cultural background. Keller and Bethlehem 
(1992) give as an example the variable Income. In the Netherlands income is considered 
sensitive, whereas in Sweden it is not. Moreover, there are variables that should be 
considered both identifying and sensitive. An example of such a variable is Ethnic 
Membership. However, in the literature it is usually assumed that the identifying and 
sensitive variables can be divided into disjoint sets. In the remainder of this chapter we will 
also assume that a set of sensitive variables has been determined which is disjoint from the 
set of identifying variables. 

To end this section, we give a definition of SDC. Statistical disclosure control aims to 
reduce the risk that sensitive information of individual persons can be disclosed to an 
acceptable level. What is acceptable depends on the policy of the data releaser. In order to 
reduce the risk of disclosure an estimate for the risk of disclosure would be very helpful 
although it is not a necessary requisite (cf. Section 14.7). Ample research has been devoted 
to defining and estimating this risk of disclosure. 

14.3. Preliminaries on SDC for microdata 

As a customer of a statistical office, the user of a microdata set should be satisfied with its 
quality. The user is usually not interested in individual records, but only in statistical 
results which can be drawn from the total set of records. For instance, he wants to examine 
tables he has produced himself from the microdata set. 
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Because a microdata set is meant for statistical analysis it is not necessary that each record 
in the set is correct. The statistical office has the possibility to perturb records, for 
example, by adding noise or by swapping parts of records between different records, in 
order to reduce the risk of re-identification. By perturbing records the risk of re--
identification is reduced because even when a correct re-identification takes place the 
information which is disclosed may be incorrect. In any case the attacker cannot be sure 
that the disclosed information is correct. The statistical office ‘only’ has to guarantee that 
the statistical quality of, for instance, the tables the user wants to examine is high enough. 
This may be quite complicated to achieve in practice, however. 

When local suppression is applied some values of variables in some records are set to 
‘missing’, i.e., deleted from the microdata set. When global recoding is applied some 
variables are given a coarser categorisation. In a first step, we try to protect a microdata set 
by means of global recoding. However, if protecting a microdata set entirely by means of 
global recodings resulted in a considerable information loss, we would apply local 
suppressions as well. In this way we try to avoid too much information from being lost. It 
should be clear that local suppressions should only be applied parsimoniously. 

An advantage of local suppression and global recoding is that these techniques preserve 
the integrity of the data in the sense that protected records can satisfy edit rules by 
imputing appropriate values. A disadvantage of local suppression is that it introduces 
biased results, because extreme values will be locally suppressed. However, when local 
suppressions are only applied parsimoniously, this bias will be small. 

From the SDC point of view a user of the data should also be looked upon as a potential 
attacker. Hence, it is useful to consider the ways in which disclosure can take place. An 
attacker tries to match records from the microdata set with records from an identification 
file or with individuals from his circle of acquaintances. An identification file is a file 
containing records with values on direct identifiers and values on some other identifiers in 
the microdata set. The latter identifiers may be used to match records from the released 
microdata set with records from the identification file. After matching, the direct identifiers 
in the identification file can be used to determine whose record has been matched, and the 
sensitive variables in the released microdata set can be used to disclose information about 
this person. A circle of acquaintances is the set of persons in the population for which the 
attacker knows the values on a certain key from the microdata set. So, a circle of 
acquaintances could actually be an identification file, and vice versa. In the rest of this 
chapter we will therefore use the terms ‘identification file’ and ‘circle of acquaintances’ 
interchangeably. 

In order for re-identification of a record of an individual to occur the following conditions 
have to be satisfied:  

C1. The individual is unique on a particular key value K.  

C2. The individual belongs to an identification file or a circle of acquaintances of the 
attacker. 

C3. The individual is an element of the sample. 

C4. The attacker knows that the record is unique in the population on the key K. 
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C5. The attacker comes across the record in the microdata set. 

C6. The attacker recognises the record of the individual. 

Whenever one of the conditions C1 to C6 does not hold, re-identification cannot be 
accomplished with absolute certainty. If either condition C1 or C4 does not hold, then a 
matching can be made but the attacker cannot be sure that this leads to a correct re-
identification. Of course, even in this case there is still a non-zero probability that the 
attacker successfully re-identifies a respondent. 

It is clear from the conditions C1 to C6 that a ‘good’ model for the risk of re-identification 
should incorporate aspects of both the data set and the user. When a Dutch microdata set is 
used by someone in, say, China who is essentially unfamiliar with the Dutch population, 
then the risk of re-identification is negligible. In order to re-identify someone in a 
microdata set it is necessary to acquire sufficient knowledge about the population. The 
amount of work that should be done to acquire this knowledge is proportional to the safety 
of the microdata set. 

14.4. A philosophy of SDC for microdata 

It seems likely that the attention of a potential attacker is drawn by combinations of 
identifying variables that are rare in the sample or in the population. Combinations that 
occur quite often are less likely to trigger his curiosity. If he tries to match records 
deliberately, then he will probably try to do this for key values that occur only a few times. 
If the user does not try to match records deliberately, but he knows an acquaintance with a 
rare key value then a record with that particular key value may trigger him to consider the 
possibility that this record belongs to this acquaintance. Moreover, the probability of a 
correct match is higher if the number of persons that score on the matching key value is 
smaller. Finally, it is also very likely that among the persons that score on a rare key value 
there are many uniques if the key is augmented with an additional variable. Records that 
score on such rare combinations of identifying variables are therefore more likely to be re-
identified. 

In particular key values that occur only once in the population, i.e., uniques in the 
population, can lead to re-identification. In the past emphasis was placed almost 
exclusively on uniqueness. It should be noted, however, that uniqueness is neither 
sufficient nor necessary for re-identification. If a person is unique in the population on 
certain key variables, but nobody realises this, then this person may never be re-identified. 
If on the other hand this person is not unique in the population, but there is only one other 
person in the population with the same key, then this other person is, in principle, able to 
re-identify him. Furthermore, suppose a person is not unique, but belongs to a small group 
of people. Suppose also that the attacker happens to know information about him which is 
not considered to be identifying by the statistical office, but which is contained in the 
released microdata set, then it is very well possible that he is unique on the key combined 
with the new information. So, it is possible that a person is re-identified although he is not 
unique on the keys of identifying variables in the population. Finally, prediction disclosure 
may occur. That is, if a person is not unique in the population, but belongs to a group of 
people with (almost) the same score on a particular sensitive variable, then sensitive 
information can be disclosed about this individual without actual re-identification. 
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Prediction disclosure is not discussed further in this chapter. For more information on 
prediction disclosure we refer to Skinner (1992), US Department of Commerce (1978), 
Duncan and Lambert (1986), and Cox (1986). 

SDC should concentrate on key values that are rare in the population. A probability that 
information from a particular respondent, whose data are included in a microdata set, is 
disclosed should reflect the ‘rareness’ of the key value of this respondent’s record. A 
probability for the event that information from an arbitrary respondent is disclosed should 
reflect the ‘overall rareness’ of the records in the data set. If there are many records in a 
microdata set of which the key value is rare, then the probability of disclosure for this data 
set should be high. In the next sections we will examine some attempts to incorporate these 
ideas within a mathematical framework. 

14.5. Re-identification risk per record 

In an ideal world (as far as SDC is concerned) a releaser of microdata would be able to 
determine a risk of re-identification for each record, i.e., a probability that the respondent 
of this record can be re-identified. Such a risk per record would enable us to adopt the 
following strategy. First, order the records according to their risk of re-identification with 
respect to a single key. Second, select a maximum risk the statistical office is willing to 
accept. Finally, modify all the records for which the risk of re-identification with respect to 
the key chosen is too high. Repeat this procedure for each key if there are more keys. 

Unfortunately, we do not live in such an ideal world at the moment. However, steps 
towards the ideal situation have been made by Paass and Wauschkuhn (1985) and Fuller 
(1993), for instance. In Paass and Wauschkuhn (1985) it is assumed that a potential 
attacker has both a microdata file, released by a statistical office, and an identification file 
at his disposal. Between both files there may be many data incompatibilities. These data 
incompatibilities may be caused by for example, coding errors, by different definitions of 
categories or by ‘noise’ in the data. By assuming a probability distribution for these data 
incompatibilities and a disclosure scenario Paass and Wauschkuhn develop a sophisticated 
model to estimate the probability that a specific record from the microdata file is re-
identified. The type of distribution of the errors that caused the data incompatibilities is 
assumed to be known to the attacker. The variance of the errors is assumed unknown to 
him. A potential attacker has to estimate this variance, on the basis of the (assumed) 
knowledge of the statistical production process. The model of Paass and Wauschkuhn is 
essentially based on discriminant analysis and cluster analysis. 

Paass and Wauschkuhn distinguish between six different scenarios. Each scenario 
corresponds to a special kind of attacker. The number of records in the identification file 
and the information content of the identification file depend on the chosen scenario. An 
example of such a scenario is the journalist scenario, where a journalist selects records 
with extreme attribute combinations in order to re-identify respondents with the aim of 
showing that the statistical office fails to secure the privacy of its respondents. 

Paass and Wauschkuhn apply their method to match records from the identification file 
with records from the microdata file. If the probability that a specific record from the 
identification file belongs to a specific record from the microdata set is high enough, then 
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these two records are matched. This probability is the probability of re-identification per 
record, conditional on a particular disclosure scenario. 

Müller et al. (1991) and Blien, Wirth and Müller (1992) apply the method recommended in 
Paass and Wauschkuhn (1985) to real data. When compared to simple matching, i.e., a 
record is considered re-identified by an attacker if he succeeds in finding a unique value set 
in the microdata file which is identical to a value set in the identification file, the method 
suggested by Paass and Wauschkuhn does not turn out to be superior. Apparently, the 
number of correctly matched records when applying the method by Paass and Wauschkuhn 
is in disagreement with the actual probability of re-identification per record. 

In the context of masking procedures, i.e., procedures for microdata disclosure limitation 
by adding noise to the microdata, Fuller (1993) obtains an expression for the probability 
that a specific record in the released microdata set is the same as a specific target record 
from an identification file. That is, an expression for the re-identification probability per 
record is derived. To derive this expression several assumptions are made. It is assumed 
that the data, the noise and errors in the data are normally distributed. Moreover, it is 
assumed that the covariance matrices of both the noise and the errors in the data are known 
to an attacker. Finally, it is assumed that the data have been obtained by simple random 
sampling. These assumptions allow Fuller (1993) to derive his expression for the re-
identification probability by means of probability theoretical considerations. 
Unfortunately, the approach by Fuller has not been tested on real data yet. Hence, it is hard 
judge the applicability of this approach. For a comment on the approach by Fuller see 
Willenborg (1993). 

Paass and Wauschkuhn (1985), and Fuller (1993) are mainly interested in the effects of 
noise that has (unintentionally and intentionally, respectively) been added to the data on 
the disclosure risk. A weak point of their respective approaches is the, implicit, assumption 
that the key is a high-dimensional one. Assuming a high-dimensional key implies that 
(almost) everyone in the population is unique. The probability that a combination or key 
value occurs more than once in the population is negligible. This makes the computation of 
the probability of re-identification per record considerably easier. On the other hand, in the 
case of low-dimensional keys it is not unlikely that certain key values occur many times in 
the population. Therefore, deriving a probability of re-identification per record for low-
dimensional keys is much harder than for high-dimensional keys, because for high-
dimensional keys the probability of statistical twins in the population is almost zero. 

The last few years determining the re-identification risk per record has attracted the 
attention of other researchers, such as Skinner and Holmes (1998), and Benedetti and 
Franconi (1998). Despite this research we feel, however, that the research on the re-
identification risk is still not mature enough for practical use. In our opinion, a good model 
for the re-identification risk per record does not appear to exist at the moment. In Section 
14.6 we therefore consider less ambitious models, namely models for the re-identification 
risk per file. 

14.6. Re-identification risk per file 

In a somewhat less ideal world a releaser of microdata would not be able to determine the 
risk of re-identification for each record, but he would be able to determine the risk that an 
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unspecified record from the microdata set is re-identified. In this case, the statistical office 
should decide on the maximal risk it is willing to take when releasing a microdata set. If 
the actual risk is less than the maximal risk, then the microdata set can be released. If the 
actual risk is higher than the maximal risk, then the microdata set has to be modified. 
Determining which records have to be modified remains a problem, however. 

A basic model to determine the probability that an arbitrary record from a microdata set is 
re-identified has been proposed by Mokken et al. (1989, 1992). In Mokken, Pannekoek and 
Willenborg (1989) only the case where there is a single researcher, an unstratified 
population and a single key is considered. It has been extended to include the cases of 
subpopulations, multiple researchers and multiple keys (cf. Willenborg 1990a; Willenborg 
1990b; Mokken et al. 1992). The model of Mokken et al. (1992) takes three probabilities 
into account. The first probability, f, is equal to the sampling fraction. In other words, f, is 
the probability that a randomly chosen person from the population has been selected in the 
sample. The second probability, fa, is the probability that a specific researcher who has 
access to the microdata knows the values of a randomly chosen person from the population 
on a particular key. The third probability, fu, is the probability that a randomly chosen 
person from the population is unique in the population on a particular key. Combining 
these three probabilities, f, fa and fu, the probability that a record from a microdata set is re-
identified can be evaluated. 

For each sample element a number of variables is measured. The values obtained by these 
measurements (scores) are collected in records, one for each sample element. It is assumed 
that the variables in the key are either categorical variables or variables for which the 
measurements fall into a finite number of categories. 

Together, the records constitute a data set S that will be made available to a researcher R. 
We recall that whenever we use the term disclosure in fact re-identification disclosure is 
meant. The model of Mokken et al. (1989, 1992) does not take prediction disclosure into 
account. 

In terms of the Paass and Wauschkuhn (1985) set-up fa and fu together reflect the 
Informationsgehalt der Überschneidungsmerkmale, i.e., the information content of the 
matching values. The various scenarios they consider differ in terms of fa and fu. In 
particular, fu is influenced by the number of variables and the information content of these 
variables, i.e., their categorisation, an attacker has at his disposal to re-identify a record. 
The parameter fa is determined by the number of records that are contained in the 
identification file. 

With respect to researcher R and key K there is a circle of acquaintances A. Obviously, A 
and its size |A| will depend on the particular researcher R as well as on the key K and the 
variables as registered and coded in the data set. 

It is assumed that if conditions C1, C2 and C3 of the conditions for re-identification given in 
Section 14.3 hold, then conditions C4, C5 and C6 hold too. Condition C4 is a rather exacting 
one, but it can be introduced as an assumption for the sake of convenience in formulating a 
disclosure risk model. Note that it then yields a worst-case situation, in the sense that 
fallible perception and memory or other sources of ignorance, confusion and uncertainty 
for a potential intruder are excluded. Taken as an assumption together with C5 and C6 the 
implication is that the occurrence of any unique acquaintance of R in data set S is 
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equivalent to re-identification by R. It is assumed that re-identification of a record implies 
disclosure of confidential information. Thus re-identification can be treated as equivalent 
to disclosure. Implicitly, it is assumed in this model that the link between the identifying 
variables and the sensitive variables has not been disturbed by a technique such as data 
swapping. 

Furthermore, it is assumed that both the identifying and the confidential information are 
free of error or noise to researcher R, contrary to for example, Paass and Wauschkuhn 
(1985), and Fuller (1993). Clearly, this assumption is unrealistic for most microdata sets. 

The disclosure risk DR for a certain microdata set S with respect to a certain researcher R 
and a certain key K, is defined to be the probability that the researcher makes at least one 
disclosure of a record in S on the basis of K. In order to apply a criterion based on the 
disclosure risk, the value of this quantity for a given data set has to be determined. An 
expression for this quantity can be derived on the basis of a set of assumptions. 

In the model of Mokken et al. the following assumptions are made in addition to C1 -C6: 

A1. The circle of acquaintances A can be considered as a random sample from the 
population. 

A2. The data set S is a random sample from the population. 

Assumption A1 serves to imply that the probability that a randomly chosen element from 
the population is an acquaintance of R is NAfa ||= , where N is the size of the 
population. As a consequence the expected number of unique elements in A, || aU , is 
equal to ua fAUf |||| =  where U is the set of unique persons in the population and ||U  its 
size. Obviously assumption A2 implies that the probability that a specific unique element is 
selected in the sample is f. These assumptions allow one to obtain a very simple expression 
for the disclosure risk DR in terms of f, fa, and fu, namely 

 )exp(1 uaR fNffD −−= .      (14.1) 

Two of the parameters in the model of Mokken et al. (1989, 1992), fa and fu, are unknown. 
The parameter fa can be ‘guestimated’, i.e., obtained by inspired guesswork, by assuming 
different scenarios an attacker may follow. A number of such scenarios has been described 
in Paass and Wauschkuhn (1985) and Paass (1988). Evaluating fa seems difficult, however. 
In order to estimate the other parameter, fu, a number of models has been proposed in the 
literature. Models to estimate the number of uniques in the population, and hence fu, that 
have been proposed include the Poisson-gamma model (Bethlehem, Keller and Pannekoek, 
1989; Mokken, Pannekoek and Willenborg, 1989; Willenborg, Mokken and Pannekoek, 
1990; De Jonge, 1990; Rinott, 2003), the negative binomial superpopulation model 
(Skinner et al, 1990; Benedetti and Franconi, 1998; Rinott, 2003), the Poisson-lognormal 
model (Skinner and Holmes, 1992; Hoogland, 1994), models based on equivalence classes 
(Greenberg and Zayatz, 1992) and models based on modified negative binomial-gamma 
functions (Crescenzi, 1992; Coccia, 1992). As we have remarked in Section 14.4 not only 
the number of population uniques is important, but the numbers of cells with two, three, 
etc. persons are important as well. The Poisson-gamma model, the Poisson-lognormal 
model and the negative binomial superpopulation model can be applied to estimate the 
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number of cells with two, three, etc. persons as well. It seems that the other models 
mentioned above can also be extended in order to estimate these numbers. A major 
drawback is that the results are not very reliable in many cases.  

From the model by Mokken et al. (1989, 1992) it is clear that the statistical office that 
disseminates the data is able to influence the risk of re-identification. The statistical office 
basically has two ways to do this. First of all, the size of the data set can be reduced, i.e., 
the sampling fraction f can be reduced. A reduction of f implies a reduction of the risk. 
However, lowering f is generally undesirable, because usually f has to be reduced substan-
tially to be effective. This implies that only a small part of the data available can be 
released. The second way in which the statistical office can influence the re-identification 
risk is by reducing the number of population uniques, i.e., by reducing fu, The fraction fu 
depends on the information provided by the key variables. The less information the key 
variables provide, the less uniques there are in the population. In order words, fu can be 
reduced by collapsing categories (global recoding) and by replacing values by missings 
(local suppression). Collapsing categories is a global action, because it generally affects 
many records; replacing values by missings is a local action because it affects only a few 
individual records. Usually, the loss in information when reducing fu is considerably less 
than the loss in information when reducing f. Therefore, a statistical office will usually 
choose to control the re-identification risk by reducing fu rather than reducing f. The third 
possibility of controlling the re-identification risk, i.e., by reducing fa, is not applied in 
practice, because fa is difficult to model. 

Although the model by Mokken et al. (1989, 1992) provides some insight in how to reduce 
the disclosure risk it can hardly be used as a basis for the protection of microdata sets. The 
reason for this is that the two parameters of the model, fu and fa, are often difficult to 
evaluate. Usually there is insufficient data available to estimate fu and fa accurately. We 
conclude that even a model for a re-identification risk for an entire microdata set is 
difficult to apply in practice at the moment. In Section 14.7 we therefore face reality in 
which we have no satisfactory model (yet) for either the re-identification risk per record or 
re-identification risk for an entire microdata set. 

De Waal (1994a) examines the worst-case populations, i.e. the populations with the 
highest expected number of population-uniques, using a simple urn model. This model 
provides some insight into what populations are the worst as far as statistical disclosure is 
concerned. The model is explored in detail in Chapter 15. 

We end this section by noting that record linkage techniques have also been used to assess 
the re-identification risk per file. We refer the interested reader to, for example, Winkler 
(1998), and Domingo-Ferrer, Mateo-Sanz and Torra (2001). 

14.7. Intuitive re-identification risk 

In reality we are, unfortunately, still forced to base SDC on heuristic arguments rather than 
on a solid theoretical basis. The SDC rules mentioned in this section all reduce the re-
identification risk. It is, however, not possible to evaluate this reduction of the re-
identification risk. At Statistics Netherlands, rules for SDC of microdata of social surveys 
are based on testing whether scores on certain keys occur frequently enough in the 
population. Microdata sets of business surveys are not released by Statistics Netherlands at 
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the moment. A few problems arising for protecting microdata of social surveys are the 
determination of the keys that have to be examined, the way to estimate the number of 
persons in the population that score on a certain key, to make the meaning of the phrase 
‘frequently enough’ operational by determining for example, (a) threshold value(s), and 
how to determine appropriate SDC-measures. 

Statistics Netherlands distinguishes between two kinds of microdata sets for social surveys. 
The first kind is a so-called public use file. A public use file can be obtained by everybody. 
The keys that have to be examined for a public use file are all combinations of two 
identifying variables. The number of identifying variables is limited, and certain 
identifying variables, such as place of residence are not included in a public use file. 
Moreover, sampling weights have to be examined before they can be included in a public 
use file, because there are many situations in which weights can give additional 
information (see Chapter 19, and De Waal and Willenborg, 1995a, 1997). For instance, 
when a certain subpopulation is oversampled then this subpopulation can be recognised by 
the low weights associated with its members in the sample. Weights may only be 
published when they do not provide additional information that can be used for disclosure 
purposes. In case sampling weights are not considered suited for publication, SDC 
measures should be taken, such as subsampling the units with a low weight in order to get 
a subsample in which all units have approximately the same weight. Because the weights 
are then approximately equal, assuming that they are exactly equal would introduce only a 
small error.  

The second kind of microdata set for social surveys released by Statistics Netherlands is a 
so-called microdata set for research. A microdata set for research can only be obtained by 
well-respected (statistical) research offices. The information content of a microdata set for 
research is much higher than that of a public use file. The number of identifying variables 
is not limited and an identifying variable such as place of residence may be included in a 
microdata set for research. Because of the high information content of a microdata set for 
research, researchers have to sign a declaration stating that they will protect any 
information about an individual respondent that might be disclosed by them. The keys that 
have to be examined for a microdata set for research consist of three-way combinations of 
variables describing a region with variables describing the sex, ethnic group or nationality 
of a respondent with an ordinary identifying variable. 

The rules Statistics Netherlands applies for SDC of microdata of social surveys are based 
on the following idea: a key value, i.e., a combination of scores on the identifying 
variables that together constitute the key, is considered safe for release if the frequency of 
this key value in the population is more than a certain threshold value 0d . This value 0d  
was chosen after a careful and extensive search considering many different values and 
comparing the records that have to be modified for each value of 0d . The value that leads 
to the ‘most likely’ set of records that have to be modified has been chosen to be the value 
of 0d . Which records are considered to be the ‘most likely’ ones to be modified is a matter 
of personal judgement. 

When applying the above rules for either public-use files or microdata for research we are 
generally posed with the problem that we do not know the number of times that a key 
value occurs in the population. We only have the sample available to us. The population 
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frequency of a key value has to be estimated based upon the sample. For large regions it is 
possible to use an interval estimator to test whether or not a key value occurs often enough 
in a region. This interval estimator is based on the assumption that the number of times 
that a key value occurs in the population is Poisson distributed (cf. Pannekoek, 1999). 
However, for relatively small regions the number of respondents is low, which causes the 
estimator to have a high variance which in turn causes a lot of records to be modified. To 
estimate the number of times that a key value occurs in a small region we therefore suggest 
applying a point estimator. We will now discuss some possibilities for such an estimator. 

A simple point estimator for the number of times that a certain key value occurs in a region 
is the direct point estimator. The fraction of a key value in a region i is estimated by the 
sample frequency of this key value in region i divided by the number of respondents in 
region i. The population frequency is then estimated by this estimated fraction multiplied 
by the number of inhabitants in region i. When the number of respondents in region i is 
low, which is often the case, the direct estimator is unreliable. Another point estimator is 
based on the assumption that the persons who score on a certain key value are distributed 
homogeneously over the population. In this case the fraction of a key value in region i can 
be estimated by the fraction in the entire sample. The advantage of this, so-called, 
synthetic, estimator is that the variance is much smaller than the variance of the direct 
estimator. Unfortunately, the homogeneity assumption is usually not satisfied which causes 
the estimator to be biased. However, a combined estimator can be constructed with both an 
acceptable variance and an acceptable bias by using a convex combination of the direct 
estimator and the synthetic estimator. Such a combined estimator has been tested by 
Pannekoek and de Waal (1995 and 1998). See Chapter 16 for more information. 

Another practical problem that deserves attention is top-coding of extreme values of 
continuous (sensitive) variables. These extreme values may lead to re-identification 
because these values are rare in the population. At the moment Statistics Netherlands uses 
an interval estimator to test whether there is a sufficient number of individuals in the 
population who score on a ‘comparable’ value of the continuous variable (cf. Pannekoek, 
1992). If this is the case, then the extreme value may be published, otherwise the extreme 
value must be suppressed. In order to apply this method in practice it remains to specify 
what is meant by ‘sufficient’ and by ‘comparable’. 

Some important practical problems occur when determining which protection measures 
should be taken when a microdata set appears to be unsafe. In that case the original data set 
must be modified in such a way that the information loss due to SDC-measures is as low as 
possible while the resultant data set is considered safe. In De Waal and Willenborg (1994a) 
and De Waal and Willenborg (1995b, 1998) a model for determining the optimal local 
suppressions is presented. See Chapter 17 for more details regarding this model. 
Determining the optimal global recodings is much more difficult. Comparing the 
information loss due to global recodings to the information loss due to local suppressions 
is already a problem. In De Waal and Willenborg (1995c) and De Waal and Willenborg 
(1999b) this latter problem is solved by using methods based on entropy concepts. See 
Chapter 18 for more information on measuring the information loss due to local 
suppression, global recoding and data perturbation. 
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14.8. Statistical disclosure control for tables 

Between statistical disclosure control for microdata and tables there are many similarities. 
For instance, when trying to reduce the risk of disclosure one usually starts by modifying 
the identifying variables. In the case of microdata one collapses the categories of an 
identifying variable; in the case of tabular data one collapses two columns or rows of the 
table. After the global modifications have been made local modifications must be made. In 
the case of microdata of social surveys values of identifying variables in some records 
have to be set to ‘missing’, in the case of tabular data values of sensitive cells have to be 
set to ‘missing’. Here we also see a striking difference between statistical disclosure 
control for microdata of social surveys and tabular data. In the case of microdata of social 
surveys values of identifying variables are suppressed, whereas in the case of tabular data 
values of sensitive variables are suppressed. Another important difference between 
disclosure control for microdata and tabular data is the number of identifying variables that 
is involved. In the case of microdata there are generally many identifying variables, 
whereas in the case of tabular data there are only a few identifying variables.  

In the literature on statistical disclosure control for tabular data it is usually assumed that 
the tables that are published are based on an observation of the entire population. The 
disclosure problem of tabular data in the case that only a sample of the population is 
observed is hardly discussed. Some thoughts on this subject would be welcome. In the 
sequel we will, however, make the usual assumption that the tables are based on an 
observation of the entire population.  

After some columns and/or rows have been collapsed it is necessary to make some local 
modifications. A well-known technique to modify data in a table in order to safeguard this 
table against disclosure is cell suppression. First of all, this technique tries to identify 
which cells in a table contain information that is to be considered sensitive.  

The most common way to determine whether a cell is considered sensitive is by means of a 
dominance rule. A dominance rule states that if the values of the data of a certain number 
of respondents, say 3, constitute more than a certain percentage, say 75%, of the total value 
of the cell, then this cell has to be suppressed. The main idea on which this approach is 
based is the following. If a cell is dominated by the value of one respondent, then his 
contribution can be estimated fairly accurately. In particular, if there is only one 
respondent then his contribution can be disclosed exactly. If the value of a cell is 
dominated by the contributions of two respondents, then each of these respondents is able 
to estimate the value of the contribution of the other one quite accurately. In particular, if 
there are exactly two respondents then these respondents can disclose the contribution of 
the other. If there are n respondents then n-1 of them, pooling their information, can 
disclose information about the value of the data of the remaining respondent. For small n, 
say, 2, 3 and 4, this poses a problem.  

Apart from dominance rules other rules for determining sensitive cells have been 
suggested and applied in practice. An example of such a rule is the prior-posterior rule (cf. 
Cox, 1981; Geurts, 1992). This rule uses two parameters, p and q with p < q. It is assumed 
that every respondent can a priori estimate the contribution of each other respondent to 
within q percent of its respective value. After a table has been published the information of 
the respondents changes and they may be able to make a better (a posteriori) estimate of 
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the contribution of another respondent. A cell is considered sensitive if it is possible to 
estimate the contribution of an individual respondent to that cell to within p percent of the 
original value. A cell that is considered sensitive has to be suppressed.  

The suppression of a cell value because the content of this cell is considered sensitive 
according to, for example, a dominance rule is called primary suppression. Primary 
suppression alone is in many cases not sufficient to obtain a table that is safe for release. In 
a table the marginal totals are often published as well as the values of the internal cells. A 
cell value that has been suppressed can then be computed by means of the marginal totals. 
Therefore, other cell values have to be suppressed in order to avoid this possibility. This is 
called secondary suppression. Secondary suppression can be done in many different ways. 
Usually secondary suppression aims to optimise some target function. For instance, one 
could try to minimise the number of respondents whose data are suppressed in the table or 
one could try to minimise the total value of the data that are suppressed. Selecting the 
‘best’ target function is very hard and is partly based on subjective considerations.  

Secondary suppression causes other problems as well. Although it might be impossible to 
compute the exact values of suppressed cell values in a table after secondary suppression, 
it is still possible to compute ranges in which the values of the cells lie (cf. Geurts, 1992). 
To compute such ranges one can use all available information about the table, such as, for 
example, that the cell values of the table at hand are all non-negative. If these ranges of 
feasible values are small, then an attacker is able to obtain good estimates for the 
suppressed cell values. Therefore, secondary suppression must be done in such a way that 
the ranges in which the suppressed cell values lie are not too small.  

Additional information is another problem when reducing the risk of disclosure for a 
particular table. For example, suppose that the following dominance rule is used: a cell is 
suppressed if at least 80% of the value is the combined result of the data of 2 companies. 
Suppose, furthermore, that all the companies are in the sample. Now, suppose that there 
are three companies contributing to a certain cell and that the data of the largest company 
constitutes 50% of the value of this cell. If the cell is not suppressed, then this company 
can deduce that the data of the second largest company constitutes between 25% and 30% 
of the total value of the cell. On the other hand, if a cell value is primarily suppressed and 
the largest company contributing to that cell happens to know that the value was 
suppressed because it was considered sensitive and also happens to know the parameters of 
the dominance rule, then the largest company can deduce that the data of the second largest 
company constitutes between 30% and 50% of the total value of the cell. Absolute secrecy 
about the parameters of the dominance rules is the first step to avoid these problems.  

Three- and higher-dimensional tables and ‘linked’ tables pose a lot of theoretical problems 
(cf. De Vries, 1993, and De Waal and Willenborg, 1999a). The theory for these tables is 
much more difficult than for ordinary two-dimensional tables. For secondary suppression 
in such tables several heuristics and exact algorithms have been proposed, but further 
research remains to be carried out in order to perfect these algorithms. For the latest, state-
of-the-art exact algorithms we refer to Fischetti and Salazar-González (1998b, 2000). 

Another well-know technique which is also applied at Statistics Netherlands to protect a 
table against disclosure is rounding. In our opinion, the most interesting way of rounding is 
controlled rounding (cf. Fellegi, 1975; Cox and Ernst, 1983; Fischetti and Salazar-
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González, 1998a). The main advantages of controlled rounding compared to conventional 
rounding and random rounding is that the additivity of the tables is preserved, i.e. after 
rounding the rows and columns still add up to their rounded marginal totals, and that the 
user can choose an information measure which will be minimised. At the moment 
controlled rounding for two-dimensional tables does not provide serious problems any 
more (cf. Cox and Ernst, 1983). However, controlled rounding of higher-dimensional 
tables is a difficult problem. In some cases the problem is impossible to solve (cf. Cox, 
1987). Some heuristics to deal with three-way tables have been developed at the U.S. 
Bureau of the Census (see Fagan, Greenberg and Hemming, 1988).  

Note that rounding is a formalised way of adding noise to the data. Only for the ‘sensitive’ 
cells is it necessary to add this noise. For some other cells noise has to be added in order to 
preserve the additivity of the table. In other words, noise is added to those cells as a way to 
compensate for the noise that has been added to the sensitive cells. For still other cells it is 
not necessary at all to add noise. So, when we apply rounding not all the cells have to be 
rounded. Apart from the sensitive cells we are free to choose which cells we are going to 
round. This remark shows that we have a lot of freedom to create a satisfactory heuristic 
for rounding. This freedom to choose which additional cells have to be rounded apart from 
the sensitive cells is similar to the freedom when choosing cells for secondary suppression.  

14.9. Discussion 

There is one important conclusion one can draw from this chapter: SDC still offers a lot of 
possibilities for future research, despite the considerable amount of research that has been 
carried out to date. An excellent overview of current research problems on SDC is given 
by Giessing and Hundepool (2001). Most of the research topics mentioned in that paper 
are tackled in the so-called CASC project, a large international research project on SDC. 
The list of research topics given below is partly based on Giessing and Hundepool (2001). 

The theory of SDC for microdata has a number of gaps. Among the technical problems 
that remain to be solved are the following: 

• The determination of the number of uniques, or more generally the number of rare 
frequencies, in the population (for a worst-case scenario, see Chapter 15). Some of the 
models proposed in Section 14.6 appear to be acceptable, but can probably be 
improved upon. An alternative approach is to estimate which elements in the sample 
are unique in the population (see e.g. Verboon, 1994). Extending the model by 
Mokken et al. (1989, 1992) to estimate the risk of re-identification for a file is yet 
another subject to be tackled. This extension should take into account that 
measurement errors have been made and that population uniqueness is not necessary 
in order to disclose information. This problem is not examined in the rest of this book 
although this topic has attracted considerable attention during the last few years, see, 
for example, Winkler (1998), Franconi (1999), Domingo-Ferrer, Mateo-Sanz and 
Torra (2001), Rinott (2003), and Shlomo (2003) 

• The construction of an estimator for the number of times that a key value occurs in 
small areas. Such an estimator is difficult to construct, although the preliminary results 
obtained at Statistics Netherlands seem encouraging (see Chapter 16 for the 
construction of such an estimator).  
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• The determination of appropriate global recodings and local suppressions. We refer to 
Hurkens and Tiourine (1998b) and Chapter 17 for more information.  

• The calculation of information loss due to local suppressions and global recodings (see 
Chapter 18 for an information loss model based on entropy). 

• The estimation of the re-identification risk per record. In fact, this would yield a sound 
criterion to judge the safety of a microdata set. This criterion can guide one in 
producing safe microdata sets by applying SDC-measures such as global recoding and 
local suppression. This problem is not examined in the remainder of this book. Some 
interesting recent papers are Skinner and Holmes (1998), and Benedetti and Franconi 
(1998). 

• The protection of microdata of business surveys by means of perturbative techniques. 
Microdata of business surveys differ substantially from microdata of social surveys, 
for example, because microdata of business surveys are often skewly distributed. They 
cannot be protecting in the same manner as microdata of social surveys. Instead one 
has to resort to perturbative techniques. In recent years, ample research has been 
dedicated to such perturbative techniques, both at Statistics Netherlands and in the rest 
of the world. Some important research papers on this topic are Kim (1986), Sullivan 
(1989), and Moore (1996a, 1996b). At Statistics Netherlands, research on perturbative 
techniques for microdata has focussed on the so-called Post RAndomisation Method 
(PRAM). We refer to Kooiman, Willenborg, and Gouweleeuw (1997), De Wolf, 
Gouweleeuw, Kooiman and Willenborg (1997), and Gouweleeuw et al. (1998) for 
more information on PRAM. Perturbative techniques for microdata are not considered 
in this book. 

• The protection of microdata of business surveys by means of microaggregation. 
Microaggregation is a technique to combine several individual records into a single, 
micro-aggregated record. Microaggregation can be carried out either univariately or 
multivariately. It offers an alternative for the above-mentioned perturbative 
techniques. For information on microaggregation we refer to, for example, Defays and 
Nanopoulos (1993), Domingo-Ferrer and Mateo-Sanz (2002), and Sande (2001 and 
2002). Microaggregation is not examined in this book. 

• The construction and release of synthetic microdata. In order to avoid disclosure of 
sensitive information several researchers have proposed to release carefully 
constructed synthetic microdata instead of the original microdata (see for example 
Rubin, 1993; Fienberg, 1998; Dandekar, Cohen and Kirkendall, 2001). The feasibility 
of such an approach has been doubted by other researchers (see Kooiman, 1998). The 
construction of synthetic microdata is outside the scope of this book. 

