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Chapter 1

Introduction

This thesis studies mathematical models and solution methods for constructing high

quality cyclic railway timetables. In a cyclic timetable, train connections are operated

regularly with respect to a cycle time. So, a train for a certain destination leaves a

certain station at the same time every cycle time, say every half an hour, every hour,

or every two hours. Cyclic timetables are mainly used for passenger railways, though

cargo rail schedules are sometimes also cyclic to some extent. This thesis therefore

focuses on passenger railway timetables.

The railways, and railway timetables in particular, have been a frequently dis-

cussed topic in the Netherlands the last years. A decade of steadily growing mobility

has led to congested railways and highways. And, with an ongoing economic and de-

mographic growth, the Dutch Ministry of Transportation expects the upward trend

in mobility demand to continue in the near future (V&W, 2001)1. This is illustrated

in Figure 1.1, which shows the expected growth in mobility for the Netherlands until

2020. As a reference point, the 1995 mobility level is set to 100, and estimates are

shown for the mobility level in 2020 for three scenarios. The ‘no policy’ scenario rep-

resents a governmental laissez-faire approach to the mobility growth, ‘current policy’

represents a scenario in which the currently planned and decided upon governmental

policies are carried out, and ‘public transportation policy’ represents the scenario in

which the government stimulates the use of public transportation.

With market shares of 13% of the traveled kilometers, and 5% of the number

of trips, public transportation takes a modest share in the total Dutch passenger

transportation market. Car travel is still dominant in the Netherlands, with an im-

portant second place for bicycle travel and foot travel for short distances (V&W,

2001). However, public transportation should be seen as a complement to other

1Ministerie van Verkeer en Waterstaat, the Dutch Ministry of Transportation.
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Figure 1.1: Expected mobility growth for the Netherlands (source: AVV website,
2002)

modes of transportation, not as a substitute. By bundling transportation flows, pub-

lic transportation has traditionally played an important role in keeping urban areas

accessible. Forecasts from the AVV2 predict most future travel in the Netherlands

to take place within, and to and from, the so-called Randstad area, the congested

metropolitan area bounded by the four largest Dutch cities Amsterdam, Rotterdam,

The Hague, and Utrecht (AVV, 2000). It is expected that exactly in this area a growth

of public transportation will provide extra transportation capacity. Moreover, public

transportation has the function of providing all people with transportation, thereby

enabling everybody access to social and economic activities.

Railway transportation is the main mode of public transportation in the Nether-

lands, especially for medium to long distances. Bus and metro are primarily used for

short to medium distances, or as feeder or distributor for the railway system (AVV,

2000). So, the performance of public transportation as a whole depends largely on

the performance of the railway system.

The introduction of competition in the European railway market is a second

development that puts the railways in the spotlight. In 1995, the state-owned NS3

were split into an infrastructure managing part and a railway operating part. The

infrastructure managing task units, such as Railned, were brought together in the

governmental organization Prorail. The railway operating business units, such as

2Adviesdienst Verkeer en Vervoer, the advisory unit on traffic and transport of the V&W.
3Nederlandse Spoorwegen (Netherlands Railways).
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the passenger railway operator NSR4, are commercially operating organizations5.

Since the introduction of competition, some new operators have entered the railway

transportation market, such as the passenger railway operators Noordned and Syntus,

and the cargo operators Shortlines, Railion, and ACTS.

Finally, the railways in the Netherlands have been criticized the past years be-

cause of a less than optimal operational performance, and because of related quality

problems. With few investments in railway infrastructure in the 1970’s and 1980’s, a

lot of delayed maintenance had built up when in the 1990’s railway investments were

resumed. Together with the increased mobility and the resulting highly intensive

use of the infrastructure, this has led to infrastructure failures. These disruptions

frequently resulted in delayed trains, and especially in peak hours such delays may

be knocked on to other trains and propagated through the network. Besides these

infrastructure issues, there have also been railway operator related problems. Too

few trains were available to meet the increased demand for railway travel, which

resulted in postponed maintenance and over-utilized trains. This, in turn, led to

additional delays caused by the breakdowns of trains. Through a highly dependent

crews schedule, delayed trains resulted in the late arrival of train crews, and thus in

the delayed departure of the crew’s subsequent train to be operated. Over-crowded

trains, high pressure on the on-train crews, and the related crews strikes are other

sources of criticism. Concluding, the current Dutch railway system uses its infras-

tructure intensively, and faces disruptions and punctuality problems.

1.1 Current Developments in Passenger Railways

The basic wishes of the modern railway customer are fairly simple: he or she wants

to travel fast and comfortably for a reasonable price. Additionally, railway travel

should be transparent and reliable, and should provide a choice of service level and

comfort level.

The Dutch government aims at a 2020 railway system with high frequencies on the

Randstad backbone network, and high velocities on long distance connections (V&W,

2001). High frequencies ensure good connections to pre-transportation and post-

transportation, and to the regional transportation systems outside the Randstad.

On long distance connections, there will be dedicated infrastructure for high-speed

and traditional trains. The resulting homogenization of traffic velocities helps in

solving the above mentioned capacity problems, because the railway infrastructure

is utilized more efficiently. We refer to Section 2.4 for more details on the impact of

4Nederlandse Spoorwegen Reizigers (Netherlands Railways Travelers).
5At the time of writing, all shares of the business units are still owned by the Dutch government.
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homogenizing railway traffic.

A study performed by the AVV found that public transportation forms an attrac-

tive mode of transportation when its travel times are competitive to the car travel

times (AVV, 2000). In particular, public transportation travel times are competitive

when highways are congested, and public transportation operates smoothly and at

high frequencies, with short post-transportation times to, for example, office build-

ings and shopping centers. This implies that the strength of public transportation

lies in the medium to long distance railway connections between urban centers. The

same study identifies the travel within and around urban centers as a new and grow-

ing market for public transportation, in which the bulk of the number of moves takes

place.

The NS product management department (NS, 2001) identifies the same key

growth markets of national long distance travel, inter-urban medium distance travel,

and urban travel for distances of ±40 km. International travel, though relatively

small in size, is also seen as a key market, since it influences the development and

image of the railway market as a whole. NS bases its product development for the

period 2010–2020 as follows on these key markets, customer wishes, and the objec-

tives of the Dutch government. Since travel time is a key criterium for choosing a

mode of transportation, the train velocities and railway connections are differenti-

ated. This differentiation is achieved by a high-speed network, an intercity network,

and a sprinter network, which serve the markets of national travel, inter-urban travel,

and urban travel, respectively. Each of the three networks has its formula, defining

its velocity, comfort level, and service level. The three networks serve geographically

different markets, and mostly use dedicated infrastructure. Therefore, the differenti-

ation in velocity does not conflict with the above mentioned homogenization of traffic

velocity. Stations take the role of switches between the networks. Finally, the basic

principles of the new timetable follow the basic wishes of the customer.

The structure of the current Dutch railway timetable stems from the early 1970’s,

when the cyclic timetable with many connecting train services was introduced. All

new developments since, such as the introduction of new train lines and new stations,

have been incorporated into this basic structure. The future NS timetable concept

aims at the following goals (NS, 2001)

• reducing travel times by higher velocities, briefer dwelling, faster acceleration

and deceleration, and higher frequencies,

• increasing reliability and punctuality by a less interdependent timetable, and

no splitting and combining of trains,

• improving the transparency of the timetable by evenly distributing the trains
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over the hour.

These goals, together with the railway infrastructure capacity problems caused by

the growing mobility, require fundamental changes in the current railway timetable.

1.2 Aim and Relevance of the Thesis

The aim of this thesis is to investigate mathematical models and solution methods for

constructing high quality cyclic railway timetables. As such, this research provides

a valuable contribution to existing mathematical timetabling methods, which tend

to focus on the problem of constructing a timetable without explicitly taking an

objective into account. Moreover, in the practical construction of cyclic railway

timetables, objectives are clearly of great importance.

The main research question studied in this thesis is the following:

How can mathematical models and solution methods support the construc-

tion of high quality cyclic railway timetables?

To that end, we investigate important criteria for assessing the quality of a timetable,

and how these criteria can be incorporated into mathematical models. In particu-

lar, we consider the objectives of minimizing passenger travel times, maximizing

timetable robustness, and minimizing the required number of rolling stock compo-

sitions. Moreover, we study over-specified timetable requirements, by allowing a

penalized violation of the requirements. In such a case, the objective is to minimize

the violation of the initially specified requirements. The construction of high qual-

ity cyclic railway timetables is a complex and time consuming process. Therefore,

reducing the computation times of the proposed solution methods is also a research

topic of the thesis. Summarizing, the main research question breaks down into the

following sub-questions:

What are the criteria for assessing the quality of a timetable, and how

can they be modeled?

What adjustments need to be made to over-specified defined timetable re-

quirements in order to obtain a feasible timetable, and how can these

adjustments be modeled?

How can the models arising from the previous two questions be solved in

a reasonable amount of time?
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1.2.1 Social Relevance

The background setting discussed at the start of this chapter directly indicates the

social relevance of studying cyclic railway timetables. Railway timetabling models

and algorithms offer a method for improving the quality of the railway timetable,

and thus of the railway system as a whole. Clearly, railway passengers benefit from

quality improvements in the railway system. Moreover, an improved railway system

may offer current users of private transportation a viable alternative mode of trans-

portation. Therefore, this research may contribute to solving the earlier sketched

mobility problems. Next, we discuss the social impact of the thesis in more detail.

Railway infrastructure investments involve tremendous amounts of public money,

and have a long life cycle. Tools that assist the government in making infrastruc-

ture investment decisions are therefore highly valuable. Railway timetabling models

provide such a tool for evaluating various alternatives for infrastructure investments.

Capacity, robustness, and stability are common evaluation criteria in such a railway

infrastructure study.

The opening of the European railway market to competition has lead to mul-

tiple operators, who are using the railway network simultaneously. The allocation

of railway capacity to the various operators can be seen as the construction of a

combined timetable for the entire railway system. An optimization method for rail-

way timetabling offers infrastructure managers a tool to construct such a combined

timetable. The combined timetable should be optimal for some overall criterium

reflecting the benefits of the timetable to society, for example, fast travel or sta-

bility. Here, the possibility to quantify trade-offs between various criteria plays an

important part.

Concluding, railway system improvements may stem from the above described

decision aid for governmental infrastructure investments, or from assisting in the

assignment of railway capacity in a competitive railway market. The next section

describes how the thesis may improve the strategic and tactical planning processes of

railway companies. In a competitive railway market, such improvements are expected

to lead to a quality improvement of the railway system.

1.2.2 Managerial Relevance

By developing fast railway timetabling methods, the thesis offers railway managers a

tool for faster and better founded tactical and strategic decision making. At the tac-

tical level, timetable decision making involves investigating whether major changes or

minor adjustments to the current timetable are feasible. So, a theoretical indication

can be obtained of the effects of such changes or adjustments on the core timetable,
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without actually implementing them. At the strategic level, the research findings

assist in exploring new timetable concepts for a 15 to 25 year time horizon.

A reduction of the time span for constructing a timetable enables railway man-

agers to react faster and more accurately to developments in the transportation

market. Good timetabling models and algorithms yield such a reduction of the

timetabling time span. As an example, consider the DONS6 timetabling decision

support system, that NS started to develop in 1992. DONS supports the planning of

a cyclic core timetable for strategic and tactical purposes. The introduction of DONS

at NSR and Railned7 reduced the lead time for constructing a cyclic timetable for the

whole of the Netherlands significantly (see Hooghiemstra, 1996, Hooghiemstra et al.,

1999). This lead time reduction is for the construction of a fairly rough timetable for

tactical and strategic studies. The construction of a detailed timetable for the whole

of the Netherlands still takes a considerable amount of time.

Moreover, the lead time reduction offers the opportunity to carry out scenario

studies. Such scenario studies are hardly feasible when the construction of a single

timetable already takes several weeks. Also, timetable optimization offers quantita-

tive decision support for scenario studies, since it allows railway managers to quantify

the trade-off between different criteria, such as passenger satisfaction and cost effi-

ciency.

Finally, the timetable planning process is closely connected to other railway plan-

ning processes, such as train line planning, rolling stock scheduling, crew scheduling,

and infrastructure planning. Timetable construction serves as an evaluation tool

for some of these processes, and for other processes the timetable is one of the in-

puts. As such, any improvements in the timetable planning process also impact these

other processes. We refer to Section 2.3 for an in-depth discussion of the dependence

between timetable planning and other railway planning processes.

1.3 An Introduction to Cyclic Railway Timetables

In 1931, NS presented the cyclic railway timetable concept, with a cycle time of one

hour. The cyclic nature of the 2001/2002 NSR timetable is illustrated in Table 1.1.

This table shows the timetable for the direct intercity connection between the Dutch

cities of The Hague and Venlo, which is operated by the 1900 intercity train, see

Figure 1.2. The rows in the table show that the connection is operated every hour

at exactly the same minute. The first train of the day is the only exception, leaving

6Designer Of Network Schedules.
7The development of DONS was started by the then state-owned NS. Since the split of NS,

DONS has been in use at both the passenger operator NSR and the capacity manager Railned.
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The Hague CS

The Hague HS

Dordrecht

Tilburg

Rotterdam

Eindhoven

Helmond

Venlo

Breda

Figure 1.2: The 1900 train from The Hague to Venlo

The Hague CS - 06:21 07:21 . . . 20:21 21:21 22:21

The Hague HS - 06:25 07:25 . . . 20:25 21:25 22:25

Rotterdam 05:41 06:45 07:45 . . . 20:45 21:45 22:45

Dordrecht 06:01 07:01 08:01 . . . 21:01 22:01 23:01

Breda 06:19 07:19 08:19 . . . 21:19 22:19 23:19

Tilburg 06:33 07:33 08:33 . . . 21:33 22:33 23:33

Eindhoven 07:01 08:01 09:01 . . . 22:01 23:01 23:58∗

Helmond 07:11 08:11 09:11 . . . 22:11 23:11 -

Venlo 07:32∗ 08:32∗ 09:32∗ . . . 22:32∗ 23:32∗ -

Table 1.1: The 2001/2002 weekday timetable for the 1900 intercity train from The
Hague to Venlo (∗indicates an arrival time)
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from Rotterdam rather than The Hague, at 05:41, four minutes earlier than its cyclic

departure time. The last train does conform to the cyclic departure times, but already

ends in Eindhoven, not in Venlo.

Since the introduction of cyclic timetables in the Netherlands more than sev-

enty years ago, many other European countries have adopted the concept. Nowa-

days, cyclic timetables are operated in Austria, Belgium, Denmark, Germany, Great

Britain, Norway, and Switzerland. Moreover, many bus and metro systems operate

cyclic timetables, though often with smaller cycle times than railway systems do.

Cyclic timetables have several advantages. Since they are transparent to the

customer, there is no need for passengers to memorize complex timetables for their

regular connections. It suffices to memorize the minutes of the hour at which the

trains leave. Moreover, if the cyclic concept is strictly adhered to, passengers face no

gaps in train services on parts of the day when transportation demand is low.

From a planning point of view, cyclic timetables have the advantage that one

only needs to consider one cycle period. A crucial extra requirement, then, is that

the situation at the end of the cycle period matches the situation at the start of the

period. If the start and end situations match, the basis of a full-day timetable can

be obtained by copying the cyclic timetable for all relevant hours of the day. This

copy procedure yields a full-day timetable in which the departure times, in minutes,

are the same for each train connection and for each cycle period. Clearly, this basic

full-day timetable still needs some adjustments, for example, for rush hour traffic or

late evening traffic.

A final and related advantage is that cyclic timetables can be represented com-

pactly, that is, only a single cycle period needs to be shown. Cyclic timetables are

therefore relatively easy to handle within the railway company itself. A railway oper-

ator can focus its planning on one cycle period, not only for the timetable itself, but

also for depending plans, such as rolling stock planning and crew planning. However,

this does not imply that the depending plans themselves are also cyclic.

At the other end of the timetable spectrum lies the a-cyclic timetable, which is

sometimes referred to as the market-led timetable (Ford and Haydock, 1992). In

an a-cyclic timetable, a railway operator fine-tunes the timetable to the demand for

transportation. Such a timetable typically contains many trains during the morning

and afternoon rush hours, and few trains in low traffic hours. Further, an a-cyclic

timetable tends to offer a quite dense service on Mondays and Fridays, because

of post-weekend and pre-weekend traffic, whereas the weekend timetable itself may

contain many gaps. Extremely fine-tuning a timetable to market demand may result

in a complex timetable that is hard to consult and to memorize. Moreover, the a-

cyclic timetable concept requires the planning of a timetable for the entire day, for
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each day of the week. This typically results in very large planning problems.

On the other hand, cyclic timetables may yield higher costs than a-cyclic ones.

In a cyclic timetable, the late evening hours offer the same train service as the rest of

the day. But the occupation degree of the late evening trains is typically much less

than during the rest of the day. Therefore, a cyclic timetable usually takes market

demand into account to a certain extent. Typically, high capacity trains are used

during rush hours, that is, longer and/or double-deck trains. And in low-traffic hours,

trains may consist of less carriages. Moreover, a hybrid timetable concept is possible,

with a cyclic core timetable, in which extra trains are operated during rush hours,

and from which trains are removed during low-traffic hours.

1.4 Cyclic Railway Timetabling: A Literature Review

This section reviews previously published research on cyclic railway timetabling. For

an overview of mathematical models for railway transportation in general, we refer

to Assad (1980). A more recent overview, focusing on discrete optimization models

for railway transportation, is described by Bussieck et al. (1997). We do not review

the literature on a-cyclic railway scheduling, but refer the interested reader to the

survey by Cordeau et al. (1998), and to the recent contributions by Brännlund et al.

(1998), Caprara et al. (2001), and Caprara et al. (2002).

Most authors that study cyclic railway timetabling problems use models that are

based on the Periodic Event Scheduling Problem (PESP), as introduced by Serafini

and Ukovich (1989a). The PESP considers the problem of scheduling a set of peri-

odically recurring events under periodic time window constraints. More specifically,

the PESP aims at determining the time instants at which the periodic events are to

take place. The periodic restrictions are imposed on pairs of events, and constrain

the time interval between the two events to some time window. The basic PESP only

deals with the problem of finding a feasible schedule, and does not take an objective

function into account. Chapter 4 describes the PESP in detail.

Voorhoeve (1993) first considered a PESP based model for the cyclic railway

timetabling problem for NS. His model takes into account the main requirements of

Dutch timetables, such as train movement characteristics, safe use of the infrastruc-

ture, connections between trains, and limits on dwell times.

Schrijver and Steenbeek (1993, 1994) improved Voorhoeve’s model and algorithm

by developing a constraint programming based algorithm. Their CADANS algorithm

solves the problem of finding a feasible timetable for a set of PESP constraints.

The algorithm generally performs well on most Dutch real-life railway timetabling

instances, though some instances require very large computation times. They also
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considered the post-optimization of an obtained feasible timetable. To that end, the

train sequences of the obtained timetable are fixed, after which a locally optimal

timetable is computed.

Nachtigall (1994, 1996a) also uses PESP constraints to model the cyclic behavior

of railway timetables, and takes the objective of minimizing passenger waiting times

into account. He transforms the problem into one that is formulated in terms of

cycles of PESP constraints. Moreover, he introduces a multi-criteria objective for

cyclic railway timetable optimization. He particularly explores bi-criteria objectives,

namely the cost of infrastructure versus the benefit of improving the synchronization

in the timetable, and rolling stock circulation versus passenger waiting time. In

a related paper (Nachtigall, 1996b), cyclic timetables consisting of train lines with

different cycle times are studied.

Nachtigall and Voget (1996) also consider the problem of minimizing passenger

waiting times in a cyclic railway timetable. They heuristically generate an initial

timetable, using ideas from a practical planner’s manual timetable construction pro-

cedure. This initial timetable is then improved using a genetic algorithm. In a later

paper, Nachtigall and Voget (1997) consider the bi-criterium objective of infrastruc-

ture investments and passenger waiting time improvements.

Odijk (1996, 1997) uses the PESP model for cyclic railway timetabling, but not

for the sole purpose of constructing a timetable. Rather, his aim is to compose

specifications for the extension of the infrastructure within and around a station. He

proposes to generate a family of timetables for the station. By inspecting such a

family of timetables and identifying the features they have in common, he composes

specifications for the infrastructure extension.

Liebchen (1998) compares some of the above described methods by applying them

to instances from the Berlin underground and urban rail. He considers the work by

Nachtigall (1999), Odijk (1997), and Nachtigall and Voget (1996), with different

options for the parameters for each of these methods.

Goverde (1999) proposes to use the transformed model by Nachtigall (1999), with

the objective function of constructing stable and reliable timetables. So, his objective

function favors timetables that are relatively insensitive to minor operating distur-

bances. To that end, he investigates objective functions, which take into account, to

some extent, the stochastic nature of railway operations.

A combination of railway timetabling and railway line planning is studied by Lind-

ner (2000). His research considers constructing a cost optimal train schedule, which

is a timetable that minimizes the cost of the corresponding rolling stock plan. For the

railway timetabling part of his model, he uses the PESP formulation. He developed

a modification of the Serafini and Ukovich (1989a) algorithm, and a Branch&Cut
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algorithm for solving the PESP.

Weigand (1983) does not use a PESP model, but considers cycle constraints

similar to those in the model by Nachtigall (1999), for minimizing the waiting times

of passengers at stations. His solution method picks a spanning tree of the graph

induced by the arrival and departure times of the trains, and computes an optimal

timetable for that tree. Then, the algorithm iteratively moves to a new spanning

tree in order to improve the best found timetable.

Domschke (1989) uses a mathematical formulation that is similar to the Quadratic

Assignment Problem (see Burkard et al., 1998, Çela, 1998) to model cyclic railway

timetables. His quadratic objective function for minimizing passenger waiting time

associates a weight with fixing the departure or arrival times for pairs of trains, and

thus with the waiting time for passengers who transfer between the involved trains.

Daduna and Voß (1995) further studied this model.

Lichtenegger (1990) considers the problem of the integrated fixed interval timetable,

a special type of cyclic timetable. In an integrated fixed interval timetable, used in

Austria and Switzerland, trains visit the large stations at fixed and regular time in-

stants with regard to a cycle time. For example, with a cycle time of 60 minutes,

trains only visit a large station at time instants 0, 15, 30, and 45. The idea is that at

these time instants passengers can change trains, since most trains are then present

at a station. Lichtenegger’s aim is to minimize the infrastructure investments re-

quired to operate an integrated fixed interval timetable. He formulates this problem

as a mixed integer program.

Finally, Goverde and Soto y Koelemeijer (2000) consider the problem of evaluat-

ing the performance of a cyclic railway timetable. They take a cyclic timetable as

input, and use max-plus algebra to determine several performance indicators of the

timetable. These performance indicators include the critical circuits in the railway

network, the stability margin of the timetable, and the propagation of delays in case

of a disruption.

1.5 Outline of the Thesis

The remainder of the thesis is structured as follows. Chapter 2 describes the prac-

tical aspects of railway timetable planning. It characterizes the relation between

timetable planning and the other planning processes of a railway operator. The im-

pact of timetabling for railway infrastructure planning is illustrated, and the DONS

timetabling decision support system is described briefly.

Chapter 3 presents a mathematical model for cyclic railway timetabling. We first

state our assumptions and the considered objectives. Then, periodic constraints are
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introduced as a basic tool for modeling cyclic timetables. We illustrate the model-

ing power of periodic constraints through extensive examples of practical situations.

Next, these examples are formalized in an integer programming model. We then

present a more compact constraint graph representation for the integer program,

and formalize the objective functions. The chapter closes with a discussion of the

structure of railway timetabling constraint graphs.

Chapter 4 relates the model of Chapter 3 to the existing literature on the PESP

(Serafini and Ukovich, 1989a). We derive some useful properties of the PESP, and

pay special attention to the sequencing of events in the PESP.

Based on the derived properties, Chapter 5 describes a transformation of the

PESP, which builds upon the work by Nachtigall (1999). We derive theoretical

results and properties for the transformed model. The transformed model is closely

related to cycles in graphs. Therefore, part of the chapter is devoted to a study of

bases of the cycle space of a graph.

Chapter 6 investigates extensions of the basic railway timetabling model from

Chapter 3. These extensions allow for incorporating variable trip times, flexible

train connections, and station capacity restrictions into the model. We also present

a rolling stock minimization objective function, based on the ideas presented in Chap-

ter 5. Moreover, the chapter considers the relation between mathematical solution

methods, and the way in which planners use them in practice. By taking into ac-

count how planners construct railway timetables in practice, we simplify parts of

our solution methods. Such simplifications lead to heuristic solution methods, that

do not necessarily find an optimal solution. However, both the practical and the

computational complexity of the timetabling problem justify the use of heuristics.

Chapter 7 reports on the computational experiments that were carried out to test

the developed model and solution methods. The test instances are real-life Dutch

timetabling problems that were obtained from the DONS system.

Finally, the conclusions of, and a reflection on, the results achieved in the thesis

are presented in Chapter 8.





Chapter 2

Planning Railway Timetables

This chapter explores several practical aspects of timetable planning. It so gives an

impression of the practical environment in which a railway timetable is constructed,

of its input factors, and of the implications of a timetable for the railway system as

a whole.

Section 2.1 considers the practical process of railway timetabling, and the var-

ious matters that are taken into account in this process. Section 2.2 discusses the

process of timetable planning at NSR, the largest Dutch passenger railway opera-

tor. Next, Section 2.3 describes several other planning problems that need to be

solved for a railway system to function well. These problems include estimating the

travel demand, planning what train connections will be operated, scheduling, main-

tenance, and shunting the railway rolling stock, and crew scheduling and rostering.

Timetabling also plays an important part in the railway infrastructure planning pro-

cess, which is the subject of Section 2.4. Finally, Section 2.5 gives a brief overview of

the DONS decision support system for railway timetabling. The DONS system is a

practical example of how mathematics and computer science can support the tactical

and strategic design of railway timetables.

2.1 Constructing Railway Timetables in Practice

Although intelligent decision support systems for railway timetabling, such as the

DONS system described in Section 2.5, do exist, they are generally only used for

strategic and tactical studies. Due to its complex nature, the construction of the

actual timetable as it is operated in practice, is still mainly a human planning process,

which is supported by computer aided design tools.

Traditionally, planners use two types of graphs as the main tools for constructing

15
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a timetable. The so-called time-space diagram graphically represents the train move-

ments that take place in between stations, on the tracks. One axis displays time, and

the other axis depicts space. Throughout this thesis, time is placed on the vertical

axis, and space on the horizontal axis.

Figure 2.1 is an example of a time-space diagram of the 2001/2002 timetable for

the track between the stations of Rotterdam and Utrecht. The character codes on

the horizontal space axis represent stations between Rotterdam and Utrecht, and

the numbers on the vertical axis stand for the minutes in an hour. Each line in the

time-space diagram depicts a train, which is indicated by the number next to the line.

Lines with a positive inclination correspond to trains from Rotterdam to Utrecht,

and lines with a negative inclination to trains from Utrecht to Rotterdam. Flat lines

indicate fast trains, because those trains cover a large distance in a short time, and

steep lines indicate slow trains. When a train dwells for some time at a station,

this gives a vertical line at that station, because time moves on while the location of

the train remains unchanged. Intersecting lines indicate that the two corresponding

trains meet at the point of intersection. This is clearly only allowed at stations, or if

the trains are using different tracks.

The time-space diagram does not show any detailed information on the situation

inside a station. The platform-occupation chart graphically zooms in to the details

within a station. Here, time is set on the horizontal axis, and the vertical axis

corresponds to the platforms. A platform track is depicted by a line, and a line

next to a platform track represents a train occupying that platform track for the

corresponding time.

Figure 2.2 provides part of the platform-occupation chart for station Utrecht in

the 2001/2002 timetable. Each of the displayed platform tracks has an a-side and a

b-side. These sides correspond to the front part and back part of the platform track,

which can be used by different trains. The number codes in the graph represent

trains, as in the time-space diagram. If both the a-side and the b-side of a platform

track are occupied by the same train, this gives blocks in the chart rather than lines.

So, each of the trains at platform track 5 occupies the entire platform. Associated

with each train occupying a platform track, one sees two character codes. These

represent the origin and the destination station of the train.

In practice, a timetable is constructed by specifying, for each train, a time-space

path through the railway network, which is drawn in the time-space diagrams, and

by specifying the platform tracks that the train occupies, which are drawn in the

platform-occupation charts. Generally, a timetable is not constructed from scratch.

Rather, adjustments are made to an existing timetable, typically, to the timetable of

the previous year. Trains are added to the existing timetable, deleted from it, or the
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Figure 2.1: Time-space diagram for the track between Rotterdam and Utrecht.
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schedule of an already existing train is adjusted.

During the process of adding, deleting, and adjusting the schedules of trains, one

usually runs into problems at a certain moment in time. It may not be possible

to schedule a new train as desired, because there is no capacity on the track or

in the station, or because capacity is only available when a connection can not be

realized. In such a case, some of the already scheduled trains have to be rescheduled.

This can be achieved by shifting an already scheduled train to some earlier or later

point in time, by adjusting the planned trip time of a train, or by relocating a

train to a different platform. Cycling through this process of scheduling trains, and

backtracking on previously made choices in case of a ‘dead end’, one may eventually

arrive at a complete timetable. The timetable construction process is quite complex,

and it may take a team of planners several months to create a complete timetable.

Below, we describe the main aspects that are taken into account in the construction

of a timetable.

2.1.1 Adding Recovery Times to Trip Times

The time it takes a train to cover a certain distance while traveling at the maximum

allowed velocity is called the technically minimum trip time. When constructing

a timetable, a certain recovery time is added to the technically minimum trip time.

Traditionally, about 7% recovery time is added to the technically minimum trip time.

So, the train is scheduled at a lower than maximum velocity. Therefore, small delays

can be compensated for by having the train travel at a higher than scheduled velocity.

2.1.2 The Block Safety System

Clearly, the railway safety system also has to be taken into account. Each track

section is divided into so-called blocks, and each block may be used by at most one

train at any time. At the start of a block, a signal light indicates the status of the

block to approaching trains. A red light indicates that the block is occupied, so an

approaching train may not enter the block. A yellow light indicates that the block is

free, but that the next block is occupied. So, on a yellow light, an approaching train

can enter the block, but has to start decelerating because the next signal light is red.

A green light indicates that the block is free and can be entered. Figure 2.3 illustrates

these three states. The yellow signal light for block 1 indicates that the first train can

enter block 1, and that the signal light for the next block is red. This red light for

block 2 indicates that block 2 is occupied by the second train. Block 3 is empty, and

the block after that too, so the signal lights for both block 3 and the next block are

green. In practice, more signal light states are actually used, such as flashing signals,
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block 1 block 2 block 3

yellow red green green

Figure 2.3: The railway safety block system

or signal lights in combination with a number indicating the maximum velocity at

which the block can be entered.

Typically, the length of a block is between 1000 and 2000 meter. Therefore, taking

every single block into account would require very precise and detailed time-space

diagrams. Instead, planners usually choose a less detailed perspective, and model the

blocks by so-called minimum headway times that separate any two trains using the

same track. The idea is that it takes a train, on average, the headway time to cover

a block. So, as long as the headway time is respected in the timetable, it should in

practice be possible for all trains to be operated while respecting the safety system.

2.1.3 Connections between Trains

If a passenger transfer connection between two trains is desired, then both trains

should be present at the connecting station at about the same time. Moreover, the

trains are preferably assigned to opposite sides of the same platform, which creates

a so-called cross-platform connection.

If two trains are to be combined to travel on as one single train, they need to be

present at the station at exactly the same time. This yields a so-called combination

connection.

2.1.4 Turn Around Times at Termini

One also has to pay attention to the so-called turn around time between arrival at a

terminus, and the departure time of the train servicing the opposite route. If the turn

around time is sufficiently long for the train to be cleaned, and for possible shunting

operations to be carried out, then both journeys can be operated by the same train

composition. Moreover, the turn around time should not be too long, because long

turn around times decrease the efficiency of the train composition utilization. The

actual planning of the train compositions takes place at a later point in time. These

turn around times already indicate the interaction between timetable planning and
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Figure 2.4: The timetable planning process at NSR

rolling stock planning.

2.2 The Timetable Planning Process at NSR

This section describes the timetable planning process at NSR. The description is

mostly based on Prins (1998), who analyzes the planning processes at NSR from an

information management point of view. Basically, the same processes take place at

other railway operators as well, though some differences may be found.

In the Netherlands, timetables are constructed by the railway operators. Such an

operator timetable is then proposed to Railned, which inspects whether the timetable

respects the timetabling safety norms. Moreover, Railned checks whether sufficient

infrastructure capacity is available for operating the timetable in combination with

the proposed timetables of the other operators. If this is not the case, a feedback

process to the railway operators is started.

The timetable planning process at NSR takes place at both a central level and a

local level, and in several planning phases, as is shown in Figure 2.4. A rough initial

timetable is first constructed centrally. This initial timetable is then sent to the local

planning departments, which fill in the details so as to check its local feasibility,

for example, by composing a routing of the trains through the stations. Moreover,

the local planners can propose alterations to the central timetable to improve its

feasibility and quality.

At both the central and local planning level, three types of timetables are con-
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structed: the Basic One-hour Timetable (BOT), the Weekly Timetable, and the

Daily Timetable. The BOT is a cyclic timetable for one hour, and contains the low-

est level of detail. The Weekly Timetable is based on the BOT, and specifies the

timetable for each day in a standard week. The Daily Timetable incorporates any

deviations on a specific day from the prescribed schedule in the Weekly Timetable.

Basic One-hour Timetable. The timetable planning process starts with the construc-

tion of the BOT, which is a cyclic timetable for one ‘standard hour’ for the

complete Dutch railway network. Usually, several BOTs are constructed, for

example, for peak hours and off-peak hours. The BOT consists of a time-space

diagram for all tracks, and of platform occupation charts for the stations. Since

the BOT is the heart of the final railway timetable, the timetable is basically

created in this phase.

Weekly Timetable. The Weekly Timetable extends the BOT from a standard hour

timetable to a timetable for a standard week. The BOTs for peak and off-peak

hours form the basis for constructing a timetable for every hour of all days

of the week. The Weekly Timetable differs from the BOTs in that deviations

from the standard hour are visible. These deviations are necessary because of

differences between peak and off-peak hours, between early morning and late

evening schedules, and between weekday and weekend schedules. The Weekly

Timetable typically specifies a special timetable for Monday, because of post-

weekend traffic, for Friday, because of pre-weekend traffic, and for Saturday

and Sunday, because of weekend traffic. The Weekly Timetables for Tuesday,

Wednesday, and Thursday are usually more or less identical. Each year, the

Weekly Timetable is adjusted a number of times to incorporate changes in travel

demand, and in the availability of infrastructure, crews, and rolling stock.

Daily Timetable. The Daily Timetable specifies the adjustments to the Weekly Time-

table for a specific day of the year. These adjustments are necessary because

of infrastructure maintenance, or because of short-term changes in the trans-

portation demand due to holidays or special events. Depending on the impact

of the adjustments, either some details are changed, or an adjusted BOT is

created, which is then used as a basis for a new timetable.

Next, we describe the role of the central and local planning departments for each of

these three timetables.

Central Planning. The initial versions of the BOT, Weekly Timetable, and Daily

Timetable are constructed centrally. So, the core of the described timetables is
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made centrally for the whole of the Netherlands. These central timetables are

represented by means of time-space diagrams and platform occupation charts.

After an initial central BOT, Weekly Timetable, or Daily Timetable has been

constructed, it is sent to the local planning departments.

Local Planning. The local planning departments plan the railway operations in the

regions formed by the railway infrastructure around the major stations. The

timetable planning task of the local planning departments is two-fold. First,

the local planning departments evaluate the feasibility and quality of the BOT.

Based on the feedback of the local planners, the BOT may be adjusted at

the central level. For instance, local planners may have suggestions for ad-

justments that remove local infeasibilities, or improve the quality of the BOT

in their region. The second task applies to the Weekly Timetable and the

Daily Timetable only, and consists of further filling in the details of the cen-

tral timetable. The central Weekly Timetable and Daily Timetable consist of

time-space diagrams and platform occupation charts. So, it is known at what

time each train departs from and arrives at a station, and what platforms the

trains dwell at and for how long. Locally, each train has to be assigned a route

through the station, from its entry point to the platform, and from the plat-

form to its exit point. The in-station shunting has to be scheduled and routed,

and crews have to be available for shunting operations and combining/splitting

procedures. Also, rolling stock units may need inside or outside cleaning, and

short term maintenance.

The planning process is an iterative process. First, the BOTs are constructed. Next,

a Weekly Timetable is constructed based on the BOTs. Last, with the Weekly

Timetable as input, the Daily Timetable is constructed. Besides that, the timetables

are first constructed centrally, after which the local planning departments evaluate

them, and/or fill in the details. The timetable planning process also contains feed-

back loops between the central and local planning, as is illustrated by the arrows in

Figure 2.4. If the local evaluation of the BOT results in improvement suggestions,

or in a negative advice because of operational infeasibility at a local level, then the

central planning department may adjust the BOT. The same applies to the Weekly

Timetable and the Daily Timetable.

For smaller railway operators, there may not be such a clear distinction between

central and local plans. Indeed, this split follows the classical railway organizational

structure, with central headquarters making the global decisions, and regional de-

partments filling in the details of the central decisions (Wyckoff, 1976). A small

railway operator may not have such an organizational structure, and therefore no
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distinction between central and local planning. Still, the separation between globally

planning first, and working out the details of the global plan later, is likely to be

present to a large extent.

Finally, we want to point out the dependencies between the timetabling process

and other railway planning processes. For example, the timetable determines the en-

vironment in which a rolling stock plan and a crew plan are constructed. This means

that, in constructing a timetable, one has to take into account the implications for

the depending plans. These dependencies are further discussed in the next section.

2.3 Railway Planning Processes

Clearly, the timetable is not the only plan that needs to be composed in order to

operate a railway system. There are several other issues that require planning, and

those influence the timetable, or are influenced by the timetable. This section briefly

describes the major railway planning problems, so as to clarify their relation with

timetabling. Figure 2.5 shows the planning processes for a railway operator, and the

time dependencies between them. The figure contains a mix of strategic planning

problems, such as demand estimation and line planning, and more operational plan-

ning problems, such as rolling stock scheduling and crew scheduling. For the latter

two, it is essential to also construct a strategic capacity plan, since acquiring new

rolling stock and hiring new crews usually takes quite some time.

Demand Estimation. The estimation of the demand for railway services lies at the

basis of a railway system. Travel demand is estimated as the number of people

that wish to travel from an origin to a destination. By estimating the travel de-

mand for each possible Origin-Destination combination, a so-called OD-matrix

of total travel demand is obtained. Passenger counts, passenger interviews,

and ticket sales form the basic information for constructing an OD-matrix. In

the Netherlands, information on travel demand is also available through the

LMS1, an econometric model developed by the AVV (see the AVV website,

2002). The LMS estimates the travel demand between geographical zones in

1Landelijk Model Systeem (National Model System).
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the Netherlands, and splits that demand, based on factors such as day of the

week, time of the day, mode of transportation, and travel motivation.

Line Planning. After the OD-matrix has been estimated, one proceeds with deciding

which train connections will be part of the railway system. The set of train

connections which is operated is called the train line system. A train line is a

direct train connection between an origin station and a destination station, via

a certain route through the railway network. For each train line, a frequency

is specified, and a type, which determines the stations that the line calls at.

In the Netherlands, three line types are currently operated: the intercity type,

which only calls at the major stations, the interregional type, which also calls at

the smaller stations, and the local type, which stops at each station it passes.

The line planning problem considers how to cover the railway network with

lines, such that all traffic demand can be met, while meeting certain objectives.

Common criteria are maximizing the number of direct travelers, and minimizing

the costs of the railway system.

Timetabling. Once the line plan is complete, a timetable for its train lines can be

constructed. For a detailed description of the timetable planning process we

refer to the previous section.

Rolling Stock Planning. The next planning problem to be solved is the assignment of

train units to the train lines in the timetable. A railway company typically owns

a variety of rolling stock types, for example, single deck and double deck units,

wagons that need a locomotive, units that have their own engine, etc. When

each train line has been assigned one or more types of rolling stock, a plan is

constructed that specifies how many units each train consists of. Moreover, a

unit does not have to be assigned to the same train line for the entire day. A

unit may be used for one train line first, then for another, etc. During off-peak

hours, not all rolling stock is in use, and the idle train units need to be shunted

from the platforms to shunting yards. A shunting plan is constructed in a later

planning phase. Also, each train unit needs to be taken out of circulation after

having traveled a certain distance, in order to be maintained. A final planning

phase considers how to adjust the flow of train units such that each unit is

routed to a workshop when it requires maintenance.

Crew Planning. Each train has to be manned by a driver and one or more conductors.

This poses complex planning problems, since the crew plan needs to respect

several complicated labor rules. The drivers and conductors have to return to

their home bases by the end of the working day. Working shifts have to contain
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a meal break of at least half an hour, and may not contain a continuous period

of work of more than five hours. More complicated rules also exist. A shift

must contain some variation, so a driver or conductor may not be assigned

to the same train line all day, going back-and-forth on that line. Drivers and

conductors are allowed to transfer from one train to another only when sufficient

buffer time for the transfer is available. Otherwise, a delayed arrival of the

crew may result in a delayed departure of their next train. Furthermore, the

crew schedule should incorporate various crew member characteristics, such

as rostering qualifications, individual requests of crew members, and the past

rosters of crew members. These past rosters are of importance for the labor

rules. Finally, taking all these rules and characteristics into account, a railway

operator aims at constructing a crew plan that meets certain objectives, such

as minimizing the number of duties that cover all the work, or maximizing crew

satisfaction.

The flow of the overall planning process as shown in Figure 2.5 arises because certain

processes provide the input for others. However, the planning flow is not as linear

as it may seem, since feedback loops between the several planning stages exist. For

example, the timetable may be changed to improve the rolling stock circulation or

the crew schedules.

These dependencies between the railway planning processes show the importance

of timetabling for the planning chain as a whole. If fast methods exist to construct

good timetables, then feedback can be given quicker. Also, any feedback or requested

changes from a depending plan can be processed fast, which shortens the time span

of the depending plan. It can be concluded that fast construction methods for high-

quality timetables not only shorten the timetabling process lead time, but, because

of the mutual dependencies with the other logistic railway planning processes, they

also shorten the lead time of the whole railway planning process.

2.4 Railway Infrastructure Planning at Railned

When NS became an independent organization in 1995, the governmental organiza-

tion Railned was established to manage the Dutch railway infrastructure. On one

hand, Railned assigns infrastructure capacity to the railway operators, thereby act-

ing as a referee when the operators have conflicting interests. On the other hand,

Railned has the role of advisor for the Dutch government for future infrastructure

investments. These infrastructure investment advices are mostly based on scenario

studies, in which several options for infrastructure extensions are compared on such
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Figure 2.6: Track capacity depending on train speed and train order

criteria as costs, spatial viability, capacity extension, effectiveness, etc. Indeed, ex-

tension of the railway capacity is one of the important factors in judging a scenario.

Here, capacity extension should be interpreted as the number of extra train services

which can be operated on the extended railway network.

Typically, the lead time of railway infrastructure projects is in the range of fifteen

years. Therefore, one ideally wants to estimate the capacity extension of a scenario

in some rough manner, without going through the details of the railway planning

processes presented in the previous section. After all, it is uncertain what trains,

train types, or timetables will be operated in fifteen years time. However, this desire

for a rough capacity estimate conflicts with the high dependency of railway capacity

on the details of the operated timetable.

More specifically, track capacity depends on the velocity of the trains, and on the

order in which the trains enter the track. As an example, consider the time-space

diagrams in Figure 2.6(a) and (b). Solid lines represent fast intercity trains, and

dashed lines represent slower local trains. It takes an intercity train 10 minutes to

travel along the track section, and a local train needs 19 minutes in total, because

of some stops (that are not shown in the figure). We assume that upon entering and

leaving the displayed track, there should be a safety distance of at least three min-

utes between subsequent trains. In Figure 2.6(a), the timetable alternates between
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intercity trains and local trains, as is customary in practice. This timetable offers a

service of 8 trains per hour, 4 of each type, and it is clear from the figure that this

is the maximum alternating service possible. In Figure 2.6(b), a service of 17 trains

per hour can be offered. This 17 train service is the result of homogenizing the traffic

order and velocity, by first operating 9 intercity trains, and after that 8 local trains.

This example shows the strong dependency of track capacity on the timetable, and

thus the dependency of network capacity on the timetable. Moreover, there is less

freedom in using the available capacity than may appear at first sight. Because of

commercial reasons, the alternating pattern in Figure 2.6(a) may be desired, or trains

may have to be present at a station at the same time in order to provide a connection.

