
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 145, 309-327 (1990)

On the Reversibility of Manufacturing Networks

MAURICE CORTEN AND RENB DE KOSTER*.'

Department of Industrial Engineering, Eindhoven Universiry of Technology,
P. 0. Box 513, 5600 MB Eindhoven, Nciherlands

Submitted by E. Stanley Lee

Received April 14, 1988

In this paper it is shown that in many production networks it is possible to
reverse the flow direction in one or more buffers without changing the throughput
and buffer content distributions of other buffers in the network. If a network
possesses the property that simultaneous reversal of the flow direction in all buffers
reverses all the buffer contents, then it is called reversible. If it possesses the
property that flow reversal in a single buffer b reverses the buffer content of b and
leaves all other buffer contents unchanged, then it is called b-reversible. The rever-
sibility of a production network depends, for the discrete product situation, on the
blocking rule used. For networks having a continuous product flow the blocking
rule is only important for so-called buffersharing networks. b-reversibility is shown
to hold for all buffers h for so-called assembly-disassembly networks. Reversibility
is shown to hold for buffersharing networks. ‘1 1990 Academic Press. Inc.

1. INTRODUCTION

Recently various authors have paid attention to reversibility of queueing
systems with finite buffers. It is observed that reversing the network, that
is, reversing the direction of the flow in each buffer, leaves performance
measures invariant in certain networks. Muth [6] studies flow lines with
finite intermediate buffers and workstations with stochastic service times.
He proved that the throughput (mean production rate) of such a line
remains unchanged under reversal of flow direction. Yamazaki et al. [S]
proved that throughput invariance under flow reversal also holds for flow
lines with parallel workstations with deterministic service times. For flow
lines with single stochastic workstations and finite buffers, Yamazaki et al.
[7, 81 proved that under flow reversal also the distributions of the time of
the nth departure epochs are identical, assuming that the systems are
empty initially. Melamed [S] studied single-buffer systems with parallel

* Research supported by the Netherlands Organization for Scientific Research (NWO).
+ Present address: Consultants and Engineers Groenewout B.V., P.O. Box 3290,

4300 DC Breda, Netherlands.

309
0022-247X/90$3.00

Copynghc (1990 hy Academic Press. Inc
All rights of reproductwn ,n any form reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/18520172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

310 (‘ORTEN AND DE KOSTER

workstations. He identified non-occupied positions in the original network
(also called “holes”) and some of the occupied positions, with so-called
“dual customers,” which receive the same service as the ordinary products.
Such dual customers appear to correspond to ordinary customers in the
reversed line. In all these references the blocking mechanism is the same. If
a workstation finishes an operation and the succeeding buffer is full, then
the workstation becomes blocked and cannot serve other items.

Ammar [l] and Ammar and Gershwin [Z] studied a different blocking
mechanism: a workstation does not start an operation if the succeeding
buffer is full. They considered networks of workstations where assembly/
disassembly of products takes place. The layout of these networks is such
that a buffer is linked to exactly one upstream and one downstream
machine, but a machine may have several upstream or downstream buffers.
If a workstation has more than one upstream buffer, it performs assembly
of products from the different buffers; if it has more than one downstream
buffer, it performs disassembly of the product into disassembly parts.
Ammar and Gershwin [2] prove that if the states of two dual networks
satisfy so-called duality conditions then the probability of transition
between such states in the networks is the same. Two networks are called
dual if for each buffer, product motion in the one network corresponds to
either product or hole motion in a corresponding buffer in the other
network (product motion for buffers with an identical product flow
direction and hole motion for buffers with a reversed product flow).

In all references so far the products are discrete. Also continuous product
flow models have been studied. De Koster and Wijngaard [4] proved that
for certain two-station lines the throughput remains equal under flow
reversal.

In this paper both continuous and discrete product flow networks will be
discussed. Two types of networks with different layouts are studied. As in
Ammar and Gershwin [2] we discuss networks where machines have mul-
tiple upstream and downstream buffers, but buffers have only one upstream
and downstream machine (assembly/disassembly networks). It is shown
that reversing the flow direction in buffer h of the network reverses also the
probability distribution of the content of b. That is, if X(t) is the content of
h at time I and X’(t) is the content of b at time t in the reversed network,
then X’(t) = K- X(t), where K is the capacity of b. This holds at all points
in time, provided it is true initially.

The second type of layouts studied are layouts where machines share
common upstream or downstream buffers. If an upstream buffer is empty
and has a certain (positive) output rate restriction (due to machines sup-
plying the buffer) then the machines obtaining products from that buffer
are subject to a priority rule which allocates the speed reduction over the
machines. For such networks it is proven that reversing the flow direction

REVERSIBILITY OF MANUFACTURING NETWORKS 311

in all buffers of the network, without changing buffer capacities and
priority rules, reverses also the probability distributions of the buffer con-
tents. That is, for the content of all buffers j we have Xi(t) = K, - X,(t) at
all points in time, provided this is true initially. Quantities denoted with a
prime will in the sequel refer to the reversed network. All intermediate
buffers in the networks studied in this paper are assumed to have finite
capacity.