For tabular data there are a number of important problems to be solved: 

• The development of alternative techniques to cell suppression. Fischetti and Salazar-
González (1998c) propose to publish intervals instead of suppressing values. This 
simplifies the mathematical problem of protecting a table against disclosure 
considerably. This approach is not examined in this book. 
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• The extension of the theory of statistical disclosure control for single two-
dimensional tables to higher-dimensional tables and ‘linked’ tables against disclosure. 
For this purpose heuristics should be developed. We refer to De Wolf (1999) for a 
heuristic to protect high-dimensional tables against disclosure by means of cell 
suppression. High-dimensional tables are not explicitly considered in this book. 

• The development of cell suppression algorithms that lead to absolutely safe tables 
according to the sensitivity measure that is applied (see for example Fischetti and 
Salazar-González, 1998b, 2000, and Chapter 20 of the present book). 

Finally, more research should be carried out with respect to the possibility of remote 
access to statistical data. With remote access, the data, either microdata or tabular data, 
remain at the statistical office and users request certain statistical analyses to be performed, 
for example by supplying an SPSS script to the statistical office. Such scripts are screened 
to detect whether they would provide the user with too much sensitive and identifying 
information, given the information this user has already received from the statistical office. 
Remote access is not examined in this book. We refer the reader to, for example, De Boer, 
Schouten and Willenborg (2000), Duncan and Mukherjee (2000), and Shlomo (2003). 

The algorithms for protecting microdata and tabular data should be incorporated into a 
software framework that can deal with the time-consuming calculations. For microdata, 
software must be developed to indicate which records and variables must be modified, and 
how they should be modified, when applying a particular disclosure rule. For tabular data 
software must be developed to perform cell suppression and (controlled) rounding when a 
dominance rule or another kind of cell sensitivity rule is specified. Statistics Netherlands 
has developed such a software framework called ARGUS. In fact, ARGUS consists of two 
separate parts: µ-ARGUS for protection of microdata and τ-ARGUS for protection of 
tabular data. We will occasionally refer to ARGUS in subsequent chapters. µ-ARGUS is 
based on the framework described in Section 14.7, τ-ARGUS on the framework of Section 
14.8. For more information on ARGUS see for example De Jong (1992), De Waal and 
Willenborg (1994b), Van Gelderen (1995), Pieters and De Waa1 (1995), De Waal and 
Pieters (1995), Giessing and Hundepool (2001), and Hundepool et al. (2002a and 2002b). 
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15. The Maximum Expected Number of Unique Individuals in a 
Population 

15.1. Introduction 

A central problem in the theory of statistical disclosure control is the determination of the 
probability that an individual with certain identifying features is unique in the population. 
The reason for this is that individuals with unique identifying features are (relatively) easy 
to recognise. Therefore, to estimate the risk of disclosure that is involved when microdata 
are released it is useful to estimate the number of unique individuals in the population. In 
this chapter an upper bound on the expected number of unique individuals in a population 
is derived for a given disclosure key.  

For convenience the problem is stated in terms of urns and balls instead of identifying 
features and individuals. Individuals correspond to balls and identifying features to urns. 
Each individual of the population has a probability jp  to have identifying feature j (i.e. a 
specific score on a disclosure key). In terms of balls and urns: each ball has a probability 

jp  to be assigned to urn j. The balls are assigned to the urns independently. Our problem 
is to find the probability distribution for which the expected number of individuals with 
unique identifying features is maximal. In other words, we want to find the probability 
distribution for which the expected number of urns with exactly one ball is maximal. 

Urn models are quite common in statistical disclosure control to assess the disclosure risk 
of a microdata set. For examples of such urn models in literature we refer to Chen and 
Keller-McNully (1998), Samuels (1998) and Fienberg and Makov (2001). We are the first 
to consider the specific problem of this chapter, and hence also the first to propose a 
solution to it. 

In Section 15.2 of this chapter our problem is stated in mathematical terms. In Section 15.3 
some consequences of the Lagrangean corresponding to our objective function and 
constraints are examined. Studying the derivative of this Lagrangean yields us some 
interesting insights. Section 15.4 and Section 15.5 are rather technical. From these two 
sections an important result follows, namely that there are (at most) two possible solutions. 
In Section 15.6 bounds are derived in order to be able to compare the results for the two 
possible solutions without explicitly determining them. Numerical results are presented in 
Section 15.7. A short summary of the solution obtained is given in Section 15.8. 

This chapter has appeared in Kwantitatieve Methoden (De Waal, 1994a). 

15.2. The problem 

Suppose we have m urns and n balls. Each ball is assigned to an urn independently. The 
probability to assign a ball to the j-th urn is jp . The expected number of urns with exactly 
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one ball can be expressed as a function of the probabilities jp . We are interested in the 
following problem: “How should the probabilities jp  be chosen in order to maximise the 
expected number of urns with exactly one ball?”.  

In Section 15.1 we already noted that this problem is equivalent to a problem in the theory 
of statistical disclosure control. If we let the possible identifying features correspond to the 
urns and the individuals to the balls, then we see that a solution to our problem provides an 
upper bound on the number of unique individuals in the population. Here we assume that 
the identifying features are distributed independently. This assumption is not always 
justified in practice.  

It is easy to calculate the expected number of urns with exactly one ball. This number is 
given by 

 ∑
=

−−=
m

j

n
jj pnpE

1

1)1( .      (15.1) 

In the rest of this chapter we will also use the function N defined by nE . We will refer to 
each of these functions as the target function. We hope that this will not confuse the reader 
too much. The jp  must be larger than, or equal to, zero. They must also sum to unity. 
These constraints are expressed by 

 0≥jp , for all j = 1,…,m,      (15.2) 

and 

 ∑
=

=
m

j
jp

1
1.       (15.3) 

15.3. The Lagrangean 

In order to find the maximum of (15.1) subject to (15.2) and (15.3) we begin by 
determining the Lagrangean ),,...,( 1 λmppL , 
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By differentiating L with respect to λ we obtain that the sum of the ip  is equal to one. By 
differentiating with respect to ip  we obtain 

 λ=−−−− −− 21 )1()1()1( n
ii

n
i ppnnpn ,     (15.5) 

or alternatively  

 nnpp i
n

i λ=−− − )1()1( 2 .      (15.6) 
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This must hold for all i. Therefore we can conclude that the optimal ip  obey 

 22 )1)(1()1)(1( −− −−=−− n
jj

n
ii pnppnp .    (15.7) 

This relation must hold for all i and j. 

Relation (15.7) suggests that it is useful to study the behaviour of the function defined by 
2)1)(1()( −−−= n

n xnxxf , 10 ≤≤ x .    (15.8) 
We can make the following observations about this function: 

1. 1)0( =nf ; 

2. 0)1( =nf ; 

3. 0)1( =nfn ; 

4. 3)1)(2)(1()( −−−−=′ n
n xnxnxf ; 

5. 0)( =′ xfn  if nx 2=  or 1=x ; 

6. 0)( <′ xfn  if nx 2< ; 

7. 0)( >′ xfn  if 12 << xn . 

This implies that the equation Cxfn =)( , where C is a constant has the following 
solutions for 10 ≤≤ x : 

8. If 10 ≤< C , there is only one solution. For this solution 0x  we have: nx 10 0 <≤ . In 
order words, for nx 10 <≤  the function nf  is injective.  

9. If 0)2( ≤< Cnfn , there are two solutions 1x  and 2x  between 0 and 1. For these 
solutions we have: nxn 21 1 <≤  and 12 2 ≤< xn . In other words, for 11 << xn  
the function nf  is not injective.  

10. If )2( nfC n= , there is only one solution: nx 2= .  

This reveals that the optimal ip  can have at most two different values. Moreover, we 
know that when the optimal solution has two different ip -values, then one value lies 
between 1/n and 2/n and the other is larger than 2/n. We also know that if one ip  is 
smaller than 1/n, then all the ip  have the same value. This implies that if nm ≥ , the 
optimal solution is given by mpi 1=  for all i. From now on we therefore assume that 
n > m.  

In order to have some visual understanding for observations 8, 9 and 10, we have plotted 
function nf . In Figure 15.1 the function nf  is drawn for the case n = 4. From Figure 15.1 
one can clearly see that observations 8, 9 and 10 hold in this case.  
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Figure 15.1. The function 2
4 )1)(41()( xxxf −−= . 
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15.4. Parameterisation of conjugated values 

 We know that the solutions of the set of equations given by (15.7) have at most two 
different values for 10 ≤≤ ip . From now on we will call these two values conjugated 
values. In this section a parameterisation of conjugated values is derived. To simplify the 
notation somewhat we use ip−1  instead of ip  in this section.  

Suppose we have two conjugated values Qp −=11  and Rp −=12 . We suppose that 
QR µ=  ( 10 ≤≤ µ ). From the set of equations (15.7) we obtain relation (15.9) between R 

and Q:  

 2121 )1()1( −−−− −+=−+ nnnn RnnRQnnQ .    (15.9) 

If we substitute QR µ=  in (15.9), then we find a parameterisation of Q in terms of µ. 
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)1(
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−−= n

n

n
nQ

µ
µ ,  10 ≤≤ µ .    (15.10) 

If 0=µ , then Q is equal to (n-1)/n. The associated probability 1p  is therefore equal to 
1/n. R is equal to 0 if 0=µ . The associated probability 2p  is equal to 1. When µ 
approaches 1 then Q tends to (n-2)/n. The associated probability 1p  tends to 2/n. R tends 
to (n-2)/n when µ approaches 1. The associated probability 2p  tends to 2/n.  

The behaviour of function Q is maybe a bit difficult to understand without some visual aid. 
In Figure 15.2 the function Q is drawn for the case n=5. 

 

Figure 15.2. The function 
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The derivative of Q with respect to µ is given by 
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dQ

µ
µµµµ

µ
.  (15.11) 

This derivative is less than 0 if 10 ≤≤ µ . The parameterisation of Q and R by means of µ 
is therefore 1-1. The derivative of R with respect to µ is larger than 0 if 10 ≤≤ µ . 

15.5. The number of urns with the same probability 

15.5.1. An important set of equations involving conjugated values 
Now we make use of the fact that there are at most two (conjugated) values p and q for the 
optimal probabilities. We suppose that there are z urns with probability p and m-z urns with 
probability q. Implicitly we hereby assume that n > m and therefore (cf. points 8 and 9 in 
Section 15.3) that both probabilities are larger than 1/n. Note that z = m, or z = 0, 
corresponds to the situation that all probabilities are equal. As the reader will remember we 
have already established that the optimal probabilities are all equal to 1/m if mn ≤ .  

For p and q relation (15.12) and relation (15.13) below hold.  

 )1()1()1()1( 22 nqqnpp nn −−=−− −−     (15.12) 

and 

 1)( =−+ qzmzp .      (15.13) 

For the moment we do not demand z to be an integer between 0 and m. Instead z may be 
any real value between 0 and m. We will first solve the problem for z assumed to be a real 
value, and later we will modify this solution to obtain the solution for z being integer.  

15.5.2. The solutions of the equations 
In this section we show that the set of equations (15.12) and (15.13) has at most three 
different pairs of solutions ))(),(( zqzp ii . These pairs are differentiable with respect to z. 
The proof of this latter statement is elementary, but rather long and tedious. Therefore, we 
do not go into all the details of the proof.  

The first solution is, of course, given by p(z) = q(z) = 1/m. From now on we concentrate on 
the case that p(z) is unequal to q(z). Without loss of generality we assume that p(z) < q(z). 
Instead of relation (15.13) we use the following relation  

 1)1)(()1( −=−−+− mqzmpz .     (15.14) 

For (1-p) we can substitute the expression given in (15.10), and for (1-q) we can substitute 
µ times that expression. So, the problem of finding solutions to the set of equations (15.12) 
and (15.13) translates into the problem of finding the roots of the function h(µ) defined by 

)1)(1()1(1)1()1(1)( 122 −−− −−−−−−+−−= nnn m
n

nz
n

nzh µµµµµ  (15.15) 
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for 10 <≤ µ . Now we will list some properties of the function h. 

It is easy to see that for µ = 0 and µ = 1 we have 

1. )1(1)0( −−−= m
n

nzh , 

2. 0)1( =h . 

The function h(µ) can be studied by examining its first and second derivative. The first 
derivative is still a complicated expression, but for µ = 0 and µ = 1 we obtain two simple 
terms:  

3. 
n

nzmh 1)()0( −−=′ , 

4. 
n

nnmh 1)2()1( −−=′ . 

The second derivative is given by: 

5. 43 )1)(2)(3(1)1(1)1)(2()( µµµ 






 −−−−






 −−−−−−=′′ z
n

nnn
n

nz
m

mnnh . 

So, it is very easy to determine when )(µh ′′  is positive and when it is negative.  

Combining these, and other, facts about the function h(µ) we are able to draw the 
following conclusions. 

• If mn 2≥ , then h(µ) has one root between 0 and 1 

• If mn 2< , then h(µ) has at most two roots between 0 and 1 

The first case is not very interesting. We only note that the pair (p(z),q(z)) associated to the 
root µ(z) is the optimal solution for given value of z. To see this we consider the target 
function N(p,q), which is of course defined by 

11 )1()1()1(),( −− −+−−= nn qqppmqpN ,    (15.16) 

where q = 1-(m-1)p. We are seeking the maximum of this function. One possible solution 
is the pair (p(z),q(z)) associated to µ (z). The second derivative of N(p,q) with respect to p 
is given by  

))1)(2)(1()1)(2)((1)(1( 33
2

2
−− −−−+−−−−=

∂
∂ nn qnqmpnpnm

p
N . (15.17) 

This function is positive for the only other possible solution, p = q = 1/m, if n > 2m. 
Therefore, the target function has a local minimum for p = q = 1/m. So, the only remaining 
possible solution for the maximum is the pair (p(z),q(z)) associated to µ(z). 
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We will describe the second case, mn 2≤ , in more detail. If there is at least one root, then 
there is one root µ(z) for which the associated p(z) converges to 1/m when z tends to m. If 
there is a value 0z  for which there are two roots, then there is one root )(1 zµ  which exists 
for all mzz ≤≤0 , while the other root )(2 zµ  exists for )1()1(0 −−≤≤ nmnzz , but not 
for )1()1( −−> nmnz . This root )(2 zµ  is equal to 0 for z equal to n(m-1)/(n-1). For 
larger values of z )(2 zµ  would become smaller than 0, which is not allowed.  

By applying the “implicit function theorem” we can show that for each value of z between 
0 and m for which they exist the functions p(z) and q(z) are differentiable with respect to z. 
We only have to derive the determinant of the Jacobian of the set of equations (15.12) and 
(15.13). This determinant has to be unequal to zero in order to be able to apply the implicit 
function theorem. After some, not too difficult, calculations it becomes clear that the 
determinant is indeed unequal to zero. 

15.5.3. Implications of the solutions of the important set of equations 
Now we will use the (differentiable) functions p(z) and q(z) to determine the possible 
optimal values of z. We substitute the pair of functions p(z) and q(z) into the target 
function N. This gives us another function M(z). The function M is given by  

 11 )1()()1()( −− −−+−= nn qqzmpzzM .    (15.18) 

Because relation (15.13) is valid for all z, we can differentiate this relation with respect to 
z. We arrive at the following result.  

 
dz
dpzpq

dz
dqzm −−=− )( .     (15.19) 

Now we are able to determine the derivative of M with respect to z. This will enable us to 
deduce the possible optimal values for z for the target function N. After that, we have to 
compare the possible optimal values of N to find the true optimal value. By applying the 
chain rule, relation (15.12) and relation (15.19) we can show that the derivative of M with 
respect to z is given by  

 ))1()1()(1( 2222 −− −−−−= nn qqppn
dz

dM ,    (15.20) 

where p and q are functions of z. 

Using (15.12), or equivalently relation (15.7), again we find 

 
nq
nppq nn

−
−−=− −−

1
1)1()1( 22 .     (15.21) 

When we substitute this equation into (15.20) we finally arrive at 

 ))((
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)1)(1( 2

npqqpqp
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.   (15.22) 
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Now we have succeeded in finding an expression for the derivative of M with respect to z. 
We can therefore determine the optimal z. This turns out to be very easy, because dzdM  
has a fixed sign.  

Without loss of generality we assume that p < q. This is of course equivalent to: 1-p > 1-q. 
We know now that p-q < 0 and 1-nq < 0 (see the conclusions at the end of Section 15.3). 
So, to establish the sign of dzdM  we only have to determine the sign of p + q - npq. This 
may seem a hard problem, because p and q both depend on the value of z. However, by 
using the parameterisation of p and q we can demonstrate that the sign of dzdM  does not 
depend on the actual value of z.  

We can rewrite p + q - npq to obtain  

)2()1)(1()1)(1()1)(1( nqnpnqpnnpqqp −+−−+−−+−−−=−+ . (15.23) 

From (15.23) and the parameterisation of 1-p and 1-q we can derive 
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1 µµ
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nnpqqp n −−
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−=−+ − .   (15.24) 

Here F(µ) and G(µ) are given by  
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nnnF µµµµµ   (15.25) 

and 

 ( ))1)(1()1()1()1()( 122 −−− −−−−−−= nnn nnG µµµµµ .  (15.26) 

Because 21 11 −− −>− nn µµ  and n(n-2)/(n-1) < n-1, we find that F(µ) is larger than G(µ) 
when 10 <≤ µ . In other words, p + q - npq is larger than 0 when 10 <≤ µ . This result 
does not depend on z. Therefore we can conclude that dzdM  is larger than 0. This 
implies that in order to optimise the function M we have to make z as large as possible. 
This, in turn, implies that in order to optimise the target function N we have to make z as 
large as possible. The actual optimal (real) value of z is determined by the constraints, but 
we have established that the largest value of z that satisfies all the constraints is the optimal 
value.  

So far we have allowed z to be any real number between 0 and m. Now we remind 
ourselves that z must be an integer between 0 and m. We know that if p < q, then z must be 
as large as possible.  

We have the following cases: 

a) If mn ≤ , then the optimal solution is the uniform distribution. 

b) If n > 2m, the uniform distribution is a local minimum. The optimal real value for z is 
n(m-1)/(n-1), which is larger than (m-1), but smaller than m. Therefore, the optimal 
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solution is given by a non-uniform distribution with (m-1) small probabilities and one 
large probability.  

c) If mnm 2≤< , there are two possibilities: either the optimal solution is the uniform 
distribution or the optimal solution is a non-uniform distribution with  
(m-1) small probabilities and one large probability. However, it is not clear for which 
combinations of m and n the uniform distribution is the optimal solution and for which 
combinations of m and n the non-uniform distribution is the optimal solution. In 
Section 15.6 this case, mnm 2≤< , is further investigated. 

15.6. General remarks about the solution 

The solution for mn ≤  is given by ip  is equal to 1/m for all i. For mn 2>  the solution 
has m-1 probabilities smaller than 2/n and one probability larger than 2/n. If mnm 2≤<  
the solution is not clear. In this section we make some remarks about this case. 

We start by making the observation that if the non-uniform distribution, i.e. (m-1) 
probabilities equal to p (1/n < p < 2/n) and one probability equal to q (2/n < q < 1;  
q = 1 - (m-1)p), is better than the uniform distribution for a certain number of balls 0n , 
then this non-uniform distribution is better than the uniform distribution for all 0nn ≥ . 
The proof of this assertion is quite simple. To make the dependency on n more explicit we 
use the following notation:  

 11
0

00 )1()1()1();,( −− −+−−= nn qqppmnqpN .   (15.27) 

Now, let us suppose that for a certain 0n  the non-uniform distribution is better than the 
uniform distribution. In other words, we have the following relation 
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 −≥
n

m
nqpN .      (15.28) 

We have to prove that a similar inequality for 10 +n  instead of 0n  holds. We can do this 
by making use of the inequality for 0n , and by rewriting the expression for )1;,( 0 +nqpN . 
So, we write )1;,( 0 +nqpN  in the following way 
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00

00 )1)(1()1)(1()1(

     1);,()1;,(
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+−=+
nn qqmqppmpm

m
mnqpNnqpN   (15.29) 

We can combine the last two terms of this expression by making use of another inequality, 
namely 

 11 00 )1()1( −− −≥− nn qqpp .     (15.30) 
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This inequality holds because qpnn <<<+ 00 1)1(1 . Using this inequality to combine 
the last two terms of the expression for )1;,( 0 +nqpN  we find yet another inequality, 
namely  

 00 )1())1(1()11()1;,( 0
nn qqqpmmnqpN −−−−+−≥+ .  (15.31) 

Finally, by using 1 - (m-1)p – q = 0, we see that we have succeeded in deriving the desired 
inequality. So, we can draw the conclusion that if, for a certain 0n , there is a non-uniform 
distribution which is better than the uniform distribution, then for all 0nn ≥  there is a non-
uniform distribution which is better than the uniform distribution. The problem remains to 
determine the critical number 0n , given a certain number of urns m.  

We can evaluate the target function N by assuming that the solution is given by uniformly 
distributed ip , i.e. mpi 1= . The value of N for uniformly distributed ip  is denoted by 

uniN . For uniN  we have the following expression.  
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By assuming that the non-uniform solution of the equations for the conjugated values (see 
(15.12) and (15.13)) exists we can estimate the value of the target function for this 
solution. This value will be denoted by nonN , the maximal expected number of urns with 
exactly one ball in the case of a non-uniform distribution. In Section 15.5 we have derived 
that the target function is maximal if z is as large as possible. The largest possible real 
value for z is n(m-1)/(n-1). Therefore, an upper bound on nonN  is given by  
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On the other hand we can find a lower bound lownon,N  for nonN . This can be obtained by 
substituting any probability distribution ip  into the target function N. A suitable choice is:  

 npi 1= , for i=1, 2,…,m-1 

 nmpm )1(1 −−=  

Substituting these expressions in N yields 
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Relations (15.32), (15.33) and (15.34) give criteria to decide which distribution is better:  

• if maxnon,uni NN ≥ , then the uniform distribution is better 

• if lownon,uni NN ≤ , then the non-uniform distribution is better. 
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In these two cases we can decide which distribution will be the optimal one without 
explicitly determining the non-uniform distribution. We are able to decide which 
distribution is the optimal distribution immediately by looking at the numbers m and n. By 
the way, if the latter situation occurs, i.e. if lownon,uni NN ≤ , then we can be sure that the 
non-uniform distribution exists. If uniN  lies between lownon,N  and maxnon,N , then we have 
to determine the non-uniform distribution and substitute this solution into the target 
function. In this case we cannot decide which distribution will be best without explicitly 
determining the non-uniform distribution.  

We investigate the behaviour of uniN  and nonN  if n tends to infinity. We do this for two 
different cases. First, we assume that nm α= , where 10 <<α  is a constant. Second, we 
assume that m = n-β, where β > 0 is a constant.  

If nm α= , then we have 

 α1
unilim −

∞→
= eN

n
       (15.35) 

and 

 eNN
nn

α==
∞→∞→ lownon,maxnon, limlim      (15.36) 

It is an elementary exercise to check that  

 ee αα <−1 .       (15.37) 

for 0 < α < 1. So, we can conclude that if we keep the ratio α = n/m fixed, then the non-
uniform distribution is always better than the uniform distribution for n large enough. 

If m = n-β, we have 

 eNNN
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1limlimlim lownon,maxnon,uni ===
∞→∞→∞→

.   (15.38) 

In fact, we have the following 

 )())(1( maxnon,uni ng
e

NNn +=−− β  with 0)(lim =
∞→

ng
n

.  (15.39) 

So, we can conclude that if we keep the difference β = n-m fixed, then the uniform 
distribution is better than any non-uniform distribution for n large enough. 

15.7. Numerical results 

Given the number of urns m it is interesting to know the smallest number of balls for 
which the optimal solution is not uniformly distributed. As a first step to find this number 
we can apply the criteria given in Section 15.6 to determine which distribution is better. 
We define uniE , nonE , lownon,E  and maxnon,E  by n times the corresponding N-value. In 
Table 15.1 the highest number of balls for which uniE  is still larger than maxnon,E , un , is 
listed. For this number of balls and for any smaller number of balls the uniform 
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distribution is the optimal one. In Table 15.1 the lowest number of balls for which uniE  is 
smaller than lownon,E , nn , is also listed. For this number of balls and for any larger number 
of balls the non-uniform distribution is the optimal one. For numbers of balls between un  
and nn  the criteria given in Section 15.6 cannot determine which distribution is the 
optimal one. 

 

Table 15.1. Critical values un  and nn  as given by the criteria from Section 15.6. 

number of urns m un nn  

5 6 9 
10 11 16 

15 16 22 

20 21 27 

30 31 39 

40 41 50 

50 51 61 

60 61 72 

70 71 83 

80 81 94 

90 91 105 

100 101 115 

150 151 168 

200 201 221 

300 301 326 

400 401 429 

500 501 533 

1,000 1,001 1,046 

 

For numbers of balls between un  and nn  it is not clear yet which distribution is the 
optimal one. Therefore a numerical routine has been implemented. This routine determines 
the optimal solution to the problem given m urns and n balls, and computes the expected 
number E of urns with exactly one ball. The results of our numerical experiments are 
shown in Table 15.2. In this table the “last optimal uniform distribution” and the “first 
optimal non-uniform distribution” are listed. By this we mean that for any number of balls 
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smaller than, or equal to, the number of balls of the last optimal uniform distribution the 
uniform distribution is the optimal one. For any number of balls larger than, or equal to, 
the number of balls of the first non-uniform distribution the non-uniform distribution is the 
optimal one. In other words, the number of balls of the first optimal non-uniform 
distribution is the critical value )(0 mn . In the case of the uniform distribution the 
probabilities are, of course, given by 1/m. In the case of the non-uniform distribution there 
are m-1 small probabilities p and one large probability given by 1-(m-1)p. In Table 15.2 
this small probability p is listed. The value of p and the value of the target function E can 
be found by maximising (15.16) subject to pmq )1(1 −−=  and mp 10 ≤≤  and 
multiplying the result by n. This is a simple optimisation problem involving only one 
unknown and can be solved by several well-known standard techniques. As we know that 

mmnm 2)(0 ≤< , we can find )(0 mn  by means of a binary search procedure by solving 
)log(m  optimisation problems.  
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Table 15.2. The solution of the problem for given m and n 

number of 
urns 

last optimal uniform 
distribution 

first optimal non-uniform distribution 

(m) #balls (n) value target 
function E 

#balls (n) value target 
function E 

smallest p 

5 8 1.678 9 1.568 1.16×0.1 
10 15 3.432 16 3.420 6.28×0.01 
15 21 5.284 22 5.271 4.56×0.01 
20 26 7.212 27 7.123 3.71×0.01 
30 38 10.840 39 10.807 2.57×0.01 
40 49 14.535 50 14.493 2.00×0.01 
50 60 18.218 61 18.175 1.64×0.01 
60 71 21.893 72 21.816 1.39×0.01 
70 82 25.565 83 25.538 1.20×0.01 
80 93 29.235 94 29.218 1.06×0.01 
90 104 32.902 105 32.898 9.52×0.001 

100 114 36.617 115 36.579 8.70×0.001 
150 167 55.016 168 54.978 5.95×0.001 
200 220 73.397 221 73.374 4.52×0.001 
300 325 110.170 326 110.165 3.07×0.001 
400 428 146.979 429 146.955 2.55×0.001 
500 532 183.751 533 183.744 1.88×0.001 

1,000 1,045 367.694 1,046 367.687 9.56×0.0001 

 

In Figure 15.3 it is shown for which combinations of m and n the uniform distribution is 
the optimal one, and for which combinations of m and n a non-uniform distribution is the 
optimal one.  
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Figure 15.3. The number of balls for the first optimal non-uniform distribution as a 
function of the number of urns. 
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The graph of the number of balls for the first optimal non-uniform distribution as a 
function of the number of urns is almost a straight line. This is, of course, not very 
surprising if we consider Table 15.2. However, the result is rather surprising if we look at 
the complexity of the equations that describe the relation between the number of urns, the 
number of balls and the optimal distribution. 

In Table 15.3 the expected number of urns with exactly one ball for the two possible 
optimal distributions are compared. If there are 5 urns and 8 balls the possible optimal non-
uniform distribution does not exist, because the function h(µ) does not have a root between 
0 and 1.  

Notice that the value of nonE  is extremely well approximated by lownon,E . So, in practice 
we may use lownon,E  instead of nonE . If lownon,E  is larger than uniE , then the non-uniform 
distribution is the optimal one. In this case the optimal value of E is almost equal to 

lownon,E . If uniE  is larger than lownon,E , then generally the uniform distribution is the 
optimal one. In this case the optimal value of E is equal to uniE . 
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Table 15.3. Comparison between the two possible optimal distributions 

# urns # balls uniE nonE lownon,E maxnon,E  
5 8 1.678 - 1.602 1.795 
5 9 1.510 1.568 1.567 1.754 

10 15 3.432 3.431 3.430 3.670 
10 16 3.294 3.420 3.420 3.646 
15 21 5.284 5.279 5.279 5.540 
15 22 5.166 5.271 5.271 5.522 
20 26 7.212 7.130 7.130 7.412 
20 27 7.115 7.123 7.123 7.396 
30 38 10.840 10.811 10.811 11.103 
30 39 10.754 10.807 10.807 11.092 
40 49 14.535 14.496 14.496 14.797 
40 50 14.461 14.493 14.493 14.788 
50 60 18.218 18.178 18.178 18.486 
50 61 18.151 18.175 18.175 18.478 
60 71 21.893 21.859 21.859 22.171 
60 72 21.832 21.857 21.857 22.165 
70 82 25.565 25.540 25.540 25.855 
70 83 25.507 25.538 25.538 25.849 
80 93 29.235 29.220 29.220 29.537 
80 94 29.180 29.218 29.218 29.532 
90 104 32.902 32.900 32.900 33.219 
90 105 32.850 32.898 32.898 33.214 

100 114 36.617 36.581 36.581 36.904 
100 115 36.850 36.579 36.579 36.900 
150 167 55.016 54.979 54.979 55.310 
150 168 54.976 54.978 54.978 55.307 
200 220 73.397 73.375 73.375 73.710 
200 221 73.362 73.374 73.374 73.708 
300 325 110.170 110.165 110.165 110.505 
300 326 110.140 110.165 110.165 110.504 
400 428 146.979 146.956 146.956 147.300 
400 429 146.954 146.955 146.955 147.299 
500 532 183.751 183.745 183.745 184.091 
500 533 183.728 183.744 183.744 184.090 

1,000 1,045 367.693 367.688 367.688 368.040 
1,000 1,046 367.677 367.687 367.687 368.039 
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15.8. Summary 

The first result we derived was that the probabilities of the optimal solution can have at 
most two different values. This was a rather easy result, obtained in Section 15.3.  

We still did not know how many probabilities have one of the possible values and how 
many probabilities have the other possible value, though. This question was examined in 
Section 15.4 and Section 15.5. After much ado, we found that there are two possibilities: 
either all the probabilities are equal, or there are m-1 small probabilities, which are all 
equal, and one large probability. 

At that moment we were faced with the question of determining for what combinations of 
m and n all the optimal probabilities have the same value, and for what combinations of m 
and n there are m-1 small probabilities and one large probability. Part of the answer to this 
question was already obtained in Section 15.5.  

If mn ≤ , the optimal probabilities are all equal. If mn 2≥ , there is one large probability 
and m-1 small, equal probabilities. In Section 15.6 we examined this question in more 
detail. We were able to describe the behaviour of the optimal solution if m and n tend to 
infinity if we assume that either the ratio, or the difference, of m and n is fixed. We also 
obtained an upper bound, and a lower bound, on the expected number of urns with exactly 
one ball for the possibly optimal non-uniform distribution. This gives us a criterion to 
decide whether the uniform distribution or the non-uniform distribution is better, without 
explicitly determining the possibly optimal non-uniform distribution.  

• if maxnon,uni NN ≥ , the uniform distribution is better; 

• if lownon,uni NN ≤ , the non-uniform distribution is better. 

Unfortunately, there are still combinations of m and n for which we are unable to 
determine which distribution is the optimal one without explicitly determining the possibly 
optimal non-uniform distribution. For these cases we have maxnon,unilownon, NNN ≤≤ . In 
Section 15.7 numerical results are presented for a number of cases. From these numerical 
results we can conclude that in order to determine the optimal distribution it is in general 
sufficient to compare the numbers uniN  and lownon,N . Generally, if lownon,uni NN >  then 
the uniform distribution is the optimal one, and if lownon,uni NN <  then the non-uniform 
distribution is the optimal one. 

The theory developed in this chapter could be applied in practice as a first, quick check to 
determine whether identifying information can be released on a certain level of detail. The 
number of possible identifying features is then compared with the number of respondents. 
This comparison provides an upper bound on the expected number of unique individuals in 
the population. If the maximum number of expected unique individuals in the population is 
low, it is worthwhile considering releasing this amount of identifying information. If the 
maximum expected number of unique individuals is high, less detailed identifying 
information should probably be provided. Such a check can be performed very quickly, 
without actually having to consult the data set itself. This quick check enables one to limit 
the possibilities for releasing identifying information beforehand. For the limited number 
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of remaining possibilities, one can then compute the actual expected number of unique 
individuals in the population by means of a more time-consuming procedure. 
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16. Synthetic and Combined Estimators in Statistical Disclosure 
Control 

16.1. Introduction 

The disclosure avoidance policy of Statistics Netherlands prescribes that the keys that have 
to be examined for a microdata set for research (for social surveys) consists of three 
identifying variables, one of which is always a geographical indicator (see Chapter 14 for 
definitions of the terms “key” and “identifying variable”, and a discussion of statistical 
disclosure control in general). The (estimated) population frequency of the trivariate 
combinations should be at least d, where d is a certain well-chosen threshold parameter. 
When a certain combination does not occur frequently enough in the population, disclosure 
limitation techniques (see e.g. Greenberg, 1990; Marsh et al., 1994) are applied. Examples 
of such techniques are recoding and suppression, as we mentioned in Chapter 14. 

This rule, including an appropriate value for the threshold parameter d, has been found 
after a time-consuming trial-and-error process. Many different kinds of combinations have 
been checked, using many values for the threshold parameter. The final result, the above-
mentioned rule, seems to be satisfactory: on the one hand the microdata sets resulting from 
application of this rule are considered sufficiently protected against disclosure, and on 
other the hand their information content is still rich enough to suit many statistical 
analyses. For more information on the kinds of microdata sets released by Statistics 
Netherlands and their rules we refer to Keller and Willenborg (1993). 

Application of the above procedure is trivial if the number of population elements (the 
population frequency) is known for each category for which a minimum population 
frequency is required. Often this will not be the case, however, and in such situations one 
can consider estimating these population frequencies from the sample data. If the sampling 
fraction is sufficiently large, the usual direct estimator for the population frequency (the 
sample frequency divided by the sampling fraction) can be applied to estimate the 
population frequencies accurately. If the sampling fraction is not large enough, however, 
the direct estimator will be too imprecise to be useful. For instance, suppose that the 
minimum population frequency of a certain category were set at, say 100, then with a 
sampling fraction a little less than 1:100, the direct estimator would be zero for zero 
sample frequencies and more than the minimum of 100 for sample frequencies of 1 or 
larger. This would imply that no disclosure protection measures were necessary for small 
samples, a highly implausible result. Of course, no one would consider estimating a 
population frequency on the basis of only a single sample observation. 

As an alternative, we describe in this chapter the application of small area estimators (see 
Chaudhuri, 1994, and Pfeffermann, 2002, for overviews of small area estimation), such as 
synthetic and combined (or compromise) estimators for the required population 
frequencies. Small area estimators are based upon the sample data as well as on a model 
for the population proportions rather than, as is the case with direct estimators, upon the 
sample only. The model is of vital importance for the quality of a synthetic estimator. If an 



Chapter 16 

 286

appropriate model is used then the resulting synthetic estimator will usually be quite good, 
but when an inappropriate model is used the estimator can be severely biased. 
Unfortunately, it is difficult, and in practice often impossible, to establish whether a model 
is appropriate or not as such a model generally contains assumptions on unobservable 
random effects. A combined estimator is a combination of a direct estimator and a 
synthetic one. Generally, a combined estimator is less hampered by the use of an 
inappropriate model than a synthetic estimator because the bias of the synthetic component 
of the combination is, to some extent, compensated for by the unbiased direct component.  

For more detailed discussions on the disclosure problem in general we refer to Duncan and 
Lambert (1989), Bethlehem, Keller and Pannekoek (1990), Mokken et al. (1992), and 
Skinner et al. (1994). For a discussion on the disclosure problem in general and a 
discussion on the approach based on protecting the individuals with value combinations 
that occur rarely in the population we refer to De Waal and Willenborg (1996), Willenborg 
and De Waal (1996 and 2001), and Chapter 14 of this book. 

The remainder of this chapter is organised as follows. In Section 16.2 the synthetic and 
combined estimators we use are described and estimators for the expected mean square 
errors are derived. In Section 16.3 the proposed estimators are compared by means of an 
example based on data from the Dutch Labour Force Survey (LFS). A summary of our 
conclusions is given in Section 16.4.  