Because of the high dependency of railway capacity on the structure of the

timetable, it is complicated to judge the effectiveness of infrastructure extensions

without actually constructing a future timetable. So, in practice, Railned tries to

construct several timetables for each future infrastructure scenario. Each of these

timetables is in principle a BOT, though usually less detailed than the BOTs de-

scribed in Section 2.2. If it is hard or impossible to create a BOT for a certain infras-

tructure scenario, then the scenario is not recommended to the Dutch government.

If, on the other hand, various timetables can be constructed easily for a scenario,

then one can argue that this scenario offers considerable flexibility, and it will be

recommended for implementation. Such a recommendation for implementation also

depends on other factors, such as the costs associated with the extension.

The above discussion shows the importance of timetable construction for Railned’s

infrastructure advisory process. The time span of the advisory process is negatively

impacted if it takes a lot of time to construct only a single timetable. However, if

decision support for the fast construction of timetables is available, then the time

span of the advisory process is not only reduced, but the advice will also be better

founded, since for each scenario a family of timetables can be generated.

2.5 The DONS Decision Support System

In 1992, NS started the development of a Decision Support System for supporting

the planning process of constructing BOTs. Both the resulting DSS, and the project

within which it was developed, are called DONS2. When NS became an independent

organization in 1995, DONS and its further development continued as a joint project

of passenger railway operator NSR and infrastructure capacity manager Railned.

This section briefly describes the DONS system. For a more detailed description we

2Designer Of Network Schedules. Initially, DONS abbreviated the Dutch ‘Dienstregeling Ont-
wikkeling bij de Nederlandse Spoorwegen’. This was later changed into the current meaning.
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refer to Hooghiemstra (1996) and Hooghiemstra et al. (1999).

The goal of DONS is to provide long-term planners with a tool to generate BOTs

in less time than it would take to construct them by hand, thereby enabling them to

conduct more extensive scenario studies. The importance of being able to perform

scenario studies was described in the previous sections, and in Section 1.2. The

DONS system consists of three parts:

Graphical User Interface. The Graphical User Interface (GUI) allows the user to

specify a timetable instance through mouse point-and-clicks, and by entering

additional information through the keyboard. The exact ingredients of an in-

stance are explained below. Moreover, once a timetable has been constructed,

the GUI can display it in the form of time-space diagrams, platform assignment

charts, and tabular material.

Database. The DONS database contains all the information of the various problem

specifications that planners have entered and saved. It also contains detailed

information on relevant Dutch railway infrastructure scenarios, such as the

current infrastructure, and likely-to-be-realized future infrastructure layouts.

Moreover, for each instance, it stores the timetables that have been computed.

Intelligent Modules. When an instance has been specified, by retrieving information

from the database and/or using the GUI, the intelligent computing modules

can be used to generate a BOT. The CADANS module (Schrijver and Steen-

beek, 1994) calculates the departure and arrival times for all specified trains.

These departure and arrival times form the information that is needed for a

time-space diagram, so CADANS does not consider the events that take place

inside the stations. The STATIONS module searches, for a single station, for

a platform assignment and a train routing that match the timetable calculated

by CADANS. For more information on STATIONS, we refer to Zwaneveld

et al. (1996), Zwaneveld (1997), and Kroon et al. (1997). When STATIONS

has solved this problem for every station in the problem setting, a complete

BOT has been constructed.

The railway network infrastructure lies at the basis of a DONS instance. Using

the GUI, one can specify stations as nodes in the network, and link two stations to

indicate that there is a rail track between them. One must further specify several

characteristics of the track, such as its length, the number of parallel tracks, and the

voltage of the catenary. If only a time-space diagram is needed, these infrastructure

data suffice. If one also wants to construct platform occupation charts, then detailed
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infrastructure information needs to be entered for each station. In practice, however,

one mostly loads pre-defined infrastructure layouts from the database.

Next, the train lines are entered into the system. For each train, one specifies

characteristics such as origin, destination, route, and train type. Dwell stations, and

dwell times or dwell time windows, can also be entered, or the default values for the

corresponding train type can be used.

Finally, logistic and commercial requirements for the timetable are specified. Lo-

gistic requirements include such matters as limiting the turn around times at termini,

or preventing two trains from being at a station at the same time, when they have

crossing routes within the station (recall that for the time-space diagram planning

part the internal station layout is unknown). Commercial requirements involve con-

nections between trains, bounds on dwell times to limit total trip times, and syn-

chronizing the departure times of trains that share part of their route, so as to offer

a higher frequency train service on the common section. The next chapter describes

these issues in detail.





Chapter 3

Modeling Cyclic Railway Timetables

This chapter describes a model for cyclic railway timetables. Section 3.1 describes

the basic model assumptions. We distinguish between assumptions with respect to

the level of detail of the railway infrastructure, the level of detail of trains, and

the considered types of timetable requirements. Next, Section 3.2 describes the

objectives that are taken into account. Section 3.3 introduces periodic constraints

as a basic tool for modeling cyclic timetable requirements. We demonstrate the

modeling power of periodic constraints in Section 3.4 by applying them to model

various representative examples of practical timetable requirements. We formalize

these example constraints in Section 3.5, and present the full model. Section 3.6

shows how to rewrite the model in terms of a constraint graph, which results in a

clearer and more compact model formulation. In Section 3.7, we present various

specific instances of the general objective function of the model. Finally, Section 3.8

discusses the structure of cyclic railway timetabling constraint graphs.

3.1 Model Assumptions

In studying and modeling cyclic railway timetables, we assume the following to be

given a priori:

• the infrastructure layout of the railway network,

• the trains to be scheduled, and

• a set of timetable requirements, representing safety regulations, service levels,

and logistic limitations.

The following subsections elaborate on each of these three assumptions.

31
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3.1.1 Infrastructure Assumptions

The railway infrastructure is considered as a network of nodes and tracks. The

nodes represent locations in the railway network where train movements may interact.

Nodes therefore require a coordination of train movements. A clear example of a

node is a station, where trains from several directions arrive and dwell for some time,

where passengers transfer between trains, where trains may turn before starting their

return trip, etc. Other examples of network nodes are crossings, junctions, bridges,

and shunting yards.

Tracks, then, connect the nodes and are used by trains to travel from one node

to the next. When multiple parallel tracks exist between a pair of nodes, each train

is assumed to be assigned a priori to one of the available tracks. Although this

approach might overlook some technically possible timetables, it is easily validated

by inspecting real-world situations. When two tracks are available, each track is

typically used for one direction of travel. In the case of four parallel tracks, two

tracks are used for each direction of travel. For one specific direction, one of the two

tracks is assigned to the faster intercity and interregional trains, and the other track

to the slower local trains and cargo trains. The reason for dedicating the track usage

to equal velocity trains is that it results in a higher train frequency, and thus in a

higher track utilization (see Section 2.4).

Since nodes are the locations where train movements are coordinated, train move-

ments are by definition not allowed to interfere on a track. This means that it is

not allowed for trains to meet or overtake one another on a track. In practice, meets

and overtakes only take place at stations, junction yards, or on side tracks. In the

latter case, the side track is a separate track, which is connected to the main track

by two junction nodes at both ends. A faster train can overtake a slower one when

the slower train makes way by temporarily using the side track. So, at the moment

of meeting or overtaking, the two trains are not actually using the same track. The

above described a priori assignment of trains to tracks also applies to side tracks. So,

it is decided beforehand which trains should move to a side track to be overtaken.

By viewing stations as nodes in the network, most of the in-station infrastructure

details are lost. But taking into account the complete in-station infrastructure layout

results in large and complicated models. So, stations are assumed to be black boxes,

and a timetable resulting from the model may be infeasible with respect to the

detailed in-station infrastructure layout. For example, a station may have too few

platforms to host the trains as specified by the timetable. Or, only conflicting routes

exist to and from the platforms through the in-station infrastructure. The latter

situation occurs when the timetable prescribes two trains to use crossing inbound
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routes at the same time. The problem of routing trains through stations is assumed

to be solved in a later phase of the timetable planning process. Sections 2.2 and 2.5,

and Zwaneveld et al. (1996), Zwaneveld (1997), and Kroon et al. (1997) describe

the in-station routing of the trains in more detail. We relax this black box station

assumption to a certain extent in Chapter 6. There, we present an extension that

allows for incorporating station capacity into the model, which results in a grey box

model of the stations.

3.1.2 Train assumptions

We consider trains in the form of so-called train lines. A train line is a direct train

connection between an origin and a destination station along a given route. Each

train line has a frequency, which specifies how many trains of that line are operated

each cycle time. For example, with a cycle time of one hour, a frequency of two means

that every half an hour a train of the line departs from each served station along the

line. Associated with each train line is a type, which determines at which stations

the trains of the line call. The most common current train types in the Netherlands

are intercity trains, interregional trains, local trains, and cargo trains. For each train,

the trip time between subsequent nodes is assumed to be fixed and known a priori.

In Chapter 6 we extend the model by incorporating trip time windows.

3.1.3 Timetable Requirements

A timetable should meet various requirements, such as safety regulations, service

levels to be achieved, and restrictions considering the operational feasibility of the

timetable. Each requirement belongs to one of the categories described below. These

categories have proven to cover most practical needs and are therefore the only re-

quirements that are taken into account.

Dwelling at stations. In practice, limits are specified for the time that a train dwells

at a station. On one hand, a minimum dwell time specifies the minimum time

needed for passengers to alight and board. On the other hand, one might also

want to limit the dwell time at a station because stations only have a limited

capacity, and because each dwell minute adds to the train’s total travel time.

Connecting trains. Two trains are said to be connected if there is a planned relation

between their arrival and departure times at a certain node. A connection

is desirable in two situations. The first situation occurs when a direct train

connection between two nodes does not exist. In that case, passengers should

still be offered a good travel scheme between these two nodes. This can be
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achieved by constructing a timetable in which a train for the destination node

leaves from a transfer node shortly after the train from the origin node has

arrived.

Another situation requiring the connection of two trains arises when two trains

need to be combined. This situation occurs when the two trains share a consid-

erable part of their routes. Combining the two trains into one for their common

route saves both human resources and infrastructure resources. Only one train

crew is required for the combined train, and infrastructure capacity is saved

because otherwise a headway time between the two trains is to be respected.

Such a combining of trains obviously requires both trains to be concurrently

present at the station. The combining of trains also has disadvantages. It

places an extra restriction on the timetable, and can be a source of delays since

the combination procedure involves connecting the trains, a break test, and

other checks, during which failures may occur.

Synchronizing trains. When trains from different train lines share part of their routes,

their departure times are often synchronized to offer a higher frequency service

on that common part. As an example, if two train lines have frequency equal

to one, then synchronizing their departures provides a service with frequency

two on the common part of their route. When a single train line has frequency

higher than one, synchronization can also be applied to spread the multiple

trains of that line evenly across the cycle time. Since this synchronization of

train lines, or of trains within a train line, leads to a train service with a higher

frequency, the involved constraints are also known as frequency constraints.

Turning around at termini. A rolling stock composition is the set of carriages, either

self-powered, or including a locomotive, which operate a certain train line. After

a rolling stock composition has arrived at its terminus, it generally turns around

after some time, and operates a different connection. Typically, the rolling stock

composition operates the return journey of the train line it operated before, but

one can also encounter other situations. Before leaving for the opposite trip,

the rolling stock is scheduled to spend some time at the terminus in order to

be cleaned, for shunting, as buffer time to absorb delays, etc.

Fixed arrival and departure times. For some trains, the freedom of selecting arrival

and departure times is limited. This especially applies to international trains.

The time at which an international train appears at the border of a country

is usually the result of negotiations with the neighboring railway companies,

rather than a variable to be decided upon in the timetable planning process.
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Once the train has entered the country, the timetable can usually be chosen as

desired for the further time that the train spends inside the country, as long as

the fixed trip times of the train are taken into account.

Safety regulations. A final, but clearly very important requirement is due to railway

safety regulations. These require any two trains using the same track to be

separated by a certain minimum headway time (see Section 2.1.2). For any pair

of trains using the same track, the minimum headway time must be respected

both at the origin node and at the destination node of the track. Moreover,

the safety regulations forbid the meeting and overtaking of trains on the same

track. The latter follows directly from the definition of nodes and tracks at the

start of this section.

3.2 Objectives in Constructing Timetables

Several objectives come to mind when constructing a timetable. These can basically

be divided into three groups:

• satisfying customers,

• creating a stable and robust railway system, and

• controlling costs.

These objectives may be conflicting. As an example, passengers would be immensely

satisfied if each of them was offered a direct train connection, without any interme-

diate stops, and at exactly the preferred time of travel. But such a system would

clearly result in colossal costs, if it were operationally feasible at all.

3.2.1 Travel Time

An important factor for customer satisfaction is the total journey time. However,

there is only limited freedom in providing passengers fast travel opportunities with

few transfers, since the train lines and their trip times are assumed to be given

and fixed. Still, through dwell times and connection times, the timetable has some

influence on the total journey time.

In fact, the objectives that aim at offering customers fast travel times correspond

to the dwell and connection requirements mentioned in the previous section. Rather

than just satisfying these requirements, the objective is to satisfy them as well as
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possible. So, rather than making sure that there is sufficient dwell time for passen-

gers to alight and board, and providing just some connections between trains, these

requirements should be incorporated into the timetable as well as possible.

3.2.2 Robustness

A second important factor for customer satisfaction is the robustness of a timetable.

In a timetable that just meets the safety requirements, trains may follow one another

at exactly the minimum headway time. A small delay of one train may then be easily

knocked on to other trains, and so propagated through the entire network. Therefore,

a second timetabling objective is to construct a robust timetable that contains some

buffer time above the minimum headway time to absorb small disturbances. While

planning a timetable, a certain buffer time is generally already added to the minimum

headway time. Still, when track capacity is available, one can argue that timetable

robustness is increased by ‘pulling apart’ the trains as far as possible, since a delayed

train is then less likely to interfere with the other trains on the track.

3.2.3 Costs

An obvious third objective is to minimize the costs associated with the timetable.

The major cost components of a railway system are formed by the infrastructure, the

rolling stock, and the train crews. Given the assumptions in the previous section,

there are only few choices left that influence these operating costs of a railway system.

Infrastructure and train lines are assumed to be fixed and given, and the rolling stock

scheduling and crew scheduling occur in a later planning phase. However, within this

limited freedom, one can still pursue the objective of constructing a timetable that

requires a minimum number of rolling stock compositions.

3.2.4 Infeasible Problem Instances

An initial set of requirements may be too tight, in which case it is impossible to

construct a timetable that meets all requirements. Then, a clear objective is to find

an acceptable timetable which minimally violates the initial requirements. Certain

requirements are not allowed to be violated in such a procedure, such as safety

requirements. Others could however be violated, such as commercial requirements.
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arrival departure

The Hague CS 07:21

The Hague HS 07:24 07:25

Rotterdam 07:43 07:45

Dordrecht 08:00 08:01

Breda 08:18 08:19

Tilburg 08:32 08:33

Eindhoven 08:58 09:01

Helmond 09:10 09:11

Venlo 09:32

Table 3.1: Detailed timetable for the 1900 intercity train of 07:21.

3.3 Periodic Constraints

This section describes how the cyclic behavior of the train arrivals and departures in

a cyclic timetable can be modeled. Since a timetable consists of arrival and departure

times for all trains at each node they pass, it is natural to use the following decision

variables to model these arrival and departure times:

at
n ∈ {0, . . . , T − 1} for the arrival time of train t at node n, and

dt
n ∈ {0, . . . , T − 1} for the departure time of train t from node n.

The parameter T is the cycle time of the timetable, in time units. For the Dutch case,

with a cycle time of one hour, T equals 60 minutes. Because the cyclic timetable is

exactly the same for each cycle period, it suffices to consider the decision variables

on the domain {0, . . . , T −1}. The decision variables at
n and dt

n are restricted to take

integer values because, in practice, timetables are calculated and published in integer

minutes.

The following example illustrates the use of the decision variables at
n and dt

n. The

example is based on Table 3.1, which contains a detailed timetable for the 1900 train

that departs from The Hague Central at 07:21. The table shows both the departure

and the arrival times of the train. Our example considers the modeling of dwell
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times. The 1900 intercity train dwells at Tilburg for one minute. This is modeled as

d1900
Tilburg − a1900

Tilburg = 1,

with in the current timetable







a1900
Tilburg = 32,

d1900
Tilburg = 33.

At Eindhoven, the train dwells for three minutes. The train arrives at Eindhoven

at :58, and departs at :01, so it ‘passes’ the origin of the clock while dwelling at the

station. This is modeled as follows:

d1900
Eindhoven − a1900

Eindhoven = −57 = 3− 60,

with in the current timetable







a1900
Eindhoven = 58,

d1900
Eindhoven = 01.

In general, we need to calculate modulo T to correctly express relations between the

decision variables at
n and dt

n. For the constraints above, this gives

d1900
Tilburg − a1900

Tilburg = 1 modulo 60,

d1900
Eindhoven − a1900

Eindhoven = 3 modulo 60.

However, a timetabling model based on modulo T calculations is hard to solve with

existing operations research techniques. The modulo T constraints are therefore

reformulated using integer variables. More precisely, the modulo T operation is

replaced by an integer decision variable, which is used to add or subtract an integer

multiple of the cycle time T whenever needed. For the two example constraints, let

these integer variables be p and p′. Replacing the modulo 60 by 60p and 60p′ gives

a1900
Tilburg − a1900

Tilburg + 60p = 1,

d1900
Eindhoven − a1900

Eindhoven + 60p′ = 3.

p, p′ ∈ Z.

The construction with the integer variables p and p′ exactly models the modulo T

operation.

The cyclic railway timetabling model used in this thesis is mainly based on this

type of so-called periodic constraints, in which the modulo T operation is dealt with

through integer variables. To generalize this idea, consider at
n, the arrival time of

some train t at node n, and dt′

m, the departure time of some other train t′ from node
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m. A general periodic constraint in the model relates these two variables at
n and dt′

m

through a time window [l, u], rather than just a fixed value, and has the form

at
n − dt′

m + Tp ∈ [l, u], p ∈ Z. (3.1)

As a convenient shortcut for the general periodic constraint (3.1), the notation [l, u]T

is used to indicate that the time window is actually a periodic time window with

cycle time T . So the constraint

at
n − ds

m ∈ [l, u]T . (3.2)

is a shortcut for (3.1).

The dwell times of a train represent the time spans of the dwelling processes, and

can therefore be seen as process times. One can also model cyclic railway timeta-

bles using decision variables that model these process times, rather than arrival and

departure times of trains. Chapter 5 presents such a model based on processing

times.

3.4 Modeling Timetable Requirements

Recall from Section 3.1.3 that the following timetable requirements are taken into

account:

• dwelling at stations,

• connecting trains,

• synchronizing trains,

• turning around at termini,

• fixed arrival and departure times, and

• safety regulations.

By presenting extensive examples, this section shows that the above requirements can

be modeled by means of periodic constraints (3.1), (3.2). The modeling of the syn-

chronization of trains and of the safety requirements is quite complicated. For these

two requirements, we therefore present some examples, as well as a mathematical

generalization of the examples.

Our examples are again based on the 1900 intercity train running from The Hague

to Venlo, and on the trains it interacts with on its journey from The Hague to Venlo.

These trains are:
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The Hague CS
The Hague HS

Dordrecht

Tilburg

Rotterdam

Eindhoven

Helmond
Venlo

Heerlen

Maastricht

Haarlem

Utrecht

Zwolle

Groningen

Leeuwarden

BoxtelBreda

Amsterdam

500
800

1900
2500
9300

The Hague/Rotterdam - Groningen/Leeuwarden
Haarlem - Maastricht
The Hague - Venlo
The Hague - Heerlen
Amsterdam - Paris

Paris

Figure 3.1: The routes of the 500, 800, 1900, 2500, and 9300 trains.

500 This so-called ‘North-East’ intercity train travels from Rotterdam and The

Hague, via Utrecht and Zwolle, to Groningen and Leeuwarden.

800 The intercity train from Haarlem to Maastricht.

2500 The intercity train from The Hague to Heerlen.

9300 The high-speed Thalys train from Amsterdam to Paris.

The routes of these trains are sketched in Figure 3.1. Further, the examples also

consider the opposite trains of the 1900 en 2500 trains, which are denoted by 1901

and 2501. For all examples, we set the timetable cycle time T equal to 60 minutes.
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3.4.1 Trip Time and Dwell Time Constraints

We start with a set of constraints that were not mentioned above as a requirement,

namely trip time constraints. Trip time constraints are closely related to dwell time

constraints, since together they model the behavior of a train on its journey from

origin to destination station. The trip times for the 1900 train can be derived from

Table 3.1. For planning purposes, the dwell time window for intercity trains is usually

set to [1, 5]60. The set of constraints in Figure 3.2 then models the complete journey

of the 1900 train.

a1900
The Hague HS − d1900

The Hague Central = [3]60,

d1900
The Hague HS − a1900

The Hague HS ∈ [1, 5]60,

a1900
Rotterdam − d1900

The Hague HS = [18]60,

d1900
Rotterdam − a1900

Rotterdam ∈ [1, 5]60,

a1900
Dordrecht − d1900

Rotterdam = [15]60,

d1900
Dordrecht − a1900

Dordrecht ∈ [1, 5]60,

a1900
Breda − d1900

Dordrecht = [17]60,

d1900
Breda − a1900

Breda ∈ [1, 5]60,

a1900
Tilburg − d1900

Breda = [13]60,

d1900
Tilburg − a1900

Tilburg ∈ [1, 5]60,

a1900
Eindhoven − d1900

Tilburg = [25]60,

d1900
Eindhoven − a1900

Eindhoven ∈ [1, 5]60,

a1900
Helmond − d1900

Eindhoven = [9]60,

d1900
Helmond − a1900

Helmond ∈ [1, 5]60,

a1900
Venlo − d1900

Helmond = [21]60.

Figure 3.2: Trip time and dwell time constraints for the 1900 train.

3.4.2 Turn Around Constraints

After the 1900 train has arrived in Venlo, its rolling stock composition stays there for

some time, and is then used to operate the opposite 1901 service. The 1900 train is

said to turn on the 1901 train in Venlo. After arriving in The Hague Central with the

1901, and having stayed there for some time, the rolling stock composition is next

used to operate the 2500 train to Heerlen. So, in The Hague Central, the 1901 train

turns on the 2500 train. After the arrival of the 2500 train in Heerlen, the rolling
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stock composition travels back to The Hague with the 2501 train, and is then used

for the 1900 train again.

Suppose that the turn around time window for Venlo and Heerlen is set to

[20, 50]60, and that the turn around time window for The Hague CS is set to [15, 40]60.

So, a minimum time of 20 minutes is required before the rolling stock can leave again.

The 50 minutes upper bound indicates that rolling stock compositions should not

stand still too long at a terminus. This turn around time window yields the four

turn around constraints in Figure 3.3, two for The Hague, one for Venlo, and one for

Heerlen.

d1901
Venlo − a1900

Venlo ∈ [20, 50]60,

d2500
The Hague CS − a1901

The Hague CS ∈ [15, 40]60,

d2501
Heerlen − a2500

Heerlen ∈ [20, 50]60,

d1900
The Hague CS − a2501

The Hague CS ∈ [15, 40]60.

Figure 3.3: Turn around constraints for the 1900, 2500, and 2501 trains at The Hague
CS, Venlo, and Heerlen.

3.4.3 Connection Constraints

We consider both transfer connections and combination connections. Let us first

consider passenger transfer connections. On its journey from The Hague to Venlo,

the 1900 train should connect to the 800 train in Eindhoven. A pair of connections

should be created between the 1900 train and the 800 train. The first connection

allows passengers from the 1900 train, from the direction of The Hague, to transfer

to the 800 train in the direction of Maastricht. The other connection enables the

passengers arriving with the 800 train from the direction of Haarlem to transfer to

the 1900 train in the direction of Venlo.

In practice, a connection time window of [2, 5]60 is used for connections between

intercity trains. Here the assumption is that, in the later station scheduling phase, the

trains are assigned to neighboring platforms. Passengers can then transfer between

the trains quite quickly, in two minutes time. The five minute upper bound is specified

to limit the extra travel time of the transferring passengers. Since, in principle,

the transferring passengers can transfer in two minutes, any connection time that

exceeds these two minutes adds to their minimum possible travel time. Note that

the infrastructure capacity must allow the two involved trains to be both present
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in the station in the [2, 5]60 time window. Figure 3.4 contains the constraints that

model the connections between the 1900 and 800 trains at Eindhoven.

d1900
Eindhoven − a800

Eindhoven ∈ [2, 5]60,

d800
Eindhoven − a1900

Eindhoven ∈ [2, 5]60.

Figure 3.4: Passenger connection constraints between the 800 and 1900 trains in
Eindhoven.

The 1900 train is not combined with any other train, so it does not provide an

example of a combination connection constraint. The clearest example of such a

connection in the Dutch railway system is the 500 train. The route of the 500 train

is shown in Figure 3.1, and is described as follows. Two trains depart for Utrecht,

one from Rotterdam, and one from The Hague. Upon arrival in Utrecht, the trains

are combined into one train, which travels further to Zwolle. Upon arrival in Zwolle,

this combined train is split again into two trains. One of these trains travels to

Groningen, the other to Leeuwarden. The 500 train can thus be seen as consisting

of the following three trains between:

500 The Hague and Groningen,

501 Rotterdam and Utrecht,

502 Zwolle and Leeuwarden.

The combination in Utrecht then requires a connection relation between the arrival

of the 501 train and the departure of the 500 train. Analogously, the splitting of the

train into two parts in Zwolle can be established by a connection relating the arrival

time of the 500 train to the departure time of the 502 train.

A common practical value for the connection time window for combining or split-

ting trains is [5, 10]60. At least five minutes are needed in order to connect the trains,

or to release them. A maximum of ten minutes is specified, to bound the time that

is added to the total time of the travelers who do not alight in Utrecht. The system

of constraints in Figure 3.5 models the connecting and splitting of the 500 train.

Finally, note that the turn around constraints from the previous section can also

be seen as a connection relation between the arriving and the departing train. Chap-

ter 6 presents an extension that allows for more flexibility in modeling connections.
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d500
Utrecht − a501

Utrecht ∈ [5, 10]60,

d502
Zwolle − a500

Zwolle ∈ [5, 10]60.

Figure 3.5: Combining and splitting connection constraints for the 500 train in
Utrecht and Zwolle.

3.4.4 Fixed Arrival and Departure Constraints

As an example of fixed departure and arrival times, consider the 9300 Thalys high-

speed train between Amsterdam and Paris. In the 2003 timetable, this train enters

the Netherlands at :25, and leaves the country on its return trip at :34. Entering the

Netherlands corresponds to the departure of the 9300 Thalys from the border-node

in the Dutch railway network, and leaving the Netherlands corresponds to arriving

at the border-node. Therefore, the first two constraints in Figure 3.6 model these

fixed arrival and departure times. If the border crossing times are the result of

agreements stating that the 9300 Thalys is to enter the Netherlands between :23

and :27, and leave between :32 and :36, then the last two constraints in Figure 3.6

can be used. Note that the constraints in Figure 3.6 are not periodic. So the vari-

d9300
border = 25,

a9300
border = 34,

d9300
border∈ [23, 27],

a9300
border∈ [32, 36].

Figure 3.6: Fixed arrival and departure constraints for the 9300 Thalys at the Dutch
border.

ables a9300
border and d9300

border should simply equal the values 25 and 34, respectively, or

lie between the values 23 and 27, respectively 32 and 36.

It is possible to write the constraints in Figure 3.6 in the general form (3.1), (3.2).

To that end, we need an auxiliary decision variable β ∈ {0, . . . , T − 1}. Using β, the

constraints in Figure 3.6 are rewritten to

d9300
border − β = [31]60, (3.3)

a9300
border − β = [32]60, (3.4)
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d9300
border − β ∈ [29, 33]60, (3.5)

a9300
border − β ∈ [30, 34]60. (3.6)

If the auxiliary variable β takes the value zero, then these constraints are exactly

the same as the constraints in Figure 3.6. We claim that one can always set one of

the variables in the model to some preferred value. Intuitively, this can be seen as

follows. All requirements are stated as periodic time window constraints involving

two variables. Therefore, if some timetable satisfies the constraints, then adding

a certain number of minutes to each arrival and departure time results in a new

timetable which also satisfies all constraints. The two timetables are basically the

same, except for the shift in minutes. If this shift is chosen such that the auxiliary

variable β takes the value zero, then all fixed arrival and departure time requirements

are satisfied. Section 4.3.3 proves this property of cyclic timetables mathematically.

3.4.5 Synchronization Constraints

The 1900 train from our examples shares the major part of its route, from The Hague

to Eindhoven, with the 2500 train, which runs from The Hague, via Eindhoven, to

Heerlen. Since both trains have frequency one, synchronizing them yields a service

with frequency two along the shared connection The Hague–Eindhoven. However, we

do not want to fix the timetable too much beforehand. Therefore the model requires

the departure times to be 30 minutes apart, with a bandwidth of two minutes. Note

that the 30 minutes that the trains should lie apart is obtained by dividing the cycle

time T of 60 minutes by the frequency two. The synchronization takes place at each

station the trains call at. Figure 3.7 shows the synchronization constraints between

the two trains. Because synchronizing trains aims at offering a higher frequency

service, the constraints in Figure 3.7 are called frequency constraints. Next, we gen-

eralize the frequency constraints, and allow for the synchronization of the departures

of more than two trains.

3.4.6 General Synchronization Constraints

Suppose that the frequency of k trains t1, . . . , tk is to be synchronized, so that the

departures of the trains are spread evenly across the cycle time T . In an ideal

situation, a train departs every T
k
minutes. To offer some flexibility in the departure

times, a bandwidth δ is defined, by which the departure time of a train may deviate

from its perfect departure time.

First, let us consider the frequency relation between the departures of train t1,
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d1900
The Hague CS − d2500

The Hague CS ∈ [28, 32]60,

d1900
The Hague HS − d2500

The Hague HS ∈ [28, 32]60,

d1900
Rotterdam − d2500

Rotterdam ∈ [28, 32]60,

d1900
Dordrecht − d2500

Dordrecht ∈ [28, 32]60,

d1900
Breda − d2500

Breda ∈ [28, 32]60,

d1900
Tilburg − d2500

Tilburg ∈ [28, 32]60.

Figure 3.7: Synchronization constraints for the 1900 and 2500 trains between The
Hague and Tilburg.

and the other trains t2, . . . , tk. This relation is defined by the following constraints:

dj − d1 ∈ [s1j , s1j ]T for all j = 2, . . . , k, (3.7)

where the synchronization time windows [s1j , s1j ]T are defined as

[s1j , s1j ]T =

[

j − 1

k
T − δ,

j − 1

k
T + δ

]

T

.

The constraints (3.7) require the departure of train tj to take place (j−1)T
k
minutes

after the departure of train t1, give or take δ minutes. This indeed results in one train

leaving every T
k
minutes after t1. As an example, for four trains t, and a bandwidth

of one minute, (3.7) yields the following synchronization constraints:

d2 − d1 ∈ [14, 16]60,

d3 − d1 ∈ [29, 31]60,

d4 − d1 ∈ [44, 46]60.

However, in a feasible solution to the constraints (3.7), the departures of two trains

may lie apart more than an integer multiple of T
k
± δ minutes. Consider two trains

tj and tj+1, and suppose that d1 = 0. Then, in a feasible solution to (3.7), we may

have dj = j−1
k

T − δ, dj+1 = j
k
T + δ. Thus, dj+1 − dj = T

k
+ 2δ. For the example

above, a feasible solution would be d1 = 0, d2 = 14, d3 = 31, d4 = 46, which gives

d3 − d2 = 17.

Therefore, the departure times of all other pairs of trains also need to be syn-

chronized. The set of constraints below synchronizes the departures of all trains
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t1, . . . , tk:

dj − di ∈ [sij , sij ]T for all i < j, i, j = 1, . . . , k, (3.8)

where the synchronization time windows [sij , sij ]T are defined as

[sij , sij ]T =

[

j − i

k
T − δ,

j − i

k
T + δ

]

T

. (3.9)

We define the constraints for i < j in order to prevent stating double constraints.

Because of the symmetry of the time windows [sij , sij ]T , we have that

sij + sij = T. (3.10)

This symmetry, together with equation (3.10), implies that we may also write

dj − di ∈ [sij , sij ]T for any i > j, i, j = 1, . . . , k, (3.11)

where sij = sji, and sij = sji. Finally, for the four trains in the example, con-

straints (3.8) are the following:

d2 − d1 ∈ [14, 16]60,

d3 − d1 ∈ [29, 31]60,

d4 − d1 ∈ [44, 46]60,

d3 − d2 ∈ [14, 16]60,

d4 − d2 ∈ [29, 31]60,

d4 − d3 ∈ [14, 16]60.

3.4.7 Safety Constraints

This section describes the constraints that ensure that the minimum headway time

between trains is respected, and that trains do not meet and overtake one another

on a track. First, consider two trains traveling in the same direction, at equal veloc-

ity. Meets and overtakes are no issue then, so we can concentrate on the headway

time. The 1900 train from The Hague to Venlo and the 800 train from Haarlem to

Maastricht form an example of this situation (see Section 3.4.3). From Boxtel until

Eindhoven, the 1900 and 800 trains use the same infrastructure. There are some

small nodes in between Boxtel and Eindhoven, but these are ignored in this exam-

ple. Suppose that both trains take 10 minutes to travel from Boxtel to Eindhoven.

Typically, a headway time of three minutes must be respected at any time between
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two consecutive trains. In particular, this holds for both the departure from a node,

and for the arrival at the next node. This means that if some train leaves a node,

the next train can not leave earlier than three minutes later. And if a train arrives

at a node, the next train can not arrive earlier than three minutes later. Focusing

on the departure from Boxtel, if the 1900 train leaves first, we have the constraint

d800
Boxtel − d1900

Boxtel ∈ [3, 59]60.

This constraint prevents the 800 train from leaving Boxtel 0, 1, or 2 minutes after

the 1900 train does. Similarly, when the 800 train leaves first, the constraint is

d1900
Boxtel − d800

Boxtel ∈ [3, 59]60.

Taking the negative of the latter constraint gives

d800
Boxtel − d1900

Boxtel ∈ [−59,−3]60.

Because the time window in this constraint is modulo 60, we are free to add 60 to

both the lower and upper bound, which results in

d800
Boxtel − d1900

Boxtel ∈ [1, 57]60.

Finally, intersecting the time windows of this constraint and the first constraint gives

[1, 57]60 ∩ [3, 59]60 = [3, 57]60, which leads to the following safety constraint:

d800
Boxtel − d1900

Boxtel ∈ [3, 57]60.

The latter constraint can also be interpreted as: whenever the 1900 train leaves

Boxtel, the 800 train should not leave Boxtel in the three minutes after or before the

departure of the 1900 train.

A similar constraint can be constructed for the arrival of both trains in Eindhoven,

and together these constraints in Figure 3.8 model the safety requirements between

the 800 and 1900 trains for the track Boxtel-Eindhoven. Since both trains take 10

d800
Boxtel − d1900

Boxtel ∈ [3, 57]60,

a800
Eindhoven − a1900

Eindhoven ∈ [3, 57]60.

Figure 3.8: Safety constraints between Boxtel and Eindhoven for the 800 and 1900
trains, for equal velocities.
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13=a
1900
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Figure 3.9: A feasible solution to the constraints in Figure 3.8.

minutes to travel from Boxtel to Eindhoven, we have the trip time relations

a800
Eindhoven − d800

Boxtel = [10]60,

a1900
Eindhoven − d1900

Boxtel = [10]60.

Therefore, the second of the constraints in Figure 3.8 is already implied by the first

one. This is also intuitively clear, since both trains leave Boxtel with a time difference

of at least three minutes, and travel at the same velocity. Therefore, they will arrive

in Eindhoven with the same time difference of at least three minutes.

Next, suppose that the 800 train is operated with a hypothetical new type of

rolling stock that allows for an extreme increase in travel time. Therefore, it takes

the 800 train only 4 minutes to travel from Boxtel to Eindhoven, whereas it still takes

the 1900 train 10 minutes. Then, the situation depicted by the bold and the dashed

lines in the time-space diagram in Figure 3.9 is a feasible solution to the constraints

in Figure 3.8. It is clear that this solution violates the assumption that trains only

overtake one another in nodes. Therefore, we need to add the difference in trip times

between the two trains to the safety time window for the departures from Boxtel.

That is, train 800 can leave Boxtel no earlier than 3+(10−4) = 9 minutes after train

1900 has left. Since the 1900 train is the slower train, the upper bound of the safety

time window remains the same. This gives the safety constraints in Figure 3.10.

Again, because of the fixed trip times, if the first constraint is satisfied, the second

one can not be violated, and is therefore superfluous.

Next, we generalize the above example safety constraints.
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d800
Boxtel − d1900

Boxtel ∈ [9, 57]60,

a800
Eindhoven − a1900

Eindhoven ∈ [3, 57]60.

Figure 3.10: Headway times between the 800 and 1900 trains when the 800 train is
faster.

3.4.8 General Safety Constraints

Consider a track a = (n,m), and two trains t and t′ that travel from n to m. Let

rt
a and rt′

a be the trip times of the trains t and t′ between n and m. Suppose that

train t′ is the faster train of the two, so rt
a > rt′

a . From the above, it follows that, in

order to prevent train t′ from overtaking train t, we need to enforce

dt′

n − dt
n /∈ (0, rt

a − rt′

a )T ,

Since, if train t′ were to leave node n within (rt
a− rt′

a ) minutes after the departure of

train t, then it would arrive at m before train t does. Since train t′ is faster than train

t, such a constraint is not needed for the reverse train order. The above constraint

can be strengthened, since we know that the minimum headway times upon leaving

n and entering m need to be respected.

Consider the time-space diagram shown in Figure 3.11. The infeasible dotted line

in the figure shows that there should be a time difference of at least X = rt
a− rt′

a +h

between the departures of trains t and t′ from n. This observation gives the following,

stronger constraint

dt′

n − dt
n /∈ (−h, rt

a − rt′

a + h)T . (3.12)

Using the cyclic nature of the timetable, this can be rewritten as

dt′

n − dt
n ∈ [rt

a − rt′

a + h, T − h]T . (3.13)

As was explained in Section 3.4.7, a safety constraint for entering node m is not

needed because of the fixed trip times of the trains.

Next, consider a single track a = (n,m), with a train t traveling from n to m,

and a train t′ traveling in the opposite direction. The trip times for the trains are rt
a

and rt′

a . In order to avoid the trains from meeting one another on the track between

n and m, we must ensure that

at′

n − dt
n /∈ (0, rt

a + rt′

a )T . (3.14)
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Figure 3.11: Prevent overtaking for fixed trip times.

If train t′ were to arrive in n within (rt
a + rt′

a ) minutes after train t has left, then

train t′ would meet train t somewhere between n and m. With a similar argument

as above, the latter constraint can be strengthened using the headway constraints.

After also rewriting this constraint, this leads to

at′

n − dt
n ∈ [rt

a + rt′

a + h, T − h]T . (3.15)

Again, because of the fixed trip times, a constraint for node m is not needed. So,

after train t has left node n, it takes quite some time before train t′ can enter node

n, namely the sum of the trip times of the two trains, plus the headway time h.

On the other hand, after the arrival of train t′ in node n, train t can leave from

node n already after the headway time h. An obvious necessary condition for the

existence of a feasible solution is rt
a + rt′

a + h < T − h. It follows that two trains

traveling in opposite directions on a single track consume quite a bit of the available

infrastructure capacity.
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3.5 The Cyclic Railway Timetabling Model

This section generalizes the example constraints from the previous section. As such,

we arrive at our mathematical model for cyclic railway timetabling. We first de-

fine the sets and parameters for the model. Then, we present the complete model.

Appendix A contains an overview of the used notation.

3.5.1 Sets

The sets below contain the basic information for our mathematical model.

G = (N ,A∪As) The railway network graph, consisting of nodes N , regular

tracks A, and single tracks As.

N The set of nodes in the railway network.

A The set of regular tracks a = (n,m) in the railway network,

with n,m ∈ N .

As The set of single tracks a = (n,m) in the railway network,

with n,m ∈ N .

T The set of trains.

A regular track is a track that is only used for one direction of travel. So, the reg-

ular tracks a ∈ A are directed. The single tracks a ∈ As are not directed, and for

these tracks we somewhat sloppily write (n,m) = (m,n). As was explained in Sec-

tion 3.1.1, we may have multiple parallel tracks between two nodes. In that case, we

need a third index in order to be able to distinguish between the parallel tracks. For

clarity, this third index is omitted from our set definition, and the alternative model

formulation in the next section does not need indices for tracks. The set T represents

all trains in the system. Since a train line with frequency f yields f trains in each

direction, T contains 2f trains for that line.

We use the indices n and m for the node set N , the indices a and (n,m) for the

track set A, and the index t for the train set T .

We further use the following derived sets to model the timetable requirements.

N t ⊆ N The set of nodes that train t visits.

At ⊆ A ∪As The set of tracks that train t travels along.

Ta For a track a, this set contains all pairs of trains (t, t′) that

travel along the track in the same direction, for which either

t′ is the faster train, or, in case of equal velocities, for which

t < t′.
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T s
a For a single track a = (n,m), this set contains all pairs of

trains (t, t′) that travel along the track in opposite directions,

with train t departing from n, and train t′ departing from

m.

Fd
n,F

a
n For a node n, these sets contain all trains t for which the

departure respectively arrival time is fixed.

Sn For a node n, this set contains all train pairs (t, t′), t < t′,

for which the departure times are to be synchronized at that

node.

Cn For a node n, this set contains all train pairs (t, t′), t < t′,

for which a connection or turn around constraint is required

from train t to train t′ at that node.

The reason for the somewhat awkward definition of the sets Ta and T s
a will be-

come clear below when we define the model. For the moment, it is important to

see that each train pair appears at most once in these sets. That is, a specific set

Ta or T s
a never contains both (t, t′) and (t′, t).

The set Cn requires some extra explanation. If a connection relation is required at

node n between the arrival of train t and the departure of train t′, then Cn contains

the element (t, t′). Similarly, if train t turns on train t′ in node n, then Cn contains

the element (t, t′). In the latter case, node n must be the destination node of train t

and the origin node of train t′. So, for an element (t, t′) ∈ Cn, t is the arriving train,

and t′ is the departing train.

3.5.2 Parameters

The model uses the following parameters, which are all assumed to be integer valued.

T The cycle time of the timetable.

h The general headway time upon departure and arrival for

any node.

rt
a The trip time of train t for track a.

[dt
n, d

t

n] The dwell time window for train t at node n.

[f t

n
, f

t

n] The fixed departure or arrival time window for train t at

node n. In case of a completely fixed departure or arrival,

we have f t

n
= f

t

n.
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[stt′

n , stt′

n ] The time window for the synchronization of trains t and t′

at node n.

[ctt′

n , ctt′

n ] The time window for the connection or turn around con-

straint between trains t and t′ at node n.

We use a general headway time h here. If desired, one can also specify a headway

time htt′

a that depends on the type of the involved trains t and t′, and on the track

a. For example, the headway time between two fast trains may be larger than the

headway time between two slow trains.

3.5.3 The Model

Using the above defined sets and parameters, we formally define the Cyclic Rail-

way Timetabling Problem (CRTP) below. Recall that the model uses the following

decision variables:

at
n ∈ {0, . . . , T − 1} The arrival time of train t at node n.

dt
n ∈ {0, . . . , T − 1} The departure time of train t from node n.

Let a be the vector containing all at
n variables, and let d be the vector containing all

dt
n variables. For now, the objective will be to minimize the general function F (a, d).

The CRTP is formulated as the following integer program.

CRTP:

Minimize F (a, d) (3.16a)

subject to

at
m − dt

n = [rt
a]T for all t ∈ T , a = (n,m) ∈ At (3.16b)

dt
n − at

n ∈ [dt
n, d

t

n]T for all t ∈ T , n ∈ N t (3.16c)

dt′

n − dt
n ∈ [stt′

n , stt′

n ]T for all n ∈ N , (t, t′) ∈ Sn (3.16d)

dt′

n − at
n ∈ [ctt′

n , ctt′

n ]T for all n ∈ N , (t, t′) ∈ Cn (3.16e)

dt′

n − dt
n ∈ [rt

a − rt′

a + h, T − h]T for all a = (n,m) ∈ A, (t, t′) ∈ Ta (3.16f)

at′

n − dt
n ∈ [rt

a + rt′

a + h, T − h]T for all a = (n,m) ∈ As, (t, t′) ∈ Ta (3.16g)

dt
n ∈ [f t

n
, f

t

n] for all n ∈ N , t ∈ Fd
n (3.16h)

at
n ∈ [f t

n
, f

t

n] for all n ∈ N , t ∈ Fa
n (3.16i)

at
n, d

t
n ∈ {0, . . ., T − 1} for all t ∈ T , n ∈ Nt (3.16j)
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Constraints (3.16b) and (3.16c) ensure the correct trip times and dwell times, respec-

tively. Next, constraints (3.16d) model the departure synchronization requirements.