Note that actually two types of flow reversibility are discussed, namely
reversibility and b-reversibility.

Reversibility of a network means that buffer contents are reversed if the
flow in all buffers is reversed. A network is b-reversible if reversal of the
flow direction in buffer b reverses the buffer content of 6, whereas the buffer
contents of other buffers remain unchanged. If we have b-reversibility for
all buffers b then we also have reversibility.

The organization of the paper is as follows. In Section 2 it is shown that
continuous flow assembly/disassembly networks are b-reversible for all
buffers b. In Section 3 continuous flow networks with buffersharing are
studied. It is shown that they are reversible for a variety of priority rules.
For a particular priority it is shown in the Appendix that the machine
speeds at change points (points in time where full or empty buffers force
machines to adapt their speeds) can be determined efficiently. Finally, in
Section 4, related results are given for networks with discrete products.

2. ASSEMBLY-DISASSEMBLY NETWORKS

In this section we consider assembly-disassembly networks, that is, we
suppose that machines may have multiple upstream or downstream buffers,
but each buffer has at most one upstream machine and at most one
downstream machine. In this and the next section it is supposed that the
product flow in the network is continuous. An example network is sketched
in Fig. 1.

In Fig. 1 buffers are denoted by triangles and machines by rectangles.
The network consists of 12 machines and 17 buffers. All buffers, except 1,
5, 10, and 17, are supposed to have finite capacity. The capacity of bufferj
is K,.

The stand-alone (or potential) machine speed of machine i at time t is
denoted by vi(t). The real machine speed, as influenced by the network, is
uji(t). The set of machines is denoted by M, the set of buffers by B, and the
set of directed arcs, connecting machines to buffers and vice versa, is
denoted by S. The content of buffer i at time t is Xi(t). Buffers that do not
have upstream machines are called source buffers. Source buffers are never

312 C‘ORTEN AND DE KOSTER

FIG. I. Assembly-disassembly network.

empty. Buffers that do not have downstream machines are called sink
buffers. Sink buffers are never full.

It is assumed that machines that have more than one upstream buffer
perform an assembly operation. That is, they assemble one unit of product
by taking a fixed amount of product out of each buffer. We suppose one
unit of product is taken out of each upstream buffer, but different assembly
ratios do not complicate the proof of Theorem 1, to be stated hereafter.

A machine that has more than one downstream buffer disassembles a
unit of product into equal amounts of disassembly parts. A machine that
performs an assembly and/or a disassembly operation is called an
assembly/disassembly machine (a/d machine). Due to the finiteness of the
buffer capacities, machines in a/d networks may be slowed down. An
a/d machine may be slowed down whenever only one of its upstream buf-
fers is empty or one of its downstreams buffers is full. Suppose, for instance,
that in the network of Fig. 1 machine 4 works at speed Do, machine 3 at
speed Us, and buffer 4 is empty. If uj < uq then machine 4 is slowed down
to rate uj. Since all machines are connected to each other via buffers,
slowing down of machines may proliferate through the network.

We say that the slowing down proliferation takes place via so-called
proliferating paths. A machine is on a proliferating path from machine i, at
time t, if this machine can slow down machine i, through a chain of full or
empty buffers (if its production rate were smaller than that of machine i).
Formally the following definition can be given.

We say that machine j in M is on a proliferating path from machine i at
time t, if there exists a directed path in the network from machine i to
machine j at time t, so that for every buffer on the path it holds that if the

REVERSIBILITY OF MANUFACTURING NETWORKS 313

path goes upstream through the buffer, the buffer is empty and if the path
goes downstream through the buffer, then it is full. See Fig. 2.

Note that proliferating paths are variable over time. Furthermore they
have a direction: machine j in Fig. 2 can slow down machine i, but
machine i cannot slow down machine j.

For in M, Ri(t) is the set of all machines which are on a proliferating
path from machine i at time t (including i). Knowledge of RJt) is necessary
in determining the speed of machine i at time t. In Theorem 1 it is shown
that a/d networks are h-reversible for all buffers b. In order to prove this
theorem, it is necessary to make some assumptions of the behavior of the
machines.

It is assumed that each machine can be in countably many states (0, 1,
2, . ..}. The st oc as ic variable representing the machine state of machine h t’
i E M, is denoted by a,(r). A constant machine speed is associated with each
machine state. The sojourn time in each state is a random variable. After
a sojourn time in a state, a transition is made to another state. This
transition is determined by an irreducible Markov transition matrix. Two
types of change points are distinguished:

- change points in machine states: points in time at which a machine
changes its state. It is assumed that these change points do not condense

- buffer filling or emptying points: points in time when buffers
become full or empty.

It is assumed that these two types of change points do not coincide. Note
that the machine speeds in a network only change at such change points.