We have developed and tested the estimators of this chapter in conjunction with 
Pannekoek. Part of this chapter has appeared in Journal of Official Statistics (Pannekoek 
and De Waal, 1998). This article has been supplemented by material from Pannekoek and 
De Waal (1995). 

16.2. Synthetic and combined estimators for proportions in small areas 

16.2.1. The synthetic estimator 
The proportion ijµ  of population elements in an area i that belong to category j is equal to 

iij NY , where iN  is the number of inhabitants of area i and ijY  is the number of 
inhabitants of area i belonging to category j.  

Assuming simple random sampling with replacement the sample proportion is an unbiased 
estimator ijZ  for ijµ . So, we define ijZ  by  

 
i

ij
ij n

y
Z = ,       (16.1) 

where in  is the sample size in area i and ijy  is the corresponding number of units in the 
sample in area i that belong to category j. An unbiased estimator for the number of units 

ijY  in the population in area i that belong to category j is iji ZN . As is well-known the 
variance and the mean square error (MSE) of ijZ  with respect to the sample distribution is 
given by  
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We can use the overall sample proportion, ijS , as a synthetic estimator for ijµ . So, we 
define ijS  by  
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ij
+= ,       (16.3) 

where ∑=+ i ijj yy  and ∑= i inn . The synthetic estimator ijS  will, in general, be a 

biased estimator for ijµ . Only if the ijµ  are equal for all areas i will ijS  be an unbiased 
estimator for ijµ . A corresponding synthetic estimator for the number of units ijY  in the 
population in area i that belong to category j is ijNS .  

The variance of ijS  with respect to the sample distribution is given by  

 )1(1)(Var jjijs n
S ++ −= µµ ,     (16.4) 

where ∑ ∑==+ i i ijijij NYNN µµ . 

The variance of ijZ  is at least equal to the variance of ijS  because nni ≤ . On the other 
hand, the synthetic estimator ijS  is biased whereas the direct estimator ijZ  is not. The bias 
of ijS  is given by  

 ijjijijsij Sb µµµ −=−= +E ,     (16.5) 

where sE  denotes the expectation with respect to the sample distribution. The mean 
square error of ijS  is given by  

2)(Var)(MSE ijijsijs bSS += .     (16.6) 

16.2.2. Estimators for the EMSE of ijZ  and ijS  

The MSE (variance) of ijZ  depends on ijµ  (see (16.2)) and the MSE of ijS  depends on 

ijb  which in turn depends also on ijµ  (see (16.5) and (16.6)). The dependence on ijµ  
causes difficulties for estimating these MSE’s since there is no satisfactory unbiased 
estimator for ijµ  available (this was the reason for using synthetic estimation in the first 
place). The usual approach to resolve this problem is to assume that ijb  is a random 

variable with expectation ijbbE  equal to zero and variance )(Var ijb b  equal to, say, 2
jσ . 

Here bE  and bVar  denote the expectation and the variance with respect to the distribution 
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of ijb  respectively. With these assumptions we can use, instead of the MSE, the expected 
value with respect to the distribution of ijb  of the MSE (EMSE) as a measure of the 
precision of both ijZ  and ijS . These EMSE’s do not depend on the area specific ijµ  but 

on both j+µ  and 2
jσ  that do not depend on the area i but only on the category j which 

makes it possible to estimate the EMSE’s.  

The expected mean squared error (EMSE) of ijZ  is given by  

.)1(
)1(E)(EE)(EMSE
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  (16.7) 

The expected mean squared error of ijS  is given by 

222 )1(E)(Var)(EE)(EMSE jjjijbijsijijsbij nbSSS σµµµ +−=+=−= ++ . (16.8) 

In order to evaluate EMSE( ijZ ) and EMSE( ijS ) it is necessary to estimate j+µ  and 2
jσ . 

An estimator for j+µ  is ijS , i.e. ny j+ . An estimator for 2
jσ  can be obtained by means 

of the sum of the squared differences between the estimated numbers iji Sn  and ijiZn  . The 
expectation of this squared difference is equal to  

 )1()1()1()(EE 222 −++−=− ++ iijiijjijijisb nnnnnZSn σµµ   (16.9) 

if 2EE jijijsb ZS += µ . This latter assumption is justified if the number of different areas is 
sufficiently large. By setting the sum of all squared differences equal to the expectation of 
this sum, we obtain the following moment estimate for 2

jσ :  
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Spjøtvoll and Thomsen (1987) apply a simpler estimator instead of (16.10). Their 
estimator is equal to  
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SmSZSi ijijijij
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2
2σ ,    (16.11) 

where ∑= i inm 1  and ∑= iI 1, i.e. I is equal to the number of different areas in the 

sample. If the variance of the synthetic estimator ijS  is negligible and all in  are equal the 
estimator given by (16.10) is the same as the estimator given by (16.11).  
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16.2.3. The combined estimator 
It is well known that it is possible to construct an estimator with a smaller EMSE than both 
the direct estimator and the synthetic estimator by using a convex combination of these 
two estimators. This combined estimator, ijC , is given by  

 ijijijijij SWZWC )1( −+=       (16.12) 

where  

)(EMSE)(EMSE
)(EMSE

ijij

ij
ij SZ

S
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= .     (16.13) 

The weight ijW  is chosen such that the expected mean square error of ijC  is minimal. 
Formula (16.13) shows that the weight approaches 1 if the EMSE of ijS  is large compared 
to the EMSE of ijZ . Since the variance of ijS  is small this will happen when the ‘working 
assumption’ of homogeneous proportions, i.e. the ijµ  are equal for all i, does not hold at 
all and, consequently, the bias of ijS  will be large. In this case, the combined estimator ijC  
will be close to the unbiased estimator ijZ . In the other extreme, if the bias of ijS  is small 
(resulting in a small EMSE for ijS ) or if the variance of ijZ  is large (resulting in a large 
EMSE for ijZ ) the weight will approach 0 and the combined estimator will be close to the 
synthetic estimator ijS . 

The expected mean square error of ijC  is approximately given by  

)(EMSE)1()(EMSE)(EMSE 22
ijijijijij SWZWC −+= .   (16.14) 

The expected mean square error of ijC  is at most equal to the minimum of the expected 
mean square errors of ijZ  and ijS .  

An estimator of the form (16.12) can also be obtained by an empirical Bayes argument (see 
Bishop, Fienberg and Holland, 1975, Ch. 12; Albert and Gupta, 1983; Gelman et al., 1995, 
Ch. 2). In this approach, for each j, the parameters ijµ  are viewed as realisations of a 

random variable, jM  say, with expectation j+µ  and variance 2
jσ . If we take the 

distribution of jM  (the prior distribution) to be the Beta ),( jj βα  distribution, we have 

)( jjjj βααµ +=+  and )1()1(2 ++−= ++ jjjjj βαµµσ . Furthermore, if it is assumed 
that the conditional distribution of ijy  given ijjM µ=  is binomial with parameters in  and 

ijµ , then the posterior distribution (the conditional distribution of jM  given ijy ) is a beta 
),( jijijij yny βα +−+  distribution. This beta-binomial model is a special case of the more 

general Dirichlet-multinomial model discussed in Bishop Fienberg and Holland (1975). 

The posterior expectation is a Bayesian estimator for ijµ , given by 
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The Bayesian estimator can only be calculated if the parameters of the prior distribution 
are known. Alternatively, an empirical Bayesian estimator can be used in which the 
parameters 2

jσ  and j+µ  are replaced by estimates obtained from data values ijy  (see e.g. 
Carlin and Louis, 1996). If j+µ  is estimated by ijS , the empirical Bayes estimator will be 
a linear combination of ijZ  and ijS , just like the combined estimator (16.12). It will use 
different weights, however, because the sampling variance of ijS  is not taken into account. 
If in the combined estimator, the sampling variance of ijS  is ignored, then 

2)(EMSE jijS σ=  (see (16.8)) and the combined estimator used in this chapter will be an 

empirical Bayes estimator. If the variance of ijS  is ignored and the in  are all equal or 2
jσ  

is estimated by (16.11) instead of (16.10), then our estimator is equal to the estimator used 
by Spjøtvoll and Thomsen (1987). 

16.2.4. Stratified estimators 
The synthetic estimator ijS  is based on the ‘working assumption’ of homogeneity of the 
population proportions ijµ , i.e. the ijµ  are equal for all areas i. Although this assumption 
does not have to be satisfied exactly for the synthetic estimator to perform well, since the 
bias that is introduced by deviations from this assumption may be compensated for by the 
small variance of the synthetic estimator, it is worthwhile investigating if this homogeneity 
assumption can be relaxed. A straightforward way to proceed is to stratify, i.e. to divide, 
the areas into a small (compared to the number of areas) number of groups of areas and to 
assume that the ijµ  are equal within groups of areas but allow them to vary between 
groups. This requires that an auxiliary variable is available that indicates to which group 
each area belongs. For instance, in the application of this chapter, the areas are 
municipalities and the auxiliary variable is ‘degree of urbanisation’ in five categories. 
Using this auxiliary information allows for a synthetic estimator ijT  based on five different 
values for ijµ  (one for each category) instead of only one value for the synthetic estimator 

ijS .  

Let k(r) denote the category of the auxiliary variable corresponding to area r. The synthetic 
estimator with auxiliary information, ijT , can then be written as  
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Like ijS  the estimator ijT  will, in general, be biased (although to a lesser extent). The bias 
of ijT  is given by  

ijijs
T
ij Tb µ−= E .       (16.18) 

Again we assume that the bias T
ijb  is a random variable with expectation T

ijbbE  equal to 

zero and variance )(Var T
ijb b  equal to 2

jσ .  

The expected mean square error of ijT  is given by 
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where ijν  denotes the proportion of population elements that score on category k(i) of the 
auxiliary variable and on category j of the variable under consideration, i.e. ijν  is equal to  

∑
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The number ijν  can be estimated by ijT , i.e. by (16.17).  

An analysis similar to the analysis of Section 16.2.2. shows that an estimator for 2
jσ  is 

given by (16.10) where ijS  has been replaced by ijT . 

Using ijT  we can construct another estimator ijD  that is similar to the combined estimator 

ijC  of Section 16.2.3. The estimator ijD , which we will call the combined estimator with 
auxiliary information, is given by (16.12) and the weight ijW  by (16.13) where ijS  has 
been replaced by ijT  in both formulas. The expected mean square error of ijD  is given by 
(16.14) where ijT  has been substituted for ijS  again. In general, stratification reduces bias 
but increases variance. Therefore, it is not clear whether the expected mean square error of 

ijT  is smaller than that of ijD  or not. 
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16.3. Example 

16.3.1. Introduction 
The data we have used for this example have been obtained from the Dutch LFS 1991. The 
microdata set from this survey consists of 84,796 records. Of these records 42,248 have 
been obtained from male respondents and 42,548 from female respondents. These 
respondents were ranging in age from 15 to 75. From this data set we have used as 
identifying variables, sex, an area indicator consisting of 646 municipalities and the 
variable ‘occupation’ with 90 different categories. For this example it is supposed that 
there is a disclosure avoidance rule requiring the population frequency for the combination 
of occupation and sex within each municipality to be above a certain value. So, the 
problem is to estimate these frequencies. For convenience we will use in this example the 
records for males only.  

For each of the 646 municipalities and for each of the 90 categories of ‘occupation’, the 
population proportions and frequencies have been estimated using the estimators described 
in the previous sections of this chapter. To describe the performance of these estimators in 
a concise manner, averages of the EMSE’s of the estimated proportions were calculated: 
an average over all 90 categories, an average over categories that did not conform to the 
homogeneity assumption underlying the synthetic estimator and an average over categories 
that did conform to this assumption (in the next subsection it is explained how 
“conforming to the model” is defined). As is apparent from the discussion in Section 
16.2.3 the synthetic and combined estimates are similar for categories for which the 
homogeneity model is a good approximation to reality. In Subsections 16.3.3 and 16.3.5 
we illustrate how these estimates can diverge for categories that are considered outliers 
with respect to the homogeneity model. The use of auxiliary information to improve the 
synthetic and combined estimators is studied in Subsection 16.3.4. As auxiliary 
information we have made use of ‘degree of urbanisation’ a categorical variable with five 
categories that is available for each municipality. It is shown that auxiliary information can 
indeed improve the estimators but it is not always best to use all the available auxiliary 
information.  

16.3.2. Definition of outliers 
The combined estimator ijC  will be approximately equal to the synthetic estimator ijS  for 
areas that are in accordance with the homogeneity assumption, i.e. areas for which the 
proportions for a certain category are close to the mean proportion ∑=+ i ijj nµµ  for that 
category (see Section 16.2.3). It will be of interest to see how these estimators compare for 
areas that deviate from the homogeneity assumption (outliers). For this, we need to 
determine whether or not a number ijy  of units in the sample in an area i has to be 
considered to be an outlier with respect to the homogeneity assumption for category j.  

A simple test for outliers is based on the distribution under homogeneity of the number of 
units in the sample per area. These numbers ijy  are independently Poisson distributed with 
parameter jin +µ . If the probability that a Poisson( jin +µ ) distributed random variable is at 
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least ijy  is less than a certain threshold value t, then area i is considered to be an outlier for 
category j. Likewise, if the probability that a Poisson( jin +µ ) distributed variable is at most 

ijy  is less than t, then area i is also considered to be an outlier for category j. The 
probabilities can be used to order the outliers. In this way the twenty worst outliers can be 
listed. This list will be used in Subsection 16.3.4 to illustrate the results for the estimators 
considered.  

16.3.3. Comparison of expected mean square errors 
The average expected mean square errors over three groups of categories of variable 
‘occupation’ of the direct estimator ijZ , the synthetic estimator ijS  and the combined 
estimator ijC  are given in Table 16.1. The first group of categories considered consists of 
all 90 categories of ‘occupation’, the second group of the categories with many outliers 
and the third group of the categories with a few outliers. A category is considered to have 
many outliers when the number of outlying municipalities is at least 7, otherwise the 
category is considered to have few outliers.  

 

Table 16.1. Comparison between the average expected mean square errors (××××10-4) of 
ijZ , ijS  and ijC  for all categories and for two groups of categories. 

 ijZ ijS ijC  

All categories 1.06 0.17 0.11 

Many outliers 2.93 0.69 0.42 

Few outliers 0.52 0.02 0.02 

 

For all three groups of categories listed in Table 16.1 we see that the average expected 
mean square error of the synthetic estimator ijS  is clearly less than the average expected 
mean square error of the direct estimator ijZ . 

Table 16.1 moreover clearly demonstrates that the differences between the results for the 
synthetic estimator ijS  and the combined estimator ijC  are to be found for categories with 
many outliers. In Subsection 16.3.5 we will therefore examine the results of ijZ , ijS  and 

ijC  for the twenty worst outliers.  

16.3.4. Using auxiliary information 
As auxiliary information we have made use of ‘degree of urbanisation’. This ‘degree of 
urbanisation’ consists of five categories, ranging from very urbanised municipalities 
(category 1), to rural municipalities (category 5). That is, in the remainder of this chapter 
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ijD  and ijT  are defined by using all five categories of ‘degree of urbanisation’. In Table 
16.2 we compare the average expected mean square errors of ijZ , ijS , ijC , ijD , and ijT .  

 

Table 16.2. Comparison between the average expected mean square errors (××××10-4) of 
ijZ , ijS , ijT , ijC  and ijD . 

 ijZ ijS ijT ijC  ijD  

Average expected 
mean squared error 

1.06 0.17 0.08 0.11 0.06 

 

Table 16.2 shows that using auxiliary information results in a substantial improvement in 
terms of the average expected mean square for both the synthetic estimator and the 
combined estimator. 

The use of more auxiliary information will generally lead to a decrease of the bias of the 
resulting estimator. However, the variance of this estimator usually increases as a result of 
using more auxiliary information. This increase of the variance may be so large that the 
expected mean square error also increases. In the extreme case an auxiliary variable could 
be so detailed that each category describes only one municipality. The resulting estimator 
would then be the direct estimator, without bias but with a large variance. It is clear that 
this estimator will generally not have the lowest expected mean square error. Therefore, we 
have considered some other models where two or more categories of the auxiliary variable 
have been merged.  

As the auxiliary variable we have used, i.e. ‘degree of urbanisation’, is an ordinal variable 
we have only taken those models into account where adjacent categories of this variables 
have been merged. For instance, we have considered a model where categories 2, 3, 4 and 
5 have been merged, but not a model where categories 2, 3 and 5 have been merged, 
because categories 3 and 5 are not adjacent. The class of models where the collapsed 
auxiliary variable ‘degree of urbanisation’ has two categories left is denoted by class II. 
Likewise the classes of models where the collapsed auxiliary variable has three 
respectively four categories left are denoted by class III and class IV, respectively. In each 
class, the model with the lowest average expected mean square error will be considered the 
optimal model for this class and will be denoted by II0, III0 and IV0, respectively. Note that 
it is not necessary to introduce the classes of models where the (collapsed) auxiliary 
variable ‘degree of urbanisation’ has one or five categories because both of these classes 
consist of one model only. The corresponding estimators are given by ijC  and ijD , 
respectively.  

Model II0 turns out to be the model where ‘degrees of urbanisation’ two to five have been 
merged into one category, model III0 the model where ‘degrees of urbanisation’ two and 
three and also four and five have been merged, and model IV0 the model where ‘degrees of 
urbanisation’ four and five have been merged. In all three cases it is necessary to merge 
‘degrees of urbanisation’ four and five.  
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In Table 16.3 the average expected mean square errors of these estimators ijC , II0, III0, IV0 
and ijD  are listed.  

Table 16.3. The average EMSE for a number of models. 

Model Average EMSE (×10-5)

ijC  1.115

II0 0.721

III0 0.622

IV0 0.596

ijD  0.599

 

Table 16.3 illustrates that it is not always best to use all the information from the auxiliary 
variable. Model IV0 has a smaller average expected mean square error than ijD . The 
differences in average EMSE between the models that use auxiliary information are small 
in this case. However, if auxiliary variables with many more categories than just five were 
available, it would become important to consider the collapsing of categories because this 
could very well lead to a better estimator than when all available auxiliary information is 
used.  

Note that it would be inappropriate to select the ‘best’ model on the basis of Table 6.3 as 
this table is based on the outcome of one ‘experiment’ only. We only use Table 6.3 to 
illustrate that the expected mean square error of the estimators may increase if more 
auxiliary information is used. 

16.3.5. Results for categories with many outliers 
In this subsection we give the results of ijZ , ijS , ijC , ijT  and ijD  for the twenty worst 
outliers (see Subsection 16.3.2 for an explanation of how these outliers have been 
determined). For non-outliers the results of these estimators are more or less the same. So, 
for non-outliers it is not very important which estimator is actually used. For outliers, the 
results of the estimators do differ substantially, and it is important which estimator is used. 
To decide which of the estimators seems most appropriate for the data set under 
consideration, we use our knowledge of Dutch society with respect to the twenty worst 
outliers. The results of ijZ , ijS , ijC , ijT  and ijD  for the twenty worst outliers are given in 
Table 16.4.  
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Table 16.4. The results of ijZ , ijS , ijC , ijT  and ijD  for the twenty worst outliers.

Category Municipality in ijiZn iji Sn ijiCn  ijiTn  iji Dn
1. Members of the armed 
forces 

Den Helder 326 28 1.0 20.9 1.5 24.1 

2. Farmers Amsterdam 2,694 0 33.0 1.0 1.7 0.6 

3. Fishermen, hunters, etc. Urk 58 6 < 0.1 1.4 <0.1 4.0 

4. Farmers Rotterdam 2,202 0 27.0 1.0 1.4 0.5 

5. Fishermen, hunters, etc. Wieringen 45 5 < 0.1 1.0 <0.1 2.3 

6. Biologists, biochemists, 
etc. 

Wageningen 203 8 0.3 2.5 0.4 5.2 

7. Plumbers, welders, etc. Amsterdam 2,694 4 28.1 6.5 17.5 5.4 

8. Bricklayers, carpenters, 
etc. 

Edam-Volendam 187 18 3.4 10.3 2.9 9.4 

9. Professional workers 
n.e.c.1) 

Amsterdam 2,694 41 15.7 38.6 27.4 37.6 

10. Not reporting any 
occupation 

Enschede 749 170 110.5 161.1 115.4 160.8 

11. Chemical processors Terneuzen 243 8 0.6 3.1 0.6 5.8 

12. Farmers Naaldwijk 166 13 2.0 9.3 2.8 9.6 

13. Farmers Nistelrode 70 9 0.9 4.5 2.1 4.1 

14. Bricklayers, carpenters, 
etc. 

Amsterdam 2,694 18 48.7 20.2 24.5 21.6 

15. Legal professionals Amsterdam 2,694 19 4.7 17.6 9.8 16.3 

16. Farmers The Hague 1,966 4 24.1 4.8 1.2 2.8 

17. Not reporting any 
occupation 

Haarlemmermeer 655 53 96.6 60.3 94.9 60.3 

18. Musicians, actors, etc. Amsterdam 2,694 15 3.1 13.8 7.0 13.1 

19. Sculptors, painters, etc. Amsterdam 2,694 20 5.4 18.4 9.4 18.1 

20. Wood preparation 
workers, etc. 

Pekela 110 4 0.1 1.0 0.1 1.9 

1 n.e.c. = not elsewhere classified 
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In Table 16.4 we see that if there are many respondents the combined estimators ijC  and 

ijD  are almost the same as the direct estimator ijZ . This is a positive feature of ijC  and 

ijD , because when the number of respondents is large the variance of ijZ  is relatively 
small, i.e. ijZ  is rather reliable. When the number of respondents is small the differences 
between the combined estimates and the direct estimates can be rather large because the 
combined estimator is then drawn strongly towards the synthetic estimator. This is 
desirable, because when the number of respondents is small ijZ  will be quite unreliable 
and one would be willing to accept a ‘more synthetic’ estimate. The difference between 

ijZ  and the synthetic estimators ijS  and ijT  is of course rather large in all cases of Table 
16.4 because only outliers are considered here.  

Stratification leads to a more appropriate model for several variables, such as “Farmers”. 
The number of farmers in a municipality is correlated with the ‘degree of urbanisation’. 
Using ‘degree of urbanisation’ as auxiliary information hence reduces bias for the number 
of farmers in a municipality.  

16.3.6. Consequences of the estimators for statistical disclosure control 
In this subsection we illustrate the results of the various estimators for our statistical 
disclosure control problem. As we have indicated in Section 16.1, we apply a disclosure 
control rule of the following kind: 

A combination of values of identifying variables is considered safe, i.e. may be 
published without further protection, if this combination occurs at least d times in 
the population, where d is a suitably chosen threshold. 

Because the population frequency of a combination of values of identifying variables is 
generally unknown, the above rule is in practice replaced by the rule that the estimated 
population frequency should be at least equal to threshold d in order for a combination of 
values to be safe. 

Table 16.5 gives the percentage of unsafe combinations of municipality and occupation 
among the combinations that occur at least once in the survey for various values of the 
threshold d. The total number of combinations equals 646×90=58,140, and the number of 
combinations that occur at least once in the survey equals 14,432. So, the percentage of 
unsafe combinations of municipality and occupation among all possible combinations can 
be obtained from Table 16.5 by multiplying the numbers in Table 16.5 by 14,432/58,140. 
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Table 16.5. Percentage of unsafe combinations among the combinations that occur at 
least once in the survey for various values of the threshold d. 

Estimator Threshold 

 d = 10 d = 20 d = 50 d = 100 d = 200 

ijZ  (Direct estimator) 0 0 0 1.5 43.0 

ijS  (Synthetic estimator) 3.3 7.7 21.8 39.3 62.0 

ijC  (Combined estimator) 1.8 4.9 17.2 35.0 58.8 

ijT  (Stratified synthetic estimator) 3.2 7.9 22.0 38.3 59.5 

ijD  (Stratified combined estimator) 1.9 5.5 18.5 35.9 57.9 

 

The direct estimator reveals no unsafe combinations for threshold values less than 100. 
This is not surprising, because in this example the sampling fraction is not the same for 
each municipality but varies around an average of 1/130, with a maximum of 1/50. This 
leads to direct estimates that are 50 or larger for combinations with one sample 
observation. These are implausible estimates but we cannot expect a reasonable estimate 
for a population frequency on the basis of only one sample observation. 

The synthetic and combined estimators produce more plausible estimates, in the sense that 
it is possible to conclude that combinations are unsafe for threshold values less than 100. 
The large percentage of unsafe cells for the larger threshold values are also plausible, 
because the population cell frequencies are 94 on average and will vary considerably 
around this average since there are small and large municipalities and the distribution over 
the occupations is also far from uniform. The combined estimators of course give results 
that are between those of the direct estimator and the synthetic estimators. 

A more formal comparison of the estimators could be made by investigating the 
probability of publishing a cell whose population count is below the threshold. This would 
involve the evaluation of the probability that the estimated population cell count is equal to 
or larger than the threshold given that the true population count is below the threshold. 
Such probability statements, however, require a number of assumptions and some further 
investigation of these assumptions seems necessary. For instance, if we want to calculate 
the probability that the estimated population count is below the threshold value given that 
the true population count ijY  has a value 0Y , say, which is smaller than the threshold, we 
need the distribution of the estimator under the hypothesis 00 : YYH ij = . For the direct 
estimator one could simply assume a binomial distribution with the probability iNY0  (see 
Pannekoek, 1999), but appropriate assumptions for the synthetic and combined estimators 
are less obvious. For the combined estimator ijC , for example, we could assume, in line 
with the assumptions used in the Bayesian approach outlined in Section 16.2.3, that the 
distribution under 0H  is a beta distribution with expectation iNY0 . To fully specify this 
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distribution we also need an estimate for the variance under 0H  and further assumptions 
are needed to obtain such an estimate. 

16.4. Conclusions 

An often applied procedure for disclosure protection of microdata sets (for social surveys) 
is to prescribe a minimum number of population elements for each category of a 
(combination of) identifying variable(s) and to take measures to ensure that there are no 
categories with a population frequency less than the prescribed minimum. In many cases 
the population frequencies will be unknown and the disclosure protection procedure can 
only be applied if a reasonable estimator for these frequencies is available. The usual 
unbiased direct estimator cannot be applied because it is based on too few sample 
observations. For instance, in the example in this chapter we considered the rule that the 
population frequency of each combination of municipality, sex and occupation should 
exceed a specified minimum. If this minimum were set at, say, 100 then, with a sample 
fraction a little less than 1:100, the direct estimator would be zero for zero sample 
frequencies and more than the minimum of 100 for sample frequencies of 1 or larger. This 
would imply that disclosure protection measures would not be required for such a data set; 
not even for combinations of values of identifying variables that occur extremely rarely in 
the population. 

Small area estimators are proposed in this chapter as an alternative: a synthetic estimator 
and a combined estimator. Both kinds of estimators were applied with and without using 
an auxiliary variable with respect to the municipalities (degree of urbanisation). For 
occupations that are (highly) correlated with degree of urbanisation, such as “Farmers”, the 
use of auxiliary information clearly leads to improved estimates as can be concluded from 
Table 16.4 and our knowledge of Dutch society.  

Based on Tables 16.2 to 16.4 and our knowledge of Dutch society, we would personally 
select small area estimator ijD  to estimate the number of persons with a certain occupation 
in a municipality for the data set we used in our example. For other variables or data sets, 
other small area estimators might be more suitable. In any case, the example shows that 
small area estimators, such as ijD , can be successfully applied to estimate certain 
population frequencies. 

Other small area estimators proposed in literature (see e.g. Chaudhuri, 1994, and 
Pfeffermann, 2002) also appear to be suitable for estimating the number of persons with a 
certain occupation in a municipality as well as for similar population frequencies. In 
comparison to many small area estimators discussed in literature, the synthetic and 
combined estimators we propose in this chapter are relatively simple to implement and 
apply. For a statistical office like Statistics Netherlands this simplicity is definitely an 
advantage, as the estimators need to be applied on a routine basis. 

With respect to the disclosure problem, the results for the small area estimators ijS , ijC , 

ijD  and ijT  were similar. Of the 58,140 estimated population frequencies (90 occupations 
times 646 municipalities) slightly less than 40% were below a minimum of 100, so 
according to these estimators substantial disclosure protection measures will be necessary 
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if this threshold is used. This is in line with practices at statistical offices, which will 
almost always use much less detailed area indicators than “municipality” and also use 
classifications of “occupation” with much less than 90 categories (a one-digit classification 
is common). 

In µ-ARGUS (see Hundepool et al., 2002b) the approach of this chapter has not (yet?) 
been implemented. Instead a much simpler approach is used. The population frequencies 
of the combinations to be checked are not estimated by µ-ARGUS from the data set that is 
to be protected. Instead the user of µ-ARGUS has to provide for each combination to be 
checked a threshold value. If the frequency in the data set of this combination is above the 
threshold value, the combination is considered safe. Otherwise, the combination is 
considered unsafe. 
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17. Optimal Local Suppression in Microdata 

17.1. Introduction 

In former days statistical offices used to publish only macrodata, i.e., tables. This was 
sufficient to satisfy the demands of the users of statistical data. Nowadays, however, the 
users of statistical data want to have data that are as detailed as possible. Not only do they 
want more detailed tables, but they also want to have microdata, i.e., data for individual 
respondents. This is mainly due to the increased power of modern computers, which 
enables users of statistical data to analyse these microdata by themselves. As a 
consequence of the demand for microdata statistical offices are put in a difficult position. 
On the one hand it is their duty to satisfy this demand, on the other hand they should 
protect the privacy of their respondents. 

To protect the privacy of respondents a statistical office should prevent the disclosure of 
sensitive information on individual respondents by an intruder. To this end, a statistical 
office usually tries to prevent the re-identification of individual respondents. Re-
identification of individual respondents can occur when values of several so-called 
identifying variables are taken into consideration. Identifying variables, intuitively, 
concern characteristics of individuals that can be known by other people, and that could be 
used to track somebody down. An example of a variable that might qualify as non-
identifying is “The party for which you voted when you voted for the first time in your 
life”. Examples of identifying variables are “Age”, “Sex”, “Domicile”, and “Occupation”. 
The values of identifying variables can be assumed known to friends and acquaintances of 
a respondent. Although each identifying variable is generally not sufficient to identify an 
individual when considered separately, a combination of identifying variables might be 
sufficient. When a combination of values of identifying variables is unique, i.e., occurs 
only once in the population, then an intruder might identify the corresponding individual. 
For example, the combination “Age = 20”, “Sex = Female”, “Domicile = Amsterdam”, and 
“Occupation = Miner” is very likely a unique combination (if it is not an error!). So, an 
intruder may identify this individual, i.e., he or she may be able to determine the name of 
this individual. Subsequently, the intruder may be able to use the released microdata set to 
disclose sensitive information about this respondent. 

In practice, however, it is a bad idea to prevent only the occurrence of respondents in the 
microdata set who are unique in the population (with respect to a certain combination of 
values). First, because unicity in the population, in contrast to unicity in the microdata set 
is hard to establish. Second, because an intruder may look at other combinations of values 
than the statistical office does. For these reasons it is better to avoid the occurrence of 
combinations of values in the microdata set that are rare in the population, instead of trying 
to avoid only the population-uniques in the microdata set. Whether or not rare 
combinations occur in a microdata set is a well-know criterion for deciding whether this 
data set may be released. It is, for example, used, along with other criteria, to decide 
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whether the so-called Samples of Anonymised Records (SARs) from the British 
population census may be released (see e.g. Willenborg and De Waal, 1996). 

To prevent the occurrence of rare combinations of values in the microdata set, statistical 
disclosure control (SDC) rules at Statistics Netherlands prescribe which combinations of 
values of identifying variables have to be checked before a microdata set may be 
disseminated. Moreover, the rules also prescribe how many times these combinations have 
to occur in order to be considered safe for release, i.e., the rules prescribe certain threshold 
values. For instance, the SDC rules may describe that the bivariate combinations 
“Occupation = Statistician” × “Sex = Male” and “Occupation = Statistician” × “Nationality 
= non-Dutch” each should occur at least 20 times in the microdata set to be considered 
safe. If the frequency of a particular combination is at least the prescribed threshold value 
then this combination is considered safe, otherwise the combination is considered unsafe 
and disclosure limitation measures should be applied. The threshold values may depend on 
the combination that has to be checked. For example, the threshold value of a bivariate 
combination may be different from the threshold value of a trivariate combination. For a 
discussion of this approach see Pannekoek and De Waal (1998), Zaslavsky and Horton 
(1998), and Chapters 14 and 16 of this book. 

To safeguard a microdata set against statistical disclosure two techniques are often applied 
at Statistics Netherlands, namely global recoding and local suppression. When global 
recoding is applied several categories of a variable are combined into a single one. When 
local suppression is applied the value of a variable in a record is replaced by “missing”. 
These two measures reduce the information content in the microdata set, and hence make 
re-identification of individual respondents less likely. In Section 17.2 we describe both 
protection measures in some more detail. The protection measures are, of course, applied 
only when the privacy of some respondents is endangered. Information that is deemed safe 
is not protected in order to release as much information as possible. In this chapter we 
explain how to determine the minimum number of local suppressions such that the 
resulting microdata set is considered safe. In this way we try to meet the aim of SDC: to 
preserve as much information as possible while at the same time safeguarding the data.  

Local suppression and especially global recoding are not only applied by Statistics 
Netherlands but also by other statistical offices. In fact, global recoding is by far the most 
widely used method to protect microdata. Local suppression is less common than global 
recoding, but is, for example, used to protect the SARs from the British population census 
(see e.g. Willenborg and De Waal, 1996). 

The focus of this chapter is on providing mathematical formulations for various local 
suppression problems. Such mathematical formulations were unknown at the time this 
material was written. Jointly with Willenborg we have developed the optimisation models 
that are presented in this chapter. Solution methods for these mathematical problems are 
briefly described.  

The remainder of this chapter is organised as follows. The problem of minimising the 
number of local suppressions while protecting a microdata set is described in Section 17.3. 
This problem is a special case of a general mathematical problem. The general 
mathematical problem is stated in Section 17.4. A similar problem, namely the problem of 
minimising the number of different categories that are affected by local suppressions, i.e., 
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that are suppressed in at least one record, is discussed in Section 17.5. Special solutions to 
the problems in Sections 17.4 and 17.5 are examined in Section 17.6. In Section 17.7 solu-
tion methods for the various local suppression problems considered are briefly examined. 
Finally, Section 17.8 concludes this chapter with a short discussion of its main findings 
and some suggestions for future research. 

More information on the view of Statistics Netherlands with respect to the protection of 
microdata sets can be found in De Waal and Willenborg (1996) and Chapter 14 of this 
book. For more information on SDC in general we refer to Duncan and Lambert (1986, 
1989), Fienberg (1994), Lambert (1993), Marsh, Dale and Skinner (1994), Paass (1988), 
Skinner et al. (1994) and Willenborg and De Waal (1996 and 2001). 

Part of this chapter has appeared in Journal of Official Statistics (De Waal and Willenborg, 
1998). 

17.2. Global recoding and local suppression 

In the present section we discuss the meaning and application of global recoding and local 
suppression to produce safe microdata. In the case of the procedures applied at Statistics 
Netherlands this amounts to “removal” of unsafe combinations. In the present section we 
explain how this removal is to be interpreted in the case of global recoding and in the case 
of local suppression. Of course, the elimination of unsafe combinations should cause as 
little information loss (suitably quantified in one way or another) as possible. In Subsection 
17.2.1 global recoding is considered and in Subsection 17.2.2 local suppression. 
Subsection 17.2.3 discusses both techniques, in particular if they are used simultaneously 
to eliminate unsafe combinations from a microdata file. 

17.2.1. Global recoding 
In the case of global recoding several categories of a variable V are collapsed into a single 
one. In the corresponding microdata file the values of V appearing in the respective records 
are replaced by the new codes. A global recode is applied to the entire data set, not only to 
the unsafe part of the data set. This is done to obtain a uniform categorisation of each 
variable. As an example consider the variable “Age” that can take the values 0, 1,2, ..., 99, 
each of which stands for the age of a person in years. Suppose “Age” is recoded by 
collapsing the original values into 10-year classes, i.e., by collapsing the original values 0, 
1, ..., 9 into a single category 0-9, the original values 10, 11, ..., 19 into a single category 
10-19, etc. Then each original value of the variable “Age” in the microdata set is replaced 
by the corresponding 10-year class. For instance, for each record in which the original 
value of “Age” equals 26 the new, recoded, value equals 20-29 and similarly for all other 
ages. The effect of globally recoding the variable “Age” is that less detailed information 
about the age of a person is released. 