The connection and turn around requirements are modeled by constraints (3.16e).

Constraints (3.16f) and (3.16g) guarantee that trains do not meet or overtake on

a track, and that the minimum headway time h is respected at all times. These

constraints are required for each pair of trains that use a track. Moreover, because

of the definition of the sets Ta and T s
a , it is always the lower bound of the time

windows in (3.16f) and (3.16g) which should include the trip times of the trains.

Constraints (3.16h) and (3.16i) represent the fixed departure and arrival times, re-

spectively. Note that these constraints are not periodic. The domain of the decision

variables dt
n and at

n is specified in (3.16j). Finally, recall from Section 3.3 that each of

the constraints (3.16b)–(3.16g) contains an integer variable p that models the modulo

T operation.

Remark 3.1. The next chapter shows that the structure of the integer program (3.16)

is such, that the integrality constraints (3.16j) can be relaxed, with the guar-

antee that an optimal solution still consists of integer arrival variables at
n and

departure variables dt
n. So, formulation (3.16) can be written as a mixed in-

teger linear program (MIP) with continuous variables at
n and dt

n, and integer

variables p modeling the modulo T operations in the constraints.

3.6 A Constraint Graph Formulation

Each of the constraints in formulation (3.16) defines a relation between two events,

either a relation (departure, departure), (arrival, arrival), (arrival, departure), or

(departure, arrival). Moreover, each constraint states that one event should take

place some time later than the other, and the required time difference between the

two events is either stated as a fixed value, in the case of trip times, or as a time

window. An instance of the CRTP can therefore be described by a so-called constraint

graph. Each departure variable dt
n and each arrival variable at

n induces a node in the

constraint graph, and each constraint induces an arc.

Before we describe the CRTP in terms of a constraint graph, it is convenient to

introduce the concept of an event. In the CRTP, an event is defined by a combination

of

• a train t,

• a node n in the railway network, and

• either an arrival a or a departure d.
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So an event i is defined by either a triple (t, n, a) or a triple (t, n, d), and corresponds

either to an arrival variable at
n, or to a departure variable dt

n. A set N of all events

that need to be scheduled can be deduced from the infrastructure and train line

information. Rather than using separate decision variables dt
n and at

n for departure

and arrival events, we introduce the following general event time variables:

vi ∈ {0, . . . , T − 1} The time instant at which event i ∈ N takes place.

Each constraint in the CRTP is defined on a pair (i, j) of events, and a constraint

is characterized by its time window. Instead of using specific parameters for each

of the different types of time windows, we use the following general time window

notation:

[lij , uij ]T The periodic time window for the constraint involving events

i and j.

pij ∈ Z The integer variable modeling the cyclic nature of the peri-

odic constraint involving events i and j.

The general time window [lij , uij ]T should be interpreted as: event j should take

place between lij and uij minutes after event i takes place. For trip time constraints,

we set both lij and uij equal to the trip time. Regarding the time windows, we as-

sume 0 ≤ lij ≤ T − 1, and 0 ≤ uij − lij ≤ T − 2. The next chapter discusses these

assumptions in detail.

Using these general time windows, each of the constraints (3.16b)–(3.16g) can be

written as

vj − vi ∈ [lij , uij ]T , (3.17)

or, including the integer variable pij , as

lij ≤ vj − vi + Tpij ≤ uij , with pij ∈ Z. (3.18)

The fixed departure and arrival time constraints (3.16h), (3.16i) are modeled by

f
i
≤ vi ≤ f i, (3.19)

where the new parameters f
i
and f i correspond to the fixed departure and arrival

time window bounds f t

n
and f

t

n.

The constraint graph G is now defined as follows. The node set of the graph is

equal to the event set N . The arc set A of the constraint graph corresponds to the

constraints, so for each event pair (i, j) for which a constraint is defined, the graph
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contains an arc. We associate the general time window [lij , uij ] with an arc (i, j),

where the values for lij and uij are obtained from the time windows in formula-

tion (3.16). Let l and u be the vectors containing all lij and uij parameters. Then, a

CRTP instance is completely described by the constraint graph G = (N,A, l, u) and

the cycle time T . Let v be the vector consisting of all variables vi, i ∈ N , and let

F (v) be the general objective function in terms of the variables vi. Having defined

the constraint graph G, the CRTP can be reformulated as

CRTP: Minimize F (v) (3.20a)

subject to lij ≤ vj − vi + Tpij ≤ uij for all (i, j) ∈ A (3.20b)

f
i
≤ vi ≤ f i for all i ∈ N (3.20c)

vi ∈ {0, . . . , T − 1} for all i ∈ N (3.20d)

pij ∈ Z for all (i, j) ∈ A (3.20e)

Here, we explicitly wrote down the integer variables that model the modulo T op-

erations in the constraints (3.20b). In the translation from (3.16) to (3.20), it may

occur that multiple constraints are defined between a single pair of events i and j,

which would cause parallel arcs in the constraint graph G. So, formally we need to

distinguish between these parallel arcs, for example by a third index k on the time

window constraints and arcs in (3.20b). For clarity reasons we omit this third index.

In our opinion, formulation (3.20) is clearer and more compact than formula-

tion (3.16), which is cluttered by the various types of time window constraints.

Therefore, we use the constraint graph formulation for the CRTP throughout this

thesis, and only return to the original formulation (3.16) when discussing specific

types of constraints.

3.7 Objective Functions

As was set out in Section 3.2, we consider the following objectives:

• minimizing passenger travel time,

• maximizing timetable robustness,

• minimizing the required number of rolling stock units, and

• minimizing the violation of the initial constraints in case of an infeasible in-

stance.
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For each of the four objectives, we define a function that expresses the objective in

terms of the decision variables:

Ft for passenger travel time,

Fr for timetable robustness,

Fs for the number of rolling stock units used in the timetable,

Fv for the amount of violation of the initial constraints.

Each of these functions can be substituted for the general objective function F (v).

The robustness function Fr is being minimized too, even though the objective is to

maximize the timetable robustness. One can also assign weights to the four functions

above, and use a weighted multi-objective function.

The following subsections describe the three functions Ft, Fr, and Fv in more

detail. For the rolling stock function Fs, we require some ideas that are intro-

duced in Chapter 5. Therefore, the rolling stock function is not defined until Chap-

ter 6. Finally, we describe how a quadratic variant for each of the three functions

Ft, Fr, and Fv can be incorporated into the CRTP.

As will become clear below, the objective functions depend on process times,

rather than on event times. However, process times are not discussed until Chapter 5.

For the moment, it suffices to define the process time decision variables xij , (i, j) ∈ A,

as

xij = vj − vi + Tpij . (3.21)

That is, the process time xij represents the value in the time window [lij , uij ] that

corresponds to the partial solution vj , vi, pij . As an example, for a dwell time con-

straint, the process time represents the number of minutes that a train dwells at a

station. In principle, any of the functions below can thus be written in terms of

vj , vi, and pij . But we find it clearer to use the process times xij for describing the

objective functions.

3.7.1 Minimizing Passenger Travel Time

Given the assumption that train trip times are fixed, the only two decision variables

in the model that influence the total journey time for a passenger are connection times

and dwell times. For a connection between trains t and t′ at node n, each minute

of connection time above the minimum connection time ctt′

n adds to the minimum

possible travel time of the transferring passengers. Similarly, each minute of dwell

time above the minimum dwell time dt
n adds to the minimum possible travel time of
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the passengers that remain seated in train t at station n. So, by minimizing these

excess connection times and excess dwell times, we minimize the passenger travel

time.

Let Ac be the set of arcs corresponding to the connection constraints in (3.16e),

and let Ad be the set of arcs corresponding to the dwell time window constraints

(3.16c). The excess connection and dwell times are given by (xa− la) for a ∈ Ac∪Ad.

Further, define:

wa The objective function weight for the excess connection time

or the excess dwell time on arc a ∈ Ac ∪Ad.

The weight wa specifies the importance of certain connection times and dwell times.

Factors that influence the weight include the number of passengers involved in a

connection, the number of passengers that remain in the dwelling train, or the types

of the involved trains. The following expression represents the weighted excess con-

nection and dwell time in a timetable:

∑

a∈Ac∪Ad

wa(xa − la). (3.22)

All terms (−wala) together yield a constant. Since our goal is to minimize the above

expression, the passenger travel time objective function can therefore be written as

Ft =
∑

a∈Ac∪Ad

waxa. (3.23)

Note that Ft does not measure the total travel time in a timetable. Rather, it reflects

the factors that influence the travel time in a weighted manner.

In Chapter 6 we present a variable trip time extension of the CRTP. There,

it becomes clear that the difficult part of introducing variable trip times into the

model lies in the safety constraints (3.16f) and (3.16g), since these include the trip

time in their time windows. If we only consider the trip time constraints (3.16b),

then variable trip times can be modeled rather straightforwardly. Define a trip time

window [rt
a, r

t
a] by

rt
a The fastest trip time for train t along track a.

rt
a The slowest trip time for train t along track a.

Then, variable trip times are incorporated in the CRTP model by replacing the
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constraints (3.16b) by

at
m − dt

n ∈ [rt
a, r

t
a]T for all t ∈ T , a = (n,m) ∈ At.

So, when variable trip times also influence the total travel time, it is quite easy

to incorporate them into Ft. For passengers to travel as fast as possible, trains

should run at the highest possible velocity, that is, at the smallest possible trip times.

Therefore, in order to incorporate variable trip times in the travel time objective, we

define a set Avar containing the variable trip arcs, specify a weight for the excess trip

times, and include the set Avar in the summation in (3.23).

3.7.2 Maximizing Timetable Robustness

We argued in Section 3.2 that the timetable robustness can be improved by pulling

apart trains that share a track. If there is a lot of time between consecutive trains,

then this time can be used as a buffer in case of delays. A trade-off has to be

made, however, between increasing the inter-train time on one hand, and meeting the

timetable service requirements on the other hand. For example, because of defined

train connections, certain trains have to be at a station at somewhat the same time.

So, if the involved trains share the track for entering or leaving the station, then the

connection requirement implies that these trains can not be pulled apart too far.

Let Ar be the set of arcs corresponding to the safety constraints (3.16f) and

(3.16g). Then, the departure times of the trains are pulled apart when the process

time xa for a ∈ Ar is close to the middle of the time window [la, ua]. So, merely

minimizing or maximizing the process times for the set Ar does not suit our goal.

Therefore, define the parameter µa as

µa = b 12 (ua − la)c for all a ∈ Ar.

That is, µa denotes the middle of the time window [la, ua]. For technical reasons, µa

is rounded down to ensure that it is integer valued. Further, introduce an auxiliary

variable δa for all a ∈ Ar. The auxiliary variable δa is constrained as follows:

δa ≥ µa − xa,

δa ≥ xa − µa.

So δa ≥ |xa−µa|. Thus, minimizing δa means pushing xa towards µa, and thus away

from the time window bounds la and ua.

Finally, as before, we define a weight wa for all a ∈ Ar. For a pair of trains
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corresponding to a safety arc a, the weight indicates how likely the trains are to

interfere with one another during the execution of the timetable. The more likely

the trains are to interfere, the higher the value of wa will be.

Using the above, the robustness objective function is defined as

Fr =
∑

a∈Ar

waδa. (3.24)

Recall that the function Fr is minimized. This ensures that the auxiliary variables

δa push the process times xa towards µa. In other words, minimizing Fr means

maximizing the timetable robustness.

3.7.3 Minimizing Initial Constraint Violation

When the specifications for a CRTP instance are too tightly defined, a timetable

respecting all requirements may not exist. In such a case, we propose to choose a

relaxation subset of the arcs. The time windows of the arcs in the relaxation subset

are relaxed by decreasing the lower bounds, and increasing the upper bounds. A

solution to the thus relaxed problem instance will violate the initial constraints. Our

goal in this case is to find a solution to the relaxed instance that minimally violates

the initial constraints.

Let the set Av ⊆ A be the relaxation subset. In general, Av is not allowed

to contain any arcs corresponding to safety constraints, since that may result in a

timetable that does not comply with safety regulations. For each a ∈ Av, define the

following adjusted time window bounds:

l′a The relaxed time window lower bound.

u′a The relaxed time window upper bound.

Clearly, we require 0 ≤ l′a ≤ la, and ua ≤ u′a. Moreover, we also require u′a − l′a <

T − 2, as before for the original time window [lij , uij ].

Further, we define the following auxiliary decision variable for each a ∈ Av:

σa The used space of the relaxed time window [l′a, u
′
a].

We use these variables to penalize the use of the extra space in the relaxed time
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windows [l′a, u
′
a]. To that end, the variables σa are constrained as follows:

σa ≥ la − xa,

σa ≥ xa − ua,

σa ≥ 0.

As in the case of maximizing timetable robustness, minimizing σa means driving xa

away from the relaxed time window bounds. If la ≤ xa ≤ ua, then σa takes the

value zero. Thus, σa only takes a positive value when the extra space in the relaxed

time window is used. With the relaxed time windows [l′a, u
′
a], we minimize the initial

constraint violation by minimizing the function

Fv =
∑

a∈Av

σa. (3.25)

Variants of the function Fv are of course possible. One can think of not relaxing

the time window lower bounds that stem from planning norms, such as the minimum

dwell time or the minimum connection time. As before, one may associate weights

wa with the arcs a ∈ Av. These weights reflect that it is less problematic to violate

small weight constraints than it is to violate large weight constraints. As an example,

safety constraints can typically not be violated, unless it is absolutely necessary for

obtaining a solution, thereby indicating a serious infrastructure capacity problem. In

the latter case the solution only indicates the infrastructure capacity problem, and

does not provide a timetable. So safety arcs have a large weight, whereas connec-

tion arcs or dwell arcs typically have a smaller weight. This leads to the weighted

constraint violation objective function Fv =
∑

a∈Av waσa.

3.7.4 Quadratic Objective Functions

The objective functions Ft, Fr, and Fv are linear in the process times xa. These

linear functions can be used for situations in which each extra minute is equally

important. Consider, however, the situation in which a passenger perceives each

additional minute of extra travel time as worse than the previous one. A quadratic

objective function is useful for expressing this perception. In the case of maximizing

robustness, a quadratic objective function can be used to model that the first minute

that trains are pulled apart is more valuable than the second minute, etc. In the same

vein, for minimizing the initial constraint violation, a quadratic objective function

can indicate that the first used minute of the relaxed time window weighs less than

the second, etc.
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Figure 3.12: The lines ya(1), ya(2), and ya(3) for linearizing the function g(xa).

Consider the quadratic objective function

Fq =
∑

a∈Aq

(xa − la)
2.

For some subset Aq ⊆ A, the function Fq measures, quadratically, how far the vari-

ables xa ∈ Aq deviate from their time window lower bounds la. This section describes

how Fq can be linearized in such a way, that the linearization can be incorporated in

the CRTP model.

To that end, consider a single arc a ∈ Aq, and the function g(xa) = (xa − la)
2.

For all integer values xa ∈ [la, ua], the function g(xa) passes through the points

(xa, g(xa)) defined by

(la + λ, λ2) λ = 0, . . . , ua − la.

For λ = 0, . . . , ua − la − 1, the line that passes through the consecutive points (la +

λ, λ2) and (la + λ+ 1, (λ+ 1)2) is described by

ya(λ) = α(λ)xa + β(λ) λ = 0, . . . , ua − la − 1,

where α(λ) and β(λ) are defined by

α(λ) = 2λ+ 1,

β(λ) = −λ(λ+ 1)− (2λ+ 1)la.

Figure 3.12 illustrates the lines ya(1), ya(2), and ya(3).

In order to linearize the quadratic function g(xa), we introduce an auxiliary vari-
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able fa ≥ 0. This variable is bounded from below as follows

fa ≥ ya(λ) for all λ = 0, . . . , ua − la − 1. (3.26)

The basic idea is to minimize the auxiliary variable fa. When doing so, fa takes

a value that lies on one of the lines ya(λ). Moreover, if the process time variable

xa is integer, then the minimum value for fa lies at the intersection of two lines

ya(λ) and ya(λ+1). Therefore, when xa is integer, fa takes exactly the value g(xa).

For the general quadratic objective function Fq =
∑

a∈Aq
g(xa), we apply the

above procedure to each arc a ∈ Aq, and minimize the sum of all auxiliary variables

fa. This gives the following:

Minimize
∑

a∈Aq

fa (3.27a)

subject to fa ≥ ya(λ) for all a ∈ Aq, λ = 0, . . . , ua − la − 1 (3.27b)

fa ≥ 0 for all a ∈ Aq (3.27c)

By using the function
∑

a∈Aq
fa and the constraints (3.27b), a quadratic objective

function can be incorporated in the CRTP. So, this procedure can be applied to each

of the three objective functions Ft, Fr, and Fv. We call the corresponding linearized

quadratic objective functions Ft,q, Fr,q, and Fv,q, respectively.

Remark 3.2. The quadratic functions g(xa) are approximated such that the ap-

proximation is exact for every integer value in the time window [la, ua]. For

wide time windows, this results in many linear inequalities that bound the

variables fa from below. In such a case, a compromise is to approximate the

functions g(xa) such that the approximation is exact only for λ = 0, . . . , λmax,

and to approximate to remainder of g(xa) by the last linear inequality fa ≥

ya(λmax).

3.8 The Structure of CRTP Constraint Graphs

A CRTP constraint graph G = (N,A, l, u) has a very specific structure. This section

describes that structure. First, we focus on trip time arcs, dwell time arcs, and

turn around arcs, which describe the behavior of trains during their trips. Then,

we describe safety arcs and frequency arcs, which ensure the spacing of trains on

stations and tracks. Finally, the synchronization of trains through connection arcs is

described.
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Figure 3.13: Train path Pt, merged train path Pt, and train cycle Ctt′ .

3.8.1 Train Paths and Train Cycles

Consider a train t on the journey from its origin station to its destination station.

Figure 3.2 showed the involved constraints for the journey of the 1900 train from The

Hague Central to Venlo. From this figure, it is clear that the total journey of a train t

defines a path Pt in G, starting and ending with a trip arc, and in between consisting

alternatingly of dwell arcs and trip arcs, see Figure 3.13. The path Pt is called the

train path of train t. Since all trip arcs represent equality constraints, a trip arc (i, j)

and its successor dwell arc (j, k) can be merged into one joint trip-dwell arc (i, k).

Such a merging procedure deletes all arrival nodes, and yields a merged train path,

consisting of merged trip-dwell arcs, and of nodes representing train departures only,

see Figure 3.13. For a more detailed description of the substitution of trip arcs, we

refer to Section 7.2.

After train t arrives at its destination, it is common practice for its rolling stock

composition to be assigned to the reverse journey, say that of train t′. That means

that the train paths Pt and Pt′ , together with the turn around arcs for both termini,
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form a cycle Ctt′ , see Figure 3.13. Such a cycle Ctt′ is called a train cycle.

3.8.2 Safety Cliques

Consider the merged train paths Pt for four trains t1, . . . , t4. The four trains follow

the routes depicted in the upper part of Figure 3.14, and their merged train paths

have been drawn, again as solid arcs, in the lower part of Figure 3.14. Suppose that

the trains use the same track for the joint part of their routes. That means that

safety arcs are defined on each pair of departure nodes on the joint route. These

safety arcs are shown in Figure 3.14 as dashed arcs.

In general, for a track a ∈ A∪As, and a set of trains t1, . . . , tk ∈ T
a using track a,

a safety clique Ka is the sub-graph formed by the nodes representing the departures

of the trains, and the safety arcs between them. The term safety clique stems from

the fact that the structure forms a clique on the k departure nodes. Figure 3.14 shows

the constraint graph for the departures from four subsequent tracks, which means

that the constraint graph contains four safety cliques. The left-most and right-most

safety cliques consist of three nodes and three arcs, the two safety cliques in between

consist of four nodes and six arcs.

Suppose that two trains use the same track, which defines a safety constraint be-

tween them, and that the same two trains are also synchronized through a frequency

constraint. In this case, one can view the frequency constraint as a tight safety con-

straint. In fact, a frequency constraint usually has a narrower time window than the

corresponding safety constraint, and therefore the former constraint dominates the

latter. Such frequency arcs are also considered to be part of a safety clique.

3.8.3 Station Graphs

This section describes the station graph, the part of the constraint graph that corre-

sponds to a station n. A station graph consists of connection arcs, dwell arcs, safety

arcs, and frequency arcs. In describing station graphs, we consider original dwell

arcs, instead of merged trip-dwell arcs.

Connection arcs and dwell arcs are directed from an arrival node to a departure

node (see Section 3.4.3). This means that the connection and dwell arcs for a station

n induce a bipartite dwell-connection graph (N a
n , N

d
n, An). The node sets Na

n and Nd
n

are formed by the arrival and departure nodes, respectively. In Figure 3.15, the

arrival node set Na
n and the departure node set Nd

n have been drawn on the left

and right side, respectively. The arc set An of a bipartite connection graph contains

dwell and connection arcs, which are all directed from N a
n to Nd

n. Consider four
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Figure 3.14: Trajectories for trains t1, . . . , t4, and the corresponding train paths
P1, . . . , P4, and safety cliques K12, . . . ,K45.
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Figure 3.15: Station graph GS
n with arrival and departure node sets Na

n and Nd
n.

trains t1, . . . , t4 dwelling at station n, and suppose that the following connections

should be realized at n:

• t2 → t3,

• t3 → t2,

• t3 → t1,

• t4 → t3.

These connections give the bold connection arcs in Figure 3.15. Further, the solid

arcs going from arrival to departure nodes represent the four dwell arcs.

Finally, suppose that trains t1 and t2 arrive at and depart from station n using

the same track, and that trains t3 and t4 enter and leave station n using a second

track. That gives the dashed safety arcs in Figure 3.15.

For a station n, the sub-graph formed by (Na
n , N

d
n, An) and all adjacent safety

arcs is called the station graph GS
n , see Figure 3.15. A station graph may also contain

turn around arcs, namely when the station is a terminus for one of the trains. A

final remark regards small stations where no connections have been defined. For such

small stations, we do not define station graphs. The same holds for nodes that do

not represent stations, but crossings, junctions, etc. (see Section 3.1.1).
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3.8.4 The CRTP Graph Structure

Train paths and train cycles, safety cliques, and station graphs are the three building

blocks of a CRTP graph. Consider a railway network G = (N ,A), and a correspond-

ing instance of the CRTP described by G = (N,A, l, u). One can think of G as being

placed on top of G. Each track a ∈ A gives rise to a safety clique Ka, and each sta-

tion n ∈ N gives a station graph GS
n . Connecting all train paths, safety cliques, and

station graphs results exactly in the CRTP graph G. Note that the train paths and

cycles, safety cliques, and station graphs have a certain overlap with one another.

As an example, consider Figure 3.16. The upper part sketches a small railway

network with 7 stations and 3 trains. The stations are represented by the white

blocks labeled A through G. The tracks between the stations are represented by the

gray bars. The trains calling at a station are written above the blocks. The three

trains have the following routes:

Train 1: A→ C → D → E.

Train 2: A→ C → D → F .

Train 3: B → C → D → G.

The lower part of Figure 3.16 shows the corresponding constraint graph G. For each

station, a rectangle is drawn around the nodes corresponding to that station. The

solid arcs in the constraint graph represent the train paths Pt. Note that these are

regular train paths, not merged train paths.

All safety arcs are dashed. As explained in Section 3.4, it suffices to state the

safety constraints for the departures of trains only. Trains 1 and 2 leave station A

using the same track, so we have a safety arc between the departure nodes of trains

1 and 2. Trains 1, 2, and 3 use the same track to travel from station C to station D.

Therefore, we have safety arcs between the three departure nodes at station C. Upon

leaving station D, all trains use a different track, so there are no safety arcs defined

for the departure from station D.

The connection arcs have been drawn in bold. Since the three trains head for

three different destinations after leaving station D, connections are defined between

all trains. So, passengers can travel from any of the stations A, B, C, and D, to any

of the stations E, F, and G with a good connection. Figure C.1 in Appendix C shows

the constraint graph for the Dutch intercity train network for 1997/1998.
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Figure 3.16: A small railway network with three trains, and the corresponding con-
straint graph.



Chapter 4

The Periodic Event Scheduling
Problem

The constraint graph formulation for the CRTP described in the previous chapter

uses constraints of the type

vj − vi + Tpij ∈ [lij , uij ]. (4.1)

This chapter describes the so-called Periodic Event Scheduling Problem, abbreviated

to PESP, that was formulated by Serafini and Ukovich (1989a). The PESP provides

a general framework for constraints of type (4.1).

We first define the PESP. Next, Section 4.2 discusses some theoretical results

that follow from its constraint graph representation. Section 4.3 derives some useful

properties of the PESP. Cyclic sequences are the topic of Section 4.4, and Section 4.5

describes an existing complexity result that proves the NP-completeness of the PESP.

We conclude the chapter with a literature review on solution methods for the PESP.

4.1 Definition of the PESP

The PESP considers the scheduling of periodically recurring events under periodic

time window constraints. For railway timetabling, one should think of an event

as a combination (train, node, arrival) or (train, node, departure), as defined in

Section 3.6. The PESP is formally defined as:

Definition 4.1 (PESP). Given a set N of events, a set A ⊆ N × N , a cycle time

T , and time windows [lij , uij ] for all (i, j) ∈ A, the Periodic Event Scheduling

71
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Problem is to find a periodic schedule vi ∈ [0, T ), i ∈ N , satisfying

(vj − vi) modulo T ∈ [lij , uij ] for all (i, j) ∈ A,

or to conclude that no such schedule exists.

So the PESP considers a feasibility problem. Because of the periodicity of the sched-

ule, an event i that is scheduled to take place at time instant vi ∈ [0, T ), in fact also

takes place at all time instants vi + zT, z ∈ Z.

For the time windows [lij , uij ], we assume 0 ≤ lij < T and 0 ≤ uij − lij <

T . These assumptions are without loss of generality, the first one because of the

periodic nature of the PESP constraints, and the second one because a time window

which is wider than T imposes no periodic restriction. The PESP allows for multiple

constraints for a single pair of events. That is, for an event pair (i, j) there may be

M constraints, giving

vj − vi+ ∈ [lkij , u
k
ij ]T for all k = 1, . . . ,M.

However, for clarity reasons we omit the third index k while discussing the PESP.

Let v be the vector consisting of all variables vi, and let p be a vector containing

an integer variable pij for each (i, j) ∈ A. A mathematical programming formulation

for the PESP is then given by

PESP: Find a solution (v, p)

satisfying lij ≤ vj − vi + Tpij ≤ uij for all (i, j) ∈ A (4.2a)

0 ≤ vi < T for all i ∈ N (4.2b)

pij ∈ Z for all (i, j) ∈ A (4.2c)

The CRTP formulation (3.20) is quite similar to the above formulation of the PESP.

The PESP formulation also uses periodic time windows, and an integer variable to

model that periodicity. The only differences are the bounds on the CRTP event time

variables (3.20c), and the domains of the event time variables (3.20d). Section 3.4.4

showed that the constraints (3.20c) can also be written as periodic constraints of

the form (4.2a). Moreover, the next section shows that the structure of the PESP

is such, that a feasible PESP instance has an all-integer solution (v, p) whenever all

parameters lij and uij are integer. Therefore, the PESP formulation and the CRTP

formulation are in fact equivalent.
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4.2 On the Constraint Graph Representation for PESP

As for the CRTP, we can represent a PESP instance by a constraint graph G.

Throughout this thesis we assume the constraint graph G to be connected. If a

constraint graph is not connected, the PESP can be solved for each connected com-

ponent of G separately, since no constraints are defined between decision variables

belonging to different components.

The constraint graph G provides a convenient tool for graphically representing

PESP instances. When discussing sets of periodic constraints, we usually depict

them in the constraint graph form to graphically clarify the relations between the

constraints. This is however not the only reason for using constraint graphs when

studying the PESP. Trees and cycles in G play an important part in the analysis of

the PESP, as will be shown later in the thesis.

One important insight into the PESP is obtained by defining, for a given vector p,

a slightly different graph Gp = (N,Ap) with two arcs for every constraint (i, j) ∈ A.

One arc is directed from i to j, the other is directed from j to i. We define lengths

for the arcs in Gp that depend on the value of the vector p:

dij(pij) = uij − Tpij The variable length of arc (i, j) ∈ Ap, corresponding to

arc (i, j) ∈ A.

dji(pij) = −lij+Tpij The variable length of arc (j, i) ∈ Ap, corresponding to

arc (i, j) ∈ A.

For convenience, define pji = pij for all arcs (i, j) ∈ A, so we can always write dij(pij)

for any arc (i, j) ∈ Ap.

Now, consider the problem of finding a shortest path in Gp for the arc lengths

dij(pij) from some source node s to all other nodes in N . The following theorem is

well known (see Ahuja et al., 1993, Chapter 5).

Theorem 4.2 (Shortest Path Optimality Conditions). For every node i ∈ N , let πi

denote the length of some directed path from s to i. Then the numbers πi

represent shortest path distances for the arc lengths dij(pij) if and only if they

satisfy the following shortest path optimality conditions:

πj ≤ πi + dij(pij) for all (i, j) ∈ Ap. (4.3)

Let us index the shortest path optimality conditions (4.3) on the original constraint
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set A instead of on Ap:

πj ≤ πi + dij(pij) for all (i, j) ∈ A,

πi ≤ πj + dji(pji) for all (i, j) ∈ A.

Then, substitute dij(pij), and use pij = pji to obtain

πj ≤ πi + uij − Tpij for all (i, j) ∈ A,

πi ≤ πj − lij + Tpij for all (i, j) ∈ A.

These two conditions can be taken together and written as

lij ≤ πj − πi + Tpij ≤ uij for all (i, j) ∈ A.

So, a PESP instance G = (N,A, l, u) with cycle time T is equivalent to an instance

of the shortest path problem in Gp = (N,Ap) with variable arc lengths dij(pij).

Feasible distance labels can be assigned to the nodes in a graph if and only if

there are no negative directed cycles, that is, directed cycles for which the sum of the

arc lengths is negative (again, see Ahuja et al., 1993, Chapter 5). The arc lengths

in Gp depend on the integer variables pij . Therefore, feasibility of a PESP instance

corresponds to the existence of a vector p such that there are no negative directed

cycles in Gp with respect to the arc lengths dij(pij).

This observation on negative cycles in the graph Gp with respect to the arc lengths

dij(pij) leads to the following important theorem for the PESP by Odijk (1996). We

present a proof different from Odijk (1996), which is based on and further clarifies

the above presented relation between the PESP and shortest path problems. The

theorem and proof use the following notation for cycles in the constraint graph. A

cycle C need not be directed, and therefore consists of forward and backward arcs.

These are denoted by the sets C+ for forward arcs, and C− for backward arcs. For a

more detailed description of this notation, and an example, we refer to appendix A.6.

Theorem 4.3 (Odijk, 1996). A PESP instance defined by G = (N,A, l, u) and T is

feasible if and only if there exists an integer vector p such that, for each cycle

C ∈ G,

aC ≤
∑

(i,j)∈C+

pij −
∑

(i,j)∈C−

pij ≤ bC ,
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where aC and bC are defined by

aC =









1

T





∑

(i,j)∈C+

lij −
∑

(i,j)∈C−

uij













bC =









1

T





∑

(i,j)∈C+

uij −
∑

(i,j)∈C−

lij













Proof . Consider the above described graph Gp = (N,Ap) with arc lengths dij(pij).

Let πi denote the shortest-path distance label for node i. As was mentioned, feasible

values for the variables πi exist if and only if there are no negative cycles in Gp with

respect to the arc lengths dij(pij). Thus, the PESP instance is feasible if and only if

∑

(i,j)∈C

dij(pij) ≥ 0 for all cycles C ∈ Gp. (4.4)

First, for a directed cycle in Gp consisting of an arc (i, j) and its counter arc (j, i),

we have by definition

dij(pij) + dji(pji) = uij − Tpij − lij + Tpij = uij − lij ≥ 0.

So these cycles satisfy (4.4).

Next, we rewrite the necessary and sufficient condition (4.4) in terms of cycles in

G, and arc values lij and uij . Each arc in G induces two arcs in Gp, and therefore

each cycle in G induces two directed cycles in Gp. Indexing (4.4) on cycles C ∈ G

gives














∑

(i,j)∈C+

dij(pij) +
∑

(i,j)∈C−

dji(pji) ≥ 0

∑

(i,j)∈C+

dji(pji) +
∑

(i,j)∈C−

dij(pij) ≥ 0
for all cycles C ∈ G.

Substituting dij(pij) yields















∑

(i,j)∈C+

(uij − Tpij) +
∑

(i,j)∈C−

(−lij + Tpij) ≥ 0

∑

(i,j)∈C+

(−lij + Tpij) +
∑

(i,j)∈C−

(uij − Tpij) ≥ 0
for all cycles C ∈ G,
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34

[2,10]60

[3,12]60

[3,57]60[9,54]60

1 2

Figure 4.1: An example for the computing parameters aC and bC from Theorem 4.3.

which is equivalent to































∑

(i,j)∈C+

pij −
∑

(i,j)∈C−

pij ≤
1

T





∑

(i,j)∈C+

uij −
∑

(i,j)∈C−

lij





∑

(i,j)∈C+

pij −
∑

(i,j)∈C−

pij ≥
1

T





∑

(i,j)∈C+

lij −
∑

(i,j)∈C−

uij





for all cycles C ∈ G.

Because of the integrality of the variables pij , the right hand sides of these expressions

can be rounded. Rounding down the first expression gives bC , and rounding up the

second expression gives aC .

In the above, each step after (4.4) is either an equivalence relation or a substitu-

tion. Therefore, both the necessity and the sufficiency claimed in Theorem 4.3 have

been proved. ¥

The example cycle in Figure 4.1 illustrates Theorem 4.3. Directing the cycle in

the figure clockwise, we obtain the following values for the parameters aC and bC :

aC =

⌈

1

60
(2 + 3− 12− 54)

⌉

=

⌈

−61

60

⌉

= −1

bC =

⌊

1

60
(10 + 57− 3− 9)

⌋

=

⌊

55

60

⌋

= 0

So, this small example instance is feasible if and only there exists an integer vector

p = (p12, p23, p34, p13) such that −1 ≤ p12 + p23 − p34 − p13 ≤ 0.

The constraint graph provides another valuable insight into the structure of the

PESP. To that end, consider a matrix formulation for the PESP, and define
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l ∈ R|N | The vector of time window lower bounds lij .

u ∈ R|N | The vector of time window upper bounds uij .

Recall that v ∈ R|N | is the vector of variables vi, and p ∈ R|A| the vector of variables

pij . Further, let M be the node-arc incidence matrix of G. That is, M is an |N |×|A|

matrix defined as

M(i, a) =











1 if a = (i, j) for some j ∈ N,

−1 if a = (j, i) for some j ∈ N,

0 otherwise.

Theorem 4.4. Consider a PESP instance G = (N,A, l, u) and T , with l, u and T

integer-valued. If the instance is feasible, then it has an integer solution.

Proof . Consider the matrix formulation of the PESP: find a feasible solution (v, p)

to the set of inequalities given by

l ≤M tv + Tp ≤ u. (4.5)

Suppose that (v∗, p∗) is a solution, with p∗ integer, and v∗ possibly non-integer.

Substitute p∗ in (4.5), giving

l − Tp∗ ≤M tv ≤ u− Tp∗. (4.6)

Since M is the node-arc incidence matrix of G, it is totally unimodular, and so M t is

totally unimodular (see Schrijver, 1986, Nemhauser and Wolsey, 1988, for a definition

and description of total unimodularity). Moreover, since l, u, p∗, and T are integer,

both the leftmost and rightmost term in equation (4.6) are all-integer. Therefore,

the polyhedron

P(p∗) =
{

v ∈ R|N |
∣

∣ l − Tp∗ ≤M tv ≤ u− Tp∗
}

(4.7)

has integer vertices only. From the existence of solution (v∗, p∗) it follows that P(p∗)

is non-empty, and therefore that the PESP instance has an integer solution. ¥

Remark 4.5. Theorem 4.4 and its proof explain Remark 3.1, and also why the vi

variables in the PESP are not required to be integer. The polyhedron P(p∗)

has integer vertices only. Therefore, when using an objective function that is

linear or convex, the PESP has an integer valued optimal solution. So, the
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variables at
n and dt

n (3.16j), and vi (3.20d), can be relaxed to take real values:

at
n, d

t
n ∈ [0, T − 1] for all t ∈ T , n ∈ N (t), and

vi ∈ [0, T − 1] for all i ∈ N.

The relaxation to real values only holds for these variables. The integer vari-

ables p and pij (3.20e) are still required to be integer.

For the remainder of the thesis, we therefore assume all lij and uij to be integer.

Moreover, the upper bound for the vi variables is set to vi ≤ T − 1. We also refine

our assumptions on the time window bounds. The assumption for the time window

lower bounds is adjusted to 0 ≤ lij ≤ T − 1. The assumption on the time window

widths is adjusted to 0 ≤ uij − lij ≤ T − 2, since a time window with width greater

than or equal to T − 1 imposes no periodic constraint.

4.3 Properties of the PESP

This section derives some useful properties and theorems for the PESP. First, it

shows how each arc (i, j) ∈ A can be reversed by adjusting its time window. Next,

we explain how any PESP instance can be transformed such that it is written as an

integer program containing binary variables pij only. Then, we discuss the procedure

of shifting a cyclic schedule, which is closely related to fixed arrival and departure

times of trains. Finally, the modeling of disjoint periodic time windows is explained.

4.3.1 Reversing Constraints

Consider an arc (i, j) in the constraint graph G, with constraint

lij ≤ vj − vi + Tpij ≤ uij .

Multiplying this constraint by −1 gives

−uij ≤ vi − vj − Tpij ≤ −lij .

Since the integer variable pij allows for adding or subtracting an arbitrary integer

multiple of T , we may add an integer multiple of T to each of the members in this

inequality. Let us add T p̄, p̄ ∈ Z, to each member, where p̄ is such that 0 ≤ T p̄−uij ≤

T − 1. This gives

T p̄− uij ≤ vi − vj + T (p̄− pij) ≤ T p̄− lij .
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This inequality is in fact the PESP constraint

lji ≤ vi − vj + Tpji ≤ uji,

with

lji = T p̄− uij ,

uji = T p̄− lij .

Note that lji and uji satisfy the time window assumptions 0 ≤ lji ≤ T − 1 and 0 ≤

uji − lji ≤ T − 2. Moreover, we have the relation pji = p̄ − pij . We do not need

to enforce this relation however, since a PESP constraint only requires some integer

variable, so we could use a new integer variable pji. The above is summarized in the

following lemma.

Lemma 4.6. Any arc (i, j) in the PESP constraint graph G with time window

[lij , uij ] can be reversed to an arc (j, i) with time window [lji, uji] defined by

lji = T p̄− uij ,

uji = T p̄− lij ,

where p̄ ∈ Z is such that 0 ≤ lji ≤ T − 1. Moreover, pji = p̄− pij .

4.3.2 Binary Variables

If desired, any PESP instance with p ∈ Z|A| can be transformed into a formulation

where the variables pij may take only binary values, that is, p ∈ {0, 1}|A|. This

transformation follows from considering the bounds on the variables vi. Since 0 ≤

vi ≤ T − 1, we have −T +1 ≤ vj − vi ≤ T − 1. Moreover, if the time window [lij , uij ]

is strictly contained in [0, T − 1], then the only periodic shift that the corresponding

variable pij can achieve, is the shift from the time window [lij , uij ] into the time

window [lij − T, uij − T ], by setting pij = 1. This is illustrated in Figure 4.2. Any

other non-zero value for pij is useless because of the bounds on vi and vj . We obtain

the following lemma:

Lemma 4.7. If 0 ≤ vi ≤ T − 1 for all i ∈ N , and 0 ≤ uij ≤ T − 1, then pij ∈

{0, 1}, for all (i, j) ∈ A.

Note that, by assumption, we have 0 ≤ lij ≤ T − 1 and 0 ≤ uij − lij ≤ T − 2.
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0 T 1{{T+1 l Tij{ u Tij{ uijlij

pij=1 pij=0

( )vivj{

Figure 4.2: Possible values for pij when uij ≤ T − 1.

pij=1 pij=0

0 T 1{{T+1 l Tij{ u Tij{ uijlij

( )vivj{

pij=2

l Tij{2 u Tij{2

Figure 4.3: Possible values for pij when uij > T − 1.

The next section describes some aspects of sequencing in a cyclic environment.

For now, we want to point at a sequencing interpretation of the integer variable pij

when uij ≤ T − 1. Consider the linear time axis [0, T − 1], for the moment forgetting

that the time axis is cyclic for the PESP. On the linear axis [0, T − 1], if vj ≥ vi,

then pij = 0. Else, if vi > vj , then pij = 1. So, in a sense, the variable pij can be

interpreted as representing the sequence in which the events i and j take place on

the linear axis [0, T − 1]. Note that i and j may take place concurrently if pij = 0.

If there exist time windows [lij , uij ] with uij ≥ T , then pij may take three values,

namely pij ∈ {0, 1, 2}. These three values correspond to the following shift of the

time window [lij , uij ], as is illustrated in Figure 4.3:

pij =















0 for the non-shifted window [lij , T − 1],

1 for the shifted window [lij − T, uij − T ],

2 for the shifted window [−T + 1, uij − 2T ].

In this case, a sequence interpretation of pij does not exist, since the value pij = 1

can correspond to both vj ≥ vi and vj ≤ vi.

The above shows that, for transforming a PESP instance into a binary program,

all that is needed is to ensure that 0 ≤ uij ≤ T − 1 for all (i, j) ∈ A. The following

splitting procedure deals with arcs that violate this condition.

Step 1. For any arc (i, j) with uij ≥ T , split the arc into two arcs (i, k) and (k, j) by

introducing a new node k.

Step 2. For the arc (i, k), set lik := lij , uik := lij .
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Step 3. For the arc (k, j), set lkj := 0, ukj := uij − lij .

After splitting an arc, the original constraint between i and j is still implied. This

can be seen from the constraints associated with the two new arcs (i, k) and (k, j),

when substituting the values for their time windows:

lij ≤ vj − vk + Tpkj ≤ lij , (4.8)

0 ≤ vk − vi + Tpik ≤ uij − lij . (4.9)

Adding these two constraints gives lij ≤ vj − vi + T (pkj + pik) ≤ uij , where the

term (pkj + pik) is an integer variable. And the two arcs (i, k) and (k, j) each satisfy

0 ≤ u ≤ T − 1. The splitting procedure, together with Lemma 4.7, implies the

following lemma.

Lemma 4.8. The PESP can be transformed such that pij ∈ {0, 1} for all (i, j) ∈ A.

The price for writing the PESP with binary variables pij is an increase in the number

of constraints by the splitting procedure, and therefore an increase in the number of

integer variables.

4.3.3 Shifting a Cyclic Schedule

Suppose that we are given a feasible solution (v, p) to a PESP instanceG = (N,A, l, u)

with cycle time T . Then, all event times vi can be shifted by an arbitrary integer

number β ∈ {0, . . . , T − 1}, to obtain a new feasible schedule (v̄, p̄). With shifting a

schedule by β, we mean the following:

v̄i := (vi − β) modulo T

p̄ij :=







0 if v̄j ≥ v̄i

1 if v̄j < v̄i,

assuming that uij ≤ T − 1. It is easy to see that the new schedule (v̄, p̄) is feasible.

For each constraint, both v̄j and v̄i have been shifted by the same amount β, so

v̄j − v̄i = vj − vi. Further, the variables p̄ij have been adjusted so as to incorporate

a change in the sequence of i and j on the linear time axis [0, T − 1].

If uij ≥ T , the argument is similar, though more complicated. Finally, note that

this shifting of a cyclic schedule allows for modeling fixed departure and arrival times

of trains using PESP constraints only (see Section 3.4.4).



82 Chapter 4. The Periodic Event Scheduling Problem

uij

1

uij

2
lij
1

lij
2

,uij T]
1

[lij
1 ,uij T]

2[lij
2

È Ç,uij T]
2

[lij
1 ,uij T+ ]T

2[lij
1

=

uij

1

uij

2
lij
1

lij
2

Figure 4.4: Relation between the union and intersection of periodic time windows.