The aim is now to define the behavior of a,(t) so that both time-
dependent and state-dependent transitions are covered. If the transition
rates are time-dependent, they do not depend on the time the machine has
been slowed down through full or empty buffers. If a machine has state-
dependent transition rates, the transition rates may be influenced by the
amount and the time duration of the slow down. As an example, consider
an unreliable machine, with production rate 6, (exponential) failure rate

FIG. 2. Proliferating path from machine i to machine ,j. All buffers are either empty (e) or
full (f).

314 (‘ORTEN AND DE KOSTER

0.1, and (exponential) repair rate. Assume that we are now at time point
0 with the machine up. The failure time is determined by a random draw
from an exponential distribution with rate 0.1. Assume that the failure time
is 10. Assume furthermore that the machine is slowed down to rate 0 at
time 5 and at time 7 it is slowed down to rate 2. Arriving at t = 5, due to
the memoryless property of the exponential distribution, the new failure
time is determined by a random draw from an exponential distribution
with rate 0 x 0.1/6 = 0. At time t = 7, the new failure time is determined by
a random draw from an exponential distribution with rate 2 x 0.1/6.

More generally, let the state of machine i at change point t be {u,(r)}.
The sojourn time in that state is determined as follows. If the machine is
not slowed down at time t, then the sojourn time is determined by a
random draw from the same distribution as if the machine were in stand
alone position. If the machine is slowed down at time t, then the sojourn
time is determined by a random draw from a distribution that may depend
on the amount and duration of slow down. In all cases, the sojourn time
distribution is assumed to have a positive mean.

(2.1)

These change points generated by a random draw from a certain dis-
tribution are denoted by projected change points, since these generated
change points are not necessarily realized. The stand-alone (or potential)
machine speed, corresponding to the realization of the machine state
{(t, a,(t)); t 3 0}, is denoted by vi(t). The real machine speed of machine
i, as influenced by the network, is denoted by w,(t). This machine speed is
given by

~~(t)=min{u,(t); jER,(t)}. (2.2)

THEOREM 1 (b-Reversibility of a/d networks). Let N be an a/d network,
with machines modeled as above, with sojourn time distributions in each state
as defined above. Let e E B, the set of buffers in N, and let N’ be the network
arising from N by reversing the direction of the flow in buffer P. If this results
in a machine without upstream buffer, then add a source buffer supplying this
machine. If the flow reversal results in a machine without dowxstream buffer,
then add a sink buffer obtaining parts ,from that machine. The cardinality of
M is denoted by n, and the cardinality of B by m. Let {(t, a,(t), u,,(t));
t 3 0} be a stochastic realizution of the machine states in N, {(t, X,(t),
X,,,(t)); t 2 0) the corresponding realization of the buffer contents, and
{cl> w,(t), w,(t)); t >, 0) the corresponding realization of the machine
speeds in N. Define

{X((O)} = {X,(O)}, .iE B, j#f, {K(O)} = i&-X,(O))

Ia:(O)f = {a,CO)13 iEM.

REVERSIBILITY OF MANUFACTURING NETWORKS 315

Then {(t, q(t), . ..) u,,(t)); t > 0} is a stochastic realization of the machine
states in N’, {(t, X,(t), K/ - X((t), X,,,(t)); t > 0} the corresponding
realization of the buffer contents, and {(t, w,(t), w,(t)); t>O} the corre-
sponding realization of the machine speeds N’.

Prooj Note first that if at time t we have {a:(t)} = {ai(for all ie M
and X,‘(t)=X,(t), for all j#L, X;(t)=K,-X,(t), then for all iEM, the
set of machines that are on a proliferating path from machine i at time t

is the same in N and N’. Note that the flow direction through buffer G is
reversed, but simultaneously X;(t) = KF - X,(t) and hence if machine j
slows down machine i by a proliferating path through buffer C‘ in N, then
it also slows down machine i in N’. This means that

&(t)=R,(t) and hence, by (2.2),4(t)=w,(t), for all i6 M. (2.3)

The proof is now by induction to change points in the machine states. By
assumption, the theorem holds for t =0 (note that R:(O) = Rj(0), for all
iEM, see (2.3)).

Assume the assertions of the theorem hold until the change point in the
state of machine i, t, say. At time t, the projected change point t, in the
state of machine i is the same in N and N’, since in both networks the
machine states are equal and, in case of slow down of machine i, the
amount and duration of slow down of machine i are also equal. Hence
t; = t,. Let tl be the next change point, either in a machine state or in a
buffer content, in N. There are now two possibilities.

1. t, is a change point in the state of a machine j, say. Since all
change points, machine states, and machine speeds are the same in N and
N’, prior to t, by the induction hypothesis, it follows by (2.1) that all
projected change points in machine states are also the same in N and N’.
Hence, t’, = t, and the machine states are identical in N and N’ between t
and t,. Since all machine speeds are equal in N and N’ at time t and since
they do not change until t,, it follows that X,!(t,) = ,I’,([,), for all j # 8, and
X;(t,)= K,--X,(t,). By (2.3) it now follows that also wj(t,)= am, for
all iEM.