In the SDC package µ-ARGUS (see Hundepool et al., 2002b), which has been developed 
by Statistics Netherlands, global recoding can be applied both interactively and 
automatically. In the former mode the user should specify which variables to recode and 
which categories to combine. In the latter mode, µ-ARGUS picks a coding from a set of 
possible codings for the variable it wants to recode. For instance, for the variable “Region” 
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the possible codings could be municipalities (in the original file), regions within provinces, 
provinces, and clusters of provinces. These alternative codings have been prepared prior to 
the SDC process, for each identifying variable present in the microdata set. Advantages of 
this way of global recoding, compared to the general case, are that it is easier to automate, 
and that it allows control of the codings that will be generated. This prevents the possibility 
that a coding of a variable is generated that is not used in practice. 

17.2.2. Local suppression 
In the case of local suppression, the value of a variable V in a record R is replaced by a 
missing value. In the corresponding microdata file the original value of V in record R is 
replaced by the “missing” value. Whereas a global recode is applied to the entire data set, a 
local suppression is only applied to a particular value in a particular record. This means 
that local suppression does not require that definitions of variables need to be changed, 
because it does not effect the coding of any variable. 

To explain the mechanics of this elimination process consider for example, a file of the 
Dutch Labour Force Survey, containing “Region” (municipalities) and “Occupation”. 
Suppose that, among other things, one has to check the bivariate combination “Region” × 
“Occupation”. Assume that, for instance, the combination “Urk” × “mathematician” occurs 
once in the file and the threshold is set to three, which means that this combination is 
considered unsafe. (Urk is a small village in The Netherlands). If we locally suppress 
“Urk” in the record in which the combination appears, it has to be checked that the 
remaining ‘combination’ “mathematician” appears frequently enough in the file, i.e., at 
least three times. If so, the remaining combination is safe (which is likely). It would also 
be possible to suppress the value “mathematician” instead of the value “Urk”. Then it has 
to be checked that the combination “Urk” occurs frequently enough in the file. Whatever 
value is locally suppressed depends on the purposes one has in mind for the analyses of the 
protected file, and could formally be quantified in terms of information loss. The intuitive 
goal that one wants to pursue is to produce a safe file with a minimum loss of information. 

It should be noted that there is an important difference between local suppression in 
microdata sets and cell suppression in tables. If a cell value in a table is suppressed it is 
often necessary to suppress some additional cell values, because usually the marginal totals 
of the tables are published. These marginal totals allow one in many cases to compute the 
value of a suppressed internal cell value if no additional cell values have been suppressed 
(for more information on cell suppression in tables see Willenborg and De Waal, 1996 and 
2001). If a value in a record in a microdata set is locally suppressed, then this value cannot 
be computed, because there are no marginal totals.  

17.2.3. Discussion 
Both techniques, global recoding and local suppression, can be used to eliminate unsafe 
combinations, each in its own way. These techniques can be used separately or in 
combination. Both techniques cause a certain loss of information in the data file to which 
they are applied. Moreover, local suppression may induce biased estimates when it is being 
dealt with in a straightforward (but naive) way, such as ignoring the missing values. For 
that reason it should be applied only on a relatively small scale. Global recoding is the 
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preferable technique when a large number of unsafe combinations have to be eliminated 
(and hence the number of required local suppressions would be large). On the other hand, 
local suppressions may be preferable to global recodings when much information would be 
lost due to these global recodings. When the number of local suppressions is small the bias 
introduced in estimates is often negligible, whereas the information loss that would have 
occurred when the microdata set should have been protected by global recodings only 
would have been substantial. In practice the right balance has to be found between 
applying global recodings on the one hand and local suppressions on the other. 

At Statistics Netherlands first some variables are globally recoded and subsequently the 
remaining unsafe records are protected by locally suppressing some values. The package 
µ-ARGUS is designed to carry out these tasks smoothly. In this chapter we assume that the 
approach outlined above is used, i.e., that the global recodings have already been carried 
out. Only the local suppressions remain to be determined. In the remainder of this chapter 
we explain how the number of local suppressions can be minimised. 

This approach can in turn be used as a stepping stone to a more comprehensive – and in 
practice more useful – model in which the optimum mix of global recodings and local 
suppressions to eliminate a given set of unsafe combinations has to be calculated (cf. 
Hurkens and Tiourine, 1998a and 1998b). Such a model can, in turn, be seen as a precursor 
to a model in which the unsafety definition of microdata on the basis of a frequency 
criterion for certain combinations of values is replaced by a probabilistic model that yields 
the disclosure risk for each record in a file (cf. Chapter 14, and De Waal and Willenborg, 
1996). The aim is then again to modify an unsafe microdata set by global recoding and 
local suppression, in such a way that a safe one is obtained, with minimum information 
loss. A microdata file is then considered safe if the disclosure risk for each record is below 
a given threshold value. 

17.3. Optimal local suppression 

The easiest way to determine which variable values should be locally suppressed would be 
to do this for each combination that has to be checked and for each record separately. 
Basically there are two ways of doing this. First, a value may be set to “missing” 
immediately after a certain unsafe combination is identified. The resulting microdata set, 
with missings due to local suppression, is then used to determine whether or not other 
combinations, possibly in other records, are safe. Second, the original microdata set may 
be used to determine whether or not a certain combination is safe. However, both 
approaches lead to some practical problems. 

Suppose that a value is set to “missing” immediately after a certain unsafe combination is 
identified and that the resulting microdata set, with missings due to local suppression, is 
used to determine whether or not other combinations, possibly in other records, are safe. 
The problem with this sequential approach is that some combinations may incorrectly 
seem to appear not frequently enough. For example, if we suppress the value “Statistician” 
in the combination “Occupation = Statistician” × “Nationality = non-Dutch”, then this may 
have the consequence that later on the combination “Occupation = Statistician” × “Sex = 
Male” might not seem to occur frequently enough. This combination would therefore be 
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considered unsafe. However, this combination could occur frequently enough in the 
original microdata set. In that case it should in fact be considered safe. 

Alternatively, the original microdata set can be used to determine whether or not a 
combination is safe. This approach may also lead to problems. Suppose, for instance, that 
the combination “Occupation = Statistician” × “Nationality = non-Dutch” does not occur 
frequently enough in the (original) file and that we decide to suppress the value of 
“Nationality”, i.e., “non-Dutch”, in each record in which this combination occurs. 
Suppose, furthermore, that the combination “Occupation = Statistician” × “Sex = Female” 
also does not occur frequently enough and in this case we decide to suppress the value 
“Female” in each of the corresponding records. Then it is likely that we suppress too 
much. If there were records of non-Dutch female statisticians in the microdata set, then it 
would have been better if we had suppressed the single value “Statistician” for these 
persons instead of the two values “non-Dutch” and “Female”. Here we make the 
assumption that the combinations obtained after suppressing the value “Statistician”, i.e., 
“Nationality = non-Dutch” and “Sex = Female”, occur frequently enough in the 
population. Whether this assumption is correct has to be checked, of course. 

We conclude that we cannot decide for each unsafe combination and record separately 
which values should be suppressed if we want to minimise the number of local 
suppressions. We have to decide which values have to be suppressed for all the unsafe 
combinations and records simultaneously. In Section 17.4 we examine how the resulting 
problem can be formally stated as a 0-1 integer programming problem. 

17.4. Models for optimal local suppression 

In this section we formulate the local suppression problem as a general 0-1 integer 
programming problem. We show that the problem discussed in Section 17.3 is a special 
case of this general problem. We begin by defining the term ‘minimum unsafe 
combination’, or MINUC. These MINUCs will play a crucial role in the remainder of this 
chapter.  

To fix our minds we suppose that the applicable SDC rules require that it is necessary to 
check whether certain trivariate combinations of categories of identifying variables occur 
frequently enough. The fact that we are considering combinations of three categories of 
identifying variables is not really restrictive. The number three could be replaced by any 
other number without affecting the essence of the method. In the sequel we only consider 
the identifying variables of the microdata set because our measures to protect a microdata 
set involve only such variables. In other words, whenever we refer to (a category/value of) 
a variable we will mean (a category/value of) an identifying variable. 

We start by checking all the univariates. In the case that a category of a variable is 
considered safe, we check the bivariate combinations in which this variable occurs. In the 
case that a category of a variable does not occur frequently enough, e.g. “Occupation = 
Mayor”, we do not have to check the bivariate combinations involving “Occupation = 
Mayor”, e.g., “Occupation = Mayor” × “Sex = Female”, because they will be unsafe as 
well. Next, we check the trivariate combinations in which only safe bivariate combinations 
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occur. After checking the required trivariate combinations we are able to list for all the 
records the minimum unsafe univariate, bivariate and trivariate combinations.  

A consequence of this way of constructing the MINUCs is that whenever we suppress a 
value in a minimum unsafe n-variate combination the resulting (n-1)-variate combination 
will be safe. Moreover, when in each MINUC of a record at least one value is suppressed 
then this record is considered safe. This property of the MINUCs makes it easy to find the 
minimum number of local suppressions. 

Suppose we need to suppress some values in some records. For each value j in a MINUC 
in record i we introduce a dummy variable ijy . This dummy variable is equal to 0 if value 
j in record i is not suppressed or if value j does not occur in record i; otherwise it is equal 
to 1. For each MINUC and for each record we have the constraint stating that at least one 
value of a MINUC in a record must be suppressed. In other words, the sum of the ijy  of 
the corresponding values is at least 1. As we have remarked before this constraint is 
necessary and sufficient in order to make this combination safe. As a target function we 
use a weighted sum of the ijy . 

In mathematical terms we consider the following 0-1 integer programming problem. Let 
the total number of unsafe records be denoted by I and the total number of different values 
involved in the MINUCs by J. After renumbering the records and the variables the dummy 
variables ijy  (i = 1, ...,I; j = 1, ...,J) must satisfy 
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Suppose there are K MINUCs in the microdata set. Let jkc  (j=1,…,J; k=1,…,K) and ikd  
(i=1,…,I; k=1…,K) be defined by 
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and 
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The constraints of the problem are given by 

 ∑
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≥
J
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1
,  for all i=1,…,I; k=1,…,K    (17.4) 

since we have to suppress at least one category in each unsafe combination.  

We consider the following target function  
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 ∑∑
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i
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j
ijij yw

1 1
       (17.5) 

where ijw  denotes the non-negative weight of value j in record i which needs to be 
specified by the user. Our problem is to minimise the target function (17.5) under the 
constraints given by (17.1) and (17.4). 

Note that the problem discussed in Section 17.3 is obtained if we choose all the weights 
ijw  equal to one. Because the weights in the target function (17.5) may be arbitrary non-

negative numbers the problem stated above is more general than the problem of Section 
17.3. The weights allow one to indicate how important one considers a specific value in a 
specific record to be as far as local suppression is concerned. 

Also note that the problem above can be decomposed into subproblems for each record 
separately. For each record i the target function (17.5) then has to be replaced by the target 
function 

 ∑
=

J

j
ijij yw

1
 for all i=1,…,I.     (17.6) 

The constraints to be considered for this problem consist of all those given in (17.4) as far 
as they pertain to record i. 

This subproblem for each record can sometimes be partitioned into a number of smaller 
subproblems. Consider the MINUCs of a particular record to be the vertices of a graph. 
Two MINUCs are joined by an edge if and only if they have a value in common. This 
graph may be disconnected. In that case it consists of several connected subgraphs that are 
mutually disconnected. Each subgraph corresponds to a subproblem, namely the problem 
of minimising (17.6) under the constraints that the MINUCs corresponding to the vertices 
are made safe. Thus sometimes we will be able to reduce the original problem to a number 
of smaller subproblems.  

Even these subproblems may sometimes be reduced to still smaller problems, some of 
which are trivial. This reduction follows from the observation that only the dummy 
variables corresponding to values that occur in more than one MINUC have to be 
considered. Combinations that are still unsafe after some of these values that occur in more 
than one MINUC have been suppressed can be made safe by suppressing any of the values 
involved with the lowest weight. 

Thus in practice we can expect that the general optimisation problem will be reduced to a 
number of small subproblems. For a realistic SDC rules, a MINUC contains only about 
five variables at most. Moreover, for realistic data sets there are at most only a few dozen 
MINUCS, involving only a few dozen variables. This implies that in many practical cases 
it is even possible to minimise the target function by complete enumeration. 

 

Example 17.1: Throughout the remainder of this chapter we illustrate the optimal solutions 
to the problems considered by means of an example. In this example there are eleven 
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unsafe records, seven variables ( 1V  to 7V ) and 21 different values (A to U). These eleven 
records contain the following MINUCs:  

record 1: “V1=A” × “V2=B” and “V2=B” × “V3=C” 

record 2: “V1=A” × “V4=D” and “V1=A” × “V5=E” 

record 3: “V2=F” × “V3=C” 

record 4: “V1=G” × “V2=H” and “V2=H” × “V3=I” 

record 5: “V5=J” × “V6=K”  

record 6: “V5=J” × “V6=L” 

record 7: “V1=M”× “V2=N” and “V2=N” × “V3=O” 

record 8: “V1=M” × “V3=O” 

record 9: “V5=P” × “V6=Q” and “V6=Q” × “V7=R” 

record 10: “V5=S” × “V6=T” 

record 11: “V5=S” × “V7=U”       � 

 

Thus records 1, 2, 4, 7 and 9 each contains two unsafe combinations and the remaining 
records one each. Note that the records containing two unsafe combinations each have one 
overlapping variable/value, that is a variable-value combination that appears in both 
MINUCs. For record 1 this is “V2=B”, for record 2 “V1=A”, for record 4 “V2=H”, for record 
7 “V2=N”, and for record 9 “V6=Q”.  

 

Example 17.2: If target function (17.5) has weights ijw  all equal to one, then an optimal 
solution of the problem considered in this section is given by:  

suppress in record 1: “V2=B” 

 suppress in record 2: “V1=A” 

 suppress in record 3: “V2=F” 

 suppress in record 4: “V2=H” 

 suppress in record 5: “V5=J” 

 suppress in record 6: “V5=J” 

 suppress in record 7: “V2=N” 

 suppress in record 8: “V3=O” 

 suppress in record 9: “V6=Q” 

 suppress in record 10: “V6=T” 
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 suppress in record 11: “V7=U” 

So, 11 values are locally suppressed and 10 different categories are involved.  � 

 

A heuristic optimisation routine for solving the above mathematical problem has been 
implemented in µ-ARGUS (see Hundepool et al., 2002b). For the mathematical problems 
that are discussed later in this chapter no solution methods have been in implemented in µ-
ARGUS yet. 

17.5. Minimising the number of different affected categories 

Instead of minimising the total number of local suppressions the user of the data might 
want to minimise the number of different categories that are affected by the local 
suppressions, i.e., he or she might want to minimise the number of categories that is 
suppressed in at least one record. A rationale for this could be that he or she considers a 
category that is suppressed in some records to be unsuited, or hardly suited, for statistical 
analysis. In other words, affected categories are of no, or only limited, value to him or her. 

We can formulate this second problem as follows. First we introduce some new dummy 
variables. For each category j that occurs in an unsafe combination we introduce a dummy 
variable jz , defined as 

 








=
affected.not  is category  if0
record; somein  suppressed
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j

jj
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Note that the jz  are independent of the records. The following constraints have to be 
satisfied.  

 ∑
=

≥
J

j
jjk zc

1
1  for all k=1,…,K.     (17.8) 

We consider the following target function.  

 ∑
=

J

j
jz

1
.        (17.9) 

Target function (17.9) must be minimised under the constraints given by (17.8). The 
optimisation problem that then arises is a set-covering problem. For set-covering problems 
special solution methods and computer implementations thereof are available. 

This problem can be extended by replacing (17.9) with a weighted sum of the jz . This 
would enable the user to indicate how important he or she considers each category to be. 
Very important categories should be given a large weight; unimportant categories should 
be given a small weight.  
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For this problem records cannot be considered independently, as was the case for the 
problem of Section 17.4. For this reason, in practice, minimisation of the number of 
different affected categories is a much harder problem than minimisation of the total 
number of suppressed values. In a realistic data set, there may be many, say several 
thousands, unsafe records, each involving a number of MINUCs. The total number of 
variables involved in the MINUCs may be several dozens. 

In some cases the problem described in this section can be reduced to smaller sub-
problems, because the remarks made in Section 17.4 apply to this case as well. In 
particular, the problem can sometimes be further reduced to subproblems corresponding to 
connected subgraphs. In this case the MINUCs correspond to the vertices of a graph. Two 
vertices are joined by an edge if and only if the corresponding MINUCs have a value in 
common and both MINUCs occur simultaneously in at least one record. 

 

Example 17.3: We consider our example again. An optimal solution to the problem 
considered in this section is given by: 

suppress in record 1: “V1=A” and “V3=C” 

 suppress in record 2: “V1=A” 

 suppress in record 3: “V3=C” 

 suppress in record 4: “V2=H” 

 suppress in record 5: “V5=J” 

 suppress in record 6: “V5=J” 

 suppress in record 7: “V1=M” and “V3=O”  

 suppress in record 8: “V3=O”  

 suppress in record 9: “V6=Q” 

 suppress in record 10: “V5=S” 

 suppress in record 11: “V5=S” 

So, 13 values are locally suppressed and eight different categories are involved.  � 

17.6. Special solutions 

After the problems of Sections 17.4 and 17.5 have been solved there are usually a number 
of possible optimal solutions. Among these possible solutions a solution that is optimal 
with respect to some additional criterion can be chosen. In this section we consider some 
of these extended problems. 

Suppose that the number of local suppressions has been minimised by solving the 0-1 
integer programming problem of Section 17.4. Suppose, furthermore, that among these 
solutions we want to find the solution that affects a maximum number of different 



Chapter 17 

 312

categories. As a result the local suppressions will probably spread more or less evenly over 
the categories. 

This problem can be formalised as follows. Let the minimum number of local suppressions 
be denoted by minN . This number is known because we assume that the problem of 
Section 17.4 has been solved. We want to use both the variables ijy  and the variables jz  
in one problem. The variable jz  should be equal to one if and only if there is a ijy  equal 
to one for some i. This can be achieved by using a large number M and introducing the 
following constraints: 

 ∑
=

≥
I

i
ijj yMz

1
 for all j=1,…,J     (17.10) 

and 

 jij zy ≥  for all j=1,…,J.      (17.11) 

As we want the number of local suppressions to be minimal we have to add the following 
constraint. 

 ∑∑
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The target function we consider is given by (17.9). This target function must be maximised 
under the constraints given by (17.4), (17.10), (17.11) and (17.12).  

 

Example 17.4: We consider our example again. A solution to the problem stated above is 
given by:  

suppress in record 1: “V2=B” 

suppress in record 2: “V1=A” 

suppress in record 3: “V2=F” 

suppress in record 4: “V2=H” 

suppress in record 5: “V6=K” 

suppress in record 6: “V6=L” 

suppress in record 7: “V2=N” 

suppress in record 8: “V1=M” 

suppress in record 9: “V6=Q” 

suppress in record 10: “V6=T” 

suppress in record 11: “V7=U” 

Thus 11 values are locally suppressed and 11 different categories are affected.   � 



Optimal Local Suppression in Microdata 

 313

 

Similar to the problem above the user of the data might want to suppress as few different 
categories as possible while at the same time suppressing as few values as possible. 

In this case the target function (17.9) must be minimised under the constraints given by 
(17.4), (17.10), (17.11) and (17.12).  

 

Example 17.5: We consider our example again. A solution to the problem above is given 
by:  

suppress in record 1: “V2=B” 

suppress in record 2: “V1=A” 

suppress in record 3: “V2=F” 

suppress in record 4: “V2=H” 

suppress in record 5: “V5=J” 

suppress in record 6: “V5=J” 

suppress in record 7: “V2=N” 

suppress in record 8: “V1=M” 

suppress in record 9: “V6=Q” 

suppress in record 10: “V5=S” 

suppress in record 11: “V5=S” 

Thus 11 values are locally suppressed and 9 different categories are affected.   � 

 

The final problem we consider is the following. Suppose that the number of different 
categories affected has been minimised by solving the 0-1 integer programming problem 
of Section 17.5. Suppose, furthermore, that among these solutions we want to find a 
solution that suppresses a minimum number of values. 

Let the minimum number of different categories affected be denoted by minM  This 
number is known because we assume that the problem of Section 17.5 has been solved. 
We introduce the following constraint: 

 ∑
=

=
J

j
j Mz

1
min .       (17.13) 

In this case we have to minimise (17.5) with all ijw  equal to one under the constraints 
given by (17.4), (17.10), (17.11) and (17.13).  

Note that the problem above is easy to solve once the problem of minimising (17.9) under 
the constraints (17.8) has been solved. On the one hand at least one value per MINUC 
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should be suppressed. Thus the optimal value of the target function (17.5) (with 1=ijw  for 
all i and j) is at least equal to the number of MINUCs. On the other hand it is sufficient to 
suppress only one value in a MINUC to make this combination safe. This implies that for a 
MINUC in which n values have been suppressed we can “re-open” any (n-1) values, i.e., 
replace the missings by the original values. Thus the optimal value of the target function 
(17.5) is at most equal to the number of MINUCs. Combining both results we conclude 
that the optimal value of the target function equals the number of MINUCs, and that a 
solution to the above problem can be found by re-opening any (n-1) values in each 
MlNUC in which n values have been suppressed. 

 

Example 17.6: For the last time we consider our example. A solution to the problem above 
is given by:  

suppress in record 1: “V1=A” and “V3=C” 

suppress in record 2: “V1=A” 

suppress in record 3: “V3=C” 

suppress in record 4: “V2=H” 

suppress in record 5: “V5=J” 

suppress in record 6: “V5=J” 

suppress in record 7: “V2=N”  

suppress in record 8: “V1=M” 

suppress in record 9: “V6=Q” 

suppress in record 10: “V5=S” 

suppress in record 11: “V5=S” 

Thus 12 values are locally suppressed and 9 different categories are affected.  � 

17.7. Solution methods 

In this section we sketch some solution methods for the problems described in Sections 
17.4 to 17.6. First of all, these problems can be solved by using a standard algorithm for 
solving 0-1 integer problems, such as a branch-and-bound algorithm (cf. Nemhauser and 
Wolsey, 1988), or by specialised algorithms for the set-covering problem (cf. Wolsey, 
1998). For some local suppression problems, such as minimisation of the total number of 
suppressed values, these algorithms are sufficiently fast to be applied in practice. For other 
local suppressions problem, such as minimisation of the number of different affected 
categories, these exact algorithms may be too slow to be successfully applied on practical 
instances. It is therefore interesting to explore the possibility of applying fast, but 
suboptimal, heuristics to such computationally complex local suppression problems. In 
1995 interesting work in this respect was carried out at Statistics Netherlands by Van 
Gelderen.  
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Van Gelderen was a student at the University of Amsterdam who did an internship at 
Statistics Netherlands, where he was jointly supervised by Dr. Willenborg and the author 
of this book. In his report Van Gelderen (1995) describes several heuristics for solving the 
local suppression problems of Sections 17.4 (minimisation of the total number of 
suppressed values) and 17.5 (minimisation of the total number of affected categories). 
Hereby, he concentrates on the latter problem as this is the most complex and interesting 
one from a practical computational point of view. Van Gelderen considers two basic 
greedy algorithms. In the first greedy algorithm the value that is chosen to be suppressed at 
any stage is the value that makes the most MINUCs safe at that stage. In the second one a 
value is chosen that occurs in MlNUCs involving as few values as possible, for example, 
when only bivariate and trivariate MINUCs occur in the problem then the bivariate 
MINUCs are protected first. Van Gelderen (1995) also describes an exchange procedure. 
After a partial solution has been generated, it is likely that values that entered the solution 
early in the selection process no longer contribute as much to the solution as they did when 
selected. That is, it may be advantageous to replace a value in the partial solution by a 
value not occurring in this partial solution. These three ingredients, the two basic greedy 
algorithms and the exchange procedure, are combined to construct six hybrid algorithms 
that have already been proposed by Vasko and Wilson (1986) for general set-covering 
problems. 

Apart from greedy algorithms Van Gelderen (1995) examines a heuristic based on the sum 
of the frequencies of the values in each of the (remaining) MINUCs. The combination with 
the lowest sum of frequencies, i.e., a combination that is made up of relatively rare values, 
is chosen. From this combination the value that has the highest frequency, i.e., the value 
that simultaneously protects as many MINUCs as possible, is selected for suppression. 
This heuristic is also combined with the first basic greedy algorithm, yielding a kind of 
modified Vasko and Wilson algorithm. 

Finally, Van Gelderen (1995) describes a probabilistic heuristic. At each stage of this 
heuristic the frequencies of the values in the remaining MINUCs are calculated. Based on 
these frequencies the probabilities for selecting a specific value for suppression are 
determined. The probability of suppressing a value is its frequency divided by the sum of 
the frequencies of all values. The exchange procedure described above is incorporated into 
this probabilistic heuristic in order not to miss the really important values. 

These heuristics have been applied to the problem of minimising the number of affected 
categories (see Section 17.5). The instances were generated randomly. Each value was 
considered equally important, i.e., target function (17.9) was used. The largest problem 
considered consisted of 1,000 unsafe combinations involving 64 different categories. For 
practical purposes the dimensions of this problem instance can be considered small to 
(perhaps) moderate. With GAMS\OLS, which uses a branch-and-bound technique for 
solving mixed integer programming problems, Van Gelderen found a solution involving 45 
categories after 13 hours computing time on a Dell 486DX\33MHz. The solution process, 
which was interrupted after one million iterations, indicated that the optimal value 
involved at least 41 categories.  

To find the optimal solution to the problem, Van Gelderen placed a request on the 
newsgroup ‘sci.op-research’ on the Internet. Peter Barth from the Max Planck Institut für 
Informatik in Saarbrücken (Germany) succeeded in solving the problem and proving 
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optimality of this solution. To find this solution Peter Barth used a Davis-Putnam based 
algorithm (see for example Chandru and Hooker, 1999, for a description of the Davis-
Putnam algorithm). It took him 1,158 seconds of user CPU-time to solve this problem on a 
SPARC 10/31, a then fast machine, and 3,479 seconds of user CPU-time to prove 
optimality. Knowing that the optimal solution involved 43 categories, Van Gelderen added 
a cut saying that at least 43 categories had to be suppressed to the problem formulation, 
and re-run GAMS\OLS. After for more than 13 hours a solution involving 43 categories 
was found. 

The heuristics each took less than half a second on a Dell 486DX\33MHz PC integrated in 
a Novell network with diskless workstations. The worst heuristic for this case, the first 
basic greedy algorithm, obtained a suboptimal solution of 47 different affected categories. 
The best heuristic for this case, the algorithm based on the sum of frequencies, obtained a 
suboptimal solution of 44 different affected categories. 

For other, smaller, problems the solutions of the heuristics were only compared to each 
other, not to the optimal solution. For these smaller problems the heuristics were also 
combined, i.e., each heuristic of such a combination was used to solve the problem to sub-
optimality and the best solution found was selected. It turned out that these combinations 
of different heuristics yield very good results. A combination of three heuristics of the 
Vasko and Wilson kind, three heuristics of the modified Vasko and Wilson kind, and the 
probabilistic heuristic accounted for over 95% of the best solutions. 

17.8. Discussion 

Optimal local suppression procedures can be automated and used in many practical 
situations, although theoretically the problems are computationally hard (NP-complete). In 
particular, optimal local suppression procedures can be automated if a local suppression 
problem splits into several smaller subproblems, each of which can be solved efficiently. 
This is, for instance, the case if the total number of suppressed values is to be minimised, 
because then the problem can be solved record-wise. If the number of different affected 
categories is to be minimised, the problem – in practice – tends to be somewhat more 
difficult. However, in many cases the problem can be decomposed into a number of 
smaller, and therefore easier to solve, problems. Moreover, fast heuristics that give good 
results, i.e., with solutions close to the optimal one, have been constructed. Thus it is 
possible to solve this problem in many practical instances as well within a relatively short 
period of time.  

For the problem of minimising the total number of suppressed values a heuristic, inspired 
by the heuristics developed by Van Gelderen (1995), has been implemented in µ-ARGUS, 
the computer program for SDC developed by Statistics Netherlands (see Hundepool et al., 
2002b). For the other problems, which are computationally much harder to solve in 
practice, no heuristics have yet been implemented in this computer package. 

Automating the global recodings is the next logical step to automating the local 
suppressions. Optimisation models for a special form of global recoding have been 
developed by Hurkens and Tiourine (1998b), generalising the kind of models presented. 
The models these authors consider are able to deal with local suppression and global 
recoding simultaneously. For these models it is assumed that a data protector has, for each 
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variable that appears in the combinations of variables checked, provided a set of alternative 
codings. It is also requested from this person to specify how much information is lost when 
a particular global recoding is applied. The idea is that a global recoding for a variable in 
this case is nothing but a selection of one of the predefined codings for that variable. The 
optimisation problem that has to be solved is to select the global recodings in such a way 
that the resulting microdata set is safe and the associated information loss is minimised. 
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18. Information Loss for Microdata Sets 

18.1. Introduction  

Microdata sets have to be protected against disclosure before they can safely be 
disseminated by a statistical office. More precisely, the risk of disclosure of confidential 
information should be sufficiently low before a microdata set may be released. Statistical 
disclosure control (SDC) aims to limit the disclosure risk. This can be done, as is the case 
at Statistics Netherlands, by checking whether certain combinations of scores occur 
frequently enough in the population (see for example De Waal and Willenborg, 1996, 
Willenborg and De Waal, 1996 and 2001, and Chapter 14 of the present book). If such a 
combination does not occur frequently enough in the population, the disclosure risk of the 
microdata set under consideration is considered too high and appropriate SDC measures 
should be taken. 

A number of SDC measures can be taken to protect a microdata set: recoding, suppression 
and perturbation, for example. Recoding is collapsing categories of a variable, suppression 
is the replacement of a value in a record by a missing value, and perturbation is the 
replacement of one value by another one. Protecting a microdata set by one of these 
measures leads to a loss of information. Our aim is to retain as much information in the 
microdata set while making this data set safe. When microdata are interactively protected 
using the computer program µ-ARGUS (see Hundepool et al., 2002b) the data protector 
employs an intuitive meaning of information loss. If the automatic mode of µ-ARGUS is 
used – in which the best combination of local suppressions and global recodings has to be 
found by the package itself – a quantification of information loss should be used that 
allows the package to make the necessary decisions and trade-offs. To achieve this it is 
necessary to quantify the information loss due to an SDC measure. 

In this chapter we consider two methods to quantify the information loss in a microdata 
file due to local recoding, global recoding, local suppression, or perturbation. One is 
objective and uses the entropy concept. The other is subjective, and uses weights specified 
by the data protector. These weights express the predilections of the data protector (who 
should be enlightened by the users’ needs!) for preserving the information of certain 
variables over others and certain predefined codings for a variable over others. We have 
developed both methods to quantify the information loss jointly with Willenborg. 

The basic idea to evaluate the information loss formally is to use the entropy function for 
some suitably chosen probability distribution. This probability distribution is a stochastic 
model for the changes attributable to the applied SDC measures. The basis for the 
probability function is a ‘transition probability matrix’ for a variable. Such a matrix gives 
(an estimate of) the probability that an ‘old’ value in a record is changed to a particular 
‘new’ one as a result of a modification of the microdata. The matrix for a particular 
variable in a file may be estimated by assuming a model for the changes due to the SDC 
measures and by subsequently estimating the corresponding probabilities. To estimate the 
probabilities it is necessary to make an assumption about the available information on 



Chapter 18 

 320

which these estimates are based. For instance, these probabilities may be estimated by 
comparing the old and the new files and counting the number of changes that have 
occurred in the old file with respect to the variable(s) under consideration. 

We start our discussion on information loss by considering a technique that can be seen as 
more elementary than both global recoding and local suppression, namely local recoding. 
Sections 18.2 to 18.5 discuss the information loss due to local recoding, global recoding, 
local suppression and data perturbation, respectively. To apply the proposed method it is 
necessary to estimate so-called transition probabilities. This is the subject of Section 18.6. 
A subjective method for measuring information loss is described briefly in Section 18.7. 
Both these information loss measures, the one based on the entropy as well as the 
subjective one, are used in µ-ARGUS (cf. Hundepool et al., 2002b) in the ‘automatic 
mode’ when using a mixture of global recoding and local suppression. The chapter 
concludes with a short discussion in Section 18.8. 

Part of this chapter has appeared in Netherlands Official Statistics (De Waal and 
Willenborg, 1999b).  

18.2. Information loss due to local recoding 

In order to be able to define the information loss due to global recoding and local 
suppression we first consider a related but simpler action, which we shall refer to as local 
recoding. By local recoding we mean that a variable is recoded for one record only, 
whereas by global recoding we mean that a variable is recoded for all records in which one 
of the recoded categories occurs. 

Suppose that a certain combination of scores in the file, e.g. ‘Age = 17’ and ‘Marital Status 
= Widowed’ does not occur frequently enough in the population. The records in which this 
combination occurs have to be protected. This can be achieved, as far as this particular 
combination is concerned, by recoding the variable ‘Marital Status’ in these records. For 
instance, the value ‘Marital Status = Widowed’ may be replaced by ‘Marital Status = 
Widowed or divorced’, assuming that the combination ‘Age = 17’ and ‘Marital Status = 
Widowed or divorced’ occurs frequently enough. In this case there is some uncertainty 
about the original value of ‘Marital Status’ for a user of the microdata set. 

Now suppose that we can assign a probability Wp′  to the event that the original value of 
‘Marital Status’ equals ‘Widowed’ given that the new, recoded, value equals ‘Widowed or 
divorced’, and a probability Dp′  that the original value equals ‘Divorced’. That is,  
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where Wp  is the probability that the original value of ‘Marital Status’ in the record under 
consideration equals ‘Widowed’, and Dp  is the probability that the original value of 
‘Marital Status’ equals ‘Divorced’.  

In this case the entropy MSH , i.e. the information loss due to local recoding of ‘Marital 
Status’, is given by 

 ).log()log( DDWWMS ppppH ′′−′′−=     (18.3) 

The entropy can be interpreted in several different ways. In one interpretation the quantity 
MSH  given by (18.3) represents a measure for the uncertainty with respect to the original 

value of ‘Marital Status’ given that the new value is ‘Widowed or divorced’. The entropy 
is the highest if both values, ‘Widowed’ and ‘Divorced’, are equally likely. The entropy is 
the lowest if one of these values occurs with probability one and the other with probability 
zero. In this latter case there is in fact no uncertainty about the original value.  

In general, when categories C1, C2,..., Cn of a variable V in a particular record are 
combined into a single one, denoted as C1+C2+...+Cn, then the information loss VH  due to 
this local recoding is given by 
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where ip′  is the conditional probability that the original value of V in the record under 
consideration is equal to Ci given that the recoded value equals C1+C2+...+Cn. That is,  
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where ip  is the probability that the original value of V in the record under consideration 
equals Ci. 

So far we have only considered the situation that one variable in one record is recoded. 
Now we consider the case that several variables are recoded in one record. When variables 
V1, V2,..., Vm are recoded in a particular record k, then the information loss r

kH  in record k 
due to these local recodings can be measured by  
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where ),...,,(
21 21 mmiii CCCP  is the joint probability distribution of V1, V2,..., Vm. The 

superscript r indicates that r
kH  is the information loss due to (local)recoding. When we 

make the simplifying assumption that the variables V1, V2,..., Vm are independent then the 
information loss r

kH  in record k due to the local recodings is measured by the sum of the 
information losses due to the individual local recodings, i.e. 
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where r
V j

H  denotes the information loss due to the local recoding of variable Vj, which is 

given by (18.4). 

Finally, we consider the case that several variables are recoded in several records. When 
variables are recoded in records 1, 2,..., K then we measure the total information loss r

totH  
due to local recodings in these records by the sum of the information losses in the 
individual records, i.e. 
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where r
kH  denotes the information loss due to the local recodings applied to record k, 

which is given by (18.7). 

 

Example 18.1:  

We will illustrate our information measures for various statistical disclosure control 
techniques by means of a simple sample data set. This data set involves only one variable 
and 20 records. The only variable is ‘Marital Status’ with possible values ‘Never been 
married’, ‘Married’, ‘Divorced’, and ‘Widowed’. In our sample data set 8 records have the 
value ‘Never been married’, 5 records the value ‘Married’, 5 records the value ‘Divorced’, 
and the remaining 2 records the value ‘Widowed’. As the probability that the value of 
‘Marital Status’ equals a category C we take the fraction of records with value C in the 
sample data set. That is, pN = 8/20, pM = 5/20, pD = 5/20, and pW = 2/20, where pN denotes 
the probability that the value of ‘Marital Status’ equals ‘Never been married’, pM the 
probability that the value of ‘Marital Status’ equals ‘Married’, pD the probability that the 
value of ‘Marital Status’ equals ‘Divorced’, and pW the probability that the value of 
‘Marital Status’ equals ‘Widowed’. Now, if we recode the value ‘Widowed’ into ‘Never 
been married or widowed’ in a record, the information loss for that record is given by  

 H = -(1/5)log(1/5) – (4/5)log(4/5) = 0.722, 

if we take 2 as the base of the logarithm. Similarly, if we recode the value ‘Married’ into 
‘Married or divorced’ in a record, the information loss for that record is given by 

 H = -(1/2)log(1/2) – (1/2)log(1/2) = 1. 