4.3.4 Disjoint Periodic Time Windows

Periodic constraints can model a choice between multiple disjoint time windows for

a given event pair (i, j). Suppose that two events i and j are related by a constraint,

and that their event time difference should lie either in the time window [l1ij , u
1
ij ], or

in the time window [l2ij , u
2
ij ]. So, for a certain event pair, we have a choice between

two time windows. Figure 4.4 shows that these disjoint time windows are equivalent

to the periodic constraints:

vj − vi ∈ [l1ij , u
2
ij ]T ,

vj − vi ∈ [l2ij , u
1
ij + T ]T .

This idea generalizes to the following lemma.

Lemma 4.9. Suppose that for some arc (i, j) we want to impose the constraint

vj − vi ∈ [l1ij , u
1
ij ]T ∪ [l2ij , u

2
ij ]T ∪ . . . ∪ [lkij , u

k
ij ]T ,

where the k time windows are disjoint and ordered:

0 ≤ l1ij ≤ u1
ij < l2ij ≤ u2

ij < · · · < lkij ≤ uk
ij < l1ij + T.

Then this union of k time windows is equivalent to the intersection of k periodic
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time windows given by the periodic constraints

vj − vi ∈ [l1ij , u
k
ij ]T ,

vj − vi ∈ [l2ij , u
1
ij + T ]T ,

...

vj − vi ∈ [lkij , u
k−1
ij + T ]T .

4.4 Cyclic Sequencing

On a cyclic time axis, both event i takes place after event j, and event j takes place

after event i, unless i and j take place at the same time. This means that there exists

no sequence for two events i and j. Consequently, sequences in a cyclic schedule are

defined on at least three events. These three events i, j, and k may occur in one of

the two essentially different orders i → j → k and i → k → j. Any other cyclic

sequence of the three events is equivalent to one of these two. For example, the

sequence k → j → i is equivalent to i → k → j. The following definitions formalize

the concept of a cyclic sequence.

Definition 4.10 (Cyclic Sequence). The events 1, . . . , k are said to be cyclically se-

quenced in the order 1→ · · · → k if

0 ≤ (v2 − v1) modulo T ≤ · · · ≤ (vk − v1) modulo T.

For some of the results we derive below, it is necessary to prevent the case in which

two or more events take place concurrently. Therefore, we define a proper cyclic

sequence as follows.

Definition 4.11 (Proper Cyclic Sequence). The events 1, . . . , k are said to be proper

cyclically sequenced in the order 1→ · · · → k if

0 < (v2 − v1) modulo T < · · · < (vk − v1) modulo T.

A cyclic sequence of the events 1, . . . , k is a proper cyclic sequence if the events are

restricted by some periodic constraints, such that neither 1 and k, nor any of the

subsequent events i and i+ 1, i = 1, . . . , k − 1, can take place concurrently.

Below, we present four lemmata that characterize the relationship between the

variables pij and the sequence in which events take place. For these lemmata, we
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assume that all involved constraints have uij ≤ T −1, and thus pij ∈ {0, 1}. If this is

not the case, one can use Lemma 4.8 to transform any constraint with uij ≥ T into

two constraints with uij ≤ T − 1.

Lemma 4.12. Consider a directed cycle C = (1, 2, . . . , k, 1) in the constraint graph

G, and a schedule (v, p). If the events 1, . . . , k take place in the proper cyclic

sequence 1→ · · · → k, then
∑

(i,j)∈C pij = 1.

Proof . The inter-event time vj − vi + Tpij expresses the number of minutes that j

takes place after i. If the events 1, . . . , k are proper cyclically sequenced in the order

1→ · · · → k, then none of the inter-event times equals zero. Thus, going from event

1 to 2 to · · · to k, and back to 1, the sum of the inter-event times must equal T . In

other words,
∑

(i,j)∈C(vj−vi+Tpij) = T . In this summation, the variables vi cancel

out, giving
∑

(i,j)∈C pij = 1. ¥

Lemma 4.13. Consider a directed cycle C = (1, 2, . . . , k, 1) in the constraint graph

G, and a schedule (v, p). If
∑

(i,j)∈C pij = 1, then the events 1, . . . , k take place

in the cyclic sequence 1→ · · · → k.

Proof .
∑

(i,j)∈C pij = 1 means that all but one of the variables pij in C are zero,

because all pij ∈ {0, 1}. Let (i∗, j∗) be the single constraint with pi∗j∗ = 1. Since

pij = 0 for all other constraints (i, j), we have

vj∗ ≤ vj∗+1 ≤ · · · ≤ vk ≤ v1 ≤ · · · ≤ vi∗−1 ≤ vi∗ .

So, the events are cyclically sequenced as j∗ → · · · k → 1 → · · · → i∗, which is

equivalent to 1→ · · · → k. ¥

Note that Lemma 4.12 only holds for a proper cyclic sequence, that is, the reverse of

Lemma 4.13 does not hold. A regular cyclic sequence in which all events take place

concurrently would yield
∑

(i,j)∈C pij = 0. If, however, at least one arc a in the cycle

C has la > 0, then Lemma 4.12 also holds for a regular cyclic sequence, and in that

case Lemma 4.13 can be stated as an if and only if relation.

Next, we consider cycles that may contain both forward and backwards arcs.

Lemma 4.14. Consider a not necessarily directed cycle C = (1, 2, . . . , k, 1) in the

constraint graph G, and a schedule (v, p). If the events 1, . . . , k take place in

the proper cyclic sequence 1→ · · · → k, then

∑

(i,j)∈C+

pij −
∑

(i,j)∈C−

pij = 1− |C−|.
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Proof . Using Lemma 4.6, we reverse each backward arc (i, j) ∈ C−. Since pij ∈

{0, 1}, this gives p̄ = 1, and thus pji = 1 − pij . Moreover, for the reversed arc (j, i)

it still holds that uji ≤ T , since we are considering a proper cyclic sequence. For the

now directed cycle C, we apply Lemma 4.12. This gives that, if the proper cyclic

sequence 1→ · · · → k takes place, then

∑

(i,j)∈C+

pij +
∑

(i,j)∈C−

pji = 1.

Substituting pji = 1− pij for the reversed arcs, we obtain

∑

(i,j)∈C+

pij +
∑

(i,j)∈C−

(1− pji) = 1,

which concludes the proof. ¥

Lemma 4.15. Consider a not necessarily directed cycle C = (1, 2, . . . , k, 1) in the

constraint graph G, and a schedule (v, p). If

∑

(i,j)∈C+

pij −
∑

(i,j)∈C−

pij = 1− |C−|,

then the events 1, . . . , k take place in the cyclic sequence 1→ · · · → k.

Proof . As in the proof of the previous lemma, we reverse each backward arc (i, j) ∈

C−. Then, apply Lemma 4.13 to the directed cycle C. ¥

Again, we need a proper cyclic sequence in Lemma 4.14, since the reverse of Lemma 4.15

does not hold. Consider, for example, a cycle C consisting of alternatingly forward

and backward arcs. Suppose that for each forward arc (i, j), and for the subsequent

backward arc (k, j), we have vi 6= vj , vj = vk. Then, for each backward arc (i, j) in

this cycle C, the inter-event time difference vj − vi = 0, so pkj = 0. In that case, the

cyclic sequence 1→ · · · → k may yield
∑

(i,j)∈C+ pij −
∑

(i,j)∈C− pij > 1− |C−|.

However, if the constraints defined on the events 1, . . . , k are such that none of

the subsequent events in C can take place concurrently, then any cyclic sequence is

a proper cyclic sequence, and therefore the reverse of the lemmata does hold. The

constraints that prevent the events from taking place concurrently need not be the

constraints in the cycle C. The following corollary summarizes the above:

Corollary 4.16. Consider a not necessarily directed cycle C = (1, 2, . . . , k, 1) in the

constraint graph G, and a schedule (v, p). Suppose that some set of constraints
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Figure 4.5: Cyclic versus linear sequencing.

on the events 1, . . . , k prevents any subsequent pair (i, i+ 1) ∈ C from taking

place concurrently. Then the events 1, . . . , k take place in the cyclic sequence

1→ · · · → k if and only if

∑

(i,j)∈C+

pij −
∑

(i,j)∈C−

pij = 1− |C−|.

This corollary is the result that we mainly use in the remainder of the thesis.

As was noticed by Nachtigall (1999), some authors loosely say that fixing the

variables pij is equivalent to fixing the order in which events take place. Lemma 4.15

shows what relations exactly exist between the variables pij and sequences of events.

Fixing all variables pij clearly fixes the sequence of events. Fixing the variables pij

for some subset of the arcs only fixes the sequences of events that appear in cycles

induced by those arcs. Conversely, Lemma 4.14 shows that fixing a sequence of some

events only fixes sums of variables pij along the cycles through these events.

Cyclic sequencing is not as different from linear sequencing as it may appear at

first sight. This was already hinted at in Section 4.3.2, where we explained that a

variable pij can be seen as indicating which of the events i, j takes place first on the

linear time axis [0, T − 1]. Consider a set of events 1, . . . , k, and suppose they are

cyclically sequenced as S = 1→ · · · → k, see the left part of Figure 4.5. Because of

its cyclic nature, S is equivalent to 2 → · · · → k → 1, or to 3 → · · · → k → 1 → 2,

etc. Next, choose a reference point on the cyclic time axis, cut the axis there, and

then consider the sequence as a linear one, starting at the reference point. This is

illustrated in the right part of Figure 4.5, where the reference point chosen is i, and, on

the linear time axis, we see the linear sequence i→ i+1→ · · · → 1→ k → · · · → i−1.

This linear sequence is equivalent to the cyclic sequence S. This analogy between

cyclic and linear sequencing gives the following lemma.
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Lemma 4.17. The cyclic sequencing of k events is equivalent to the linear sequenc-

ing of k− 1 events. In particular, one can linearly sequence the events 2, . . . , k

as the sequence S, which gives the cyclic sequence 1→ S.

4.5 Complexity of the PESP

Several authors have proven that the PESP is NP-complete, by reductions from

the Hamiltonian Circuit Problem (Serafini and Ukovich, 1989a, Nachtigall, 1994),

Graph K-Colorability (Odijk, 1997), and the Linear Ordering Problem (Liebchen

and Peeters, 2002b). For completeness, we include the proof by Odijk (1997). This

proof reduces the question of PESP feasibility to Graph K-Colorability, which is

known to be NP-complete for fixed K ≥ 3 (see Garey and Johnson, 1979).

Definition 4.18 (Graph K-Colorability). Given an undirected graph U = (N,E) and

an integer K ≤ |V |, is it possible to assign to each node i ∈ N a color c(i) ∈

{1, . . . ,K}, such that c(i) 6= c(j) if i and j are adjacent?

Theorem 4.19. PESP is NP-complete for fixed T ≥ 3.

Proof . Clearly, PESP is in NP. Given an instance U = (N,E) and K of Graph K-

Colorability, construct an instance of the PESP as follows. Set the cycle time T equal

to K. Take N as the node set for the PESP instance, and construct the arc set A

by assigning an arbitrary direction to each edge in E. For each arc (i, j) ∈ A, define

a time window [1,K − 1]K . This gives the PESP instance G = (V,A, 1,K − 1) with

cycle time K. If this instance of the PESP is feasible, then by Theorem 4.4 it has an

integer feasible solution. Moreover, because of the time windows [1,K−1]K , such an

integer feasible solution to the PESP assigns different values vi 6= vj to any adjacent

pair of events i, j. Conversely, any feasible coloring of U assigns colors c(i) 6= c(j) to

the nodes of an arc (i, j) ∈ A, for which it thus holds that c(j)− c(i) ∈ [1,K − 1]K .

Finally, the transformation from the Graph K-Colorability instance to the PESP

instance can be done in polynomial time. ¥

In the case T = 2, we have the following situation. Because of the assumptions on

the time window bounds, the only time windows that are allowed for T = 2 are

[0, 0]2 and [1, 1]2. Let A0 be the set of arcs with time window [0, 0]2, and let A1

be the set of arcs with time window [1, 1]2. Further, each variable vi has domain

vi ∈ {0, 1}. This means that arcs (i, j) ∈ A0 imply the restriction vi = vj , and that
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arcs (i, j) ∈ A1 imply the restriction vi 6= vj . Section 4.3.3 showed that a cyclic

schedule can always be shifted, so we can fix the time instant vi∗ of some event i∗ to

an arbitrary value in its domain. So, for T = 2, we can fix vi∗ = 0 for some event

i∗. Next, this solution can be propagated through the constraint graph G, setting

vi = vj for all (i, j) ∈ A0, and vi 6= vj for all (i, j) ∈ A1. This procedure clearly

either yields a feasible solution, or proves that no feasible solution exists. Moreover,

it takes O(m) time.

4.6 Literature Review

All work on the PESP that we know of, other than the original papers (Serafini and

Ukovich, 1989a,b, Gertsbakh and Serafini, 1991), is done in the area of cyclic railway

timetabling. Therefore, most references below were already mentioned in Section 1.4.

Here, we discuss them in the light of this chapter. For an in-depth overview of PESP

algorithms, we refer to Lindner (2000, Chapter 3).

Serafini and Ukovich (1989a) introduced the PESP. Their main interest is in

finding feasible periodic schedules, so an objective function is not taken into account.

They prove that the general PESP is NP-complete, and propose a Branch&Bound

procedure for finding feasible solutions. They also present some applications of the

PESP in job shop scheduling, transportation scheduling, and traffic light scheduling.

Voorhoeve (1993) first considered the PESP for cyclic railway timetabling prob-

lems. He developed an algorithm based on constraint propagation and backtracking,

for finding a feasible cyclic railway timetable.

Schrijver and Steenbeek (1993, 1994) developed a constraint programming based

algorithm, called CADANS, for the problem of finding a feasible timetable. The

algorithm first uses a preprocessing phase to eliminate redundant variables and con-

straints, and to tighten constraints. Next, every variable vi is assigned a domain

that initially consists of the set [0, . . . , T − 1]. The algorithm then enters an iterative

procedure. In each iteration, the value of some vi is fixed to one of the values in its

domain, and the consequences of this choice are propagated through the constraints.

This possibly decreases the size of the domains of some other variables. Whenever an

empty domain is found, a sophisticated backtracking procedure is started that resets

some of the previously made choices. This backtracking procedure is the key to the

generally very good performance of the algorithm. Most real-life railway timetabling

instances from NSR and Railned can be solved in several minutes up to two to three

hours of computation time. Still, some hard instances require very large computa-

tion times. Furthermore, Schrijver and Steenbeek (1994) implemented a procedure

for post-optimizing an obtained feasible timetable. This procedure considers the
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neighborhood consisting of all timetables with vector p equal to that of the obtained

timetable, and uses Linear Programming to find an optimal timetable in this neigh-

borhood. In a later paper, Schrijver (1998) briefly discusses some other properties of

cyclic railway timetables.

Odijk (1996, 1997) developed a cutting plane algorithm to solve the feasibility

problem. The algorithm iteratively cuts off solutions violating the inequalities in

Theorem 4.3. His objective is to quickly generate a set of timetables in order to

evaluate candidate infrastructure projects within and around railway stations. He

obtains good results, but only for rather small instances consisting of a railway station

and the small railway network surrounding the station.

Based on the same cuts, Hurkens (1996) uses a Branch&Cut approach to solve

the PESP formulation for larger railway timetabling problems. He concludes that it

is hard to make the method work fast. Furthermore, very large scale LP problems

have to be solved to obtain good bounds for large problem instances, and this also

causes problems.

Hassin (1996) describes the Network Synchronization Problem (NSP), which pro-

vides an optimization formulation for the PESP. The NSP does not take into account

constraints as hard rules. Instead, forbidden time window values are highly penal-

ized. Hassin reports that penalizing very wide time windows causes problems for

his algorithm, and the CRTP typically has many wide safety constraints (see Sec-

tion 3.4.8).

Lindner (2000) studied the PESP as a sub-problem for constructing cost-optimal

railway timetables. He developed a modification of the Serafini and Ukovich (1989a)

algorithm that works much faster. Further, he investigated the polyhedral structure

of the PESP, and proposes a Branch&Cut algorithm. For some real-life instances from

Netherlands and German railways, his methods work quite fast, with computation

times of up to 300 seconds. However, for other real-life instances, a feasible solution

can not be found after ten hours of computation time.





Chapter 5

A Cycle Periodicity Formulation for
the CRTP

The previous two chapters considered the CRTP for cyclic railway timetabling, and

the PESP which provides a general framework for the CRTP. This chapter describes

a transformed formulation for the CRTP and the PESP, which was introduced by

Nachtigall (1999). The transformed formulation views the PESP in terms of process

times, and cycles in the constraint graph G = (N,A, l, u). This formulation ensures

the cyclic nature of the timetable through so-called cycle periodicity constraints, and

therefore we name it the Cycle Periodicity Formulation (CPF).

In describing the CPF, we first give a brief overview of the graph theoretic con-

cepts of potentials and tensions, and extend these concepts to the periodic case.

Next, using the idea of periodic potentials and tensions, we describe the transforma-

tion from the PESP to the CPF. Cycles in the constraint graph, and cycle bases of

the constraint graph are an important aspect of the CPF. Therefore, the remainder

of the chapter is devoted to several properties of cycles and cycle bases associated

with the constraint graph. As such, cycles and paths in the constraint graph G play

an important part in this chapter. Our notation for cycles and paths is described in

Appendix A.6.

5.1 Periodic Potentials and Tensions

This section first reviews the graph theoretic concepts of potentials and tensions.

Next, we extend these concepts to the periodic case, and introduce periodic tensions,

which form the building blocks for formulating the cycle periodicity formulation in

the next section.

91
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5.1.1 Classical Potentials and Tensions

Consider a directed graph G = (N,A), and a set of values πi defined by the function

π : N → R. Such a set of node values is called a potential (the terminology arises

from electrical networks). Let a set of arc values ya defined by the function y : A→ R

correspond to some potential π as follows

ya = πj − πi for all a = (i, j).

Such a set of arc values is called a tension. The following result characterizes a

tension without relating it to a potential (see Rockafellar, 1984, Bollobás, 1998).

Theorem 5.1. Given a directed graph G = (N,A), a function y : A → R is a

tension if and only if

∑

a∈C+

ya −
∑

a∈C−

ya = 0 for all cycles C ∈ G.

5.1.2 Periodic Potentials and Tensions

One can also consider a periodic variant of potentials and tensions. We define periodic

potentials and tensions as follows.

Definition 5.2. A function v : N → R is a periodic potential with period T if

0 ≤ vi ≤ T − 1 for all i ∈ N .

Definition 5.3. A function x : A→ R is a periodic tension with period T if x ≥ 0,

and, for a periodic potential v with period T and some integer vector p ∈ Z|A|,

it holds that

xa = vj − vi + Tpa for all a = (i, j) ∈ A. (5.1)

So, in a solution (v, p) to the PESP, v is a periodic potential. Moreover, we can

associate a periodic tension x with the solution (v, p).

As for the non-periodic case, the theorem below characterizes periodic tensions

through cycles in the graph G, rather than through periodic potentials. First, we

define the concept of cycle periodicity.

Definition 5.4. For a cycle C, a set of arc values xa, a ∈ C, satisfies the cycle

periodicity property for a cycle time T if, for some integer variable qC ,

∑

a∈C+

xa −
∑

a∈C−

xa = TqC . (5.2)
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We refer to constraint (5.2) as the cycle periodicity constraint for cycle C, and to qC

as the cycle periodicity integer variable for cycle C.

Theorem 5.5. Given a directed graph G = (N,A) and a period T , a set of non-

negative values xa, a ∈ A, is a periodic tension if and only if, for each cycle

C ∈ G, it satisfies the cycle periodicity property for cycle time T :

∑

a∈C+

xa −
∑

a∈C−

xa = TqC .

Proof . When taking the sum of periodic tension variables xa = vj − vi + Tpa along

a cycle C, the variables vi cancel out:

∑

a∈C+

xa −
∑

a∈C−

xa =
∑

a∈C+

Tpa −
∑

a∈C−

Tpa.

The right hand side is clearly an integer multiple of T . In fact, we have qC =
∑

a∈C+ pa −
∑

a∈C− pa.

Now suppose we have a function x : A→ R, x ≥ 0, satisfying the cycle periodicity

property (5.2) for all cycles C ∈ G. To show that x is a periodic tension, we con-

struct a corresponding periodic potential v for which there exists an integer vector

p fulfilling (5.1). To that end, let H be a spanning tree of G. Choose an arbitrary

node s ∈ N , and set vs = 0. For all other nodes i ∈ N , take the undirected path Psi

in H from s to i, and set

vi =
(

∑

a∈P
+

si

xa −
∑

a∈P
−

si

xa

)

modulo T.

This clearly defines a periodic potential v : N → R.

For an arc (i, j) ∈ H, the difference of the periodic potentials of j and i is given

by

vj − vi =
(

∑

a∈P
+

sj

xa −
∑

a∈P
−

sj

xa

)

−
(

∑

a∈P
+

si

xa −
∑

a∈P
−

si

xa

)

modulo T = xij modulo T.

This means that there exists an integer pij fulfilling condition (5.1) for each tree arc

(i, j).

Next, consider a non-tree arc (i, j). Adding (i, j) to the tree H creates a cycle C.

If C contains s, then C consists of Psi, (i, j), and Psj . Directing C as the arc (i, j),
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the cycle periodicity constraint (5.2) for C reads

(

∑

a∈P
+

si

xa −
∑

a∈P
−

si

xa

)

+ xij −
(

∑

a∈P
+

sj

xa −
∑

a∈P
−

sj

xa

)

= TqC .

Using the above defined values for vj and vi, this expression is rewritten to

vj − vi = xij − TqC modulo T,

with qC some integer variable. So in this case, for each non-tree arc (i, j), there exists

an integer pij fulfilling condition (5.1). For the case where C does not contain s, the

common part of the paths Psi and Psj cancels out in the above cycle periodicity

constraint for C, and we obtain the same result. It follows that x is a periodic

tension. ¥

5.2 The Cycle Periodicity Formulation

From the previous section, one sees a strong relation between the PESP and periodic

potentials. In this section, we use Theorem 5.5 to transform the PESP into a model

based on periodic tensions xa, cycle periodicity variables qC , and the cycle periodicity

constraints (5.2). With the definition xij = vj − vi + Tpij , the transformed model

can be interpreted as being stated in terms of process times, that is, time differences

between pairs of events. In contrast, the CRTP and PESP are both stated in terms

of event times, that is, the time instants at which events take place. At the end of

this section, we formally state a mathematical program for the transformed model.

Below, we first derive some lemmata that are needed to transform the model.

The following lemma shows the relation between the variables pij in the PESP,

and the variables qC .

Lemma 5.6. The cycle periodicity integer variables qC and the PESP integer vari-

ables pa are related by

qC =
∑

a∈C+

pa −
∑

a∈C−

pa.

Proof . See the proof of Theorem 5.5. ¥
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Theorem 4.3 introduced bounds aC and bC on the directed sum of pij variables along

a cycle. In fact, these bounds are also valid for the cycle integer variable qC , as the

following lemma clarifies.

Lemma 5.7. The cycle periodicity integer variables qC are bounded by

aC ≤ qC ≤ bC .

Proof . Substitute the lower bounds and upper bounds la ≤ xa ≤ ua in (5.2), and

round as in the proof of Theorem 4.3. ¥

Lemma 5.8. A cycle periodicity integer vector q is feasible if and only if aC ≤

qC ≤ bC for all cycles C ∈ G.

Proof . This follows from Lemma 5.6 in combination with Theorem 4.3. ¥

The Cycle Periodicity Formulation (CPF) for the PESP is described by

CPF: Minimize F (x)

subject to
∑

a∈C+

xa −
∑

a∈C−

xa = TqC for all C ∈ G (5.3a)

la ≤ xa ≤ ua for all a ∈ A (5.3b)

aC ≤ qC ≤ bC for all C ∈ G (5.3c)

xa ∈ R for all a ∈ A (5.3d)

qC ∈ Z for all C ∈ G (5.3e)

Here, we use the general objective function F (x), where x is the vector containing

all variables xa, a ∈ A. We described the specific instances Ft(x), Fr(x), and Fv(x)

of F (x) in Section 3.7. The constraints in the model consist of constraints (5.3a),

requiring periodicity for the cycles in the constraint graph, together with the time

window constraints (5.3b). The time window constraints themselves are no longer

periodic. Constraints (5.3c) represent the bounds from Lemma 5.7.

Suppose that (x, q) is a solution to (5.3). From the proof of Theorem 5.5, the

following procedure can be deduced for constructing a periodic potential v from the

periodic tension x.

Step 1. Construct a spanning tree H of G.

Step 2. Choose an arbitrary node s ∈ N , and set vs = 0.
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Step 3. For each other node i ∈ N , take the path Psi in H, and set

vi =
∑

(i,j)∈P
+

si

xij −
∑

(i,j)∈P
−

si

xij

A corresponding integer vector p is given by pij = (xij − vj + vi)/T . Conversely,

given a solution (v, p) to (4.2), a periodic tension x is straightforwardly computed

by xij = vj − vi + Tpij . The corresponding cycle periodicity integer variables qC are

computed by applying Lemma 5.6.

A drawback of the CPF is that it contains constraints (5.3a) requiring the cycle

periodicity property (5.2) for every cycle in G, since G may contain exponentially

many cycles. Moreover, the cycle based model has an integer variable qC for every

cycle C, so the CPF may have an exponential number of integer variables. The PESP

formulation (4.2), on the other hand, has |A| periodic time window constraints and

|A| integer variables pij .

However, the next section presents a certain condition under which it suffices to

state the cycle periodicity constraints (5.3a) only for the cycles in a basis B of the

cycle space of G. The cycle space of G has dimension c = |A| − |N | + 1, which is

much smaller than the possibly exponential number of all cycles in G. That means

that the CPF has less constraints and integer variables than the PESP.

5.3 Cycle Bases for Formulating the CPF

This section first briefly describes cycle spaces and cycle bases of directed graphs.

Next, we present the condition under which it suffices to require the cycle periodicity

constraints (5.3a) only for the cycles in a cycle basis. Finally, we show that the CPF

may return an infeasible timetable when using a cycle basis that does not satisfy this

condition.

5.3.1 Cycle Bases for Directed Graphs

We briefly describe cycle bases of directed graphs. Appendix B contains a more de-

tailed description of cycle bases of both undirected and directed graphs, and includes

references to existing literature on the subject. Moreover, it illustrates these concepts

through some examples.

We do not require cycles in directed graphs to be directed. So, a cycle in a

directed graph G = (N,A) may contain forward and backward arcs. Therefore, a

cycle C in a directed graph is encoded by a {0,±1} cycle vector γC . Choosing an
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arbitrary direction for the cycle, γC is defined as

γCa=















1 if a is a forward arc in C,

−1 if a is a backward arc in C,

0 if a /∈ C.

The cycle space of a directed graph G = (N,A) is the linear vector space spanned by

the {0,±1} cycle vectors γC of cycles C ∈ G. A cycle basis B of G is a basis of the

cycle space of G. A cycle basis for a directed graph G can be constructed as follows.

First, construct a spanning tree H of G. This spanning tree is not required to be

directed. Then, iteratively add a non-tree arc a to H. Together with the arcs in H,

the non-tree arc a forms a cycle. This cycle is said to be generated by a. The set of

cycles generated by all non-tree arcs forms a basis of the cycle space of G. Hence,

the dimension of the cycle space of a directed graph equals c = |A| − |N | + 1. For

a cycle basis B = {C1, . . . , Cc} with cycle basis vectors γ1, . . . , γc, the cycle matrix

ΓB is the c× |A| matrix with γ1, . . . , γc as rows.

5.3.2 Expressing Cycle Periodicity with Cycle Bases

The following definition characterizes the class of cycle bases that can be used for

stating the cycle periodicity constraints (5.3a).

Definition 5.9. A cycle basis B of G is an integral cycle basis if every non-basis

cycle is an integer linear combination of the cycles in B.

Let us explain this definition in more detail. Consider a cycle basis B = {C1, . . . , Cc}

with basis cycle vectors γ1, . . . , γc. For a cycle D 6∈ B, let (λ1
D, . . . , λc

D) be the unique

linear combination of basis cycles that yields D, that is,

γDa =

c
∑

i=1

λi
Dγia for all a ∈ A. (5.4)

Then B is an integral cycle basis if (λ1
D, . . . , λc

D) is an integral vector for every non-

basis cycle D.

The theorem below states that it suffices to enforce the cycle periodicity con-

straints (5.3a) only for the cycles in an integral cycle basis of G.

Theorem 5.10. If the cycle periodicity property
∑

a∈C+ xa −
∑

a∈C− xa = TqC

holds for every cycle C in an integral cycle basis B of G, then it holds for

every cycle in G.
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Proof . Let B = {C1, . . . , Cc} be an integral cycle basis of G, with cycle vectors

γ1, . . . , γc. Suppose that the cycle periodicity property holds for every cycle Ci ∈ B:

∑

a∈C
+

i

xa −
∑

a∈C
−

i

xa =
∑

a∈A

γiaxa = Tqi for all i = 1, . . . , c, (5.5)

where qi is the integer variable for cycle Ci. Consider a non-basis cycle D, and let

(λ1
D, . . . , λc

D) be the unique linear combination of basis cycles that span D, so

γDa =

c
∑

i=1

λi
Dγia for all a ∈ A. (5.6)

For the directed sum of tensions along D we have

∑

a∈D+

xa −
∑

a∈D−

xa =
∑

a∈A

γDaxa =
∑

a∈A

xa

c
∑

i=1

λi
Dγia =

c
∑

i=1

λi
D

∑

a∈A

γiaxa

= T

c
∑

i=1

λi
Dqi.

Since B is an integral cycle basis, we have (λ1
D, . . . , λc

D) ∈ Z. Together with assump-

tion (5.5), this implies that
∑c

i=1 λi
Dqi is integer. Therefore, the cycle periodicity

property holds for any cycle D 6∈ B. ¥

Theorem 5.10 proves our claim: as long as we use an integral cycle basis, it suffices to

require the cycle periodicity property only for the cycles in the cycle basis. Next, we

present an example which illustrates that using a non-integral cycle basis to formulate

the CPF may yield an incorrect solution to the CRTP.

5.3.3 An Example of Violated Cycle Periodicity

First, we present an example of a non-integral cycle basis. To that end, consider

the directed graph G in Figure 5.1, which was presented by Hartvigsen and Zemel

(1989) for a related cycle basis problem for undirected graphs. We claim that the

four cycles C1, . . . , C4 form a cycle basis B for G. First, note that the cycle space of
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G
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Figure 5.1: Directed graph G with cycle basis B = {C1, . . . , C4}.

G has dimension c = 4. Next, consider the cycle matrix ΓB :

1 2 3 4 5 6 7 8

γ1

γ2

γ3

γ4











1 1 1 0 −1 1 0 0

0 1 1 1 0 −1 1 0

1 0 1 1 0 0 −1 1

1 1 0 1 1 0 0 −1











One can check that it is impossible to construct a linear combination of the cycle

vectors γ1, . . . , γ4 which yields the zero vector. This proves our claim that B =

{C1, . . . , C4} is a basis of the cycle space of G.

Now consider the non-basis cycles C5, C6, C7 in Figure 5.2, with the cycle vectors

γ5 =
[

1 0 0 0 0 1 −1 0
]

γ6 =
[

1 1 0 0 0 1 0 −1
]

γ7 =
[

1 1 1 1 0 0 0 0
]
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Figure 5.2: Non-basis cycles C5, C6, C7.

The cycle vectors γ5, γ6, γ7 can be expressed in the basis cycle vectors as follows

γ5 = 1
3γ1 −

2
3γ2 +

1
3γ3 +

1
3γ4,

γ6 = 2
3γ1 −

1
3γ2 −

1
3γ3 +

2
3γ4,

γ7 = 1
3γ1 +

1
3γ2 +

1
3γ3 +

1
3γ4.

Since B is a basis, these expressions are unique. It follows that B is non-integral.

Moreover, the three cycles C5, C6, C7 represent the structure of all cycles in G that

are not in the cycle basis, and so every non-basis cycle in G is a non-integer linear

combination of the cycles in B. Changing the direction of a cycle or arc does not

disturb the result, since the former means changing the sign of a row, and the latter

means changing the sign of a column.

A non-integer linear combination of basis cycles poses the following problem for

the CPF. Suppose that the CPF contains cycle periodicity constraints for the cycles

in B. For example, for C5, we have

γ5 = 1
3γ1 −

2
3γ2 +

1
3γ3 +

1
3γ4,

giving

γ5x =
(

1
3γ1 −

2
3γ2 +

1
3γ3 +

1
3γ4

)

x

= 1
3Tq1 −

2
3Tq2 +

1
3Tq3 +

1
3Tq4

= 1
3T (q1 − 2q2 + q3 + q4) .

This means that the directed sum of tensions along C5 may be unequal to an integer

multiple of T .

Next, as a concrete example of the problem that a non-integral cycle basis may

cause for the CPF, consider the CRTP instance in Figure 5.3(a), with T = 60. Each
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Figure 5.3: (a) Infeasible CRTP instance, (b) Solution x̄ that is feasible for the CFP
with cycle basis B = {C1, . . . , C4}, (c) Infeasible implied periodic potential.

of the outer arcs has periodic time window [18, 22]60, and each of the inner arcs

has periodic time window [13, 17]60. A closer inspection of the instance immediately

shows that it is infeasible.

Suppose that we formulate the CPF (5.3) with the cycle basis B = {C1, . . . , C4}.

Then the solution

x̄ =
[

x̄1, . . . , x̄8

]

=
[

20 20 20 20 15 15 15 15
]

is feasible, since la ≤ x̄a ≤ ua for all a ∈ A, and
∑

a∈C+ x̄a−
∑

a∈C− x̄a = 60 for all C ∈

B. The solution x̄ is shown in Figure 5.3(b). However, for the non-basic cycles

C5, C6, C7, we have respectively

x̄1 + x̄6 − x̄7 = 20, (5.7)

x̄1 + x̄2 + x̄6 − x̄8 = 40, (5.8)

x̄1 + x̄2 + x̄3 + x̄4 = 80. (5.9)

Since T = 60, these cycles clearly do not satisfy the cycle periodicity property.

Finally, consider Figure 5.3(c), which tries to construct a periodic potential solution

for the periodic tension solution x̄. Choosing the value 0 for the center node, the

corner nodes each have to take the value 15 because of the value x̄a = 15 for the bold

arcs a = 5, . . . , 8. Clearly, this solution is infeasible for T = 60.



102 Chapter 5. A Cycle Periodicity Formulation for the CRTP

5.4 Sequencing Trains on Tracks∗

In this section, we show that there exists a relation between the integer variables qC

of certain cycles C, and the sequence in which trains travel along tracks, and leave

and enter stations. First, we state a sequencing lemma in terms of the qC variables.

Next, the cycles that relate to train sequences are identified. Based on these cycles,

we derive a class of valid inequalities for the CPF. Finally, we show that there exists

a relation between the identified cycles and the Linear Ordering Problem (Grötschel

et al., 1984, 1985).

5.4.1 Cyclic Sequencing in the CPF

The cyclic sequencing ideas for the PESP from Section 4.4 are easily extended to the

CPF. Indeed, using Lemma 5.6, we can state Corollary 4.16 in terms of qC variables.

Lemma 5.11. Consider a cycle C = (1, . . . , k, 1), a periodic tension x, and the

corresponding vector q. Suppose that some set of constraints prevents any

subsequent pair of events (i, i + 1) ∈ C to take place concurrently. Then

the events 1, . . . , k are cyclically sequenced as 1 → · · · → k if and only if

qC = 1− |C−|.

Proof . Apply Lemma 5.6 to Corollary 4.16. ¥

5.4.2 Safety Triangles

In Section 3.5 we formulated the CRTP as (3.16). Consider the safety constraints

(3.16f), (3.16g) in that formulation:

dt′

n − dt
n ∈ [rt

a − rt′

a + h, T − h]T for all a = (n,m) ∈ A, (t, t′) ∈ Ta, (3.16f)

at′

n − dt
n ∈ [rt

a + rt′

a + h, T − h]T for all a = (n,m) ∈ As, (t, t′) ∈ Ta. (3.16g)

In order to describe these constraints in terms of the constraint graph formula-

tion (3.20), consider k trains t1, . . . , tk traveling along a track a ∈ A. Let the

departure nodes involved in (3.16f), (3.16g) be indexed 1, . . . , k corresponding to

their train index, so node i represents the departure of train ti. As was described in

Section 3.8, the safety constraints for a track a define a safety clique Ka in G.

∗This section is partly based on Liebchen and Peeters (2002b).
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Figure 5.4: (a) Safety triangle (i, j, k), (b) dwell square (i, j, k, l)

Let us write the constraint graph formulation of the safety constraints (3.16f),

(3.16g) as

h+ ri − rj ≤ vj − vi + Tpij ≤ T − h for all i < j = 1, . . . , t. (5.10)

Here, we use ri as a shorthand notation for the trip time of the train corresponding

to node i. Moreover, we assume that each safety constraint is directed from a lower

indexed node i to a higher indexed node j. That is, we assume that a train pair (t, t′)

in Ta corresponds to a safety arc (i, j), where node i represents train t, and node j

represents train t′. So, for each safety arc (i, j), rj ≤ ri.

Definition 5.12. For a track a ∈ A, a safety triangle (i, j, k) is a cycle (i, j, k, i) on

three nodes i, j, k ∈ Ka, which is directed as the arc (i, j). The safety arcs in

(i, j, k) are directed such that the time windows are

[h+ ri − rj , T − h]T for arc (i, j),

[h+ rj − rk, T − h]T for arc (j, k),

[h+ ri − rk, T − h]T for arc (i, k).

Note that a safety triangle (i, j, k) contains two forward arcs and one backward arc.

Moreover, we have rk ≤ rj ≤ ri. Figure 5.4(a) shows a safety triangle.

The cycle periodicity integer variable for a safety triangle (i, j, k) is denoted by

qijk. Theorem 5.7 gives the following bounds on qijk

aijk =

⌈

−1 +
3h+ ri − rk

T

⌉

,

bijk =

⌊

2−
3h+ ri − rk

T

⌋

.
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So, under the condition ri − rk ≤ T − 3h, we have qijk ∈ {0, 1}.

Because of the safety constraints in Ka, none of the events 1, . . . , k can take

place concurrently. Applying Lemma 5.11 to (i, j, k) gives that the events i, j, k are

cyclically sequenced as i→ j → k if and only if qijk = 0. On the other hand, applying

the lemma to the oppositely directed safety triangle (k, j, i) gives that the opposite

cyclic sequence k → j → i occurs if and only if qkji = −1. Using

Tqijk = xij + xjk − xik = −Tqkji,

we obtain the following result:

qijk =







0 if and only if events i, j, k take place in the cyclic sequence i→ j → k,

1 if and only if events i, j, k take place in the cyclic sequence k → j → i.

The above analysis generalizes to the following lemma.

Lemma 5.13. Consider a track a ∈ A, and its safety clique Ka. Let the nodes

1, . . . , k ∈ Ka represent the departures of the trains t1, . . . , tk using the track.

For each safety triangle (i, j, k) ∈ Ka with ri − rk ≤ T − 3h, the following

holds:

qijk =







0 if and only if ti, tj , tk depart in the cyclic sequence ti → tj → tk,

1 if and only if ti, tj , tk depart in the cyclic sequence ti → tk → tj .

Remark 5.14. A common practical value for h is 3 ≤ h ≤ 5. Trip time differences

are never greater than 45 minutes in the Dutch network. With a cycle time

T = 60, this means that the condition ri − rk ≤ T − 3h is always satisfied in

practice.

Next, consider the case in which one of the arcs in the safety triangle (i, j, k) is

a frequency arc with time window [f, T − f ]. For this case, we can derive a similar

analysis as above. The analysis is a bit more extensive, since we need to consider

each of the three arcs as a frequency arc. The resulting condition is ∆r ≤ T −2h−f ,

where ∆r is the maximum trip time difference between the trains. With the common

practical value 25 ≤ f ≤ 30, this condition is also always satisfied in practice.

Similarly, for the case in which two of the arcs in (i, j, k) are frequency arcs,

one can derive the condition ∆r ≤ T − h − 2f , where ∆r is the trip time for the

non-frequency arc. In this case, the condition may be violated in practice. If the

condition is violated, then either aC = bC = 0, or aC = bC = 1. In both cases, the

sequence for the three trains is fixed beforehand.
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5.4.3 Dwell Squares

For a further insight into the sequence in which trains travel along a track, this

section studies the order in which two trains enter and leave a network node n ∈ N .

To that end, consider a dwell square, which is defined as follows.

Definition 5.15. For a network node n ∈ N , a dwell square (i, j, j ′, i′) is a cycle

(i, j, j′, i′, i) consisting of two merged trip-dwell arcs (i, i′) and (j, j′), and of

the two safety arcs (i, j) and (i′, j′). Nodes i′ and j′ correspond to the depar-

tures from n, and nodes i and j to the departures from the previous node m.

The two trip-dwell arcs have time windows

[ri + di, ri + di]T ,

[rj + dj , rj + dj ]T ,

and the two safety arcs have time windows

[h+ ri − rj , T − h]T ,

[h+ ri′ − rj′ , T − h]T .

Here, the trip times ri are the same shorthand notation as before. The train corre-

sponding to the nodes j and j ′ is the faster train, as follows from the direction of the

safety arcs. For this train we use the shorthand dwell time window notation [dj , dj ],

for the other train [di, di]. Figure 5.4(b) shows a dwell square.

The cycle periodicity integer variable for a dwell square (i, j, j ′, i′) is denoted by

qijj′i′ . Theorem 5.7 gives the following bounds on qijj′i′ :

aijj′i′ =

⌈

−1 +
2h− (di − dj)

T

⌉

,

bijj′i′ =

⌊

1−
2h+ (ri − rj) + (ri′ − rj′)− (dj − di)

T

⌋

.

Therefore, whenever di − dj < 2h, we have aijj′i′ = 0. Since the train corresponding

to the nodes j and j′ is the faster train, we have ri− rj ≥ 0, ri′ − rj′ ≥ 0. Therefore,

as long as dj − di < 2h, we obtain that bijj′i′ = 0, and thus that qijj′i′ = 0.

Because of the constraints in the dwell square, no pair of subsequent events in the

dwell square can take place concurrently. Note that it is allowed for i and j ′, and for

i′ and j to take place concurrently. Applying Lemma 5.11 twice to the dwell square

(i, j′, i′, j′), once directing the cycle clockwise, and once directing it counterclockwise,
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we obtain

qijj′i′ =







−1 if and only if i, j, i′, j′ occur in the cyclic sequence i→ j → j ′ → i′,

1 if and only if i, j, i′, j′ occur in the cyclic sequence j → i→ i′ → j′.

These two sequences are the only sequences in which one of the trains enters node n

after the other train, and leaves the node before the other train. Therefore, whenever

di− dj < 2h, and thus qijj′i′ = 0, the two trains depart from n in the same sequence

as the sequence in which they arrive.

Suppose that a third train dwells at node n, with dwell arc (k, k′), and that

the constraint graph contains the dwell squares (i, k, k′, i′) and (j, k, k′, j′). Then

the analysis above shows that, if di − dk < 2h and dk − di < 2h, then the trains

corresponding to the nodes i and k arrive at and depart from n in the same sequence.

Similarly, the trains corresponding to the nodes j and k arrive at and depart from

network node n in the same sequence if dj − dk < 2h and dk − dj < 2h. And

if the arrival and departure sequences for the three trains are the same, then they

must also travel along the tracks (m,n) and (n,m′) in the same sequence. Then, by

Lemma 5.13, we have that

qijk = qi′j′k′ ,

with (i, j, k) and (i′, j′, k′) safety triangles in the safety cliques Amn and Anm′ , re-

spectively.

The above analysis is summarized in the following lemma.

Lemma 5.16. Consider a network node n ∈ N , and three dwell squares (i, j, j ′, i′),

(i, k, k′, i′), (j, k, k′, j′) for that network node. The trains involved in the dwell

square enter network node n using the track (m,n), and depart using the track

(n,m′). Suppose that di − dj < 2h, dj − di < 2h, di − dk < 2h, dk − di < 2h,

dj − dk < 2h, and dk − dj < 2h. Then it holds that

qijk = qi′j′k′ ,

with (i, j, k) and (i′, j′, k′) safety triangles in the safety cliques Amn and Anm′ ,

respectively.