2. t, is a change point in the state of buffer j. Similarly as under (l),
it follows by the induction hypothesis that t; = t, and {a:(t,)} = {ai(
for all ie M. Assume that j becomes empty at t, in N. Since the machine
speeds are equal in N and N’ at time t and since the machine speeds do not
change between t and t, , it follows that j also becomes empty at t’, = t r in
N’, if j # 8. If j = 8, then j becomes full at t, in N’. Hence X,!(tl) = X,(t,),
for all r#/, .k’;(tl)=K,-X,(2,). By (2.3) it now follows that
w:(t,) = wi(t,), for all i E A4. Hence, the assertions of the theorem hold at
time I,. At time tl, new projected change points in the states of the slowed

316 CORTEN AND DE KOSTER

down machines are generated in N and N’. By (2.1) it follows that these
change points coincide in N and N’. We can now take the next change
point t, and show in a similar way that the assertions of the theorem hold
at t,. By assumption, the change points do not condense. We can proceed
in this way, until we arrive at a change point in a machine state.

In both cases, it follows that the assertions of the theorem hold at the
next following change point in a machine state. This concludes the proof.

Theorem 1 states that a/d networks are h-reversible, for all h E B. If a
unique equilibrium distribution for the buffer contents exists for an a/d
network N, then it is the same or reversed for every network N’ in which
the flow through one or more buffers is reversed. That is, if N’ arises from
N by reversing the flow in buffer /, then

P[X,’ < x] = P[X, d x], for j # (, and P[X;6 X] = P[X, 3 K, -xl.

Note that even when there exists an equilibrium distribution it need not be
unique. It may depend on the initial state of the system. In the network of
Fig. 3, machine 1 performs disassembly and machine 2 performs assembly.
The initial state X,(O) = K,, X,(O) = 0 in this figure leads to

lim X,(t)= K,, lim X,(t) = 0.
I-l I-K

The initial state X,(O) = 0, X,(O) = K, leads to lim, _ -~ X,(t) = 0,
lim,,, X,(t)= K2.

It is clear that networks as in Fig. 3 are only more or less realistic if
K, = K, =: K.' However, whenever this is the case the system of Fig. 3 is
equivalent to an ordinary flow line containing only one intermediate buffer
of capacity K.

By Theorem 1, we can replace directed cycles in a/d networks by
bypasses. If the network contains then bypasses as in Fig. 3 (that is,
without intermediate machines within the bypass), these can be eliminated
too, under the conditions mentioned before. This fact can be used in
approximation algorithms for a/d networks. See De Koster [3].

FIG. 3. Two-machine a/d network.

’ And if we start with X,(O) = X,(O).

REVERSIBILITY OF MANUFACTURING NETWORKS 317

In Ammar and Gershwin [2], a/d networks that can be obtained from
each other by reversing the flow direction in one or more buffers (and
adding source and sink buffers if necessary) are called equivalent. They
show how the equivalence class of a tree-shaped a/d network can be
constructed.

3. BUFFERSHARING NETWORKS

In this section we will consider continuous flow networks of linked buf-
fers and machines in which several machines may obtain products from a
single buffer and may supply to a single buffer. However, each machine has
only one upstream and one downstream buffer. Such a network is called a
buffersharing network. Since several machines may share a common finite
capacity buffer, we have to do with a global restriction, holding for all
machines, rather than a local restriction, holding for each machine
separately. This implies that when several machines obtain from a single
buffer and that buffer is (nearly) empty, then it has to be decided which
machines are allowed to operate on the products and with which rates (in
the continuous flow situation). A similar situation arises when several
machines supply a single buffer. In general, the installation of such a
common buffer, preceding several machines, improves the performance of
the system. If products are allocated to a single machine and that machine
fails, then the system stops, whereas if the products are not allocated
beforehand, they can be processed by other machines. A complex example
of a buffersharing network is sketched in Fig. 4.

In the buffersharing networks studied in this section it is assumed that
there is a (directed) path from a source buffer to a sink buffer. As in a/d

FIG. 4. Buffersharing network

409.145 2-7

318 CORTEI\; AND DE KOSTER

networks, machines may be forced to slow down if a (directly) preceding
buffer is empty or a (directly) succeeding buffer is full. Suppose buffer h E B
is full and let it be preceded by machines tr,, n, and succeeded by
machines m, , tn.,. Let the potential speed of machine n, be denoted by
v(n,). If the total potential speed of all machines n,, n, (say cr, :=
C:=, u(n,)) is greater than the total potential speed of machines yn,, m,
(say az) at that moment, then machines n,, n, will have to slow down
till their total speed is less than or equal to the total speed of machines
m,, m,,. The reduction in the potential speeds of the machines n,, n,
due to this is determined by a priority rule. With each possible priority rule
there is associated a system of equations determining the machine speeds.