The information loss in the second case is hence larger than for the first case. This is not 
surprising. If we assume that in each record with value ‘Never been married or widowed’ 
the original value is ‘Never been married’, we are correct in 4 out of 5 cases (assuming that 
the fraction of records with original value ‘Never been married’ that is recoded into ‘Never 
been married or widowed’ is the same as the fraction of records with original value 
‘Widowed’ that is recoded into ‘Never been married or widowed’). In the second case, we 
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can only correctly guess the original value of ‘Married or divorced’ in 1 out of 2 cases on 
the average.         � 

18.3. Information loss due to global recoding 

In practice, local recodings are hardly ever applied, because they lead to a rather odd kind 
of microdata set in which the categorisation of each variable can differ per record. In this 
chapter we use local recoding only as a stepping stone to global recoding. Instead of local 
recodings one usually applies global recodings. This means that when a variable V is 
recoded in a particular record, then this recoding is applied to variable V in all records in 
the microdata set. In this way a uniform categorisation is obtained, i.e. the categorisation of 
a variable is the same for each record. For instance, when the categories ‘Widowed’ and 
‘Divorced’ of the variable ‘Marital Status’ are collapsed into the single category ‘Widowed 
or divorced’, then this is done for all records in which the value of ‘Marital Status’ equals 
‘Widowed’ or ‘Divorced’. 

Measuring the information loss due to a global recoding is rather easy once the information 
loss due to local recodings has been defined, because a global recoding can be seen as a 
number of local recodings that have been applied to all records in the microdata set. 
Suppose that a variable V is recoded by combining some of the old categories C1, C2,..., Cn 
such that the new categories are given by D1, D2,..., Dm (m ≤ n), where each Di may be a 
combination of several Cj. In that case the information loss r

VH  due to the recoding of V 
can be measured, in each record in which the value of V equals Dj, by  
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where ijp  denotes the probability that the original category of V in the record under 
consideration is equal to Ci given that the new category equals Dj. 

The total information loss in all records due to global recodings can be measured again by 
(18.8). An important difference between measuring the information loss due to local 
recodings and global ones is that in the case of local recodings the recoding of a variable V 
may differ per record, whereas in the case of global recodings the same recoding of V is 
applied in each record.  

 

Example 18.2: 

We use the same sample data set as in Example 18.1. If we globally recode the values 
‘Never been married’ and ‘Widowed’ into a single value ‘Never been married or 
widowed’, the information loss is given by 10×0.722 = 7.22.     � 

18.4. Information loss due to local suppression 

A combination in a microdata set that does not occur frequently enough can also be 
protected by local suppression, i.e. one or more values in this combination can be deleted. 
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For example, when the combination ‘Age=17’ and ‘Marital Status = Widowed’ does not 
occur frequently enough, then this combination can be protected by replacing the value of 
‘Marital Status’ by a missing value. Local suppression of the value of a variable V is not 
applied to all records in a microdata set, but to some of the records only. 

The information loss due to local suppressions can be measured in different ways. When 
local suppressions are not applied in combination with global recoding then the situation 
can be treated relatively easily. The information loss may be expressed as a weighted sum 
of the numbers of locally suppressed categories (see also Chapter 17). When local 
suppressions are applied in combination with global recodings then the situation is more 
difficult. In this case the entropy could again be used to measure the information loss. Both 
situations, local suppressions not in combination with recodings and local suppressions in 
combination with recodings, are examined below. It should be noted that the entropy can 
also be used to measure the information loss when only local suppression is applied. Using 
the entropy is better from a theoretical point of view, but is more difficult to apply in 
practice. 

In De Waal and Willenborg (1994a) and Chapter 17 of this book the problem of finding 
the minimum number of local suppressions to eliminate a set of unsafe combinations, i.e. 
combinations of scores that are considered rare in the population, in a microdata file is 
considered. The number of local suppressions is considered as a measure for the 
information loss due to the suppressions. This problem is also extended to eliminating a set 
of unsafe combinations while minimising a more general linear target function. For 
instance, to each variable Vi a weight iw  can be assigned. The information loss in the 
microdata set due to the local suppressions is then measured by ∑i ii sw , where the sum is 

taken over all variables and is  equals the number of times that a value of variable Vi is 
suppressed. Using this linear target function instead of the, non-linear, entropy has the 
advantage that the problem of determining the optimal local suppressions reduces to 
solving a 0-1 mixed integer programming problem (see Section 17.5). For such problems 
several algorithms are available. 

The situation is different in De Waal and Willenborg (1995c), where the problem is to find 
the optimum mix of local suppressions and global recodings to eliminate a given set of 
unsafe combinations. In that case it is necessary to find a trade-off in information loss due 
to either type of action. To be able to do this the entropy is introduced.  

The way to quantify information loss due to local suppression by means of the entropy is 
very simple once one realises that local suppression is an extreme form of local recoding, 
namely all categories of a variable are collapsed into a single one. Information loss for the 
local suppression of a value of variable V, having n categories, in a particular record is  

 ∑∑
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where pi denotes the probability that the original value of variable V in the record under 
consideration equals Ci. 

 



Information Loss for Microdata Sets 

 325

Example 18.3: 

Again we use the sample data set of Example 18.1. If we locally suppress the value of 
‘Marital Status’ for those records for which this value equals ‘Widowed’, the information 
loss per record is given by 

 H = -(2/20)log(2/20) - (5/20)log(2/20) - (5/20)log(5/20) - (8/20)log(8/2) = 1.86. 

The total information loss due to local suppression of the value ‘Widowed’ in the entire 
data set is hence given by 2×1.86 = 3.72. From Example 18.2 and the present example we 
can conclude that as long as only relatively few values are suppressed local suppression 
generally leads to less information loss than global recoding. 

Note that our example is far too simplistic for practical purposes. In particular, the 
probability distribution for the original value of the suppressed data is completely 
inappropriate here. A clever user with a sufficient understanding of the data set might 
make the educated guess that all suppressed values equal ‘Widowed’. The information loss 
would then be in fact zero, and the data set would not be protected at all!  � 

 

The total information loss due to local suppressions in record k, s
kH , is given by formula 

(18.7) with r
V j

H  replaced by s
V j

H . The total information loss due to local suppressions in 

all records, s
totH , is given by (18.8) with r

kH  replaced by s
kH . We define the total 

information loss due to global recodings and local suppressions by 
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The important aspect of definition (18.11) is that information loss due to (global) recoding 
can be directly compared to information loss due to local suppression. 

 

18.5. Information loss due to perturbation 

The final technique we consider in this chapter to protect a microdata set is perturbation. 
When perturbation is applied a value of a variable in a record is replaced by another, non-
missing, value. As an illustration of perturbation, suppose that the value of the variable 
‘Marital Status’ in a particular record equals ‘Widowed’. When perturbation is applied to 
‘Marital Status’ in this record, then the old, original, value ‘Widowed’ may be replaced by 
the new, perturbed, value ‘Married’, for instance. 

Suppose we can assign a probability k
ijp  to the event that the old, original, value of a 

variable V in a record k equals Ci given that the new, perturbed, value equals Cj, i.e. 

 ) recordin  code new |  recordin  code oldPr( kCkCp ji
k
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Now information loss for variable V due to perturbation, p
VH , can be calculated, in each 

record in which the value of V equals Cj, by formula (18.9), with the ijp  replaced by the 

above k
ijp .  

 

Example 18.4: 

We once again use the sample data set of Example 18.1. We assume that this data set is 
protected by perturbing the value ‘Widowed’ (‘W’) in one record into ‘Never been 
married’ (‘N’), and conversely the value ‘Never been married’ in one record into 
‘Widowed’. The values ‘Married’ (‘M’) and ‘Divorced’ (‘D’) are not perturbed. So,  

 pM,M = 1, p*,M = 0, where * denotes ‘N’, ‘D’, or ‘W’, 

 pD,D = 1, p*,D = 0, where * denotes ‘N’, ‘M’, or ‘W’, 

 pN,N = 7/8, pW,N = 1/8, p*,N = 0, where * denotes ‘M’, or ‘D’, 

 pW,W = 1/2, pN,W = 1/2, p*,W = 0, where * denotes ‘M’, or ‘D’. 

The information loss due to the above perturbation is hence given by 

 H = 2(-(1/2)log(1/2)-(1/2)log(1/2))-7(7/8)log(7/8)-(1/8)log(1/8) = 5.81. 

We conclude that in our examples local suppression leads to less information loss than 
perturbation. An explanation is that in Example 18.3 uncertainty is introduced into only 
two records, whereas in the present examples uncertainty is introduced into 10 records. 
          � 

 

The total information loss due to perturbation in record k, p
kH , is defined by (18.7) with 

r
V j

H  replaced by p
V j

H . The total information loss due to perturbation in all records, p
totH , 

is defined by (18.8) with r
kH  replaced by p

kH . Finally, we define the total information 
loss due to global recodings, local suppressions and perturbations by 

 .p
tot

s
tot

r
tot

psr
tot HHHH ++=++      (18.13) 

Definition (18.13) shows the strength of our approach: it offers a general framework to 
compare the information losses due to various SDC techniques. In particular, (18.13) 
allows us to compare the information losses due to (global) recoding, local suppression, 
and perturbation to each other. 

18.6. Estimation of transition probabilities 

In the previous sections we have implicitly assumed that the ‘transition probabilities’ can 
be estimated. The estimation of these probabilities in practice is the subject of the present 
section. Once the probabilities have been estimated an estimate for the information loss 
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can be obtained by substituting these estimates into the appropriate formulas. To estimate 
the probabilities a model, or scenario, has to be assumed. Based on a model the statistical 
office can ‘estimate’ the transition probabilities, which in turn can be used to evaluate the 
information loss due to SDC measures.  

In this chapter we use two simple models: a model based on the information available to 
the statistical office itself, model I, and a model based on the information available to a 
user of the data, model II. In model I we assume that we know which changes, and how 
many, have been made to the microdata set, but that we do not know which changes have 
been made in a particular record. That is, we place ourselves in the situation of an 
employee of the statistical office who has much information on the applied modifications 
available, but has not carried out the protection procedure himself. In Examples 18.1 to 
18.4 we have in fact used model I to estimate the required probabilities. In model II we 
place ourselves in the situation of a user of the microdata set. Such a user does not have 
detailed information about the changes that have been made to the microdata set. However, 
he does have population knowledge, which can be used to estimate which changes have 
been made to the microdata set. By selecting one of the models, I or II, the statistical office 
can estimate the transition probabilities. 

To be honest the estimation of the transition probabilities is a hard problem, which is 
impossible to do in general. The complexity of the estimation problem is partly caused by 
dependencies between different variables in the same record. These dependencies can be 
either of a logical or a statistical nature. An example of logical dependency is: when the 
value of ‘Marital Status’ equals ‘Married’ then the value of ‘Age’ cannot equal 12 years. 
An example of a statistical dependency is: when the value of ‘Marital Status’ is ‘Widowed’ 
then the probability that ‘Age’ equals 17 years is low. To estimate the original value of a 
variable that has been recoded, suppressed or perturbed these dependencies should be 
taken into consideration. In fact, to estimate the transition probabilities accurately elaborate 
multivariate techniques should be used. These multivariate techniques would be very 
difficult and time-consuming to apply.  

To complicate estimation of the transition probabilities even more, knowledge about the 
SDC process itself should be taken into account. For instance, in Example 18.3 a user may 
know, or suspect, that only categories that do not occur frequently enough in the data set 
have been suppressed. As ‘Never been married’, ‘Married’, and ‘Divorced’ do occur in the 
released data set, the user might conclude that both suppressed values equal ‘Widowed’. 
Using his knowledge about the statistical disclosure control process hence leads the user to 
the very simple – and very effective – probabilities:  

Pr(original value equals ‘Widowed’ | value has been suppressed) = 1  

and 

Pr(original value equals C | value has been suppressed) = 0  

for C different from ‘Widowed’. As it is unclear how to model the user’s knowledge of the 
SDC process, we will not examine this aspect any further. Instead we will only examine 
approaches where no knowledge about the SDC process is assumed. 
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We propose two simple approaches, which are described below. These approaches allow 
us to obtain rather crude estimates of the transition probabilities, and hence estimates of 
the information loss in a microdata set due to the SDC measures examined in this chapter. 
At first sight the fact that only rather inaccurate estimates of the information loss are 
obtained in this way may seem to be a problem. However, it should be borne in mind that 
measuring the ‘true’ information loss in a microdata set is essentially impossible, because 
the ‘true’ information loss is for a substantial part determined by subjective considerations 
by the users of this data set. The method to evaluate the information loss due to SDC 
measures that is described in this chapter should merely be seen as a practical and 
straightforward way to find the appropriate SDC measures. It should not be seen as the 
ultimate way to evaluate the information loss due to SDC measures. 

Now we describe our simple approaches to obtain estimates for the transition probabilities. 
The basic idea of both approaches is to ignore the relationships that might exist between 
the variables in a record. To estimate a transition probability for a variable V we only 
consider its univariate probability distribution. 

18.6.1. Recoding 
We start by considering recoding. Suppose that some of the old categories C1, C2,..., Cn of 
a variable V are combined in such a way that the new categories are given by D1, D2,..., Dm 
(m ≤ n), where each Dj is a combination of one or more Ci. To evaluate the information 
loss due to this recoding we need to estimate the probability k

ijp  that the old, original, 
category equals Ci given that the new, recoded, category equals Dj in a particular record k. 
The index k indicates that k

ijp , in principle, depends on (the values in) the record under 
consideration. We shall assume that Dj is obtained by collapsing C1 to Cs. The probability 

k
ijp  can then be estimated by 
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np        (18.14) 

where in  denotes the number of times that Ci (i=1,...,s) occurs in the original, unprotected, 
microdata set. Note that this estimate does not depend on (the values in) record k.  

In model I (18.14) is used as a simple estimate for the probability k
ijp . A user of the data 

set cannot use (18.14), however, because the numbers in  (i=1,...,s) are unknown to him. 
Therefore, in model II another estimate should be used, for example 
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Np        (18.15) 

where iN̂  denotes an estimate of the number of times that Ci (i=1,...,s) occurs in the 
population.  
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Better estimates for k
ijp  may be obtained by subdividing the population into several strata 

relevant for the variable under consideration. The estimate (18.14) is then constant for all 
records from the same stratum, instead of constant for all records. The same applies to the 
estimate (18.15). 

 

Example 18.5: 

In Example 18.1 we have already demonstrated model I. Here we illustrate model II. 
Suppose categories ‘Never been married’ and ‘Widowed’ have been recoded into a single 
category ‘Never been married or widowed’. Furthermore, suppose that an estimate for the 
number of times that ‘Never been married’ occurs in the target population is 980, and an 
estimate for the number of times that ‘Widowed’ occurs in the target population is 195. In 
that case model II yields the following estimated transition probabilities: 

Pr(original = ‘Never been married’ | recoded = ‘Never been married or widowed’)  
= 980/(980+195) 

and  

Pr(original = ‘Widowed’ | recoded = ‘Never been married or widowed’) = 195/(980+195).
          � 

18.6.2. Local suppression 
The case of local suppression is similar to the case of (local) recoding. Suppose that a 
value C1, C2,..., Cn-1, or Cn of variable V is suppressed in a record k. To evaluate the 
information loss due to this local suppression we need to estimate the probability k

ip  that 
the original category equals Ci. Again the index k indicates that, in principle, this 
probability k

ip  depends on the record under consideration. The probability k
ip  is then 

estimated by 

 ,ˆ
V

ik
i n

np =        (18.16) 

where in  equals the number of times that Ci occurs in the microdata set and Vn  equals the 
number of times that variable V has a non-missing value. Note again that this estimate does 
not depend on the particular record k. 

In model I (18.16) is used as an estimate for the probability k
ip , but a user of the data set 

cannot use (18.16) because the numbers in  (i=1,...,s) are unknown to him. Therefore, in 
model II another estimate should be used, for example 

 ,ˆ
ˆ~
V

ik
i N

Np =        (18.17) 
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where iN̂  denotes an estimate of the number of times that Ci (i=1,...,s) occurs in the 

population, and VN̂  an estimate of the size of the target population of variable V.  

Like in the case of recoding, better estimates may be obtained by subdividing the 
population into strata relevant for the variable under consideration. 

 

Example 18.6: 

We illustrate model II. We use the same data as in Example 18.5. Furthermore, we assume 
that the estimated frequency of ‘Married’ in the target population is 540, and the estimated 
frequency of ‘Divorced’ in the target population 485. The total target population hence 
consists of 980 + 540 + 485 + 195, i.e. 2,000 persons. Model II yields the following 
estimated transition probabilities: 

Pr(original value = ‘Never been married’ | value is suppressed) = 980/2,000, 

Pr(original value = ‘Married’ | value is suppressed) = 540/2,000, 

Pr(original value = ‘Divorced’ | value is suppressed) = 485/2,000, 

and 

Pr(original value = ‘Widowed’ | value is suppressed) = 195/2,000.  � 

18.6.3. Perturbation 
Now we consider the final and most difficult case, namely perturbation. We need to 
estimate the probability k

ijp  that the old, original, value of a variable V in record k equals 

Ci given that the new, perturbed, value equals Cj. That is, we need to estimate k
ijp  defined 

by (18.12). We assume again that k
ijp  does not depend on k, i.e. ij

k
ij pp ≡ .  

We also assume the transition probability ijt , indicating the probability that for an 
arbitrarily chosen record the category Ci is replaced by category Cj, i.e. 

 )code old |  code newPr( ijij CCt === ,    (18.18) 

is used in model I as well as in model II. In other words, we assume that these transition 
probabilities ijt  are known to the general public, for example because the statistical office 
itself publishes these transition probabilities. 

We also need to estimate the probability iq  that the old, original value equals Ci. 

 )code oldPr( ii Cq == .      (18.19) 

In model I we can use as an estimate for iq  
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V

i
i n

nq =ˆ ,       (18.20) 

where in  again equals the number of times that the old, original, value equals Ci, and Vn  
the number of times that variable V has a non-missing value. A user of the microdata set 
should use another estimate because the numbers in  and Vn  are unknown to him. So, in 
model II iq  should be estimated differently, for example by  

 
V

i
i

N
N

q ˆ
ˆ~ = ,       (18.21) 

where iN̂  denotes an estimate of the number of times that Ci (i=1,...,s) occurs in the 

population, and VN̂  an estimate of the size of the target population of variable V. 

Finally, by applying Bayes’ rule to ijp , iq  and ijt  we obtain 
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By substituting the estimate (18.20) for iq  in (18.22) we obtain  
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as an estimate for k
ijij pp =  in model I. This estimate can also be obtained in the following 

way 

 
j

ij
ij m

m
p = ,        (18.24) 

where ijm  equals the number of times that a code Ci is changed to Cj, and jm  equals the 
number of times that the code Cj occurs in the perturbed microdata set. Note that (18.23) 
and (18.24) are defined only when jm  differs from zero. 

In model II, on the other hand, we may substitute the estimate (18.21) for iq  in (18.22) to 
obtain 
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as an estimate for k
ijij pp = . 

Again better estimates may be obtained by subdividing the population into strata. 
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Example 18.7: 

We illustrate model II by means of the same data as in Example 18.6. Moreover, we 
assume that the transition probability NWt ,  to perturb the value ‘Widowed’ into ‘Never 
been married’ equals 1/2, and the transition probabilities to perturb the value ‘Widowed’ 
into ‘Married’ or ‘Divorced’ equal 0. The probability that the value ‘Widowed’ is not 
perturbed is therefore given by 1/2. We also assume that the transition probability WNt ,  to 
perturb the value ‘Never been married’ into ‘Widowed’ equals 1/8, and the transition 
probabilities to perturb the value ‘Never been married’ into ‘Married’ or ‘Divorced’ equal 
0. The probability that the value ‘Never been married’ is not perturbed is therefore given 
by 7/8. 

Given these data we can use model II to estimate the various probabilities. We find, for 
instance, 

Pr(old = ‘Widowed’ | new = ‘Widowed’) = 
)81)(2000980()21)(2000195(

)21()2000195(
+

 

= 0.443. 

and  

Pr(old = ‘Never been married’ | new = ‘Never been married’) = 0.898.   � 

 

18.7. Subjective information loss measure: weights 

In µ-ARGUS (see Hundepool et al., 2002b) it is possible to use an automatic mode for 
protecting a microdata set. In this case the program searches for an optimal mix of global 
recodes and local suppressions to protect the microdata set. If the program is to perform 
this task, the data protector should make the necessary preparations, including specifying 
for each identifying variable a set of possible predefined codings (for example for a 
regional variable codings at the municipality, county, province and area level are possible). 
Then for each variable he should indicate how important each variable is for him by 
specifying weights for each variable. Furthermore, for each variable he should indicate 
how important each of the alternative codings is for him, again by specifying weights. The 
weight that the system then uses for a particular coding of a particular variable is 
(proportional to) the product of the variable weight and the coding weight. Furthermore, 
the user should specify a weight for each identifying variable indicating the cost of 
suppressing a value of this variable. 

The data protector is offered no guidance in specifying these weights in the current version 
of µ-ARGUS (version 3.1), but he has the full power of this approach based on weights 
available. 
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18.8. Discussion 

In order to estimate the information loss due to recoding, local suppression and 
perturbation we propose to use formula (18.13). To apply this formula one has to estimate 
the transition probabilities. To obtain simple estimates of the transition probabilities 
corresponding to recoding, local suppression and perturbation we suggest using (18.14), 
(18.16) and (18.23), respectively, in model I, or (18.15), (18.17) and (18.25), respectively, 
in model II. 

The measure for the information loss obtained in this way is a rather crude one. One reason 
for this crudeness is that dependencies between variables in the same record are not taken 
into account. As a consequence the computed information loss will in many cases be 
higher than the actual information loss. A better information measure may be obtained by 
constructing more realistic models for the transition probabilities. For example, in Section 
18.6 the same transition probability is assigned to each record. More realistic models for 
the transition probabilities can be constructed by subdividing the records into several 
strata, where each stratum has its own transition probability. These models, and a number 
of other models, remain to be examined. 

Another reason for the crudeness of our information loss measures is that potential 
knowledge by a user about the applied SDC techniques to protect the data is not taken into 
account. The proposed estimation methods for the transition probabilities required to 
calculate our entropy-based information measures simply neglect the potential presence of 
such knowledge, which may lead to overestimation of the actual information loss. A 
possible approach to obtain better estimates for the required transition probabilities is to 
assume different scenarios for various potential users. In each scenario different 
knowledge about the applied SDC measures may be assumed. Each scenario corresponds 
to a certain class of users, each group having their own loss of information. 

The attractive aspect about the entropy-based information loss approach is that it is general 
and versatile, deriving the information loss for various modification techniques such as 
global recoding and local suppression from a common principle, thereby making a direct 
comparison between information losses due to different data modification techniques 
possible. The entropy-based measure of information loss is objective, as it is only based on 
objective information such as variables, domains, and objective probabilities over these 
domains. There is no option for a data protector to express his preferences for certain 
variables or certain recodings. Therefore we have discussed a second type of information 
loss model in the present chapter, which can actually be called entirely subjective. The 
model allows the user to express his preferences (over variables, values or codings) in 
terms of weights. 

The disadvantage of this latter approach – which is not shared by the entropy-based 
approach – is the difficult intercomparability for different data modification techniques. In 
practice this is likely to be only achievable by a certain degree of experimenting and fine-
tuning, through judgement and valuation of the resulting safe microdata. It must be 
admitted, though, that up to now there has been relatively little experience in setting these 
subjective weights satisfactorily. A lot of experimenting and testing is needed with real 
data to develop some intuition in applying this method.  
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19. Statistical Disclosure Control and Sampling Weights 

19.1. Introduction 

Before a microdata set can be disseminated by a statistical office it has to be checked 
whether sensitive information about individual respondents can be disclosed. This should 
not be possible, of course, because this would endanger the privacy of these respondents. 
The procedure to check whether the dissemination of a microdata set can lead to disclosure 
of sensitive information usually amounts to examining how much so-called (indirectly) 
identifying information is contained in the microdata set. Examples of such identifying 
information is the age of a respondent and his domicile. If too much identifying 
information is contained in the microdata set, it is considered unsafe for release. In that 
case suitable statistical disclosure control (SDC) measures must be taken. 

When a statistical office releases a microdata set sampling weights are sometimes included 
as a service to the public. A description of the used auxiliary variables, their categories and 
the sampling method is in that case also provided. Unfortunately, the sampling weights, 
innocent as they may seem, can provide additional identifying information to an intruder. 
In this chapter we demonstrate that in almost any practical case, such an intruder will 
indeed be able to determine which combination of categories of the auxiliary variables, i.e. 
which stratum, corresponds to a specific weight when his knowledge about the population 
is sufficiently large. After the intruder has matched the weights to the strata, he might be 
able to (mis-)use the additional identifying information in combination with the other 
identifying information in the data set to disclose sensitive information about an individual 
respondent. 

In this chapter we describe methods to match weights to strata. These methods are 
generalisations of a method by Van Kouwen (1993). That latter method can only be used 
in the case that the numbers of categories of the auxiliary variables obey certain 
restrictions. In particular, Van Kouwen (1993) does not describe how to apply his method 
for general numbers of categories of the auxiliary variables, but only provides some 
examples for specific cases. The present chapter deals with the general case where the 
auxiliary variables may have arbitrary numbers of categories. Besides giving descriptions 
of our general methods, we also sketch how weights may be protected by subsampling or 
by adding noise to them. The methods to match weights to strata described in this chapter 
as well as the methods to protect weights have been developed in collaboration with 
Willenborg. 

The remainder of this chapter is organised as follows. In Section 19.2 two methods to 
match the sampling weights and the strata are described. In Section 19.3 several examples 
are given to illustrate these methods. A number of SDC measures to prevent the possibility 
to derive additional identifying information from the sampling weights is discussed in 
Section 19.4. A summary of the results in Section 19.5 concludes this chapter. 
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Part of this chapter has appeared in Journal of Official Statistics (De Waal and Willenborg, 
1997). This article has been supplemented by material from De Waal and Willenborg 
(1995a). 

19.2. Disclosure of identifying information from sampling weights 

Sampling weights can be determined by means of several procedures. In this chapter we 
consider three kinds of such procedures, namely post-stratification, linear weighting and 
multiplicative weighting (the latter is also called raking, raking ratio estimation or iterative 
proportional fitting). Details on linear weighting can be found in Bethlehem and Keller 
(1987) and on multiplicative weighting in Deville and Särndal (1992). As the methods to 
derive additional identifying information are different for post-stratification on the one 
hand and linear and multiplicative weighting on the other hand we distinguish between 
these two situations. 

We assume that an intruder knows the population frequencies that have been used to 
evaluate the sampling weights (almost) perfectly. This is quite a plausible assumption as 
information provided by the auxiliary variables is generally published by the statistical 
agency itself. Moreover, we assume that sampling weights corresponding to different strata 
are different. Again this is a plausible assumption as we are dealing with real life data. 

19.2.1. Post-stratification 
The case of post-stratification is very easy. By counting the frequency of a certain weight 
in the sample and by multiplying this frequency by the weight an intruder can determine 
the number of persons in the population that score on the stratum that corresponds to this 
weight. Because the intruder has a (nearly) perfect description of the population with 
respect to the auxiliary variables he can subsequently match the weights to the strata 
defined by the categories of the auxiliary variables. An example is given in Section 19.3. 

19.2.2. Linear/multiplicative weighting 
For both linear weighting and multiplicative weighting the product of a weight and its 
frequency in the sample is generally unequal to the frequency of the corresponding stratum 
in the population. Such a product is usually only an approximation of the frequency of the 
corresponding stratum. This complicates the situation for an intruder considerably. 
However, because the products of the weights and their frequencies do sum up to the 
marginal totals in the population an intruder is in many cases still able to derive identifying 
information from the sampling weights. In the sequel we show how an intruder might 
proceed. We concentrate on two methods the intruder may apply. This does not imply, 
however, that other methods are impossible; other methods may also be possible. We start 
by considering the case of multiplicative weighting. After we have examined this case we 
show how the results obtained can be translated to the case of linear weighting. 

To demonstrate how an intruder may proceed we will assume that m auxiliary variables 
have been used to determine the sampling weights. These auxiliary variables will be 
denoted by iV  (i=1,…,m). The number of categories of these variables will be denoted by 
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in  (i=1,…,m). The categories themselves will be denoted by ijC  (i=1,…,m; j=1,…, in ). 
We will assume that the variables are ordered in such a way that mnnn ≤≤≤ ...21 .  

A weight in the multiplicative case is given by 

 m
iiiiii mm

FFFW ×××= ...21
... 2121

 

where k
iF  depends only on the category kiC . When two weights have the same category 

index, we say that these weights have a category in common. Now we discuss the two 
methods to derive additional identifying information from the sampling weights. 

 

Method 1: 

In the first method the disclosure problem is split into two parts. In the first step, the 
intruder determines which weights have exactly (m-1) categories in common. In the second 
step, the intruder determines the actual auxiliary variables and categories. 

Step 1: 

The intruder can begin his mischievous disclosure attempts by listing all the different 
weights that occur in the microdata set. To determine which weights correspond to the 
same variable an intruder can then evaluate all the ratios of pairs of weights. These ratios 
are listed. Whenever we refer to the ratios list in the sequel we will mean this list of ratios 
of weights. Such a ratio has the following form 
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The ratios i
l

i
k FF  will also be denoted by ),,( lkiR . We will assume that a ratio ),,( lkiR  

is different from ),,( lkiR ′′′  whenever ),,(),,( lkilki ≠′′′ . Moreover, we will assume that 
1),,(),,( =′′′× lkiRlkiR  if and only if ii =′ , lk =′  and kl =′ . Note that a ratio 

1),,( =lkiR  if and only if k=1. 

The value of a ratio of two weights as given by (19.1) occurs 

 ∏
=∈ }|{ ii
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kn        (19.2) 

times in the list, where ∏
∅∈

=
i

ki
n 1  by definition. For instance, when ii lk ≠  for all 

i=1,…,m, then the value of this ratio occurs only once. 

The frequency of the ratios of which the weights have all categories except one, say 
category stC , in common is given by 
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If all the sG  are different from the frequencies of ratios of which the weights have less 
than (m-1) categories in common, then an intruder can determine which weights have  
(m-1) categories in common. In this case he would be through with the first step. When, 
moreover, all the values sG  (s=1,…,m) were distinct, then the intruder would even know 
the associated variables to these common categories. He would only need to find out the 
actual categories. 

When a sG  were equal to the frequency of a ratio of which the weights have less than  
(m-1) categories in common, then the intruder would not know yet which weights have  
(m-1) categories in common. This situation occurs when sG  can be written as 

 miiis nnnG ×××= ...21       (19.4) 

for some combination ),...,,( 21 tiii , where t is less than (m-1) and all ji  are distinct. In that 
case s must be one of the indices 1i , 2i ,…, ti , say tis = . 

Because the above situation can occur, we might hope that an intruder is not always able to 
determine which weights have (m-1) categories in common. Unfortunately, we have the 
following theorem. 

 

Theorem 19.1 Assuming that a ratio ),,( lkiR  differs from ),,( lkiR ′′′  whenever 
),,(),,( lkilki ′′′≠  and that 1),,(),,( =′′′× lkiRlkiR  if and only if ii =′ , lk =′  and kl =′ , 

an intruder can always determine which weights have (m-1) categories in common. 

Proof. We start by observing that weights that have a ratio that occurs mnnn ××× ...32  
times in the list have (m-1) categories in common, because relation (19.4) cannot be 
satisfied because mnnn ≤≤≤ ...21 . The corresponding ratios can be determined. If 
possible we determine other weights that have (m-1) categories in common. We can do this 
for those tG  for which (19.4) cannot be satisfied. 

Now suppose there are weights that have a ratio that occurs pG  times in the list (for some 
p), but for which the intruder cannot determine yet whether or not they have  
(m-1) categories in common. There may be several numbers p for which this situation 
occurs. The smallest number will be denoted by s. So, the ratios ),,( lkiR  can be 
determined for i=1,...,s-l. Suppose there are q numbers s, s+1, …, s+q-1 such that 

11 ... −++ === qsss GGG . Let the ratios of weights that occur sG  times be denoted by *
αR  

where α is an index. 

These ratios *
αR  are either equal to a ),,( lkjsR +  (for j=0, …, q-1) or to a product 
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In the latter case we have the following relation 

 11 ......
121 −++ ×××××××=
− qsssiiis nnnnnnG

t
,   (19.6) 

where t < m-q-1 and all ji  are distinct. The intruder can multiply the ratios *
αR  by the 

),,( ii lkiR ’ s for i=1,…, s-l. We distinguish between three cases: 

1. If *
αR  is equal to a ),,( lkjsR +  (for j=0, …, q-1), then the product occurs is nG  

times in the ratios list. This follows from (19.2) and jsi +≠ . 

2. If *
αR  is equal to a product given by (19.5) and },...,,{1 121 −∉ tiii , then the products 

occur either zero, sG  or siGn  times in the ratios list. Namely, when },...,,{1 121 −∉ tiii  

then a factor ),,( ii lkiR ′′  occurs in (19.5). So, the product of *
αR  and ),,( ii lkiR  occurs 

zero times in ii lk ′≠  and ii kl ′≠ . The product occurs sG  times if ii lk ′=  and ii kl ′≠ , 
or ii lk ′≠  and ii kl ′= . Finally, the product occurs siGn  times if ii lk ′=  and ii kl ′= . 

3. If *
αR  is equal to a product given by (19.5) and },...,,{1 121 −∈ tiii , then the products 

occur is nG  times in the ratios list. This follows from (19.2) and the fact that no 
factor ),,( ii lkiR  occurs in (19.5) 

So, if the products occur zero, sG  or siGn  times in the ratios list, then the intruder knows 

that the weights of which the ratio is given by *
αR  do not have (m-1) categories in 

common. When the products occur is nG  times, then the intruder cannot decide yet 

whether or not the weights of which the ratio is given by *
αR  have (m-1) categories in 

common. 

So, only if 1,2, ..., s-1 all were elements of },...,,{ 121 −tiii , the intruder would not be able to 

determine in this way whether or not the weights with such a ratio *
αR  have (m-1) 

categories in common. 

We claim, however, that when 1,2, ..., s-l are elements of },...,,{ 121 −tiii , then the weights 

of which the ratio is *
αR  have (m-1) categories in common. Suppose they did not have  

(m-1) categories in common. In that case relation (19.6) must be obeyed. Because,  
1,2, ..., s-l are elements of },...,,{ 121 −tiii , t < m – q - 1 and mnnn ≤≤≤ ...21 , we can 
conclude that the product mqs nn ××+ ... , i.e., the product of the m - (s + q) + 1 largest in  is 
equal to a product of less than m - (s + q) + 1 distinct in . This clearly is a contradiction. 
Hence, 1, 2,, …, s-1 cannot all be elements of },...,,{ 121 −tiii . 
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We have demonstrated that the intruder can determine which ratios that occur sG  times 
have (m-1) categories in common. Now the intruder can apply the same procedure for 
numbers larger than s. In this way the intruder can determine all weights that have (m-1) 
categories in common. This concludes the proof and Step 1.    � 

 

Step 2: 

After the intruder has determined which weights have (m-1) categories in common he has 
to determine the actual variables and categories involved. 

He can begin by making sets of weights that have the same (m-1) categories in common. 
This is very easy. When weights 1W  and 2W  have (m-1) categories in common and so do 

1W  and 3W  and also 2W  and 3W , then 1W , 2W  and 3W  have the same (m-1) categories in 
common. So, they are placed in the same set. Such a set of weights that have the same  
(m-1) categories in common will be called an equivalence class. Note that the equivalence 
classes are not disjoint: each weight is an element of m equivalence classes. The total 
number of equivalence classes is 

 ∑∏
= ≠

m

i ij
jn

1
.       (19.7) 

The number of elements of the equivalence class of which the weights do not have a 
category of variable iV  in common is in , i.e. the number of categories of iV . 

Now suppose weights 1W  and 2W  are elements of an equivalence class and that 1W ′  and 

2W ′  are elements of another equivalence class. When the ratios 21 WW  and 21 WW ′′  are 
equal, then 1W  and 1W ′  have the same category of a variable iV  in common. Namely 
suppose that 1W  and 2W  have (m-1) categories in common, then their ratio is given by a 

),,( lkiR . The ratio of 1W ′  and 2W ′  is also given by a ),,( lkiR ′′′ . We have assumed that 
these ratios are equal if and only if ii =′ , lk =′  and kl =′ . This implies that 1W  and 1W ′  
have category k of variable i in common. 