Remark 5.17. In practice, dwell windows are usually between 1 and 10 minutes

wide. As was mentioned before, the headway time h takes practical values

between 3 and 5 minutes. So, in many cases, the condition of Lemma 5.16 is

satisfied.
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Figure 5.5: Triangles (1, i, j), (1, j, k), (1, i, k) and (i, j, k)

5.4.4 Valid Inequalities for Sequencing Trains

Consider a track a ∈ A, and the safety clique Ka with nodes 1, . . . , k, and i < j

for each arc (i, j) ∈ Ka, similar to the above. All arcs (i, j) are safety arcs with

time window [h + ri − rj , T − h]T . Let H be the star tree in Ka rooted at node

1, so H consists of the arcs (1, i) for i = 2, . . . , k. The tree H generates a cycle

basis B, which consists of the safety triangles (1, i, j) for all (i, j) 6∈ H. As before,

each triangle (1, i, j) contains two forward arcs and one backward arc, and therefore

we have q1ij ∈ {0, 1} for all cycles (1, i, j) ∈ B. The CPF for the constraint graph

induced by Ka, with cycle basis B, reads

Find a solution (x, q)

satisfying
∑

(i,j)∈C+

xij −
∑

(i,j)∈C−

xij = TqC for all C ∈ B (5.11a)

h+ ri − rj ≤ xij ≤ T − h for all (i, j) ∈ Ka (5.11b)

xij ∈ R for all (i, j) ∈ Ka (5.11c)

qC ∈ {0, 1} for all C ∈ B (5.11d)

The following theorem presents valid inequalities for such a constraint graph Ka.

Lemma 5.18. Consider a non-basic triangle (i, j, k) ∈ Ka, with i < j < k. Then

the following inequality is valid

0 ≤ q1ij + q1jk − q1ik ≤ 1. (5.12)

Proof . Figure 5.5 shows that the cycle vector γijk for triangle (i, j, k) is expressed in

basis cycle vectors as follows

γijk = γ1ij + γ1jk − γ1ik.
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Therefore, the cycle periodicity variable qijk, which is not in the model, is expressed

as qijk = q1ij + q1jk − q1ik. Applying Theorem 5.7 to triangle (i, j, k) yields aijk =

0, bijk = 1. ¥

Remark 5.19. Note that (5.12) is not implied by the bounds 0 ≤ q1ij , q1jk, q1ik ≤ 1,

since these only give −1 ≤ q1ij + q1jk − q1ik ≤ 2. Further, the analysis in this

section does not depend on the star tree H being rooted at node 1 of Ka. Such

a star tree is only used because it yields triangle cycles (1, i, j) with integer

variables q1ij ∈ {0, 1}, and these keep the argument clear. Using any other

star tree also gives a cycle basis consisting only of triangles. And because of

the time windows [h+ ri− rj , T −h] for all arcs, these triangles correspond to

integer variables that can still take only two values. But those values may be

different from 0 and 1, for example {−1, 0} or {1, 2}.

Using the analogy between cyclic and linear sequencing presented in Lemma 4.17,

one can also interpret Lemma 5.18 as follows. Choose event i as reference point, and

consider the linear sequence of the events j and k. The variable qijk can be seen

as a binary decision variable, representing whether the events j and k are linearly

sequenced as j → k, corresponding to the value qijk = 0, or as k → j, giving the

value qijk = 1. Choosing node 1 as reference point, we know that the linear sequence

of the events i, j, k may not contain a cyclic sub-sequence. So the cyclic subsequence

given by i → j, j → k, k → i is forbidden. Interpreting the variables q as sequence

indicators, one sees that this subsequence corresponds to the solution

(q1ij , q1jk, q1ik) = (0, 0, 1).

Similarly, the cyclic subsequence given by i → k, k → j, j → i yields the forbidden

solution

(q1ij , q1jk, q1ik) = (1, 1, 0).

Inequality (5.12) exactly forbids these two solutions. Moreover, it allows all other

solutions, as can be checked.

In the light of the above, the valid inequality (5.12) can be seen as a so-called 3-

dicycle inequality for the Linear Ordering Problem (see Grötschel et al., 1984, 1985).

In fact, from the Linear Ordering Problem, it follows that by enforcing inequali-

ties (5.12) for all non-basis triangles in Ka, all cyclic sub-sequences are forbidden.

Moreover, any other class of valid inequalities for the Linear Ordering Problem can

be used for this substructure of the CRTP graph.
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5.5 Cutting Planes for the CPF

This section describes two classes of cutting planes for the CPF. The first class

follows from Lemma 5.8, and generalizes the safety triangle inequalities from the

previous section. The second class was introduced by Nachtigall (1999).

5.5.1 Cycle Cuts

Lemma 5.8 formulates Odijk’s Theorem 4.3 in terms of the cycle periodicity variables

qC . The lemma states that an integer vector q is feasible for the CPF if and only

if aC ≤ qC ≤ bC for all C ∈ G. The CPF however contains only c cycle periodicity

variables qC , one for each cycle C ∈ B. The lemma below shows how the cycle bounds

aD and bD for non-basis cycles D can be added to the CPF as cutting planes.

Lemma 5.20. Let B = {C1, . . . , Cc} be a cycle basis of G, with cycle vectors

γ1, . . . , γc. For a non-basis cycle D 6∈ B, let (λ1
D, . . . , λc

D) be the linear combi-

nation of basis cycles that span D. Then the following inequality is valid

aD ≤
c
∑

i=1

λi
Dqi ≤ bD. (5.13)

Proof . The proof follows directly from Lemma 5.8. ¥

Lemma 5.20 is a general form of the safety triangle inequalities from the previous

section. We first derived those inequalities to show their relation with the sequence

in which trains depart from a station, and with the Linear Ordering Problem.

5.5.2 Change Cycle Cuts

Consider a cycle periodicity constraint written in the following way

∑

a∈C−

xa =
∑

a∈C+

xa − TqC .

Let x+ =
∑

a∈C+ xa, and x− =
∑

a∈C− xa. The dotted parallel lines in Figure 5.6

depict the function x− = x+ − TqC for fixed values of qC . The dotted lines for the

values aC and bC correspond to Odijk’s cycle cuts, and are therefore partly drawn

as bold arcs.
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Figure 5.6: A change cycle cut.

Next, define

a+ =
∑

a∈C+

la, b+ =
∑

a∈C+

ua,

a− =
∑

a∈C−

la, b− =
∑

a∈C−

ua.

Note that we do not divide by T or round here. It is clear that a+ ≤ x+ ≤ b+, and

a− ≤ x− ≤ b−. These bounds are drawn as dashed lines in Figure 5.6. Further,

define a′ = a+− b−, and b′ = b+−a−. The uppermost and lowermost dotted lines in

Figure 5.6 depict the function x− = x+−TqC for the values a′ and b′. Note that we

have aC = da′/T e and bC = bb′/T c. So, Odijk’s cycle cuts cut off the region between

the lines corresponding to a′ and aC , and the region between the lines corresponding

to b′ and bC .

The figure further shows that the gray polygon is the feasible region for the cycle

periodicity constraint. Therefore, the lines l1 and l2 cut off two triangles of the
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feasible region.

Let us first consider an expression for the line l1. The line that passes through

point 1 in the figure, with coordinates (x+, x−) = (a+, a−), and that is parallel to

the dotted lines, corresponds to the equation

x− = x+ − (a+ − a−).

To keep the figure clear, this line is not drawn. Point 2 is the intersection of the line

x− = a−, and the first line below the line x− = x+ − (a+ + a−) that corresponds to

an integer value of qC . So, point 2 is the intersection of the line x− = a− and the

line x− = x+ − a, where a is defined as

a = T

⌈

a+ − a−

T

⌉

.

It follows that point 2 has coordinates (x+, x−) = (a− + a, a−). Similarly, point

3 is the intersection of the line x+ = a+, and the first line above the line x− =

x+−(a++a−) that corresponds to an integer value of qC . That means that point 3 is

the intersection of the line x+ = a+ and the line x− = x+−a−1, under the condition

a+−a− 6= 0 modulo T . Therefore, point 3 has coordinates (x+, x−) = (a+, a+−a−1).

With these coordinates for the points 2 and 3, the line l1 is represented by the

inequality

x− ≥ α1x
+ + β1,

with

α1 = 1 +
1

a− − a+ + a
, and β1 = (1− α1)a

+ − a− 1.

A similar analysis for the points 4, 5, and 6 yields that line l2 passes through point

5 with coordinates (x+, x−) = (b+, b+ − b), and through point 6 with coordinates

(x+, x−) = (b− + b− 1, b−), where b is defined as

b = T

⌈

b+ − b−

T

⌉

.

Therefore, line l2 is represented by the inequality

x− ≤ α2x
+ + β2,

with

α2 =
b+ − b− − b

b+ − b− − b+ 1
, and β2 = (1− α2)b

+ − b.
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Nachtigall (1999) introduced these so-called change cycle cuts with the following

theorem.

Theorem 5.21 (Nachtigall, 1999). Consider a cycle periodicity constraint (5.3a).

Let a+, b+, a−, b−, α1, β1, α2, and β2 be defined as above, and aC and bC as

in Theorem 4.3. If α1 < 0, then the following inequality is valid

∑

a∈C−

xa ≥ β1 + α1

∑

a∈C+

xa. (5.14)

If α2 < 0, then the following inequality is valid

∑

a∈C−

xa ≥ β2 + α2

∑

a∈C+

xa. (5.15)

5.6 Cycle Bases and Fundamentality∗

This section shows that the class of fundamental cycle bases is integral. In the

existing literature, there is some ambiguity regarding the terminology for fundamen-

tal cycle bases (see Horton, 1987, Deo, 1982, Bollobás, 1998, Mardon, 1990, Gleiss,

2001). Therefore, we clearly distinguish between fundamental cycle bases and strictly

fundamental cycle bases.

Definition 5.22 (Strictly Fundamental Cycle Basis). A set B of c = |A|−|N |+1 cy-

cles in a graph G is a strictly fundamental cycle basis if there exists a spanning

tree H of G, such that its non-tree arcs generate B.

Lemma 5.23. Any non-basis cycle D is a {0,±1} linear combination of the cycles

in a strictly fundamental cycle basis B.

Proof . Each cycle in a strictly fundamental cycle basis B contains an arc that appears

exclusively in it, namely its generating non-tree arc. Placing these c unique arcs in

the first columns, the cycle matrix ΓB can be written in the form ΓB = [I|X], where

I is the identity matrix, and X represents the remaining part of the matrix.

Let the unique linear combination of basis cycles that yields the non-basis cycle

D be denoted by λ = (λ1
D, . . . , λc

D). That is, γD =
∑c

i=1 λi
Dγi, or, equivalently

γD = Γt
BλD =

[

I X
]t

λD =

[

I

Xt

]

λD =

[

λD

XtλD

]

.

∗This section is based on Liebchen and Peeters (2002a).
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So, for the first c elements of γD, we have [γD1, . . . , γDc] = [λ1
D, . . . , λc

D]. This

uniquely determines λD. Since γD ∈ {0,±1}|A|, it follows that λD ∈ {0,±1}c. ¥

The proof indicates the following scheme for constructing the linear combination

λD = (λ1
D, . . . , λc

D) that gives the non-basis cycle D:

λi
D =















1 if the generating non-tree arc of γi is a forward arc in D,

−1 if the generating non-tree arc of γi is a backward arc in D,

0 otherwise.

Definition 5.24 (Fundamental Cycle Basis). A set B = {C1, . . . , Cc} of cycles in a

graph G is a fundamental cycle basis if there exists an ordering of the cycles

in B such that Ci \ (Ci−1 ∪ · · · ∪ C1) 6= ∅ for i = 2, . . . , c.

Intuitively, a fundamental cycle basis can be interpreted as follows. Given an ordering

satisfying the fundamentality definition, each cycle contains at least one arc that is

not part of its predecessors in the ordering. It is easy to see that a strictly fundamental

cycle basis is also fundamental. Indeed, since each cycle in a strictly fundamental

cycle basis has a unique arc, it holds that Ci \ (Ci−1 ∪ · · · ∪C1) 6= ∅ for any ordering

of the cycles in a strictly fundamental basis.

Lemma 5.25. Any non-basis cycle D is an integer combination of the cycles in a

fundamental cycle basis B.

Proof . Let the basis cycle vectors γ1, . . . , γc be ordered according to the fundamen-

tality definition. We arrange the cycle matrix ΓB as follows. Row i contains cycle

vector γi, and the columns are arranged such that the unique arc of basis cycle Ci is

placed in column c − i + 1. Moreover, we direct basis cycle Ci such that entry i of

γi equals one. Since each cycle in the basis contains at least one arc that is not con-

tained in its predecessors, there may be multiple candidates for being placed in the

‘unique’ column. In that case, we arbitrarily choose one. Arranging the cycle matrix

in this way, it is written as ΓB = [A|X], where A is an upper triangular matrix with

all ones on the diagonal, and X represents the remaining part of the matrix.

Next, let the unique linear combination of basis cycles that yields D be denoted

by λD = (λ1
D, . . . , λc

D). That is, γD =
∑c

i=1 λi
Dγi, or, equivalently

γD = Γt
BλD =

[

A X
]t

λD =

[

At

Xt

]

λD =

[

AtλD

XtλD

]

.
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Consider the first c elements of γD. These give (γD1, . . . , γDc) = AtλD. The matrix

At is lower triangular with all ones on the diagonal, and all other entries are 0 or ±1.

Therefore the vector λD is all-integer. ¥

Note that the cycle basis B in Section 5.3.3 is not a fundamental cycle basis. This is

easily seen, since each arc appears in at least two cycles of the basis. It is therefore

not possible to re-order the cycles C1, . . . , C4 such that Ci \ (Ci−1 ∪ . . . ∪ C1) 6=

∅ for i = 2, 3, 4.

One can efficiently check whether a cycle basis B is fundamental, by trying to

construct an ordering satisfying the fundamentality condition as follows. In a fun-

damental cycle basis, at least one arc a in B is covered by only one cycle, say C∗.

This cycle becomes cycle Cc in the ordering. The cycles B \ {C∗} are a fundamental

cycle basis for G \ {a}. So, delete a from G, remove C∗ from B, and repeat the

procedure. If there are multiple candidate cycles that each cover a unique arc, we

arbitrarily select one as C∗. In the end, we either have an ordering of B satisfying

the fundamentality condition, or B is not fundamental. Note that the outcome of

the fundamentality check does not depend on the choice of C∗ in the case of multi-

ple candidates, since a candidate cycle that is not chosen keeps the property that it

covers a unique arc.

The next corollary classifies strictly fundamental and fundamental cycle bases as

integral.

Corollary 5.26. Strictly fundamental and fundamental cycle bases are integral.

Proof . This follows from Lemmata 5.23 and 5.25. ¥

5.7 Good Cycle Bases for Cyclic Railway Timetabling

The previous sections showed that it suffices to enforce the cycle periodicity con-

straints for all cycles in an integral cycle basis, and, moreover, that fundamental

cycle bases are integral. But a graph has many different cycle bases, and the ques-

tion arises whether some are better than others for formulating and applying the

CPF.

Suppose that we were to solve the CPF for the CRTP by brute force enumeration

of all possibilities for the vector q. Let WC = bC − aC be the width of the cycle C.
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A cycle periodicity variable qC can take WC + 1 different values. For a cycle basis

B, one sees that the vector q = (q1, . . . , qc) can take

W (B) =
∏

C∈B

(WC + 1) (5.16)

different values. We call W (B) the width of the cycle basis B. Therefore, brutely

enumerating all possible values for q is done in a minimum number of iterations when

using a cycle basis with minimum width. And even when using a more sophisticated

method, such as Branch&Bound or Branch&Cut, it is still sensible to formulate the

CPF with a small or minimum width cycle basis. Therefore, we are interested in

small width cycle bases for formulating the CPF. The remainder of this section

studies various types of cycle bases, and our computational tests in Chapter 7 will

show that, indeed, certain classes of cycle bases perform much better than others in

solving the CPF.

5.7.1 Transforming the Cycle Basis Objective Function

The width of a cycle basis is a product and therefore a non-linear quantity. More-

over, the non-linear operation of rounding involved in computing aC and bC further

obscures the construction of small or minimum width cycle bases.

First, in order to circumvent the product in the cycle basis width, define

LW (B) = logW (B) = log
∏

C∈B

(WC + 1) =
∑

C∈B

log(WC + 1). (5.17)

Since the logarithm is a monotonous transformation, a minimum width cycle basis

B∗ also attains the minimum for the function LW , and vice versa.

Next, consider the impact of rounding in computing aC and bC , and thus in

computing WC . To that end, we forget about rounding for the moment, and consider

the unrounded bounds a′C and b′C defined by

a′C =
1

T

(

∑

a∈C+

la −
∑

a∈C−

ua

)

,

b′C =
1

T

(

∑

a∈C+

ua −
∑

a∈C−

la

)

.
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For a cycle C we define its unrounded width W ′
C as

W ′
C = b′C − a′C =

1

T

(

∑

a∈C+

ua −
∑

a∈C−

la

)

−
1

T

(

∑

a∈C+

la −
∑

a∈C−

ua

)

=
1

T

(

∑

a∈C+

(ua − la)−
∑

a∈C−

(la − ua)

)

=
1

T

∑

a∈C

(ua − la)

=
1

T

∑

a∈C

wa.

That means that the direction of the arcs in C does not matter for the unrounded

width W ′
C of a cycle C. Moreover, W ′

C is a linear function of the time window widths

wa = ua− la. The gap between the unrounded and rounded width of a cycle C equals

W ′
C −WC =

(

b′C − bb
′
Cc
)

+
(

da′Ce − a′C

)

.

Using that, for some y ∈ R, 0 ≤ y − byc < 1 and 0 ≤ dye − y < 1, we obtain

0 ≤W ′
C −WC < 2.

So, as a heuristic for approximating LW (B), and thus W (B), we could consider

minimizing the following cycle basis objective function:

LW ′(B) =
∑

C∈B

log(W ′
C + 1) =

∑

C∈B

log(1 +
∑

a∈C

wa). (5.18)

And, since the direction of the arcs does not matter in this function, LW ′(B) may

also be defined on the underlying undirected graph U of G. In that case, minimiz-

ing LW ′(B) is similar to the so-called minimum cycle basis problem for undirected

graphs. The next section describes the minimum cycle basis problem.

5.7.2 Minimum Cycle Bases and the CPF

Consider the problem of finding a so-called minimum cycle basis in an undirected

graph.

Definition 5.27. Given an undirected graph U = (N,E) with edge weights we for

all e ∈ E, a minimum cycle basis of G is a cycle basis B∗ that minimizes the
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cycle basis weight
∑

C∈B∗

∑

e∈C

we. (5.19)

A minimum (strictly) fundamental cycle basis is a minimum cycle basis that

is (strictly) fundamental.

Several authors studied the problem of constructing a minimum cycle basis. Hor-

ton (1987) developed an O(m3n) algorithm for constructing a minimum cycle basis.

However, the previous section showed that we need an integral cycle basis for the

CPF, and Horton’s algorithm may return a non-integral cycle basis. Deo et al. (1982)

proved that the problem of finding a minimum strictly fundamental cycle basis1 for

the unit edge weight case is NP-complete.

These authors considered cycle bases for undirected graphs, but CRTP constraint

graphs are directed. Let wa = ua − la. Suppose that we use the following procedure

for constructing a strictly fundamental cycle basis to formulate the CPF.

Step 1. For the underlying undirected graph U = (N,E) of a constraint graph G =

(N,A, l, u), set the edge weights to

we = wa for all e ∈ E,

where e is the underlying edge of arc a ∈ A.

Step 2. For the edge weights we, apply a heuristic to compute a small weight (strictly)

fundamental cycle basis B′ for U .

Step 3. Using Theorem B.1 in Appendix B, arbitrarily direct the cycles in B ′ to

obtain a strictly fundamental cycle basis B for G.

Since wide arcs a, which yield a large increase in the width of a cycle basis, correspond

to edges with large weight we, the above procedure expectedly constructs a cycle

basis with small width. Each wide arc a generates exactly one cycle, and this is the

only cycle that arc a appears in. However, the rounding that may affect the values

aC and bC is not taken into account in this procedure.

5.7.3 Minimum Cycle Basis Algorithms

The polynomial time minimum cycle basis algorithm by Horton (1987) does not

necessarily return an integral cycle basis. However, we can still apply the algorithm,

and check the resulting cycle basis for integrality. Figure 5.7 shows Horton’s minimum

1Deo et al. use the term ‘minimum-length fundamental cycle set’.
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Algorithm: MCB.

Input: Undirected graph U = (N,E), edge weights we.

Output: Minimum cycle basis B.

for each pair of nodes i, j ∈ N do

Compute a shortest path Pij with respect to the edge weights we.

for all nodes k ∈ N do

for all edges {i, j} ∈ E do

Cycle C = Pik + Pjk + {i, j}.

if C is simple then

B′ ← C.

Sort the cycles in B′ by non-decreasing weight.

B = ∅.

for all cycles C ∈ B′ do

if |B| < |E| − |N |+ 1 and C is independent of the cycles in B then

B ← C.

Figure 5.7: The minimum cycle basis algorithm MCB (Horton, 1987).

cycle basis (MCB) algorithm. In a first step, the algorithm computes, for each edge

{i, j}, and for each node k, the shortest cycle through {i, j} and k. In a second step,

the minimum cycle basis is greedily selected from this family of cycles.

Deo et al. (1982) developed several algorithms for the NP-complete problem of

constructing a small weight strictly fundamental cycle basis for an undirected graph

U = (N,E) with unit edge weights. Their algorithms are Breadth First Search (BFS)

algorithms that grow a partial spanning tree H = (NH , AH), and follow the general

scheme in Figure 5.8. Because the algorithms have been developed for the unit edge

weight case, their basic strategy is to add high degree nodes to the spanning tree. In

each iteration, a node i∗ is selected, and all its adjacent edges {i∗, j} ∈ E are added

to the partial tree H, as well as the node j, as long as this does not create a cycle

in H. By checking in the for-loop whether j is already in NH , it is ensured that H

remains a tree at all times.

For the selection of the next node i∗, several rules are proposed, which are mostly

based on the degree of a node. These rules are the following.

SDS - Static Degree Sort. Consider the oldest node in H which does not have all

its neighbors in NH . SDS selects the highest degree neighbor of this oldest



5.7. Good Cycle Bases for Cyclic Railway Timetabling 119

Algorithm: BFS.

Input: Undirected graph U = (N,E).

Output: Short strictly fundamental cycle basis B.

NH ← highest degree node in U .

while |NH | < |N | do

Select the next node i∗.

for all nodes j adjacent to i∗ do

if j 6∈ NH then

NH ← j.

EH ← {i
∗, j}.

for all edges {i, j} 6∈ EH do

Compute the unique path Pij between i and j in UH = (NH , EH).

Cycle C = {i, j}+ Pij .

B ← C.

Figure 5.8: The breadth first search algorithms BFS (Deo et al., 1982).

node, and thus yields a standard BFS tree with respect to the highest degree

criterium.

DDS - Dynamic Degree Sort. DDS returns the highest degree node in the partial

tree H.

UE - Unexplored Edges. When considering the degree of a node in DDS, it is not

‘fair’ to count neighbor nodes that are already in the partial tree H. UE takes

this into account, and returns the node in H that has the highest degree with

respect to its neighbors outside of H.

MBFS - Multipoint Breadth First Search. MBFS selects the highest degree node in

U . This may be a node that is not part of H yet, so MBFS may build a forest

H.

Egyhazy (1985) and Czech et al. (1993) propose some tie breaking rules for the above

node selection rules. Based on these tie breaking rules, Deo et al. (1995) propose

some new fine-tuned variants for the above node selection rules. However, since these

still do not take into account edge weights, we leave them out of consideration.

Serafini and Ukovich (1989a) first proposed the following rather straightforward

algorithm, which takes into account the edge weights we. The algorithm constructs



120 Chapter 5. A Cycle Periodicity Formulation for the CRTP

Algorithm: FCB.

Input: Undirected graph U = (N,E), spanning tree H = (NH , EH), edge weights we.

Output: Short fundamental cycle basis B.

Sort the edges in EH by non-decreasing weight

for all edges {i, j} 6∈ EH do

E = E \ {i, j}.

Compute the shortest path Pij in U with respect to the edge weights we.

Cycle C = {i, j}+ Pij .

B ← C.

Figure 5.9: The fundamental cycle basis algorithm FCB (Berger, 2002).

a minimum spanning tree with respect to the edge weights we. Next, as in the BFS

algorithms above, the non-tree arcs are iteratively added to the tree, and the resulting

cycles form the cycle basis. Since it is based on the idea of constructing a minimal

spanning tree, we call this the MST algorithm.

The BFS and MST algorithms construct strictly fundamental cycle bases. How-

ever, we do not need a strictly fundamental cycle basis for formulating the CPF.

A regular fundamental cycle basis suffices. For a given spanning tree H, Berger

(2002) proposes the algorithm in Figure 5.9 for constructing a fundamental cycle ba-

sis (FCB). For each non-tree arc, the FCB algorithm iteratively computes the shortest

cycle through that arc in the graph G, rather than the unique cycle in the spanning

tree. Since the non-tree arcs are iteratively removed from G, FCB indeed constructs

a fundamental cycle basis. Moreover, by considering the arcs in decreasing order of

their weights, the heaviest arc appears in only one cycle, the second-heaviest arc in

at most two cycles, etc.

Given the structure of the CRTP constraint graph presented in Section 3.8, certain

good cycles for the CPF can be listed. These are presented next.

5.7.4 Using the CRTP Constraint Graph Structure

The safety triangles and dwell squares, which were introduced in the previous section,

are clearly two classes of good cycles for CRTP graphs. For most of the dwell squares

(i, j, j′, i′), the cycle periodicity variable qijj′i′ equals zero, and all safety triangles

(i, j, k) have bounds 0 ≤ qijk ≤ 1.

Section 5.3 showed that we need an integral cycle basis to formulate the CPF,

and Section 5.6 showed that strictly fundamental cycle bases are integral. Therefore,

it would be advantageous to construct a spanning tree that generates many safety
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Figure 5.10: Spanning tree H of the graph in Figure 3.14.

triangles and dwell squares.

As an example, consider Figure 5.10, which contains the constraint graph from

Figure 3.14. The bold arcs form a spanning tree H of the graph with two properties.

First, H contains the longest train path Pt. Second, each safety clique Kn is spanned

by a star tree rooted at a node in Pt. In Figure 5.10, the longest path is P3, and

each safety clique is spanned by a star tree rooted at a node in P3. Because of this

structure, the spanning tree H generates only trip squares and safety triangles.

Spanning the nodes in a CRTP graph with a tree H having the two mentioned

properties results in a cycle basis that consists for a large part of trip squares and

safety triangles. Therefore, we propose to set the arc weights such that a minimum

spanning tree generates many dwell squares and safety triangles. Let L(Pt) be the

number of trip-dwell arcs in the train path Pt, and let Lmax be the maximum of L(Pt)

over all trains t. We propose the arc weights below for constructing a minimum

spanning tree of the constraint graph G, and call the resulting cycle basis Long

Narrow Tree (LNT).

Trip-dwell arcs. For each trip-dwell arc a, set wa = 0.

Safety arcs. Each safety arc a is connected to two train paths Pt and Pt′ .

Set wa = Lmax −max{L(Pt), L(Pt′)}.
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Other arcs. For all other arcs a, set wa = Lmax + ua − la.

The trip-dwell arc weights ensure that all train paths are in the spanning tree. Safety

arcs that are connected to long train paths receive a small arc weight, and are there-

fore likely to be part of the spanning tree. Finally, all other arcs receive a weight

that is larger than the weight of any trip-dwell arc or safety arc.

Since the resulting spanning tree contains all train paths, the tree will generate

cycles that consist of many arcs. Most of these arcs are narrow trip-dwell arcs, and

therefore the resulting cycles will be long, but still quite narrow. However, since all

train paths are contained in the spanning tree, the resulting cycle basis may contain

only a moderate number of safety triangles.



Chapter 6

Extensions of the CRTP

This chapter presents some extensions of the CRTP. First, Section 6.1 shows how the

choice of a train trip time from a time window can be modeled, thereby relaxing the

assumption of fixed train trip times. Section 6.2 describes an extension that allows for

more flexibility in modeling connections between multiple trains. In Section 6.3, we

show how the capacity of a station can be modeled in both the CPF and the PESP.

Next, we describe in Section 6.4 how the minimization of rolling stock utilization

can be included into the general objective function. Finally, Section 6.5 describes

a heuristic solution method for the CRTP, which is inspired by the iterative way in

which planners tend to construct railway timetables in practice.

6.1 Variable Trip Times∗

So far, the trip times of trains between consecutive stations were assumed to be

fixed. This assumption may be too restrictive, for example, when an instance has no

feasible solution. It may then be helpful to increase the solution space by allowing

small deviations from the fixed trip times. This idea is illustrated by the time-space

diagram in Figure 6.1. Two trains travel along the track AB, a local train L and

a faster intercity train I. Suppose that, for reasons that lie outside the track AB,

the departure times from A for trains L and I should be dL and dI , as indicated in

the figure. The fixed trip times of both trains give the solid line for train L and the

dotted line for train I, resulting in the infeasible situation of train I overtaking train

L at the black dot. However, slowing down train I, giving the dashed line in the

time-space diagram, would solve the problem.

This section describes how to incorporate variable trip times in the CRTP model.

∗This section is based on Kroon and Peeters (2003).

123
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Figure 6.1: Example of a variable trip time

When introducing variable trip times, most of the constraints remain the same as

in the case of fixed trip times. Exceptions are the constraints that include the trip

times of the trains explicitly: trip time constraints (3.16b), safety constraints (3.16f),

which prevent trains from overtaking one another, and safety constraints (3.16g),

which prevent collisions on single tracks.

Suppose that a train t has a minimum trip time rt
a and a maximum trip time rt

a

on track a = (n,m). The variable trip time can then be expressed using a periodic

time window as follows (see also Section 3.7.1),

at
m − dt

n ∈ [rt
a, r

t
a]T . (6.1)

This is a straightforward extension of the fixed trip time constraint (3.16b). The

overtake and collision constraints (3.16f) and (3.16g) are more complicated, since

these constraints include the actually chosen trip time in their time window. And, in

the case of variable trip times, the actually chosen trip time is not known beforehand.

In the following sections, the auxiliary decision variable ρt denotes the actual trip

time of train t, as chosen from the time window [rt
a, r

t
a]T . Note that ρt is only used

in the discussion of variable trip times, and is not included in the model as a decision

variable.
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As was mentioned above, the goal of introducing variable trip times into the model

is to enlarge the solution space. Still, the trip times are preferred to be as small as

possible, that is, the trains are preferred to run at the highest possible speed. This

preference for small trip times can be expressed by the objective function described

in Section 3.7.1, which favors small trip times.

Below, we first describe the approach by Lindner (2000) for variable trip times,

and we explain why we choose to approach the problem differently. Next, we distin-

guish the following three cases for describing our approach to variable trip times:

(i) General case,

(ii) Disjoint trip time windows: [rt
a, r

t
a] ∩ [rt′

a , rt′

a ] = ∅,

(iii) Opposite directions on a single track.

In cases (i) and (ii) two trains t and t′ run in the same direction on the same track

a = (n,m), whereas in case (iii) the two trains have opposite directions on the single

track a = (n,m). For each of these three cases, necessary and sufficient conditions

are derived under which the solutions to the extended model are proven to be correct.

6.1.1 Lindner’s Approach

Lindner (2000) already proposed a method for including variable trip times into the

timetabling model. His approach guarantees that two trains do not overtake each

other by using additional variables ãt
m and ãt′

m. Modulo T these additional variables

are equivalent to the original arrival variables at
m and at′

m. However, the additional

variables are not restricted to the domain [0, T − 1], but to the domain [0, 2T − 1].

Further, Lindner uses the following constraints:

ãt
m − dt

n ∈ [rt
a, r

t
a], ãt′

m − dt′

n ∈ [rt′

a , rt′

a ],

dt′

n − dt
n + Tp ∈ [h, T − h], ãt′

m − ãt
m + Tq ∈ [h, T − h],

ãt
m − at

m = [0]T , ãt′

m − at′

m = [0]T .

Here, p and q are integer decision variables, and the last two constraints identify the

additional variables ãt
m and ãt′

m with the original variables at
m and at′

m modulo T . As

before, the parameter h denotes the minimum headway time.

Lemma 6.1. Trains t and t′ do not overtake each other if and only if p = q.

Proof . Without loss of generality, we may assume 0 ≤ dt
n < dt′

n < T . Obviously, this

implies p = 0. Now, assume that train t is overtaken by train t′. Then ãt′

m < ãt
m,

which implies q 6= 0. The ‘only if’ part of the proof is similar. ¥
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Unfortunately, constraints of the type p = q fall outside the general PESP model.

Indeed, Lindner defines the JPESP (Joined constraints PESP) as the PESP including

this additional type of constraint. In the remainder of this section we describe how

variable trip times can be modeled alternatively, using only PESP constraints of the

standard form. By using PESP constraints only, the CRTP model remains solvable

by any general solution method for the PESP.

6.1.2 General Case

In the general case, there are no restrictions on the trip time windows. In particular,

the trip time windows may be overlapping. That means that none of the two trains t

and t′ is the faster train of the two in all cases. Train t may be overtaken by train t′,

but it is also possible that train t′ is overtaken by train t, depending on the actually

chosen trip times ρt and ρt′ .

Theorem 6.2. The constraints dt′

n − dt
n /∈ (−h, h)T and at′

m − at
m /∈ (−h, h)T are

necessary to guarantee that

(i) trains t and t′ do not overtake each other on a, and

(ii) the minimum headway times between trains t and t′ at n and m are

respected.

If, moreover, max{rt
a − rt′

a , rt′

a − rt
a} < 2h, then these constraints are also

sufficient to guarantee conditions (i) and (ii).

Proof . It is obvious that the constraints dt′

n −dt
n /∈ (−h, h)T and at′

m−at
m /∈ (−h, h)T

are necessary and sufficient to guarantee condition (ii) on the minimum headway

times. It follows that the constraints are necessary to guarantee conditions (i) and

(ii).

Next, we prove that the constraints are also sufficient to guarantee condition (i)

if max{rt
a − rt′

a , rt′

a − rt
a} < 2h. To that end, suppose that dt′

n − dt
n /∈ (−h, h)T

and at′

m − at
m /∈ (−h, h)T , and that train t is overtaken by train t′ between n and m.

Obviously, this is only possible if ρt′ < ρt. We write the constraint dt′

n−dt
n /∈ (−h, h)T

as

h ≤ dt′

n − dt
n + Tp ≤ T − h, (6.2)

for some integer p. The term dt′

n − dt
n + Tp equals the time between the departure

of train t from n and the first departure of train t′ from n thereafter. Therefore, the

assumption that train t is overtaken means that there exists a real value 0 < α < 1

with

dt′

n − dt
n + Tp = (ρt − ρt′)α. (6.3)
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Combining equations (6.2) and (6.3) gives

h ≤ (ρt − ρt′)α ≤ T − h. (6.4)

The same analysis for the constraint at′

m − at
m /∈ (−h, h)T yields

h ≤ (ρt − ρt′)(1− α) ≤ T − h. (6.5)

Combining equations (6.4) and (6.5) gives

2h ≤ (ρt − ρt′).

However, this is a contradiction, since (ρt − ρt′) ≤ rt
a − rt′

a and, by assumption,

(rt
a − rt′

a ) < 2h. It follows that condition (i) is not satisfied. In a similar way, it can

be shown that train t does not overtake train t′. This demonstrates the sufficiency

of the constraints. ¥

The condition max{rt
a − rt′

a , rt′

a − rt
a} < 2h in Theorem 6.2 states that the max-

imum difference between the trip times of the trains should be less than the sum

of the minimum headway times at n and m. The theorem can be interpreted

as follows: if train t′ would overtake train t, while respecting the minimum head-

way times, then this would give the situation sketched in Figure 6.2. It then holds

that (ρt − ρt′) ≥ 2h. Therefore, in order to prevent this, we need to require that

max {ρt − ρt′} = rt
a − rt′

a < 2h. The condition rt′

a − rt
a < 2h can be interpreted

similarly as preventing train t from overtaking train t′.

If the condition max{rt
a−rt′

a , rt′

a−rt
a} < 2h is not satisfied, that is, if the maximum

difference between the trip times of the trains becomes too large, then one train may

overtake the other, although the constraints dt′

n − dt
n /∈ (−h, h)T and at′

m − at
m /∈

(−h, h)T are satisfied. For example, if rt
a = rt′

a + 2h, then the following solution

involving an overtake of train t by train t′ would be feasible: dt
n = 0, dt′

n = h,

at
m = rt

a, and at′

m = rt′

a + h = rt
a − h.

Moreover, if the condition max{rt
a−rt′

a , rt′

a −rt
a} < 2h is satisfied and the trip time

windows are overlapping, that is, [rt
a, r

t
a]∩ [r

t′

a , rt′

a ] 6= ∅, then the headway constraints

dt′

n − dt
n /∈ (−h, h)T and at

m − at′

m /∈ (−h, h)T are as strong as possible. Indeed, if

ρ ∈ [rt
a, r

t
a] ∩ [r

t′

a , rt′

a ], then the following solution is feasible: dt
n = 0, dt′

n = h, at
m = ρ

and at′

m = h+ ρ. However, the next section shows that the headway constraints can

be strengthened if the trip time windows are disjoint.

Finally, whenever the condition max{rt
a − rt′

a , rt′

a − rt
a} < 2h is not satisfied, one

may add a dummy node n′ halfway on the track a = (n,m). On the tracks (n, n′)
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Figure 6.2: Prevent overtaking for variable trip times.

and (n′,m), the trip times for trains t and t′ should be between 1
2r

t
a and 1

2r
t
a, and

between 1
2r

t′

a and 1
2r

t′

a , respectively. Moreover, the headway constraints at n′ are to

be respected. The condition max{rt
a− rt′

a , rt′

a − rt
a} < 2h concerning the track (n,m)

can thus be replaced by the condition max{ 1
2 (r

t
a−rt′

a ),
1
2 (r

t′

a −rt
a)} < 2h for both the

tracks (n, n′) and (n′,m). Obviously, the latter condition is weaker than the original

condition. If necessary, this approach may be repeated until the requested condition

is satisfied.

6.1.3 Disjoint Trip Time Windows

In the case of disjoint trip time windows, we have [rt
a, r

t
a]∩ [r

t′

a , rt′

a ] = ∅. This means

that one of the trains is the faster train of the two, whatever the actual trip times of

the trains. Without loss of generality, we assume that train t′ is the faster train of

the two, that is, rt
a > rt′

a . Since we now only need to prevent train t′ from overtaking

train t, stronger conditions can be derived than in the general case.

Theorem 6.3. If rt
a > rt′

a , then the constraints dt′

n − dt
n /∈ (−h, rt

a − rt′

a + h)T and

at
m − at′

m /∈ (−h, rt
a − rt′

a + h)T are necessary to guarantee that

(i) train t is not overtaken by train t′ on a, and
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(ii) the minimum headway times between trains t and t′ at n and m are

respected.

If, moreover, (rt
a − rt

a) + (rt′

a − rt′

a ) < 2h + (rt
a − rt′

a ), then these constraints

are also sufficient to guarantee conditions (i) and (ii).

Proof . First we prove the necessity of the constraints. If dt′

n − dt
n ∈ (−h, 0]T or

at
m−at′

m ∈ (−h, 0]T , then condition (ii) is not satisfied. Now suppose that dt′

n −dt
n ∈

(0, rt
a − rt′

a + h)T , which means that for some integer p we have

0 < dt′

n − dt
n + Tp < rt

a − rt′

a + h. (6.6)

Furthermore, the arrival times in m can be expressed as follows in terms of the

departure times from n:

at
m = dt

n + ρt + Tq and at′

m = dt′

n + ρt′ + Tr,

for some integers q and r. Using these relations, we find

at′

m − at
m + T (p+ q − r) = dt′

n − dt
n + Tp+ (ρt′ − ρt). (6.7)

Combining equations (6.6) and (6.7) gives

at′

m − at
m + T (p+ q − r) < h+ (rt

a − ρt) + (ρt′ − rt′

a ) ≤ h, (6.8)

where the latter inequality follows from rt
a ≤ ρt and ρt′ ≤ rt′

a .

As in the proof of Theorem 6.2, the term dt′

n − dt
n + Tp in (6.6) equals the time

between the departure of train t from n and the first departure of train t′ from n

thereafter. Now suppose that train t is not overtaken by train t′ between n and m.

That means that the difference in departure times must be greater than the difference

in trip times. In other words,

dt′

n − dt
n + Tp+ (ρt′ − ρt) > 0.

This, together with (6.7) and (6.8), gives

0 < at′

m − at
m + T (p+ q − r) < h. (6.9)

However, (6.9) implies that there is insufficient headway time between the trains

when they arrive in m. It follows that either (ii) is not satisfied, or we must reject

the assumption that train t is not overtaken by train t′, which means that (i) is
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not satisfied. Altogether, the constraint dt′

n − dt
n /∈ (−h, rt

a − rt′

a + h)T is necessary.

The necessity of the constraint at
m − at′

m /∈ (−h, rt
a − rt′

a + h)T can be demonstrated

similarly.

Next, we prove the sufficiency of the constraints if (rt
a − rt

a) + (rt′

a − rt′

a ) < 2h+

(rt
a − rt′

a ). Clearly, d
t′

n − dt
n /∈ (−h, rt

a − rt′

a + h)T and at
m − at′

m /∈ (−h, rt
a − rt′

a + h)T

together imply that condition (ii) is satisfied, since rt
a − rt′

a > 0.

Suppose next that dt′

n−dt
n /∈ (−h, rt

a−rt′

a +h)T and at
m−at′

m /∈ (−h, rt
a−rt′

a +h)T .

The first one of these constraints can also be written as

rt
a − rt′

a + h ≤ dt′

n − dt
n + Tp ≤ T − h, (6.10)

for some integer p. Again, the term dt′

n − dt
n + Tp equals the time between the

departure of train t from n and the first departure of train t′ from n thereafter. Now,

suppose that train t is overtaken by train t′ between n and m. Then there exists a

real value 0 < α < 1 with

dt′

n − dt
n + Tp = (ρt − ρt′)α. (6.11)

Equations (6.10) and (6.11) together give

rt
a − rt′

a + h ≤ (ρt − ρt′)α. (6.12)

The constraint at
m − at′

m /∈ (0, rt
a − rt′

a + h)T can be treated in a similar way, giving

at
m − at′

m + Tq = (ρt − ρt′)(1− α),

and

rt
a − rt′

a + h ≤ (ρt − ρt′)(1− α). (6.13)

Combining equations (6.12) and (6.13) gives

2rt
a − 2rt′

a + 2h ≤ (ρt − ρt′) ≤ rt
a − rt′

a , (6.14)

where the latter inequality follows from ρt ≤ rt
a and rt′

a ≤ ρt′ . However, (6.14) is a

contradiction, since the assumption (rt
a − rt

a) + (rt′

a − rt′

a ) < 2h + (rt
a − rt′

a ) implies

2rt
a− 2rt′

a +2h > rt
a− rt′

a . Thus condition (i) is not satisfied. This demonstrates the

sufficiency of the constraints. ¥

Theorem 6.3 can be interpreted using Figure 6.3. Suppose that the headway

requirements for the arrival at m are respected, that is, at
m − at′

m /∈ (−h, h)T . Since
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Figure 6.3: Prevent overtaking for disjoint trip time windows.

train t′ is always the faster train, all we need to do to prevent overtaking is to ensure

that there is enough time between the departures of the two trains from node n.

From Figure 6.3 it follows that we must have

dt′

n − dt
n /∈ XT = (−h, ρt − ρt′ + h)T ,

and that, in the extreme case, this means

dt′

n − dt
n /∈ X̄T = (−h, rt

a − rt′

a + h)T .

The other constraint has a similar interpretation. The condition (rt
a−r

t
a)+(rt′

a−r
t′

a ) <

2h + (rt
a − rt′

a ) can be interpreted as in Figure 6.2, when using the headway time

h̄ = rt
a − rt′

a + h in the condition rt
a − rt′

a < 2h̄ for that figure.

Note that Theorem 6.3 is stronger than Theorem 6.2. Indeed, by assumption

rt
a > rt′

a . Therefore, the constraints dt′

n − dt
n /∈ (−h, h + rt

a − rt′

a )T and at
m − at′

m /∈

(−h, h+rt
a−rt′

a )T are stronger than the constraints in Theorem 6.2, and the condition

(rt
a − rt

a) + (rt′

a − rt′

a ) < 2h+ (rt
a − rt′

a ) is weaker than the condition in Theorem 6.2.