An example of such a priority speed-allocation rule is the following
priority rule 1:

R, : Allocate the necessary reduction in potential speeds to the
machines n,, n, in order of decreasing priority. The priority of the arc
(n,, h) is greater than the priority of (n,, h) iff n, < nj. The speed of machine
ni, w(n,), now becomes min{u(n,), G~-C~,<,, I’}, where C-I~ and u2 are
defined as above. If (T> > 0, and the buffer ‘is empty, then the machine
speeds are determined similarly.

Note that this priority speed-allocation rule is locally defined. In
buffersharing networks, the allocation rule must be applied at each full or
empty buffer. This leads, for all machines, to a number of equations that
their speed must satisfy. For the network sketched in Fig. 5 this rule results
in the following speeds: w(1) = min{ 4, 2) = 2, bv(2) = min{ 1, w(I), 2) = 1,
r+(3)=min{3,2-u(1),2-M.(2)}=0.

Another priority rule is the following:

R,: Allocate the reduction in potential speeds of the machines n, , n,
to these machines equally. The speed of machine nj then becomes

u(ni)

FIG. 5. Four-machine network. On top of machine i, u(i) is indicated. For a buffer,
e denotes that the buffer is empty, f denotes that the buffer is full.

REVERSIBILITY OF MANUFACTURING NETWORKS 319

This priority rule results in the following speeds for the network in Fig. 5:
w(l)=!, w(2)=min{w(l),i}=f, w(3)=min{;,$}=$.

Many other priority rules are possible. However, it may be possible that
they lead to contradictory systems of equations for the machine speeds or
systems with multiple solutions. In the Appendix it is shown that for
networks with priority rule R,, with some extra restrictions, the system of
equations for the machine speeds is solvable at all points in time with a
unique solution. An efficient algorithm based on dynamic programming is
given for obtaining the machine speeds.

Now a theorem is presented for mixtures of buffersharing and a/d
networks, analogous to Theorem 1. A machine that has multiple upstream
or downstream buffers in such a network performs assembly or
disassembly, respectively. For each buffer with multiple upstream and
downstream machines an allocation rule is needed. We do not give alloca-
tion rules for such networks, since only plain a/d and plain buffersharing
networks are studied in the rest of this text. However, it is not difficult to
generalize rules R, and Rz for such combined networks,

Let N be a mixture of a buffersharing and an a/d network and let N’ be
the network arising from N by reversing the flow direction of buffer e E B.
If this results in a machine without upstream buffer then this machine
becomes a disassembly machine and a source buffer is added supplying this
machine. If the flow reversal results in a machine without downstream
buffer then this machine becomes an assembly machine supplying a sink
buffer. Hence, the resulting network is again a mixture of a buffersharing
and an assembly-disassembly network.

Starting from a plain buffersharing network, flow reversal only results in
another buffersharing network, if the flows in all buffers are reversed. The
speed allocation rule in mixtures of buffersharing and a/d networks must
satisfy certain conditions.

Let N and N’ be networks as above. A priority speed-allocation rule R
in a network N, which is a mixture of a buffersharing and an a/d network,
is said to possess the local reversibility property if

1. for all realizations of machine states { (t, ai(t)) 1 t E [w + , i E M} and
for potential machine speeds {(t, v, (1))) t E Iw + , ie M), the used allocation
rule R results in a unique set of real machine speeds { wi(t) 1 t E Iw + , i E M}.

2. If at an arbitrary time t, the realization {a:(t)} = {uj(t)}, for all i
and X;(t) = Xi(t), j # /, X;(t) = K, - X/(t), then allocation rule R deter-
mines the real machine speeds so that w:(t) = w,(t), for all i.

Note that for the case where N and N’ are plain buffersharing networks,
both R, and R, possess the local reversibility property.

320 CORTEN AND DE KOSTER

For mixture networks N and N’ as defined above, we assume that

- the assumptions for the machine states are the same as those for
a/d networks.

- The used allocation rule R possesses the local reversibility
property.

THEOREM 2 (b-Reversibility of mixed buffersharing a/d networks). Let
(0, a,(t), a,(t)); t 2 0) he a stochastic realization of the machine states in
N, {(t, X,(t), X,(t)); t > 0) the corresponding realization of the buffer
contents, and {(t, w,(t), w,,(t)); t 2 0} the corresponding realization of the
machine speeds in N. Define

Then {(t, a,(t), a,,(t)); t 20} is a stochastic realization of the machine
states in N’, {UT x,(t), ..‘, K, - x/(t), ..., X,(t)); t > 0} the corresponding
realization of the buffer contents, and {(t, w!,(t), w,(t)); t 20) the corre-
sponding realization of the machine speeds N’.