By examining all the ratios of weights in this way the intruder can determine all the 
weights that have the same category of iV  in common. Note that the intruder may not 
know the variable iV . However, if the value in  occurred only once among 

mnnn ,...,,1 ,then the intruder would know the variable iV . The sets of weights that have 
the same category of a variable in common are not disjoint, 

The intruder can evaluate the number of times that a category occurs in the population by 
multiplying all the weights that have the same category in common by their frequencies 
and taking the sum of these products, All that remains to be done is to find the categories 
and variables that correspond to the evaluated population frequencies by comparing these 
evaluated frequencies to the known frequencies in the population. This concludes the 
second step.          �

2
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Method 2: 

The second method to derive additional identifying information from the sampling weights 
consists of one step only. Again the ratios of pairs of weights are evaluated. Like in the 
first method ratios are listed. Now, however, only those ratios that occur sG  times for 
some s are listed, where sG  is given by (19.3). In other words, ratios of weights are listed 
only when these weights may have (m-1) categories in common. Of course, when a sG  
satisfies (19.4), then also ratios of weights are listed of which these weights have less than 
(m-1) categories in common. 

Now suppose the ratio 1211 WW  occurs sG  times, i.e. 1211 WW  = 2221 WW  = … = 

21 ss GG WW  for certain weights 1iW  and 2iW  (i=1,…, sG ). We do not know yet whether 

the weights 1iW  and 2iW  have (m-1) categories in common or not. Like in Step 2 of 
method 1 we multiply the weights 1iW  by their frequencies 1if  in the sample and take the 
sum of these products, i.e. we compute 

 ∑
=

sG

i
ii fW

1
11 .       (19.8) 

Now we examine the two possible cases. 

1. The weights 1iW  and 2iW  have (m-1) categories in common 

When the weights 1iW  and 2iW  (i=1,…, sG ) have (m-1) categories in common, then the 

1iW  are all the weights that have the same category kjC  of a certain variable kV  in 
common. Like in step 2 of method 1 the number given by (19.8) is then equal to the 
frequency of category kjC  of variable kV  in the population. So, we can determine a 
category corresponding to a weight 1iW  whenever 21 ii WW  have (m-1) categories in 
common. 

2. The weights 1iW  and 2iW  do not have (m-1) categories in common 

When the weights 1iW  and 2iW  (i=1,…, sG ) do not have (m-1) categories in common, then 
the number given by (19.8) is not equal to one of the known frequencies of the categories 
in the population. 

So, by comparing (19.8) to the known frequencies of the categories in the population we 
can conclude whether or not the weights 1iW  and 2iW  have (m-1) categories in common. If 
they do have (m-1) categories in common, we can moreover determine the category 
corresponding to the 1iW . In other words, by comparing (19.8) to the known frequencies of 
the categories in the population an attacker can derive to which stratum a particular weight 
corresponds.         � 
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When linear weighting has been used instead of multiplicative weighting almost the same 
two methods as described above can be applied. In fact one should only replace ratios by 
differences. For instance, instead of the ratios list an intruder should make a differences 
list. Examples of both multiplicative weighting and linear weighting are given in Section 
19.3. 

19.3. Examples 

In this section we give some examples to demonstrate how sampling weights can provide 
additional identifying information. We start by giving an example in the case that the 
sampling weights have been determined by post-stratification. 

 
Example 19.1: 

Suppose that two auxiliary variables A and B have been used to calculate the sampling 
weights. The number of categories of A is two and of B three. We suppose that post-
stratification has been used. Suppose, furthermore, that the frequencies of the strata in the 
population are given by Table 19.1. 

 

Table 19.1. Frequencies of the strata in the population. 

Stratum  Frequency in the population

11 BA ×  1368

21 BA ×  725

31 BA ×  896

12 BA ×  2,633

22 BA ×  2,787

32 BA ×  1,642

 

The weights are listed in ascending order in Table 19.2. 
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Table 19.2. Weights of the strata. 

Nr. Frequency in sample Weight Weight × Frequency (rounded) 

1 20 82.095 1,642 

2 10 89.596 896 

3 29 96.102 2,787 

4 25 105.320 2,633 

5 6 120.833 725 

6 10 136.799 1,368 

 

The weight of a stratum multiplied by its corresponding frequency in the sample is by 
definition equal to the size of this stratum in the population. So, if the intruder knew the 
frequencies of the strata in the population as given in Table 19.1, then he would be able to 
determine which weight corresponds to which stratum. For instance, it is easy to see that 
weight 82.095 corresponds to stratum 32 BA × , and weight 89.596 to 31 BA ×  . 

If the intruder knew the frequencies of the strata in the population only approximately, 
then he would have to choose the most likely way to match the weights with the strata. If 
the knowledge of the intruder about the frequencies of the strata in the population is 
sufficiently precise, then he will be able to determine which stratum belongs to a specific 
weight. Suppose, for instance, that the intruder would think that stratum i occurs 

iii XX ε+= pop,  times in the population, where iX pop,  is the actual frequency of stratum i 
in the population and iε  is an error term with 5050 ≤≤− iε . It is easy to see that even in 
this case the intruder would be able to match the weights to their corresponding strata 
correctly.         � 

 

Now we turn to the case where the sampling weights have been determined by linear 
weighting or multiplicative weighting. Of both methods described in Section 19.2 we give 
an example. 

 

Example 19.2: 

Suppose that three auxiliary variables A, B and C have been used. The number of 
categories of variable A is two, of variable B three and of variable C six. We assume that 
multiplicative weighting has been used. As two times three is six, it is not easy to 
determine the weights that have both a category of A and a category of B in common. The 
example illustrates how this can be done. In this example we apply method 1 of Section 
19.2 to derive additional identifying information from the sampling weights. Of course, we 
could have applied method 2 as well. 
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In Table 19.3 the knowledge of the intruder about the frequencies of the categories of the 
auxiliary variables is shown. 

 

Table 19.3. Frequencies of the categories of the auxiliary variables in the population. 
(Known to the intruder) 

Category Frequency in the population

1A  7,480,000

2A  7,649,000

1B  6,572,000

2B  7,037,000

3B  1,520,000

1C  2,765,000

2C  3,570,000

3C  3,605,000

4C  2,549,000

5C  1,811,000

6C  829,000

 

The weights that are released are listed in ascending order in Table 19.4. 
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Table 19.4. Weights of the strata. 

Nr. Frequency in the sample Weight Weight × Frequency 

1 495 94.6384 46,846.01 
2 703 95.2153 66,936.36 
3 960 96.0524 92,210.30 
4 3,368 96.6379 325,476.45 
5 7,004 96.8195 678,123.78 
6 15,749 96.8338 1,525,035.52 
7 6,174 97.4097 601,407.49 
8 12,999 97.4241 1,266,415.88 
9 168 98.1456 16,488.46 

10 105 98.2806 10,319.46 
11 620 98.7439 61,221.22 
12 233 98.8797 23,038.97 
13 2,868 99.0655 284,119.85 
14 940 99.2341 93,280.05 
15 805 99.6120 80,187.66 
16 4,626 99.6694 461,070.64 
17 623 99.8391 62,199.76 
18 3,599 100.2193 360,689.26 
19 1,848 100.4076 185,553.24 
20 13,989 100.7081 1,408,805.61 
21 1,338 100.7168 134,759.08 
22 4,121 100.8228 415,490.76 
23 1,236 101.0197 124,860.35 
24 13,385 101.3220 1,356,194.97 
25 1,959 101.3308 198,507.04 
26 2,495 101.4374 253,086.31 
27 10,583 101.5212 1,074,398.86 
28 9,652 102.1400 985,855.28 
29 0 102.2128 0.00 
30 1,228 102.3292 125,660.26 
31 0 102.8358 0.00 
32 1,643 102.9530 169,151.78 
33 0 103.0291 0.00 
34 12,688 103.1464 1,308,721.52 
35 0 103.6571 0.00 
36 12,844 103.7752 1,332,888.67 

 

We apply the method of Section 19.2 to extract identifying information from the sampling 
weights. We begin by making the ratios list. Because this list is rather large – it contains 
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36×36 ratios – only a part is presented in Appendix A. Only ratios less than one that occur 
more than once are listed. Of course, the reciprocals of these ratios occur more than once 
too in the actual ratios list. 

Examining the ratios list we see, for instance, that the ratio of 1W  and 2W , i.e. 0.99394, 
occurs 18 = 32 nn ×  times in the ratios list. So, 1W  and 2W  have a category of variable B 
and a category of variable C in common. The ratio of 1W  and 3W , i.e. 0.98528, occurs 12 = 

31 nn ×  times in the list. Because 212 n≠ , we know that 1W  and 3W  have a category of 
variable A and a category of variable C in common. 

The situation is somewhat more difficult for 1W  and 6W . The ratio of these weights, i.e. 
0.97733, occurs 6 times in the list. Because 6 = 321 nnn =× , we cannot determine yet 
whether or not 1W  and 6W  have two categories in common. The same situation occurs for 

1W  and 7W . The ratio of these weights, i.e. 0.97155, also occurs 6 times. 

We multiply the ratio of 1W  and 6W  and the ratio of 1W  and 7W  by the ratios of weights 
that have categories of variables A and C in common and by the ratios of weights that have 
categories of variables B and C in common. So, we multiply the ratio of 1W  and 6W  by the 
ratio of 2W  and 1W , for instance. The resulting ratio, 2W  divided by 6W , equals 0.98329. 
This number occurs 133 nG=  times in the list. Multiplying the ratio of 1W  and 6W  by the 
ratio of each pair of weights that have categories of variables B and C in common results in 
a ratio that occurs 313 =nG  times in the list. 

Similarly, when we multiply the ratio of 1W  and 6W  by the ratio of 3W  and 1W , then the 
resulting ratio, 3W  divided by 6W , occurs 232 nG=  times in the list. Multiplying the 
ratio of 1W  and 6W  by the ratio of each pair of weights that have categories of variables A 
and C in common results in a ratio that occurs 623 =nG  times in the list. 

According to the proof of Theorem 19.1, we can conclude that 1W  and 6W  have two 
categories in common. These two categories are categories from A and B. 

When we multiply the ratio of 1W  and 7W  by the ratio of 2W  and 1W , then the resulting 
ratio, 1W  divided by 7W , equals 0.97747. This number occurs 12 times in the list. 
Therefore, according to the proof of Theorem 19.1, 1W  and 7W  do not have two categories 
in common. 

In the above way one can determine all the weights that have two categories in common. 
The next step is to determine which weights form equivalence classes. This is easy. For 
example, 1W  and 3W  have two categories in common and so have 1W  and 5W , and 3W  
and 5W . Therefore, 1W , 3W  and 5W  have the same two categories in common. In 
particular, 1W , 3W  and 5W  form an equivalence class. Likewise 1W  and 2W  form an 
equivalence class, and so do 1W , 6W , 9W , 14W , 20W  and 22W . 
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Because the ratio of 1W  and 6W , i.e. 0.97733, is equal to the ratio of 7W  and 16W , the 
numerators of these ratios, 1W  and 7W , have a, still unknown, category of variable C in 
common. In this way, we can determine all the weights that have a, as yet unknown, 
category iC  of variable C in common. This enables us to evaluate the frequencies of iC  in 
the population by multiplying these weights by their frequencies and subsequently taking 
the sum of these products. This can be done for all categories of C. 

Similarly, we can determine all the weights that have a, still unknown, category jA  of 
variable A in common and all the weights that have a, also unknown, category kB  of 
variable B in common. Subsequently, frequencies of jA  and of kB  in the population can 
be evaluated by multiplying the corresponding weights by their frequencies and taking the 
sum of these products. The results are listed in Table 19.5. 

 
Table 19.5. Frequencies of the categories of the auxiliary variables in the population. 
(Evaluation based on microdata set) 

Category Corresponding weight indices Frequency in the population 

xA  1 3 5 6 9 10 13 14 15 19 20 21 22 27 29 30 33 34 7,480,000 

yA  2 4 7 8 11 12 16 17 18 23 24 25 26 28 31 32 35 
36 

7,649,000 

xB  1 2 6 8 9 11 14 17 20 22 24 26 6,572,000 

yB  5 7 13 16 19 23 27 28 33 34 35 36 7,037,000 

zB  3 4 10 12 15 18 21 25 29 30 31 32 1,520,000 

aC  20 24 29 31 33 35 2,765,000 

bC  6 8 10 12 13 16  3,570,000 

cC  22 26 30 32 34 36 3,605,000 

dC  14 17 21 25 27 28 2,549,000 

eC  1 2 3 4 5 7 1,811,000 

fC  9 11 15 18 19 23 829,000 

 

All that remains is to find the actual categories corresponding to the weights. Comparing 
Table 19.5 to Table 19.3 yields that 1AAx = , 2AAy = , 1BBx = , 2BBy = , 3BBz = , 

1CCa = , 2CCb = , 3CCc = , 4CCd = , 5CCe =  and 6CC f = . So, we have matched the 
weights to the strata. For instance, weight 1 corresponds to categories 1A , 1B  and 5C . � 
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Example 19.3: 

The third example illustrates how variables and categories could be recognised when there 
are several variables with the same number of categories. In this example we apply method 
2 of Section 19.2 to derive additional identifying information from the sampling weights. 
Of course, we could have applied method 1 as well. 

Suppose that three auxiliary variables A, B and C have been used. The number of 
categories A is two and of both B and C four. So, 21 =n , 42 =n  and 43 =n . We suppose 
that linear weighting has been used. Suppose, furthermore, that the frequencies of the 
categories of the auxiliary variables in the population are given in Table 19.6. 

 

Table 19.6. Frequencies of the categories of the auxiliary variables in the population. 
(Known to the intruder) 

Category Frequency in the population

A1 1,485,135

A2 1,514,865

B1 754,875

B2 735,023

B3 775,036

B4 735,066

C1 735,443

C2 784,387

C3 745,122

C4 735,048

 

The weights are listed in ascending order in Table 19.7. 
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Table 19.7. Weights of the strata. 

Nr. Frequency in sample Weight Weight × Frequency 

1 96 932.4877 89,518.82 
2 89 933.1395 83,049.42 
3 97 944.7638 91,642.09 
4 85 945.4156 80,360.33 
5 104 952.5411 99,064.28 
6 105 959.1034 100,705.86 
7 97 964.8172 93,587.27 
8 97 969.4501 94,036.66 
9 93 970.1019 90,219.48 

10 100 971.3795 97,137.95 
11 109 981.7261 107,008.15 
12 102 982.3780 100,202.55 
13 102 989.5035 100,929.36 
14 88 995.7425 87,625.34 
15 93 996.0658 92,634.12 
16 97 996.3943 96,650.25 
17 87 1,001.7796 87,154.83 
18 88 1,008.0186 88,705.64 
19 102 1,008.3419 102,850.87 
20 87 1,008.6704 87,754.33 
21 90 1,015.7959 91,421.63 
22 87 1,022.3582 88,945.17 
23 90 1,028.0720 92,526.48 
24 98 1,034.6343 101,394.16 
25 88 1,034.7040 91,053.95 
26 97 1,035.3558 100,429.51 
27 82 1,046.9801 85,852.36 
28 92 1,047.6319 96,382.13 
29 78 1,054.7574 82,271.08 
30 91 1,061.3197 96,580.09 
31 92 1,067.0335 98,167.08 
32 97 1,073.5958 104,138.79 

 

Part of the differences list is presented in Appendix B. Only differences less than zero that 
occur 8 (= 21 nn × = 31 nn × ) or 16 (= 32 nn × ) times are listed. 

Examining the list in Appendix B we see, for instance, that the difference 251 WW −  occurs 
8 times. So, 1W  and 25W  have 2 categories in common. Because 251 WW −  = 262 WW −  = 

273 WW −  = 284 WW −  = 295 WW −  = 306 WW −  = 317 WW −  = 3210 WW − , weights 1W , 2W , 
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3W , 4W , 5W , 6W , 7W  and 10W  have the same category in common. In this way we can 
determine all the groups that have the same category in common. These groups are listed 
in Appendix C. Apart from the indices of the sampling weights the products of these 
sampling weights and their frequencies in the sample are also listed in Appendix C. 
Moreover, the sum of these products for each group is listed. Such a sum is equal to the 
frequency of a category of the auxiliary variables in the population in the case that all the 
weights in the corresponding group have this category in common. 

Comparing the sums of each group in Appendix C to Table 19.6 yields that 1AAx = , 

2AAy = , 11 CX = , 42 CX = , 33 CX = , 24 CX = , 41 BY = , 32 BY = , 23 BY =  and 14 BY = . 

So, we have matched the weights to the strata. For instance, weight 1W  corresponds to 
categories A1, B4 and C1. 

In example 19.3 it is very easy to apply method 2 described in Section 19.3. If method 2 
were applied to the second example, then some groups would have been constructed that 
do not have the same category in common. The sum of the products of the sampling 
weights in such a group and their frequencies in the sample would, however, differ from 
any frequency of a category of the auxiliary variables in the population. So, it is still 
possible to match the sampling weights to the categories of the auxiliary variables in the 
same way as above. 

19.4. Possible SDC-measures 

In the previous sections we have shown that sampling weights can provide additional 
identifying information to an intruder. Therefore, sampling weights should not be released 
without taking specific SDC-measures. 

Two techniques to reduce the risk of disclosure caused by sampling weights can be 
applied. The aim of these techniques is to prevent the successful application of either of the 
two methods available to an intruder described in Section 19.2. 

The first SDC technique is subsampling the records with a relatively low weight in the 
microdata set and then re-calculate the weights for the remaining records. As a 
consequence the weights of the remaining records with originally low weights are 
increased. In this way one can make all the weights of the records approximately equal and 
then discard them. In that case the weights do not provide any information. One can also 
make all the weights of the records almost equal in a first step and then apply the second 
method that we will describe, namely adding noise to the (adapted) weights. Subsampling 
leads to a loss of information, of course, because several records are not published. 

The second SDC technique to reduce the risk of disclosure caused by sampling weights is 
adding noise to these weights. Suppose that the statistical office decides to add noise to the 
sampling weights. In other words, instead of releasing the true sampling weight iW  of 
record i the statistical office publishes values iii WW ε+=′  where iε  is a random value. 
The question is how much noise should be added. To avoid having to add too much noise, 
one should first of all make sure that the differences between the weights are not too large. 
In particular, suppose there are k different weights iW  (i=1,...,k) such that 
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kWWW <<< ...21 . In this case, the difference between 1+iW  and iW  (i=1,...,k-l) should not 
be too large. For instance, one could demand that δ<−+ ii WW 1  for i=1...,k-l, where δ is a 
well-chosen threshold value. If this condition is not satisfied one should subsample the 
microdata set until it is satisfied. 

Only when the above condition is fulfilled one should consider adding noise to the 
sampling weights. Unfortunately, it is not clear at the moment how the value of δ should 
be chosen. 

When noise is added to the sampling weights these weights are perturbed. Because 
generally all these perturbed weights will have a different value, the methods described in 
Section 19.2 cannot be applied immediately. So, obtaining additional identifying 
information is made (much) more difficult for an intruder. When an intruder wants to 
apply one of the methods of Section 19.2 to extract identifying information from the 
perturbed weights he must first cluster the perturbed weights into groups that are likely to 
consist of perturbed weights obtained from an equal original sampling weight, and he must 
estimate the original sampling weights. So, given the published perturbed weights iW ′  an 
intruder must estimate the original sampling weights and he must estimate the 
corresponding frequencies in the microdata set. When the intruder succeeds in obtaining 
good estimates for these numbers, then he can apply one of the methods of Section 19.2. In 
that case the intruder will only obtain estimates for the population frequencies of the 
categories of the auxiliary variables after the method has been applied. So, only if the 
estimates of the original sampling weights, of their corresponding frequencies in the 
microdata set and of the frequencies of the categories of the auxiliary variables in the 
population are close enough to the true values the intruder will finally be able to derive 
additional identifying information. 

Note that the sampling weights should be perturbed more in the case of post-stratification 
than in the case of multiplicative or linear weighting. To obtain additional identifying 
information in the case of post-stratification perturbed weights that are approximately 
equal have to clustered. The number of clusters constructed in this way should be equal to 
the number of strata. Based on these clusters an attacker can estimate the true sampling 
weights. The size of a cluster is the estimated frequency of the corresponding sampling 
weight in the sample. By multiplying the estimated sampling weights by their estimated 
frequencies in the sample an attacker may be able to match the clusters to the strata. 

In the case of multiplicative or linear weighting, however, the situation is more difficult for 
an attacker. Again he may begin by constructing clusters of perturbed weights that are 
approximately equal. Based on these clusters he can estimate the true sampling weights. 
The size of a cluster is again the estimated frequency of the corresponding sampling 
weight in the sample. Subsequently, he should use these estimates for the true sampling 
weights to make groups of sampling weights that have at least one particular category in 
common. So, compared to the situation in the case of post-stratification an attacker must 
make an additional step in order to obtain identifying information from the sampling 
weights. Moreover, this step is based on estimated, and thus unreliable, sampling weights. 
Finally, by multiplying each estimated sampling weight in such a group by its estimated 
frequency an attacker may be able to match the sampling weights to the strata.  
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As reliable estimates for the true sampling weights are essential in order to construct 
groups of weights that have at least one particular category in common in the case of 
multiplicative or linear weighting, one could consider adding (slightly) biased noise to the 
sampling weights. As a result the estimates for the true sampling weights based on clusters 
of perturbed weights that are approximately equal will be biased. Even when these clusters 
are constructed perfectly, i.e. each cluster consists of perturbed weights that are obtained 
from the same true sampling weight, the attacker is unlikely to be able to match the 
sampling weights to the strata. The reason for this is that he will presumably not succeed in 
making groups of sampling weights that have a particular category in common, because 
the estimates for the true sampling weights are rather bad. 

It is hard to quantify the probability that an intruder will be able to obtain additional 
identifying information from the sampling weights when noise has been added. In the case 
of post-stratification it is clear, however, that the perturbed weights should be sufficiently 
mingled. Suppose the sampling weights are ordered according to their values. When 1W  
and 2W  are two consecutive sampling weights, where 12 WW ≥ , then a sufficiently large 
number of perturbed weights iW 11 ε+  should be larger than a sufficiently large number of 
perturbed weights jW 22 ε+ . As already noted, to quantify what is meant by ‘sufficiently’ 
is hard, though. In the case of linear/multiplicative weighting the differences, respectively 
ratios, of the perturbed weights should be sufficiently mingled in order to avoid the 
possibility that additional identifying information is derived from the (perturbed) sampling 
weights by means of one of the two methods described in Section 19.2. Again it is hard to 
quantify ‘sufficiently mingled’. 

Part of the problem can be solved by discriminant analysis theory. Suppose that an intruder 
is able to estimate the weights iW  and their frequencies iπ  correctly. The only remaining 
problem for him to solve would be to allocate the perturbed weights to the correct weights. 
Suppose, furthermore, that the intruder knows the probability density function of the added 
noise to weight iW . So, he also knows the probability density function )(xfi  of the 

perturbed weights iŴ  that have been obtained from weight iW . In this case, the intruder 
can apply the ‘Bayes discriminant rule’ to allocate the perturbed weights to the correct 
weights (cf. Mardia, Kent and Bibby, 1979, p. 304-307). As prior probabilities he can use 
the iπ . 

When we define )(xjϕ  by 
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then the probability of misallocating a perturbed weight iŴ  that is obtained from weight 

iW  is given by 

 ∫−= dxxfxP iii )()(1 ϕ .      (19.10) 
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As a lot of (somewhat unrealistic) conditions have to be fulfilled before an intruder can 
apply the ‘Bayes discriminant rule’ the probability of misallocation will generally be larger 
than Pi. However, in practice one may use (1 - Pi) as an upper bound on the probability 
that an intruder will be able to obtain additional identifying information from the sampling 
weights. When the numbers Pi are sufficiently high, i.e. higher than a certain threshold 
value, then the sampling weights are considered safe, and can be released. Note that the 
threshold value may be lower in the case of linear/multiplicative weighting than in the case 
of post-stratification, because in the former case the conditions that have to be fulfilled 
before an intruder can apply the ‘Bayes discriminant rule’ are more unrealistic than in the 
latter case. The number of steps that have to be made by an intruder before he can allocate 
the perturbed sampling weights to the strata is simply larger in the case of 
linear/multiplicative weighting than in the case of post-stratification. 

We have already noted that in the case of linear/multiplicative weighting it is sufficient 
that the differences, respectively ratios, of the perturbed weights are “sufficiently mingled” 
in order to avoid the successful application of the methods of Section 19.2. This can be 
achieved in two steps. First, determine how much noise should be added to the differences, 
respectively ratios, to guarantee that they are sufficiently mingled. Second, determine how 
much noise should be added to the sampling weights in order to obtain the noise, 
determined in the first step, on the differences or ratios, respectively. We will illustrate the 
second step of this procedure below. It is assumed that the first step of the procedure is 
completed. This first step can be made by using (1 - Pi), where Pi is given by (19.10), as an 
upper bound on the probability that an intruder will be able to obtain additional identifying 
information from the sampling weights, for instance. 

Consider the case of multiplicative weighting. Suppose we need to add the noise Rε  to the 
ratio 21 WWR =  in order to safeguard this ratio. So, instead of releasing R we release 

RR ε+ . We want to achieve this noise Rε  on the ratio R by adding noise to the weights 

1W  and 2W , i.e. we want the following relation to hold 
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The right-hand side of (19.11) can be written as follows. 
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Assuming 1ε  and 2ε  to be small in comparison to 1W  and 2W , respectively, we find 
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Now suppose that the noises 1ε  and 2ε  are realisations of stochastic variables 1ε  and 2ε  

respectively, where iε  is ),0( 2
iN σ  distributed. The stochastic variable Rε  is then 

approximately ),0( 2τN  distributed, where 2τ  is given by 

 4
2

2
2

2
1

2
1

2
22

W
WW σστ += .      (19.15) 

We have assumed that the first step of the procedure is completed, i.e. we know how large 
2τ  should be. In this case we can determine (an infinite number of) pairs of values of 2

1σ  

and 2
2σ  that satisfy (19.15). We can prescribe additional relations that have to be satisfied 

by 2
1σ  and 2

2σ . A possible choice for these relations is given by 

 22
ii Wλσ =  (i=1,2),      (19.16) 

where λ is a constant. Note that other choices for 2
iσ , such as ii Wλσ =2  are also possible. 

The relation expressed by (19.16), however, seems to be rather natural to us. Moreover, it 
leads to a simple expression for the constant λ, namely combining (19.15) and (19.16) 
yields that λ is given by 

 )2( 22 Rτλ = .       (19.17) 

So, when the noise that is added to weight Wi has a ))2(,0( 222 RWN iτ  distribution 
(i=1,2), then the noise Rε  that is actually added to the ratio 21 WWR =  is approximately 

),0( 2τN  distributed. In other words, by adding a noise that is ))2(,0( 222 RWN iτ  
distributed to weights Wi (i=1,2) the corresponding noise that is added to the ratio 

21 WWR =  has the distribution that has been determined in the first step of the procedure. 

A practical problem remains. Suppose noise has to be added to the ratios 21 WW  and 

23 WW , then we find two different values for the variance of the noise that has to be 
added to the weight 2W . In that case we take the larger of these two values. As a result 
both ratios 21 WW  and 23 WW  will be protected sufficiently. 

Another problem when noise is added to the sampling weights, apart from evaluating the 
probability that an intruder can obtain additional identifying information from these 
weights, is the quality of the perturbed weights. When much noise is added to the sampling 
weights the resulting perturbed weights will hardly be useful for subsequent analysis. 
When little noise is added, the weights will remain useful for analysis, but the probability 
that an intruder can obtain additional information will be relatively high. How much noise 
should be added in order to obtain ‘safe’ and useful weights is a problem that remains to be 
solved. 
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19.5. Conclusions 

The main conclusion of this chapter is that sampling weights can provide additional 
information in most practical cases when SDC-measures have not been taken. It has been 
proved that this holds true for any combination of numbers of categories of the auxiliary 
variables. 

Therefore, SDC-measures have to be taken to prevent the derivation of additional 
identifying information from the sampling weights. Two techniques, subsampling and 
adding noise, have been discussed in general. These techniques should usually be applied 
in combination in the case of post-stratification. To quantify the protection offered by these 
two techniques and the quality of the sampling weights is hard. In practice one can use the 
probabilities Pi given by (19.9) as a lower bound on the probability that an intruder will be 
unable to match a weight Wi to its corresponding stratum. Better measures for the 
probability that an intruder is able to derive additional identifying information from the 
sampling weights should be developed in due course. 

A module to deal with sampling weights has been built into version 3.1 of µ-ARGUS (see 
Hundepool et al., 2002b). This module allows one to add noise to the sampling weights. 
The amount of noise that has to be added has to be determined by the user himself.  
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20. Cell Suppression: Problem Formulation and a Practical Solution 

20.1. Introduction 

Sande (2000b) gives several examples of blunders made by statistical offices while trying 
to protect their tables against disclosure of confidential data. He shows that some of the 
tables that have been published by statistical offices still contain sensitive information and 
were not adequately protected. Considering the fact that ample attention has been given to 
the area of confidentiality of tabular data it is quite remarkable that Sande is able to point 
out so many mistakes and blunders. It even raises the question whether the most 
commonly used disclosure limitation technique for tabular data, cell suppression, might be 
too difficult for statistical offices to apply. It also raises the question if it is possible at all 
to develop cell suppression software that completely protects tables. In this chapter we will 
examine this latter question. 

One of the reasons why cell suppression is so hard to apply correctly in practice is that the 
cell suppression problem itself is almost always described incorrectly in literature (see for 
example Kelly, Golden and Assad, 1992; Duarte De Carvalho, Dellaert and De Sanches 
Osório, 1994; Cox, 1995a; Dellaert and Luijten, 1999; Fischetti and Salazar-González, 
2000). Even the author of the present book is guilty in this respect (see Willenborg and De 
Waal, 1996 and 2001). This incorrect description is based on an incorrect definition of safe 
suppression patterns. Suppression patterns that are safe according to this definition should 
not always be considered safe, and vice versa. Not everyone is to blame for giving an 
incorrect description of the cell suppression. For instance, Sande already gave a (nearly) 
accurate description of the cell suppression problem in the 1970’s.  

In Section 20.2 of this chapter we give a formulation for the cell suppression problem that 
is correct in our point of view. As far as we are aware this is the first time that this 
formulation for the cell suppression problem is given in literature. The incorrect 
formulation that is commonly used is a simplification of the correct formulation. This 
simplification is treated in Section 20.3. To check whether a table is safe according to the 
correct definition so-called elementary aggregations have to be generated and checked. 
Section 20.4 briefly discusses these elementary aggregations. Elementary aggregations 
have already been introduced by Sande (1977, 1978b and 1978c). He, however, restricted 
attention to elementary aggregations with only non-negative coefficients. We show that 
elementary aggregations involving also negative coefficients are often required, and extend 
the concept of elementary aggregations accordingly. Section 20.5 shows that it is indeed 
sufficient to check these elementary aggregations for safety. In particular this section 
shows that if the elementary aggregations are safe, then the so-called suppression intervals 
of individual sensitive cells have a certain minimum width. The proof in that section has 
essentially been given by Sande (1978c). We have restated this proof in order to make it 
more easily accessible. Section 20.6 examines how to protect unsafe cells and unsafe 
elementary aggregations. The major part of that section has been described in literature 
before; our contribution is restricted to clearly stating how the same method can be applied 
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to general aggregations. Section 20.7 discusses a way to construct completely safe cell 
suppression software. Finally, Section 20.8 concludes the chapter with a brief discussion. 

20.2. The cell suppression problem 

The basis for cell suppression is a sensitivity measure for individual cells. Such a 
sensitivity measure determines whether a cell is safe, and hence whether its value may be 
published. If a cell is considered unsafe (sensitive), its value has to be suppressed. There 
are several classes of sensitivity measures. The best-known ones are the dominance rule 
and the prior/posterior rule (see for example Section 14.8 and Willenborg and De Waal, 
1996 and 2001). In this chapter we will restrict ourselves to these classes of sensitivity 
rules. In particular, we will assume that all tables in this chapter have non-negative cell 
values. 

The values of the sensitive cells are suppressed. This is referred to as primary suppression. 
In addition, usually a number of non-sensitive cells has to be suppressed in order to 
prevent the possibility of precise re-calculation of the suppressed sensitive cell values by 
an intruder. This is called secondary suppression. The cell suppression problem amounts to 
finding a good set of secondarily suppressed cells. 

Given a suppression pattern of primarily and secondarily suppressed cells, one can 
determine for each sensitive cell an interval of feasible values that this suppressed sensitive 
value can assume, the so-called suppression interval of the sensitive cell. In the usual, 
incorrect description of the cell suppression problem one only demands that the 
suppression interval contains an interval of prescribed width. Example 20.2.1 below 
illustrates the procedure. 

 
Example 20.2.1: 
Suppose we consider a cell to be unsafe if three or less respondents contribute at least 70% 
to the cell total. This is the (3,70)-dominance rule. We also demand that the suppression 
interval of each unsafe cell should have a width of at least 50% of the cell value. 

We apply these rules to the table below. 

 

 I II III Total 

A 100 200 150 450 

B 250 150 300 700 

C 600 450 500 1150 

Total 950 800 950 2700 

Figure 20.2.1. Unsafe table T1 
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Suppose the unsafe cells are A×I and A×III. We also suppose that to each of these cells 
only one respondent contributes. We protect the table by suppressing these cells, and a 
number of additional cell values. Suppose we obtain the following table. 

 

 I II III Total 

A × 200 × 450 

B × 150 × 700 

C 600 450 500 1150 

Total 950 800 950 2700 

Figure 20.2.2. Table T1 “protected version”  

 

The suppression intervals are given in Figure 20.2.3. 

 

 I II III Total 

A [0, 250] [200, 200] [0, 250] [450, 450] 

B [100, 350] [150, 150] [200, 450] [700, 700] 

C [600, 600] [450, 450] [500, 500] [1150, 1150] 

Total [950, 950] [800, 800] [950, 950] [2700, 2700] 

Figure 20.2.3. Suppression intervals corresponding to Table T1 “protected version”. 

 

Neither of the unsafe cell values can be determined to within 50% of its actual cell value. 
The “protected version” of Table T1 is hence considered safe according to the applied rule 
for the widths of the suppression intervals.      � 

 

Applying both a sensitivity measure as well as a rule for the widths of the suppression 
intervals may, however, lead to aggregations of cells that are not safe according to the 
sensitivity rule. The rule for the width of the suppression intervals may hence be 
inconsistent with the sensitivity measure. 

 
Example 20.2.2:  
From the “protected version” of Table T1 we can derive the total value of the aggregation 
of cells A×I and A×III. The value of this aggregation, which we can consider to be an ad-
hoc cell, equals 250. We therefore know the exact sum of the contributions of the two 
respondents in cells A×I and A×III. So, the “protected version” of Table T1 is not protected 
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at all according to our sensitivity measure that says that a cell is unsafe if three or less 
respondents contribute at least 70% to the total cell value! 

Gordon Sande (2000b) calls this phenomenon an “ad-hoc roll up”, and gives a number of 
examples in publications of various statistical offices.    � 

 

To avoid inconsistency between the sensitivity measure and the rule for the widths of the 
suppression intervals of sensitive cells, one should abandon the idea of using a rule for the 
widths of the suppression intervals of sensitive cells all together. One should exclusively 
use a sensitivity measure.  

Informally, we now define a table to be safe if and only if for no respondent too much 
information can be derived according to the applied sensitivity measure. Equivalent to this 
definition is the following, a bit more practical definition.  

 

Definition 20.2.1: A table is safe if and only if all aggregations of suppressed cells of 
which the exact value can be derived from the table are safe according to the sensitivity 
measure. 

 

When this definition is used to determine whether a suppression pattern is safe or not, 
inconsistency between different safety rules obviously cannot occur. 

Most sensitivity measures as described in literature only make sense for sums of cells. 
Therefore, to apply Definition 20.2.1 the sensitivity measure used has to be extended in 
order to make sense for more general combinations of cells, for example for differences of 
sums of cells. Daalmans (2002) describes several sensible possibilities to extend the (n,k)-
dominance rule and the prior-posterior rule to general linear combinations of cells. In the 
sequel of this chapter, we will assume that the applied sensitivity measures are indeed 
defined for general combinations of cells, and we will use Definition 20.2.1 to determine 
whether a table is safe.  

The cell suppression problem now consists of determining a safe suppression pattern for 
the table, or set of linked tables, under consideration while keeping the information loss 
due to suppression as low as possible. To determine the information loss due to cell 
suppression a suitable information loss measure has to be specified. Examples of such 
measures are: the total number of suppressed cells, the total value of the suppressed cells, 
and a weighted mix of the number of suppressed cells and the total value of the suppressed 
cells. 

Determination of a suppression pattern that protects a given table and leads to a minimum 
information loss is a very complicated problem in general. Even determining whether a 
table is sufficiently protected given a certain suppression pattern turns out to be a 
complicated mathematical problem. Section 20.4 very briefly considers the problem of 
determining whether a table is safe, while Sections 20.6 and 20.7 consider how to solve the 
cell suppression problem to suboptimality. 
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20.3. The standard simplification of the problem 

In the standard approach to the cell suppression problem this problem is simplified 
considerably by replacing the condition for a safe table mentioned in Definition 20.2.1 by 
the condition that the upper bound on the suppression interval of each sensitive cell is at 
least equal to that value for which the cell would be safe according to the sensitivity 
measure. Implicitly, this rule assumes that a sensitive cell is protected by suppressing some 
additional cells with relatively small contributions. In many cases this rule is sufficient for 
protecting the sensitive cell at hand. 