With examples similar to those at the end of the previous section, one can show that

relaxing the condition (rt
a − rt

a) + (rt′

a − rt′

a ) < 2h + (rt
a − rt′

a ) allows for solutions
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in which trains overtake each other, and that the constraints in Theorem 6.3 are as

strong as possible.

6.1.4 Opposite Directions on a Single Track

In this section we describe the situation where two trains run in opposite directions

on a single track a. Train t runs from n to m, and train t′ runs from m to n. Since a

is a single track, meets and passes of the trains must take place at n or m. Moreover,

both in n and in m a minimum headway time of h minutes is to be respected.

Theorem 6.4. The constraints at′

n − dt
n /∈ (−h, rt

a + rt′

a + h)T and at
m − dt′

m /∈

(−h, rt
a + rt′

a + h)T are necessary to guarantee that

(i) the trains do not meet each other on a, and

(ii) the minimum headway times between trains t and t′ at n and m are

respected.

If, moreover, (rt
a − rt

a) + (rt′

a − rt′

a ) < 2h + (rt
a + rt′

a ), then these constraints

are also sufficient to guarantee conditions (i) and (ii).

Proof . First we prove the necessity of the constraints. If at′

n − dt
n ∈ (−h, 0]T or

at
m − dt′

m ∈ (−h, 0]T , then condition (ii) is not satisfied. Furthermore, if at′

n − dt
n ∈

(0, rt
a + rt′

a + h)T , then there exists an integer p such that

0 < at′

n − dt
n + Tp < rt

a + rt′

a + h. (6.15)

Again, the term at′

n − dt
n + Tp represents the time between the departure of train t

from n and the first arrival of train t′ at n thereafter. Now suppose that train t does

not meet train t′ somewhere between nodes n and m. Then this implies

at′

n − dt
n + Tp > ρt + ρt′ . (6.16)

Furthermore, at
m and dt′

n can be expressed as follows in terms of dt
n and at′

m:

at
m = dt

n + ρt + Tq dt′

m = at′

n − ρt′ + Tr.

Using these relations, we find

at
m − dt′

m − T (p+ q − r) = −(at′

n − dt
n + Tp) + ρt + ρt′ . (6.17)
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Combining equations (6.15) and (6.17) gives

at
m − dt′

m − T (p+ q − r) > −h+ (ρt − rt
a) + (ρt′ − rt′

a ) ≥ −h, (6.18)

where the last inequality follows from rt
a ≤ ρt and rt′

a ≤ ρt′ . From (6.16) and (6.17)

we get

at
m − dt′

m − T (p+ q − r) < 0. (6.19)

Now, equations (6.18) and (6.19) together give

0 < dt′

m − at
m + T (p+ q − r) < h.

However, this means that there is insufficient headway time between the arrival of

train t at m and the departure of train t′ from m. It follows that either (i) is not

satisfied, or we must reject the assumption that the trains do not meet underway

between n and m, which means violating (ii). Thus the constraint at′

n−dt
n /∈ (−h, rt

a+

rt′

a + h)T is necessary. The necessity of the constraint at
m − dt′

m /∈ (−h, rt
a + rt′

a + h)T

can be demonstrated similarly.

Next, we prove the sufficiency of the constraints if (rt
a−rt

a)+(rt′

a −rt′

a ) < 2h+rt
a+

rt′

a . To that end, suppose that at′

n −dt
n /∈ (−h, rt

a+rt′

a +h)T and at
m−dt′

m /∈ (−h, rt
a+

rt′

a +h)T . Then, since rt
a + rt′

a > 0, also at′

n −dt
n /∈ (−h, h)T and at

m−dt′

m /∈ (−h, h)T .

Thus, obviously, condition (ii) is satisfied.

The constraint at′

n − dt
n /∈ (−h, rt

a + rt′

a + h)T can also be written as

rt
a + rt′

a + h ≤ at′

n − dt
n + Tp ≤ T − h, (6.20)

for some integer p, with (at′

n − dt
n + Tp) equal to the time between the departure of

train t from n and the first arrival of train t′ at n thereafter. Now, suppose that

train t meets train t′ underway between n and m. Then there exists a real value α

with 0 < α < 1 such that

at′

n − dt
n + Tp = (ρt + ρt′)α. (6.21)

Combining equations (6.20) and (6.21) gives

rt
a + rt′

a + h ≤ (ρt + ρt′)α ≤ T − h. (6.22)

The constraint at
m− dt′

m /∈ (−h, rt
a + rt′

a + h)T can be treated in a similar way, giving

at
m − dt′

m + Tq = (ρt + ρt′)(1− α),
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Figure 6.4: Prevent collisions on a single track.

and

rt
a + rt′

a + h ≤ (ρt + ρt′)(1− α) ≤ T − h. (6.23)

Adding equations (6.22) and (6.23) gives

2rt
a + 2rt′

a + 2h ≤ (ρt + ρt′) ≤ rt
a + rt′

a . (6.24)

However, this is a contradiction, since the assumption (rt
a − rt

a) + (rt′

a − rt′

a ) < 2h+

(rt
a + rt′

a ) implies 2rt
a + 2rt′

a + 2h > rt
a + rt′

a . It follows that condition (i) is not

satisfied. This demonstrates the sufficiency of the constraints. ¥

Theorem 6.4 has the following interpretation (see Figure 6.4). Suppose that

at
m − dt′

m /∈ (−h, rt
a + rt′

a + h)T . Clearly, the headway times at m are respected.

To prevent the trains from meeting between n and m, we must ensure that there is

enough time between dt
n and at′

n at n. From the figure, it follows that this means

at′

n − dt
n /∈ XT = (−h, ρt + ρt′ + h)T ,
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which in the extreme case gives

at′

n − dt
n /∈ X̄T = (−h, rt

a + rt′

a + h)T .

The other constraint follows similarly. The condition (rt
a − rt

a) + (rt′

a − rt′

a ) < 2h +

(rt
a + rt′

a ) can be derived by considering the worst case that satisfies the constraints

at′

n − dt
n /∈ (−h, rt

a + rt′

a + h)T and at
m − dt′

m /∈ (−h, rt
a + rt′

a + h)T . Here, the term

worst means that both trains run at the lowest possible speed, and that one of the

constraints is binding, thereby creating a situation in which a meet is most likely.

Substituting ρt = rt
a, ρt′ = rt′

a , and at′

n − dt
n = rt

a + rt′

a + h into the remaining

constraint at
m − dt′

m /∈ (−h, rt
a + rt′

a + h)T then gives the condition.

Again, it can be shown that relaxing the condition (rt
a − rt

a) + (rt′

a − rt′

a ) <

2h + (rt
a + rt′

a ) may result in infeasible solutions, and that, given this sufficiency

condition, the constraints in the theorem are as strong as possible.

6.1.5 Practical experiences

In the general case, the additional flexibility that is created by the variable trip

times is rather small. Typically, the minimum headway time equals 3 minutes, and

therefore the sufficiency condition for the general case states that the maximum

difference between the trip times of the two trains should be less than 6 minutes. More

flexibility may be created by adding dummy nodes, as was indicated in Section 6.1.2.

In the case of disjoint trip time intervals, the total trip time flexibility of both trains

together should not exceed 6 minutes plus the gap between the two trip time intervals,

which usually gives considerable flexibility. In the case of opposite directions on a

single track, there is even more flexibility for the trip times. This is due to the term

(rt
a + rt′

a ) with a plus sign in the sufficiency condition instead of the term (rt
a − rt′

a ).

A prototype version of the variable trip time model has been implemented in

the decision support system DONS (for a more detailed description of DONS, see

Section 2.5). Using DONS, a planner may first try to construct a timetable based on

fixed trip times. If a feasible timetable does not exist, then the fixed trip times can

be made variable to some extent. After the variable trip times have been defined,

the system checks the necessary and sufficient conditions and generates the relevant

constraints. When necessary, dummy nodes may be added in order to satisfy the

sufficiency conditions. Now, a feasible timetable may exist due to the extension of

the solution space. Although this implementation is still rather limited, planners at

NSR and Railned are quite satisfied with the extension.
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6.2 Flexible Connections

Section 3.4.3 described how a connection between two specific trains can be modeled.

However, it may be too restrictive to define beforehand which two trains should

connect to each other. As an example, suppose that NSR decides to operate the

1900 train from the examples in Section 3.4 with frequency two, so twice per hour.

We denote the two involved trains by t1900,1 and t1900,2. It is then desirable to have

the timetabling model choose which one of the two trains t1900,1 and t1900,2 should

offer the connection with the 800 train, rather than fixing this choice beforehand.

This section describes how to incorporate such flexible connections into the CRTP

model. First, we discuss the above described situation of a connection between a

train line with frequency two and a train line with frequency one. Next, the idea

is generalized to the connection between a train line with frequency k, and a single

train with frequency one. Finally, we present the connection between two train lines

with frequency two, and discuss how to generalize the presented ideas to two train

lines with general frequencies.

We use the following notation for the trains involved in the connection. The

connecting trains are denoted by t1, . . . , tk, and the feeding trains by t′1, . . . , t
′
k′ . The

departure times of the connecting trains are denoted by d1, . . . , dk, and the arrival

times of the feeding trains by a1, . . . , ak′ . Throughout this section, we assume the

time window for the connection between the trains t1, . . . , tk and t′1, . . . , t
′
k′ to be

equal to [c, c]T . Further, the general synchronization constraints in Section 3.4.5

play an important part in our analysis of flexible connections.

6.2.1 Two-to-one Flexible Connections

This subsection considers the case k = 2, k′ = 1, that is, the case of two connecting

trains t1 and t2, and one feeding train t′. One of the trains t1 and t2 must offer a

connection with transfer time window [c, c] with the feeding train t′. Since there are

only two connecting trains, the synchronization time window for t1 and t2 is denoted

by [s, s]T . The arrival time of the single feeding train t′ is simply denoted by a.

The following theorem describes how to model the connection between the trains

t1, t2 and t′.

Theorem 6.5. Suppose that c− c < s. If

di − a ∈ [c, s+ c]T , and (6.25a)

di − a ∈ [s+ c, c+ T ]T , (6.25b)
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for i = 1, 2, then exactly one of the trains t1, t2 provides a [c, c] connection

with the train t′.

Proof . Lemma 4.9 implies that the constraints (6.25) are equivalent to

di − a ∈ [c, c]T , or (6.26a)

di − a ∈ [s+ c, s+ c]T , (6.26b)

for i = 1, 2. Recall that equality (3.10) states that s + s = T . This, together with

the condition s > c− c, ensures that the two time windows in (6.26) are disjoint.

If constraint (6.26a) is satisfied for i = 1, then t1 clearly provides a connection

with t′. Moreover, because of the synchronization constraint between t1 and t2, we

know that in this case d2 − a ∈ [s + c, s + c]T , which means that constraint (6.26b)

is automatically satisfied for i = 2.

The same argument holds for the case in which constraint (6.26a) is satisfied for

i = 2. Then, train t2 provides the connection, and constraint (6.26b) is automatically

satisfied for i = 1.

The above implies that constraint (6.26a) can not be satisfied for both i =

1 and i = 2. It follows that exactly one of the trains t1 and t2 provides a [c, c]

connection with the train t′. ¥

Recall from Section 3.4.6 that s = T
2 − δ. Typically, for T = 60, the value of δ

lies between zero and five minutes, and one hardly ever defines passenger transfer

connections with a flexibility of more than 25 minutes. Therefore, the condition

c− c < s poses no restriction in practice on defining a two-to-one flexible passenger

transfer connection. However, when defining rolling stock connections, the condition

may play a role.

Finally, note that a theorem similar to Theorem 6.5 can be stated for the opposite

situation with k = 1, k′ = 2.

6.2.2 Many-to-one Flexible Connections

In this subsection, we investigate the case of k connecting trains t1, . . . , tk, and one

feeding train t′, that is, the case of a general k, and of k′ = 1. One of the trains

t1, . . . , tk must offer a connection of c to c minutes with the feeding train t′. The ar-

rival time of the single feeding train t′ is again denoted by a. The following generaliza-

tion of Theorem 6.5 describes how the connection between the trains t1, . . . , tk, and t′

can be modeled. The theorem uses the general synchronization time windows [sij , sij ]

described in Section 3.4.5.
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Theorem 6.6. Suppose that c− c < T
k
− δ. If

di − a ∈ [c, c+ si,i−1]T , and (6.27a)

di − a ∈ [c+ si,i+1, c+ T ]T , (6.27b)

for i = 1, . . . , k, then exactly one of the trains t1, . . . , tk provides a [c, c]T

connection with the train t′.

Proof . As in Theorem 6.5, we use Lemma 4.9, which states that the constraints

(6.27) are equivalent to the following set of ‘or’ constraints:

di − a ∈ [c, c]T , or (6.28a)

di − a ∈ [c+ si,i+1, c+ si,i−1]T , (6.28b)

for i = 1, . . . , k. This equivalence only holds if the time windows in (6.28) are disjoint.

This means that the following must hold for each i = 1, . . . , k:

c < c+ si,i+1, and (6.29a)

c+ si,i−1 < c+ T. (6.29b)

Using the frequency time window bounds (3.8), one can check that both condi-

tions (6.29) yield c− c < T
k
− δ, which was our assumption.

Suppose that an arbitrary train tj provides a [c, c]T connection with train t′,

so constraint (6.28a) is satisfied for j. Next, consider the synchronization con-

straints (3.8) in Section 3.4.5, their symmetrical counter parts (3.11), and the equality

sij + sij = T (3.10). Together, these yield

dj − di ∈ [sij , sij ]T for all i 6= j.

These constraints imply that the following set of constraints is automatically satisfied:

dj − a ∈ [c+ sj1, c+ sj1]T ,

...

dj−1 − a ∈ [c+ sj,j−1, c+ sj,j−1]T ,

dj+1 − a ∈ [c+ sj,j+1, c+ sj,j+1]T ,

...

dk − a ∈ [c+ sjk, c+ sjk]T .
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So, for each i = 1, . . . , k, i 6= j, we have

di − a ∈ [c+ sj,j+1, c+ sj,j−1]T .

Because of the constraints (6.28), this means that none the trains ti, with i 6= j,

provides a connection with train t′.

Moreover, because of synchronization constraints (3.8), it is impossible that con-

straint (6.28b) is satisfied for each i = 1, . . . , k. It follows that at least one of the

trains t must satisfy (6.28a), and therefore that exactly one train provides the con-

nection with t′. ¥

The condition c− c < T
k
− δ usually poses no difficulties in practice when considering

transfer connections. For rolling stock connections, it may impose some restrictions.

However, there are not many practical situations where a rolling stock connection is

defined from one of more than two trains t to a single train t′.

As in the previous section, a similar theorem can be derived for the situation with

general k′ and k = 1.

6.2.3 Two-to-two Flexible Connections

The analysis for the situation with general k and k′ is quite complex, although the

basic idea is the same as in the previous two subsections. Therefore, we consider

the case k = k′ = 2, with two connecting trains t1 and t2, and two feeding trains

t′1 and t′2. We have the following two synchronization constraints in this case:

d2 − d1 ∈ [s, s]T , (6.30a)

a2 − a1 ∈ [s′, s′]T . (6.30b)

Since these are the only synchronization constraints, we omit the indices on the

synchronization time window bounds.

In the case k = k′ = 2, two connections with time window [c, c] should be es-

tablished between the trains t and t′. These two connections can be realized in two

ways:

(i) Train t1 connects with train t′1, and train t2 connects with train t′2.

(ii) Train t1 connects with train t′2, and train t2 connects with train t′1.

The problem is to decide how the four trains should connect to one another. Clearly,
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this problem is modeled by the following constraints:

d1 − a1 ∈ [c, c]T and d2 − a2 ∈ [c, c]T , (6.31a)

or

d1 − a2 ∈ [c, c]T and d2 − a1 ∈ [c, c]T . (6.31b)

Here, constraints (6.31a) correspond to connection (i), and constraints (6.31b) to

connection (ii). Suppose that train t1 connects to t′1, which means that the left-

most constraint in (6.31a) is satisfied. Using the synchronization constraint (6.30b),

and the fact that s′ + s′ = T , we see that in this case the following constraint is

automatically satisfied:

d1 − a2 ∈ [c+ s′, c+ s′]T . (6.32)

Similarly, if train t1 connects with train t′2, then the leftmost of constraints (6.31b)

is satisfied, and the synchronization constraint between t′1 and t′2 yields that the

constraint d1−a1 ∈ [c+s′, c+s′]T is automatically satisfied. Using a similar argument

for the two rightmost constraints in (6.31), we derive that (6.31) is equivalent to

d1 − a1 ∈ [c, c]T or d1 − a1 ∈ [c+ s′, c+ s′]T , and (6.33a)

d1 − a2 ∈ [c, c]T or d1 − a2 ∈ [c+ s′, c+ s′]T , and (6.33b)

d2 − a1 ∈ [c, c]T or d2 − a1 ∈ [c+ s′, c+ s′]T , and (6.33c)

d2 − a2 ∈ [c, c]T or d2 − a2 ∈ [c+ s′, c+ s′]T . (6.33d)

The only problem is that the situation in which both trains t1 and t2 connect with

the same train in t′ is a solution to (6.33). However, this solution is prevented by

the synchronization constraint (6.30a) between t1 and t2.

Finally, we apply Lemma 4.9 to the system (6.33), which gives

d1 − a1 ∈ [c, c+ s′]T and d1 − a1 ∈ [c+ s′, c+ T ]T , and (6.34a)

d1 − a2 ∈ [c, c+ s′]T and d1 − a2 ∈ [c+ s′, c+ T ]T , and (6.34b)

d2 − a1 ∈ [c, c+ s′]T and d2 − a1 ∈ [c+ s′, c+ T ]T , and (6.34c)

d2 − a2 ∈ [c, c+ s′]T and d2 − a2 ∈ [c+ s′, c+ T ]T . (6.34d)

Note that the values c, c, s′, and s′ must be such that the time windows in (6.33)

are disjoint, since else we may not apply Lemma 4.9.

Using both the synchronization constraints of t and t′ is the key idea for defining

many-to-many flexible connection constraints. However, for more than two-to-two

connections, the analysis becomes quite difficult, and so does the check of the disjoint
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time window condition, under which Lemma 4.9 can be applied. Therefore, we do not

further describe many-to-many flexible connections. For a more extensive analysis of

many-to-many flexible connections, we refer to Zuidwijk and Kroon (2000).

6.3 Modeling Station Capacity in the CRTP

The CRTP so far considered stations to be black boxes. It returns train arrival and

departure times, and leaves the construction of feasible platform assignments and

routings through the stations to be carried out in a later phase (see Zwaneveld et al.,

1996, Kroon et al., 1997, Zwaneveld, 1997). This section describes how the capacity

of a station can be modeled to some extent. However, our station capacity model

requires constraints that fall outside the PESP formulation (4.2). The results in this

section are also more generally applicable to model the capacity of a general node in

the railway network.

Let Un be the capacity of node n ∈ N , expressed as the maximum number of

trains that can be in node n at the same time instant. Usually, Un represents the

number of platforms in a station, or, more generally, the number of trains a station

can handle concurrently. This section describes how to place an upper bound Un

on the number of trains that is concurrently present at a station. Throughout the

section, we assume that, when two trains are present at a station n at the same time

instant, then each of the two trains consumes one unit of station capacity. So, for a

station n and two trains t and t′, both t and t′ consume one unit of station capacity if

dt
n = at′

n . When Un represents the number of platforms in station n, this assumption

means that each platform can host at most one train, and that each train needs a

platform.

In practice, one often sees that some platforms are dedicated to certain groups or

types of trains. For example, some platforms may be used only for trains heading in a

certain direction, or for intercity trains or local trains. Using the modeling procedure

in this section, one can also limit the number of trains for each platform group.

Below, we first describe a station capacity extension for the CPF. Next, a station

capacity extension for the PESP is presented.

6.3.1 Station Capacity in the CPF

A station square (i, j, k, l) in a station graph GS
n is a cycle (i, j, k, l) consisting of

two dwell arcs (i, j) and (k, l), and of the two arcs (k, j) and (i, l), see Figure 6.5(a).

Recall that the trains t and t′ have dwell time windows [dt
n, d

t

n] and [dt′

n , d
t′

n ], respec-

tively. If the arcs (i, l) and (k, j) are not defined in GS
n , we may add them with the
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Figure 6.5: (a) Station square (i, j, k, l), (b) Possible dwelling sequences for the trains
t and t′.

trivial time window [0, T − 1]. The following lemma is the basis of our station capac-

ity extension. It allows for determining when two trains are present in a station at

the same time.

Lemma 6.7. Consider a pair of trains t and t′ dwelling at a station n, with dwell

arcs (i, j) and (k, l), respectively. Assume that d
t

n, d
t′

n < 1
2T . If the arcs

(i, l) and (k, j) are not defined, add them with the trivial time window [0, T −

1]. Then the trains t and t′ are concurrently present in station n if and only

if qC = 0 for the cycle C = (i, j, k, l).

Proof . First, assume that the arcs (i, l) and (k, j) both have time window [0, T − 1],

and compute the cycle bounds on C:

aC =

⌈

1

T

(

dt
n + dt′

n − 2(T − 1)
)

⌉

= −2 +

⌈

dt
n + dt′

n + 2

T

⌉

,

bC =

⌊

1

T

(

d
t

n + d
t′

n

)

⌋

=

⌊

d
t

n + d
t′

n

T

⌋

.

By our general assumption on time windows, dt
n, d

t′

n ≥ 0. Using this, together with

the assumption d
t

n, d
t′

n < 1
2T , we obtain the cycle bounds aC = −1, bC = 0, so

qC ∈ {−1, 0}.
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Recall that the events i, j, k, l correspond to railway events as follows:

i = at
n, k = at′

n ,

j = dt
n, l = dt′

n .

Figure 6.5(b) illustrates the possible cyclic sequences for the dwelling of the trains

t and t′ at n. This figure, together with the above railway event interpretation of

the nodes, shows that in each possible cyclic sequence, except for the cyclic sequence

S = i → j → k → l, the trains t and t′ are concurrently present at station n. Only

for the cyclic sequence S, it is not clear beforehand whether the two trains will be

concurrently present at the station or not. Moreover, Lemma 5.11 yields that the

cyclic sequence S takes place if and only if qC = −1.

In the cyclic sequence S, the trains are present in the station at the same time

instant when events i and l, or j and k, or all four events, take place at the same

time instant. Consider this situation where either i and l, or j and k, or all four

events, take place concurrently. The cycle periodicity constraint for C reads

xij − xkj + xkl − xil = TqC . (6.35)

If i takes place at the same time as l, then xil = 0, and (6.35) becomes xij−xkj+xkl =

TqC . Using d
t

n, d
t′

n < 1
2T for xij and xkl, and the time window [0, T − 1] for xkj , we

obtain −T +1 ≤ xij − xkj + xkl < T . So, if l takes place at the same time as i, then

qC = 0. Analogously, qC = 0 when j takes place at the same time as k, and when all

four events take place at the same time.

So, the cyclic sequence S takes place if and only if qC = −1, and, moreover, within

S it is impossible for any of the four events to take place at the same time. Therefore,

the trains t and t′ are not concurrently present in the station if and only if qC = −1.

Thus, it follows that t and t′ are concurrently present in n if and only if qC = 0.

Finally, it is easily seen that the proof also holds when the arcs (i, l) and (k, j) have

narrower time windows than [0, T − 1]. ¥

The assumption on the upper bound of the dwell time windows is quite reasonable

in practice, since trains hardly ever dwell at a station for more than half the cycle

time.

Theorem 6.8 below states how station capacity can be modeled in the CPF. For

a station n with capacity Un, we consider each possible set of Un + 1 trains that

dwell at the station. If tn trains dwell at the station, then there are
(

tn

Un+1

)

such sets.

For such a set of Un + 1 trains, let S be the set of all the station squares between

the dwell arcs of those trains. Note that S contains a total of 1
2Un(Un + 1) station
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squares. Further, let Sn be the set consisting of all such sets S for the station n.

Theorem 6.8. Consider a station n with station graph GS
n . For each pair of dwell

arcs (i, j) and (k, l), if the arcs (i, l) and (k, j) are not defined in GS
n , add them

with the trivial time window [0, T −1]. Assume that for all trains t dwelling at

the station, d
t

n < 1
2T . Then the following constraints ensure that the station

capacity Un is respected:

∑

C∈S

qC ≤ −1 for all S ∈ Sn. (6.36)

Proof . By Lemma 6.7, two trains involved in a dwell square C are present at the

station concurrently if and only if qC = 0, and otherwise qC = −1. Consider some

set of Un+1 trains, and the corresponding set S. If these Un+1 trains are all present

at the station concurrently, then all variables qC , C ∈ S, have the value zero, and

constraint (6.36) is violated for this set S.

Conversely, if constraint (6.36) is violated for some set S, then all variables qC , C ∈

S, have the value zero. That means that there exists a set of Un + 1 trains, which

are all pairwise concurrently present at the station. Thus, there exists a time instant

at which Un + 1 trains are concurrently present at the station. ¥

6.3.2 Station Capacity in the PESP

In the PESP model, the basic idea is the following. For every train t, we count the

trains that are present at station n at the same time as t, and limit that number

by the capacity Un. The analysis in the PESP model is based on the interpretation

of the variables pij described in Section 4.3.2. There, we argued that for a periodic

constraint with uij ≤ T − 1, the integer variable pij can be interpreted as indicating

the sequence in which the events i and j take place on the linear axis [0, T − 1].

More precisely, pij was shown to indicate the sequence of the events i and j on

the linear axis [0, T − 1] as follows:

pij =







0 if event j takes place after, or at the same time as event i,

1 if event j takes place before event i.

The value pij = 0 does not distinguish between, on one hand, i and j taking place

at the same time, and, on the other hand, j taking place after i. Therefore we also

define the following constraint on the event pair (i, j):

1 ≤ vj − vi + T p̄ij ≤ T, (6.37)
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where p̄ij is a new integer decision variable. Because constraint (6.37) has a time

window with width T − 1, it poses no extra restriction on the variables vi and vj .

Moreover, p̄ij can be restricted to take only the values {0, 1}. For p̄ij , we have the

sequence interpretation

p̄ij =







0 if event j takes place after event i,

1 if event j takes place before, or at the same time as event i.

Adding constraint (6.37) does not make matters much more complex, since any choice

for pij has the following strong implications for p̄ij :

pij = 1⇒ p̄ij = 1,

pij = 0⇒







p̄ij = 1 if and only if vi = vj ,

p̄ij = 0 otherwise.

(6.38)

Constraint (6.37), and in particular the integer variable p̄ij , is used in Theorem 6.9

to count the number of events that take place concurrently with the arrival or the

departure of a train t′.

Suppose that a station graph GS
n with arrival and departure node sets Na

n and Nd
n

contains all arcs

(i, j) with i ∈ Na
n , j ∈ Nd

n, and (6.39)

(i, j) with i < j, i, j ∈ Na
n . (6.40)

So GS
n contains an arc from every arrival node to every departure node, and an arc

between each pair of arrival nodes, directed from the lower indexed node to the higher

indexed one. If GS
n does not contain all the arcs defined above, add them with the

trivial time window [0, T − 1]. For an arrival node i, let Aa
i be the set of arcs to and

from other arrival nodes, and let Ad
i be the set of arcs from i to departure nodes, not

including the dwell arc incident to i.

Theorem 6.9. Consider a station graph GS
n as described above. For each i ∈ Na

n ,

and for each arc (i, j) ∈ Aa
i , if lij = 0, add the periodic constraint

1 ≤ vj − vi + T p̄ij ≤ T,

with p̄ij ∈ {0, 1}. Then the following constraints ensure that a station capacity
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of Un is respected:

1+
∑

(i,j)∈Aa
i

p̄ij+
∑

(j,i)∈Aa
i

(1−pji)−
∑

(i,j)∈Ad
i

pij+
∑

(i,j)∈Adwell
n

pij ≤ Un for all i ∈ Na
n .

(6.41)

Proof . The proof is based on the sequence interpretation of the variables pij and p̄ij

on the linear axis [0, T ]. Whenever the proof mentions ‘before’ or ‘after’, this is meant

to consider the linear axis [0, T ] only.

Consider a train t, and the corresponding arrival event i ∈ N a
n . Of all trains

t′ with corresponding arrival event j > i, the first sum term in (6.41) counts the

number arriving at n before, or at the same time as train t does. By using p̄ij , the

trains t′ arriving at the same time as t are also counted. Similarly, the second sum

term in (6.41) counts the number of trains t′ arriving at n before, or at the same

time as train t does, for all trains t′ with corresponding arrival event j < i. Since the

counting is done through the term (1− pij), the summation includes concurrencies.

The third sum term counts the number of trains that leave n before t arrives. Since

trains that leave at the same time as t arrives should not be counted as departed, we

use pij here. The fourth term, finally, counts the number of trains that are dwelling

at station n between time instants T and 0. These trains can therefore be seen as

the stock of trains present at the station at time instant 0.

Thus, adding the stock of trains and the trains arriving before the arrival of t,

adding one to incorporate for train t itself, and subtracting the trains leaving before

t arrives, we obtain the total number of trains present at station n concurrently with

train t. For any train t, the total number of trains in station n concurrently with t

is limited by Un. ¥

6.4 The Rolling Stock Circulation Objective

The train cycles presented in Section 3.8.1 directly relate to the number of rolling

stock compositions that are required to operate a cyclic railway timetable. This

section describes that relation, and shows how to use it to define the rolling stock

objective function Fs, which was introduced in Section 3.7.

We start with a description of the most basic case, in which the rolling stock

circulation is fixed beforehand. This fixation is such that a rolling stock composition

first operates some connection, then waits for some time at its destination station,

and subsequently operates the same connection in the opposite direction. Next, we

describe the case in which the model has more freedom in choosing the rolling stock

circulation.
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Figure 6.6: A train cycle C

6.4.1 Fixed Rolling Stock Circulation

Consider the case described in Section 3.8.1, in which a rolling stock composition first

carries out the journey from terminus A to terminus B, and subsequently the reverse

journey from B to A. This situation corresponds to the train cycle C in Figure 6.6

(see also Figure 3.13). For the time being, we omit the subscript tt′ on the train cycle

C. Suppose that a train departs from terminus A at time instant τ , travels to the

other terminus B, dwells there for some time, departs again for the opposite journey,

arrives at A, dwells there for some time, and departs again for B at time instant τ ′.

Measuring the elapsed time from τ until τ ′ in whole minutes (so not modulo T ), we

have that τ ′ − τ =
∑

a∈C xa, because C is a directed cycle. Since
∑

a∈C xa = TqC ,

the term TqC can be seen as the time it takes a train to ‘travel along the cycle C’.

Because of the integrality of qC , it will take a train either T or 2T or 3T etc.

minutes to travel along its train cycle C. Moreover, the timetable is cyclic, which

means that every T minutes a train departs from terminus A for terminus B. So, if

it takes a train T minutes to travel along the cycle C in a certain timetable, then

the same rolling stock composition can operate that trip in the next cycle period.

If, however, it takes a train 2T minutes to travel along the cycle C, then the rolling

stock composition will not be back in A in time to execute the next trip, and a second

rolling stock composition is needed. And if it takes a train 3T minutes to travel along

C, then both the first and the second rolling stock compositions will not be back in

A after T minutes, and we need a third rolling stock composition. Extending this

argument, one sees that the integer variable qC for a train cycle C exactly measures

the number of rolling stock compositions required to operate the journeys from A to

B, and from B to A.

Therefore, we can use the variables qC for train cycles C to construct a timetable

that minimizes the required number of rolling stock compositions. Let C t be the set

of all train cycles in an instance G = (N,A, l, u). The minimization of the number



148 Chapter 6. Extensions of the CRTP

of required rolling stock compositions is then achieved by minimizing the objective

function

Fs =
∑

C∈Ct

qC . (6.42)

The function Fs simply adds the number of trains needed for each train cycle C ∈ C t.

6.4.2 Choosing the Rolling Stock Circulation

This section describes the case of two train lines t and t′, which are each operated

in both directions. Train line t is operated in one direction by train t1, and in the

other direction by train t2. Similarly, train line t′ is operated by the trains t′1 and t′2.

We consider the situation in which, for a certain terminus station, the train lines are

allowed to either turn on themselves, or to turn on the other train line. That is, we

allow the following to take place at the terminus station:

(i) Both train lines turn on themselves, which means that train t1 turns on train

t2, and train t′1 turns on train t′2.

(ii) The train lines turn on one another, which means that train t1 turns on train

t′2, and train t′1 turns on train t2.

We show how to model these situations such that the model can choose the minimum

combined rolling stock circulation.

We assume that the departures of the trains t2 and t′2 from the terminus are

related by a synchronization constraint with time window [s, s]. Further, we assume

that all turn around time windows are equal to [c, c]. Finally, we assume that, at

the other termini of the train lines t and t′, both lines turn on themselves. These

assumptions clarify the analysis, but are not crucial.

Figure 6.7 illustrates the problem by means of a small constraint graph. The cycles

C and C ′ are the train cycles for trains t and t′, respectively, for circulation (i). Node

a represents the arrival of train t1 at the terminus, and node d the departure of train

t2 from the terminus. Similarly, nodes a′ and d′ represent the arrival and departure

of trains t′1 and t′2. The dashed arc from node d to node d′ is the synchronization

arc. The four double-lined arcs represent the choice arcs for the turning of the train

lines t and t′. Cycle C1 in Figure 6.8(a) shows the combined circulation (ii).

The double-lined arcs leaving node a show that train t1 can turn on train t2, which

is represented by the arc (a, d), or train t1 can turn on train t′2, which is represented

by arc (a, d′). Similarly, arc (a′, d′) represents the turning of train t′1 on train t′2,

and arc (a′, d) the turning of train t′1 on train t2. We will explain below why these

turn around arcs are double-lined. The two leftmost and single-lined turn around
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arcs represent the turning of the train lines at the other termini. These arcs do not

play an important part in our analysis, and are included because they are part of the

train cycles C and C ′.

Next, we describe how the choice between the rolling stock circulations (i) and (ii)

can be modeled. At the end of Section 3.4.3, we explained that turn around con-

straints can be seen as a special type of connection constraint, since they model a

connection between the train that ends at the terminus, and the train that starts at

the terminus. So, the choice between the circulations (i) and (ii) is quite similar to

the two-to-two flexible connection in Section 6.2.3. Indeed, as in Section 6.2.3, the

choice between the two above circulations is modeled by the constraints

d− a ∈ [c, c]T and d′ − a′ ∈ [c, c]T , (6.43a)

or

d− a′ ∈ [c, c]T and d′ − a ∈ [c, c]T . (6.43b)

And, as in Section 6.2.3, these constraints can be written as

d− a ∈ [c, c+ s]T and d− a ∈ [c+ s, c+ T ]T , and (6.44a)

d− a′ ∈ [c, c+ s]T and d− a′ ∈ [c+ s, c+ T ]T , and (6.44b)

d′ − a ∈ [c, c+ s]T and d′ − a ∈ [c+ s, c+ T ]T , and (6.44c)

d′ − a′ ∈ [c, c+ s]T and d′ − a′ ∈ [c+ s, c+ T ]T , (6.44d)

under the condition that c− c < s = 1
2T − δ. The system (6.44) is the reason for the

double-lined arcs in Figure 6.7. Each of the double-lined arcs in fact represents two

arcs, one for the leftmost constraints in (6.44), and one for the rightmost constraints.

In the further analysis below, we use the CPF for the CRTP. Therefore, it is

important to note that, for each of the four double-lined turn around arcs, we have

two tension variables, since there are in fact two arcs. For a double arc between two

nodes i and j, we denote the two tension variables by xij and x̄ij , with time windows

xij ∈ [c, c + s], and x̄ij ∈ [c + s, c + T ]. Moreover, this means that the constraint

graph in Figure 6.7 contains more cycles than it seems at first sight. For example,

the train cycle C in fact consists of two cycles, since there are two arcs between nodes

a and d.

For our rolling stock circulation choice, however, we only need to consider the

cycles that contain the tension variables xij . This follows from the observation that

the variables xij lie in the time windows [c, c+ s], so they represent the actual turn

around times. Note that the other tension variables x̄ij are still needed for correctly
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modeling the choice between circulations (i) and (ii). They are just not needed

for determining the number of rolling stock compositions. In the remainder of this

section, we therefore only consider the tension variables xij for double arcs.

Now that it is clear how to model the choice between the circulations (i) and (ii),

we proceed with the problem of determining the minimum combined circulation. Let

γ and γ′ be the cycle vectors for cycles C and C ′, and let q and q′ be the corre-

sponding integer variables. Further, for each of the cycles Ci, i = 1, 2, 3, let γi be

the corresponding cycle vector, and let qi be the corresponding integer variable. As

was explained in the previous section, the number of train compositions needed to

operate circulation (i) equals q + q′. Similarly, the number of train compositions for

circulation (ii) equals q1.

Next, consider the cycles C2 and C3 in Figure 6.8, and direct these such that

the synchronization arc appears forwardly in both cycles. Then, both cycles consist

of the forward synchronization arc with time window [s, s], and of a forward and a

backward turn around arc. Recall from the above that we consider these turn around

arcs as corresponding to tension variables xij , with time windows [c, c + s]. Using

Lemma 5.7, we obtain the following bounds on the integer variables q2 and q3:

⌈

c− c+ s− s

T

⌉

≤ q2, q3 ≤

⌊

c− c+ 2s

T

⌋

.

Since s+ s = T, and s = 1
2T + δ, and further assuming that c− c < T − 2δ, we find

that q2, q3 ∈ {0, 1}.

Finally, we apply Lemma 5.11 to the cycles C2 and C3, to see that

q2 =







1 if and only if the cyclic sequence a→ d′ → d takes place,

0 if and only if the cyclic sequence a→ d→ d′ takes place.

q3 =







1 if and only if the cyclic sequence a′ → d′ → d takes place,

0 if and only if the cyclic sequence a′ → d→ d′ takes place.

The cycle periodicity constraint for C2 reads xad + xdd′ − xad′ = Tq2. And, because

of (6.43), we know that either xad ∈ [c, c] and xad′ ∈ [c+ s, c+ s], or xad′ ∈ [c, c] and

xad ∈ [c+ s, c+ s]. One can inspect that the latter case corresponds to q2 = 1, and

the former to q2 = 0. Since a similar argument holds for cycle C3, the above relation
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can also be stated as

q2 =







1 if and only if circulation (ii) is operated,

0 if and only if circulation (i) is operated.

q3 =







1 if and only if circulation (i) is operated,

0 if and only if circulation (ii) is operated.

Note that this implies q3 = 1− q2.

This means that we can use either q2 or q3 as a binary variable that indicates

which of the circulations (i) and (ii) is operated. Arbitrarily choosing q2 for this role,

we can thus minimize the rolling stock circulation in this example by minimizing the

non-linear expression

(1− q2)(q + q′) + q2q1. (6.45)

This expression states that if circulation (i) is operated, the objective is to minimize

q + q′, and otherwise the objective is to minimize q1.

Next, we rewrite the non-linear objective (6.45) to a linear objective function,

which requires the reformulation of some cycles in terms of other cycles. To that

end, let C4 be the clockwise directed cycle formed by the four double-lined arcs in

Figure 6.7, and let γ4 and q4 be its cycle vector and integer variable. One can check

that γ1 = γ + γ′ + γ4, and thus we have q1 = q + q′ + q4. That means that (6.45) is

equivalent to

(1− q2)(q + q′) + q2(q + q′ + q4) = q + q′ + q2q4.

Further, it holds that γ4 = γ3 − γ2, and thus that q4 = q3 − q2. Together with the

earlier found equality q3 = 1− q2, this gives q4 = 1− 2q2. Substituting this into the

above expression, we obtain

q + q′ + q2q4 = q + q′ + q2(1− 2q2).

In the latter expression, the term q2(1 − 2q2) has value zero whenever q2 = 0, and

value −1 whenever q2 = 1. For the considered situation in Figure 6.7, the mini-

mum combined rolling stock circulation is therefore obtained by the linear objective

function

Minimize q + q′ − q2. (6.46)

The above analysis holds for a general pair of train lines t and t′, that are related

by a synchronization constraint, and for which the choice of the rolling stock circula-

tion is modeled by a system of turn around constraints as (6.44). We did assume that
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c− c < T − 2δ, but this assumption is hardly restrictive in practice, especially since

we already have the general time window assumption c − c ≤ T − 2. So, the above

model is less restrictive than it seems. For example, the same modeling approach

can be applied to the turn around times at the other termini for the trains t and t′,

that is, to the leftmost turn around arcs in Figure 6.7. This offers another degree

of freedom in constructing a timetable that minimizes the rolling stock utilization.

However, for the above approach to be applicable, we do need to decide beforehand

which pairs of trains are allowed to turn on one another.

6.5 A Cycle Fixation Heuristic

In Section 2.1 we explained that, in practice, planners construct timetables by itera-

tively fixing the schedule of a train. Typically, a planner first schedules international

and intercity trains, interregional trains next, and finally completes the timetable by

scheduling the local trains. Also in the DONS DSS, planners usually first enter some

intercity trains, compute a timetable, add some more intercity trains, again compute

a timetable, etc. Next, they iteratively add interregional trains, and finish with the

local trains. Clearly, the timetable computed after adding some new trains may differ

completely from the timetable computed in the previous step. If the subsequently

computed timetables remain the same for some iterations during the construction

process, then the planner tends to develop an ‘intuitive feeling’ for this timetable.

Therefore, significant changes in subsequent timetables are considered undesirable

by practitioners.

The cycle fixation heuristic described in this section is inspired by this practical

planning method. Rather than trying to compute a timetable for a complete instance

in one run, we propose to use a multi-stage approach. The stages need not correspond

to train types. For example, one may first plan the timetable for a certain part of

the network, and add other parts of the network in subsequent stages.

6.5.1 An Illustrative Example of Fixing Cycles

We start the description of the cycle fixation heuristic with the example of first

planning a timetable for the intercity network, then fixing the sequence of the intercity

trains, adding all other trains, and computing a timetable for the complete network.

The sequence of the intercity trains is fixed by fixing the cycle integer variables for

all safety triangles in the intercity network constraint graph.

Let the CRTP instance representing the complete railway system be given by

the constraint graph G = (N,A, l, u), and let Ḡ = (N̄ , Ā, l̄, ū) be the subgraph of
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G corresponding to the intercity network. So all nodes i ∈ N̄ represent arrival and

departure events for intercity trains only, any arc a ∈ Ā connects two nodes in N̄ ,

and the vectors l̄ and ū contain the time window lower and upper bounds for the

arcs in Ā.

Step 1: Construct a timetable for Ḡ. First, use the CPF to construct a timetable for

the intercity instance Ḡ. Let the solution be denoted by (x̄, q̄).

Step 2: Fix the sequence of the intercity trains. Section 5.4 described the relation be-

tween safety triangles in safety cliques and the cyclic sequencing of trains.

There, Lemma 5.13 stated that the departure sequence from a station n of

three trains i, j, and k relates to the triangle (i, j, k) in the safety clique Kn as

follows:

q̄ijk =







0 if and only if events i, j, k occur in the cyclic sequence i→ j → k,

1 if and only if events i, j, k occur in the cyclic sequence i→ k → j.

As a consequence, fixing the variables q̄ijk for all safety triangles (i, j, k) ∈ Ḡ

results in fixing the sequence in which the trains leave the stations. Let K̄ be

the set of all safety cliques in Ḡ. We shall use the values q̄ijk for (i, j, k) ∈ K̄

to fix the intercity train sequences.

Step 3: Construct a timetable for G. We compute a timetable for G by solving the

CPF for G, while fixing the intercity train sequences to the sequences in the

timetable obtained in Step 2. For each safety triangle (i, j, k) ∈ K̄, and for a

cycle basis B, let (λ1
ijk, . . . , λ

c
ijk) be the linear combination of basis cycles that

yields the triangle (i, j, k). We solve the following problem:

Minimize F (x)

satisfying
∑

a∈C+

xa −
∑

a∈C−

xa = TqC for all C ∈ B (6.47a)

∑

C∈B

λC
ijkqC = q̄ijk for all (i, j, k) ∈ K̄ (6.47b)

la ≤ xa ≤ ua for all a ∈ A (6.47c)

xa ∈ R for all a ∈ A (6.47d)

qC ∈ Z for all C ∈ B (6.47e)

In the above formulation, constraint (6.47b) fixes the intercity train sequences

to those obtained in the timetable for Ḡ.
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Note that, because of the fixing of the intercity train sequences through constraints

(6.47b), the formulation (6.47) may not be feasible, even if the original instance G

does have a feasible solution.