Sketch of the Proof The proof is along the same line as that of
Theorem 1. Suppose the assertions of the theorem hold until the change
point in a machine state t. Let t, be the next change point, either in
machine states or in buffer contents, in N. As in the proof of Theorem 1,
there are two possibilities, of which only one is treated:

Assume that t, is a change point in the state of buffer j. Assume, without
loss of generality, that j becomes empty at t, . Similarly as in the proof of
Theorem 1, it follows by the induction hypothesis that t’, = t, and
{ai(= (a,(t,)} for all iEM. Since the real machine speeds in N and N’
are equal at t, and since they do not change until t, , it follows that j also
becomes empty at t, in N’, if j # ! and j becomes full at t, in N’, if j = !.
Hence Xi(tl)=Xj(t,), for allj#rC, &(t,)=K,-X,(t,). By the local rever-
sibility property of the allocation rule R, it follows that w:(t ,) = w,(t,), for
all i E M. Hence, the assertions of the theorem hold at time t, We can now
take the next change point t, and show in a similar way that the assertions
of the theorem hold at t,. By assumption, the change points do not
condense. We can proceed in this way until we arrive at a change point in
a machine state. This concludes the proof.

Note also that directed cycles or bypasses in the network are no
problem in the proof of Theorem 2.

REVERSIBILITYOFMANUFACTURINGNETWORKS 321

4. NETWORKS WITH DISCRETE PRODUCTS

Till now we assumed that the product flow in the networks was con-
tinuous. It is also possible to derive reversibility results for a/d networks
with discrete products and general service mechanisms, as long as the
machines do not have storage capacity. That is, we suppose that a machine
does not start an operation as long as some immediately downstream
destination buffer is full, and on production completion a product is
immediately transferred from upstream buffer to downstream buffer. The
non-occupied positions, or holes, move simultaneously with the ordinary
products through the network, but in opposite direction. For such a
blocking mechanism it is easy to see that if the flow direction in buffer &
is reversed, then hole motion in buffer L in the original network
corresponds to product motion in e in network N’. It is possible to prove
a theorem similar to Theorem 1 (for a/d networks) for the discrete product
case. This can be done by comparing the state of the machines in the a/d
networks N and N’ at points in time where a machine has finished a
product and just stored it in a buffer.

Let s,(t) be the service time of machine i E M starting service at time r.
This service time may depend on the realised service times in the past, but
is independent from the upstream and downstream buffer contents. t,=
0, t, 2 t,, .‘. are points in time where either a machine finishes a product or
starts servicing a new product. Let

e(t) := the set of machines servicing or starting service at time t,

u(t) := the set of machines waiting or finishing a product at time t.

The intersection of the sets e(t) and u(t) is not necessarily empty. For
iE4L),

l;(t,,,) := the latest point in the time interval [0, t,],
machine i started service.

Suppose we have tb = to, e’(0) = e(O), u’(0) = u(O), X;(O) = X](O), j # 8, and
X;(O) = K(-X,(O). Then we have

THEOREM 3. For each realization of the machine speeds:

1. tk = t,, for m > 0.
2. e’(t)=e(t), u’(t)=u(t), ll(t)=li(t)for all t30.
3. Xj(t)=X,(t), for all jEB, j#L’, ta0, Xl(t)=&-X,(t), for all

t 2 0.

322 CURTEN AND DE KOSTER

Sketch ef fire Proqf: By induction to M. Suppose the theorem holds for
all values dnz. The machines in e(t,,) = e’(t,,,) started servicing at time
lj(t,,) = ll(t,). Furthermore e’(t,) = e(t,) and u’(t,J = u(t,,) (induction)
and hence si(li(t,,)) = s\(l/(t:,,)).

Hence tL+,=t,n+, =min{l,(t,,)+s,(/i(t,)); iee(t,)}. Between t, and
t m+ 13 e(t), u(t), and x,(t) do not change. At t,,+ i in both N and N’ the
same machines have finished their product. Therefore all buffer transitions
are equal except in I, where the buffer transition is reversed, and the same
machines can start servicing a product at t, + I) which implies e’(t, + ,) =
e(t m+lh u’(tm+,)=u(t,,+,).

It is also possible to prove a theorem analogous to Theorem 2 for mixed
buffersharing a/d networks. In defining a priority rule for machines
obtaining from the same buffer or supplying the same buffer, we again have
to suppose that machines do not have capacity for products and further-
more a machine being busy or idle at a certain point in time has to be in
concordance with being busy or idle in the reversed network. For example,
if n machines i,, i,, have a common upstream buffer b in the network N,
then if machine i, is working with b having content x (integer), then i,
must also be working in N’ with b having content Z&--x.

An example of a priority rule which leads to reversible networks is
priority rule R,, which is explained by means of an example network. In
this example network, four machines (machines 1, 2, 3, and 4) share a
common upstream buffer b of capacity 5.

R,: Machine i has priority over machine j iff i < j. Hence if the content
of b is 3, then machines 1, 2, and 3 are busy (if not blocked) and machine 4
is starved.