 
Example 20.3.1: 
Suppose we use the same sensitivity measure as in the preceding examples. That is, we 
consider a cell to be unsafe if three or less respondents contribute at least 70% to the total 
cell value. If a cell is unsafe, we suppress its value and demand that the upper bound on its 
suppression interval is at least equal to that value for which the cell would be safe 
according to the dominance rule. 

Consider the table below in which only cell A×I is unsafe. To this cell 16 respondents 
contribute, of which the largest three contribute 133 (so more than 70% of the total cell 
value) to the cell value. 

 

 I II III Total 

A 160 380 340 880 

B 40 80 60 180 

C 610 800 270 1680 

Total 810 1260 670 2740 

Figure 20.3.1. Unsafe table T2 

 

According to the sensitivity measure, the upper bound on the suppression interval should 
be at least 190 (= 133/0.7). This is achieved by the following suppression pattern. 

 

 I II III Total 

A × × 340 880 

B × × 60 180 

C 610 800 270 1680 

Total 810 1260 670 2740 

Figure 20.3.2. Table T2 “protected version” 
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If each of the three largest contributions to A×I is larger than the largest contribution to 
A×II, the largest contribution to B×I, and the largest contribution to B×II, then the 
suppression pattern is safe according to Definition 20.2.1, as can be demonstrated quite 
easily.          � 

 

Unfortunately, the above rule is not always sufficient. This can be the case for the (n,k)-
dominance rule if not all n largest contributions to an unsafe cell are larger than the largest 
contribution to another suppressed cell. For the prior-posterior rule the above rule can be 
insufficient if the second largest contribution to the sensitive cell is less than the largest 
contribution to another suppressed cell. 

 
Example 20.3.2: 
We continue Example 20.3.1. Suppose the largest three contributions to cell A×I in 
Table T2 equal 74, 50 and 9, respectively. Suppose, furthermore, that the largest three 
contributions to cell B×I equal 18, 5 and 3. If we consider the suppression pattern of Figure 
20.3.2, we see that the aggregation of cells A×I and B×I has a total value of 200. The 
largest three contributions to this aggregation sum up to 142 (74+50+18), more than 70% 
of the total value. According to our sensitivity measure the “protected version” of Table T2 
would hence be unsafe.        � 

 

Although the rule that the upper bound on the suppression interval of an unsafe cell should 
at least be equal to that value for which this cell would be safe according to the sensitivity 
measure used is not always sufficient, it does give a good approximation for the correct, 
more stringent rule. In several cell suppression software packages, such as CONFID (see 
Robertson, 1992, 1995, and 2000) and ACS (see Sande, 1984 and 1999), this 
approximation is used instead of the correct, more stringent rule. The approximation is 
improved by adding some additional constraints to the optimisation problem. The final 
result is a table that is (almost) completely protected. In Section 20.6 we briefly sketch the 
CONFID/ACS approach. 

Note that in some cases the approximating rule cannot be applied immediately. This is, for 
instance, the case if we have an unsafe cell with only one contribution (say with value 
140), and we apply a (3,70)-dominance rule. For no cell value would this cell ever be 
considered safe, simply because the cell contains only one contribution. Without 
knowledge about which other cells are suppressed we cannot specify the upper bound on 
the suppression interval of the unsafe cell, because the required upper bound depends on 
the additional cell suppressions. 

For such cases we use another approximation suggested by Daalmans: we do not neglect 
the total protection offered by suppressing a cell, but we do neglect each individual 
contribution to that cell. For instance, in the above example of the unsafe cell with only 
one contribution, we would require that the upper bound on the suppression interval should 
be at least 200 (=140/0.7). Note that an upper bound of 200 will always be too small, 
because we have neglected the individual values of the additionally suppressed 
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contributions. However, an upper bound of 200 is the best valid bound we can define 
easily. In the sequel we will use similar upper bounds.  

20.4. Elementary aggregations 

As we mentioned before, even determining whether a table is sufficiently protected is a 
complicated mathematical problem. The problem here is to determine, in principle, all 
aggregations for which the exact value can be derived from the table. The number of such 
aggregations may be extremely high. The good news is that not all aggregations have to be 
actually derived. For certain, natural classes of sensitivity measures it suffices to determine 
so-called elementary aggregations (see Sande, 1977, 1978b, and 1978c; Daalmans, 2002). 
An aggregation A for which the exact value can be derived from the table is called an 
elementary aggregation if it cannot be split into aggregations A1 and A2 for which the exact 
values can be derived from the table such that both A1 and A2 involve a strict subset of the 
variables involved in A.  

 

Example 20.4.1: 

In Figure 20.3.2 we have a number of elementary aggregations, for example the four 
aggregations consisting of A×I and A×II, A×I and B×I, A×II and B×II, and B×I and B×II. 
For example, the aggregation “A×I and A×II” is an elementary one, because this 
aggregation can only be split into “A×I” and “A×II” and the value of neither “A×I” nor 
“A×II” can be derived exactly from the table.      � 

 

The bad news is that elementary aggregations can involve cells that occur throughout the 
table. That is, an elementary aggregation does not necessarily involve only cells that occur 
in the same row or column, but can in principle involve cells from any row or column. An 
example of a table in which the cells involved in an elementary aggregation are not 
restricted to a single row or column is given below. 

 
Example 20.4.2: 

 I II III Total 

A × 190 × 440 

B 20 × × 90 

C × × 135 840 

Total 405 630 335 1370 

Figure 20.4.1. Elementary aggregations in a table 

 

It is easy to verify that the sum of A×I and B×II forms an elementary aggregation. The sum 
of these two cell values exactly equals 120 (this can be shown by, for example, adding the 
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first two rows to each other and subtracting the third column). Without further knowledge 
about the data of these two cells, we cannot decide whether this aggregation is safe or not.
          � 

 

As mentioned before, for certain classes of sensitivity measures, a table turns out to safe if 
and only if all its elementary aggregations are safe according to the sensitivity measure 
(see Daalmans, 2002). From now on we restrict ourselves to these classes of sensitivity 
measures. To check whether a table is safe the sensitivity measure has to be applied to all 
its elementary aggregations. If all elementary aggregations are safe, automatically all 
aggregations (elementary and non-elementary ones) are safe, and hence the table is safe. 
Otherwise, the table is unsafe and may not be published in this form. 

To check whether a table with suppressed cell values is safe, it remains to specify a 
method to determine all elementary aggregations. Sande (1977, 1978b and 1978c) 
describes a method to determine all elementary aggregations with non-negative 
coefficients corresponding to a given suppression pattern. Elementary aggregations with 
non-negative coefficients are characterised as extremal directions of a certain cone. To 
determine these extremal directions Chernikova’s algorithm is used (see Chernikova, 1964 
and 1965; see also Chapter 5 of this book). 

However, also elementary aggregations with negative coefficients exist. An example is 
given below. 

 
Example 20.4.3: 

 I II III Total 

A 70 × × 440 

B × 50 × 90 

C × × 135 840 

Total 405 630 335 1370 

Figure 20.4.2. Elementary aggregations with negative coefficients 

 

We denote the value of a cell in the i-th row and j-th column by ijx . We can derive that 
1702312 =− xx  (for example by subtracting the third column from the first row). A×II 

minus B×III is hence an elementary aggregation.     � 

 

The safety of these elementary aggregations with negative coefficients also needs to be 
checked. For instance, if in Example 20.4.3 only one respondent contributes to cell A×II 
and only one respondent to B×III, then these two respondents can derive each other’s 
contribution. This would then be a typical example of an unsafe table. 
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In principle, Sande’s method can be used to find all elementary aggregations (also the ones 
with some negative coefficients) for many tables by taking differences of elementary 
aggregations involving only non-negative coefficients. For instance, in Figure 20.4.2 
Sande’s method will, amongst others, identify the following elementary aggregations with 
non-negative coefficients: 3701312 =+ xx  and 2002313 =+ xx . By taking the difference of 
these elementary aggregations, we find the elementary aggregation with negative 
coefficients mentioned in Example 20.4.3: 1702312 =− xx .  

There are two problems with Sande’s method. The first problem is that there are tables for 
which Sande’s method cannot generate all elementary aggregations. Admittedly, such 
tables seem to be rare. A simple example is given below. 

 
Example 20.4.4: 

 I II Total 

A 10 × × 

B 10 40 50 

Total 20 × × 

Figure 20.4.3. Only elementary aggregations with negative coefficients 

 

In Figure 20.4.3 we have the following elementary aggregations: 101213 =− xx , 
203233 =− xx , 401232 =− xx  and 501333 =− xx . In all elementary aggregations negative 

coefficients occur so Sande’s method will not find any elementary aggregations. 
          � 

 

The second problem is that it is unclear – at least for us – how to determine all elementary 
aggregations from the elementary aggregations with non-negative coefficients only in a 
simple way. Daalmans (2002) describes an alternative method, which is based on a tree 
search, to generate all elementary aggregations that does not suffer from the problems 
mentioned, but may require a considerable amount of computing time. 

20.5. Widths of suppression intervals 

One may wonder whether it is sufficient to ensure only that all (elementary) aggregations 
for which the value can be derived exactly from the table are safe according to the 
sensitivity measure. In particular, one may wonder whether if all such aggregations are 
safe according to the sensitivity measure, suppression intervals for sensitive cells might 
still be very narrow, thereby allowing individual contributions to be estimated accurately. 
Fortunately, this cannot really occur. This has been demonstrated by Sande (1977 and 
1978c). The theorem below is based on Sande (1978c). 
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Theorem 20.1. If the only a-priori knowledge of each cell is that its value is non-negative, 
then the maximum of the suppression interval of a suppressed cell equals the smallest 
value of all elementary aggregations with non-negative coefficients in which this 
suppressed cell occurs.  

Proof. The wording of the proof given here differs slightly from Sande’s proof, but the 
argument is the same. To prove the assertion we use Fourier-Motzkin elimination (see 
Fourier, 1826; Duffin, 1974; Chvátal, 1983; Schrijver, 1986; see also Chapter 8 of this 
book), extended to equations.  

The standard form of Fourier-Motzkin elimination can only be applied to inequalities. The 
technique is quite simple. Suppose two inequalities are given by 

 ∑
≠

+≥
si

iis bxax        (20.1) 

and 

 ∑
≠

≥′+′
si

sii xbxa ,       (20.2) 

then we can construct the valid inequality 

 ∑ ∑
≠ ≠

+≥′+′
si si

iiii bxabxa       (20.3) 

in which variable sx  does not occur. We say that variable sx  has been eliminated from 
(20.1) and (20.2). In a natural way the technique can be extended to equations. For 
instance, we can eliminate variable sx  from (20.1) and 

 bxax i
si

is ′′+′′=∑
≠

       (20.4) 

We then obtain the following valid inequality for the remaining variables: 

 ∑∑
≠≠

+≥′′+′′
si

iii
si

i bxabxa .      (20.5) 

Analogously, we can eliminate a variable from two equations. We then obtain a valid 
equation for the remaining variables. 

When we eliminate all but one variable from a set of (in)equalities, we obtain a set of 
lower and upper bounds on the value of this variable (for ease of speaking: if equalities 
restrict the variable to take a particular value, we consider this value to be both a lower as 
well as an upper bound on the value of this variable). Fourier (1826) showed the following 
theorem.  

If the lower and upper bounds on the value of a variable are contradicting each other, then 
the original set of (in)equalities is inconsistent. If the lower and upper bounds do not 
contradict each other, the variable can attain any value between the maximum of the lower 
bounds and the minimum of the upper bounds. 

For the cell suppression problem, we have a set of equations given by 
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 bAx = ,        (20.6) 

where x denotes a vector consisting of an unknown for each suppressed cell. The matrix A 
and the vector b are determined by the additivity constraints for the table and by the non-
suppressed cell values. Besides (20.6) we have non-negativity constraints given by 

 0x ≥ .        (20.7) 

Suppose we want to determine the suppression interval of 1x . We can do this by applying 
Fourier-Motzkin elimination. We eliminate all variables except 1x , and examine the 
maximal lower bound and minimal upper bound on 1x . These bounds cannot be 
inconsistent, because the original, unprotected table is consistent. 

To prove Sande’s statement we apply Fourier-Motzkin elimination (extended to include 
equations) to the system given by (20.6) and (20.7). We do this in two steps. In the first 
step we apply Fourier-Motzkin elimination to (20.6) to eliminate all possible combinations 
of variables except those involving 1x  from (20.6). For instance, we eliminate variable 2x  
from (20.6). This yields a set of equations. Similarly, we eliminate the pair 2x  and 3x  
from (20.6). This also yields a set of equations. We do the same for all possible 
combinations except those involving 1x . Each combination of variables yields a set of 
equations without these variables. All these sets of equations are combined into one large 
system of equations. For convenience, we scale the equations such that the coefficient of 

1x  equals 1 in each equation. 

In the second step we use the inequalities (20.7) to eliminate all variables except 1x  from 
each equation of this large system. This results in lower and upper bounds on 1x . We 
examine which equations in the large system of equations lead to the strictest upper bounds 
on 1x . Note that we only have to examine the equations involving only non-negative 
coefficients. Namely, if a variable with a negative coefficient were involved in such an 
equation, the upper bound on 1x  would be infinite. So, the strictest upper bounds on 1x  are 
derived from equations involving only non-negative coefficients.  

Now, suppose that the strictest upper bound is obtained from an equation 

 ∑
≠

=+
1

1
i

iii dxcx ,       (20.8) 

where 0≥ic . If this aggregation were not an elementary one, it could be split into several 
elementary aggregations, at least one of which involving 1x . We select one of those 
elementary aggregations that would give the strictest upper bound on 1x . This upper bound 
on 1x  is at least as strict as the upper bound obtained from (20.8). We therefore conclude 
that the strictest upper bound on 1x  is obtained from an elementary aggregation. This 
concludes the proof.         � 
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Sande (1978c) proves an even more general result. This result is stated below as Theorem 
20.2, which can be proved in the same manner as Theorem 20.1. 

 

Theorem 20.2. If the only a-priori knowledge of each cell is that its value is non-negative, 
then the maximum of the suppression interval of an aggregation which is a sum of 
suppressed entries equals the minimum – over all decompositions into pieces consisting of 
elementary aggregations (with non-negative coefficients) – of the sum of the maximum 
values for each piece.  

 

For the case where the a-priori knowledge of potential intruders is not limited to just non-
negativity, but the potential intruders a-priori also know certain intervals in which the 
values of the cells lie, we can derive a similar result. We have to replace by (20.7) by 

 UL bxb ≤≤ .       (20.9) 

Now, lower and upper bounds for a suppressed cell i can be found in the second step by 
substituting the values L

jb  or U
jb  for the variables jx  occurring in the elementary 

aggregations obtained after the first step mentioned in the above proof.  

20.6. Protecting unsafe objects 

In this section and the next we explore the possibility of developing cell suppression 
software that generates completely safe suppression patterns. To explain how such 
software could be constructed, we will use the linear programming (LP) approach of 
CONFID (see e.g. Robertson, 1992, 1995 and 2000) or ACS (see e.g. Sande, 1984 and 
1999) rather than a more complicated integer programming approach (see for example 
Kelly, Golden and Assad, 1992; Geurts, 1992; Fischetti and Salazar-González, 1998b and 
2000). The approach sketched in this section is also implemented in a prototype computer 
program developed at Statistics Netherlands (see Traa, 2001). The approach is not (yet?) 
included in τ-ARGUS (see Hundepool et al., 2002a). 

Because the cell suppression problem is (too) difficult to solve at once, in the LP approach 
one first tries to solve the standard simplification described in Section 20.3. To solve this 
simplified problem, several LP problems are constructed and solved. How the simplified 
problem can be solved is sketched in Subsection 20.6.1. The simplified problem is in 
general not solved to optimality.  

Besides solving the simplified problem one also need to protect additional sensitive 
aggregations, for example sensitive aggregations in a single row or column. An approach 
is sketched in Subsection 20.6.2.  

20.6.1. Protecting individual sensitive cells 
In the LP approach, the sensitive cells are protected separately. At first, only the upper 
bound on the suppression interval of the sensitive cell to be protected is taken into account. 
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Other aspects of the cell suppression problem may be taken into account by later adding 
additional constraints to the mathematical model (see Subsection 20.6.2). 

Protecting the individual sensitive cells is done in two phases, in the first phase for all 
sensitive cells a pattern of potentially suppressed cells is determined. The cells involved in 
this pattern are only eligible for suppression. In a second phase some of the cells eligible 
for suppression may be removed from the suppression pattern, the values of these cells are 
then published after all. 

Suppose the minimal value for which the sensitive cell currently under consideration 
would have been safe equals 0u . That is, the sensitive cell would have been safe if there 
had been some extra contributions, each of which small in comparison to the actual 
contributions to the cell, such that the total value of the cell is at least 0u . This value 0u  
will act as the minimum value for the upper bound on the suppression interval of the 
sensitive cell. 

We now demand that  

 0uVV ≥∆+ ,       (20.10) 

where V is the actual cell value, and V∆  a change in cell value. The values V and 0u  are 
fixed, and V∆  is an unknown that needs to be determined. 

Note that Theorem 20.1 guarantees that if all elementary aggregations are sufficiently 
protected and 0u  as in (20.10) exists, then the upper bound on the suppression interval is at 
least 0u . That is, if all elementary aggregations are sufficiently protected, then (20.10) is 
automatically satisfied. 

We have already mentioned that it can happen that there is no value 0u  for which the 
sensitive cell would have been safe, simply because there are not enough contributions to 
the sensitive cell. Following Daalmans’ suggestion mentioned in Section 20.3 we then 
temporarily neglect the individual contributions to the additionally suppressed cells, but 
not the protection offered by the additionally suppressed cells. This suggestion allows us to 
compute a value 0u  that can be used in (20.10). 

After constructing the constraint (20.10), we modify, in principle, all other cell values 
subject to the constraint that the table remains additive and that the cell values lie within 
bounds assumed to be known a priori by a potential intruder. For instance, if a dominance 
rule is used we demand that the lower bound on each cell value is zero, and if a prior-
posterior rule with parameters p (allowed worst-case posterior knowledge) and q (prior 
knowledge) is used we demand that the value of each cell after adaptation lies within q per 
cent of the actual cell value. In the additivity constraints, a possible hierarchical structure is 
taken into account. 

Subject to the above constraints we minimise the information loss. In the first phase we 
assume that this information loss is given by 

 ∑ ∆×
i

iii VVf ||)( ,      (20.11) 
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where iV  is the value of the i-th cell in the table, iV∆  the change in value of cell i, and 
)( ii Vf  a function of cell value iV  that may depend on cell i. The iV∆  are the unknowns of 

the LP-problem. The sum is taken over all cells in the table. A non-sensitive cell is 
potentially suppressed if 0≠∆ iV . It is then added to the set of cells that are eligible for 
suppression.  

In CONFID and ACS the following function if  is used 

 )1log()( += VVfi .      (20.12) 

Marking a cell with a large value as eligible for suppression is hence considered to lead to 
more information loss than marking a cell with a small value as eligible for suppression. 
For sensitive cells the value of if  is by definition set to zero, because sensitive cells have 
to be suppressed any way. Similarly, for non-sensitive cells that have already been marked 
as eligible for suppression while protecting another sensitive cell if  is also set to zero. 

As is standard in cell suppression software, cells with value zero are never suppressed by 
CONFID or ACS, because potential intruders may know that the value of such a cell 
equals zero. This can, for instance, be the case if there are simply no entities in the 
population who could contribute to this particular cell. A potential intruder may know this. 
If the cell had been suppressed to “protect” another cell, this knowledge might be used to 
undo the “protection”. 

After the first-phase LP problems have been solved for all sensitive cells, we have 
determined a pattern of potentially suppressed cells for each sensitive cell. Together these 
patterns of potentially suppressed cells form one large pattern of potentially suppressed 
cells, i.e. a set of cells that are eligible for suppression. Before we actually suppress any 
values, we first clean up the cells that are eligible for suppression. By combining several 
patterns of potentially suppressed cells into one large pattern of cells that are eligible for 
suppression, some of these cell values that were considered eligible for suppression may be 
published after all, because enough protection is already offered by other cells that are 
eligible for suppression. 

During the second phase, the clean-up phase, only the cells that are eligible for suppression 
are considered. Again all sensitive cells are examined separately. For each sensitive cell 
the information loss given by  

 ∑ ∆×
j

jjj VVg ||)(       (20.13) 

is minimised, where jV  denotes the value of the j-th cell in the pattern of potentially 
suppressed cells after the first phase, jV∆  the change in value of cell j, and )( jj Vg  a 
function of the cell value jV  that may be depend on cell j. The sum is taken over all cells 
in the large pattern of potentially suppressed cells obtained after the first phase. A non-
sensitive cell is secondarily suppressed to protect the sensitive cell under consideration if 
and only if 0≠∆ jV . All sensitive cells are suppressed.  
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In CONFID and ACS the following function jg  is used: 

 VVVg j )log()( = .      (20.14) 

In the clean-up phase suppression of a cell with a large value leads to a relatively small 
information loss. The rationale is that a cell with a large value was already eligible for 
suppression any way, and suppressing this cell may have the effect that cells with smaller 
values eligible for suppression do not have to be suppressed. In other words, in the second 
phase one tries to avoid having to suppress many cells with small values by suppressing 
some cells with relatively large values. 

We have now explained how to protect sensitive cells. We have not considered how to 
protect sensitive aggregations. This question is considered in the next subsection. 

20.6.2. Protecting aggregations 

20.6.2.1. Protecting aggregations in a single row/column 
To protect sensitive aggregations in a single row or column, we extend the set of LP 
problems to be solved. We simply construct an LP problem for each such aggregation.  

Before we start solving the set of LP problems of the first phase we first examine for all 
sensitive cells which elementary aggregations involving this sensitive cell and cells in the 
same row, or column respectively, are sensitive as well. This examination can be 
performed fast by constructing a binary tree (see Robertson, 2000). Robertson (2000) notes 
that the total number of unsafe cells and unsafe aggregations involving cells in a single 
row or column is not much larger than the number of sensitive cells. For each unsafe 
aggregation we demand that the upper bound on the suppression interval of this 
aggregation is at least equal to that value for which the aggregation would have been safe 
according to the sensitivity measure. That is, we demand that a similar condition as for 
individual unsafe cells holds true. 

For all cells in the table we introduce unknowns, and demand that 

 ∑ ≥∆+
k

kk uVV 0)( ,      (20.15) 

where the sum is taken over all cells involved in the unsafe aggregation, and 0u  is that 
value for which this aggregation would have been safe if there had been some additional 
respondents, each with a relatively small, or even negligible, contribution.  

Note that Theorem 20.2 guarantees that if all elementary aggregations are sufficiently 
protected and 0u  as in (20.15) exists, then (20.15) is automatically satisfied. 

Apart from a slightly different constraint, sensitive aggregations involving only cells in a 
single row or column are treated similarly as sensitive individual cells. For all sensitive 
objects, i.e. sensitive cells as well as sensitive aggregations (in a single row or column), the 
cells eligible for suppression are determined in the first phase as described in the previous 
subsection. Next, for all sensitive objects the second, clean-up phase is performed.  



Chapter 20 

 372

In many cases the approach sketched in this subsection and the previous one will suffice to 
protect a table completely. Nevertheless, in some cases there may still be unsafe 
aggregations left in the table. According to our intuition such unsafe aggregations will only 
rarely occur in tables produced by national statistical institutes. For the sake of 
completeness we explain how to protect these unsafe aggregations in the next subsection.  

20.6.2.2. Protecting general aggregations 
Suppose one wants to protect an unsafe aggregation given by 

 ∑ =
k

kkk bxa .       (20.16) 

In the previous subsections we only had to solve one additional first-phase LP problem and 
a corresponding second-phase LP problem, because only a minimum value for the upper 
bound on the suppression interval had to be required. Here we may need to solve two 
additional first-phase and two corresponding second-phase problems, because both a 
maximum value for the lower bound on the suppression interval of (20.16) as well as a 
minimum value for the upper bound on the suppression interval of (20.16) may need to be 
demanded. Alternatively stated, we could say that we need to protect two unsafe objects: 
for one object the upper bound on (20.16) needs to be sufficiently high, for the other object 
the lower bound on (20.16) needs to be sufficiently low. 

For all cells in the table we introduce unknowns, and demand that 

 ∑ ≥∆+
k

kkk uVVa 0)( ,      (20.17) 

where the sum is taken over all cells involved in the unsafe aggregation (20.16), and 0u  is 
that value for which aggregation (20.16) would have been safe if there had been some 
additional respondents, each with a relatively small, or negligible, contribution. If no upper 
bound on (20.16) is demanded, 0u  equals kb  and the corresponding LP problems can be 
discarded. 

We also demand that 

 ∑ ′≥∆+−
k

kkk uVVa 0)( ,      (20.18) 

where the sum is taken over all cells involved in the unsafe aggregation (20.16), and 0u′  is 
that value for which the negative of aggregation (20.16) would have been safe if there had 
been some additional respondents, each with a relatively small, or negligible, contribution. 
If no lower bound on (20.16) is demanded, 0u′  equals kb−  and the corresponding LP 
problems can be discarded. 

Note that Theorem 20.2 guarantees that if all elementary aggregations are sufficiently 
protected and 0u  as in (20.17) exists, then (20.17) is automatically satisfied. Similarly, 
Theorem 20.2 also guarantees that if all elementary aggregations are sufficiently protected 
and 0u′  as in (20.18) exists, then (20.18) is automatically satisfied. 



Cell Suppression: Problem Formulation and a Practical Solution 

 373

For each sensitive elementary aggregation we construct a constraint given by (20.17). 
Together with the additivity constraints and bounds for individual cells this constraint 
forms a system of constraints for an LP problem corresponding to this sensitive elementary 
aggregation. For each sensitive elementary aggregation we also construct a constraint 
given by (20.18). Together with the additivity constraints and bounds for individual cells 
this constraint forms a system of constraints for another LP problem corresponding to this 
sensitive elementary aggregation. 

The aggregations (20.16) that need to be protected may either be specified by a user of the 
cell suppression software or by the cell suppression software itself (see Section 20.7). All 
specified sensitive objects are treated during the first phase to determine one large pattern 
of cells eligible for suppression, and later during the second phase to determine the final 
suppression pattern. 

20.7. Completely safe cell suppression software 

In principle, one could specify many, or possibly all, sensitive aggregations as objects to 
protect before the actual cell suppression process starts. There are at least two drawbacks 
to specifying many, or possibly all, sensitive aggregations as objects to protect before the 
cell suppression process starts. First, determining all elementary aggregations that require 
protection for an unprotected table may be (too) time-consuming. Because no suppression 
pattern is suggested, all possible elementary aggregations have to be considered. This in 
contrast to the situation where a suppression pattern is suggested, and it is checked whether 
the elementary aggregations occurring in this pattern are safe. In that case only the 
elementary aggregations that actually occur in the suppression pattern have to be 
determined. Second, specifying many aggregations that need to be protected will lead to an 
increase in the computing time required for the LP problems. For these reasons we will not 
explore this possibility of obtaining a completely safe table any further. 

Alternatively, one could consider applying an iterative procedure. First, a suppression 
pattern would be determined such that all individual sensitive cells, all aggregations in the 
same row or column, and additional, e.g. user-specified, aggregations would be sufficiently 
protected. This suppression pattern would then be checked for the presence of remaining 
unsafe aggregations. For this, elementary aggregations would have to be generated. 
Subsequently, these elementary aggregations would be checked to decide whether they are 
sensitive or not.  

Then a new iteration would start where all individual sensitive cells, all sensitive 
elementary aggregations involving cells in a single row or column, and all other sensitive 
elementary aggregations detected so far, would be protected. This process would continue 
until no sensitive aggregations occur in the table anymore. That table could then be 
published. 

This approach can, however, only be applied for small tables. The problem is that a table 
of a moderate or large size may contain an enormous amount of elementary aggregations. 
Determining all these elementary aggregations and checking their safety may therefore 
require an excessive amount of computing time. 
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Fortunately, we can follow a third approach. To ensure that a table is completely protected 
by cell suppression, we could dynamically update the set of unsafe objects. At first a set of 
unsafe objects is determined or specified by the user. This set of unsafe objects will 
involve the unsafe individual cells, the unsafe aggregations involving cells in the same 
row/column and possibly some other unsafe aggregations. We construct the LP problems 
for these unsafe objects in the usual way. 

Once, in the first phase, a suppression pattern has been determined to protect a particular 
unsafe object, we immediately check whether the elementary aggregations corresponding 
to this suppression pattern are safe or not. In case some elementary aggregations turn out to 
be unsafe, they are dynamically added to the set of unsafe objects. The LP problems 
corresponding to these unsafe elementary aggregations are constructed in the normal way 
described earlier. 

Note that the suppression pattern corresponding to a dynamically created unsafe 
elementary aggregation may itself also contain an unsafe elementary aggregation. Such an 
unsafe elementary aggregation is also added to the set of unsafe objects that require 
protection. This process goes on all suppression patterns corresponding to all unsafe 
objects do not contain any unsafe elementary aggregation anymore. 

In the second, clean-up phase, all unsafe objects, i.e. the original unsafe objects plus the 
dynamically created ones, are considered. All these objects have to be sufficiently 
protected. For each unsafe object we again check whether the corresponding suppression 
pattern determined during the second phase is safe. If not, we add the corresponding unsafe 
elementary aggregations to the set of unsafe objects. The difference between the first and 
second phase is that during the first phase all cell values are considered, whereas during 
the second phase only the cells eligible for suppression determined during the first phase 
are considered. 

20.8. Discussion 

In this chapter we showed that by using an approach where unsafe elementary 
aggregations are dynamically added to the set of unsafe objects one can, in principle, 
guarantee that a completely safe cell suppression pattern is determined. Each time a 
suppression pattern corresponding to an unsafe object has been determined, it is checked 
whether this suppression pattern contains any unsafe elementary aggregations. If so, 
constraints are added to prevent the occurrence of these aggregations. Subsequently, 
suppression patterns are determined to protect the dynamically created unsafe elementary 
aggregations. This process goes on until no unsafe aggregations occur in a suppression 
pattern corresponding to an unsafe object any more. The determined table can be published 
without fear for disclosure. At present it is, however, not yet known whether determination 
of unsafe elementary aggregations can be carried out sufficiently fast for the above 
approach to be applicable in practice. 

At the US Bureau of the Census an alternative approach is followed to obtain safe 
suppression patterns (see Jewett, 1993). The idea of this approach is to determine to what 
extent a cell can protect a sensitive cell before a suppression pattern is determined. The 
extent to which a cell can protect a certain sensitive cell is called the protection capacity of 
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the former cell. If protection capacities are calculated correctly, one can ensure in this way 
that the final suppression pattern is completely safe.  

Using protection capacities has the drawback that this may lead to a bit too much 
information loss, because these capacities are determined so that even in the worst case a 
completely safe suppression pattern results. 

A more important, practical problem is that calculating protection capacities is no trivial 
exercise. For tables with a simple underlying structure it is not too hard to calculate these 
capacities. For tables with a more complicated structure, for example hierarchical tables 
and tables with respondents that contribute to multiple cells, calculating protection 
intervals becomes difficult. The technical aspects of calculating protection capacities in 
general are not (well) documented. Jewett (1993) does not make an attempt to describe 
how he calculates these protection intervals in general. Moreover, he notes that he may be 
the only person who completely understands how the calculation is done. Jewett refers 
persons who are interested in how the calculation is performed to his source code. 

We have used an LP approach in this chapter to illustrate how completely safe cell 
suppression software can be constructed. Instead of an LP approach other approaches are 
possible as well. In particular, one could use a mixed integer programming (MIP) 
approach. In comparison to the LP approach the MIP approach has the advantage it may 
lead to better, i.e. closer to optimal, solutions. The LP approach does not lead to optimal 
solutions to even the simplified cell suppression problem, because all sensitive cells and 
aggregations are treated separately rather than simultaneously. In the MIP approach all 
sensitive cells and aggregations can, in principle, be treated simultaneously. 

Another advantage of using an MIP approach over using an LP approach is that the class 
of possible objective functions is larger for the MIP approach. For the LP approach the 
class of objective functions for the two phases is limited to linear expressions in the iV∆ . 
For the MIP approach one may also assign fixed weights to each cell. 

Unfortunately, the MIP approach also has several disadvantages. First, the complexity, and 
hence the computing time, of MIP algorithms depends in an exponential manner on their 
input data (number of unknowns involved, and number of constraints). The theoretically 
best LP algorithms on the other hand have a computing time that only depend in a 
polynomial manner on the input data. So, from a purely theoretical point of view LP 
algorithms are much faster than MIP algorithms. 

Second, practical experience has confirmed that the computing time of MIP algorithms 
really is clearly larger than the computing time of LP algorithms for similar problems. In 
practice, to apply MIP algorithms successfully they are usually designed especially for 
certain problems. The algorithms then extensively exploit the structure of the problem. The 
structure of the cell suppression problem as sketched in this chapter might be too “fuzzy” 
to apply MIP techniques with success.  

Third, MIP algorithms and software are more complicated than LP algorithms and 
software. Cell suppression software based on LP algorithms may be developed and 
maintained by a statistical office itself. For cell suppression software based on MIP 
algorithms the statistical office is dependent on external help from experts on operations 
research. 
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Fourth, cell suppression software based on the LP approach has been in practical use for 
over 20 years now. Cell suppression software based on the MIP approach has not yet, or 
hardly, been in practical use. 

Instead of an MIP or LP approach, one could also opt for simpler methods for solving the 
cell suppression problem. One such approach is the “hypercube method” developed by 
Repsilber (see for example Repsilber, 1993; De Waal, 1994b; Willenborg and De Waal, 
1996 and 2001). This approach has been implemented in the software package GHQUAR. 
The advantage of this approach is that it is very fast, and hence that it can protect very 
large tables in an acceptable amount of time. 

A drawback of the GHQUAR approach is that the found solutions are less close to optimal 
than the solutions found by an LP approach, let alone an MIP approach. For a comparison 
of the results of the three approaches and an approach based on a network formulation (see 
Cox, 1993 and 1995b) we refer to Giessing (1998, 1999, and 2000). Giessing concludes 
that for her test tables the LP approach performs best overall. Unfortunately, the 
implementation of the MIP approach (τ -ARGUS version 2.0) could not be applied to the 
test tables because it could not handle tables with a hierarchical structure. A comparison of 
the LP approach and the MIP approach is therefore not available. 

In general, a drawback of “simple” approaches is that they may be too simple to handle all, 
possibly unforeseen, problems. At the moment it is not clear to us whether the approach of 
GHQUAR is powerful enough to solve the cell suppression problem for hierarchical and 
linked tables without losing too much information. 

All in all it is not clear whether an MIP approach, an LP approach, or a simpler approach 
would be preferable to solve the cell suppression problem. We personally prefer an LP 
approach, possibly in combination with the “hypercube method” to protect very large 
tables, but others are, of course, free to disagree. 
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Appendix A 

The numbers in columns 1 and 2 are the indices of the weights in Table 19.4. The number 
in the third column is the ratio of the two weights in column 1 and column 2. Only ratios 
less than one that occur more than once are listed. 