6.5.2 Formal Description of the Heuristic

The above example can be generalized in two directions. First, instead of using

a two-stage approach, one may choose to use multiple stages of iteratively fixing

train sequences, for example, first high speed and international trains, then intercity

trains, then interregional trains, and finally local trains. Second, the fixation in a

stage does not have to concern all trains of a certain type. For example, for some

part of the railway network, we may choose to consider all trains in each stage, and

to iteratively increase the size of the considered network part. These two possibilities

for the fixation in a stage are discussed in more detail in the next section.

For an instance G = (N,A, l, u), let us consider S stages, numbered 1, . . . , S, and

thus a sequence of constraint graphs G1, . . . , GS , with G1 ⊂ G2 ⊂ · · · ⊂ GS = G.

For stage s, graph Gs is defined as Gs = (Ns, As, ls, us). As in the example, the

vectors ls and us contain the time window lower bounds and upper bounds for the

arcs in As. Moreover, for each stage s, let Cs be the total set of cycles for which the

integer variables are fixed in that stage. So, Cs contains the cycles for which solution

values were obtained in the stages 1, . . . , s− 1. The structure of this so-called cycle

fixation set Cs reflects the aspects of the timetable that are fixed when proceeding

from one stage to the next.

For a cycle D ∈ Cs, the fixed value of the integer variable is denoted by q̄D.

For formulating the CPF in stage s, we use a cycle basis Bs. For a cycle D ∈ Cs,

and for a cycle basis Bs, let (λ1
D(s), . . . , λc

D(s)) be the linear combination of basis

cycles in Bs that yields D. The cycle fixation heuristic iteratively solves the following

mathematical program for s = 1, . . . , S:

Minimize F (x)

satisfying
∑

a∈C+

xa −
∑

a∈C−

xa = TqC for all C ∈ Bs (6.48a)

c
∑

i=1

λi
D(s)qi = q̄D for all D ∈ Cs (6.48b)

lsa ≤ xa ≤ us
a for all a ∈ As (6.48c)

xa ∈ R for all a ∈ As (6.48d)

qC ∈ Z for all C ∈ Bs (6.48e)
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This program is just the CPF, formulated with the cycle basis Bs, and with the

extra constraint (6.48b). This extra constraint requires the fixation of the cycle

integer variables for the cycles in Cs to the values that were obtained in the previous

s− 1 stages.

6.5.3 Choosing Stages and Cycle Fixation Sets

We argued that, by choosing the cycle fixation sets Cs properly, one can fix certain

properties of the timetable when going from one stage to the next. This section

describes two possible choices for these sets. It shows that the number of stages S is

closely related to the cycle fixation sets Cs.

Fixing cyclic sequences within train types Rather than considering intercity trains in

the first stage and all other trains in the second stage, suppose that we are

given an ordered classification t1, . . . , tS of S train types. The first type t1

represents the most important train type, and the last type tS represents the

least important one. The most important train type t1 corresponds to stage

1, the least important train type to stage S, and the types in between to the

stages 2, . . . , S − 1. The cycle fixation sets are constructed such that in stage

s the sequence of all trains of types t1, . . . , ts−1 is fixed, as in Step 2 of the

example.

Fixing cyclic sequences within parts of the network A second option for choosing the

stages, and the cycle fixation sets, is to start with a small part of the railway

network, to construct a timetable, and to fix the sequences of the trains for that

part. Next, increase the size of the considered part iteratively, and after each

iteration fix the sequence of all trains for that part of the network. The number

of stages S then equals the number of increases until arriving at the complete

railway network. Since we iteratively increase the size of the network, we not

only construct a sequence of constraint graphs G1, . . . , GS , but also a sequence

of railway networks, denoted by G1 ⊂ · · · ⊂ GS = G, where the network for

stage s is defined as Gs = (N s,As) (see Section 3.5).



Chapter 7

Computational Results

We tested the models and ideas presented in the previous chapters on several real-life

railway timetabling instances. This chapter reports on the computational results of

these experiments. We first describe the test instances in Section 7.1. Next, Sec-

tion 7.2 presents some preprocessing techniques for reducing the sizes of the corre-

sponding constraint graphs, and for strengthening the time windows. In Section 7.3,

we report on our findings for solving the PESP formulation for the CRTP. Sec-

tion 7.4 discusses the experimental results of the cycle basis algorithms presented

in Section 5.7. Next, based on the thus constructed cycle bases, we formulate the

CPF, and compare the computation times for solving the model for the various cycle

bases. Section 7.6 describes our findings for solving the CPF with the robustness ob-

jective function, and Section 7.7 reports on the results for the rolling stock utilization

objective. The constraint violation objective function is the subject of Section 7.8.

In Section 7.9, we investigate the effects of adding cutting planes to the CPF, and

Section 7.10 describes the results of our experiments for the cycle fixation heuristic.

Finally, Section 7.11 compares the quality of our solutions with the solutions obtained

by the CADANS algorithm (Schrijver and Steenbeek, 1994).

For solving the Mixed Integer Programs (4.2) and (5.3), we used the MIP solver

CPLEX 7.5 (CPLEX website, 2002). Unless stated otherwise, we used the default

settings for all CPLEX parameters. All experiments were performed on an AMD

Athlon XP 1500+, with 512 MB memory, operating under Linux kernel 2.4.10.

7.1 Description of the Instances

Our computational experiments considered three real-life instances, which were ob-

tained from NSR and Railned. The three instances are based on the Dutch railway

157
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system for 1997/1998, which is quite similar to the 2001/2002 railway system. For

all three instances, we consider a cycle time of one hour, that is, T = 60 minutes.

IC97 Instance IC97 contains all trains for the Dutch 1997/1998 intercity network.

The instance consists of 50 stations and 15 train lines. All trains have frequency

one, but large parts of the network are served by multiple train lines. In that

case, frequency constraints between these multiple lines are stated, which define

a 30 minute service on the majority of the routes. These frequencies are as-

sumed to be perfect, which means that the corresponding frequency constraints

are equality constraints. Connection constraints are defined such that one can

travel between any two intercity stations with only a brief transfer time. The

instance also contains many combining and splitting events between trains.

ICIR97 Instance ICIR97 represents the 1997/1998 intercity and interregional net-

works for the Netherlands. For the intercity network part, it is equal to the

IC97 instance. It additionally consists of 11 interregional trains, and 24 sta-

tions that are served by the interregional trains, but not by the intercity trains.

Most of the interregional trains have perfect frequency two. Again, connection

constraints are defined so as to offer convenient and swift travel between most

stations.

NH97 The NH97 instance consists of all trains in the 1997/1998 timetable for the

part of the Netherlands north of the line Leiden–Amsterdam, known as North-

Holland. It contains 50 stations, and 10 train lines of various train types,

namely intercity trains, interregional trains, local trains, and one cargo train.

Since the instance does not contain international trains, there are no fixed

arrival or departure time constraints. All train lines but the cargo train have

frequency two, with bandwidth δ = 2. Connection constraints are defined to

enable transfers between several trains.

The IC97 and ICIR97 instances are defined too tightly, and are therefore infeasi-

ble. As such, we can use them to test the objective function Fv (see Section 3.7).

Moreover, the IC97 and ICIR97 instances are feasible when we increase the upper

bounds on the dwell and connection time windows. So, after increasing these upper

bounds, we can still use the objective functions Ft, Fr, and Fs. In fact, all compu-

tations in this chapter for the IC97 and ICIR97 instances with the Ft, Fr, and Fs

objective functions were performed with the increased upper bounds on the dwell

and connection time windows.

The ICIR97 instance is the largest and most complex test instance. Indeed, we

were not able to compute any integer optimal solution for ICIR97. Therefore, we
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used the cycle fixation heuristic from Section 6.5 in order to obtain good solutions

for the ICIR97 instance.

For more detailed information on the instances, we refer to Appendix C, and to

Table 7.1 in the next section. Moreover, Appendix C also shows a visualization of

the constraint graph for the IC97 instance.

7.2 Preprocessing

We first present some techniques for shrinking the usually very large constraint graphs

as they are obtained from DONS. Next, we describe an algorithm for strengthening

the remaining time windows. Finally, the CPF is re-formulated such that all cycle

periodicity integer variables have lower bound zero.

7.2.1 Shrinking the Constraint Graph

Our instances are obtained from the cyclic railway timetabling decision support sys-

tem DONS (see Section 2.5). The initial size of the instances can be reduced drasti-

cally by applying some basic shrinking techniques. By deleting nodes and arcs from

the constraint graph G, we may also delete some cycles. This in turn reduces the

number of integer variables, which can considerably improve the solution process.

Removing parallel arcs. Instances obtained from DONS typically contain many par-

allel arcs. For example, they contain safety constraints between trains that

belong to the same train line. But trains within a train line are typically al-

ready separated by their frequency constraints. We intersect the time windows

of the parallel arcs, and replace them by a single arc with the intersected time

window. In doing so, it is important to check that the resulting intersected

time window is connected (see Section 4.3).

Nodes with degree one or two. Nodes with degree one in the constraint graph can be

deleted, since they are not included in any cycle. A tension corresponding to a

deleted arc can be calculated in a post-processing phase. The adjacent arcs of

a node with degree two can be contracted, which means that they are merged

into a single arc. The time window of the contracted arc is the sum of the

original two time windows. Let a node j with degree two have adjacent arcs

(i, j) and (j, k), and periodic time window constraints

vj − vi ∈ [lij , uij ]T ,

vk − vj ∈ [ljk, ujk]T .
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Then the arcs (i, j) and (j, k) can be contracted into an arc (i, k) which repre-

sents the constraint

vk − vi ∈ [lij + ljk, uij + ujk]T .

A contracted arc can be expanded during post-processing to calculate the ten-

sions for the two original arcs. As with removing parallel arcs, we only execute

a contraction if the time window of the contracted arc is not disjoint. One may

model the disjoint time window of a contracted arc by two parallel arcs, as was

explained in Section 4.3. But that would mean removing one arc because of

the contraction, and adding a new arc to model the disjoint time window.

Substituting trip time arcs. The DONS instances contain many trip time constraints.

Since a trip time constraint in the basic model is an equality constraint, either

the involved departure time variable, or the arrival time variable can be sub-

stituted out. We perform the substitutions such that all arrival time variables

are eliminated. The substitution of trip time arcs also has another impact.

Consider the small track graph in Figure 7.1(a) (see Section 3.8 for a descrip-

tion of the track graph). There, three trains are running along the track (1, 2),

resulting in three un-merged train paths P1, P2, and P3. The two displayed

safety cliques K1 and K2 are for leaving node 1 and entering node 2, respec-

tively. Figure 7.1(b) shows the track graph after substituting the trip time

arcs, which results in parallel safety arcs, namely the safety arcs at either end

of the substituted trip arcs. And these parallel safety arcs can be removed as

described above, which results in the graph in Figure 7.1(c).

The sizes of the constraint graphs can be reduced considerably by applying these

shrinking techniques. Table 7.1 summarizes some statistics on the sizes of the in-

stances, and shows the impact of the preprocessing techniques. The table shows the

number of nodes and arcs in the constraint graph, both before and after shrinking.

The total number of arcs is split into the various corresponding constraint types.

One clearly sees the reduction in the number of trip arcs and safety arcs. The last

row of the table shows the number of cycles in a cycle basis of the constraint graph.

The number of basis cycles is reduced considerably by the shrinking phase, which

yields a reduction in the number of integer variables in the CPF.
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P1

P2

P3

K1 K2 K1 K1

(a) (b) (c)

Figure 7.1: (a) Track graph, (b) after substituting trip arcs, (c) after removing
parallel safety arcs.

original preprocessed
IC97 NH97 ICIR97 IC97 NH97 ICIR97

nodes 1475 532 2553 205 222 455
arcs 3342 1766 7426 523 958 1657
trip arcs 1258 310 2088 0 0 0
dwell arcs 172 180 376 160 180 367
frequency arcs 42 70 162 42 70 162
connection arcs 34 24 39 34 24 39
fixed arcs 5 0 5 5 0 5
safety arcs 1831 1182 4756 282 684 1084

cycles 1868 1235 4874 319 737 1203

Table 7.1: Brief statistics on the sizes of IC97, NH97, and ICIR97, before and after
shrinking the constraint graph.
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Algorithm: Strengthening periodic time windows.

Input: PESP instance G = (N,A, l, u) and T .

Output: Strongest time windows [lij , uij ].

for all nodes i, j ∈ N with i 6= j do

set Sij =















[lij , uij ] if (i, j) ∈ A,

[T − uij , T − lij ] if (j, i) ∈ A,

[0, T − 1] otherwise.

found = true.

while found do

found = false.

for all nodes i, j, k ∈ N with i 6= j 6= k do

S′ = Sij ⊕ Sjk.

if Sik 6⊆ S′ then

Sik ← Sik ∩ S′.

found = true.

Figure 7.2: Strengthening the periodic time windows.

7.2.2 Strengthening Time Windows

For strengthening the time windows, we use the algorithm proposed by Schrijver

and Steenbeek (1994), Nachtigall (1999), Lindner (2000), which resembles the Floyd-

Warshall all-pairs shortest path algorithm (see, for example, Ahuja et al., 1993).

The algorithm views each time window [lij , uij ]T as a set of numbers

Sij =
{

xij modulo T | xij ∈ {lij , . . . , uij}
}

.

For two of these sets Sij and Sjk, it uses the binary operator ⊕ which is defined as

Sij ⊕ Sjk = {xij + xjk modulo T | xij ∈ Sij , xjk ∈ Sjk}.

So, for the nodes i and k, the set S ′ = Sij ⊕ Sjk expresses the time window that is

implied by the path (i, j, k) and the time windows [lij , uij ] and [ljk, ujk]. Any feasible

solution for the nodes i and k has to respect both the time window represented by

Sik, and the implied time window represented by S ′. Therefore, if Sik 6⊆ S′, then we

can replace Sik by Sik ∩ S′. Figure 7.2 shows the algorithm for strengthening the

periodic time windows.
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IC97 NH97 ICIR97

strengthened arcs 57 408 97
avg(uij − lij)
before 50.9 53.7 52.0
after 18.5 43.8 19.6

Table 7.2: The results of strengthening the time windows for the IC97, NH97, and
ICIR97 instances.

Nachtigall (1999) showed that the algorithm has a worst case time complexity

of O(T |N |4). We applied the algorithm to the three test instances, which took a

computation time of a few seconds. The results are shown in Table 7.2. The first row

in the table shows the number of arcs for which the time window improves. For these

arcs, the second row shows the average time window width before strengthening, and

the third row shows the average time window width after strengthening. Almost all

improved time windows are safety time windows, which explains the high average

width before strengthening. For the IC97 and ICIR97 instances, not too many arcs

are improved, but the realized improvements are more than half of the time window

width. For the NH97 instance, the average improvement is less, but about two third

of all safety arcs are improved.

7.2.3 Zero Lower Bounds

Finally, we re-formulate the CPF by substituting for each cycle periodicity integer

variable qC = q̄C + aC . This gives the following formulation for the CPF:

CPF: Minimize F (x)

subject to
∑

a∈C+

xa −
∑

a∈C−

xa = T q̄C + TaC for all C ∈ B (7.1a)

la ≤ xa ≤ ua for all a ∈ A (7.1b)

0 ≤ q̄C ≤ bC − aC for all C ∈ B (7.1c)

xa ∈ R for all a ∈ A (7.1d)

q̄C ∈ Z for all C ∈ B (7.1e)

Because of the zero lower bounds in (7.1c), this formulation contains a binary variable

for each cycle C ∈ B with width WC = bC − aC = 1. This has the advantage

that CPLEX can apply any special solution approaches for binary variables to these

variables.
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Best integer Best LP Nodes Root LP+cuts Root LP Optimal

IC97
Ft 4049 3880.63 231647 8.03 0 3942
Ft,q 737 14.13 74539 12.3 0 154
Fr 11 0 385340 0 0 1

NH97
Ft 1428 1414 186812 8 0 1418
Ft,q 180 0 161646 0 0 48
Fr 189 0 140592 0 0 ?

ICIR97
Ft 6437 6230.28 104300 2.28 0 6340∗

Ft,q 2830 2.07 50452 2.07 0 344∗

Fr - 0 76694 0 0 ?

Table 7.3: Results after 3600 seconds computation time using the PESP model for
the IC97, NH97, and ICIR97 instances (∗ best found solution).

7.3 Solving the PESP formulation

We first solved the IC97, NH97, and ICIR97 instances using the PESP formulation

(4.2). We used three objective functions, namely minimizing passenger travel time,

both as the linear function Ft and as the quadratic function Ft,q, and minimizing the

robustness function Fr. None of the instances could be solved to optimality within

a time limit of 3600 seconds. The results after 3600 seconds of computation time

are shown in Table 7.3. The first column shows the value of the best found integer

feasible solution, the second column the value of the LP relaxation, and the third

column the number of nodes in the Branch&Cut tree. The fourth column displays

the value of the root LP relaxation after CPLEX has added cutting planes, and the

fifth column shows the root LP value without these cuts. The final column shows the

value of the optimal solution, which we obtained in later experiments for the CPF

model. One sees that the PESP model may be quite far from the optimal solution

after 3600 seconds. We also executed the PESP model without a time limit, but after

several hours of computing all available memory had been used, and the model had

not yet been solved to optimality.

In the next sections, we show that the CPF model yields a much better perfor-

mance. Therefore, the remainder of this chapter focuses on the CPF (5.3).



7.4. Results of the Cycle Basis Algorithms 165

7.4 Results of the Cycle Basis Algorithms

We applied the cycle basis algorithms from Section 5.7 to the three instances IC97,

NH97, and ICIR97. This section illustrates the results for the IC97 instance through

tables and figures. Similar tables and figures for the other two instances can be

found in Appendix D. The results in this section are based on joint work with

Van den Braber (2001), who studied the BFS algorithms by Deo et al. (1982) for

CRTP problems. The section further reports on the MCB, FCB, MST, and LNT

algorithms.

First, we applied the MCB algorithm by Horton (1987), and checked whether the

resulting cycle basis was fundamental. The arc costs for the MCB were set equal

to the time window widths. Next, we executed the LNT and MST algorithms, and

applied Berger’s (2002) FCB algorithm to the LNT and MST spanning trees. We

name the resulting cycle bases LNF and MF, respectively.

The BFS algorithms by Deo et al. (1982) are designed for the unit arc weight

case, and their basic idea is to iteratively add high degree nodes to a partial spanning

tree. However, the structure of a CRTP instance is such that high degree nodes are

typically nodes that appear in large safety cliques. So, the BFS algorithms yield a

spanning tree consisting of many safety arcs, which is likely to result in a quite wide

strictly fundamental cycle basis.

Following Van den Braber (2001), we also executed the BFS algorithms with the

restriction that safety arcs are not allowed to be included. This yields the algorithms

SDSr, DDSr, UEr, MBFSr, where the ‘r’ stands for restricted. In fact, the restricted

algorithms have been implemented by running the ‘regular’ BFS algorithms on a

constraint graph from which all safety arcs have been deleted. Once the spanning

tree has been constructed, the safety arcs are inserted in the graph again, and the

strictly fundamental cycle basis is computed.

The results of the algorithms for the IC97 instance are reported in Table 7.4, and

Figures 7.3 and 7.4. The results for the instances NH97 and ICIR97 can be found

in Tables D.1 and D.2, and in Figures D.1–D.4. The first column in Table 7.4 shows

the log-width LW (B) of the cycle bases. The average width of the cycles in B is

given by avg(WC), in the second column, and the maximum width by max(WC), in

the third column. We define the length of a cycle C as LC = |C|, that is, as the total

number of arcs in C. The length of a cycle basis B is simply
∑

C∈B LC , and is shown

in the fourth column. The average length of the cycles in B is given by avg(LC), in

the fifth column, and the maximum length by max(LC), in the sixth column.

The leftmost vertical axis in Figure 7.3 depicts LW (B), and the rightmost vertical

axis depicts L(B). For each cycle basis, the white bar in Figure 7.3 shows the value
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LW (B) avg(WC) max(WC) L(B) avg(LC) max(LC)

MCB 119 0.54 4 2473 7.8 22
LNF 136 0.66 4 1843 5.8 40
MF 128 0.61 4 1868 5.9 40
LNT 220 1.52 5 5630 17.6 56
MST 211 1.42 5 5332 16.7 52
SDSr 235 1.50 4 3624 11.4 42
DDSr 217 1.39 6 3046 9.5 43
UEr 210 1.35 5 3336 10.5 34
MBFSr 215 1.42 9 3387 10.6 46
SDS 298 1.70 2 2072 6.5 17
DDS 268 1.49 6 1793 5.6 23
UE 227 1.16 5 1358 4.3 22
MBFS 282 1.69 9 1753 5.5 25

Table 7.4: Cycle basis algorithms results for IC97.

LW (B). The other, multiply colored, bar shows the length L(B). Moreover, this

bar also shows the arc type composition of the cycle basis. For example, the black

part of the second bar shows that the MCB cycle basis contains about 1150 dwell

arcs. Finally, Figure 7.4 shows how many cycles of a certain width each cycle basis

contains. Note that the total number of cycles is equal for each cycle basis.

A first surprising result is that, for all three instances, the MCB cycle bases turn

out to be fundamental. Less surprisingly, they are the bases with smallest width, and

also have small length. Moreover, the MCB cycle bases consist almost completely of

cycles that are either fixed beforehand, because their width equals zero, or of cycles

with width equal to one.

The LNT and MST algorithms yield the longest cycle bases, and this goes together

with a quite large width. The LNT and MST bases also have much more variety in

the distribution of the widths over the cycles, and contain a significant number of

cycles with widths up to five.

The MF and LNF cycle bases resemble the MCB cycle basis. They are both

narrow and relatively short, and also consist mostly of cycles with widths zero and

one.

The restricted BFS algorithms yield cycle bases that are wider than the above

described cycle bases. The lengths of the restricted BFS cycle bases lie between

those of the LNT and MST on one hand, and the MCB, LNF, and MF cycle bases

on the other hand. With respect to the distribution of the widths of the cycles, they

resemble the LNT and MST cycle bases.

Finally, the basic BFS algorithms yield a second somewhat surprising result.
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Figure 7.3: Cycle bases widths and lengths for the IC97 instance.
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By combining a small length with a large width, they show that the length and the

width of a cycle basis are not necessarily positively correlated. Moreover, they mainly

consist of cycles with widths up to three. Table D.1 for the NH97 instance shows

that the basic BFS cycle bases may be less wide than their restricted counterparts.

As for the arc composition of the cycle bases, we see that most cycle bases contain

about the same number of safety arcs. Only the basic BFS cycle bases contain more

safety arcs, which is explained by their focus on high degree nodes. Further, the

length of the longer cycle bases is mostly accounted for by dwell arcs and frequency

arcs, and, to a lesser extent, by connection arcs. This arc composition explains

how the LNT and MST cycle bases combine a large length with a relatively small

width, since dwell arcs, frequency arcs, and connection arcs typically have narrow

time windows.

7.5 Comparing the Cycle Bases for Solving the CPF

The goal of studying various cycle bases for the CPF is to improve the solution

process. We argued in Section 5.7 that small width cycle bases are likely to solve

the CPF faster, since they yield a smaller solution space. To test this statement, we

formulated and solved the CPF for each of the computed cycle bases. For this test,

we used the objective functions Ft for linearly minimizing the passenger travel time,

and Ft,q for quadratically minimizing the passenger travel time.

In an initial set of computational experiments, we found that the wide cycle

bases constructed by the basic BFS algorithm by Deo et al. perform very poorly in

solving the model. Their computation times exceeded our 3600 seconds time limit

for the instances IC97 and NH97. Therefore, these algorithms are not reported in

this section.

The results for the remaining cycle bases, namely MCB, LNT, MST, LNF, MF,

and the restricted BFS cycle bases, are discussed below. The tests yielded the fol-

lowing optimal solution values zopt:

zopt = 3942 for the objective function Ft for IC97,

zopt = 154 for the objective function Ft,q for IC97,

zopt = 1418 for the objective function Ft for NH97,

zopt = 48 for the objective function Ft,q for NH97.

For the linear objective functions, these solution values equal the total travel time

of the trains in the system. For the quadratic objective function, the solution values
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Time(s) Nodes Root LP+cuts Root LP

MCB 659 240088 3924 3892
LNT 39 12618 3919.26 3893
MST 31 9080 3931.12 3893
LNF 388 137576 3929.21 3891
MF 47 17580 3932.66 3893
SDSr 64 25715 3917.9 3889
DDSr 64 25941 3924.47 3891
UEr 44 18561 3924.43 3891
MBFSr 62 29246 3915.77 3883

Table 7.5: Solving the IC97 instance for various cycle bases, with the linear passenger
travel time objective Ft.

Time(s) Nodes Root LP+cuts Root LP

MCB 1087 173280 76.98 25
LNT 113 12204 89.44 26
MST 152 15830 88.78 26
LNF 985 114322 97.61 24
MF 169 22865 110.6 26
SDSr 197 24280 103.99 21
DDSr 140 19312 103.98 24
UEr 131 17299 103.98 24
MBFSr 139 17589 100.84 16

Table 7.6: Solving the IC97 instance for various cycle bases, with the quadratic
passenger travel time objective Ft,q.

measure, quadratically, how much the dwell and connection tension variables xa ∈

Ad ∪Ac exceed their time window lower bounds la.

The computational results for the IC97 instance are shown in Tables 7.5 and 7.6.

The results for the NH97 instance can be found in Tables D.3 and D.4 in Appendix D.

Each table shows the computation time in seconds, the number of nodes in the

Branch&Cut tree, the root LP relaxation value after adding violated cuts by CPLEX,

and the root LP relaxation value without these cuts. Note that, for the NH97 in-

stance, the LP relaxation value equals the optimal solution value. We were not able

to obtain integer feasible solutions for the ICIR97 instance in a reasonable amount

of time.

The MCB cycle basis performs unexpectedly poorly in solving IC97 and NH97.

The wider LNT and MST cycle bases solve both instances much faster than the

small width MCB cycle basis. Moreover, for the IC97 instance, the restricted BFS
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cycle bases perform quite well in solving the CPF. In combination with the above

mentioned poor performance of the basic BFS cycle bases, we conclude that a small

width cycle bases does not guarantee fast computation times. In fact, the small

width of the MCB cycle basis prevents it from containing long cycles. And the tables

suggest a positive influence of the cycle basis length on computation times. Because

of the larger length of the LNT, MST, and restricted BFS cycle bases, there is a lot

of overlap between the cycles in the basis. Therefore, fixing an integer variable qC in

the Branch&Cut process has more influence on the other, not yet fixed, cycles, than

in a short cycle basis. This positive effect seems to be stronger than the theoretical

disadvantage of a larger width.

7.6 The Robustness Objective Function

This section reports on the computational results for the robustness objective func-

tion Fr, which was described in Section 3.7.2. Based on the results in the previous

section, we only used the LNT and MST cycle bases for our robustness computations.

As with the passenger travel time objectives from the previous section, we were not

able to obtain an integer feasible solution for the ICIR97 instance in a reasonable

amount of computation time. Therefore, this section only reports on the IC97 and

NH97 instances.

We used a quadratic robustness objective function. Recall that the objective

function Fr penalizes values in the safety time windows which are close to the time

window bounds. Safety time windows are quite wide, since the headway time h = 3

in our instances, with cycle time T = 60 minutes. Therefore, we used Remark 3.2

with λmax = 2. So, the approximation of the quadratic function is exact for the sub-

window [µa−λmax, µa +λmax]T of a safety time window [la, ua]T . For the remainder

of the safety time window, we use the last linear approximation.

Table 7.7 shows the results for the robustness experiments. The table displays

the same information as the previous tables. It is clear that the robustness objective

takes more time to solve than the passenger travel time objective. Indeed, we were

not able to obtain an integer optimal solution for the NH97 instance within a 3600

seconds time limit. Table 7.1 indicates an explanation for these results. The instances

contain more safety arcs than dwell arcs and connection arcs. This especially holds for

the NH97 instance. Therefore, there are more variables that influence the objective

function Fr than for the objective function Ft. Moreover, these variables correspond

to wide safety time windows, and thus have a quite wide range.
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Time(s) Nodes Best integer Root LP+cuts Root LP

IC97
LNT 3385 359110 1 0 0
MST 1730 355695 1 0 0

NH97
LNT * 176743 137 0 0
MST * 268770 149 0 0

Table 7.7: Solving the IC97 and NH97 instances for the robustness maximization
objective function Fr (* = 3600 seconds time limit or 1 million nodes limit exceeded).

Time(s) Nodes Root LP Root LP+cuts

MST 3.1 937 47.75 50
LNT 5.66 1628 50.1 52

Table 7.8: Minimizing the rolling stock objective function Fs for the IC97 instance.

7.7 The Rolling Stock Objective Function

We applied the rolling stock objective function Fs to the IC97 and ICIR97 instances,

but were not able to solve the ICIR97 instance within our one hour time limit. The

rolling stock objective was not applied to the NH97 instance, since this instance

considers a part of the network only. Therefore, it does not contain the termini for

most trains, and misses the turn around constraints.

We used the basic version of Fs for the case in which each train turns on itself, as

described in Section 6.4.1. The international trains were excluded from the objective.

We solved the IC97 instance with the MST and LNT cycle bases, since these cycle

bases yielded the best results for the passenger travel time objective. The optimal

solution for the IC97 instance consists of 55 rolling stock composition, and this solu-

tion is computed in a few seconds. For the rolling stock objective, Table 7.8 shows

the same information as before.

7.8 The Constraint Violation Objective Function

As was described in Section 7.1, the IC97 and ICIR97 instances are defined too

tightly, which causes them to be infeasible. For the computations in the previous

sections, we adjusted the upper bounds of the dwell time windows and connection

time windows, so as to obtain feasible instances.

Let us describe this adjustment in more detail. For all dwell and connection arcs
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a ∈ Ad ∪Ac, we introduced a new time window [l′a, u
′
a] defined by

l′a = la,

u′a =







ua + 5 if a ∈ Ad,

ua + 2 if a ∈ Ac.

After this relaxation, both the IC97 and the ICIR97 instance were feasible.

Therefore, the quadratic objective function Ft,q from Section 7.5 can be inter-

preted as the constraint violation objective Fv for the extra space in the relaxed

time windows [l′a, u
′
a], a ∈ Ad ∪ Ac. The only difference between Ft,q and Fv is that

Ft,q also penalizes values in the original time window [la, ua], whereas Fv only pe-

nalizes values between ua and u′a. However, since Ft,q is a quadratic function, values

between ua and u′a are penalized much heavier than values in the original time win-

dow. Therefore, we shall use the function Ft,q to illustrate the constraint violation

objective function Fv.

A closer inspection of the results for the IC97 instance with the objective function

Ft,q yields that, in the optimal solution, only two dwell arcs use the extra offered

space in the relaxed time windows [l′a, u
′
a], and both arcs have an optimal solution

value xa = ua + 2. All other dwell arcs and connection arcs, 197 in total, do not

use the extra offered space. Moreover, of these 197 arcs, three dwell arcs and two

connection arcs take the optimal solution values xa = ua.

This result shows the benefit of the constraint violation approach. Rather than

iteratively trying to change some time windows in order to make the instance feasible,

we relaxed all the commercial constraints in the instance. Subsequently, the solution

of the CPF for the relaxed instance immediately indicates that only two dwell time

windows need to be relaxed by two minutes in order to arrive at a feasible timetable.

7.9 Adding Cutting Planes

Next, we further investigated the MST and LNT cycle bases by adding cycle cuts

and change cycle cuts to the CPF (see Section 5.5.1). First, since Horton’s algorithm

selects its basis cycles greedily from a list of candidates, this candidates list is filled

with cycles C for which aC is close to bC . From these candidates, we selected all

non-basis cycles D with bD − aD ≤ 1, and added the cycle cuts for them to the

formulation. Second, we added all safety triangles (see Sections 5.4.2 and 5.4.4),

which also have width at most one. Third, we added the change cycle cuts for all

basis cycles.
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Time (s) Nodes Root LP+cuts Root LP

Ft (zopt = 3942)
LNT 36.32 11983 3922.42 3843.00
LNT+saf 34.71 8516 3922.43 3843.00
LNT+Horton 26.27 4295 3922.48 3843.00
LNT+change 40.13 10250 3922.06 3845.80
LNT+all 51.48 5957 3922.06 3845.80
MST 31.10 9254 3926.12 3843.00
MST+saf 23.69 5135 3926.65 3843.00
MST+Horton 16.12 2545 3926.65 3843.00
MST+change 19.54 4609 3924.85 3845.72
MST+all 45.06 5088 3925.65 3845.72

Ft,q (zopt = 154)
LNT 93.76 11029 89.44 26.00
LNT+saf 168.05 17101 89.42 26.00
LNT+Horton 56.10 5220 90.73 26.00
LNT+change 109.78 10008 94.05 29.83
LNT+all 128.93 7554 96.02 29.83
MST 126.64 13737 91.44 26.00
MST+saf 102.90 12544 92.52 26.00
MST+Horton 62.07 5427 93.51 26.00
MST+change 229.99 22166 99.93 29.59
MST+all 141.50 9898 98.82 29.59

Fr (zopt = 1)
LNT 4706.95 * 0 0
LNT+saf 290.83 51655 0 0
LNT+Horton 33.96 3466 0 0
LNT+change 2600.03 445989 0 0
LNT+saf+Horton+change 36.99 3119 0 0
MST 1729.62 355695 0 0
MST+saf 782.85 136950 0 0
MST+Horton 6085.68 694728 0 0
MST+change 152.78 26123 0 0
MST+all 828.10 70466 0 0

Table 7.9: MST and LNT cycle basis with safety triangle, Horton, and change cycle
cuts, for the IC97 instance.
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Table 7.9 shows the results of adding the safety triangle cuts and the Horton cuts

for the IC97 instance. The results for the NH97 instance can be found in Table D.5.

The safety triangle cuts are indicated by ‘+saf’, the Horton cuts by ‘+Horton’, and

the change cycle cuts by ‘+change’. Moreover, we added all three cut types, which

is indicated by ‘+all’. The basic instance without cuts is also included in the table.

Further, the table shows the same information as the previous tables. Table D.5 also

shows the best integer solution for the NH97 instance with objective function Fr,

since we were not able to solve this instance to optimality.

For the IC97 instance, the computation times are clearly reduced in most cases

by adding the safety triangle, Horton, and change cycle cuts. The same holds for the

number of Branch&Cut tree nodes. Surprisingly, the root LP value only changes for

the change cycle cuts. However, after CPLEX has added additional violated cuts,

the LP value does change for all cut types, and the overall effect of the safety cuts

and Horton cuts is positive. For the NH97 instance, however, the solution time only

increases in about half the cases, even though the number of Branch&Cut tree nodes

decreases.

7.10 The Cycle Fixation Heuristic

We were not able to solve the ICIR97 instance with the CPF. Therefore, we applied

the cycle fixation heuristic from Section 6.5 to this instance. We used a two-stage

approach. In the first stage, the constraint graph consisted only of the intercity

network. That is, the first stage consisted of solving the IC97 instance, and the

previous sections showed that this can be done quite quickly with the CPF. As cycle

fixation set, we chose all safety triangles in the IC97 instance, which means that the

cyclic sequences of the intercity trains on the tracks were fixed. Having fixed the

cycle periodicity integer variables for the safety triangles, we solved the complete

instance in the second stage.

We tested the cycle fixation heuristic with the linear and quadratic passenger

travel time objectives Ft and Ft,q, for both the MST and LNT cycle bases. Moreover,

we further tested the effectiveness of the cutting planes from the previous section by

adding them to the CPF for the second stage of the cycle fixation heuristic.

The results for the first stage of the heuristic are simply the results that were pre-

sented before for the IC97 instance. We solved the second stage CPF with CPLEX,

with a time limit of 3600 seconds. The results for the second stage are shown in

Figures 7.5 and 7.6. The figures show how the value of the best found integer feasi-

ble solution changes over the 3600 seconds time limit. The bottom-most dashed line

in both figures represents the best LP relaxation value that was found in the test.
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Time(h) Nodes (mln) Best Integer Best LP

Ft

LNT 18.3 6.6 6347 6315.1
MST 22.6 9.7 6340 6323.8

Ft,q

LNT 13.3 2.9 344 170.54
MST 24.1 4.1 399 180.1

Table 7.10: Solving the second stage CPF of the cycle fixation heuristic for the
ICIR97 instance.

The figures show that we were not able to solve the second stage CPF to optimality

within the 3600 seconds time limit. We did, however, obtain quite a lot of integer

feasible solutions. In the next section, we compare these solutions with the solutions

obtained by the CADANS algorithm. There, it is shown that the quality of the best

found second stage solution is actually quite good.

The question arises how the solution process proceeds after the first hour of

computation time. In order to answer that question, we solved the second stage CPF

for both passenger travel time objectives, with the MST and LNT cycle bases, on a

Pentium III 1.2 Ghz machine, with 2 GB memory. The solution process was executed

until all available memory was used. Table 7.10 shows the results for this experiment.

The first column shows the computation time when the memory ran out, the second

column the number of nodes in the Branch&Cut tree, the third column the best

found integer feasible solution, and the fourth column the best found LP relaxation

value. For none of the instances, the second stage CPF could be solved to optimality

within the 2 GB memory limit. After 13 to 24 hours of computation time, CPLEX

ran out of memory. The table shows that, at this point, the gap between the LP

relaxation and the best found integer feasible solution is still not closed. However,

the best found integer feasible solutions are again quite a bit better than the solutions

obtained after one hour of computation time.

Finally, we also applied the cycle fixation heuristic for the rolling stock objective

function Fs. However, for this objective, the heuristic fails to find an integer feasible

solution for the second stage CPF within 3600 seconds of computation time.

7.11 A Comparison to CADANS

Finally, we solved each of the three instances using the CADANS algorithm (Schri-

jver and Steenbeek, 1994). CADANS solved each instance quite quickly, in two to

five seconds time. We also carried out a post-optimization step, which consists of



7.12. Summary of the Computational Results 177

IC97 NH97 ICIR97
CADANS zopt CADANS zopt CADANS zbest

Ft 4422 3942 1424 1418 8570 6340
Ft,q 203 154 66 48 643 344
Fr 1 1 111 137∗ 160 -
Fs 64 55 - - 145 -

Table 7.11: Solution values of the CADANS solutions for the IC97, NH97, and ICIR97
instances (∗ best found solution).

computing the cycle periodicity variables corresponding to the CADANS solution,

substituting those variables into the CPF, and solving the remaining LP problem.

The latter took less than a second.

The results are shown in Table 7.11. For the IC97 and NH97 instances, the table

also shows the optimal solution values that we obtained by solving the CPF. For the

ICIR97 instance, the best solution found by the cycle fixation heuristic is shown.

CADANS solves the problem of finding a feasible solution, and does not take an

objective function into account. Therefore it is not surprising that, in most cases, our

solutions are better than those obtained by CADANS. Most notably, our solutions

are much better for the passenger travel time objective for the IC97 and ICIR97

instances. As was shown is the previous sections, it takes more computation time to

find these better solutions.

Whenever CADANS fixes a certain variable vi, there may be multiple values left

to choose from. It then selects the value that, roughly speaking, corresponds to the

middle of the time windows that are adjacent to node i. This may explain why, for

the robustness objective, the CADANS solution for the IC97 instance is optimal, and

why the CADANS solution for the NH97 instance is better than the best solution we

obtained with the CPF in one hour.

7.12 Summary of the Computational Results

In this chapter, we reported on the performance of the models and the solution tech-

niques in this thesis in optimizing three real-life cyclic railway timetabling instances

that were obtained from NSR and Railned.

As a first result, we found that it is crucial to preprocess the constraint graphs,

since this yields a considerable reduction of the sizes of the three constraint graphs.

Also, the periodic time window strengthening algorithm showed to be quite effective

in shrinking some of the time windows in the instances.

Next, we tested the PESP formulation for the CRTP. The results of these tests
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were a bit disappointing, since we were not able to solve the PESP formulation

to optimality within a one hour time limit for any of our test instances. Further

tests showed that the PESP formulation is not able to solve any of the instances to

optimality in several hours of computing time, after which all available memory had

been used by the Branch&Cut process.

Therefore, the remainder of the chapter tested various aspects of the CPF model

for the CRTP. To that end, we started with comparing the cycle bases obtained by

the various cycle basis algorithms presented in Section 5.7. We surprisingly found

that, for all three test instances, the MCB algorithm yields a fundamental cycle basis.

Less surprisingly, these cycle bases are the least wide cycle bases that we obtained.

In their basic form, the BFS algorithms construct quite wide cycle bases. After

adjusting these algorithms by forbidding safety arcs to be included in the spanning

tree, the width of their cycle bases was reduced considerably. The MST and LNT

algorithms construct cycle bases that are wider than the MCB and BFS cycle bases.

The FCB algorithm reduced the width of each of the strictly fundamental cycle bases

constructed by the BFS, MST, and LNT algorithms.

Next, we compared the performance of the various cycle bases for solving the

CPF with the travel time objective functions Ft and Ft,q, for the IC97 and NH97

instances. Quite surprisingly, the MST and LNT cycle bases outperformed the other

cycle bases in solving the CPF, even though the MST and LNT cycle bases are much

wider. This surprising result may be explained by the fact that the MST and LNT

cycle bases are much longer than the other cycle bases. Overall, we were able to

compute timetables with minimum travel times for the IC97 and NH97 instances

within 30 seconds to one hour computation time, depending on the quality of the

cycle basis. We were not able to solve the ICIR97 instance to optimality with any of

the cycle bases within the one hour time limit.

The quadratic robustness objective function Fr turned out to be much harder to

solve. For the IC97 instance, it took between half an hour and one hour to solve the

CPF with the objective function Fr. We were not able to compute optimal robust

timetables for the NH97 within one hour, and the quality of the timetables that we

did obtain was rather poor. The hardness of the robustness objective function may

be explained by its dependence on the safety arcs, which are quite wide, and form

the majority of the arcs in our test constraint graphs.

The rolling stock objective function Fs, on the other hand, was much easier

to solve. We computed rolling stock optimal timetables within a few seconds of

computation time for the IC97 instance. This may be explained by the fact that

the objective function Fs is stated in terms of the integer variables qC , whereas the

other objective functions all depend on the tension variables xa. The rolling stock
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objective function is therefore the only objective function that directly contains the

integer variables. Since the NH97 instance considers only a part of the Netherlands,

and therefore only parts of some of the involved train lines, it makes no sense to

minimize the required number of rolling stock compositions for this instance.

The constraint violation objective function Fv was illustrated through its simi-

larity to the quadratic travel time objective function Ft,q. For the IC97 instance,

which was initially infeasible, the constraint violation objective function showed that

two dwell time windows in the instance need to be relaxed with two minutes each, in

order to obtain a feasible timetable. Moreover, this result was obtained in between

two and 22 minutes of computation time. This may be much faster than the rather

cumbersome process of manually detecting the constraints that need to be relaxed.

Next, we tested the cutting planes of Section 5.5 for the MST and LNT cycle

bases. Strangely, the value of the root LP relaxation hardly changes when we add

the cutting planes. However, the cutting planes do strengthen the CPF formulation

for the IC97 instance such that CPLEX is able to add other cutting planes, which do

improve the root LP relaxation value. For the NH97 instance, the root LP relaxation

value without cuts already equals the optimal solution value. Still, also for this

instance, the added cuts help in pruning the Branch&Cut tree, and therefore reduce

the computation times. We conclude that the overall effect of adding cutting planes

to the CPF is a clear reduction of the computation times for the IC97 and NH97

instances.

We were not able to solve the large ICIR97 instance in a reasonable amount of

computation time in any of the above described experiments. Therefore, we applied

our cycle fixation heuristic to the ICIR97 instance for computing timetables with

minimum travel times. Although the heuristic is not able to solve the resulting

second stage CPF to optimality within a time frame of several hours, it does find

quite good solutions quite quickly. We therefore conclude that the cycle fixation

heuristic is a promising candidate for the practical optimization of cyclic railway

timetables.

Finally, we compared the quality of our solutions with the quality of the solutions

that were obtained by CADANS (Schrijver and Steenbeek, 1994), the algorithm that

is currently in use at NSR and Railned for the strategic planning of cyclic railway

timetables. CADANS is quite fast in practice, but does not take an objective function

into account, and returns the first feasible timetable that it finds. The aim of the

comparison was therefore not to show that our methods find higher quality timeta-

bles, but rather to gain insight into the trade-off between the quality of the obtained

timetables, and the required computation time. We conclude that the quality of the

timetables obtained by our methods is quite a bit higher than the quality of the
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CADANS timetables. With respect to the robustness objective, however, CADANS

finds quite high quality timetables, which we explain by the algorithm’s search strat-

egy. The price for our higher quality timetables is an increase in the required compu-

tation time. Solving the CPF takes between a few seconds and an hour, depending

on the objective function, whereas CADANS solves all three instances within a few

seconds.
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Conclusions

An increasing demand for mobility, the introduction of competition in the European

railways, and performance and punctuality problems have made the railways in the

Netherlands and their timetables an often discussed topic. We argued in Chapter 1

that optimization methods for constructing cyclic railway timetables form a valuable

tool for both railway operators and railway infrastructure managers. The research in

this thesis therefore provides aid in solving the problems caused by the still growing

mobility and the resulting congested railways.