A similar statement can be made if these four machines would share a
common downstream buffer b of capacity 5. If then the content of b is 3,
then machines 1 and 2 are busy (if not idle) and machines 3 and 4 are
blocked.

These priorities are preemptive, that is, for the case of the common
downstream buffer, if the content of b is 3 and machine 1 finishes an opera-
tion first, then machine 2 is preempted. This is possible since machine 2 has
no capacity for products and the part was not taken out of the upstream
buffer of machine 2. Whenever machine 2 starts with a new operation it
starts from the beginning.

For priority rule R, it is possible to prove a theorem similar to
Theorem 3, but now for mixed buffersharing a/d networks.

The line of proof followed in the previous theorems cannot be followed
for the so-called transfer type blocking mechanism as used by Muth [6]
(this blocking mechanism is often called type 1 blocking). For the blocking

REVERSIBILITYOFMANUFACTURINGNETWORKS 323

Type 3

FIG. 6. Flow lines with type 3 and type 2 blocking.

mechanism of this paper (often denoted by communication type blocking,
or type 2 blocking) there is complete correspondence between part move-
ment in N and part or hole movement in N’. Parts in a buffer b in N
correspond to parts in this buffer in N’ if the flow direction through b is
not reversed. Parts in a buffer b in N correspond to holes in N’, if the flow
direction through b is reversed. For type 1 blocking there is no such corre-
spondence. However, for the following transfer type blocking mechanism
(denoted by blocking type 3) the correspondence between product move-
ment and hole movement still exists.

BLOCKING TYPE 3. A machine has capacity for one product, when not
blocked. The operation takes place in the machine. A machine starts an
(assembly) operation as soon as there are upstream products in each direct
upstream buffer. If there is no storage room for the finished product(s),
then the machine becomes blocked. The machine has in blocked state the
storage capacity for an extra product.

A flow line with type 3 blocking with buffer capacities Kj corresponds to
the same line with buffer capacities Kj + 2, but with type 2 blocking. See
Fig. 6.

In both lines of Fig. 6 the capacities are indicated. Let the two extra
buffer positions of the type 2 blocking mechanism correspond with the
machine-capacity positions of the type 3 blocking mechanism. See Fig. 7.
For both blocking types each machine can be in three different states,
namely busy, blocked, and starved. The distribution of the products over
the line for these machine states is the same for both blocking mechanisms
and is indicated in Fig. 8.

0 I K. I 0 1

TYP 3

0 1 K. I 0 I K.

TYPO 2

FIG. 7. Product positions for both blocking mechanisms.

324 <‘ORTEN AND IX KOSTER

I 0 0 if machine i busy
. .

.o I Kj+l 1 if machine i blacked

.
0 0 00. if machine i starved

FIG. 8. Product positions for both type 2 and type 3 blocking. A ‘0’ means that a position
is not occupied. A ‘1’ means that a position is occupied and a dot represents either an
occupied or a non-occupied position.

APPENDIX

In this appendix it will be illustrated how the machine speeds can be
determined in continuous flow buffersharing networks. The used priority
rule is rule R,, defined in Section 3. This priority rule determines the
machine speeds in buffersharing networks uniquely, if no loops or bypasses
occur. If a network contains loops or bypasses the system of equations for
the machine speeds may be contradictory or have multiple solutions.
Suppose that machine 3 in the network in Fig. 5, which contains a bypass,
has priority over machine 1. Machine 2 has priority over machine 3. In this
case the system of equations for the machine speeds, using R,, is

w(l)=min{4,2-w(3))

w(2)=min{l, 2, w(l)}

w(3)=min{3,2,2-w(2)}.

Thisleadstow(2)=min{l,2-min{2,2-w(2)}}=min{l,max{0,w(2)}}.
Hence, for each w(2) E [0, 11, there is a solution of this system of equa-
tions. In order to avoid such situations it is assumed that the priority rule
satisfies the following additional conditions.

(1) The network contains no loops (directed cycles).
(2) For every bypass (a set of two different paths from a buffer b, E B

to another buffer b, E B) that the network contains, it holds that if the
priority of the first arc of the one path is greater than the priority of the
first arc of the other path at b, , then the same has to hold at b, for the last
arc of both paths.

In order to determine the machine speeds the following additional
variables are needed. With each buffer b, that has downstream machines
there is associated an output rate restriction o(b,), which is the maximum
possible output rate of products from this buffer. If b, is non-empty then

REVERSIBlLITY OF MANUFACTURING NETWORKS 325

o(b,) = CO. This output rate restriction means that preceding machines may
be blocked. With each buffer b2 that has upstream machines there is
associated an input rate restriction i(b2), which is the maximum possible
input rate into this buffer. If b, is non-full then i(b,) = CO. The input rate
restriction means that following machines may be starved.

It is assumed that the network is connected. If not, each connected
component can be treated individually.