Nr. Nr. Ratio  Nr. Nr. Ratio Nr. Nr. Ratio 
2 36 0.91751  5 33 0.93973 11 36 0.95152 
1 34 0.91752  3 29 0.93973 9 34 0.95152 

    2 24 0.93973  
1 33 0.91856  1 20 0.93973 9 33 0.95260 
2 35 0.91856  7 35 0.93973 11 35 0.95260 

    4 31 0.93973  
2 32 0.92484  4 26 0.95269 
1 30 0.92484  6 33 0.93987 3 22 0.95269 

    8 35 0.93987  
1 29 0.92590  12 36 0.95283 
2 31 0.92590  2 23 0.94254 10 34 0.95283 

    1 19 0.94254  
4 36 0.93122  4 25 0.95369 
3 34 0.93122  4 30 0.94438 2 17 0.95369 

    2 22 0.94438 5 27 0.95369 
1 27 0.93220  7 34 0.94438 3 21 0.95369 
2 28 0.93220  7 28 0.95369 

    4 29 0.94546 1 14 0.95369 
3 33 0.93228  7 33 0.94546  
4 35 0.93228  2 20 0.94546 4 24 0.95377 

    3 20 0.95377 
3 32 0.93297  3 27 0.94613  
5 36 0.93297  4 28 0.94613 6 27 0.95383 
1 26 0.93297  8 28 0.95383 

    7 32 0.94616  
1 24 0.93404  5 30 0.94616 10 33 0.95391 
5 35 0.93404  12 35 0.95391 
3 31 0.93404  6 30 0.94630  

    8 32 0.94630 10 32 0.95462 
4 32 0.93866  13 36 0.95462 
7 36 0.93866  5 29 0.94723 6 26 0.95462 
2 26 0.93866  7 31 0.94724  
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Nr. Nr. Ratio  Nr. Nr. Ratio Nr. Nr. Ratio 
1 22 0.93866  2 16 0.95531 
3 30 0.93866  6 29 0.94737 1 13 0.95531 
5 34 0.93866  8 31 0.94738  

    6 24 0.95570 
8 36 0.93880  1 17 0.94791 13 35 0.95570 
6 34 0.93880  3 25 0.94791 10 31 0.95570 

    5 28 0.94791  
2 25 0.93965  4 23 0.95662 
1 21 0.93965  2 18 0.95007 3 19 0.95662 

    1 15 0.95007  
     

5 23 0.95842  8 23 0.96441 9 23 0.97155 
3 18 0.95842  6 19 0.96441 14 28 0.97155 
1 11 0.95842  6 16 0.97155 

    15 34 0.96573 22 36 0.97155 
9 30 0.95912  18 36 0.96573 1 7 0.97155 

11 32 0.95912  20 35 0.97155 
    12 30 0.96629  

7 27 0.95950  8 22 0.96629 7 18 0.97197 
4 21 0.95950  16 34 0.96629 5 15 0.97197 
2 14 0.95950   

    9 27 0.96675 8 18 0.97211 
9 29 0.96021  11 28 0.96675 6 15 0.97211 

11 31 0.96021   
    12 29 0.96739 9 22 0.97345 

5 22 0.96029  16 33 0.96739 15 30 0.97345 
7 26 0.96029  8 20 0.96739 11 26 0.97345 

    18 32 0.97345 
12 32 0.96044  15 32 0.96755 23 36 0.97345 
10 30 0.96044  9 26 0.96755 19 34 0.97345 

6 22 0.96044  19 36 0.96755  
16 36 0.96044  11 25 0.97447 

8 26 0.96044  17 34 0.96794 9 21 0.97447 
13 34 0.96044  4 17 0.96794  

    15 29 0.97456 
7 25 0.96130  10 27 0.96808 9 20 0.97456 
5 21 0.96130  12 28 0.96808 11 24 0.97456 

    19 33 0.97456 
5 20 0.96139  16 32 0.96811 23 35 0.97456 
7 24 0.96139  13 30 0.96811 18 31 0.97456 
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Nr. Nr. Ratio  Nr. Nr. Ratio Nr. Nr. Ratio 
8 25 0.96145  9 24 0.96865 12 26 0.97479 
6 21 0.96145  15 31 0.96865 10 22 0.97479 

    19 35 0.96865  
10 29 0.96153  7 17 0.97567 
13 33 0.96153  13 29 0.96921 5 14 0.97567 

6 20 0.96153  16 31 0.96921  
8 24 0.96153  12 25 0.97581 

16 35 0.96153  4 16 0.96958 13 27 0.97581 
12 31 0.96153  3 13 0.96958 8 17 0.97581 

    10 21 0.97581 
14 34 0.96207  14 30 0.96975 16 28 0.97581 
17 36 0.96207  17 32 0.96975 6 14 0.97581 

     
1 10 0.96294  6 17 0.96990 12 24 0.97590 
2 12 0.96294  10 25 0.96990 10 20 0.97590 

    13 28 0.96990  
4 18 0.96426  24 36 0.97636 
7 23 0.96426  7 19 0.97014 20 34 0.97636 
5 19 0.96426  4 15 0.97014  
2 11 0.96427  2 9 0.97014 21 34 0.97645 
1 9 0.96427  25 36 0.97645 
3 15 0.96427  1 8 0.97141  

    5 16 0.97141  
    3 12 0.97141  
     

2 8 0.97733  11 20 0.98050 11 18 0.98528 
4 12 0.97733  18 29 0.98050 14 21 0.98528 
7 16 0.97733  23 33 0.98050 26 32 0.98528 
5 13 0.97733  20 29 0.98528 
1 6 0.97733  13 23 0.98066 1 3 0.98528 
3 10 0.97733  10 18 0.98066 9 15 0.98528 

    6 11 0.98066 22 30 0.98528 
14 27 0.97747  6 10 0.98528 
11 23 0.97747  19 30 0.98122 17 25 0.98528 

9 19 0.97747  23 32 0.98122 2 4 0.98528 
20 33 0.97747  8 12 0.98528 
26 36 0.97747  16 27 0.98176 24 31 0.98528 

2 7 0.97747  12 21 0.98176  
6 13 0.97747  8 14 0.98176 14 20 0.98536 
1 5 0.97747  21 29 0.98536 
8 16 0.97747  13 22 0.98257 28 35 0.98536 
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Nr. Nr. Ratio  Nr. Nr. Ratio Nr. Nr. Ratio 
22 34 0.97747  16 26 0.98257 27 33 0.98536 
24 35 0.97747  17 24 0.98536 
17 28 0.97747  9 17 0.98304 25 31 0.98537 

    15 25 0.98304  
21 33 0.97756  15 23 0.98607 
25 35 0.97756  4 10 0.98329 10 16 0.98607 

    2 6 0.98329 30 36 0.98607 
14 26 0.97828  7 13 0.98329 3 7 0.98607 
21 32 0.97828  21 28 0.98607 
27 36 0.97828  11 19 0.98343 29 35 0.98607 

    24 33 0.98343  
22 33 0.97859  2 5 0.98343 22 29 0.98640 
26 35 0.97859  17 27 0.98343 26 31 0.98640 

    8 13 0.98343  
4 11 0.97867  26 34 0.98343 7 11 0.98649 
3 9 0.97867  5 9 0.98649 

    16 25 0.98360  
12 23 0.97882  13 21 0.98360 16 23 0.98663 
10 19 0.97882  12 18 0.98663 

    13 20 0.98369 13 19 0.98663 
14 25 0.97931  16 24 0.98369 8 11 0.98663 

9 18 0.97931  10 15 0.98663 
22 32 0.97931  24 32 0.98416 6 9 0.98663 

6 12 0.97931  20 30 0.98416  
1 4 0.97931  15 22 0.98799 

20 31 0.97931  14 22 0.98424 18 26 0.98799 
    28 36 0.98424  

11 22 0.97938  21 30 0.98424 14 19 0.98831 
18 30 0.97938  25 32 0.98424 17 23 0.98831 
23 34 0.97938  17 26 0.98424  

    27 34 0.98424 11 17 0.98903 
14 24 0.97939  15 21 0.98903 
21 31 0.97939  5 10 0.98513 19 27 0.98903 
27 35 0.97939  7 12 0.98513 18 25 0.98903 

    9 14 0.98903 
    23 28 0.98903 

15 20 0.98912  29 32 0.99281 19 20 0.99702 
18 24 0.98912  20 26 0.99281 23 24 0.99702 

    33 36 0.99281  
28 34 0.99024  31 33 0.99812 
25 30 0.99024  22 27 0.99312 4 5 0.99812 
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Nr. Nr. Ratio  Nr. Nr. Ratio Nr. Nr. Ratio 
17 22 0.99024  26 28 0.99312 12 13 0.99812 

    25 27 0.99812 
12 17 0.99039  30 33 0.99321 18 19 0.99812 
10 14 0.99039  32 35 0.99321 32 34 0.99812 

     
9 13 0.99071  27 29 0.99323 16 17 0.99830 

11 16 0.99071  28 31 0.99323 13 14 0.99830 
     

24 29 0.99128  14 17 0.99394 9 10 0.99863 
2 3 0.99128  15 18 0.99394 11 12 0.99863 

26 30 0.99128  21 25 0.99394  
8 10 0.99129  34 36 0.99394 31 32 0.99886 

11 15 0.99129  19 23 0.99394 35 36 0.99886 
17 21 0.99129  9 11 0.99394 24 26 0.99886 

    6 8 0.99394 20 22 0.99886 
28 33 0.99137  30 32 0.99394 29 30 0.99886 
25 29 0.99137  13 16 0.99394 33 34 0.99886 
17 20 0.99137  5 7 0.99394  

    22 26 0.99394 21 22 0.99895 
4 8 0.99193  20 24 0.99394 25 26 0.99895 
3 6 0.99193  1 2 0.99394  

    10 12 0.99394 7 8 0.99985 
20 27 0.99199  3 4 0.99394 5 6 0.99985 
24 28 0.99199  33 35 0.99394  

    27 28 0.99394 24 25 0.99991 
15 19 0.99208  29 31 0.99394 20 21 0.99991 
21 27 0.99208   
31 35 0.99208  16 18 0.99451 23 25 0.99693 

4 7 0.99208  13 15 0.99451 19 21 0.99693 
18 23 0.99208   
12 16 0.99208  23 27 0.99506  
10 13 0.99208  11 14 0.99506  
29 33 0.99208  18 21 0.99506  

3 5 0.99208   
32 36 0.99208  22 24 0.99507  
30 34 0.99208  34 35 0.99507  
25 28 0.99208  30 31 0.99507  

     
28 32 0.99210  19 22 0.99588  
27 30 0.99210  23 26 0.99588  
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Nr. Nr. Ratio  Nr. Nr. Ratio Nr. Nr. Ratio 
16 19 0.99265  14 15 0.99621  
12 15 0.99265  17 18 0.99621  

8 9 0.99265   
 

In the above ratios list two ratios are considered equal when they differ less than  
2×10-6. This can be justified as follows. A weight iW  in Table 19.4 is given by 

iii WW ε+′= , where 4105.0|| −×<iε  and iW ′  is the true sampling weight. A ratio 21 WW  
between two weights from Table 19.4 is therefore given by δ+′′= 2121 WWWW , where 

2
22211 )( WWW εεδ −≈ . Taking 10021 ≈≈WW , ||δ  is less than approximately 10-6. Two 

ratios that should actually be equal therefore differ less than 2×10-6 in this ratios list.  
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Appendix B 

The numbers in columns 1 and 2 are the indices of the weights in Table 19.7. In the third 
column the difference of the weights in columns 1 and 2 is listed. Only differences less 
than 0 that occur 8 or 16 times are listed. 

 

Nr. Nr. Difference  Nr. Nr. Difference Nr. Nr. Difference 

2 26 -102.2163 11 19 -26.6158 2 4 -12.2761 

3 27 -102.2163 3 10 -26.6157 6 10 -12.2761 

4 28 -102.2163 14 22 -26.6157 9 12 -12.2761 

6 30 -102.2163 25 30 -26.6157 14 18 -12.2761 

7 31 -102.2163 27 32 -26.6157 15 19 -12.2761 

10 32 -102.2163 1 6 -26.6157 25 27 -12.2761 

1 25 -102.2163 8 15 -26.6157 26 28 -12.2761 

5 29 -102.2163 18 24 -26.6157 29 31 -12.2761 

     30 32 -12.2761 

11 27 -65.2540 11 18 -26.2925 1 3 -12.2761 

9 26 -65.2539 9 16 -26.2924 5 7 -12.2761 

12 28 -65.2539 15 22 -26.2924 13 17 -12.2761 

15 30 -65.2539 8 14 -26.2924 16 20 -12.2761 

17 31 -65.2539 12 20 -26.2924 21 23 -12.2761 

19 32 -65.2539 13 21 -26.2924 22 24 -12.2761 

8 25 -65.2539 17 23 -26.2924 8 11 -12.2760 

13 29 -65.2539 19 24 -26.2924    

     7 10 -6.5623 

2 16 -63.2548 2 6 -25.9639 17 19 -6.5623 

3 18 -63.2548 4 10 -25.9639 21 22 -6.5623 

6 22 -63.2548 9 15 -25.9639 23 24 -6.5623 

1 14 -63.2548 12 19 -25.9639 29 30 -6.5623 

4 20 -63.2548 16 22 -25.9639 31 32 -6.5623 
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Nr. Nr. Difference  Nr. Nr. Difference Nr. Nr. Difference 

5 21 -63.2548 20 24 -25.9639 5 6 -6.5623 

7 23 -63.2548 26 30 -25.9639 13 15 -6.5623 

10 24 -63.2548 28 32 -25.9639    

     11 12 -0.6519 

20 28 -38.9615 11 17 -20.0535 3 4 -0.6518 

23 31 -38.9615 1 5 -20.0534 14 16 -0.6518 

24 32 -38.9615 3 7 -20.0534 25 26 -0.6518 

14 25 -38.9615 8 13 -20.0534 27 28 -0.6518 

16 26 -38.9615 14 21 -20.0534 1 2 -0.6518 

18 27 -38.9615 25 29 -20.0534 8 9 -0.6518 

21 29 -38.9615 27 31 -20.0534 18 20 -0.6518 

22 30 -38.9615 18 23 -20.0534    

1 8 -36.9624 2 5 -19.4016    

2 9 -36.9624 9 13 -19.4016    

4 12 -36.9624 4 7 -19.4016    

5 13 -36.9624 12 17 -19.4016    

6 15 -36.9624 16 21 -19.4016    

7 17 -36.9624 20 23 -19.4016    

10 19 -36.9624 26 29 -19.4016    

3 11 -36.9623 28 31 -19.4016    

 
In the above differences list two differences are considered equal when they differ less 
than 2×10-4. This can be justified as follows. A weight iW  in Table 19.7 is given by 

iii WW ε+′= , where 4105.0|| −×<iε  and iW ′  is the true sampling weight. A difference 
between two weights from Table 19.7 is therefore given by δ+′∆=∆ WW , where 

410|| −<δ . Two differences that should actually be equal therefore differ less than 2×10-4 
in this differences list.  
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Appendix C 

Group 1:   Group 2:  

Nr. Weight ×Frequency  Nr. Weight × Frequency 

     

1 89,518.82  25 91,053.95 

2 83,049.42  26 100,429.51 

3 91,642.09  27 85,852.36 

4 80,360.33  28 96,382.13 

5 99,064.28  29 82,271.08 

6 100,705.86  30 96,580.09 

7 93,587.27  31 98,167.08 

10 97,137.95  32 104,138.79 

     

Total 735,066.02  Total 754,874.99 

 

Group 3:   Group 4:  

Nr. Weight × Frequency  Nr. Weight × Frequency 

8 94,036.66  14 87,625.34 

9 90,219.48  16 96,650.25 

11 107,008.15  18 88,705.64 

12 100,202.55  20 87,754.33 

13 100,929.36  21 91,421.63 

15 92,634.12  22 88,945.17 

17 87,154.83  23 92,526.48 

19 102,850.87  24 101,394.16 

     

Total 775,036.02  Total 735,023.00 
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Group 5:   Group 6:  

Nr. Weight × Frequency  Nr. Weight × Frequency 

1 89,518.82  6 100,705.86 

3 91,642.09  10 97,137.95 

8 94,036.66  15 92,634.12 

11 107,008.15  19 102,850.87 

14 87,625.34  22 88,945.17 

18 88,705.64  24 101,394.16 

25 91,053.95  30 96,580.09 

27 85,852.36  32 104,138.79 

     

Total 735,443.01  Total 784,387.01 

 

Group 7:   Group 8:  

Nr. Weight × Frequency  Nr. Weight × Frequency 

2 83,049.42  5 99,064.28 

4 80,360.33  7 93,587.27 

9 90,219.48  13 100,929.36 

12 100,202.55  17 87,154.83 

16 96,650.25  21 91,421.63 

20 87,754.33  23 92,526.48 

26 100,429.51  29 82,271.08 

28 96,382.13  31 98,167.08 

     

Total 735,048.00  Total 745,122.01 
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Group 9:   Group 10:  

Nr. Weight × Frequency  Nr. Weight × Frequency 

1 89,518.82  3 91,642.09 

2 83,049.42  4 80,360.33 

5 99,064.28  7 93,587.27 

6 100,705.86  10 97,137.95 

8 94,036.66  11 107,008.15 

9 90,219.48  12 100,202.55 

13 100,929.36  17 87,154.83 

14 87,625.34  18 88,705.64 

15 92,634.12  19 102,850.87 

16 96,650.25  20 87,754.33 

21 91,421.63  23 92,526.48 

22 88,945.17  24 101,394.16 

25 91,053.95  27 85,852.36 

26 100,429.51  28 96,382.13 

29 82,271.08  31 98,167.08 

30 96,580.09  32 104,138.79 

     

Total 1,485,135.02  Total 1,514,865.01 
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Samenvatting (Summary in Dutch) 

Het statistische proces zoals dat op nationale statistische bureaus wordt gepraktiseerd kan 
worden onderverdeeld in een groot aantal stappen. Bijvoorbeeld, Willeboordse (1998) 
onderscheidt de volgende fases in het statistische proces voor bedrijfsstatistieken (voor 
sociale statistieken kan dezelfde onderverdeling worden gemaakt): 

• vaststellen van onderzoeksdoelen; 

• ontwerpen van vragenformulier en steekproef; 

• verzamelen en invoeren van data; 

• verwerken en analyseren van data; 

• publiceren van data. 

Ieder van deze fases kan zelf worden onderverdeeld in een aantal stappen. Bij het 
vaststellen van de onderzoeksdoelen worden gebruikersgroepen onderscheiden, 
gebruikerswensen geïnventariseerd, beschikbare gegevensbronnen in kaart gebracht, 
potentiële respondenten benaderd, het onderzoek ingebed in het algemene raamwerk voor 
bedrijfsstatistieken, de doelpopulatie en doelvariabelen vastgesteld, en wordt de 
outputtabel ontworpen. 

Bij het ontwerpen van het vragenformulier en de steekproef wordt het potentiële nut van 
beschikbare administratieve registers onderzocht, de kaderpopulatie in het zogeheten 
Algemeen Bedrijfsregister vergeleken met de doelpopulatie, het steekproefkader 
gedefinieerd, het steekproefontwerp en de schattingsmethode geselecteerd, en het 
vragenformulier ontworpen. 

Tijdens het verzamelen en invoeren van data wordt de steekproef getrokken, en worden 
data verzameld en ingevoerd in het computersysteem op het statistische bureau. Het 
statistische bureau tracht tijdens deze stap de responslast voor bedrijven zoveel mogelijk te 
beperken en de non-respons te minimaliseren. Om data te verzamelen worden 
verschillende mogelijkheden, zoals dataverzameling via papieren vragenlijsten, 
persoonlijke interviews, telefonische interviews, en Electronic Data Interchange, in 
overweging genomen. 

Tijdens het verwerken en analyseren van data worden foutieve data opgespoord en 
gecorrigeerd (gaafgemaakt), ontbrekende gegevens geïmputeerd (dat wil zeggen geschat 
en ingevuld), ophooggewichten bepaald, populatiecijfers geschat, de data in het 
integratieraamwerk geïntegreerd, en de data geanalyseerd (bijvoorbeeld om te corrigeren 
voor seizoensinvloeden). 

Bij het publiceren wordt de publicatiestrategie bepaald, worden de data beveiligd tegen 
onthulling van gevoelige informatie, en ten slotte worden de uiteindelijke data 
gepubliceerd. 
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In dit boek onderzoeken we twee verschillende, maar gerelateerde, bovengenoemde 
onderwerpen. Het eerste onderwerp is gaafmaken (Engels: statistical data editing), ook wel 
controle en correctie genaamd, dat plaatsvindt tijdens het verwerken en analyseren van 
data. Het doel van gaafmaken is het opsporen en corrigeren van incorrecte data. Om dit 
doel te bereiken worden de geobserveerde data verrijkt door middel van vakinhoudelijke 
kennis en statistische analyses. We proberen in feite meer informatie te creëren dan we 
hebben geobserveerd. 

Het tweede onderwerp is statistische beveiliging, dat plaatsvindt aan het eind van het 
statistische proces. Het doel van statistische beveiliging is het verhinderen dat gevoelige 
informatie over individuele respondenten, of kleine groepen respondenten, uit de 
gepubliceerde data kan worden afgeleid. Om dit doel te bereiken worden vaak gegevens 
verwijderd, of wordt de informatie in de data gereduceerd door het toevoegen van ruis of 
het indikken (hercoderen) van variabelen. We proberen hier dus in feite de informatie in de 
data te verminderen. 

Op het eerste gezicht lijken gaafmaken en statistische beveiliging elkaars tegengestelde. 
Bij nadere beschouwing blijken de onderwerpen echter sterk gerelateerd te zijn. Bij beide 
onderwerpen trachten we zoveel mogelijk informatie te behouden. Het voornaamste 
verschil tussen de twee onderwerpen wordt gevormd door de randvoorwaarden waaraan 
voldaan moeten worden. Bij gaafmaken worden foutieve data meestal opgespoord met 
behulp van bepaalde regels, edits genaamd. Vaak wordt verondersteld dat er zo min 
mogelijk fouten in de geobserveerde data aanwezig zijn. Gegeven deze veronderstelling 
ligt het voor de hand zo min mogelijk waarden aan te passen zodanig dat aan alle edits 
wordt voldaan. Bij statistische beveiliging veronderstellen we vaak dat veilige microdata 
aan bepaalde frequentieregels moeten voldoen. We proberen dan zo min mogelijk 
geobserveerde data te verwijderen zodanig dat aan de frequentieregels wordt voldaan. In 
beide gevallen kunnen we het resulterende wiskundige probleem formuleren als een 
optimalisatieprobleem. Bij statistische beveiliging kan het optimalisatieprobleem worden 
geformuleerd als een zogeheten set-covering probleem, bij gaafmaken kan het 
optimalisatieprobleem deels worden opgelost door middel van algoritmen voor het set-
covering probleem. 

We hebben dit boek als volgt opgebouwd. Hoofdstuk 1 geeft een korte inleiding op de 
twee onderwerpen van dit boek. In ditzelfde hoofdstuk geven we tevens een overzicht van 
het proefschrift. 

In hoofdstuk 2 gaan we in op het gaafmaken in het algemeen. We beschrijven een aantal 
bekende technieken om het gaafmaakproces efficiënt te laten verlopen. In het bijzonder 
gaan we kort in op automatisch gaafmaken, de gaafmaaktechniek waarop we ons in latere 
hoofdstukken richten. 

In die latere hoofdstukken concentreren we ons vooral op het zogeheten 
foutenlokalisatieprobleem, dat wil zeggen het probleem van het opsporen van incorrecte 
data. Gezien de complexiteit van dit probleem wordt het in de literatuur hetzij uitsluitend 
voor categoriale (discrete) data zonder rekenkundige structuur, zoals “Geslacht” of 
“Beroep”, of uitsluitend voor continue data beschouwd. In dit boek beschouwen we het 
foutenlokalisatieprobleem echter voor een mix van categoriale en continue data.  
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In hoofdstuk 3 geven we een gedetailleerde wiskundige formulering van het 
foutenlokalisatieprobleem voor een mix van categoriale en continue data. Deze 
formulering is gebaseerd op eenvoudige concepten uit de wiskundige logica. In het 
bijzonder maakt de formulering gebruik van de implicatieoperator (IF/THEN-statement). 
Wij zijn de eersten die een dergelijke formulering voor het foutenlokalisatieprobleem, die 
natuurlijker lijkt dan een formulering als geheeltallig programmeringsprobleem, geven. In 
hetzelfde hoofdstuk formuleren we het foutenlokalisatieprobleem ook als een geheeltallig 
programmeringsprobleem. In principe kan dit optimalisatieprobleem worden opgelost door 
gebruik te maken van standaard branch-and-bound methoden zoals deze zijn 
geïmplementeerd in commercieel verkrijgbare software. Een nadeel van dergelijke 
commerciële software is echter dat slechts één optimale oplossing voor het wiskundige 
optimalisatieprobleem wordt bepaald, terwijl wij graag alle optimale oplossingen willen 
bepalen om daarvan later één, op grond van een additioneel criterium, uit te kiezen. Om 
alle optimale oplossingen met behulp van commerciële software te bepalen zijn speciale 
maatregelen noodzakelijk. Het is nog onduidelijk of commerciële software met dergelijke 
speciale maatregelen voldoende snel is voor praktische gevallen van het 
foutenlokalisatieprobleem. 

Hoofdstukken 4 tot en met 10 beschrijven verschillende methoden om het wiskundige 
foutenlokalisatieprobleem op te lossen. Hoofdstuk 4 beschrijft een methode ontwikkeld 
door Fellegi en Holt (1976) gebaseerd op het genereren van zogeheten impliciete edits. Dit 
hoofdstuk is grotendeels gebaseerd op uit de literatuur bekende resultaten, en bevat 
nauwelijks nieuwe resultaten. Uitzonderingen zijn een eenvoudig bewijs dat de methode 
van Fellegi en Holt ook werkt voor continue data, en de opmerking dat de methode, in 
principe, ook gebruikt kan worden voor een mix van categoriale en continue data. 

Hoofdstuk 5 beschrijft hoe methoden, in het bijzonder het algoritme van Chernikova 
(Chernikova, 1964 en 1965) voor het genereren van hoekpunten van polyhedra gebruikt 
kunnen worden voor het oplossen van het foutenlokalisatieprobleem. Dergelijke methoden 
worden in praktijk toegepast voor het oplossen van het foutenlokalisatieprobleem voor 
continue data. In de literatuur wordt de mogelijkheid om deze methoden uit te breiden tot 
een mix van categoriale en continue data kort aangestipt (zie Sande, 1978a). In dat rapport 
worden echter geen details over de uitgebreide methode verschaft. In hoofdstuk 5 worden 
dergelijke details wel beschreven, en wordt gedemonstreerd dat een aantal uit de literatuur 
bekende resultaten voor continue data ook van toepassing is op een mix van categoriale en 
continue data. Ten slotte merken we in dit hoofdstuk op dat naast Chernikova’s algoritme 
ook andere algoritmen voor het genereren van hoekpunten van polyhedra gebruikt kunnen 
worden voor het oplossen van het foutenlokalisatieprobleem. 

In hoofdstuk 6 wordt het foutenlokalisatieprobleem als een zogeheten dynamisch 
disjunctive-facet probleem beschreven. Glover, Klingman and Stutz (1974) beschrijven 
een snedemethode voor het oplossen van het disjunctive-facet probleem. In eerste instantie 
trachten we het foutenlokalisatieprobleem als een dergelijk disjunctive-facet probleem te 
formuleren. Dit blijkt helaas niet geheel mogelijk te zijn. Het gewone disjunctive-facet 
probleem breiden we daarom uit naar een dynamisch disjunctive-facet probleem. De 
snedemethode van Glover, Klingman and Stutz breiden we dienovereenkomstig uit. 
Bovendien laten we zien dat het algoritme van Glover, Klingman and Stutz voor het 
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oorspronkelijke disjunctive-facet probleem niet noodzakelijkerwijs na eindig veel stappen 
stopt. Ten slotte breiden we ons algoritme uit zodanig dat eindigheid gegarandeerd is. 

Hoofdstuk 7 beschrijft een methode ontwikkeld door Pergamentsev (1998) gebaseerd op 
lokale zoektechnieken. Pergamentsev was een tweedefase student aan de Technische 
Universiteit Eindhoven (TUE), en liep stage bij het Centraal Bureau voor de Statistiek 
(CBS) waar hij aan het foutenlokalisatieprobleem werkte. In hoofdstuk 7 stellen wij een 
aantal mogelijke verbeteringen op Pergamentsev’s methode voor. 

Hoofdstuk 8 beschrijft een branch-and-bound methode. Quere, wederom een tweedefase 
student aan de TUE die tijdens een stage bij het CBS aan het foutenlokalisatieprobleem 
werkte, ontwikkelde deze branch-and-bound methode voor continue data. Later hebben we 
in samenwerking met Quere deze methode uitgebreid naar een mix van categoriale en 
continue data. 

Het foutenlokalisatieprobleem breiden we in hoofdstuk 9 uit tot een mix van categoriale, 
continue en geheeltallige data. Daarnaast breiden we het algoritme van hoofdstuk 8 uit 
zodat het geschikt wordt voor het oplossen van dit nieuwe probleem. Het ontwikkelde 
algoritme maakt gebruik van Fourier-Motzkin eliminatie in geheeltallige data zoals 
ontwikkeld door Pugh (1992). Ons algoritme combineert Fourier-Motzkin eliminatie in 
geheeltallige data op efficiënte wijze met het algoritme van hoofdstuk 8. 

In hoofdstuk 10 beginnen we met het beschrijven van snedemethoden ontwikkeld door 
Garfinkel, Kunnathur en Liepins (1986 en 1988). De oorspronkelijke algoritmen van 
Garfinkel, Kunnathur en Liepins zijn geschikt voor uitsluitend categoriale, respectievelijk 
uitsluitend continue data. In hoofdstuk 10 breiden we deze algoritmen uit tot een algoritme 
voor een mix van categoriale en continue data. Vervolgens gebruiken we de in 
hoofdstukken 8 en 9 ontwikkelde theorie om deze snedemethoden en een soortgelijke 
snedemethode van Ragsdale en McKeown (1996) te verbeteren, en verder uit te breiden 
naar een mix van categoriale, continue en geheeltallige data. 

Resultaten van evaluatie-experimenten voor de algoritmen van hoofdstuk 3 (gebaseerd op 
een formulering als geheeltallig programmeringsprobleem), hoofdstuk 5 (gebaseerd op 
generatie van hoekpunten van polyhedra), hoofdstuk 8 (gebaseerd op branch-and-bound), 
en hoofdstuk 10 (gebaseerd op snedemethoden) op zes numerieke bestanden worden 
beschreven in hoofdstuk 11. 

In hoofdstuk 12 beschouwen we imputatie, het invullen van ontbrekende en incorrecte 
data. In het bijzonder beschouwen we het probleem van consistente imputatie, dat wil 
zeggen het probleem van het zodanig invullen van ontbrekende en incorrecte gegevens dat 
de uiteindelijke data zowel statistisch acceptabel als intern consistent zijn. We stellen een 
algoritme, geïnspireerd door het algoritme ontwikkeld in hoofdstukken 8 en 9, voor om dit 
probleem op te lossen. Dit algoritme is geïmplementeerd en verder uitgewerkt door 
Kartika, een tweedefase student aan de Technische Universiteit Delft die tijdens een stage 
bij het CBS aan dit probleem werkte. In hetzelfde hoofdstuk beschrijven we ook WAID, 
een imputatieprogramma dat we in het kader van een Europees project hebben ontwikkeld. 

Het gedeelte van dit boek over het gaafmaakproces wordt afgesloten door hoofdstuk 13. 
Dit hoofdstuk beschrijft een aantal praktische aspecten van het gaafmaakproces. De laatste 
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paragraaf van hoofdstuk 13 beschrijft kort de invloed van de ontwikkelde methodologie en 
software op de dagelijkse gang van zaken op het CBS. 

Het foutenlokalisatieprobleem dat we in dit boek uitgebreid onderzoeken is gerelateerd aan 
veel andere problemen, zowel wiskundige als niet-wiskundige. Voorbeelden van 
gerelateerde wiskundige problemen zijn: het imputatieprobleem (het probleem van het 
schatten van ontbrekende en incorrecte data), het uitbijterprobleem (het probleem van het 
opsporen van univariate of multivariate uitbijters in de data), en het ophoogprobleem (het 
probleem van het bepalen van ophooggewichten die nodig zijn voor het schatten van 
populatiegegevens). Voorbeelden van gerelateerde niet-wiskundige problemen zijn: het 
logistieke probleem van het omgaan met grote hoeveelheden gegevens, en het ICT 
probleem van het ontwikkelen van professionele software voor het gaafmaakproces als 
onderdeel van de softwaresuite voor het gehele statistische proces. Deze problemen 
worden niet of nauwelijks aangestipt in dit boek. 

In het tweede gedeelte van dit boek, hoofdstukken 14 tot en met 20, concentreren we ons 
op statistische beveiliging (Engels: statistical disclosure control). Hoofdstuk 14 geeft een 
overzicht van het vakgebied. In dit overzicht gaan we vooral in op een algemene aanpak 
voor de statistische beveiliging van microdata, dat wil zeggen de data van individuele 
respondenten, van met name sociale statistieken die wordt toegepast op diverse statistische 
bureaus waaronder het CBS. Volgens deze aanpak moeten regels voor de statistische 
beveiliging van microdata van sociale statistieken voornamelijk gebaseerd zijn op het eisen 
van drempelwaarden voor populatiefrequenties van bepaalde karakteristieken. Deze 
algemene aanpak wordt in aansluitende hoofdstukken nader uitgewerkt. 

Hoofdstuk 15 beschrijft de – vanuit het oogpunt van de statistische beveiliging – ergst 
mogelijke populaties. Zulke populaties leiden tot het hoogst mogelijke verwachte aantal 
unieke individuen in willekeurig gekozen steekproeven. Wij hebben dit wiskundige 
probleem voor het eerst voorgesteld en opgelost. 

De populatiefrequenties van karakteristieken zijn meestal onbekend. Om deze frequenties 
voor grote gebieden te schatten kunnen standaard statistische methoden worden gebruikt. 
Voor kleine gebieden moet men echter gebruikmaken van zogeheten small area estimation. 
Voorbeelden van small area schatters zijn synthetische en gecombineerde schatters. In 
hoofdstuk 16 gebruiken we deze synthetische en gecombineerde schatters om 
populatiefrequenties voor kleine gebieden te schatten. Deze schatters zijn in samenwerking 
met Pannekoek ontwikkeld en getest. 

Indien de populatiefrequentie van een bepaalde karakteristiek beneden de vereiste 
drempelwaarde ligt, wordt deze karakteristiek te onveilig voor publicatie geacht. De 
karakteristiek mag daarom niet op deze wijze worden gepubliceerd. In zo’n geval moeten 
maatregelen getroffen worden om individuele eenheden met deze karakteristiek te 
beveiligen. Een mogelijke maatregel is onderdrukking, waarbij (een gedeelte van) de 
karakteristiek wordt verwijderd. Aangezien een statistisch bureau zoveel mogelijk 
informatie als wettelijk en moreel gezien is toegestaan wil publiceren, proberen we, 
bijvoorbeeld, zo min mogelijk waarden te onderdrukken onder de randvoorwaarde dat het 
resulterende databestand veilig is. In samenwerking met Willenborg hebben we 
optimalisatiemodellen voor een aantal van dergelijke problemen opgesteld. De wiskundige 
formuleringen van deze optimalisatiemodellen worden beschreven in hoofdstuk 17. 
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Naast onderdrukking kan men gebruikmaken van andere statistische 
beveiligingstechnieken om het onthullingsrisico te beperken. Voorbeelden van dergelijke 
technieken zijn hercodering en perturbatie. Al deze technieken, onderdrukking, 
hercodering en perturbatie, leiden tot informatieverlies. Aangezien we zoveel mogelijk 
informatie willen publiceren, onder de randvoorwaarde dat het resulterende databestand 
veilig is, willen we het informatieverlies ten gevolge van de ene techniek kunnen 
vergelijken met het informatieverlies ten gevolge van een andere techniek. In hoofdstuk 18 
beschrijven we een algemeen raamwerk gebaseerd op het entropiebegrip om zulke 
vergelijkingen te kunnen maken. Ook dit raamwerk is in samenwerking met Willenborg 
ontwikkeld. 

Het publiceren van ophooggewichten samen met het desbetreffende microdatabestand 
vereist enige extra aandacht. Deze ophooggewichten kunnen een potentiële onthuller 
mogelijkerwijs namelijk in staat stellen om meer informatie uit de gepubliceerde data af te 
leiden dan is toegestaan volgens de toegepaste statistische beveiligingsregels. In hoofdstuk 
19 gaan we in op dit gevaar bij de publicatie van ophooggewichten door methoden te 
beschrijven volgens welke een potentiële onthuller te werk zou kunnen gaan. Tevens 
stellen we technieken voor om dit gevaar te bestrijden. Wederom hebben we deze 
onthullingsmethoden en beveiligingstechnieken in samenwerking met Willenborg 
ontwikkeld. 

Ten slotte beschrijven we in hoofdstuk 20 het zogeheten celonderdrukkingsprobleem voor 
tabeldata. Dit hoofdstuk laat in het bijzonder zien dat de gewoonlijk gebruikte definitie 
voor een veilige tabel inconsistent is. In plaats van deze inconsistente definitie, stellen we 
een alternatieve definitie voor die gebaseerd is op zogeheten elementaire aggregaten. Het 
gebruik van elementaire aggregaten werd al aan het eind van de zeventiger jaren door 
Sande voorgesteld (zie, bijvoorbeeld, Sande, 1977). Diens concept van een veilige tabel is 
echter niet volledig consistent. Wij hebben Sande’s concept van een veilige tabel aangepast 
zodanig dat onze definitie wel consistent is. We laten zien dat onze definitie niet kan leiden 
tot onderdrukte cellen waarvan de waarden nauwkeurig teruggerekend kunnen worden. 

Hoofdstuk 20 is een mooi slothoofdstuk voor dit boek aangezien het teruggrijpt op 
concepten uit het eerste deel van dit boek, zoals impliciete edits en Fourier-Motzkin 
eliminatie. Elementaire aggregaten kunnen worden beschouwd als impliciete edits. Ze 
kunnen worden afgeleid door middel van Fourier-Motzkin eliminatie. Hoofdstuk 20 laat 
zien dat de studie van statistische beveiliging in zekere zin hetzelfde is als de studie van 
het automatisch opsporen van foutieve waarden. 
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