This concluding chapter first presents an overview of the main results of the thesis.

We next discuss how these results provide answers to the research questions posed

in Chapter 1. Finally, we reflect on the limitations of the thesis, and propose some

directions for further research on optimizing cyclic railway timetables.

8.1 Main Results

In discussing the main results of the thesis, we distinguish between results regarding

the modeling of cyclic railway timetables, results with respect to the cycle periodicity

formulation, and results for cycle bases for the cycle periodicity formulation.

Modeling Cyclic Railway Timetables. Having sketched the organizational environment

for constructing railway timetables in Chapter 2, Chapter 3 subsequently de-

scribed the requirements that a railway timetable should meet, and provided

extensive examples for modeling these requirements using periodic time window

constraints. In particular, the modeling of synchronization and safety require-

ments, and the structure of the model’s constraint graph representation were

discussed in detail. As such, we believe to have provided a valuable contri-
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bution, since most literature describes the modeling of cyclic timetables only

briefly, and without going into details.

Chapter 3 further presented the linear objective functions of minimizing passen-

ger travel times, maximizing timetable robustness, and minimizing the amount

of constraint violation for infeasible instances, and showed how to approximate

a quadratic variant of these objectives. Later, in Chapter 6, we also introduced

an objective function for minimizing the required number of rolling stock com-

positions. From the computational tests in Chapter 7, we conclude that these

objective functions yield a substantial increase in the quality of the obtained

timetables, compared to models and methods that only consider the feasibility

of timetables. The computational tests further showed that the constraint vio-

lation objective is quite useful for handling infeasible problem instances. It may

however take quite some time to compute an optimal timetable, but we argued

that the increase in timetable quality justifies the possibly large computation

times.

Several extensions to the basic model from Chapter 3 were proposed in Chap-

ter 6. The extensions for incorporating variable train trip times and flexible

connections into the model use periodic constraints only, and can therefore be

added to the basic model without disturbing its structure. We also proposed

a station capacity extension, which allows for limiting the number of trains

concurrently present in a network node.

The Cycle Periodicity Formulation. Chapter 4 described the PESP, an existing model

in literature which generalizes our cyclic railway timetabling model. Chapter 5

introduced periodic tensions as a natural counterpart of periodic constraints.

Using these periodic tensions, the PESP was transformed into the Cycle Pe-

riodicity Formulation (CPF). Whereas the PESP is formulated in terms of

arrival and departure times, which are related through periodic time window

constraints, the CPF is based on process times, and on the periodicity of cycles

in the constraint graph. The computational experiments in Chapter 7 showed

that the PESP formulation performs quite poorly, and that the CPF is the

superior mathematical formulation for optimizing cyclic railway timetables.

Using the sequencing corollary presented in Chapter 4, Chapter 5 explored the

relation between certain cycles in the constraint graph, and the sequence in

which trains travel along tracks. Based on these train sequences, we derived

some cutting planes for the CPF, which were shown to belong to the class of

so-called cycle cuts. In most of our experiments in Chapter 7, computation

times could be reduced by adding these cycle cuts, and change cycle cuts, to



8.2. Answering the Research Questions 183

the CPF.

In Chapter 6, we described a cycle fixation heuristic for solving the CPF. The

heuristic was inspired by the typical practical process of first constructing a

timetable for the most important trains, and then iteratively adding other

classes of trains, while changing the timetable for the previous train classes as

little as possible. Based on this approach, and on the train sequencing result

from Chapter 5, we proposed a cycle fixation heuristic that iteratively adds

classes of trains, while keeping the train sequences of the previously scheduled

train classes fixed. Within an hour of computation time, the cycle fixation

heuristic yielded quite good timetables for our largest test instance, which we

were not able to solve using exact solution methods.

Cycle Bases for the CPF. In principle, cycle periodicity has to be required in the

CPF for every single cycle, and a constraint graph may contain exponentially

many cycles. In Chapter 5 we showed, however, that it suffices to require

cycle periodicity for the cycles in an integral basis of the cycle space of the

constraint graph only. Moreover, an example illustrated that a non-integral

cycle basis may return a feasible solution to the CPF, which is in fact an

incorrect timetable.

Several aspects of cycle bases for the CPF were explored in Chapter 5. It

was shown that strictly fundamental and fundamental cycle bases are integral,

and that they can thus be used for formulating the CPF. We argued that

algorithms for the minimum cycle basis problem can be used as heuristics for

constructing good cycle bases for the CPF. Based on the specific structure of

the constraint graph, two minimum spanning trees weight functions were pro-

posed for computing good strictly fundamental cycle bases. We also described

how these strictly fundamental cycle bases can be improved by considering the

corresponding regular fundamental cycle bases. Our computational tests in

Chapter 7 show that it is essential to choose a good cycle basis for formulating

and solving the CPF. More specifically, the MST and LNT cycle basis algo-

rithms compute cycle bases that yield fast computation times for our objective

functions.

8.2 Answering the Research Questions

Having summarized the results of the thesis, we now return to the research questions

defined in Chapter 1.
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What are the criteria for assessing the quality of a timetable, and how

can they be modeled?

Several criteria for evaluating timetables were discussed in Section 3.2. We distin-

guished between the criteria of customer satisfaction, timetable robustness, and cost

control. We argued that these criteria may be conflicting, and delineated each of

them with respect to our purposes and assumptions. Within our assumptions, the

only variable for customer satisfaction is travel time, which should be reduced in or-

der to improve customer satisfaction. Timetable robustness is also of importance for

customer satisfaction. The robustness of a timetable can be improved by increasing

the time buffer between trains that possibly interfere with one another in case of

a disturbance. Although the decisions that influence the main cost components of

a railway system are not taken at the timetabling level, one can still consider cost

efficient timetables to some extent. We translated the cost criterium into reducing

the number of rolling stock compositions that are required to operate a timetable.

Sections 3.7 and 6.4 described how to model these criteria as objective functions in

our cyclic railway timetabling model.

What adjustments need to be made to over-tightly defined timetable re-

quirements in order to obtain a feasible timetable, and how can these

adjustments be modeled?

As an answer to this question, we proposed to relax the timetable requirements,

or some subset of them. Then, one can use an objective function which aims at

minimizing the violation of the initial requirements. The computational tests in

Chapter 7 suggest that this method can be quite effective.

How can the models arising from the previous two questions be solved in

a reasonable amount of time?

We used periodic constraints for modeling cyclic railway timetables in a natural way.

For solving the resulting model, we propose to use the transformed CPF. The thesis

shows that the cycle basis used for formulating the CPF has a significant impact on

the computation times. More specifically, we found the best performance for strictly

fundamental cycle bases, stemming from a minimum spanning tree with respect to

an arc weight function based on the time window widths and the structure of the

constraint graph. We further found that the computation times can be reduced by

adding cycle cuts to the CPF. With the use of a good cycle basis and cycle cuts, the

two smaller test instances can be solved to optimality in computation times ranging

from less than a minute to half an hour. However, a good cycle basis and cycle cuts
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do not suffice for solving our largest test instance in a reasonable amount of time.

Therefore, we propose to use the cycle fixation heuristic for solving large instances.

The above answers to the sub-questions lead us to the following answer to the

main research question.

How can mathematical models and solution methods support the construc-

tion of high quality cyclic railway timetables?

We discussed the practical process of railway timetabling in Chapter 2. Keeping

the practice of railway timetabling in mind, and having answered the three sub-

questions above, we conclude that our cyclic railway timetabling model and the CPF

can support in constructing good cyclic railway timetables, when applying them with

good cycle bases and cycle cuts. For large timetabling problems, a heuristic such as

the proposed cycle fixation heuristic will be required to yield solutions in a practically

reasonable amount of time.

8.3 Limitations of the Thesis and Recommendations
for Further Research

Since the thesis describes a mathematical model for cyclic railway timetable optimiza-

tion, a clear limitation of our research is formed by the level of detail in the cyclic

railway timetabling model. In our opinion, the current model adequately incorpo-

rates those timetable requirements that are of importance for tactical and strategic

studies. Still, there will always be a desire by practitioners to further increase the

level of detail. In particular, an increase in the level of detail would be required in

order to extend the model towards the operational planning level.

A second limitation regards the practical applicability of the research, which is

hampered by the large computation times for large timetabling problems, even when

using a heuristic solution method. The fact that we have to resort to heuristics

is in principle not a big problem, since the objective functions for our model are

somewhat rough. Therefore, it does not make sense in a practical setting to spend

a lot of computation time to search for the exact optimal solution. However, it

is problematic that our cycle fixation heuristic takes very much time to solve the

resulting second-stage CPF to optimality for large timetabling problems. Therefore,

we see the further investigation of fast heuristics as an important direction for further

research. More specifically, it would be interesting to investigate whether the good

performance of the CADANS algorithm by Schrijver and Steenbeek (1994) can be

combined with the optimization features of our methods.
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On the same topic of improving the computational performance, a further study

of the CPF would also be very useful. Here, our thoughts go in the direction of new

classes of cutting planes, alternative relaxations that may yield good lower bounds in

a Branch&Bound or Branch&Cut procedure, and methods for quickly finding good

quality integer feasible solutions.

The above limitations and recommendations only consider the solution of the

mathematical puzzle of constructing an optimal cyclic timetable. A different, but

very interesting direction of further research is the study of the application of cyclic

railway timetable optimization in a practical setting. This requires a clear graphical

user interface, for example for specifying the type of objective function, and the ob-

jective function weights. With respect to the further specification of an instance, a

user interface similar to the one of DONS, discussed in Section 2.5, could be used.

In the same direction, the visualization of constraint graphs, such as presented in

Appendix C.4, and of obtained timetables, through tables and time-space diagrams,

could further support timetable planners in understanding the bottlenecks and in-

terdependencies in a timetabling problem instance.
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Burkard, R., Çela, E., Pardalos, P., Pitsoulis, L. (1998). The quadratic as-
signment problem. In Du, D., Pardalos, P. (editors), Handbook of Combinatorial
Optimization, volume 2, pages 241–337. Kluwer Academic Publishers, Dordrecht.

Bussieck, M., Winter, T., Zimmermann, U. (1997). Discrete optimization in public
rail transportation. Mathematical Programming, 79(3):415–444.

Caprara, A., Fischetti, M., Guida, P., Monaci, M., Sacco, G., Toth, P.
(2001). Solution of real–world train timetabling problems. In Proceeding of HICSS
2001 . http://www.hicss.hawaii.edu/diglib.htm.

Caprara, A., Fischetti, M., Toth, P. (2002). Modeling and solving the train
timetabling problem. Operations Research, 50(5):851–861.
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Appendix A

Notation

This appendix summarizes the notation that is used in the thesis. It first contains a

list of the used abbreviations. Next, it lists all sets, indices for these sets, parameters,

and decision variables that are used in the thesis. Finally, the notation for cycles and

paths is described, and illustrated with a small example.

A.1 Abbreviations
AVV Advisory unit on traffic and transport (Adviesdienst Verkeer

en Vervoer) of the V&W.

BOT Basic One–hour Timetable, the timetable for one standard

hour.

DONS Designer Of Network Schedules, the railway timetabling de-

cision support system used at Railned and NSR.

NS Netherlands Railways (Nederlandse Spoorwegen).

NSR NS Travelers, the NS passenger railway operator (NS

Reizigers).

V&W The Dutch Ministry of Transportation (Ministerie van Ver-

keer en Waterstaat).

PESP Periodic Event Scheduling Problem.

CPF Cycle Periodicity Formulation.

CRTP Cyclic Railway Timetabling Problem.

MCB Minimum Cycle Basis algorithm, by Horton (1987).

MST Minimum Spanning Tree algorithm for constructing a strictly

fundamental cycle basis.
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LNT Long Narrow Tree algorithm for constructing a strictly fun-

damental cycle basis.

FCB Fundamental Cycle Basis improvement algorithm for any

strictly fundamental cycle basis, by Berger (2002).

MF The cycle basis constructed by applying FCB to the MST

cycle basis.

LNF The cycle basis constructed by applying FCB to the LNT

cycle basis.

BFS Breadth First Search algorithm for strictly fundamental cycle

bases, by Deo (1982).

UE Unexplored Edges node selection rule for the BFS algorithm.

SDS Static Degree Sort node selection rule for the BFS algorithm.

DDS Dynamic Degree Sort selection rule for the BFS algorithm.

MBFS Multi-point BFS selection rule for the BFS algorithm.

A.2 Sets
G = (N ,A∪As) The railway network graph, consisting of nodes N , regular

tracks A, and single tracks As.

N The set of nodes in the railway network.

A The set of regular tracks a = (n,m) in the railway network,

with n,m ∈ N .

As The set of single tracks a = (n,m) in the railway network,

with n,m ∈ N .

T The set of trains.

N t ⊆ N The set of nodes that train t visits.

At ⊆ A ∪As The set of tracks that train t travels along.

Ta The set of all train pairs that travel along track a in the same

direction.

T s
a The set of all train pairs that travel along single track a in

opposite directions.

Fd
n,F

a
n The sets of fixed departure and arrival time trains for net-

work node n.

Sn The set of train pairs for which the departure times need to

be synchronized at network node n.

Cn The set of train pairs for which a connection or turn around

constraint is required at network node n.
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Pt The train path of train t.

Ctt′ The train cycle for trains t and t′.

Ka The safety clique for track a.

Na
n , N

d
n The arrival and departure node sets of the bipartite dwell-

connection graph.

GS
n The station graph for network node n.

G = (N,A) The (constraint) graph.

B The cycle basis of a graph G.

Ci A cycle in a cycle basis B.

D A non-basis cycle.

A.3 Indices
n,m The index for network nodes in N .

a = (n,m) The index for tracks in A ∪As.

i, j, k The index for nodes in graph G.

a The index for arcs in graph G.

A.4 Parameters
T The cycle time of the timetable.

c The number of cycles in a cycle basis B of G.

h The general headway time upon departure and arrival for

any node.

rt
a The trip time of train t for track a.

[rt
a, r

t
a] The trip time window for train t along track a.

[dt
n, d

t

n] The dwell time window for train t at node n.

[f t

n
, f

t

n] The fixed departure or arrival time window for train t at

node n.

[stt′

n , stt′

n ] The time window for the synchronization of trains t and t′

at node n.

[ctt′

n , ctt′

n ] The time window for the connection or turn around con-

straint between trains t and t′ at node n.

[lij , uij ] The time window for arc (i, j).

[f
i
, f i] The time window for event i.

[l′ij , u
′
ij ] The relaxed time window for arc (i, j) for objective function

Fv.
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wa The objective function weight for arc a.

µa The middle of the time window for arc a.

aC The lower bound for cycle C.

bC The upper bound for cycle C.

l The vector of time window lower bounds lij .

u The vector of time window upper bounds uij .

a The vector of cycle lower bounds aC .

b The vector of cycle upper bounds uC .

A.5 Variables
at

n The arrival time of train t at node n.

dt
n The departure time of train t from node n.

vi The time instant at which event i takes place.

pij The integer variable modeling the cyclic nature of the time

window constraint involving events i and j.

Ft The linear passenger travel time objective function.

Ft,q The quadratic passenger travel time objective function.

Fr The timetable robustness objective function.

Fs The rolling stock objective function.

Fv The constraint violation objective function.

σa The used space of the relaxed time window [l′a, u
′
a] for objec-

tive function Fv.

δa The auxiliary variable for the robustness objective function

Fr.

v The vector of variables vi.

p The vector of variables pij .

x The vector of variables xa.

q The vector of variables qC .
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C

1 2

34

Figure A.1: Example on the notations for cycles

A.6 Paths and Cycles

Throughout the thesis, we only consider simple cycles which need not be directed.

A cycle C = (1, 2, . . . , k, 1) visits the nodes 1, 2, . . . , k in that order. With respect

to this direction, C consists of forward and backward arcs. The sets of forward and

backward arcs are denoted by C+ and C−, respectively, and are defined as follows:

C+ =
{

(i, j) | i < j, i, j ∈ C
}

,

C+ =
{

(i, j) | i > j, i, j ∈ C
}

.

Whenever there is no confusion possible, we also denote by C the set of node pairs

as they appear in the direction of the cycle. Formally,

C =
{

(i, j) | (i, j) ∈ C+
}

∪
{

(j, i) | (i, j) ∈ C−
}

.

Usually there is no reason for confusion, since we either consider arcs (i, j) ∈ C or

nodes i ∈ C.

As an example, consider the cycle C = (1, 2, 3, 4, 1) with a clockwise direction in

Figure A.1. This gives

C+ =
{

(1, 2), (2, 3)
}

,

C− =
{

(1, 4), (4, 3)
}

,

C =
{

(1, 2), (2, 3), (3, 4), (4, 1)
}

.

We use a similar notation for paths. Throughout the thesis, only simple paths

are considered. A path from s to t is denoted by Pst. The path Pst is directed from

s to t, and the sets of forward and backward arcs in it by P+
st and P−

st respectively.

We also use Pst to denote the set of node pairs as they appear in the path.





Appendix B

Cycle Bases of Graphs

This appendix briefly describes the concepts of cycle spaces and cycle bases for undi-

rected and directed graphs, and illustrates the presented theory with some examples.

We also show the relation between cycle bases for undirected and directed graphs.

For an in-depth coverage of the subject we refer the interested reader to Deo (1982),

Bollobás (1998).

B.1 The Cycle Space of Undirected Graphs

In an undirected graph U = (N,E), a cycle C is encoded by a so-called cycle vector

ϕC defined as

ϕCe=







1 if e ∈ C,

0 otherwise.

Arithmetic for cycle vectors in undirected graphs is considered over the field GF(2).

As an example, consider the undirected graph U in Figure B.1. The two triangle

cycles C1 and C2 give the cycle vectors

1 2 3 4 5

ϕ1 =
[

1 1 1 0 0
]

,

ϕ2 =
[

0 0 1 1 1
]

.
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Figure B.1: Examples of encoding cycles in graphs

The cycle vector of the outer square cycle C4 is given by

ϕ3 =
[

1 1 0 1 1
]

,

and the three cycles are related as

ϕ3 = ϕ1 + ϕ2 modulo 2.

In other words, when two cycles C1 and C2 both contain a common edge, then this

edge cancels out in their sum.

The cycle space of an undirected graph U = (N,E) is the space spanned by the

{0, 1} cycle vectors ϕC of cycles C ∈ U . A cycle basis is a basis of the cycle space

of U . A cycle basis B of an undirected graph U can be constructed by the following

procedure. First, construct a spanning tree H of U . Adding a non-tree edge e to

the edges in H creates a unique cycle C. The non-tree edge e is said to generate

C. The set of cycles B generated by all non-tree edges is a cycle basis of U . From

this procedure it is clear that the cycle space of an undirected graph has dimension

c = |A|− |N |+1, since a spanning tree of U contains |N |−1 edges. For a cycle basis

B = {C1, . . . , Cc} with cycle vectors ϕ1, . . . , ϕc, the cycle matrix ΦB is the c × |A|

matrix with the cycle vectors ϕ1, . . . , ϕc as rows.

B.2 The Cycle Space of Directed Graphs

In a directed graph G = (N,A), a cycle C is not required to be directed, so it may

contain forward and backward arcs. Therefore, a cycle in a directed graph is encoded

by a {0,±1} cycle vector γC . Choosing an arbitrary direction for the cycle, γC is
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defined as

γCa=















1 if a is a forward arc in C,

−1 if a is a backward arc in C,

0 if a /∈ C.

Contrary to the undirected case, arithmetic is performed over the field Q for cycles

in directed graphs. In the graph G in Figure B.1, the two triangles can be described

by the cycle vectors

1 2 3 4 5

γ1 =
[

1 1 1 0 0
]

,

γ2 =
[

0 0 1 1 1
]

.

The outer square now contains both forward and backward arcs, and directing that

cycle clockwise, it is encoded as

γ3 =
[

1 1 0 −1 −1
]

.

These three cycles relate as

γ3 = γ1 − γ2.

Note that in this case, the sum of cycles C1 and C2 makes no sense, since it does not

construct a cycle:

γ1 + γ2 =
[

1 1 2 1 1
]

.

The cycle space of a directed graph G = (N,A) is the space spanned by the

{0,±1} cycle vectors γC of cycles C ∈ G. A cycle basis B of G is a basis of the

cycle space of G. As for the undirected case, a cycle basis for a directed graph G

can be constructed by first computing a spanning tree H of G. This spanning tree is

not required to be directed. The cycles constructed by iteratively adding a non-tree

arc to the arcs in H together form a cycle basis of G. Hence, the dimension of the

cycle space of a directed graph also equals c = |A| − |N | + 1. The cycle matrix ΓB

corresponding to a set of cycle basis vectors γ1, . . . , γc is the c × |A| matrix with

γ1, . . . , γc as rows.
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B.3 Relation between Cycle Bases for Undirected and
Directed Graphs

Consider a directed graph G = (N,A), and let U = (N,E) be the underlying undi-

rected graph. The projection of a cycle C ∈ G is the corresponding undirected cycle

C ′ ∈ U . So, for the cycle vectors γ and ϕ of C and C ′, it holds that ϕ = |γ|. The

theorem below describes the relation between cycle bases of directed and undirected

graphs.

Theorem B.1. Consider a directed graph G = (N,A) with underlying undirected

graph U = (N,E). Suppose that the set of undirected cycles C ′
1, . . . , C

′
c ∈ U

are the projections of a set of cycles C1, . . . , Cc ∈ G. If C ′
1, . . . , C

′
c form a cycle

basis of U , then C1, . . . , Cc form a cycle basis of G.

Proof . Let ϕt, . . . , ϕc be the cycle vectors of C ′
1, . . . , C

′
c. Since C ′

1, . . . , C
′
c form a

cycle basis of U , we have that

c
∑

i=1

λiϕi = 0 modulo 2⇔ λi = 0 modulo 2 for all i = 1, . . . , c. (B.1)

Next, let γ1, . . . , γc be the cycle vectors of C1, . . . , Cc. As remarked above, the cycle

spaces of U and G both have dimension c. Therefore, if γ1, . . . , γc do not form a

basis of the cycle space of G, there must exist some λ = (λ1, . . . , λc) 6= 0 such that

c
∑

i=1

λiγi = 0. (B.2)

We assume that λ is integer, and that it contains at least one odd λi. Both assump-

tions are without loss of generality, since one can always construct an integer λ by

multiplying by a sufficiently large number, and if all λi’s are even, one can repeatedly

divide them by 2 until at least one λi is odd.

Using the fact that γi modulo 2 = |γi| = ϕi, expression (B.2) taken modulo 2

gives
c
∑

i=1

λiϕi = 0 modulo 2. (B.3)

Since λ is integer, with at least one odd element, (B.3) contradicts (B.1). It follows

that γ1, . . . , γc must form a basis of G. ¥
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Test Instances

C.1 The IC97 instance

The IC97 instance consists of the following intercity trains:

200 International train Amsterdam–Emmerich (on the German border).

500 Rotterdam/The Hague–Groningen/Leeuwarden.

600 International train Amsterdam–Essen (on the Belgian border).

700 Amsterdam/Schiphol–Groningen/Leeuwarden.

800 Haarlem–Maastricht.

900 Haarlem–Eindhoven.

1500 The Hague–Heerlen.

1600 Amsterdam/Schiphol–Enschede.

1700 Rotterdam/The Hague–Enschede.

1900 The Hague–Venlo.

2100 Amsterdam–Vlissingen.

2300 International train Amsterdam–Bad Bentheim (on the German border).

2400 Amsterdam–Dordrecht.

3000 Amsterdam–Arnhem.
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9300 International Thalys train Amsterdam–Essen (on the Belgian border).

The international 200, 600, 2300, and 9300 trains travel on from the Dutch border

to, respectively, Cologne, Brussels, Berlin, and Paris. However, these parts of the

routes are not included in the instance.

All trains are operated with frequency one, except for the 3000 train, which has

frequency two. Moreover, synchronization constraints with a bandwidth δ = 0 are

defined for trains that travel along the same route. Thereto, the departure times of

trains are synchronized at:

Amersfoort Between the 500 and 700 trains, and between the 1600 and 1700 trains.

Amsterdam Between the 600 and 9300 trains, and between the 800 and 900 trains.

Eindhoven Between the 800 and 1500 trains.

The Hague Between the 1500 and 1900 trains, between the 2100 and 2400 trains,

and between all four of these trains.

Utrecht Between the 500 and 1700 trains, and between the 800, 900, and 3000 trains.

For all stops, the dwell time windows are set to [1, 3]. Moreover, all connection time

windows are set to [2, 5]. The instance contains connections at:

Amersfoort Between the 500 and 1600 trains, and between the 700 and 1700 trains.

Eindhoven Between the 800 and 1900 trains, and between the 900 and 1500 trains.

Rotterdam Between the 600 and 1700 trains, and between the 500 and 9300 trains.

Utrecht Between the 500 and 3000 trains, and between the 1700 and 3000 trains.

Finally, all trains, synchronizations, and connections are for both directions.

C.2 The ICIR97 instance

The ICIR97 instance consists of all intercity trains, synchronizations, and connections

in the IC97 instance. It moreover contains the following interregional trains:

2000 Rotterdam/The Hague–Arnhem.

2200 Amsterdam–Breda.

2600 Amsterdam–The Hague.
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3400 Hoorn–The Hague.

3500 Amsterdam–Eindhoven.

3600 Roosendaal–Zwolle.

3700 Eindhoven–Venlo.

3900 Amsterdam–Lelystad.

5600 Utrecht–Zwolle.

5800 Amersfoort–Hoofddorp.

6700 Heerlen–Maastricht.

All trains are operated with frequency two, except for the 3700 and 6700 trains,

which have frequency one. Moreover, synchronization constraints with a bandwidth

δ = 0 are defined for trains that travel along the same route. Additional to the

synchronizations in the IC97 instance, the departures of trains are synchronized at:

Eindhoven Between the 1900 and 3700 trains.

Utrecht Between the 2000 and 3000 trains, and between the 800, 900, and 3500

trains.

For all stops, the dwell time windows are set to [1, 3]. Moreover, all connection time

windows are set to [2, 5]. The instance contains additional connections to the IC97

instance at:

Breda Between the 1500 and 3600 trains, and between the 1900 and 3600 trains.

Deventer Between the 1600 and 3600 trains, and between the 1700 and 3600 trains.

Leiden Between the 2100 and 3400 trains, and between the 2400 and 3400 trains.

Roosendaal Between the 600 and 3600 trains.

Zwolle Between the 500 and 3600 trains, and between the 700 and 3600 trains.

As for the IC97 instance, all additional interregional trains, synchronizations, and

connection are for both directions.
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C.3 The NH97 instance

The NH97 instance consists of the part of the Netherlands north of the line Leiden-

Amsterdam. It therefore contains parts of train lines, and not the train lines on their

complete journey. It consists of the following trains:

800 Intercity train Amsterdam–Zandvoort.

3000 Intercity train Amsterdam–Schagen.

3200 Interregional train Amsterdam–Hoorn.

3400 Interregional train Leiden–Haarlem.

3500 Interregional train Haarlem–Hoorn

3900 Local train Amsterdam–Hoorn.

4700 Local train Alkmaar–Amsterdam.

4800 Local train Amsterdam–Uitgeest.

5400 Interregional train Leiden–Amsterdam.

7300 Local train Uitgeest–Amsterdam.

9900 Cargo train Uitgeest–Amsterdam.

All trains are operated with frequency two, with a synchronization bandwidth δ = 2,

except for the 9900 cargo train, which has frequency one. The widths of the dwell

time windows vary between zero and 4 minutes, depending on the station status.

The cargo trains does not stop at all. Moreover, the instance contains connection

constraints with time window [2, 5] at Haarlem between the 3400 and 4800 trains,

and between the 3400 and 3500 trains.d All trains and connections are again operated

in both directions.

C.4 A Visualization of the IC97 Constraint Graph

This section presents a visualization of the constraint graph of the IC97 instance.

Since the nodes of the constraint graph correspond to events that take place at rail-

way network nodes, each constraint graph node can been drawn at the geographical

coordinates of the corresponding railway network node. Typically, many events are

defined for a specific railway network node, and the corresponding constraint graph
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nodes are thus all drawn at the same location. To increase the visibility of the draw-

ing, we therefore shifted the coordinates of each node a bit. This shift is such, that all

nodes belonging to the same train path are shifted by the same amount. Moreover,

we always shift a node towards the north east corner of the drawing.

The arcs in the drawing are coded as follows:

Solid For trip-dwell arcs.

Dashed For connection arcs.

Dotted For safety arcs and frequency synchronization arcs.

Note that this means that the train paths consist of solid lines. Further, all safety

arcs and connection arcs have been drawn as bezier curves. Figure C.1 shows the

resulting drawing of the IC97 constraint graph.



206 Appendix C. Test Instances

Figure C.1: Constraint graph for the IC97 instance.



Appendix D

Computational Details

This appendix contains the computational results for the NH97 and ICIR97 instances.
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LW (B) avg(WC) max(WC) L(B) avg(LC) max(LC)

MCB 191 0.38 3 2767 3.8 11
LNF 193 0.39 5 4666 6.3 32
MF 201 0.41 6 4482 6.1 32
LNT 598 1.69 8 11048 15.0 57
MST 595 1.66 8 10520 14.3 54
SDSr 648 1.74 7 3902 9.8 29
DDSr 699 2.21 14 5009 6.8 33
UEr 660 1.88 11 4646 6.3 31
MBFSr 664 1.83 7 4728 6.4 17
SDS 509 1.12 5 2795 3.8 11
DDS 495 1.07 5 2651 3.6 12
UE 471 1.01 5 2531 3.4 13
MBFS 459 0.97 5 2554 3.5 14

Table D.1: Cycle basis algorithms results for the NH97 instance.

LW (B) avg(WC) max(WC) L(B) avg(LC) max(LC)

MCB 621 0.75 2 5485 4.6 19
LNF 648 0.84 4 6138 5.1 50
MF 613 0.78 4 5893 4.9 38
LNT 1080 2.08 5 22976 19.1 69
MST 1026 1.93 5 21498 17.9 58
SDSr 1210 2.33 9 15278 12.7 38
DDSr 1096 2.15 11 13780 11.5 39
UEr 982 1.68 7 11183 9.3 44
MBFSr 1114 2.15 10 13097 10.9 32
SDS 1155 1.78 4 7366 6.1 17
DDS 1035 1.55 6 5966 5.0 23
UE 916 1.28 5 4824 4.0 23
MBFS 986 1.51 9 5572 4.6 22

Table D.2: Cycle basis algorithms results for the ICIR97 instance.
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Figure D.1: Cycle bases widths and lengths for the NH97 instance.
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Figure D.2: Widths distribution of the basis cycles for the NH97 instance.
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Figure D.3: Cycle bases widths and lengths for the ICIR97 instance.
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Figure D.4: Widths distribution of the basis cycles for the ICIR97 instance.
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Time (s) Nodes Root LP+cuts Root LP

MCB 2893 * 1418 1418
LNT 38 7169 1418 1418
MST 13 1738 1418 1418
LNF 2868 961396 1418 1418
MF 53 23193 1418 1 418
SDSr * 801319 1406 1406
DDSr * 855910 1418 1418
UEr * 896581 1414 1414
MBFSr * 799836 1418 1418

Table D.3: Solving the NH97 instance for various cycle bases, with the linear passen-
ger travel time objective Ft (*3600 s. time limit or 1 million nodes limit exceeded).

Time (s) Nodes Root LP+cuts Root LP

MCB 1006 262921 48 48
LNT 325 48984 48 48
MST 22 3356 48 48
LNF * 981350 48 48
MF 102 28036 48 48
SDSr * 752567 27 27
DDSr * 692661 48 48
UEr * 700485 40 40
MBFSr * 698976 48 48

Table D.4: Solving the NH97 instance for various cycle bases, with the quadratic
passenger travel time objective Ft,q (*3600 s. time limit or 1 million nodes limit
exceeded).
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Time (s) Nodes Root LP+cuts Best integer

Ft (root LP= zopt = 1418)
LNT 12 3041 1418
LNT+saf 9 937 idem
LNT+Horton 22 1578 idem
LNT+saf+Horton 16 1108 idem
MST 6 1187 idem
MST+saf 11 1205 idem
MST+Horton 14 1004 idem
MST+saf+Horton 135 14016 idem

Ft,q (root LP= zopt = 48)
LNT 14 1594 48
LNT+saf 19 1191 idem
LNT+Horton 19 828 idem
LNT+saf+Horton 34 1540 idem
MST 17 2431 idem
MST+saf 15 885 idem
MST+Horton 36 1854 idem
MST+saf+Horton 25 1120 idem

Fr (root LP = 0, zopt = ?)
LNT * 198256 0 125
LNT+saf * 176743 idem 137
LNT+Horton * 156855 idem 153
LNT+saf+Horton * 154873 idem 155
MST * 268770 idem 149
MST+saf * 202530 idem 199
MST+Horton * 165797 idem 288
MST+saf+Horton * 164992 idem 190

Table D.5: MST and LNT cycle basis with safety triangle cuts and Horton cuts, for
the NH97 instance.



Samenvatting

Door de nog altijd toenemende mobiliteit, de privatisering van de Nederlandse Spoor-

wegen in 1995, en de vertragingen en punctualiteitsproblemen op het spoor, zijn de

spoorwegen en hun dienstregelingen de laatste jaren een veelbesproken onderwerp ge-

weest in Nederland. De verwachting is dat het spoor mede een antwoord kan bieden

op voorspelde verdere groei van de mobiliteit. Tegen deze achtergrond bestudeert dit

proefschrift wiskundige modellen en oplossingsmethoden voor het ontwikkelen van

cyclische dienstregelingen van hoge kwaliteit. De Nederlandse dienstregeling, waar

elk uur in principe identiek is, is een voorbeeld van zo’n cyclische dienstregeling.

Hoofdstuk 1 van het proefschrift betoogt dat het snel kunnen ontwerpen van

dienstregelingen van hoge kwaliteit van groot belang is zowel voor infrastructuurbe-

heerders, zoals Railned, als voor vervoerders, zoals NS Reizigers. Eén van de taken

van Railned is het adviseren van de Nederlandse overheid over investeringen in nieu-

we spoorweg infrastructuur. Dergelijke grote infrastructuur investeringen moeten

een extra vervoerscapaciteit over een lange tijdshorizon bieden. Railned evalueert

daartoe een scala aan infrastructuur-scenario’s, door voor elk scenario verschillende

dienstregelingen te ontwerpen. Deze dienstregelingen worden vergeleken aan de hand

van diverse criteria, zoals vervoersaanbod en robuustheid. Met de invoering van con-

currentie op het Nederlandse spoor heeft Railned daarnaast de taak gekregen om uit

de dienstregelingsvoorstellen van de diverse vervoerders één gezamenlijke dienstre-

geling samen te stellen. Deze gezamenlijk dienstregeling moet het maatschappelijke

nut maximaliseren, door bijvoorbeeld korte reistijden te bieden, of door het aantal

verwachte vertragingen zoveel mogelijk te beperken.

Wat betreft de vervoerder NS Reizigers speelt het snel kunnen ontwerpen van

dienstregelingen van hoge kwaliteit een rol bij het uitvoeren van tactische en stra-

tegische studies. Tactische studies onderzoeken de haalbaarheid van wijzigingen in

de huidige dienstregeling, en strategische studies richten zich op het verkennen van

nieuwe dienstregelingsconcepten voor de toekomst. Hoe sneller dergelijke dienstre-

gelingsstudies uitgevoerd kunnen worden, des te sneller en beter kan een vervoerder
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inspelen op veranderingen in de vervoersmarkt. Daarnaast biedt het grote voorde-

len als diverse dienstregelingscriteria, zoals kosten of de tevredenheid van passagiers,

gekwantificeerd en tegen elkaar afgewogen kunnen worden. Wiskundige modellen en

oplossingsmethoden om dienstregelingen te optimaliseren bieden daarom een waar-

devolle ondersteuning bij de dienstregelingsplanning van infrastructuurbeheerders en

vervoerders.

Hoofdstuk 2 van het proefschrift gaat dieper in op de planning van dienstregelin-

gen. Bij het ontwerpen van een dienstregeling moeten de diverse afhankelijkheden

met andere planningen, zoals de lijnvoering en de personeelsplanning, in acht wor-

den genomen, en vice versa. Verder beschrijft het hoofdstuk hoe de dienstregeling

door Railned gebruikt wordt als een instrument om de capaciteit van toekomstige

infrastructuur uitbreidingen te evalueren.

Nadat de sociale en organisatorische achtergrond van het dienstregelingsontwerp

uitvoerig behandeld zijn, beschrijft hoofdstuk 3 een geheeltallig programmeringsmo-

del voor het optimaliseren van dienstregelingen, genaamd het Cyclic Railway Ti-

metabling Problem (CRTP). Het CRTP modelleert een dienstregeling aan de hand

van aankomsttijden en vertrektijden van treinen op de diverse knooppunten in het

spoorwegnet. Door uitvoerige voorbeeld-restricties wordt duidelijk gemaakt hoe de

diverse voorwaarden waaraan een dienstregeling moet voldoen, zoals aansluitingen

en veiligheidseisen, kunnen worden gemodelleerd. Het hoofdstuk beschrijft verder li-

neaire doelstellingsfuncties die gericht zijn op het minimaliseren van de reistijden, het

maximaliseren van de robuustheid van de dienstregeling, en het minimaliseren van

de mate waarin de opgelegde eisen moeten worden geschonden, indien deze onhaal-

baar blijken te zijn. Ook wordt het benaderen van een kwadratische variant van deze

doelstellingsfuncties behandeld. Het CRTP heeft een compacte graaf representatie,

en de speciale structuur van deze graaf wordt ook uitvoerig besproken.

Hoofdstukken 4 en 5 gaan vervolgens in op de wiskundige aspecten van het CRTP.

Hoofdstuk 4 beschrijft het Periodic Event Scheduling Problem (PESP), een bestaand

model uit de literatuur dat het CRTP veralgemeniseerd. De wiskundige formulering

van het PESP is gebaseerd op de tijdstippen waarop gebeurtenissen plaatsvinden,

en op periodieke restricties die het tijdsverschil tussen paren van gebeurtenissen tot

een gegeven tijdvenster beperken. De periodiciteit van de restricties wordt gemo-

delleerd door geheeltallige variabelen. Ook het PESP heeft een graaf representatie,

en aan de hand van deze representatie wordt het verband tussen het PESP en het

klassieke kortste pad probleem verduidelijkt. Verder beschrijft hoofdstuk 4 enkele

eigenschappen van het PESP, waaruit een nuttig resultaat voor het cyclisch ordenen

van gebeurtenissen wordt afgeleid. Tenslotte wordt een kort overzicht van aan het

PESP gerelateerde literatuur gepresenteerd.
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Hoofdstuk 5 generaliseert het bekende concept van tensions in een graaf voor de

periodieke situatie. Gebaseerd op deze periodieke tensions wordt het PESP getrans-

formeerd naar de zogenaamde Cycle Periodicity Formulation (CPF). De CPF maakt

gebruik van procestijden, en vereist dat de procestijden binnen elke cycle in de graaf

periodiek zijn. Deze periodiciteit binnen een cycle wordt gemodelleerd door een ge-

heeltallige variabele. In principe moet de periodiciteit binnen elke cycle in de graaf

afgedwongen worden, maar het proefschrift toont aan dat het volstaat om de cycles

te beschouwen in een geheeltallige basis van de cycle ruimte van de graaf. Verder

toont een voorbeeld aan dat een niet-geheeltallige cycle basis er toe kan leiden dat

het model een foutieve dienstregeling levert. Aan de hand van het cyclisch ordenings-

resultaat uit hoofdstuk 4 wordt daarna de relatie aangetoond tussen bepaalde cycles

in de graaf, en de volgorde waarin treinen over het spoor rijden. Deze trein-volgordes

leiden vervolgens tot een klasse van sneden voor de CPF, die tot de grotere klasse

van reeds bekende cycle sneden blijken te behoren.

Het resterende deel van hoofdstuk 5 is gewijd aan verschillende aspecten van cycle

bases. Zo wordt aangetoond dat de bekende klassen van strikt fundamentele en al-

gemeen fundamentele cycle basen geheeltallig zijn, hetgeen betekent dat ze gebruikt

kunnen worden om de CPF te formuleren. Vervolgens betoogt het proefschrift dat

het voordelig is om de CPF met een smalle cycle basis te formuleren, en dat al-

goritmen voor het zogenaamde minimum cycle basis probleem een benadering van

zulke smalle cycle bases berekenen. Uitgaande van de speciale structuur van de graaf

representatie van het CRTP, worden verder twee gewichtsfuncties voor het bepalen

van opspannende bomen voorgesteld, die strikt fundamentele cycle bases met een

smalle breedte leveren. Tenslotte beschrijft het hoofdstuk hoe de breedte van een

strikt fundamentele cycle basis verder verkleind kan worden door de bijbehorende

algemeen fundamentele cycle basis te berekenen.

Hoofdstuk 6 is gewijd aan diverse uitbreidingen van het CRTP. Als eerste wordt

uitgelegd hoe variabele rijtijden van treinen in het model kunnen worden opgeno-

men. Vervolgens wordt de modellering van flexibele aansluitingen beschreven, het-

geen inhoudt dat twee verzamelingen van treinen één of meerdere aansluitingen op

elkaar moeten bieden. De derde uitbreiding toont hoe de capaciteiten van stati-

ons opgenomen kunnen worden in het CRTP, en de vierde uitbreiding beschrijft een

alternatieve doelstellingsfunctie die gericht is op het minimaliseren van het aantal

trein-composities dat nodig is om de dienstregeling uit te voeren. Tenslotte wordt in

hoofdstuk 6 een cycle fixatie heuristiek beschreven. Deze heuristiek is gëınspireerd

door de werkwijze van praktische planners, die vaak eerst de belangrijkste treinen

plannen, de dienstregeling voor deze treinen vastprikken. Vervolgens worden iteratief

andere klassen van treinen aan de dienstregeling toegevoegd.
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In hoofdstuk 7 worden de ideeën uit de voorgaande hoofdstukken getest op een

drietal testproblemen. Deze tests tonen aan dat het van essentieel belang is om een

preprocessing stap uit te voeren teneinde de grootte van de instanties te reduceren.

Ook blijkt het te lonen om in een tweede preprocessing stap de breedte van de

tijdvensters in de periodieke restricties te verkleinen. Vervolgens wordt duidelijk dat

de PESP variant van het CRTP model vrij lange rekentijden vergt, en dat de CPF

duidelijk beter presteert bij het optimaliseren van cyclische spoorwegdienstregelingen.

Om deze reden is het overige deel van hoofdstuk 7 gewijd aan verdere tests van de

CPF.

Een tweede factor die van belang is om de CPF snel op te kunnen lossen, blijkt het

soort cycle basis te zijn waarmee het model geformuleerd wordt. De tests tonen aan

dat de voorgestelde gewichtsfuncties voor opspannende bomen over het algemeen de

beste resultaten opleveren voor de reistijd-doelstellingsfunctie. Het blijkt veel meer

tijd te kosten om een robuuste dienstregeling te berekenen, terwijl een dienstregeling

met een minimaal benodigd aantal trein-composities vrij snel berekend kan worden.

Voor instanties met een onhaalbaar eisenpakket blijkt de voorgestelde doelstellings-

functie een effectief middel te zijn om een indicatie te verkrijgen van de benodigde

aanpassingen. Het toevoegen van sneden aan de model formulering reduceert de

rekentijd in de meeste gevallen. Toch voldoen deze technieken niet om binnen een

redelijke tijd goede dienstregelingen te berekenen voor het grootste testprobleem.

Echter, met de cycle fixatie heuristiek kunnen ook voor dit grootste probleem binnen

een redelijke rekentijd goede dienstregelingen worden berekend. Tenslotte conclu-

deert het hoofdstuk dat de kwaliteit van de berekende dienstregelingen zodanig is,

dat de extra rekentijd die een optimalisatie vergt gerechtvaardigd is.

Hoofdstuk 8 vat tenslotte de belangrijkste resultaten van het proefschrift samen,

en beantwoordt de onderzoeksvragen die in hoofdstuk 1 zijn geformuleerd. Daar-

naast worden kort de beperkingen van het proefschrift beschreven, en worden enkele

suggesties voor vervolgonderzoek gedaan.
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