An algorithm is described that determines the machine speeds for each
combination of buffer contents (either empty, full, or non-empty and non-
full). The algorithm locates a machine of which the speed can be calculated
and removes this machine with every connecting arc from the network.
Non-connectkd buffers are also removed. The input and output rate restric-
tions of the remaining buffers are adapted, depending on the speed of this
particular machine. This procedure is repeated till all machine speeds have
been determined. At each removal one or more networks remain which are
of the same types as the original network. Let B denote the set of buffers,
u(i) the potential machine speed of machine i, and w(i) the real speed of
machine i as influenced by the network. pred, is the buffer preceding i and
succi is the buffer succeeding i.

Algorithm
initialization for all full buffers b: i(b) := 0;

for all empty buffers b: o(b) := 0;
while B # 0

do found := false;
choose source buffer a;
while not found

do while a is not a sinkbuffer and not found
do go downstream along the arc with the highest priority

to machine i and further downstream to buffer b;
if b is not full
then found := true;

14,(i) := min{o(i), o(a)}
else a := b
Ii
4
if n has no other incoming arcs with a higher priority

than the arc along which a was entered and not found
then found := true;

w(i) := min{ u(i), i(a), o(pred,)}
Ii;

while a is not a source buffer and not found
do go upstream along the arc with the highest priority

to machine i and further to buffer b
if b is not empty
then found := true;

w(i) :=min{u(i), i(a))

326 <‘ORTEN AND DE KOSTER

else 0 := h
Ii

od;

if (I has no other outgoing arcs with a higher priority
than the arc along which u was entered and not found

then found := true;
I :=min{ r(i), o(a), i(succ,)}

f-l;
od;
remove i from the network with all its arcs and non-connected
buffers;
if i obtained from an empty buffer h
then o(b) := o(h) - w(i) ti;

if i supplied an empty buffer h
then o(b) := o(b) + w(i) ii;
if i obtained from a full buffer h
then i(h) := i(b) + w(i) fi;
if i supplied a full buffer h
then i(b) := i(b) - w(i)
fi

od.

Conditions (1) and (2) guarantee that the algorithm always takes a new
machine and a new buffer while going downstream or upstream through
the network. The finiteness of the network guarantees that a machine can
always be found of which the speed can be determined. If the remaining
network is disconnected then the components are treated one by one. For
the production system sketched in Fig. Al the algorithm gives the following
results, in case buffers h, and 6, are full and buffer b2 is empty. Denote
the source buffer (preceding machine m,) by b,, and the sink buffer
(succeeding machine m6) by b,. At each buffer shared by more than one
machine, machine m, has priority over machine mi iff i < j.

FIG. Al. Buffersharing network. On top of the machines the speeds are indicated. All
buffers are either full (f) or empty (e).

REVERSIBILITY OF MANUFACTURING NETWORKS 327

Initialization.

o(b,) = i(b4) = o(b,) = i(b2) = o(bj) = co,

i(b,) = o(b,) = i(b3) = 0.

Machine Speed Determination. w(mg) = 1; i(b3) = 1; w(m2) = 0.6;
i(b,) = 0.6; i(b3) = 0.4; w(m3) = 0.3; o(b2) = 0.3; i(b,) = 0.9; w(mJ = 0.3;
o(b,) =0.6; i(b,)= 1.2; now we have two components left, namely the
systems h,-m, -6, and b,-m,-b,.

w(ml) = 0.9; i(b,) = 0.3; w(m5) = 0.4.

REFERENCES

1. M. H. AMMAR, “Modeling and Analysis of Unreliable Manufacturing Assembly Networks
with Finite Storages,” MIT Laboratory for Information and Decision Systems, Report
LIDS-TH-1004, 1980.

2. M. H. AMMAR AND S. B. GERSHWIN, Equivalence relations in queueing models of manufac-
turing, in “Proceedings, Nineteenth IEEE Conference on Decision and Control, 1980,”
pp. 715-721.

3. M. B. M. DE KOSTER, “Approximation of Assembly-Disassembly Systems.” Report
BDK/ORS/87-01, Eindhoven University of Technology, 1987.

4. M. B. M. DE KOSTER AND J. WIJNGAARD, On the equivalence of multistage production
lines and two-stages lines, IIE Trans. 19 (1987), 351-354.

5. B. MELAMED, A note on the reversibility and duality of some tandem blocking queueing
system, Management Sci. 32 (1986), 1648-1650.

6. E. J. MUTH, The reversibility property of production lines, Management Sci. 25 (1979),
152-158.

7. G. YAMAZAKI, T. KAWASHIMA, AND H. SAKASEGAWA, Reversibility of tandem blocking
queueing systems, Management Sci. 31 (1985). 78-83.

8. G. YAMAZAKI, H. SAKASEGAWA, AND T. KAWASHIMA, Production rate estimated with flow-
shop reversibility, Bull. Japan Sot. Mech. Eng. 21 (1978), 167-171.

